xref: /openbmc/linux/drivers/usb/storage/transport.c (revision 0b26ca68)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for USB Mass Storage compliant devices
4  *
5  * Current development and maintenance by:
6  *   (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
7  *
8  * Developed with the assistance of:
9  *   (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
10  *   (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
11  *   (c) 2002 Alan Stern <stern@rowland.org>
12  *
13  * Initial work by:
14  *   (c) 1999 Michael Gee (michael@linuxspecific.com)
15  *
16  * This driver is based on the 'USB Mass Storage Class' document. This
17  * describes in detail the protocol used to communicate with such
18  * devices.  Clearly, the designers had SCSI and ATAPI commands in
19  * mind when they created this document.  The commands are all very
20  * similar to commands in the SCSI-II and ATAPI specifications.
21  *
22  * It is important to note that in a number of cases this class
23  * exhibits class-specific exemptions from the USB specification.
24  * Notably the usage of NAK, STALL and ACK differs from the norm, in
25  * that they are used to communicate wait, failed and OK on commands.
26  *
27  * Also, for certain devices, the interrupt endpoint is used to convey
28  * status of a command.
29  */
30 
31 #include <linux/sched.h>
32 #include <linux/gfp.h>
33 #include <linux/errno.h>
34 #include <linux/export.h>
35 
36 #include <linux/usb/quirks.h>
37 
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_eh.h>
40 #include <scsi/scsi_device.h>
41 
42 #include "usb.h"
43 #include "transport.h"
44 #include "protocol.h"
45 #include "scsiglue.h"
46 #include "debug.h"
47 
48 #include <linux/blkdev.h>
49 #include "../../scsi/sd.h"
50 
51 
52 /***********************************************************************
53  * Data transfer routines
54  ***********************************************************************/
55 
56 /*
57  * This is subtle, so pay attention:
58  * ---------------------------------
59  * We're very concerned about races with a command abort.  Hanging this code
60  * is a sure fire way to hang the kernel.  (Note that this discussion applies
61  * only to transactions resulting from a scsi queued-command, since only
62  * these transactions are subject to a scsi abort.  Other transactions, such
63  * as those occurring during device-specific initialization, must be handled
64  * by a separate code path.)
65  *
66  * The abort function (usb_storage_command_abort() in scsiglue.c) first
67  * sets the machine state and the ABORTING bit in us->dflags to prevent
68  * new URBs from being submitted.  It then calls usb_stor_stop_transport()
69  * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
70  * to see if the current_urb needs to be stopped.  Likewise, the SG_ACTIVE
71  * bit is tested to see if the current_sg scatter-gather request needs to be
72  * stopped.  The timeout callback routine does much the same thing.
73  *
74  * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
75  * prevent new URBs from being submitted, and usb_stor_stop_transport() is
76  * called to stop any ongoing requests.
77  *
78  * The submit function first verifies that the submitting is allowed
79  * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
80  * completes without errors, and only then sets the URB_ACTIVE bit.  This
81  * prevents the stop_transport() function from trying to cancel the URB
82  * while the submit call is underway.  Next, the submit function must test
83  * the flags to see if an abort or disconnect occurred during the submission
84  * or before the URB_ACTIVE bit was set.  If so, it's essential to cancel
85  * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
86  * is still set).  Either way, the function must then wait for the URB to
87  * finish.  Note that the URB can still be in progress even after a call to
88  * usb_unlink_urb() returns.
89  *
90  * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
91  * either the stop_transport() function or the submitting function
92  * is guaranteed to call usb_unlink_urb() for an active URB,
93  * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
94  * called more than once or from being called during usb_submit_urb().
95  */
96 
97 /*
98  * This is the completion handler which will wake us up when an URB
99  * completes.
100  */
101 static void usb_stor_blocking_completion(struct urb *urb)
102 {
103 	struct completion *urb_done_ptr = urb->context;
104 
105 	complete(urb_done_ptr);
106 }
107 
108 /*
109  * This is the common part of the URB message submission code
110  *
111  * All URBs from the usb-storage driver involved in handling a queued scsi
112  * command _must_ pass through this function (or something like it) for the
113  * abort mechanisms to work properly.
114  */
115 static int usb_stor_msg_common(struct us_data *us, int timeout)
116 {
117 	struct completion urb_done;
118 	long timeleft;
119 	int status;
120 
121 	/* don't submit URBs during abort processing */
122 	if (test_bit(US_FLIDX_ABORTING, &us->dflags))
123 		return -EIO;
124 
125 	/* set up data structures for the wakeup system */
126 	init_completion(&urb_done);
127 
128 	/* fill the common fields in the URB */
129 	us->current_urb->context = &urb_done;
130 	us->current_urb->transfer_flags = 0;
131 
132 	/*
133 	 * we assume that if transfer_buffer isn't us->iobuf then it
134 	 * hasn't been mapped for DMA.  Yes, this is clunky, but it's
135 	 * easier than always having the caller tell us whether the
136 	 * transfer buffer has already been mapped.
137 	 */
138 	if (us->current_urb->transfer_buffer == us->iobuf)
139 		us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
140 	us->current_urb->transfer_dma = us->iobuf_dma;
141 
142 	/* submit the URB */
143 	status = usb_submit_urb(us->current_urb, GFP_NOIO);
144 	if (status) {
145 		/* something went wrong */
146 		return status;
147 	}
148 
149 	/*
150 	 * since the URB has been submitted successfully, it's now okay
151 	 * to cancel it
152 	 */
153 	set_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
154 
155 	/* did an abort occur during the submission? */
156 	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
157 
158 		/* cancel the URB, if it hasn't been cancelled already */
159 		if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
160 			usb_stor_dbg(us, "-- cancelling URB\n");
161 			usb_unlink_urb(us->current_urb);
162 		}
163 	}
164 
165 	/* wait for the completion of the URB */
166 	timeleft = wait_for_completion_interruptible_timeout(
167 			&urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
168 
169 	clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
170 
171 	if (timeleft <= 0) {
172 		usb_stor_dbg(us, "%s -- cancelling URB\n",
173 			     timeleft == 0 ? "Timeout" : "Signal");
174 		usb_kill_urb(us->current_urb);
175 	}
176 
177 	/* return the URB status */
178 	return us->current_urb->status;
179 }
180 
181 /*
182  * Transfer one control message, with timeouts, and allowing early
183  * termination.  Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
184  */
185 int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
186 		 u8 request, u8 requesttype, u16 value, u16 index,
187 		 void *data, u16 size, int timeout)
188 {
189 	int status;
190 
191 	usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
192 		     request, requesttype, value, index, size);
193 
194 	/* fill in the devrequest structure */
195 	us->cr->bRequestType = requesttype;
196 	us->cr->bRequest = request;
197 	us->cr->wValue = cpu_to_le16(value);
198 	us->cr->wIndex = cpu_to_le16(index);
199 	us->cr->wLength = cpu_to_le16(size);
200 
201 	/* fill and submit the URB */
202 	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
203 			 (unsigned char*) us->cr, data, size,
204 			 usb_stor_blocking_completion, NULL);
205 	status = usb_stor_msg_common(us, timeout);
206 
207 	/* return the actual length of the data transferred if no error */
208 	if (status == 0)
209 		status = us->current_urb->actual_length;
210 	return status;
211 }
212 EXPORT_SYMBOL_GPL(usb_stor_control_msg);
213 
214 /*
215  * This is a version of usb_clear_halt() that allows early termination and
216  * doesn't read the status from the device -- this is because some devices
217  * crash their internal firmware when the status is requested after a halt.
218  *
219  * A definitive list of these 'bad' devices is too difficult to maintain or
220  * make complete enough to be useful.  This problem was first observed on the
221  * Hagiwara FlashGate DUAL unit.  However, bus traces reveal that neither
222  * MacOS nor Windows checks the status after clearing a halt.
223  *
224  * Since many vendors in this space limit their testing to interoperability
225  * with these two OSes, specification violations like this one are common.
226  */
227 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
228 {
229 	int result;
230 	int endp = usb_pipeendpoint(pipe);
231 
232 	if (usb_pipein (pipe))
233 		endp |= USB_DIR_IN;
234 
235 	result = usb_stor_control_msg(us, us->send_ctrl_pipe,
236 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
237 		USB_ENDPOINT_HALT, endp,
238 		NULL, 0, 3*HZ);
239 
240 	if (result >= 0)
241 		usb_reset_endpoint(us->pusb_dev, endp);
242 
243 	usb_stor_dbg(us, "result = %d\n", result);
244 	return result;
245 }
246 EXPORT_SYMBOL_GPL(usb_stor_clear_halt);
247 
248 
249 /*
250  * Interpret the results of a URB transfer
251  *
252  * This function prints appropriate debugging messages, clears halts on
253  * non-control endpoints, and translates the status to the corresponding
254  * USB_STOR_XFER_xxx return code.
255  */
256 static int interpret_urb_result(struct us_data *us, unsigned int pipe,
257 		unsigned int length, int result, unsigned int partial)
258 {
259 	usb_stor_dbg(us, "Status code %d; transferred %u/%u\n",
260 		     result, partial, length);
261 	switch (result) {
262 
263 	/* no error code; did we send all the data? */
264 	case 0:
265 		if (partial != length) {
266 			usb_stor_dbg(us, "-- short transfer\n");
267 			return USB_STOR_XFER_SHORT;
268 		}
269 
270 		usb_stor_dbg(us, "-- transfer complete\n");
271 		return USB_STOR_XFER_GOOD;
272 
273 	/* stalled */
274 	case -EPIPE:
275 		/*
276 		 * for control endpoints, (used by CB[I]) a stall indicates
277 		 * a failed command
278 		 */
279 		if (usb_pipecontrol(pipe)) {
280 			usb_stor_dbg(us, "-- stall on control pipe\n");
281 			return USB_STOR_XFER_STALLED;
282 		}
283 
284 		/* for other sorts of endpoint, clear the stall */
285 		usb_stor_dbg(us, "clearing endpoint halt for pipe 0x%x\n",
286 			     pipe);
287 		if (usb_stor_clear_halt(us, pipe) < 0)
288 			return USB_STOR_XFER_ERROR;
289 		return USB_STOR_XFER_STALLED;
290 
291 	/* babble - the device tried to send more than we wanted to read */
292 	case -EOVERFLOW:
293 		usb_stor_dbg(us, "-- babble\n");
294 		return USB_STOR_XFER_LONG;
295 
296 	/* the transfer was cancelled by abort, disconnect, or timeout */
297 	case -ECONNRESET:
298 		usb_stor_dbg(us, "-- transfer cancelled\n");
299 		return USB_STOR_XFER_ERROR;
300 
301 	/* short scatter-gather read transfer */
302 	case -EREMOTEIO:
303 		usb_stor_dbg(us, "-- short read transfer\n");
304 		return USB_STOR_XFER_SHORT;
305 
306 	/* abort or disconnect in progress */
307 	case -EIO:
308 		usb_stor_dbg(us, "-- abort or disconnect in progress\n");
309 		return USB_STOR_XFER_ERROR;
310 
311 	/* the catch-all error case */
312 	default:
313 		usb_stor_dbg(us, "-- unknown error\n");
314 		return USB_STOR_XFER_ERROR;
315 	}
316 }
317 
318 /*
319  * Transfer one control message, without timeouts, but allowing early
320  * termination.  Return codes are USB_STOR_XFER_xxx.
321  */
322 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
323 		u8 request, u8 requesttype, u16 value, u16 index,
324 		void *data, u16 size)
325 {
326 	int result;
327 
328 	usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
329 		     request, requesttype, value, index, size);
330 
331 	/* fill in the devrequest structure */
332 	us->cr->bRequestType = requesttype;
333 	us->cr->bRequest = request;
334 	us->cr->wValue = cpu_to_le16(value);
335 	us->cr->wIndex = cpu_to_le16(index);
336 	us->cr->wLength = cpu_to_le16(size);
337 
338 	/* fill and submit the URB */
339 	usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
340 			 (unsigned char*) us->cr, data, size,
341 			 usb_stor_blocking_completion, NULL);
342 	result = usb_stor_msg_common(us, 0);
343 
344 	return interpret_urb_result(us, pipe, size, result,
345 			us->current_urb->actual_length);
346 }
347 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer);
348 
349 /*
350  * Receive one interrupt buffer, without timeouts, but allowing early
351  * termination.  Return codes are USB_STOR_XFER_xxx.
352  *
353  * This routine always uses us->recv_intr_pipe as the pipe and
354  * us->ep_bInterval as the interrupt interval.
355  */
356 static int usb_stor_intr_transfer(struct us_data *us, void *buf,
357 				  unsigned int length)
358 {
359 	int result;
360 	unsigned int pipe = us->recv_intr_pipe;
361 	unsigned int maxp;
362 
363 	usb_stor_dbg(us, "xfer %u bytes\n", length);
364 
365 	/* calculate the max packet size */
366 	maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe));
367 	if (maxp > length)
368 		maxp = length;
369 
370 	/* fill and submit the URB */
371 	usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
372 			maxp, usb_stor_blocking_completion, NULL,
373 			us->ep_bInterval);
374 	result = usb_stor_msg_common(us, 0);
375 
376 	return interpret_urb_result(us, pipe, length, result,
377 			us->current_urb->actual_length);
378 }
379 
380 /*
381  * Transfer one buffer via bulk pipe, without timeouts, but allowing early
382  * termination.  Return codes are USB_STOR_XFER_xxx.  If the bulk pipe
383  * stalls during the transfer, the halt is automatically cleared.
384  */
385 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
386 	void *buf, unsigned int length, unsigned int *act_len)
387 {
388 	int result;
389 
390 	usb_stor_dbg(us, "xfer %u bytes\n", length);
391 
392 	/* fill and submit the URB */
393 	usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
394 		      usb_stor_blocking_completion, NULL);
395 	result = usb_stor_msg_common(us, 0);
396 
397 	/* store the actual length of the data transferred */
398 	if (act_len)
399 		*act_len = us->current_urb->actual_length;
400 	return interpret_urb_result(us, pipe, length, result,
401 			us->current_urb->actual_length);
402 }
403 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf);
404 
405 /*
406  * Transfer a scatter-gather list via bulk transfer
407  *
408  * This function does basically the same thing as usb_stor_bulk_transfer_buf()
409  * above, but it uses the usbcore scatter-gather library.
410  */
411 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
412 		struct scatterlist *sg, int num_sg, unsigned int length,
413 		unsigned int *act_len)
414 {
415 	int result;
416 
417 	/* don't submit s-g requests during abort processing */
418 	if (test_bit(US_FLIDX_ABORTING, &us->dflags))
419 		goto usb_stor_xfer_error;
420 
421 	/* initialize the scatter-gather request block */
422 	usb_stor_dbg(us, "xfer %u bytes, %d entries\n", length, num_sg);
423 	result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
424 			sg, num_sg, length, GFP_NOIO);
425 	if (result) {
426 		usb_stor_dbg(us, "usb_sg_init returned %d\n", result);
427 		goto usb_stor_xfer_error;
428 	}
429 
430 	/*
431 	 * since the block has been initialized successfully, it's now
432 	 * okay to cancel it
433 	 */
434 	set_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
435 
436 	/* did an abort occur during the submission? */
437 	if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
438 
439 		/* cancel the request, if it hasn't been cancelled already */
440 		if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
441 			usb_stor_dbg(us, "-- cancelling sg request\n");
442 			usb_sg_cancel(&us->current_sg);
443 		}
444 	}
445 
446 	/* wait for the completion of the transfer */
447 	usb_sg_wait(&us->current_sg);
448 	clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
449 
450 	result = us->current_sg.status;
451 	if (act_len)
452 		*act_len = us->current_sg.bytes;
453 	return interpret_urb_result(us, pipe, length, result,
454 			us->current_sg.bytes);
455 
456 usb_stor_xfer_error:
457 	if (act_len)
458 		*act_len = 0;
459 	return USB_STOR_XFER_ERROR;
460 }
461 
462 /*
463  * Common used function. Transfer a complete command
464  * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
465  */
466 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
467 		      struct scsi_cmnd* srb)
468 {
469 	unsigned int partial;
470 	int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
471 				      scsi_sg_count(srb), scsi_bufflen(srb),
472 				      &partial);
473 
474 	scsi_set_resid(srb, scsi_bufflen(srb) - partial);
475 	return result;
476 }
477 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb);
478 
479 /*
480  * Transfer an entire SCSI command's worth of data payload over the bulk
481  * pipe.
482  *
483  * Note that this uses usb_stor_bulk_transfer_buf() and
484  * usb_stor_bulk_transfer_sglist() to achieve its goals --
485  * this function simply determines whether we're going to use
486  * scatter-gather or not, and acts appropriately.
487  */
488 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
489 		void *buf, unsigned int length_left, int use_sg, int *residual)
490 {
491 	int result;
492 	unsigned int partial;
493 
494 	/* are we scatter-gathering? */
495 	if (use_sg) {
496 		/* use the usb core scatter-gather primitives */
497 		result = usb_stor_bulk_transfer_sglist(us, pipe,
498 				(struct scatterlist *) buf, use_sg,
499 				length_left, &partial);
500 		length_left -= partial;
501 	} else {
502 		/* no scatter-gather, just make the request */
503 		result = usb_stor_bulk_transfer_buf(us, pipe, buf,
504 				length_left, &partial);
505 		length_left -= partial;
506 	}
507 
508 	/* store the residual and return the error code */
509 	if (residual)
510 		*residual = length_left;
511 	return result;
512 }
513 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg);
514 
515 /***********************************************************************
516  * Transport routines
517  ***********************************************************************/
518 
519 /*
520  * There are so many devices that report the capacity incorrectly,
521  * this routine was written to counteract some of the resulting
522  * problems.
523  */
524 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb)
525 {
526 	struct gendisk *disk;
527 	struct scsi_disk *sdkp;
528 	u32 sector;
529 
530 	/* To Report "Medium Error: Record Not Found */
531 	static unsigned char record_not_found[18] = {
532 		[0]	= 0x70,			/* current error */
533 		[2]	= MEDIUM_ERROR,		/* = 0x03 */
534 		[7]	= 0x0a,			/* additional length */
535 		[12]	= 0x14			/* Record Not Found */
536 	};
537 
538 	/*
539 	 * If last-sector problems can't occur, whether because the
540 	 * capacity was already decremented or because the device is
541 	 * known to report the correct capacity, then we don't need
542 	 * to do anything.
543 	 */
544 	if (!us->use_last_sector_hacks)
545 		return;
546 
547 	/* Was this command a READ(10) or a WRITE(10)? */
548 	if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10)
549 		goto done;
550 
551 	/* Did this command access the last sector? */
552 	sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) |
553 			(srb->cmnd[4] << 8) | (srb->cmnd[5]);
554 	disk = srb->request->rq_disk;
555 	if (!disk)
556 		goto done;
557 	sdkp = scsi_disk(disk);
558 	if (!sdkp)
559 		goto done;
560 	if (sector + 1 != sdkp->capacity)
561 		goto done;
562 
563 	if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) {
564 
565 		/*
566 		 * The command succeeded.  We know this device doesn't
567 		 * have the last-sector bug, so stop checking it.
568 		 */
569 		us->use_last_sector_hacks = 0;
570 
571 	} else {
572 		/*
573 		 * The command failed.  Allow up to 3 retries in case this
574 		 * is some normal sort of failure.  After that, assume the
575 		 * capacity is wrong and we're trying to access the sector
576 		 * beyond the end.  Replace the result code and sense data
577 		 * with values that will cause the SCSI core to fail the
578 		 * command immediately, instead of going into an infinite
579 		 * (or even just a very long) retry loop.
580 		 */
581 		if (++us->last_sector_retries < 3)
582 			return;
583 		srb->result = SAM_STAT_CHECK_CONDITION;
584 		memcpy(srb->sense_buffer, record_not_found,
585 				sizeof(record_not_found));
586 	}
587 
588  done:
589 	/*
590 	 * Don't reset the retry counter for TEST UNIT READY commands,
591 	 * because they get issued after device resets which might be
592 	 * caused by a failed last-sector access.
593 	 */
594 	if (srb->cmnd[0] != TEST_UNIT_READY)
595 		us->last_sector_retries = 0;
596 }
597 
598 /*
599  * Invoke the transport and basic error-handling/recovery methods
600  *
601  * This is used by the protocol layers to actually send the message to
602  * the device and receive the response.
603  */
604 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
605 {
606 	int need_auto_sense;
607 	int result;
608 
609 	/* send the command to the transport layer */
610 	scsi_set_resid(srb, 0);
611 	result = us->transport(srb, us);
612 
613 	/*
614 	 * if the command gets aborted by the higher layers, we need to
615 	 * short-circuit all other processing
616 	 */
617 	if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
618 		usb_stor_dbg(us, "-- command was aborted\n");
619 		srb->result = DID_ABORT << 16;
620 		goto Handle_Errors;
621 	}
622 
623 	/* if there is a transport error, reset and don't auto-sense */
624 	if (result == USB_STOR_TRANSPORT_ERROR) {
625 		usb_stor_dbg(us, "-- transport indicates error, resetting\n");
626 		srb->result = DID_ERROR << 16;
627 		goto Handle_Errors;
628 	}
629 
630 	/* if the transport provided its own sense data, don't auto-sense */
631 	if (result == USB_STOR_TRANSPORT_NO_SENSE) {
632 		srb->result = SAM_STAT_CHECK_CONDITION;
633 		last_sector_hacks(us, srb);
634 		return;
635 	}
636 
637 	srb->result = SAM_STAT_GOOD;
638 
639 	/*
640 	 * Determine if we need to auto-sense
641 	 *
642 	 * I normally don't use a flag like this, but it's almost impossible
643 	 * to understand what's going on here if I don't.
644 	 */
645 	need_auto_sense = 0;
646 
647 	/*
648 	 * If we're running the CB transport, which is incapable
649 	 * of determining status on its own, we will auto-sense
650 	 * unless the operation involved a data-in transfer.  Devices
651 	 * can signal most data-in errors by stalling the bulk-in pipe.
652 	 */
653 	if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) &&
654 			srb->sc_data_direction != DMA_FROM_DEVICE) {
655 		usb_stor_dbg(us, "-- CB transport device requiring auto-sense\n");
656 		need_auto_sense = 1;
657 	}
658 
659 	/*
660 	 * If we have a failure, we're going to do a REQUEST_SENSE
661 	 * automatically.  Note that we differentiate between a command
662 	 * "failure" and an "error" in the transport mechanism.
663 	 */
664 	if (result == USB_STOR_TRANSPORT_FAILED) {
665 		usb_stor_dbg(us, "-- transport indicates command failure\n");
666 		need_auto_sense = 1;
667 	}
668 
669 	/*
670 	 * Determine if this device is SAT by seeing if the
671 	 * command executed successfully.  Otherwise we'll have
672 	 * to wait for at least one CHECK_CONDITION to determine
673 	 * SANE_SENSE support
674 	 */
675 	if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) &&
676 	    result == USB_STOR_TRANSPORT_GOOD &&
677 	    !(us->fflags & US_FL_SANE_SENSE) &&
678 	    !(us->fflags & US_FL_BAD_SENSE) &&
679 	    !(srb->cmnd[2] & 0x20))) {
680 		usb_stor_dbg(us, "-- SAT supported, increasing auto-sense\n");
681 		us->fflags |= US_FL_SANE_SENSE;
682 	}
683 
684 	/*
685 	 * A short transfer on a command where we don't expect it
686 	 * is unusual, but it doesn't mean we need to auto-sense.
687 	 */
688 	if ((scsi_get_resid(srb) > 0) &&
689 	    !((srb->cmnd[0] == REQUEST_SENSE) ||
690 	      (srb->cmnd[0] == INQUIRY) ||
691 	      (srb->cmnd[0] == MODE_SENSE) ||
692 	      (srb->cmnd[0] == LOG_SENSE) ||
693 	      (srb->cmnd[0] == MODE_SENSE_10))) {
694 		usb_stor_dbg(us, "-- unexpectedly short transfer\n");
695 	}
696 
697 	/* Now, if we need to do the auto-sense, let's do it */
698 	if (need_auto_sense) {
699 		int temp_result;
700 		struct scsi_eh_save ses;
701 		int sense_size = US_SENSE_SIZE;
702 		struct scsi_sense_hdr sshdr;
703 		const u8 *scdd;
704 		u8 fm_ili;
705 
706 		/* device supports and needs bigger sense buffer */
707 		if (us->fflags & US_FL_SANE_SENSE)
708 			sense_size = ~0;
709 Retry_Sense:
710 		usb_stor_dbg(us, "Issuing auto-REQUEST_SENSE\n");
711 
712 		scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size);
713 
714 		/* FIXME: we must do the protocol translation here */
715 		if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI ||
716 				us->subclass == USB_SC_CYP_ATACB)
717 			srb->cmd_len = 6;
718 		else
719 			srb->cmd_len = 12;
720 
721 		/* issue the auto-sense command */
722 		scsi_set_resid(srb, 0);
723 		temp_result = us->transport(us->srb, us);
724 
725 		/* let's clean up right away */
726 		scsi_eh_restore_cmnd(srb, &ses);
727 
728 		if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
729 			usb_stor_dbg(us, "-- auto-sense aborted\n");
730 			srb->result = DID_ABORT << 16;
731 
732 			/* If SANE_SENSE caused this problem, disable it */
733 			if (sense_size != US_SENSE_SIZE) {
734 				us->fflags &= ~US_FL_SANE_SENSE;
735 				us->fflags |= US_FL_BAD_SENSE;
736 			}
737 			goto Handle_Errors;
738 		}
739 
740 		/*
741 		 * Some devices claim to support larger sense but fail when
742 		 * trying to request it. When a transport failure happens
743 		 * using US_FS_SANE_SENSE, we always retry with a standard
744 		 * (small) sense request. This fixes some USB GSM modems
745 		 */
746 		if (temp_result == USB_STOR_TRANSPORT_FAILED &&
747 				sense_size != US_SENSE_SIZE) {
748 			usb_stor_dbg(us, "-- auto-sense failure, retry small sense\n");
749 			sense_size = US_SENSE_SIZE;
750 			us->fflags &= ~US_FL_SANE_SENSE;
751 			us->fflags |= US_FL_BAD_SENSE;
752 			goto Retry_Sense;
753 		}
754 
755 		/* Other failures */
756 		if (temp_result != USB_STOR_TRANSPORT_GOOD) {
757 			usb_stor_dbg(us, "-- auto-sense failure\n");
758 
759 			/*
760 			 * we skip the reset if this happens to be a
761 			 * multi-target device, since failure of an
762 			 * auto-sense is perfectly valid
763 			 */
764 			srb->result = DID_ERROR << 16;
765 			if (!(us->fflags & US_FL_SCM_MULT_TARG))
766 				goto Handle_Errors;
767 			return;
768 		}
769 
770 		/*
771 		 * If the sense data returned is larger than 18-bytes then we
772 		 * assume this device supports requesting more in the future.
773 		 * The response code must be 70h through 73h inclusive.
774 		 */
775 		if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) &&
776 		    !(us->fflags & US_FL_SANE_SENSE) &&
777 		    !(us->fflags & US_FL_BAD_SENSE) &&
778 		    (srb->sense_buffer[0] & 0x7C) == 0x70) {
779 			usb_stor_dbg(us, "-- SANE_SENSE support enabled\n");
780 			us->fflags |= US_FL_SANE_SENSE;
781 
782 			/*
783 			 * Indicate to the user that we truncated their sense
784 			 * because we didn't know it supported larger sense.
785 			 */
786 			usb_stor_dbg(us, "-- Sense data truncated to %i from %i\n",
787 				     US_SENSE_SIZE,
788 				     srb->sense_buffer[7] + 8);
789 			srb->sense_buffer[7] = (US_SENSE_SIZE - 8);
790 		}
791 
792 		scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE,
793 				     &sshdr);
794 
795 		usb_stor_dbg(us, "-- Result from auto-sense is %d\n",
796 			     temp_result);
797 		usb_stor_dbg(us, "-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
798 			     sshdr.response_code, sshdr.sense_key,
799 			     sshdr.asc, sshdr.ascq);
800 #ifdef CONFIG_USB_STORAGE_DEBUG
801 		usb_stor_show_sense(us, sshdr.sense_key, sshdr.asc, sshdr.ascq);
802 #endif
803 
804 		/* set the result so the higher layers expect this data */
805 		srb->result = SAM_STAT_CHECK_CONDITION;
806 
807 		scdd = scsi_sense_desc_find(srb->sense_buffer,
808 					    SCSI_SENSE_BUFFERSIZE, 4);
809 		fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0;
810 
811 		/*
812 		 * We often get empty sense data.  This could indicate that
813 		 * everything worked or that there was an unspecified
814 		 * problem.  We have to decide which.
815 		 */
816 		if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 &&
817 		    fm_ili == 0) {
818 			/*
819 			 * If things are really okay, then let's show that.
820 			 * Zero out the sense buffer so the higher layers
821 			 * won't realize we did an unsolicited auto-sense.
822 			 */
823 			if (result == USB_STOR_TRANSPORT_GOOD) {
824 				srb->result = SAM_STAT_GOOD;
825 				srb->sense_buffer[0] = 0x0;
826 			}
827 
828 			/*
829 			 * ATA-passthru commands use sense data to report
830 			 * the command completion status, and often devices
831 			 * return Check Condition status when nothing is
832 			 * wrong.
833 			 */
834 			else if (srb->cmnd[0] == ATA_16 ||
835 					srb->cmnd[0] == ATA_12) {
836 				/* leave the data alone */
837 			}
838 
839 			/*
840 			 * If there was a problem, report an unspecified
841 			 * hardware error to prevent the higher layers from
842 			 * entering an infinite retry loop.
843 			 */
844 			else {
845 				srb->result = DID_ERROR << 16;
846 				if ((sshdr.response_code & 0x72) == 0x72)
847 					srb->sense_buffer[1] = HARDWARE_ERROR;
848 				else
849 					srb->sense_buffer[2] = HARDWARE_ERROR;
850 			}
851 		}
852 	}
853 
854 	/*
855 	 * Some devices don't work or return incorrect data the first
856 	 * time they get a READ(10) command, or for the first READ(10)
857 	 * after a media change.  If the INITIAL_READ10 flag is set,
858 	 * keep track of whether READ(10) commands succeed.  If the
859 	 * previous one succeeded and this one failed, set the REDO_READ10
860 	 * flag to force a retry.
861 	 */
862 	if (unlikely((us->fflags & US_FL_INITIAL_READ10) &&
863 			srb->cmnd[0] == READ_10)) {
864 		if (srb->result == SAM_STAT_GOOD) {
865 			set_bit(US_FLIDX_READ10_WORKED, &us->dflags);
866 		} else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) {
867 			clear_bit(US_FLIDX_READ10_WORKED, &us->dflags);
868 			set_bit(US_FLIDX_REDO_READ10, &us->dflags);
869 		}
870 
871 		/*
872 		 * Next, if the REDO_READ10 flag is set, return a result
873 		 * code that will cause the SCSI core to retry the READ(10)
874 		 * command immediately.
875 		 */
876 		if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) {
877 			clear_bit(US_FLIDX_REDO_READ10, &us->dflags);
878 			srb->result = DID_IMM_RETRY << 16;
879 			srb->sense_buffer[0] = 0;
880 		}
881 	}
882 
883 	/* Did we transfer less than the minimum amount required? */
884 	if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) &&
885 			scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
886 		srb->result = DID_ERROR << 16;
887 
888 	last_sector_hacks(us, srb);
889 	return;
890 
891 	/*
892 	 * Error and abort processing: try to resynchronize with the device
893 	 * by issuing a port reset.  If that fails, try a class-specific
894 	 * device reset.
895 	 */
896   Handle_Errors:
897 
898 	/*
899 	 * Set the RESETTING bit, and clear the ABORTING bit so that
900 	 * the reset may proceed.
901 	 */
902 	scsi_lock(us_to_host(us));
903 	set_bit(US_FLIDX_RESETTING, &us->dflags);
904 	clear_bit(US_FLIDX_ABORTING, &us->dflags);
905 	scsi_unlock(us_to_host(us));
906 
907 	/*
908 	 * We must release the device lock because the pre_reset routine
909 	 * will want to acquire it.
910 	 */
911 	mutex_unlock(&us->dev_mutex);
912 	result = usb_stor_port_reset(us);
913 	mutex_lock(&us->dev_mutex);
914 
915 	if (result < 0) {
916 		scsi_lock(us_to_host(us));
917 		usb_stor_report_device_reset(us);
918 		scsi_unlock(us_to_host(us));
919 		us->transport_reset(us);
920 	}
921 	clear_bit(US_FLIDX_RESETTING, &us->dflags);
922 	last_sector_hacks(us, srb);
923 }
924 
925 /* Stop the current URB transfer */
926 void usb_stor_stop_transport(struct us_data *us)
927 {
928 	/*
929 	 * If the state machine is blocked waiting for an URB,
930 	 * let's wake it up.  The test_and_clear_bit() call
931 	 * guarantees that if a URB has just been submitted,
932 	 * it won't be cancelled more than once.
933 	 */
934 	if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
935 		usb_stor_dbg(us, "-- cancelling URB\n");
936 		usb_unlink_urb(us->current_urb);
937 	}
938 
939 	/* If we are waiting for a scatter-gather operation, cancel it. */
940 	if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
941 		usb_stor_dbg(us, "-- cancelling sg request\n");
942 		usb_sg_cancel(&us->current_sg);
943 	}
944 }
945 
946 /*
947  * Control/Bulk and Control/Bulk/Interrupt transport
948  */
949 
950 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
951 {
952 	unsigned int transfer_length = scsi_bufflen(srb);
953 	unsigned int pipe = 0;
954 	int result;
955 
956 	/* COMMAND STAGE */
957 	/* let's send the command via the control pipe */
958 	/*
959 	 * Command is sometime (f.e. after scsi_eh_prep_cmnd) on the stack.
960 	 * Stack may be vmallocated.  So no DMA for us.  Make a copy.
961 	 */
962 	memcpy(us->iobuf, srb->cmnd, srb->cmd_len);
963 	result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
964 				      US_CBI_ADSC,
965 				      USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
966 				      us->ifnum, us->iobuf, srb->cmd_len);
967 
968 	/* check the return code for the command */
969 	usb_stor_dbg(us, "Call to usb_stor_ctrl_transfer() returned %d\n",
970 		     result);
971 
972 	/* if we stalled the command, it means command failed */
973 	if (result == USB_STOR_XFER_STALLED) {
974 		return USB_STOR_TRANSPORT_FAILED;
975 	}
976 
977 	/* Uh oh... serious problem here */
978 	if (result != USB_STOR_XFER_GOOD) {
979 		return USB_STOR_TRANSPORT_ERROR;
980 	}
981 
982 	/* DATA STAGE */
983 	/* transfer the data payload for this command, if one exists*/
984 	if (transfer_length) {
985 		pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
986 				us->recv_bulk_pipe : us->send_bulk_pipe;
987 		result = usb_stor_bulk_srb(us, pipe, srb);
988 		usb_stor_dbg(us, "CBI data stage result is 0x%x\n", result);
989 
990 		/* if we stalled the data transfer it means command failed */
991 		if (result == USB_STOR_XFER_STALLED)
992 			return USB_STOR_TRANSPORT_FAILED;
993 		if (result > USB_STOR_XFER_STALLED)
994 			return USB_STOR_TRANSPORT_ERROR;
995 	}
996 
997 	/* STATUS STAGE */
998 
999 	/*
1000 	 * NOTE: CB does not have a status stage.  Silly, I know.  So
1001 	 * we have to catch this at a higher level.
1002 	 */
1003 	if (us->protocol != USB_PR_CBI)
1004 		return USB_STOR_TRANSPORT_GOOD;
1005 
1006 	result = usb_stor_intr_transfer(us, us->iobuf, 2);
1007 	usb_stor_dbg(us, "Got interrupt data (0x%x, 0x%x)\n",
1008 		     us->iobuf[0], us->iobuf[1]);
1009 	if (result != USB_STOR_XFER_GOOD)
1010 		return USB_STOR_TRANSPORT_ERROR;
1011 
1012 	/*
1013 	 * UFI gives us ASC and ASCQ, like a request sense
1014 	 *
1015 	 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
1016 	 * devices, so we ignore the information for those commands.  Note
1017 	 * that this means we could be ignoring a real error on these
1018 	 * commands, but that can't be helped.
1019 	 */
1020 	if (us->subclass == USB_SC_UFI) {
1021 		if (srb->cmnd[0] == REQUEST_SENSE ||
1022 		    srb->cmnd[0] == INQUIRY)
1023 			return USB_STOR_TRANSPORT_GOOD;
1024 		if (us->iobuf[0])
1025 			goto Failed;
1026 		return USB_STOR_TRANSPORT_GOOD;
1027 	}
1028 
1029 	/*
1030 	 * If not UFI, we interpret the data as a result code
1031 	 * The first byte should always be a 0x0.
1032 	 *
1033 	 * Some bogus devices don't follow that rule.  They stuff the ASC
1034 	 * into the first byte -- so if it's non-zero, call it a failure.
1035 	 */
1036 	if (us->iobuf[0]) {
1037 		usb_stor_dbg(us, "CBI IRQ data showed reserved bType 0x%x\n",
1038 			     us->iobuf[0]);
1039 		goto Failed;
1040 
1041 	}
1042 
1043 	/* The second byte & 0x0F should be 0x0 for good, otherwise error */
1044 	switch (us->iobuf[1] & 0x0F) {
1045 		case 0x00:
1046 			return USB_STOR_TRANSPORT_GOOD;
1047 		case 0x01:
1048 			goto Failed;
1049 	}
1050 	return USB_STOR_TRANSPORT_ERROR;
1051 
1052 	/*
1053 	 * the CBI spec requires that the bulk pipe must be cleared
1054 	 * following any data-in/out command failure (section 2.4.3.1.3)
1055 	 */
1056   Failed:
1057 	if (pipe)
1058 		usb_stor_clear_halt(us, pipe);
1059 	return USB_STOR_TRANSPORT_FAILED;
1060 }
1061 EXPORT_SYMBOL_GPL(usb_stor_CB_transport);
1062 
1063 /*
1064  * Bulk only transport
1065  */
1066 
1067 /* Determine what the maximum LUN supported is */
1068 int usb_stor_Bulk_max_lun(struct us_data *us)
1069 {
1070 	int result;
1071 
1072 	/* issue the command */
1073 	us->iobuf[0] = 0;
1074 	result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
1075 				 US_BULK_GET_MAX_LUN,
1076 				 USB_DIR_IN | USB_TYPE_CLASS |
1077 				 USB_RECIP_INTERFACE,
1078 				 0, us->ifnum, us->iobuf, 1, 10*HZ);
1079 
1080 	usb_stor_dbg(us, "GetMaxLUN command result is %d, data is %d\n",
1081 		     result, us->iobuf[0]);
1082 
1083 	/*
1084 	 * If we have a successful request, return the result if valid. The
1085 	 * CBW LUN field is 4 bits wide, so the value reported by the device
1086 	 * should fit into that.
1087 	 */
1088 	if (result > 0) {
1089 		if (us->iobuf[0] < 16) {
1090 			return us->iobuf[0];
1091 		} else {
1092 			dev_info(&us->pusb_intf->dev,
1093 				 "Max LUN %d is not valid, using 0 instead",
1094 				 us->iobuf[0]);
1095 		}
1096 	}
1097 
1098 	/*
1099 	 * Some devices don't like GetMaxLUN.  They may STALL the control
1100 	 * pipe, they may return a zero-length result, they may do nothing at
1101 	 * all and timeout, or they may fail in even more bizarrely creative
1102 	 * ways.  In these cases the best approach is to use the default
1103 	 * value: only one LUN.
1104 	 */
1105 	return 0;
1106 }
1107 
1108 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
1109 {
1110 	struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
1111 	struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
1112 	unsigned int transfer_length = scsi_bufflen(srb);
1113 	unsigned int residue;
1114 	int result;
1115 	int fake_sense = 0;
1116 	unsigned int cswlen;
1117 	unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
1118 
1119 	/* Take care of BULK32 devices; set extra byte to 0 */
1120 	if (unlikely(us->fflags & US_FL_BULK32)) {
1121 		cbwlen = 32;
1122 		us->iobuf[31] = 0;
1123 	}
1124 
1125 	/* set up the command wrapper */
1126 	bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
1127 	bcb->DataTransferLength = cpu_to_le32(transfer_length);
1128 	bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ?
1129 		US_BULK_FLAG_IN : 0;
1130 	bcb->Tag = ++us->tag;
1131 	bcb->Lun = srb->device->lun;
1132 	if (us->fflags & US_FL_SCM_MULT_TARG)
1133 		bcb->Lun |= srb->device->id << 4;
1134 	bcb->Length = srb->cmd_len;
1135 
1136 	/* copy the command payload */
1137 	memset(bcb->CDB, 0, sizeof(bcb->CDB));
1138 	memcpy(bcb->CDB, srb->cmnd, bcb->Length);
1139 
1140 	/* send it to out endpoint */
1141 	usb_stor_dbg(us, "Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
1142 		     le32_to_cpu(bcb->Signature), bcb->Tag,
1143 		     le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
1144 		     (bcb->Lun >> 4), (bcb->Lun & 0x0F),
1145 		     bcb->Length);
1146 	result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
1147 				bcb, cbwlen, NULL);
1148 	usb_stor_dbg(us, "Bulk command transfer result=%d\n", result);
1149 	if (result != USB_STOR_XFER_GOOD)
1150 		return USB_STOR_TRANSPORT_ERROR;
1151 
1152 	/* DATA STAGE */
1153 	/* send/receive data payload, if there is any */
1154 
1155 	/*
1156 	 * Some USB-IDE converter chips need a 100us delay between the
1157 	 * command phase and the data phase.  Some devices need a little
1158 	 * more than that, probably because of clock rate inaccuracies.
1159 	 */
1160 	if (unlikely(us->fflags & US_FL_GO_SLOW))
1161 		usleep_range(125, 150);
1162 
1163 	if (transfer_length) {
1164 		unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
1165 				us->recv_bulk_pipe : us->send_bulk_pipe;
1166 		result = usb_stor_bulk_srb(us, pipe, srb);
1167 		usb_stor_dbg(us, "Bulk data transfer result 0x%x\n", result);
1168 		if (result == USB_STOR_XFER_ERROR)
1169 			return USB_STOR_TRANSPORT_ERROR;
1170 
1171 		/*
1172 		 * If the device tried to send back more data than the
1173 		 * amount requested, the spec requires us to transfer
1174 		 * the CSW anyway.  Since there's no point retrying the
1175 		 * the command, we'll return fake sense data indicating
1176 		 * Illegal Request, Invalid Field in CDB.
1177 		 */
1178 		if (result == USB_STOR_XFER_LONG)
1179 			fake_sense = 1;
1180 
1181 		/*
1182 		 * Sometimes a device will mistakenly skip the data phase
1183 		 * and go directly to the status phase without sending a
1184 		 * zero-length packet.  If we get a 13-byte response here,
1185 		 * check whether it really is a CSW.
1186 		 */
1187 		if (result == USB_STOR_XFER_SHORT &&
1188 				srb->sc_data_direction == DMA_FROM_DEVICE &&
1189 				transfer_length - scsi_get_resid(srb) ==
1190 					US_BULK_CS_WRAP_LEN) {
1191 			struct scatterlist *sg = NULL;
1192 			unsigned int offset = 0;
1193 
1194 			if (usb_stor_access_xfer_buf((unsigned char *) bcs,
1195 					US_BULK_CS_WRAP_LEN, srb, &sg,
1196 					&offset, FROM_XFER_BUF) ==
1197 						US_BULK_CS_WRAP_LEN &&
1198 					bcs->Signature ==
1199 						cpu_to_le32(US_BULK_CS_SIGN)) {
1200 				usb_stor_dbg(us, "Device skipped data phase\n");
1201 				scsi_set_resid(srb, transfer_length);
1202 				goto skipped_data_phase;
1203 			}
1204 		}
1205 	}
1206 
1207 	/*
1208 	 * See flow chart on pg 15 of the Bulk Only Transport spec for
1209 	 * an explanation of how this code works.
1210 	 */
1211 
1212 	/* get CSW for device status */
1213 	usb_stor_dbg(us, "Attempting to get CSW...\n");
1214 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1215 				bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1216 
1217 	/*
1218 	 * Some broken devices add unnecessary zero-length packets to the
1219 	 * end of their data transfers.  Such packets show up as 0-length
1220 	 * CSWs.  If we encounter such a thing, try to read the CSW again.
1221 	 */
1222 	if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
1223 		usb_stor_dbg(us, "Received 0-length CSW; retrying...\n");
1224 		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1225 				bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1226 	}
1227 
1228 	/* did the attempt to read the CSW fail? */
1229 	if (result == USB_STOR_XFER_STALLED) {
1230 
1231 		/* get the status again */
1232 		usb_stor_dbg(us, "Attempting to get CSW (2nd try)...\n");
1233 		result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1234 				bcs, US_BULK_CS_WRAP_LEN, NULL);
1235 	}
1236 
1237 	/* if we still have a failure at this point, we're in trouble */
1238 	usb_stor_dbg(us, "Bulk status result = %d\n", result);
1239 	if (result != USB_STOR_XFER_GOOD)
1240 		return USB_STOR_TRANSPORT_ERROR;
1241 
1242  skipped_data_phase:
1243 	/* check bulk status */
1244 	residue = le32_to_cpu(bcs->Residue);
1245 	usb_stor_dbg(us, "Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1246 		     le32_to_cpu(bcs->Signature), bcs->Tag,
1247 		     residue, bcs->Status);
1248 	if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) ||
1249 		bcs->Status > US_BULK_STAT_PHASE) {
1250 		usb_stor_dbg(us, "Bulk logical error\n");
1251 		return USB_STOR_TRANSPORT_ERROR;
1252 	}
1253 
1254 	/*
1255 	 * Some broken devices report odd signatures, so we do not check them
1256 	 * for validity against the spec. We store the first one we see,
1257 	 * and check subsequent transfers for validity against this signature.
1258 	 */
1259 	if (!us->bcs_signature) {
1260 		us->bcs_signature = bcs->Signature;
1261 		if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
1262 			usb_stor_dbg(us, "Learnt BCS signature 0x%08X\n",
1263 				     le32_to_cpu(us->bcs_signature));
1264 	} else if (bcs->Signature != us->bcs_signature) {
1265 		usb_stor_dbg(us, "Signature mismatch: got %08X, expecting %08X\n",
1266 			     le32_to_cpu(bcs->Signature),
1267 			     le32_to_cpu(us->bcs_signature));
1268 		return USB_STOR_TRANSPORT_ERROR;
1269 	}
1270 
1271 	/*
1272 	 * try to compute the actual residue, based on how much data
1273 	 * was really transferred and what the device tells us
1274 	 */
1275 	if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) {
1276 
1277 		/*
1278 		 * Heuristically detect devices that generate bogus residues
1279 		 * by seeing what happens with INQUIRY and READ CAPACITY
1280 		 * commands.
1281 		 */
1282 		if (bcs->Status == US_BULK_STAT_OK &&
1283 				scsi_get_resid(srb) == 0 &&
1284 					((srb->cmnd[0] == INQUIRY &&
1285 						transfer_length == 36) ||
1286 					(srb->cmnd[0] == READ_CAPACITY &&
1287 						transfer_length == 8))) {
1288 			us->fflags |= US_FL_IGNORE_RESIDUE;
1289 
1290 		} else {
1291 			residue = min(residue, transfer_length);
1292 			scsi_set_resid(srb, max(scsi_get_resid(srb), residue));
1293 		}
1294 	}
1295 
1296 	/* based on the status code, we report good or bad */
1297 	switch (bcs->Status) {
1298 		case US_BULK_STAT_OK:
1299 			/* device babbled -- return fake sense data */
1300 			if (fake_sense) {
1301 				memcpy(srb->sense_buffer,
1302 				       usb_stor_sense_invalidCDB,
1303 				       sizeof(usb_stor_sense_invalidCDB));
1304 				return USB_STOR_TRANSPORT_NO_SENSE;
1305 			}
1306 
1307 			/* command good -- note that data could be short */
1308 			return USB_STOR_TRANSPORT_GOOD;
1309 
1310 		case US_BULK_STAT_FAIL:
1311 			/* command failed */
1312 			return USB_STOR_TRANSPORT_FAILED;
1313 
1314 		case US_BULK_STAT_PHASE:
1315 			/*
1316 			 * phase error -- note that a transport reset will be
1317 			 * invoked by the invoke_transport() function
1318 			 */
1319 			return USB_STOR_TRANSPORT_ERROR;
1320 	}
1321 
1322 	/* we should never get here, but if we do, we're in trouble */
1323 	return USB_STOR_TRANSPORT_ERROR;
1324 }
1325 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport);
1326 
1327 /***********************************************************************
1328  * Reset routines
1329  ***********************************************************************/
1330 
1331 /*
1332  * This is the common part of the device reset code.
1333  *
1334  * It's handy that every transport mechanism uses the control endpoint for
1335  * resets.
1336  *
1337  * Basically, we send a reset with a 5-second timeout, so we don't get
1338  * jammed attempting to do the reset.
1339  */
1340 static int usb_stor_reset_common(struct us_data *us,
1341 		u8 request, u8 requesttype,
1342 		u16 value, u16 index, void *data, u16 size)
1343 {
1344 	int result;
1345 	int result2;
1346 
1347 	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1348 		usb_stor_dbg(us, "No reset during disconnect\n");
1349 		return -EIO;
1350 	}
1351 
1352 	result = usb_stor_control_msg(us, us->send_ctrl_pipe,
1353 			request, requesttype, value, index, data, size,
1354 			5*HZ);
1355 	if (result < 0) {
1356 		usb_stor_dbg(us, "Soft reset failed: %d\n", result);
1357 		return result;
1358 	}
1359 
1360 	/*
1361 	 * Give the device some time to recover from the reset,
1362 	 * but don't delay disconnect processing.
1363 	 */
1364 	wait_event_interruptible_timeout(us->delay_wait,
1365 			test_bit(US_FLIDX_DISCONNECTING, &us->dflags),
1366 			HZ*6);
1367 	if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1368 		usb_stor_dbg(us, "Reset interrupted by disconnect\n");
1369 		return -EIO;
1370 	}
1371 
1372 	usb_stor_dbg(us, "Soft reset: clearing bulk-in endpoint halt\n");
1373 	result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
1374 
1375 	usb_stor_dbg(us, "Soft reset: clearing bulk-out endpoint halt\n");
1376 	result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
1377 
1378 	/* return a result code based on the result of the clear-halts */
1379 	if (result >= 0)
1380 		result = result2;
1381 	if (result < 0)
1382 		usb_stor_dbg(us, "Soft reset failed\n");
1383 	else
1384 		usb_stor_dbg(us, "Soft reset done\n");
1385 	return result;
1386 }
1387 
1388 /* This issues a CB[I] Reset to the device in question */
1389 #define CB_RESET_CMD_SIZE	12
1390 
1391 int usb_stor_CB_reset(struct us_data *us)
1392 {
1393 	memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
1394 	us->iobuf[0] = SEND_DIAGNOSTIC;
1395 	us->iobuf[1] = 4;
1396 	return usb_stor_reset_common(us, US_CBI_ADSC,
1397 				 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1398 				 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
1399 }
1400 EXPORT_SYMBOL_GPL(usb_stor_CB_reset);
1401 
1402 /*
1403  * This issues a Bulk-only Reset to the device in question, including
1404  * clearing the subsequent endpoint halts that may occur.
1405  */
1406 int usb_stor_Bulk_reset(struct us_data *us)
1407 {
1408 	return usb_stor_reset_common(us, US_BULK_RESET_REQUEST,
1409 				 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1410 				 0, us->ifnum, NULL, 0);
1411 }
1412 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset);
1413 
1414 /*
1415  * Issue a USB port reset to the device.  The caller must not hold
1416  * us->dev_mutex.
1417  */
1418 int usb_stor_port_reset(struct us_data *us)
1419 {
1420 	int result;
1421 
1422 	/*for these devices we must use the class specific method */
1423 	if (us->pusb_dev->quirks & USB_QUIRK_RESET)
1424 		return -EPERM;
1425 
1426 	result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
1427 	if (result < 0)
1428 		usb_stor_dbg(us, "unable to lock device for reset: %d\n",
1429 			     result);
1430 	else {
1431 		/* Were we disconnected while waiting for the lock? */
1432 		if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1433 			result = -EIO;
1434 			usb_stor_dbg(us, "No reset during disconnect\n");
1435 		} else {
1436 			result = usb_reset_device(us->pusb_dev);
1437 			usb_stor_dbg(us, "usb_reset_device returns %d\n",
1438 				     result);
1439 		}
1440 		usb_unlock_device(us->pusb_dev);
1441 	}
1442 	return result;
1443 }
1444