xref: /openbmc/linux/drivers/usb/storage/sddr09.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /* Driver for SanDisk SDDR-09 SmartMedia reader
2  *
3  *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
4  *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
5  * Developed with the assistance of:
6  *   (c) 2002 Alan Stern <stern@rowland.org>
7  *
8  * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
9  * This chip is a programmable USB controller. In the SDDR-09, it has
10  * been programmed to obey a certain limited set of SCSI commands.
11  * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
12  * commands.
13  *
14  * This program is free software; you can redistribute it and/or modify it
15  * under the terms of the GNU General Public License as published by the
16  * Free Software Foundation; either version 2, or (at your option) any
17  * later version.
18  *
19  * This program is distributed in the hope that it will be useful, but
20  * WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  * General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License along
25  * with this program; if not, write to the Free Software Foundation, Inc.,
26  * 675 Mass Ave, Cambridge, MA 02139, USA.
27  */
28 
29 /*
30  * Known vendor commands: 12 bytes, first byte is opcode
31  *
32  * E7: read scatter gather
33  * E8: read
34  * E9: write
35  * EA: erase
36  * EB: reset
37  * EC: read status
38  * ED: read ID
39  * EE: write CIS (?)
40  * EF: compute checksum (?)
41  */
42 
43 #include <linux/errno.h>
44 #include <linux/slab.h>
45 
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_cmnd.h>
48 
49 #include "usb.h"
50 #include "transport.h"
51 #include "protocol.h"
52 #include "debug.h"
53 #include "sddr09.h"
54 
55 
56 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
57 #define LSB_of(s) ((s)&0xFF)
58 #define MSB_of(s) ((s)>>8)
59 
60 /* #define US_DEBUGP printk */
61 
62 /*
63  * First some stuff that does not belong here:
64  * data on SmartMedia and other cards, completely
65  * unrelated to this driver.
66  * Similar stuff occurs in <linux/mtd/nand_ids.h>.
67  */
68 
69 struct nand_flash_dev {
70 	int model_id;
71 	int chipshift;		/* 1<<cs bytes total capacity */
72 	char pageshift;		/* 1<<ps bytes in a page */
73 	char blockshift;	/* 1<<bs pages in an erase block */
74 	char zoneshift;		/* 1<<zs blocks in a zone */
75 				/* # of logical blocks is 125/128 of this */
76 	char pageadrlen;	/* length of an address in bytes - 1 */
77 };
78 
79 /*
80  * NAND Flash Manufacturer ID Codes
81  */
82 #define NAND_MFR_AMD		0x01
83 #define NAND_MFR_NATSEMI	0x8f
84 #define NAND_MFR_TOSHIBA	0x98
85 #define NAND_MFR_SAMSUNG	0xec
86 
87 static inline char *nand_flash_manufacturer(int manuf_id) {
88 	switch(manuf_id) {
89 	case NAND_MFR_AMD:
90 		return "AMD";
91 	case NAND_MFR_NATSEMI:
92 		return "NATSEMI";
93 	case NAND_MFR_TOSHIBA:
94 		return "Toshiba";
95 	case NAND_MFR_SAMSUNG:
96 		return "Samsung";
97 	default:
98 		return "unknown";
99 	}
100 }
101 
102 /*
103  * It looks like it is unnecessary to attach manufacturer to the
104  * remaining data: SSFDC prescribes manufacturer-independent id codes.
105  *
106  * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
107  */
108 
109 static struct nand_flash_dev nand_flash_ids[] = {
110 	/* NAND flash */
111 	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
112 	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
113 	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
114 	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
115 	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
116 	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
117 	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
118 	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
119 	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
120 	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
121 	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
122 	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
123 	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
124 
125 	/* MASK ROM */
126 	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
127 	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
128 	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
129 	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
130 	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
131 	{ 0,}
132 };
133 
134 static struct nand_flash_dev *
135 nand_find_id(unsigned char id) {
136 	int i;
137 
138 	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
139 		if (nand_flash_ids[i].model_id == id)
140 			return &(nand_flash_ids[i]);
141 	return NULL;
142 }
143 
144 /*
145  * ECC computation.
146  */
147 static unsigned char parity[256];
148 static unsigned char ecc2[256];
149 
150 static void nand_init_ecc(void) {
151 	int i, j, a;
152 
153 	parity[0] = 0;
154 	for (i = 1; i < 256; i++)
155 		parity[i] = (parity[i&(i-1)] ^ 1);
156 
157 	for (i = 0; i < 256; i++) {
158 		a = 0;
159 		for (j = 0; j < 8; j++) {
160 			if (i & (1<<j)) {
161 				if ((j & 1) == 0)
162 					a ^= 0x04;
163 				if ((j & 2) == 0)
164 					a ^= 0x10;
165 				if ((j & 4) == 0)
166 					a ^= 0x40;
167 			}
168 		}
169 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
170 	}
171 }
172 
173 /* compute 3-byte ecc on 256 bytes */
174 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
175 	int i, j, a;
176 	unsigned char par, bit, bits[8];
177 
178 	par = 0;
179 	for (j = 0; j < 8; j++)
180 		bits[j] = 0;
181 
182 	/* collect 16 checksum bits */
183 	for (i = 0; i < 256; i++) {
184 		par ^= data[i];
185 		bit = parity[data[i]];
186 		for (j = 0; j < 8; j++)
187 			if ((i & (1<<j)) == 0)
188 				bits[j] ^= bit;
189 	}
190 
191 	/* put 4+4+4 = 12 bits in the ecc */
192 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
193 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
194 
195 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
196 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
197 
198 	ecc[2] = ecc2[par];
199 }
200 
201 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
202 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
203 }
204 
205 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
206 	memcpy(data, ecc, 3);
207 }
208 
209 /*
210  * The actual driver starts here.
211  */
212 
213 struct sddr09_card_info {
214 	unsigned long	capacity;	/* Size of card in bytes */
215 	int		pagesize;	/* Size of page in bytes */
216 	int		pageshift;	/* log2 of pagesize */
217 	int		blocksize;	/* Size of block in pages */
218 	int		blockshift;	/* log2 of blocksize */
219 	int		blockmask;	/* 2^blockshift - 1 */
220 	int		*lba_to_pba;	/* logical to physical map */
221 	int		*pba_to_lba;	/* physical to logical map */
222 	int		lbact;		/* number of available pages */
223 	int		flags;
224 #define	SDDR09_WP	1		/* write protected */
225 };
226 
227 /*
228  * On my 16MB card, control blocks have size 64 (16 real control bytes,
229  * and 48 junk bytes). In reality of course the card uses 16 control bytes,
230  * so the reader makes up the remaining 48. Don't know whether these numbers
231  * depend on the card. For now a constant.
232  */
233 #define CONTROL_SHIFT 6
234 
235 /*
236  * On my Combo CF/SM reader, the SM reader has LUN 1.
237  * (and things fail with LUN 0).
238  * It seems LUN is irrelevant for others.
239  */
240 #define LUN	1
241 #define	LUNBITS	(LUN << 5)
242 
243 /*
244  * LBA and PBA are unsigned ints. Special values.
245  */
246 #define UNDEF    0xffffffff
247 #define SPARE    0xfffffffe
248 #define UNUSABLE 0xfffffffd
249 
250 static const int erase_bad_lba_entries = 0;
251 
252 /* send vendor interface command (0x41) */
253 /* called for requests 0, 1, 8 */
254 static int
255 sddr09_send_command(struct us_data *us,
256 		    unsigned char request,
257 		    unsigned char direction,
258 		    unsigned char *xfer_data,
259 		    unsigned int xfer_len) {
260 	unsigned int pipe;
261 	unsigned char requesttype = (0x41 | direction);
262 	int rc;
263 
264 	// Get the receive or send control pipe number
265 
266 	if (direction == USB_DIR_IN)
267 		pipe = us->recv_ctrl_pipe;
268 	else
269 		pipe = us->send_ctrl_pipe;
270 
271 	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
272 				   0, 0, xfer_data, xfer_len);
273 	switch (rc) {
274 		case USB_STOR_XFER_GOOD:	return 0;
275 		case USB_STOR_XFER_STALLED:	return -EPIPE;
276 		default:			return -EIO;
277 	}
278 }
279 
280 static int
281 sddr09_send_scsi_command(struct us_data *us,
282 			 unsigned char *command,
283 			 unsigned int command_len) {
284 	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
285 }
286 
287 #if 0
288 /*
289  * Test Unit Ready Command: 12 bytes.
290  * byte 0: opcode: 00
291  */
292 static int
293 sddr09_test_unit_ready(struct us_data *us) {
294 	unsigned char *command = us->iobuf;
295 	int result;
296 
297 	memset(command, 0, 6);
298 	command[1] = LUNBITS;
299 
300 	result = sddr09_send_scsi_command(us, command, 6);
301 
302 	US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);
303 
304 	return result;
305 }
306 #endif
307 
308 /*
309  * Request Sense Command: 12 bytes.
310  * byte 0: opcode: 03
311  * byte 4: data length
312  */
313 static int
314 sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
315 	unsigned char *command = us->iobuf;
316 	int result;
317 
318 	memset(command, 0, 12);
319 	command[0] = 0x03;
320 	command[1] = LUNBITS;
321 	command[4] = buflen;
322 
323 	result = sddr09_send_scsi_command(us, command, 12);
324 	if (result)
325 		return result;
326 
327 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
328 			sensebuf, buflen, NULL);
329 	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
330 }
331 
332 /*
333  * Read Command: 12 bytes.
334  * byte 0: opcode: E8
335  * byte 1: last two bits: 00: read data, 01: read blockwise control,
336  *			10: read both, 11: read pagewise control.
337  *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
338  * bytes 2-5: address (interpretation depends on byte 1, see below)
339  * bytes 10-11: count (idem)
340  *
341  * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
342  * A read data command gets data in 512-byte pages.
343  * A read control command gets control in 64-byte chunks.
344  * A read both command gets data+control in 576-byte chunks.
345  *
346  * Blocks are groups of 32 pages, and read blockwise control jumps to the
347  * next block, while read pagewise control jumps to the next page after
348  * reading a group of 64 control bytes.
349  * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
350  *
351  * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
352  */
353 
354 static int
355 sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
356 	     int nr_of_pages, int bulklen, unsigned char *buf,
357 	     int use_sg) {
358 
359 	unsigned char *command = us->iobuf;
360 	int result;
361 
362 	command[0] = 0xE8;
363 	command[1] = LUNBITS | x;
364 	command[2] = MSB_of(fromaddress>>16);
365 	command[3] = LSB_of(fromaddress>>16);
366 	command[4] = MSB_of(fromaddress & 0xFFFF);
367 	command[5] = LSB_of(fromaddress & 0xFFFF);
368 	command[6] = 0;
369 	command[7] = 0;
370 	command[8] = 0;
371 	command[9] = 0;
372 	command[10] = MSB_of(nr_of_pages);
373 	command[11] = LSB_of(nr_of_pages);
374 
375 	result = sddr09_send_scsi_command(us, command, 12);
376 
377 	if (result) {
378 		US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
379 			  x, result);
380 		return result;
381 	}
382 
383 	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
384 				       buf, bulklen, use_sg, NULL);
385 
386 	if (result != USB_STOR_XFER_GOOD) {
387 		US_DEBUGP("Result for bulk_transfer in sddr09_read2%d %d\n",
388 			  x, result);
389 		return -EIO;
390 	}
391 	return 0;
392 }
393 
394 /*
395  * Read Data
396  *
397  * fromaddress counts data shorts:
398  * increasing it by 256 shifts the bytestream by 512 bytes;
399  * the last 8 bits are ignored.
400  *
401  * nr_of_pages counts pages of size (1 << pageshift).
402  */
403 static int
404 sddr09_read20(struct us_data *us, unsigned long fromaddress,
405 	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
406 	int bulklen = nr_of_pages << pageshift;
407 
408 	/* The last 8 bits of fromaddress are ignored. */
409 	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
410 			    buf, use_sg);
411 }
412 
413 /*
414  * Read Blockwise Control
415  *
416  * fromaddress gives the starting position (as in read data;
417  * the last 8 bits are ignored); increasing it by 32*256 shifts
418  * the output stream by 64 bytes.
419  *
420  * count counts control groups of size (1 << controlshift).
421  * For me, controlshift = 6. Is this constant?
422  *
423  * After getting one control group, jump to the next block
424  * (fromaddress += 8192).
425  */
426 static int
427 sddr09_read21(struct us_data *us, unsigned long fromaddress,
428 	      int count, int controlshift, unsigned char *buf, int use_sg) {
429 
430 	int bulklen = (count << controlshift);
431 	return sddr09_readX(us, 1, fromaddress, count, bulklen,
432 			    buf, use_sg);
433 }
434 
435 /*
436  * Read both Data and Control
437  *
438  * fromaddress counts data shorts, ignoring control:
439  * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
440  * the last 8 bits are ignored.
441  *
442  * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
443  */
444 static int
445 sddr09_read22(struct us_data *us, unsigned long fromaddress,
446 	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
447 
448 	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
449 	US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
450 		  nr_of_pages, bulklen);
451 	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
452 			    buf, use_sg);
453 }
454 
455 #if 0
456 /*
457  * Read Pagewise Control
458  *
459  * fromaddress gives the starting position (as in read data;
460  * the last 8 bits are ignored); increasing it by 256 shifts
461  * the output stream by 64 bytes.
462  *
463  * count counts control groups of size (1 << controlshift).
464  * For me, controlshift = 6. Is this constant?
465  *
466  * After getting one control group, jump to the next page
467  * (fromaddress += 256).
468  */
469 static int
470 sddr09_read23(struct us_data *us, unsigned long fromaddress,
471 	      int count, int controlshift, unsigned char *buf, int use_sg) {
472 
473 	int bulklen = (count << controlshift);
474 	return sddr09_readX(us, 3, fromaddress, count, bulklen,
475 			    buf, use_sg);
476 }
477 #endif
478 
479 /*
480  * Erase Command: 12 bytes.
481  * byte 0: opcode: EA
482  * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
483  *
484  * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
485  * The byte address being erased is 2*Eaddress.
486  * The CIS cannot be erased.
487  */
488 static int
489 sddr09_erase(struct us_data *us, unsigned long Eaddress) {
490 	unsigned char *command = us->iobuf;
491 	int result;
492 
493 	US_DEBUGP("sddr09_erase: erase address %lu\n", Eaddress);
494 
495 	memset(command, 0, 12);
496 	command[0] = 0xEA;
497 	command[1] = LUNBITS;
498 	command[6] = MSB_of(Eaddress>>16);
499 	command[7] = LSB_of(Eaddress>>16);
500 	command[8] = MSB_of(Eaddress & 0xFFFF);
501 	command[9] = LSB_of(Eaddress & 0xFFFF);
502 
503 	result = sddr09_send_scsi_command(us, command, 12);
504 
505 	if (result)
506 		US_DEBUGP("Result for send_control in sddr09_erase %d\n",
507 			  result);
508 
509 	return result;
510 }
511 
512 /*
513  * Write CIS Command: 12 bytes.
514  * byte 0: opcode: EE
515  * bytes 2-5: write address in shorts
516  * bytes 10-11: sector count
517  *
518  * This writes at the indicated address. Don't know how it differs
519  * from E9. Maybe it does not erase? However, it will also write to
520  * the CIS.
521  *
522  * When two such commands on the same page follow each other directly,
523  * the second one is not done.
524  */
525 
526 /*
527  * Write Command: 12 bytes.
528  * byte 0: opcode: E9
529  * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
530  * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
531  * bytes 10-11: sector count (big-endian, in 512-byte sectors).
532  *
533  * If write address equals erase address, the erase is done first,
534  * otherwise the write is done first. When erase address equals zero
535  * no erase is done?
536  */
537 static int
538 sddr09_writeX(struct us_data *us,
539 	      unsigned long Waddress, unsigned long Eaddress,
540 	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
541 
542 	unsigned char *command = us->iobuf;
543 	int result;
544 
545 	command[0] = 0xE9;
546 	command[1] = LUNBITS;
547 
548 	command[2] = MSB_of(Waddress>>16);
549 	command[3] = LSB_of(Waddress>>16);
550 	command[4] = MSB_of(Waddress & 0xFFFF);
551 	command[5] = LSB_of(Waddress & 0xFFFF);
552 
553 	command[6] = MSB_of(Eaddress>>16);
554 	command[7] = LSB_of(Eaddress>>16);
555 	command[8] = MSB_of(Eaddress & 0xFFFF);
556 	command[9] = LSB_of(Eaddress & 0xFFFF);
557 
558 	command[10] = MSB_of(nr_of_pages);
559 	command[11] = LSB_of(nr_of_pages);
560 
561 	result = sddr09_send_scsi_command(us, command, 12);
562 
563 	if (result) {
564 		US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
565 			  result);
566 		return result;
567 	}
568 
569 	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
570 				       buf, bulklen, use_sg, NULL);
571 
572 	if (result != USB_STOR_XFER_GOOD) {
573 		US_DEBUGP("Result for bulk_transfer in sddr09_writeX %d\n",
574 			  result);
575 		return -EIO;
576 	}
577 	return 0;
578 }
579 
580 /* erase address, write same address */
581 static int
582 sddr09_write_inplace(struct us_data *us, unsigned long address,
583 		     int nr_of_pages, int pageshift, unsigned char *buf,
584 		     int use_sg) {
585 	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
586 	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
587 			     buf, use_sg);
588 }
589 
590 #if 0
591 /*
592  * Read Scatter Gather Command: 3+4n bytes.
593  * byte 0: opcode E7
594  * byte 2: n
595  * bytes 4i-1,4i,4i+1: page address
596  * byte 4i+2: page count
597  * (i=1..n)
598  *
599  * This reads several pages from the card to a single memory buffer.
600  * The last two bits of byte 1 have the same meaning as for E8.
601  */
602 static int
603 sddr09_read_sg_test_only(struct us_data *us) {
604 	unsigned char *command = us->iobuf;
605 	int result, bulklen, nsg, ct;
606 	unsigned char *buf;
607 	unsigned long address;
608 
609 	nsg = bulklen = 0;
610 	command[0] = 0xE7;
611 	command[1] = LUNBITS;
612 	command[2] = 0;
613 	address = 040000; ct = 1;
614 	nsg++;
615 	bulklen += (ct << 9);
616 	command[4*nsg+2] = ct;
617 	command[4*nsg+1] = ((address >> 9) & 0xFF);
618 	command[4*nsg+0] = ((address >> 17) & 0xFF);
619 	command[4*nsg-1] = ((address >> 25) & 0xFF);
620 
621 	address = 0340000; ct = 1;
622 	nsg++;
623 	bulklen += (ct << 9);
624 	command[4*nsg+2] = ct;
625 	command[4*nsg+1] = ((address >> 9) & 0xFF);
626 	command[4*nsg+0] = ((address >> 17) & 0xFF);
627 	command[4*nsg-1] = ((address >> 25) & 0xFF);
628 
629 	address = 01000000; ct = 2;
630 	nsg++;
631 	bulklen += (ct << 9);
632 	command[4*nsg+2] = ct;
633 	command[4*nsg+1] = ((address >> 9) & 0xFF);
634 	command[4*nsg+0] = ((address >> 17) & 0xFF);
635 	command[4*nsg-1] = ((address >> 25) & 0xFF);
636 
637 	command[2] = nsg;
638 
639 	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
640 
641 	if (result) {
642 		US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
643 			  result);
644 		return result;
645 	}
646 
647 	buf = kmalloc(bulklen, GFP_NOIO);
648 	if (!buf)
649 		return -ENOMEM;
650 
651 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
652 				       buf, bulklen, NULL);
653 	kfree(buf);
654 	if (result != USB_STOR_XFER_GOOD) {
655 		US_DEBUGP("Result for bulk_transfer in sddr09_read_sg %d\n",
656 			  result);
657 		return -EIO;
658 	}
659 
660 	return 0;
661 }
662 #endif
663 
664 /*
665  * Read Status Command: 12 bytes.
666  * byte 0: opcode: EC
667  *
668  * Returns 64 bytes, all zero except for the first.
669  * bit 0: 1: Error
670  * bit 5: 1: Suspended
671  * bit 6: 1: Ready
672  * bit 7: 1: Not write-protected
673  */
674 
675 static int
676 sddr09_read_status(struct us_data *us, unsigned char *status) {
677 
678 	unsigned char *command = us->iobuf;
679 	unsigned char *data = us->iobuf;
680 	int result;
681 
682 	US_DEBUGP("Reading status...\n");
683 
684 	memset(command, 0, 12);
685 	command[0] = 0xEC;
686 	command[1] = LUNBITS;
687 
688 	result = sddr09_send_scsi_command(us, command, 12);
689 	if (result)
690 		return result;
691 
692 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
693 				       data, 64, NULL);
694 	*status = data[0];
695 	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
696 }
697 
698 static int
699 sddr09_read_data(struct us_data *us,
700 		 unsigned long address,
701 		 unsigned int sectors) {
702 
703 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
704 	unsigned char *buffer;
705 	unsigned int lba, maxlba, pba;
706 	unsigned int page, pages;
707 	unsigned int len, offset;
708 	struct scatterlist *sg;
709 	int result;
710 
711 	// Figure out the initial LBA and page
712 	lba = address >> info->blockshift;
713 	page = (address & info->blockmask);
714 	maxlba = info->capacity >> (info->pageshift + info->blockshift);
715 	if (lba >= maxlba)
716 		return -EIO;
717 
718 	// Since we only read in one block at a time, we have to create
719 	// a bounce buffer and move the data a piece at a time between the
720 	// bounce buffer and the actual transfer buffer.
721 
722 	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
723 	buffer = kmalloc(len, GFP_NOIO);
724 	if (buffer == NULL) {
725 		printk("sddr09_read_data: Out of memory\n");
726 		return -ENOMEM;
727 	}
728 
729 	// This could be made much more efficient by checking for
730 	// contiguous LBA's. Another exercise left to the student.
731 
732 	result = 0;
733 	offset = 0;
734 	sg = NULL;
735 
736 	while (sectors > 0) {
737 
738 		/* Find number of pages we can read in this block */
739 		pages = min(sectors, info->blocksize - page);
740 		len = pages << info->pageshift;
741 
742 		/* Not overflowing capacity? */
743 		if (lba >= maxlba) {
744 			US_DEBUGP("Error: Requested lba %u exceeds "
745 				  "maximum %u\n", lba, maxlba);
746 			result = -EIO;
747 			break;
748 		}
749 
750 		/* Find where this lba lives on disk */
751 		pba = info->lba_to_pba[lba];
752 
753 		if (pba == UNDEF) {	/* this lba was never written */
754 
755 			US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
756 				  pages, lba, page);
757 
758 			/* This is not really an error. It just means
759 			   that the block has never been written.
760 			   Instead of returning an error
761 			   it is better to return all zero data. */
762 
763 			memset(buffer, 0, len);
764 
765 		} else {
766 			US_DEBUGP("Read %d pages, from PBA %d"
767 				  " (LBA %d) page %d\n",
768 				  pages, pba, lba, page);
769 
770 			address = ((pba << info->blockshift) + page) <<
771 				info->pageshift;
772 
773 			result = sddr09_read20(us, address>>1,
774 					pages, info->pageshift, buffer, 0);
775 			if (result)
776 				break;
777 		}
778 
779 		// Store the data in the transfer buffer
780 		usb_stor_access_xfer_buf(buffer, len, us->srb,
781 				&sg, &offset, TO_XFER_BUF);
782 
783 		page = 0;
784 		lba++;
785 		sectors -= pages;
786 	}
787 
788 	kfree(buffer);
789 	return result;
790 }
791 
792 static unsigned int
793 sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
794 	static unsigned int lastpba = 1;
795 	int zonestart, end, i;
796 
797 	zonestart = (lba/1000) << 10;
798 	end = info->capacity >> (info->blockshift + info->pageshift);
799 	end -= zonestart;
800 	if (end > 1024)
801 		end = 1024;
802 
803 	for (i = lastpba+1; i < end; i++) {
804 		if (info->pba_to_lba[zonestart+i] == UNDEF) {
805 			lastpba = i;
806 			return zonestart+i;
807 		}
808 	}
809 	for (i = 0; i <= lastpba; i++) {
810 		if (info->pba_to_lba[zonestart+i] == UNDEF) {
811 			lastpba = i;
812 			return zonestart+i;
813 		}
814 	}
815 	return 0;
816 }
817 
818 static int
819 sddr09_write_lba(struct us_data *us, unsigned int lba,
820 		 unsigned int page, unsigned int pages,
821 		 unsigned char *ptr, unsigned char *blockbuffer) {
822 
823 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
824 	unsigned long address;
825 	unsigned int pba, lbap;
826 	unsigned int pagelen;
827 	unsigned char *bptr, *cptr, *xptr;
828 	unsigned char ecc[3];
829 	int i, result, isnew;
830 
831 	lbap = ((lba % 1000) << 1) | 0x1000;
832 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
833 		lbap ^= 1;
834 	pba = info->lba_to_pba[lba];
835 	isnew = 0;
836 
837 	if (pba == UNDEF) {
838 		pba = sddr09_find_unused_pba(info, lba);
839 		if (!pba) {
840 			printk("sddr09_write_lba: Out of unused blocks\n");
841 			return -ENOSPC;
842 		}
843 		info->pba_to_lba[pba] = lba;
844 		info->lba_to_pba[lba] = pba;
845 		isnew = 1;
846 	}
847 
848 	if (pba == 1) {
849 		/* Maybe it is impossible to write to PBA 1.
850 		   Fake success, but don't do anything. */
851 		printk("sddr09: avoid writing to pba 1\n");
852 		return 0;
853 	}
854 
855 	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
856 
857 	/* read old contents */
858 	address = (pba << (info->pageshift + info->blockshift));
859 	result = sddr09_read22(us, address>>1, info->blocksize,
860 			       info->pageshift, blockbuffer, 0);
861 	if (result)
862 		return result;
863 
864 	/* check old contents and fill lba */
865 	for (i = 0; i < info->blocksize; i++) {
866 		bptr = blockbuffer + i*pagelen;
867 		cptr = bptr + info->pagesize;
868 		nand_compute_ecc(bptr, ecc);
869 		if (!nand_compare_ecc(cptr+13, ecc)) {
870 			US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
871 				  i, pba);
872 			nand_store_ecc(cptr+13, ecc);
873 		}
874 		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
875 		if (!nand_compare_ecc(cptr+8, ecc)) {
876 			US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
877 				  i, pba);
878 			nand_store_ecc(cptr+8, ecc);
879 		}
880 		cptr[6] = cptr[11] = MSB_of(lbap);
881 		cptr[7] = cptr[12] = LSB_of(lbap);
882 	}
883 
884 	/* copy in new stuff and compute ECC */
885 	xptr = ptr;
886 	for (i = page; i < page+pages; i++) {
887 		bptr = blockbuffer + i*pagelen;
888 		cptr = bptr + info->pagesize;
889 		memcpy(bptr, xptr, info->pagesize);
890 		xptr += info->pagesize;
891 		nand_compute_ecc(bptr, ecc);
892 		nand_store_ecc(cptr+13, ecc);
893 		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
894 		nand_store_ecc(cptr+8, ecc);
895 	}
896 
897 	US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);
898 
899 	result = sddr09_write_inplace(us, address>>1, info->blocksize,
900 				      info->pageshift, blockbuffer, 0);
901 
902 	US_DEBUGP("sddr09_write_inplace returns %d\n", result);
903 
904 #if 0
905 	{
906 		unsigned char status = 0;
907 		int result2 = sddr09_read_status(us, &status);
908 		if (result2)
909 			US_DEBUGP("sddr09_write_inplace: cannot read status\n");
910 		else if (status != 0xc0)
911 			US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
912 				  status);
913 	}
914 #endif
915 
916 #if 0
917 	{
918 		int result2 = sddr09_test_unit_ready(us);
919 	}
920 #endif
921 
922 	return result;
923 }
924 
925 static int
926 sddr09_write_data(struct us_data *us,
927 		  unsigned long address,
928 		  unsigned int sectors) {
929 
930 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
931 	unsigned int lba, maxlba, page, pages;
932 	unsigned int pagelen, blocklen;
933 	unsigned char *blockbuffer;
934 	unsigned char *buffer;
935 	unsigned int len, offset;
936 	struct scatterlist *sg;
937 	int result;
938 
939 	// Figure out the initial LBA and page
940 	lba = address >> info->blockshift;
941 	page = (address & info->blockmask);
942 	maxlba = info->capacity >> (info->pageshift + info->blockshift);
943 	if (lba >= maxlba)
944 		return -EIO;
945 
946 	// blockbuffer is used for reading in the old data, overwriting
947 	// with the new data, and performing ECC calculations
948 
949 	/* TODO: instead of doing kmalloc/kfree for each write,
950 	   add a bufferpointer to the info structure */
951 
952 	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
953 	blocklen = (pagelen << info->blockshift);
954 	blockbuffer = kmalloc(blocklen, GFP_NOIO);
955 	if (!blockbuffer) {
956 		printk("sddr09_write_data: Out of memory\n");
957 		return -ENOMEM;
958 	}
959 
960 	// Since we don't write the user data directly to the device,
961 	// we have to create a bounce buffer and move the data a piece
962 	// at a time between the bounce buffer and the actual transfer buffer.
963 
964 	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
965 	buffer = kmalloc(len, GFP_NOIO);
966 	if (buffer == NULL) {
967 		printk("sddr09_write_data: Out of memory\n");
968 		kfree(blockbuffer);
969 		return -ENOMEM;
970 	}
971 
972 	result = 0;
973 	offset = 0;
974 	sg = NULL;
975 
976 	while (sectors > 0) {
977 
978 		// Write as many sectors as possible in this block
979 
980 		pages = min(sectors, info->blocksize - page);
981 		len = (pages << info->pageshift);
982 
983 		/* Not overflowing capacity? */
984 		if (lba >= maxlba) {
985 			US_DEBUGP("Error: Requested lba %u exceeds "
986 				  "maximum %u\n", lba, maxlba);
987 			result = -EIO;
988 			break;
989 		}
990 
991 		// Get the data from the transfer buffer
992 		usb_stor_access_xfer_buf(buffer, len, us->srb,
993 				&sg, &offset, FROM_XFER_BUF);
994 
995 		result = sddr09_write_lba(us, lba, page, pages,
996 				buffer, blockbuffer);
997 		if (result)
998 			break;
999 
1000 		page = 0;
1001 		lba++;
1002 		sectors -= pages;
1003 	}
1004 
1005 	kfree(buffer);
1006 	kfree(blockbuffer);
1007 
1008 	return result;
1009 }
1010 
1011 static int
1012 sddr09_read_control(struct us_data *us,
1013 		unsigned long address,
1014 		unsigned int blocks,
1015 		unsigned char *content,
1016 		int use_sg) {
1017 
1018 	US_DEBUGP("Read control address %lu, blocks %d\n",
1019 		address, blocks);
1020 
1021 	return sddr09_read21(us, address, blocks,
1022 			     CONTROL_SHIFT, content, use_sg);
1023 }
1024 
1025 /*
1026  * Read Device ID Command: 12 bytes.
1027  * byte 0: opcode: ED
1028  *
1029  * Returns 2 bytes: Manufacturer ID and Device ID.
1030  * On more recent cards 3 bytes: the third byte is an option code A5
1031  * signifying that the secret command to read an 128-bit ID is available.
1032  * On still more recent cards 4 bytes: the fourth byte C0 means that
1033  * a second read ID cmd is available.
1034  */
1035 static int
1036 sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1037 	unsigned char *command = us->iobuf;
1038 	unsigned char *content = us->iobuf;
1039 	int result, i;
1040 
1041 	memset(command, 0, 12);
1042 	command[0] = 0xED;
1043 	command[1] = LUNBITS;
1044 
1045 	result = sddr09_send_scsi_command(us, command, 12);
1046 	if (result)
1047 		return result;
1048 
1049 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1050 			content, 64, NULL);
1051 
1052 	for (i = 0; i < 4; i++)
1053 		deviceID[i] = content[i];
1054 
1055 	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1056 }
1057 
1058 static int
1059 sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1060 	int result;
1061 	unsigned char status;
1062 
1063 	result = sddr09_read_status(us, &status);
1064 	if (result) {
1065 		US_DEBUGP("sddr09_get_wp: read_status fails\n");
1066 		return result;
1067 	}
1068 	US_DEBUGP("sddr09_get_wp: status 0x%02X", status);
1069 	if ((status & 0x80) == 0) {
1070 		info->flags |= SDDR09_WP;	/* write protected */
1071 		US_DEBUGP(" WP");
1072 	}
1073 	if (status & 0x40)
1074 		US_DEBUGP(" Ready");
1075 	if (status & LUNBITS)
1076 		US_DEBUGP(" Suspended");
1077 	if (status & 0x1)
1078 		US_DEBUGP(" Error");
1079 	US_DEBUGP("\n");
1080 	return 0;
1081 }
1082 
1083 #if 0
1084 /*
1085  * Reset Command: 12 bytes.
1086  * byte 0: opcode: EB
1087  */
1088 static int
1089 sddr09_reset(struct us_data *us) {
1090 
1091 	unsigned char *command = us->iobuf;
1092 
1093 	memset(command, 0, 12);
1094 	command[0] = 0xEB;
1095 	command[1] = LUNBITS;
1096 
1097 	return sddr09_send_scsi_command(us, command, 12);
1098 }
1099 #endif
1100 
1101 static struct nand_flash_dev *
1102 sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1103 	struct nand_flash_dev *cardinfo;
1104 	unsigned char deviceID[4];
1105 	char blurbtxt[256];
1106 	int result;
1107 
1108 	US_DEBUGP("Reading capacity...\n");
1109 
1110 	result = sddr09_read_deviceID(us, deviceID);
1111 
1112 	if (result) {
1113 		US_DEBUGP("Result of read_deviceID is %d\n", result);
1114 		printk("sddr09: could not read card info\n");
1115 		return NULL;
1116 	}
1117 
1118 	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1119 		deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
1120 
1121 	/* Byte 0 is the manufacturer */
1122 	sprintf(blurbtxt + strlen(blurbtxt),
1123 		": Manuf. %s",
1124 		nand_flash_manufacturer(deviceID[0]));
1125 
1126 	/* Byte 1 is the device type */
1127 	cardinfo = nand_find_id(deviceID[1]);
1128 	if (cardinfo) {
1129 		/* MB or MiB? It is neither. A 16 MB card has
1130 		   17301504 raw bytes, of which 16384000 are
1131 		   usable for user data. */
1132 		sprintf(blurbtxt + strlen(blurbtxt),
1133 			", %d MB", 1<<(cardinfo->chipshift - 20));
1134 	} else {
1135 		sprintf(blurbtxt + strlen(blurbtxt),
1136 			", type unrecognized");
1137 	}
1138 
1139 	/* Byte 2 is code to signal availability of 128-bit ID */
1140 	if (deviceID[2] == 0xa5) {
1141 		sprintf(blurbtxt + strlen(blurbtxt),
1142 			", 128-bit ID");
1143 	}
1144 
1145 	/* Byte 3 announces the availability of another read ID command */
1146 	if (deviceID[3] == 0xc0) {
1147 		sprintf(blurbtxt + strlen(blurbtxt),
1148 			", extra cmd");
1149 	}
1150 
1151 	if (flags & SDDR09_WP)
1152 		sprintf(blurbtxt + strlen(blurbtxt),
1153 			", WP");
1154 
1155 	printk("%s\n", blurbtxt);
1156 
1157 	return cardinfo;
1158 }
1159 
1160 static int
1161 sddr09_read_map(struct us_data *us) {
1162 
1163 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1164 	int numblocks, alloc_len, alloc_blocks;
1165 	int i, j, result;
1166 	unsigned char *buffer, *buffer_end, *ptr;
1167 	unsigned int lba, lbact;
1168 
1169 	if (!info->capacity)
1170 		return -1;
1171 
1172 	// size of a block is 1 << (blockshift + pageshift) bytes
1173 	// divide into the total capacity to get the number of blocks
1174 
1175 	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1176 
1177 	// read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1178 	// but only use a 64 KB buffer
1179 	// buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1180 #define SDDR09_READ_MAP_BUFSZ 65536
1181 
1182 	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1183 	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1184 	buffer = kmalloc(alloc_len, GFP_NOIO);
1185 	if (buffer == NULL) {
1186 		printk("sddr09_read_map: out of memory\n");
1187 		result = -1;
1188 		goto done;
1189 	}
1190 	buffer_end = buffer + alloc_len;
1191 
1192 #undef SDDR09_READ_MAP_BUFSZ
1193 
1194 	kfree(info->lba_to_pba);
1195 	kfree(info->pba_to_lba);
1196 	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1197 	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1198 
1199 	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1200 		printk("sddr09_read_map: out of memory\n");
1201 		result = -1;
1202 		goto done;
1203 	}
1204 
1205 	for (i = 0; i < numblocks; i++)
1206 		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1207 
1208 	/*
1209 	 * Define lba-pba translation table
1210 	 */
1211 
1212 	ptr = buffer_end;
1213 	for (i = 0; i < numblocks; i++) {
1214 		ptr += (1 << CONTROL_SHIFT);
1215 		if (ptr >= buffer_end) {
1216 			unsigned long address;
1217 
1218 			address = i << (info->pageshift + info->blockshift);
1219 			result = sddr09_read_control(
1220 				us, address>>1,
1221 				min(alloc_blocks, numblocks - i),
1222 				buffer, 0);
1223 			if (result) {
1224 				result = -1;
1225 				goto done;
1226 			}
1227 			ptr = buffer;
1228 		}
1229 
1230 		if (i == 0 || i == 1) {
1231 			info->pba_to_lba[i] = UNUSABLE;
1232 			continue;
1233 		}
1234 
1235 		/* special PBAs have control field 0^16 */
1236 		for (j = 0; j < 16; j++)
1237 			if (ptr[j] != 0)
1238 				goto nonz;
1239 		info->pba_to_lba[i] = UNUSABLE;
1240 		printk("sddr09: PBA %d has no logical mapping\n", i);
1241 		continue;
1242 
1243 	nonz:
1244 		/* unwritten PBAs have control field FF^16 */
1245 		for (j = 0; j < 16; j++)
1246 			if (ptr[j] != 0xff)
1247 				goto nonff;
1248 		continue;
1249 
1250 	nonff:
1251 		/* normal PBAs start with six FFs */
1252 		if (j < 6) {
1253 			printk("sddr09: PBA %d has no logical mapping: "
1254 			       "reserved area = %02X%02X%02X%02X "
1255 			       "data status %02X block status %02X\n",
1256 			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1257 			       ptr[4], ptr[5]);
1258 			info->pba_to_lba[i] = UNUSABLE;
1259 			continue;
1260 		}
1261 
1262 		if ((ptr[6] >> 4) != 0x01) {
1263 			printk("sddr09: PBA %d has invalid address field "
1264 			       "%02X%02X/%02X%02X\n",
1265 			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1266 			info->pba_to_lba[i] = UNUSABLE;
1267 			continue;
1268 		}
1269 
1270 		/* check even parity */
1271 		if (parity[ptr[6] ^ ptr[7]]) {
1272 			printk("sddr09: Bad parity in LBA for block %d"
1273 			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1274 			info->pba_to_lba[i] = UNUSABLE;
1275 			continue;
1276 		}
1277 
1278 		lba = short_pack(ptr[7], ptr[6]);
1279 		lba = (lba & 0x07FF) >> 1;
1280 
1281 		/*
1282 		 * Every 1024 physical blocks ("zone"), the LBA numbers
1283 		 * go back to zero, but are within a higher block of LBA's.
1284 		 * Also, there is a maximum of 1000 LBA's per zone.
1285 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1286 		 * which are really LBA 1000-1999. This allows for 24 bad
1287 		 * or special physical blocks per zone.
1288 		 */
1289 
1290 		if (lba >= 1000) {
1291 			printk("sddr09: Bad low LBA %d for block %d\n",
1292 			       lba, i);
1293 			goto possibly_erase;
1294 		}
1295 
1296 		lba += 1000*(i/0x400);
1297 
1298 		if (info->lba_to_pba[lba] != UNDEF) {
1299 			printk("sddr09: LBA %d seen for PBA %d and %d\n",
1300 			       lba, info->lba_to_pba[lba], i);
1301 			goto possibly_erase;
1302 		}
1303 
1304 		info->pba_to_lba[i] = lba;
1305 		info->lba_to_pba[lba] = i;
1306 		continue;
1307 
1308 	possibly_erase:
1309 		if (erase_bad_lba_entries) {
1310 			unsigned long address;
1311 
1312 			address = (i << (info->pageshift + info->blockshift));
1313 			sddr09_erase(us, address>>1);
1314 			info->pba_to_lba[i] = UNDEF;
1315 		} else
1316 			info->pba_to_lba[i] = UNUSABLE;
1317 	}
1318 
1319 	/*
1320 	 * Approximate capacity. This is not entirely correct yet,
1321 	 * since a zone with less than 1000 usable pages leads to
1322 	 * missing LBAs. Especially if it is the last zone, some
1323 	 * LBAs can be past capacity.
1324 	 */
1325 	lbact = 0;
1326 	for (i = 0; i < numblocks; i += 1024) {
1327 		int ct = 0;
1328 
1329 		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1330 			if (info->pba_to_lba[i+j] != UNUSABLE) {
1331 				if (ct >= 1000)
1332 					info->pba_to_lba[i+j] = SPARE;
1333 				else
1334 					ct++;
1335 			}
1336 		}
1337 		lbact += ct;
1338 	}
1339 	info->lbact = lbact;
1340 	US_DEBUGP("Found %d LBA's\n", lbact);
1341 	result = 0;
1342 
1343  done:
1344 	if (result != 0) {
1345 		kfree(info->lba_to_pba);
1346 		kfree(info->pba_to_lba);
1347 		info->lba_to_pba = NULL;
1348 		info->pba_to_lba = NULL;
1349 	}
1350 	kfree(buffer);
1351 	return result;
1352 }
1353 
1354 static void
1355 sddr09_card_info_destructor(void *extra) {
1356 	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1357 
1358 	if (!info)
1359 		return;
1360 
1361 	kfree(info->lba_to_pba);
1362 	kfree(info->pba_to_lba);
1363 }
1364 
1365 static int
1366 sddr09_common_init(struct us_data *us) {
1367 	int result;
1368 
1369 	/* set the configuration -- STALL is an acceptable response here */
1370 	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1371 		US_DEBUGP("active config #%d != 1 ??\n", us->pusb_dev
1372 				->actconfig->desc.bConfigurationValue);
1373 		return -EINVAL;
1374 	}
1375 
1376 	result = usb_reset_configuration(us->pusb_dev);
1377 	US_DEBUGP("Result of usb_reset_configuration is %d\n", result);
1378 	if (result == -EPIPE) {
1379 		US_DEBUGP("-- stall on control interface\n");
1380 	} else if (result != 0) {
1381 		/* it's not a stall, but another error -- time to bail */
1382 		US_DEBUGP("-- Unknown error.  Rejecting device\n");
1383 		return -EINVAL;
1384 	}
1385 
1386 	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1387 	if (!us->extra)
1388 		return -ENOMEM;
1389 	us->extra_destructor = sddr09_card_info_destructor;
1390 
1391 	nand_init_ecc();
1392 	return 0;
1393 }
1394 
1395 
1396 /*
1397  * This is needed at a very early stage. If this is not listed in the
1398  * unusual devices list but called from here then LUN 0 of the combo reader
1399  * is not recognized. But I do not know what precisely these calls do.
1400  */
1401 int
1402 usb_stor_sddr09_dpcm_init(struct us_data *us) {
1403 	int result;
1404 	unsigned char *data = us->iobuf;
1405 
1406 	result = sddr09_common_init(us);
1407 	if (result)
1408 		return result;
1409 
1410 	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1411 	if (result) {
1412 		US_DEBUGP("sddr09_init: send_command fails\n");
1413 		return result;
1414 	}
1415 
1416 	US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1417 	// get 07 02
1418 
1419 	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1420 	if (result) {
1421 		US_DEBUGP("sddr09_init: 2nd send_command fails\n");
1422 		return result;
1423 	}
1424 
1425 	US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1426 	// get 07 00
1427 
1428 	result = sddr09_request_sense(us, data, 18);
1429 	if (result == 0 && data[2] != 0) {
1430 		int j;
1431 		for (j=0; j<18; j++)
1432 			printk(" %02X", data[j]);
1433 		printk("\n");
1434 		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1435 		// 70: current command
1436 		// sense key 0, sense code 0, extd sense code 0
1437 		// additional transfer length * = sizeof(data) - 7
1438 		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1439 		// sense key 06, sense code 28: unit attention,
1440 		// not ready to ready transition
1441 	}
1442 
1443 	// test unit ready
1444 
1445 	return 0;		/* not result */
1446 }
1447 
1448 /*
1449  * Transport for the Sandisk SDDR-09
1450  */
1451 int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1452 {
1453 	static unsigned char sensekey = 0, sensecode = 0;
1454 	static unsigned char havefakesense = 0;
1455 	int result, i;
1456 	unsigned char *ptr = us->iobuf;
1457 	unsigned long capacity;
1458 	unsigned int page, pages;
1459 
1460 	struct sddr09_card_info *info;
1461 
1462 	static unsigned char inquiry_response[8] = {
1463 		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1464 	};
1465 
1466 	/* note: no block descriptor support */
1467 	static unsigned char mode_page_01[19] = {
1468 		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1469 		0x01, 0x0A,
1470 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1471 	};
1472 
1473 	info = (struct sddr09_card_info *)us->extra;
1474 
1475 	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1476 		/* for a faked command, we have to follow with a faked sense */
1477 		memset(ptr, 0, 18);
1478 		ptr[0] = 0x70;
1479 		ptr[2] = sensekey;
1480 		ptr[7] = 11;
1481 		ptr[12] = sensecode;
1482 		usb_stor_set_xfer_buf(ptr, 18, srb);
1483 		sensekey = sensecode = havefakesense = 0;
1484 		return USB_STOR_TRANSPORT_GOOD;
1485 	}
1486 
1487 	havefakesense = 1;
1488 
1489 	/* Dummy up a response for INQUIRY since SDDR09 doesn't
1490 	   respond to INQUIRY commands */
1491 
1492 	if (srb->cmnd[0] == INQUIRY) {
1493 		memcpy(ptr, inquiry_response, 8);
1494 		fill_inquiry_response(us, ptr, 36);
1495 		return USB_STOR_TRANSPORT_GOOD;
1496 	}
1497 
1498 	if (srb->cmnd[0] == READ_CAPACITY) {
1499 		struct nand_flash_dev *cardinfo;
1500 
1501 		sddr09_get_wp(us, info);	/* read WP bit */
1502 
1503 		cardinfo = sddr09_get_cardinfo(us, info->flags);
1504 		if (!cardinfo) {
1505 			/* probably no media */
1506 		init_error:
1507 			sensekey = 0x02;	/* not ready */
1508 			sensecode = 0x3a;	/* medium not present */
1509 			return USB_STOR_TRANSPORT_FAILED;
1510 		}
1511 
1512 		info->capacity = (1 << cardinfo->chipshift);
1513 		info->pageshift = cardinfo->pageshift;
1514 		info->pagesize = (1 << info->pageshift);
1515 		info->blockshift = cardinfo->blockshift;
1516 		info->blocksize = (1 << info->blockshift);
1517 		info->blockmask = info->blocksize - 1;
1518 
1519 		// map initialization, must follow get_cardinfo()
1520 		if (sddr09_read_map(us)) {
1521 			/* probably out of memory */
1522 			goto init_error;
1523 		}
1524 
1525 		// Report capacity
1526 
1527 		capacity = (info->lbact << info->blockshift) - 1;
1528 
1529 		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1530 
1531 		// Report page size
1532 
1533 		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1534 		usb_stor_set_xfer_buf(ptr, 8, srb);
1535 
1536 		return USB_STOR_TRANSPORT_GOOD;
1537 	}
1538 
1539 	if (srb->cmnd[0] == MODE_SENSE_10) {
1540 		int modepage = (srb->cmnd[2] & 0x3F);
1541 
1542 		/* They ask for the Read/Write error recovery page,
1543 		   or for all pages. */
1544 		/* %% We should check DBD %% */
1545 		if (modepage == 0x01 || modepage == 0x3F) {
1546 			US_DEBUGP("SDDR09: Dummy up request for "
1547 				  "mode page 0x%x\n", modepage);
1548 
1549 			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1550 			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1551 			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1552 			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1553 			return USB_STOR_TRANSPORT_GOOD;
1554 		}
1555 
1556 		sensekey = 0x05;	/* illegal request */
1557 		sensecode = 0x24;	/* invalid field in CDB */
1558 		return USB_STOR_TRANSPORT_FAILED;
1559 	}
1560 
1561 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1562 		return USB_STOR_TRANSPORT_GOOD;
1563 
1564 	havefakesense = 0;
1565 
1566 	if (srb->cmnd[0] == READ_10) {
1567 
1568 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1569 		page <<= 16;
1570 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1571 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1572 
1573 		US_DEBUGP("READ_10: read page %d pagect %d\n",
1574 			  page, pages);
1575 
1576 		result = sddr09_read_data(us, page, pages);
1577 		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1578 				USB_STOR_TRANSPORT_ERROR);
1579 	}
1580 
1581 	if (srb->cmnd[0] == WRITE_10) {
1582 
1583 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1584 		page <<= 16;
1585 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1586 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1587 
1588 		US_DEBUGP("WRITE_10: write page %d pagect %d\n",
1589 			  page, pages);
1590 
1591 		result = sddr09_write_data(us, page, pages);
1592 		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1593 				USB_STOR_TRANSPORT_ERROR);
1594 	}
1595 
1596 	/* catch-all for all other commands, except
1597 	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1598 	 */
1599 	if (srb->cmnd[0] != TEST_UNIT_READY &&
1600 	    srb->cmnd[0] != REQUEST_SENSE) {
1601 		sensekey = 0x05;	/* illegal request */
1602 		sensecode = 0x20;	/* invalid command */
1603 		havefakesense = 1;
1604 		return USB_STOR_TRANSPORT_FAILED;
1605 	}
1606 
1607 	for (; srb->cmd_len<12; srb->cmd_len++)
1608 		srb->cmnd[srb->cmd_len] = 0;
1609 
1610 	srb->cmnd[1] = LUNBITS;
1611 
1612 	ptr[0] = 0;
1613 	for (i=0; i<12; i++)
1614 		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1615 
1616 	US_DEBUGP("SDDR09: Send control for command %s\n", ptr);
1617 
1618 	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1619 	if (result) {
1620 		US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
1621 			  "returns %d\n", result);
1622 		return USB_STOR_TRANSPORT_ERROR;
1623 	}
1624 
1625 	if (scsi_bufflen(srb) == 0)
1626 		return USB_STOR_TRANSPORT_GOOD;
1627 
1628 	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1629 	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1630 		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1631 				? us->send_bulk_pipe : us->recv_bulk_pipe;
1632 
1633 		US_DEBUGP("SDDR09: %s %d bytes\n",
1634 			  (srb->sc_data_direction == DMA_TO_DEVICE) ?
1635 			  "sending" : "receiving",
1636 			  scsi_bufflen(srb));
1637 
1638 		result = usb_stor_bulk_srb(us, pipe, srb);
1639 
1640 		return (result == USB_STOR_XFER_GOOD ?
1641 			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1642 	}
1643 
1644 	return USB_STOR_TRANSPORT_GOOD;
1645 }
1646 
1647 /*
1648  * Initialization routine for the sddr09 subdriver
1649  */
1650 int
1651 usb_stor_sddr09_init(struct us_data *us) {
1652 	return sddr09_common_init(us);
1653 }
1654