1 /* Driver for USB Mass Storage compliant devices 2 * 3 * Current development and maintenance by: 4 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net) 5 * 6 * Developed with the assistance of: 7 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org) 8 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov) 9 * (c) 2002 Alan Stern <stern@rowland.org> 10 * 11 * Initial work by: 12 * (c) 1999 Michael Gee (michael@linuxspecific.com) 13 * 14 * This driver is based on the 'USB Mass Storage Class' document. This 15 * describes in detail the protocol used to communicate with such 16 * devices. Clearly, the designers had SCSI and ATAPI commands in 17 * mind when they created this document. The commands are all very 18 * similar to commands in the SCSI-II and ATAPI specifications. 19 * 20 * It is important to note that in a number of cases this class 21 * exhibits class-specific exemptions from the USB specification. 22 * Notably the usage of NAK, STALL and ACK differs from the norm, in 23 * that they are used to communicate wait, failed and OK on commands. 24 * 25 * Also, for certain devices, the interrupt endpoint is used to convey 26 * status of a command. 27 * 28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more 29 * information about this driver. 30 * 31 * This program is free software; you can redistribute it and/or modify it 32 * under the terms of the GNU General Public License as published by the 33 * Free Software Foundation; either version 2, or (at your option) any 34 * later version. 35 * 36 * This program is distributed in the hope that it will be useful, but 37 * WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 39 * General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, write to the Free Software Foundation, Inc., 43 * 675 Mass Ave, Cambridge, MA 02139, USA. 44 */ 45 46 #include <linux/sched.h> 47 #include <linux/errno.h> 48 #include <linux/slab.h> 49 50 #include <scsi/scsi.h> 51 #include <scsi/scsi_eh.h> 52 #include <scsi/scsi_device.h> 53 54 #include "usb.h" 55 #include "transport.h" 56 #include "protocol.h" 57 #include "scsiglue.h" 58 #include "debug.h" 59 60 #include <linux/blkdev.h> 61 #include "../../scsi/sd.h" 62 63 64 /*********************************************************************** 65 * Data transfer routines 66 ***********************************************************************/ 67 68 /* 69 * This is subtle, so pay attention: 70 * --------------------------------- 71 * We're very concerned about races with a command abort. Hanging this code 72 * is a sure fire way to hang the kernel. (Note that this discussion applies 73 * only to transactions resulting from a scsi queued-command, since only 74 * these transactions are subject to a scsi abort. Other transactions, such 75 * as those occurring during device-specific initialization, must be handled 76 * by a separate code path.) 77 * 78 * The abort function (usb_storage_command_abort() in scsiglue.c) first 79 * sets the machine state and the ABORTING bit in us->dflags to prevent 80 * new URBs from being submitted. It then calls usb_stor_stop_transport() 81 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags 82 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE 83 * bit is tested to see if the current_sg scatter-gather request needs to be 84 * stopped. The timeout callback routine does much the same thing. 85 * 86 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to 87 * prevent new URBs from being submitted, and usb_stor_stop_transport() is 88 * called to stop any ongoing requests. 89 * 90 * The submit function first verifies that the submitting is allowed 91 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit 92 * completes without errors, and only then sets the URB_ACTIVE bit. This 93 * prevents the stop_transport() function from trying to cancel the URB 94 * while the submit call is underway. Next, the submit function must test 95 * the flags to see if an abort or disconnect occurred during the submission 96 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel 97 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit 98 * is still set). Either way, the function must then wait for the URB to 99 * finish. Note that the URB can still be in progress even after a call to 100 * usb_unlink_urb() returns. 101 * 102 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set, 103 * either the stop_transport() function or the submitting function 104 * is guaranteed to call usb_unlink_urb() for an active URB, 105 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being 106 * called more than once or from being called during usb_submit_urb(). 107 */ 108 109 /* This is the completion handler which will wake us up when an URB 110 * completes. 111 */ 112 static void usb_stor_blocking_completion(struct urb *urb) 113 { 114 struct completion *urb_done_ptr = urb->context; 115 116 complete(urb_done_ptr); 117 } 118 119 /* This is the common part of the URB message submission code 120 * 121 * All URBs from the usb-storage driver involved in handling a queued scsi 122 * command _must_ pass through this function (or something like it) for the 123 * abort mechanisms to work properly. 124 */ 125 static int usb_stor_msg_common(struct us_data *us, int timeout) 126 { 127 struct completion urb_done; 128 long timeleft; 129 int status; 130 131 /* don't submit URBs during abort processing */ 132 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) 133 return -EIO; 134 135 /* set up data structures for the wakeup system */ 136 init_completion(&urb_done); 137 138 /* fill the common fields in the URB */ 139 us->current_urb->context = &urb_done; 140 us->current_urb->actual_length = 0; 141 us->current_urb->error_count = 0; 142 us->current_urb->status = 0; 143 144 /* we assume that if transfer_buffer isn't us->iobuf then it 145 * hasn't been mapped for DMA. Yes, this is clunky, but it's 146 * easier than always having the caller tell us whether the 147 * transfer buffer has already been mapped. */ 148 us->current_urb->transfer_flags = URB_NO_SETUP_DMA_MAP; 149 if (us->current_urb->transfer_buffer == us->iobuf) 150 us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 151 us->current_urb->transfer_dma = us->iobuf_dma; 152 us->current_urb->setup_dma = us->cr_dma; 153 154 /* submit the URB */ 155 status = usb_submit_urb(us->current_urb, GFP_NOIO); 156 if (status) { 157 /* something went wrong */ 158 return status; 159 } 160 161 /* since the URB has been submitted successfully, it's now okay 162 * to cancel it */ 163 set_bit(US_FLIDX_URB_ACTIVE, &us->dflags); 164 165 /* did an abort occur during the submission? */ 166 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { 167 168 /* cancel the URB, if it hasn't been cancelled already */ 169 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { 170 US_DEBUGP("-- cancelling URB\n"); 171 usb_unlink_urb(us->current_urb); 172 } 173 } 174 175 /* wait for the completion of the URB */ 176 timeleft = wait_for_completion_interruptible_timeout( 177 &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT); 178 179 clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags); 180 181 if (timeleft <= 0) { 182 US_DEBUGP("%s -- cancelling URB\n", 183 timeleft == 0 ? "Timeout" : "Signal"); 184 usb_kill_urb(us->current_urb); 185 } 186 187 /* return the URB status */ 188 return us->current_urb->status; 189 } 190 191 /* 192 * Transfer one control message, with timeouts, and allowing early 193 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx. 194 */ 195 int usb_stor_control_msg(struct us_data *us, unsigned int pipe, 196 u8 request, u8 requesttype, u16 value, u16 index, 197 void *data, u16 size, int timeout) 198 { 199 int status; 200 201 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", 202 __func__, request, requesttype, 203 value, index, size); 204 205 /* fill in the devrequest structure */ 206 us->cr->bRequestType = requesttype; 207 us->cr->bRequest = request; 208 us->cr->wValue = cpu_to_le16(value); 209 us->cr->wIndex = cpu_to_le16(index); 210 us->cr->wLength = cpu_to_le16(size); 211 212 /* fill and submit the URB */ 213 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 214 (unsigned char*) us->cr, data, size, 215 usb_stor_blocking_completion, NULL); 216 status = usb_stor_msg_common(us, timeout); 217 218 /* return the actual length of the data transferred if no error */ 219 if (status == 0) 220 status = us->current_urb->actual_length; 221 return status; 222 } 223 EXPORT_SYMBOL_GPL(usb_stor_control_msg); 224 225 /* This is a version of usb_clear_halt() that allows early termination and 226 * doesn't read the status from the device -- this is because some devices 227 * crash their internal firmware when the status is requested after a halt. 228 * 229 * A definitive list of these 'bad' devices is too difficult to maintain or 230 * make complete enough to be useful. This problem was first observed on the 231 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither 232 * MacOS nor Windows checks the status after clearing a halt. 233 * 234 * Since many vendors in this space limit their testing to interoperability 235 * with these two OSes, specification violations like this one are common. 236 */ 237 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe) 238 { 239 int result; 240 int endp = usb_pipeendpoint(pipe); 241 242 if (usb_pipein (pipe)) 243 endp |= USB_DIR_IN; 244 245 result = usb_stor_control_msg(us, us->send_ctrl_pipe, 246 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 247 USB_ENDPOINT_HALT, endp, 248 NULL, 0, 3*HZ); 249 250 if (result >= 0) 251 usb_reset_endpoint(us->pusb_dev, endp); 252 253 US_DEBUGP("%s: result = %d\n", __func__, result); 254 return result; 255 } 256 EXPORT_SYMBOL_GPL(usb_stor_clear_halt); 257 258 259 /* 260 * Interpret the results of a URB transfer 261 * 262 * This function prints appropriate debugging messages, clears halts on 263 * non-control endpoints, and translates the status to the corresponding 264 * USB_STOR_XFER_xxx return code. 265 */ 266 static int interpret_urb_result(struct us_data *us, unsigned int pipe, 267 unsigned int length, int result, unsigned int partial) 268 { 269 US_DEBUGP("Status code %d; transferred %u/%u\n", 270 result, partial, length); 271 switch (result) { 272 273 /* no error code; did we send all the data? */ 274 case 0: 275 if (partial != length) { 276 US_DEBUGP("-- short transfer\n"); 277 return USB_STOR_XFER_SHORT; 278 } 279 280 US_DEBUGP("-- transfer complete\n"); 281 return USB_STOR_XFER_GOOD; 282 283 /* stalled */ 284 case -EPIPE: 285 /* for control endpoints, (used by CB[I]) a stall indicates 286 * a failed command */ 287 if (usb_pipecontrol(pipe)) { 288 US_DEBUGP("-- stall on control pipe\n"); 289 return USB_STOR_XFER_STALLED; 290 } 291 292 /* for other sorts of endpoint, clear the stall */ 293 US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe); 294 if (usb_stor_clear_halt(us, pipe) < 0) 295 return USB_STOR_XFER_ERROR; 296 return USB_STOR_XFER_STALLED; 297 298 /* babble - the device tried to send more than we wanted to read */ 299 case -EOVERFLOW: 300 US_DEBUGP("-- babble\n"); 301 return USB_STOR_XFER_LONG; 302 303 /* the transfer was cancelled by abort, disconnect, or timeout */ 304 case -ECONNRESET: 305 US_DEBUGP("-- transfer cancelled\n"); 306 return USB_STOR_XFER_ERROR; 307 308 /* short scatter-gather read transfer */ 309 case -EREMOTEIO: 310 US_DEBUGP("-- short read transfer\n"); 311 return USB_STOR_XFER_SHORT; 312 313 /* abort or disconnect in progress */ 314 case -EIO: 315 US_DEBUGP("-- abort or disconnect in progress\n"); 316 return USB_STOR_XFER_ERROR; 317 318 /* the catch-all error case */ 319 default: 320 US_DEBUGP("-- unknown error\n"); 321 return USB_STOR_XFER_ERROR; 322 } 323 } 324 325 /* 326 * Transfer one control message, without timeouts, but allowing early 327 * termination. Return codes are USB_STOR_XFER_xxx. 328 */ 329 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe, 330 u8 request, u8 requesttype, u16 value, u16 index, 331 void *data, u16 size) 332 { 333 int result; 334 335 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", 336 __func__, request, requesttype, 337 value, index, size); 338 339 /* fill in the devrequest structure */ 340 us->cr->bRequestType = requesttype; 341 us->cr->bRequest = request; 342 us->cr->wValue = cpu_to_le16(value); 343 us->cr->wIndex = cpu_to_le16(index); 344 us->cr->wLength = cpu_to_le16(size); 345 346 /* fill and submit the URB */ 347 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 348 (unsigned char*) us->cr, data, size, 349 usb_stor_blocking_completion, NULL); 350 result = usb_stor_msg_common(us, 0); 351 352 return interpret_urb_result(us, pipe, size, result, 353 us->current_urb->actual_length); 354 } 355 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer); 356 357 /* 358 * Receive one interrupt buffer, without timeouts, but allowing early 359 * termination. Return codes are USB_STOR_XFER_xxx. 360 * 361 * This routine always uses us->recv_intr_pipe as the pipe and 362 * us->ep_bInterval as the interrupt interval. 363 */ 364 static int usb_stor_intr_transfer(struct us_data *us, void *buf, 365 unsigned int length) 366 { 367 int result; 368 unsigned int pipe = us->recv_intr_pipe; 369 unsigned int maxp; 370 371 US_DEBUGP("%s: xfer %u bytes\n", __func__, length); 372 373 /* calculate the max packet size */ 374 maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe)); 375 if (maxp > length) 376 maxp = length; 377 378 /* fill and submit the URB */ 379 usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf, 380 maxp, usb_stor_blocking_completion, NULL, 381 us->ep_bInterval); 382 result = usb_stor_msg_common(us, 0); 383 384 return interpret_urb_result(us, pipe, length, result, 385 us->current_urb->actual_length); 386 } 387 388 /* 389 * Transfer one buffer via bulk pipe, without timeouts, but allowing early 390 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe 391 * stalls during the transfer, the halt is automatically cleared. 392 */ 393 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe, 394 void *buf, unsigned int length, unsigned int *act_len) 395 { 396 int result; 397 398 US_DEBUGP("%s: xfer %u bytes\n", __func__, length); 399 400 /* fill and submit the URB */ 401 usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length, 402 usb_stor_blocking_completion, NULL); 403 result = usb_stor_msg_common(us, 0); 404 405 /* store the actual length of the data transferred */ 406 if (act_len) 407 *act_len = us->current_urb->actual_length; 408 return interpret_urb_result(us, pipe, length, result, 409 us->current_urb->actual_length); 410 } 411 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf); 412 413 /* 414 * Transfer a scatter-gather list via bulk transfer 415 * 416 * This function does basically the same thing as usb_stor_bulk_transfer_buf() 417 * above, but it uses the usbcore scatter-gather library. 418 */ 419 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe, 420 struct scatterlist *sg, int num_sg, unsigned int length, 421 unsigned int *act_len) 422 { 423 int result; 424 425 /* don't submit s-g requests during abort processing */ 426 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) 427 return USB_STOR_XFER_ERROR; 428 429 /* initialize the scatter-gather request block */ 430 US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__, 431 length, num_sg); 432 result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0, 433 sg, num_sg, length, GFP_NOIO); 434 if (result) { 435 US_DEBUGP("usb_sg_init returned %d\n", result); 436 return USB_STOR_XFER_ERROR; 437 } 438 439 /* since the block has been initialized successfully, it's now 440 * okay to cancel it */ 441 set_bit(US_FLIDX_SG_ACTIVE, &us->dflags); 442 443 /* did an abort occur during the submission? */ 444 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { 445 446 /* cancel the request, if it hasn't been cancelled already */ 447 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { 448 US_DEBUGP("-- cancelling sg request\n"); 449 usb_sg_cancel(&us->current_sg); 450 } 451 } 452 453 /* wait for the completion of the transfer */ 454 usb_sg_wait(&us->current_sg); 455 clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags); 456 457 result = us->current_sg.status; 458 if (act_len) 459 *act_len = us->current_sg.bytes; 460 return interpret_urb_result(us, pipe, length, result, 461 us->current_sg.bytes); 462 } 463 464 /* 465 * Common used function. Transfer a complete command 466 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid 467 */ 468 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe, 469 struct scsi_cmnd* srb) 470 { 471 unsigned int partial; 472 int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb), 473 scsi_sg_count(srb), scsi_bufflen(srb), 474 &partial); 475 476 scsi_set_resid(srb, scsi_bufflen(srb) - partial); 477 return result; 478 } 479 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb); 480 481 /* 482 * Transfer an entire SCSI command's worth of data payload over the bulk 483 * pipe. 484 * 485 * Note that this uses usb_stor_bulk_transfer_buf() and 486 * usb_stor_bulk_transfer_sglist() to achieve its goals -- 487 * this function simply determines whether we're going to use 488 * scatter-gather or not, and acts appropriately. 489 */ 490 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe, 491 void *buf, unsigned int length_left, int use_sg, int *residual) 492 { 493 int result; 494 unsigned int partial; 495 496 /* are we scatter-gathering? */ 497 if (use_sg) { 498 /* use the usb core scatter-gather primitives */ 499 result = usb_stor_bulk_transfer_sglist(us, pipe, 500 (struct scatterlist *) buf, use_sg, 501 length_left, &partial); 502 length_left -= partial; 503 } else { 504 /* no scatter-gather, just make the request */ 505 result = usb_stor_bulk_transfer_buf(us, pipe, buf, 506 length_left, &partial); 507 length_left -= partial; 508 } 509 510 /* store the residual and return the error code */ 511 if (residual) 512 *residual = length_left; 513 return result; 514 } 515 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg); 516 517 /*********************************************************************** 518 * Transport routines 519 ***********************************************************************/ 520 521 /* There are so many devices that report the capacity incorrectly, 522 * this routine was written to counteract some of the resulting 523 * problems. 524 */ 525 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb) 526 { 527 struct gendisk *disk; 528 struct scsi_disk *sdkp; 529 u32 sector; 530 531 /* To Report "Medium Error: Record Not Found */ 532 static unsigned char record_not_found[18] = { 533 [0] = 0x70, /* current error */ 534 [2] = MEDIUM_ERROR, /* = 0x03 */ 535 [7] = 0x0a, /* additional length */ 536 [12] = 0x14 /* Record Not Found */ 537 }; 538 539 /* If last-sector problems can't occur, whether because the 540 * capacity was already decremented or because the device is 541 * known to report the correct capacity, then we don't need 542 * to do anything. 543 */ 544 if (!us->use_last_sector_hacks) 545 return; 546 547 /* Was this command a READ(10) or a WRITE(10)? */ 548 if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10) 549 goto done; 550 551 /* Did this command access the last sector? */ 552 sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) | 553 (srb->cmnd[4] << 8) | (srb->cmnd[5]); 554 disk = srb->request->rq_disk; 555 if (!disk) 556 goto done; 557 sdkp = scsi_disk(disk); 558 if (!sdkp) 559 goto done; 560 if (sector + 1 != sdkp->capacity) 561 goto done; 562 563 if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) { 564 565 /* The command succeeded. We know this device doesn't 566 * have the last-sector bug, so stop checking it. 567 */ 568 us->use_last_sector_hacks = 0; 569 570 } else { 571 /* The command failed. Allow up to 3 retries in case this 572 * is some normal sort of failure. After that, assume the 573 * capacity is wrong and we're trying to access the sector 574 * beyond the end. Replace the result code and sense data 575 * with values that will cause the SCSI core to fail the 576 * command immediately, instead of going into an infinite 577 * (or even just a very long) retry loop. 578 */ 579 if (++us->last_sector_retries < 3) 580 return; 581 srb->result = SAM_STAT_CHECK_CONDITION; 582 memcpy(srb->sense_buffer, record_not_found, 583 sizeof(record_not_found)); 584 } 585 586 done: 587 /* Don't reset the retry counter for TEST UNIT READY commands, 588 * because they get issued after device resets which might be 589 * caused by a failed last-sector access. 590 */ 591 if (srb->cmnd[0] != TEST_UNIT_READY) 592 us->last_sector_retries = 0; 593 } 594 595 /* Invoke the transport and basic error-handling/recovery methods 596 * 597 * This is used by the protocol layers to actually send the message to 598 * the device and receive the response. 599 */ 600 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us) 601 { 602 int need_auto_sense; 603 int result; 604 605 /* send the command to the transport layer */ 606 scsi_set_resid(srb, 0); 607 result = us->transport(srb, us); 608 609 /* if the command gets aborted by the higher layers, we need to 610 * short-circuit all other processing 611 */ 612 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { 613 US_DEBUGP("-- command was aborted\n"); 614 srb->result = DID_ABORT << 16; 615 goto Handle_Errors; 616 } 617 618 /* if there is a transport error, reset and don't auto-sense */ 619 if (result == USB_STOR_TRANSPORT_ERROR) { 620 US_DEBUGP("-- transport indicates error, resetting\n"); 621 srb->result = DID_ERROR << 16; 622 goto Handle_Errors; 623 } 624 625 /* if the transport provided its own sense data, don't auto-sense */ 626 if (result == USB_STOR_TRANSPORT_NO_SENSE) { 627 srb->result = SAM_STAT_CHECK_CONDITION; 628 last_sector_hacks(us, srb); 629 return; 630 } 631 632 srb->result = SAM_STAT_GOOD; 633 634 /* Determine if we need to auto-sense 635 * 636 * I normally don't use a flag like this, but it's almost impossible 637 * to understand what's going on here if I don't. 638 */ 639 need_auto_sense = 0; 640 641 /* 642 * If we're running the CB transport, which is incapable 643 * of determining status on its own, we will auto-sense 644 * unless the operation involved a data-in transfer. Devices 645 * can signal most data-in errors by stalling the bulk-in pipe. 646 */ 647 if ((us->protocol == US_PR_CB || us->protocol == US_PR_DPCM_USB) && 648 srb->sc_data_direction != DMA_FROM_DEVICE) { 649 US_DEBUGP("-- CB transport device requiring auto-sense\n"); 650 need_auto_sense = 1; 651 } 652 653 /* 654 * If we have a failure, we're going to do a REQUEST_SENSE 655 * automatically. Note that we differentiate between a command 656 * "failure" and an "error" in the transport mechanism. 657 */ 658 if (result == USB_STOR_TRANSPORT_FAILED) { 659 US_DEBUGP("-- transport indicates command failure\n"); 660 need_auto_sense = 1; 661 } 662 663 /* 664 * Determine if this device is SAT by seeing if the 665 * command executed successfully. Otherwise we'll have 666 * to wait for at least one CHECK_CONDITION to determine 667 * SANE_SENSE support 668 */ 669 if ((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) && 670 result == USB_STOR_TRANSPORT_GOOD && 671 !(us->fflags & US_FL_SANE_SENSE) && 672 !(srb->cmnd[2] & 0x20)) { 673 US_DEBUGP("-- SAT supported, increasing auto-sense\n"); 674 us->fflags |= US_FL_SANE_SENSE; 675 } 676 677 /* 678 * A short transfer on a command where we don't expect it 679 * is unusual, but it doesn't mean we need to auto-sense. 680 */ 681 if ((scsi_get_resid(srb) > 0) && 682 !((srb->cmnd[0] == REQUEST_SENSE) || 683 (srb->cmnd[0] == INQUIRY) || 684 (srb->cmnd[0] == MODE_SENSE) || 685 (srb->cmnd[0] == LOG_SENSE) || 686 (srb->cmnd[0] == MODE_SENSE_10))) { 687 US_DEBUGP("-- unexpectedly short transfer\n"); 688 } 689 690 /* Now, if we need to do the auto-sense, let's do it */ 691 if (need_auto_sense) { 692 int temp_result; 693 struct scsi_eh_save ses; 694 int sense_size = US_SENSE_SIZE; 695 696 /* device supports and needs bigger sense buffer */ 697 if (us->fflags & US_FL_SANE_SENSE) 698 sense_size = ~0; 699 700 US_DEBUGP("Issuing auto-REQUEST_SENSE\n"); 701 702 scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size); 703 704 /* FIXME: we must do the protocol translation here */ 705 if (us->subclass == US_SC_RBC || us->subclass == US_SC_SCSI || 706 us->subclass == US_SC_CYP_ATACB) 707 srb->cmd_len = 6; 708 else 709 srb->cmd_len = 12; 710 711 /* issue the auto-sense command */ 712 scsi_set_resid(srb, 0); 713 temp_result = us->transport(us->srb, us); 714 715 /* let's clean up right away */ 716 scsi_eh_restore_cmnd(srb, &ses); 717 718 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { 719 US_DEBUGP("-- auto-sense aborted\n"); 720 srb->result = DID_ABORT << 16; 721 goto Handle_Errors; 722 } 723 if (temp_result != USB_STOR_TRANSPORT_GOOD) { 724 US_DEBUGP("-- auto-sense failure\n"); 725 726 /* we skip the reset if this happens to be a 727 * multi-target device, since failure of an 728 * auto-sense is perfectly valid 729 */ 730 srb->result = DID_ERROR << 16; 731 if (!(us->fflags & US_FL_SCM_MULT_TARG)) 732 goto Handle_Errors; 733 return; 734 } 735 736 /* If the sense data returned is larger than 18-bytes then we 737 * assume this device supports requesting more in the future. 738 * The response code must be 70h through 73h inclusive. 739 */ 740 if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) && 741 !(us->fflags & US_FL_SANE_SENSE) && 742 (srb->sense_buffer[0] & 0x7C) == 0x70) { 743 US_DEBUGP("-- SANE_SENSE support enabled\n"); 744 us->fflags |= US_FL_SANE_SENSE; 745 746 /* Indicate to the user that we truncated their sense 747 * because we didn't know it supported larger sense. 748 */ 749 US_DEBUGP("-- Sense data truncated to %i from %i\n", 750 US_SENSE_SIZE, 751 srb->sense_buffer[7] + 8); 752 srb->sense_buffer[7] = (US_SENSE_SIZE - 8); 753 } 754 755 US_DEBUGP("-- Result from auto-sense is %d\n", temp_result); 756 US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n", 757 srb->sense_buffer[0], 758 srb->sense_buffer[2] & 0xf, 759 srb->sense_buffer[12], 760 srb->sense_buffer[13]); 761 #ifdef CONFIG_USB_STORAGE_DEBUG 762 usb_stor_show_sense( 763 srb->sense_buffer[2] & 0xf, 764 srb->sense_buffer[12], 765 srb->sense_buffer[13]); 766 #endif 767 768 /* set the result so the higher layers expect this data */ 769 srb->result = SAM_STAT_CHECK_CONDITION; 770 771 /* If things are really okay, then let's show that. Zero 772 * out the sense buffer so the higher layers won't realize 773 * we did an unsolicited auto-sense. */ 774 if (result == USB_STOR_TRANSPORT_GOOD && 775 /* Filemark 0, ignore EOM, ILI 0, no sense */ 776 (srb->sense_buffer[2] & 0xaf) == 0 && 777 /* No ASC or ASCQ */ 778 srb->sense_buffer[12] == 0 && 779 srb->sense_buffer[13] == 0) { 780 srb->result = SAM_STAT_GOOD; 781 srb->sense_buffer[0] = 0x0; 782 } 783 } 784 785 /* Did we transfer less than the minimum amount required? */ 786 if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) && 787 scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow) 788 srb->result = DID_ERROR << 16; 789 790 last_sector_hacks(us, srb); 791 return; 792 793 /* Error and abort processing: try to resynchronize with the device 794 * by issuing a port reset. If that fails, try a class-specific 795 * device reset. */ 796 Handle_Errors: 797 798 /* Set the RESETTING bit, and clear the ABORTING bit so that 799 * the reset may proceed. */ 800 scsi_lock(us_to_host(us)); 801 set_bit(US_FLIDX_RESETTING, &us->dflags); 802 clear_bit(US_FLIDX_ABORTING, &us->dflags); 803 scsi_unlock(us_to_host(us)); 804 805 /* We must release the device lock because the pre_reset routine 806 * will want to acquire it. */ 807 mutex_unlock(&us->dev_mutex); 808 result = usb_stor_port_reset(us); 809 mutex_lock(&us->dev_mutex); 810 811 if (result < 0) { 812 scsi_lock(us_to_host(us)); 813 usb_stor_report_device_reset(us); 814 scsi_unlock(us_to_host(us)); 815 us->transport_reset(us); 816 } 817 clear_bit(US_FLIDX_RESETTING, &us->dflags); 818 last_sector_hacks(us, srb); 819 } 820 821 /* Stop the current URB transfer */ 822 void usb_stor_stop_transport(struct us_data *us) 823 { 824 US_DEBUGP("%s called\n", __func__); 825 826 /* If the state machine is blocked waiting for an URB, 827 * let's wake it up. The test_and_clear_bit() call 828 * guarantees that if a URB has just been submitted, 829 * it won't be cancelled more than once. */ 830 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { 831 US_DEBUGP("-- cancelling URB\n"); 832 usb_unlink_urb(us->current_urb); 833 } 834 835 /* If we are waiting for a scatter-gather operation, cancel it. */ 836 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { 837 US_DEBUGP("-- cancelling sg request\n"); 838 usb_sg_cancel(&us->current_sg); 839 } 840 } 841 842 /* 843 * Control/Bulk and Control/Bulk/Interrupt transport 844 */ 845 846 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us) 847 { 848 unsigned int transfer_length = scsi_bufflen(srb); 849 unsigned int pipe = 0; 850 int result; 851 852 /* COMMAND STAGE */ 853 /* let's send the command via the control pipe */ 854 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 855 US_CBI_ADSC, 856 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, 857 us->ifnum, srb->cmnd, srb->cmd_len); 858 859 /* check the return code for the command */ 860 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result); 861 862 /* if we stalled the command, it means command failed */ 863 if (result == USB_STOR_XFER_STALLED) { 864 return USB_STOR_TRANSPORT_FAILED; 865 } 866 867 /* Uh oh... serious problem here */ 868 if (result != USB_STOR_XFER_GOOD) { 869 return USB_STOR_TRANSPORT_ERROR; 870 } 871 872 /* DATA STAGE */ 873 /* transfer the data payload for this command, if one exists*/ 874 if (transfer_length) { 875 pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 876 us->recv_bulk_pipe : us->send_bulk_pipe; 877 result = usb_stor_bulk_srb(us, pipe, srb); 878 US_DEBUGP("CBI data stage result is 0x%x\n", result); 879 880 /* if we stalled the data transfer it means command failed */ 881 if (result == USB_STOR_XFER_STALLED) 882 return USB_STOR_TRANSPORT_FAILED; 883 if (result > USB_STOR_XFER_STALLED) 884 return USB_STOR_TRANSPORT_ERROR; 885 } 886 887 /* STATUS STAGE */ 888 889 /* NOTE: CB does not have a status stage. Silly, I know. So 890 * we have to catch this at a higher level. 891 */ 892 if (us->protocol != US_PR_CBI) 893 return USB_STOR_TRANSPORT_GOOD; 894 895 result = usb_stor_intr_transfer(us, us->iobuf, 2); 896 US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n", 897 us->iobuf[0], us->iobuf[1]); 898 if (result != USB_STOR_XFER_GOOD) 899 return USB_STOR_TRANSPORT_ERROR; 900 901 /* UFI gives us ASC and ASCQ, like a request sense 902 * 903 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI 904 * devices, so we ignore the information for those commands. Note 905 * that this means we could be ignoring a real error on these 906 * commands, but that can't be helped. 907 */ 908 if (us->subclass == US_SC_UFI) { 909 if (srb->cmnd[0] == REQUEST_SENSE || 910 srb->cmnd[0] == INQUIRY) 911 return USB_STOR_TRANSPORT_GOOD; 912 if (us->iobuf[0]) 913 goto Failed; 914 return USB_STOR_TRANSPORT_GOOD; 915 } 916 917 /* If not UFI, we interpret the data as a result code 918 * The first byte should always be a 0x0. 919 * 920 * Some bogus devices don't follow that rule. They stuff the ASC 921 * into the first byte -- so if it's non-zero, call it a failure. 922 */ 923 if (us->iobuf[0]) { 924 US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n", 925 us->iobuf[0]); 926 goto Failed; 927 928 } 929 930 /* The second byte & 0x0F should be 0x0 for good, otherwise error */ 931 switch (us->iobuf[1] & 0x0F) { 932 case 0x00: 933 return USB_STOR_TRANSPORT_GOOD; 934 case 0x01: 935 goto Failed; 936 } 937 return USB_STOR_TRANSPORT_ERROR; 938 939 /* the CBI spec requires that the bulk pipe must be cleared 940 * following any data-in/out command failure (section 2.4.3.1.3) 941 */ 942 Failed: 943 if (pipe) 944 usb_stor_clear_halt(us, pipe); 945 return USB_STOR_TRANSPORT_FAILED; 946 } 947 EXPORT_SYMBOL_GPL(usb_stor_CB_transport); 948 949 /* 950 * Bulk only transport 951 */ 952 953 /* Determine what the maximum LUN supported is */ 954 int usb_stor_Bulk_max_lun(struct us_data *us) 955 { 956 int result; 957 958 /* issue the command */ 959 us->iobuf[0] = 0; 960 result = usb_stor_control_msg(us, us->recv_ctrl_pipe, 961 US_BULK_GET_MAX_LUN, 962 USB_DIR_IN | USB_TYPE_CLASS | 963 USB_RECIP_INTERFACE, 964 0, us->ifnum, us->iobuf, 1, HZ); 965 966 US_DEBUGP("GetMaxLUN command result is %d, data is %d\n", 967 result, us->iobuf[0]); 968 969 /* if we have a successful request, return the result */ 970 if (result > 0) 971 return us->iobuf[0]; 972 973 /* 974 * Some devices don't like GetMaxLUN. They may STALL the control 975 * pipe, they may return a zero-length result, they may do nothing at 976 * all and timeout, or they may fail in even more bizarrely creative 977 * ways. In these cases the best approach is to use the default 978 * value: only one LUN. 979 */ 980 return 0; 981 } 982 983 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us) 984 { 985 struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf; 986 struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf; 987 unsigned int transfer_length = scsi_bufflen(srb); 988 unsigned int residue; 989 int result; 990 int fake_sense = 0; 991 unsigned int cswlen; 992 unsigned int cbwlen = US_BULK_CB_WRAP_LEN; 993 994 /* Take care of BULK32 devices; set extra byte to 0 */ 995 if (unlikely(us->fflags & US_FL_BULK32)) { 996 cbwlen = 32; 997 us->iobuf[31] = 0; 998 } 999 1000 /* set up the command wrapper */ 1001 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); 1002 bcb->DataTransferLength = cpu_to_le32(transfer_length); 1003 bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? 1 << 7 : 0; 1004 bcb->Tag = ++us->tag; 1005 bcb->Lun = srb->device->lun; 1006 if (us->fflags & US_FL_SCM_MULT_TARG) 1007 bcb->Lun |= srb->device->id << 4; 1008 bcb->Length = srb->cmd_len; 1009 1010 /* copy the command payload */ 1011 memset(bcb->CDB, 0, sizeof(bcb->CDB)); 1012 memcpy(bcb->CDB, srb->cmnd, bcb->Length); 1013 1014 /* send it to out endpoint */ 1015 US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n", 1016 le32_to_cpu(bcb->Signature), bcb->Tag, 1017 le32_to_cpu(bcb->DataTransferLength), bcb->Flags, 1018 (bcb->Lun >> 4), (bcb->Lun & 0x0F), 1019 bcb->Length); 1020 result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 1021 bcb, cbwlen, NULL); 1022 US_DEBUGP("Bulk command transfer result=%d\n", result); 1023 if (result != USB_STOR_XFER_GOOD) 1024 return USB_STOR_TRANSPORT_ERROR; 1025 1026 /* DATA STAGE */ 1027 /* send/receive data payload, if there is any */ 1028 1029 /* Some USB-IDE converter chips need a 100us delay between the 1030 * command phase and the data phase. Some devices need a little 1031 * more than that, probably because of clock rate inaccuracies. */ 1032 if (unlikely(us->fflags & US_FL_GO_SLOW)) 1033 udelay(125); 1034 1035 if (transfer_length) { 1036 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 1037 us->recv_bulk_pipe : us->send_bulk_pipe; 1038 result = usb_stor_bulk_srb(us, pipe, srb); 1039 US_DEBUGP("Bulk data transfer result 0x%x\n", result); 1040 if (result == USB_STOR_XFER_ERROR) 1041 return USB_STOR_TRANSPORT_ERROR; 1042 1043 /* If the device tried to send back more data than the 1044 * amount requested, the spec requires us to transfer 1045 * the CSW anyway. Since there's no point retrying the 1046 * the command, we'll return fake sense data indicating 1047 * Illegal Request, Invalid Field in CDB. 1048 */ 1049 if (result == USB_STOR_XFER_LONG) 1050 fake_sense = 1; 1051 } 1052 1053 /* See flow chart on pg 15 of the Bulk Only Transport spec for 1054 * an explanation of how this code works. 1055 */ 1056 1057 /* get CSW for device status */ 1058 US_DEBUGP("Attempting to get CSW...\n"); 1059 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1060 bcs, US_BULK_CS_WRAP_LEN, &cswlen); 1061 1062 /* Some broken devices add unnecessary zero-length packets to the 1063 * end of their data transfers. Such packets show up as 0-length 1064 * CSWs. If we encounter such a thing, try to read the CSW again. 1065 */ 1066 if (result == USB_STOR_XFER_SHORT && cswlen == 0) { 1067 US_DEBUGP("Received 0-length CSW; retrying...\n"); 1068 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1069 bcs, US_BULK_CS_WRAP_LEN, &cswlen); 1070 } 1071 1072 /* did the attempt to read the CSW fail? */ 1073 if (result == USB_STOR_XFER_STALLED) { 1074 1075 /* get the status again */ 1076 US_DEBUGP("Attempting to get CSW (2nd try)...\n"); 1077 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1078 bcs, US_BULK_CS_WRAP_LEN, NULL); 1079 } 1080 1081 /* if we still have a failure at this point, we're in trouble */ 1082 US_DEBUGP("Bulk status result = %d\n", result); 1083 if (result != USB_STOR_XFER_GOOD) 1084 return USB_STOR_TRANSPORT_ERROR; 1085 1086 /* check bulk status */ 1087 residue = le32_to_cpu(bcs->Residue); 1088 US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n", 1089 le32_to_cpu(bcs->Signature), bcs->Tag, 1090 residue, bcs->Status); 1091 if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) || 1092 bcs->Status > US_BULK_STAT_PHASE) { 1093 US_DEBUGP("Bulk logical error\n"); 1094 return USB_STOR_TRANSPORT_ERROR; 1095 } 1096 1097 /* Some broken devices report odd signatures, so we do not check them 1098 * for validity against the spec. We store the first one we see, 1099 * and check subsequent transfers for validity against this signature. 1100 */ 1101 if (!us->bcs_signature) { 1102 us->bcs_signature = bcs->Signature; 1103 if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN)) 1104 US_DEBUGP("Learnt BCS signature 0x%08X\n", 1105 le32_to_cpu(us->bcs_signature)); 1106 } else if (bcs->Signature != us->bcs_signature) { 1107 US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n", 1108 le32_to_cpu(bcs->Signature), 1109 le32_to_cpu(us->bcs_signature)); 1110 return USB_STOR_TRANSPORT_ERROR; 1111 } 1112 1113 /* try to compute the actual residue, based on how much data 1114 * was really transferred and what the device tells us */ 1115 if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) { 1116 1117 /* Heuristically detect devices that generate bogus residues 1118 * by seeing what happens with INQUIRY and READ CAPACITY 1119 * commands. 1120 */ 1121 if (bcs->Status == US_BULK_STAT_OK && 1122 scsi_get_resid(srb) == 0 && 1123 ((srb->cmnd[0] == INQUIRY && 1124 transfer_length == 36) || 1125 (srb->cmnd[0] == READ_CAPACITY && 1126 transfer_length == 8))) { 1127 us->fflags |= US_FL_IGNORE_RESIDUE; 1128 1129 } else { 1130 residue = min(residue, transfer_length); 1131 scsi_set_resid(srb, max(scsi_get_resid(srb), 1132 (int) residue)); 1133 } 1134 } 1135 1136 /* based on the status code, we report good or bad */ 1137 switch (bcs->Status) { 1138 case US_BULK_STAT_OK: 1139 /* device babbled -- return fake sense data */ 1140 if (fake_sense) { 1141 memcpy(srb->sense_buffer, 1142 usb_stor_sense_invalidCDB, 1143 sizeof(usb_stor_sense_invalidCDB)); 1144 return USB_STOR_TRANSPORT_NO_SENSE; 1145 } 1146 1147 /* command good -- note that data could be short */ 1148 return USB_STOR_TRANSPORT_GOOD; 1149 1150 case US_BULK_STAT_FAIL: 1151 /* command failed */ 1152 return USB_STOR_TRANSPORT_FAILED; 1153 1154 case US_BULK_STAT_PHASE: 1155 /* phase error -- note that a transport reset will be 1156 * invoked by the invoke_transport() function 1157 */ 1158 return USB_STOR_TRANSPORT_ERROR; 1159 } 1160 1161 /* we should never get here, but if we do, we're in trouble */ 1162 return USB_STOR_TRANSPORT_ERROR; 1163 } 1164 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport); 1165 1166 /*********************************************************************** 1167 * Reset routines 1168 ***********************************************************************/ 1169 1170 /* This is the common part of the device reset code. 1171 * 1172 * It's handy that every transport mechanism uses the control endpoint for 1173 * resets. 1174 * 1175 * Basically, we send a reset with a 5-second timeout, so we don't get 1176 * jammed attempting to do the reset. 1177 */ 1178 static int usb_stor_reset_common(struct us_data *us, 1179 u8 request, u8 requesttype, 1180 u16 value, u16 index, void *data, u16 size) 1181 { 1182 int result; 1183 int result2; 1184 1185 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1186 US_DEBUGP("No reset during disconnect\n"); 1187 return -EIO; 1188 } 1189 1190 result = usb_stor_control_msg(us, us->send_ctrl_pipe, 1191 request, requesttype, value, index, data, size, 1192 5*HZ); 1193 if (result < 0) { 1194 US_DEBUGP("Soft reset failed: %d\n", result); 1195 return result; 1196 } 1197 1198 /* Give the device some time to recover from the reset, 1199 * but don't delay disconnect processing. */ 1200 wait_event_interruptible_timeout(us->delay_wait, 1201 test_bit(US_FLIDX_DISCONNECTING, &us->dflags), 1202 HZ*6); 1203 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1204 US_DEBUGP("Reset interrupted by disconnect\n"); 1205 return -EIO; 1206 } 1207 1208 US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n"); 1209 result = usb_stor_clear_halt(us, us->recv_bulk_pipe); 1210 1211 US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n"); 1212 result2 = usb_stor_clear_halt(us, us->send_bulk_pipe); 1213 1214 /* return a result code based on the result of the clear-halts */ 1215 if (result >= 0) 1216 result = result2; 1217 if (result < 0) 1218 US_DEBUGP("Soft reset failed\n"); 1219 else 1220 US_DEBUGP("Soft reset done\n"); 1221 return result; 1222 } 1223 1224 /* This issues a CB[I] Reset to the device in question 1225 */ 1226 #define CB_RESET_CMD_SIZE 12 1227 1228 int usb_stor_CB_reset(struct us_data *us) 1229 { 1230 US_DEBUGP("%s called\n", __func__); 1231 1232 memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE); 1233 us->iobuf[0] = SEND_DIAGNOSTIC; 1234 us->iobuf[1] = 4; 1235 return usb_stor_reset_common(us, US_CBI_ADSC, 1236 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1237 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE); 1238 } 1239 EXPORT_SYMBOL_GPL(usb_stor_CB_reset); 1240 1241 /* This issues a Bulk-only Reset to the device in question, including 1242 * clearing the subsequent endpoint halts that may occur. 1243 */ 1244 int usb_stor_Bulk_reset(struct us_data *us) 1245 { 1246 US_DEBUGP("%s called\n", __func__); 1247 1248 return usb_stor_reset_common(us, US_BULK_RESET_REQUEST, 1249 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1250 0, us->ifnum, NULL, 0); 1251 } 1252 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset); 1253 1254 /* Issue a USB port reset to the device. The caller must not hold 1255 * us->dev_mutex. 1256 */ 1257 int usb_stor_port_reset(struct us_data *us) 1258 { 1259 int result; 1260 1261 result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf); 1262 if (result < 0) 1263 US_DEBUGP("unable to lock device for reset: %d\n", result); 1264 else { 1265 /* Were we disconnected while waiting for the lock? */ 1266 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1267 result = -EIO; 1268 US_DEBUGP("No reset during disconnect\n"); 1269 } else { 1270 result = usb_reset_device(us->pusb_dev); 1271 US_DEBUGP("usb_reset_device returns %d\n", 1272 result); 1273 } 1274 usb_unlock_device(us->pusb_dev); 1275 } 1276 return result; 1277 } 1278