xref: /openbmc/linux/drivers/usb/storage/sddr09.c (revision e8f6f3b4)
1 /* Driver for SanDisk SDDR-09 SmartMedia reader
2  *
3  *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
4  *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
5  * Developed with the assistance of:
6  *   (c) 2002 Alan Stern <stern@rowland.org>
7  *
8  * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
9  * This chip is a programmable USB controller. In the SDDR-09, it has
10  * been programmed to obey a certain limited set of SCSI commands.
11  * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
12  * commands.
13  *
14  * This program is free software; you can redistribute it and/or modify it
15  * under the terms of the GNU General Public License as published by the
16  * Free Software Foundation; either version 2, or (at your option) any
17  * later version.
18  *
19  * This program is distributed in the hope that it will be useful, but
20  * WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  * General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License along
25  * with this program; if not, write to the Free Software Foundation, Inc.,
26  * 675 Mass Ave, Cambridge, MA 02139, USA.
27  */
28 
29 /*
30  * Known vendor commands: 12 bytes, first byte is opcode
31  *
32  * E7: read scatter gather
33  * E8: read
34  * E9: write
35  * EA: erase
36  * EB: reset
37  * EC: read status
38  * ED: read ID
39  * EE: write CIS (?)
40  * EF: compute checksum (?)
41  */
42 
43 #include <linux/errno.h>
44 #include <linux/module.h>
45 #include <linux/slab.h>
46 
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 
51 #include "usb.h"
52 #include "transport.h"
53 #include "protocol.h"
54 #include "debug.h"
55 
56 MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
57 MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
58 MODULE_LICENSE("GPL");
59 
60 static int usb_stor_sddr09_dpcm_init(struct us_data *us);
61 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
62 static int usb_stor_sddr09_init(struct us_data *us);
63 
64 
65 /*
66  * The table of devices
67  */
68 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
69 		    vendorName, productName, useProtocol, useTransport, \
70 		    initFunction, flags) \
71 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
72   .driver_info = (flags) }
73 
74 static struct usb_device_id sddr09_usb_ids[] = {
75 #	include "unusual_sddr09.h"
76 	{ }		/* Terminating entry */
77 };
78 MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
79 
80 #undef UNUSUAL_DEV
81 
82 /*
83  * The flags table
84  */
85 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
86 		    vendor_name, product_name, use_protocol, use_transport, \
87 		    init_function, Flags) \
88 { \
89 	.vendorName = vendor_name,	\
90 	.productName = product_name,	\
91 	.useProtocol = use_protocol,	\
92 	.useTransport = use_transport,	\
93 	.initFunction = init_function,	\
94 }
95 
96 static struct us_unusual_dev sddr09_unusual_dev_list[] = {
97 #	include "unusual_sddr09.h"
98 	{ }		/* Terminating entry */
99 };
100 
101 #undef UNUSUAL_DEV
102 
103 
104 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
105 #define LSB_of(s) ((s)&0xFF)
106 #define MSB_of(s) ((s)>>8)
107 
108 /*
109  * First some stuff that does not belong here:
110  * data on SmartMedia and other cards, completely
111  * unrelated to this driver.
112  * Similar stuff occurs in <linux/mtd/nand_ids.h>.
113  */
114 
115 struct nand_flash_dev {
116 	int model_id;
117 	int chipshift;		/* 1<<cs bytes total capacity */
118 	char pageshift;		/* 1<<ps bytes in a page */
119 	char blockshift;	/* 1<<bs pages in an erase block */
120 	char zoneshift;		/* 1<<zs blocks in a zone */
121 				/* # of logical blocks is 125/128 of this */
122 	char pageadrlen;	/* length of an address in bytes - 1 */
123 };
124 
125 /*
126  * NAND Flash Manufacturer ID Codes
127  */
128 #define NAND_MFR_AMD		0x01
129 #define NAND_MFR_NATSEMI	0x8f
130 #define NAND_MFR_TOSHIBA	0x98
131 #define NAND_MFR_SAMSUNG	0xec
132 
133 static inline char *nand_flash_manufacturer(int manuf_id) {
134 	switch(manuf_id) {
135 	case NAND_MFR_AMD:
136 		return "AMD";
137 	case NAND_MFR_NATSEMI:
138 		return "NATSEMI";
139 	case NAND_MFR_TOSHIBA:
140 		return "Toshiba";
141 	case NAND_MFR_SAMSUNG:
142 		return "Samsung";
143 	default:
144 		return "unknown";
145 	}
146 }
147 
148 /*
149  * It looks like it is unnecessary to attach manufacturer to the
150  * remaining data: SSFDC prescribes manufacturer-independent id codes.
151  *
152  * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
153  */
154 
155 static struct nand_flash_dev nand_flash_ids[] = {
156 	/* NAND flash */
157 	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
158 	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
159 	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
160 	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
161 	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
162 	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
163 	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
164 	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
165 	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
166 	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
167 	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
168 	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
169 	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
170 
171 	/* MASK ROM */
172 	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
173 	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
174 	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
175 	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
176 	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
177 	{ 0,}
178 };
179 
180 static struct nand_flash_dev *
181 nand_find_id(unsigned char id) {
182 	int i;
183 
184 	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
185 		if (nand_flash_ids[i].model_id == id)
186 			return &(nand_flash_ids[i]);
187 	return NULL;
188 }
189 
190 /*
191  * ECC computation.
192  */
193 static unsigned char parity[256];
194 static unsigned char ecc2[256];
195 
196 static void nand_init_ecc(void) {
197 	int i, j, a;
198 
199 	parity[0] = 0;
200 	for (i = 1; i < 256; i++)
201 		parity[i] = (parity[i&(i-1)] ^ 1);
202 
203 	for (i = 0; i < 256; i++) {
204 		a = 0;
205 		for (j = 0; j < 8; j++) {
206 			if (i & (1<<j)) {
207 				if ((j & 1) == 0)
208 					a ^= 0x04;
209 				if ((j & 2) == 0)
210 					a ^= 0x10;
211 				if ((j & 4) == 0)
212 					a ^= 0x40;
213 			}
214 		}
215 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
216 	}
217 }
218 
219 /* compute 3-byte ecc on 256 bytes */
220 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
221 	int i, j, a;
222 	unsigned char par = 0, bit, bits[8] = {0};
223 
224 	/* collect 16 checksum bits */
225 	for (i = 0; i < 256; i++) {
226 		par ^= data[i];
227 		bit = parity[data[i]];
228 		for (j = 0; j < 8; j++)
229 			if ((i & (1<<j)) == 0)
230 				bits[j] ^= bit;
231 	}
232 
233 	/* put 4+4+4 = 12 bits in the ecc */
234 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
235 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
236 
237 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
238 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
239 
240 	ecc[2] = ecc2[par];
241 }
242 
243 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
244 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
245 }
246 
247 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
248 	memcpy(data, ecc, 3);
249 }
250 
251 /*
252  * The actual driver starts here.
253  */
254 
255 struct sddr09_card_info {
256 	unsigned long	capacity;	/* Size of card in bytes */
257 	int		pagesize;	/* Size of page in bytes */
258 	int		pageshift;	/* log2 of pagesize */
259 	int		blocksize;	/* Size of block in pages */
260 	int		blockshift;	/* log2 of blocksize */
261 	int		blockmask;	/* 2^blockshift - 1 */
262 	int		*lba_to_pba;	/* logical to physical map */
263 	int		*pba_to_lba;	/* physical to logical map */
264 	int		lbact;		/* number of available pages */
265 	int		flags;
266 #define	SDDR09_WP	1		/* write protected */
267 };
268 
269 /*
270  * On my 16MB card, control blocks have size 64 (16 real control bytes,
271  * and 48 junk bytes). In reality of course the card uses 16 control bytes,
272  * so the reader makes up the remaining 48. Don't know whether these numbers
273  * depend on the card. For now a constant.
274  */
275 #define CONTROL_SHIFT 6
276 
277 /*
278  * On my Combo CF/SM reader, the SM reader has LUN 1.
279  * (and things fail with LUN 0).
280  * It seems LUN is irrelevant for others.
281  */
282 #define LUN	1
283 #define	LUNBITS	(LUN << 5)
284 
285 /*
286  * LBA and PBA are unsigned ints. Special values.
287  */
288 #define UNDEF    0xffffffff
289 #define SPARE    0xfffffffe
290 #define UNUSABLE 0xfffffffd
291 
292 static const int erase_bad_lba_entries = 0;
293 
294 /* send vendor interface command (0x41) */
295 /* called for requests 0, 1, 8 */
296 static int
297 sddr09_send_command(struct us_data *us,
298 		    unsigned char request,
299 		    unsigned char direction,
300 		    unsigned char *xfer_data,
301 		    unsigned int xfer_len) {
302 	unsigned int pipe;
303 	unsigned char requesttype = (0x41 | direction);
304 	int rc;
305 
306 	// Get the receive or send control pipe number
307 
308 	if (direction == USB_DIR_IN)
309 		pipe = us->recv_ctrl_pipe;
310 	else
311 		pipe = us->send_ctrl_pipe;
312 
313 	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
314 				   0, 0, xfer_data, xfer_len);
315 	switch (rc) {
316 		case USB_STOR_XFER_GOOD:	return 0;
317 		case USB_STOR_XFER_STALLED:	return -EPIPE;
318 		default:			return -EIO;
319 	}
320 }
321 
322 static int
323 sddr09_send_scsi_command(struct us_data *us,
324 			 unsigned char *command,
325 			 unsigned int command_len) {
326 	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
327 }
328 
329 #if 0
330 /*
331  * Test Unit Ready Command: 12 bytes.
332  * byte 0: opcode: 00
333  */
334 static int
335 sddr09_test_unit_ready(struct us_data *us) {
336 	unsigned char *command = us->iobuf;
337 	int result;
338 
339 	memset(command, 0, 6);
340 	command[1] = LUNBITS;
341 
342 	result = sddr09_send_scsi_command(us, command, 6);
343 
344 	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
345 
346 	return result;
347 }
348 #endif
349 
350 /*
351  * Request Sense Command: 12 bytes.
352  * byte 0: opcode: 03
353  * byte 4: data length
354  */
355 static int
356 sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
357 	unsigned char *command = us->iobuf;
358 	int result;
359 
360 	memset(command, 0, 12);
361 	command[0] = 0x03;
362 	command[1] = LUNBITS;
363 	command[4] = buflen;
364 
365 	result = sddr09_send_scsi_command(us, command, 12);
366 	if (result)
367 		return result;
368 
369 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
370 			sensebuf, buflen, NULL);
371 	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
372 }
373 
374 /*
375  * Read Command: 12 bytes.
376  * byte 0: opcode: E8
377  * byte 1: last two bits: 00: read data, 01: read blockwise control,
378  *			10: read both, 11: read pagewise control.
379  *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
380  * bytes 2-5: address (interpretation depends on byte 1, see below)
381  * bytes 10-11: count (idem)
382  *
383  * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
384  * A read data command gets data in 512-byte pages.
385  * A read control command gets control in 64-byte chunks.
386  * A read both command gets data+control in 576-byte chunks.
387  *
388  * Blocks are groups of 32 pages, and read blockwise control jumps to the
389  * next block, while read pagewise control jumps to the next page after
390  * reading a group of 64 control bytes.
391  * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
392  *
393  * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
394  */
395 
396 static int
397 sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
398 	     int nr_of_pages, int bulklen, unsigned char *buf,
399 	     int use_sg) {
400 
401 	unsigned char *command = us->iobuf;
402 	int result;
403 
404 	command[0] = 0xE8;
405 	command[1] = LUNBITS | x;
406 	command[2] = MSB_of(fromaddress>>16);
407 	command[3] = LSB_of(fromaddress>>16);
408 	command[4] = MSB_of(fromaddress & 0xFFFF);
409 	command[5] = LSB_of(fromaddress & 0xFFFF);
410 	command[6] = 0;
411 	command[7] = 0;
412 	command[8] = 0;
413 	command[9] = 0;
414 	command[10] = MSB_of(nr_of_pages);
415 	command[11] = LSB_of(nr_of_pages);
416 
417 	result = sddr09_send_scsi_command(us, command, 12);
418 
419 	if (result) {
420 		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
421 			     x, result);
422 		return result;
423 	}
424 
425 	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
426 				       buf, bulklen, use_sg, NULL);
427 
428 	if (result != USB_STOR_XFER_GOOD) {
429 		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
430 			     x, result);
431 		return -EIO;
432 	}
433 	return 0;
434 }
435 
436 /*
437  * Read Data
438  *
439  * fromaddress counts data shorts:
440  * increasing it by 256 shifts the bytestream by 512 bytes;
441  * the last 8 bits are ignored.
442  *
443  * nr_of_pages counts pages of size (1 << pageshift).
444  */
445 static int
446 sddr09_read20(struct us_data *us, unsigned long fromaddress,
447 	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
448 	int bulklen = nr_of_pages << pageshift;
449 
450 	/* The last 8 bits of fromaddress are ignored. */
451 	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
452 			    buf, use_sg);
453 }
454 
455 /*
456  * Read Blockwise Control
457  *
458  * fromaddress gives the starting position (as in read data;
459  * the last 8 bits are ignored); increasing it by 32*256 shifts
460  * the output stream by 64 bytes.
461  *
462  * count counts control groups of size (1 << controlshift).
463  * For me, controlshift = 6. Is this constant?
464  *
465  * After getting one control group, jump to the next block
466  * (fromaddress += 8192).
467  */
468 static int
469 sddr09_read21(struct us_data *us, unsigned long fromaddress,
470 	      int count, int controlshift, unsigned char *buf, int use_sg) {
471 
472 	int bulklen = (count << controlshift);
473 	return sddr09_readX(us, 1, fromaddress, count, bulklen,
474 			    buf, use_sg);
475 }
476 
477 /*
478  * Read both Data and Control
479  *
480  * fromaddress counts data shorts, ignoring control:
481  * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
482  * the last 8 bits are ignored.
483  *
484  * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
485  */
486 static int
487 sddr09_read22(struct us_data *us, unsigned long fromaddress,
488 	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
489 
490 	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
491 	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
492 	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
493 			    buf, use_sg);
494 }
495 
496 #if 0
497 /*
498  * Read Pagewise Control
499  *
500  * fromaddress gives the starting position (as in read data;
501  * the last 8 bits are ignored); increasing it by 256 shifts
502  * the output stream by 64 bytes.
503  *
504  * count counts control groups of size (1 << controlshift).
505  * For me, controlshift = 6. Is this constant?
506  *
507  * After getting one control group, jump to the next page
508  * (fromaddress += 256).
509  */
510 static int
511 sddr09_read23(struct us_data *us, unsigned long fromaddress,
512 	      int count, int controlshift, unsigned char *buf, int use_sg) {
513 
514 	int bulklen = (count << controlshift);
515 	return sddr09_readX(us, 3, fromaddress, count, bulklen,
516 			    buf, use_sg);
517 }
518 #endif
519 
520 /*
521  * Erase Command: 12 bytes.
522  * byte 0: opcode: EA
523  * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
524  *
525  * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
526  * The byte address being erased is 2*Eaddress.
527  * The CIS cannot be erased.
528  */
529 static int
530 sddr09_erase(struct us_data *us, unsigned long Eaddress) {
531 	unsigned char *command = us->iobuf;
532 	int result;
533 
534 	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
535 
536 	memset(command, 0, 12);
537 	command[0] = 0xEA;
538 	command[1] = LUNBITS;
539 	command[6] = MSB_of(Eaddress>>16);
540 	command[7] = LSB_of(Eaddress>>16);
541 	command[8] = MSB_of(Eaddress & 0xFFFF);
542 	command[9] = LSB_of(Eaddress & 0xFFFF);
543 
544 	result = sddr09_send_scsi_command(us, command, 12);
545 
546 	if (result)
547 		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
548 			     result);
549 
550 	return result;
551 }
552 
553 /*
554  * Write CIS Command: 12 bytes.
555  * byte 0: opcode: EE
556  * bytes 2-5: write address in shorts
557  * bytes 10-11: sector count
558  *
559  * This writes at the indicated address. Don't know how it differs
560  * from E9. Maybe it does not erase? However, it will also write to
561  * the CIS.
562  *
563  * When two such commands on the same page follow each other directly,
564  * the second one is not done.
565  */
566 
567 /*
568  * Write Command: 12 bytes.
569  * byte 0: opcode: E9
570  * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
571  * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
572  * bytes 10-11: sector count (big-endian, in 512-byte sectors).
573  *
574  * If write address equals erase address, the erase is done first,
575  * otherwise the write is done first. When erase address equals zero
576  * no erase is done?
577  */
578 static int
579 sddr09_writeX(struct us_data *us,
580 	      unsigned long Waddress, unsigned long Eaddress,
581 	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
582 
583 	unsigned char *command = us->iobuf;
584 	int result;
585 
586 	command[0] = 0xE9;
587 	command[1] = LUNBITS;
588 
589 	command[2] = MSB_of(Waddress>>16);
590 	command[3] = LSB_of(Waddress>>16);
591 	command[4] = MSB_of(Waddress & 0xFFFF);
592 	command[5] = LSB_of(Waddress & 0xFFFF);
593 
594 	command[6] = MSB_of(Eaddress>>16);
595 	command[7] = LSB_of(Eaddress>>16);
596 	command[8] = MSB_of(Eaddress & 0xFFFF);
597 	command[9] = LSB_of(Eaddress & 0xFFFF);
598 
599 	command[10] = MSB_of(nr_of_pages);
600 	command[11] = LSB_of(nr_of_pages);
601 
602 	result = sddr09_send_scsi_command(us, command, 12);
603 
604 	if (result) {
605 		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
606 			     result);
607 		return result;
608 	}
609 
610 	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
611 				       buf, bulklen, use_sg, NULL);
612 
613 	if (result != USB_STOR_XFER_GOOD) {
614 		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
615 			     result);
616 		return -EIO;
617 	}
618 	return 0;
619 }
620 
621 /* erase address, write same address */
622 static int
623 sddr09_write_inplace(struct us_data *us, unsigned long address,
624 		     int nr_of_pages, int pageshift, unsigned char *buf,
625 		     int use_sg) {
626 	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
627 	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
628 			     buf, use_sg);
629 }
630 
631 #if 0
632 /*
633  * Read Scatter Gather Command: 3+4n bytes.
634  * byte 0: opcode E7
635  * byte 2: n
636  * bytes 4i-1,4i,4i+1: page address
637  * byte 4i+2: page count
638  * (i=1..n)
639  *
640  * This reads several pages from the card to a single memory buffer.
641  * The last two bits of byte 1 have the same meaning as for E8.
642  */
643 static int
644 sddr09_read_sg_test_only(struct us_data *us) {
645 	unsigned char *command = us->iobuf;
646 	int result, bulklen, nsg, ct;
647 	unsigned char *buf;
648 	unsigned long address;
649 
650 	nsg = bulklen = 0;
651 	command[0] = 0xE7;
652 	command[1] = LUNBITS;
653 	command[2] = 0;
654 	address = 040000; ct = 1;
655 	nsg++;
656 	bulklen += (ct << 9);
657 	command[4*nsg+2] = ct;
658 	command[4*nsg+1] = ((address >> 9) & 0xFF);
659 	command[4*nsg+0] = ((address >> 17) & 0xFF);
660 	command[4*nsg-1] = ((address >> 25) & 0xFF);
661 
662 	address = 0340000; ct = 1;
663 	nsg++;
664 	bulklen += (ct << 9);
665 	command[4*nsg+2] = ct;
666 	command[4*nsg+1] = ((address >> 9) & 0xFF);
667 	command[4*nsg+0] = ((address >> 17) & 0xFF);
668 	command[4*nsg-1] = ((address >> 25) & 0xFF);
669 
670 	address = 01000000; ct = 2;
671 	nsg++;
672 	bulklen += (ct << 9);
673 	command[4*nsg+2] = ct;
674 	command[4*nsg+1] = ((address >> 9) & 0xFF);
675 	command[4*nsg+0] = ((address >> 17) & 0xFF);
676 	command[4*nsg-1] = ((address >> 25) & 0xFF);
677 
678 	command[2] = nsg;
679 
680 	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
681 
682 	if (result) {
683 		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
684 			     result);
685 		return result;
686 	}
687 
688 	buf = kmalloc(bulklen, GFP_NOIO);
689 	if (!buf)
690 		return -ENOMEM;
691 
692 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
693 				       buf, bulklen, NULL);
694 	kfree(buf);
695 	if (result != USB_STOR_XFER_GOOD) {
696 		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
697 			     result);
698 		return -EIO;
699 	}
700 
701 	return 0;
702 }
703 #endif
704 
705 /*
706  * Read Status Command: 12 bytes.
707  * byte 0: opcode: EC
708  *
709  * Returns 64 bytes, all zero except for the first.
710  * bit 0: 1: Error
711  * bit 5: 1: Suspended
712  * bit 6: 1: Ready
713  * bit 7: 1: Not write-protected
714  */
715 
716 static int
717 sddr09_read_status(struct us_data *us, unsigned char *status) {
718 
719 	unsigned char *command = us->iobuf;
720 	unsigned char *data = us->iobuf;
721 	int result;
722 
723 	usb_stor_dbg(us, "Reading status...\n");
724 
725 	memset(command, 0, 12);
726 	command[0] = 0xEC;
727 	command[1] = LUNBITS;
728 
729 	result = sddr09_send_scsi_command(us, command, 12);
730 	if (result)
731 		return result;
732 
733 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
734 				       data, 64, NULL);
735 	*status = data[0];
736 	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
737 }
738 
739 static int
740 sddr09_read_data(struct us_data *us,
741 		 unsigned long address,
742 		 unsigned int sectors) {
743 
744 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
745 	unsigned char *buffer;
746 	unsigned int lba, maxlba, pba;
747 	unsigned int page, pages;
748 	unsigned int len, offset;
749 	struct scatterlist *sg;
750 	int result;
751 
752 	// Figure out the initial LBA and page
753 	lba = address >> info->blockshift;
754 	page = (address & info->blockmask);
755 	maxlba = info->capacity >> (info->pageshift + info->blockshift);
756 	if (lba >= maxlba)
757 		return -EIO;
758 
759 	// Since we only read in one block at a time, we have to create
760 	// a bounce buffer and move the data a piece at a time between the
761 	// bounce buffer and the actual transfer buffer.
762 
763 	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
764 	buffer = kmalloc(len, GFP_NOIO);
765 	if (buffer == NULL) {
766 		printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
767 		return -ENOMEM;
768 	}
769 
770 	// This could be made much more efficient by checking for
771 	// contiguous LBA's. Another exercise left to the student.
772 
773 	result = 0;
774 	offset = 0;
775 	sg = NULL;
776 
777 	while (sectors > 0) {
778 
779 		/* Find number of pages we can read in this block */
780 		pages = min(sectors, info->blocksize - page);
781 		len = pages << info->pageshift;
782 
783 		/* Not overflowing capacity? */
784 		if (lba >= maxlba) {
785 			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
786 				     lba, maxlba);
787 			result = -EIO;
788 			break;
789 		}
790 
791 		/* Find where this lba lives on disk */
792 		pba = info->lba_to_pba[lba];
793 
794 		if (pba == UNDEF) {	/* this lba was never written */
795 
796 			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
797 				     pages, lba, page);
798 
799 			/* This is not really an error. It just means
800 			   that the block has never been written.
801 			   Instead of returning an error
802 			   it is better to return all zero data. */
803 
804 			memset(buffer, 0, len);
805 
806 		} else {
807 			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
808 				     pages, pba, lba, page);
809 
810 			address = ((pba << info->blockshift) + page) <<
811 				info->pageshift;
812 
813 			result = sddr09_read20(us, address>>1,
814 					pages, info->pageshift, buffer, 0);
815 			if (result)
816 				break;
817 		}
818 
819 		// Store the data in the transfer buffer
820 		usb_stor_access_xfer_buf(buffer, len, us->srb,
821 				&sg, &offset, TO_XFER_BUF);
822 
823 		page = 0;
824 		lba++;
825 		sectors -= pages;
826 	}
827 
828 	kfree(buffer);
829 	return result;
830 }
831 
832 static unsigned int
833 sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
834 	static unsigned int lastpba = 1;
835 	int zonestart, end, i;
836 
837 	zonestart = (lba/1000) << 10;
838 	end = info->capacity >> (info->blockshift + info->pageshift);
839 	end -= zonestart;
840 	if (end > 1024)
841 		end = 1024;
842 
843 	for (i = lastpba+1; i < end; i++) {
844 		if (info->pba_to_lba[zonestart+i] == UNDEF) {
845 			lastpba = i;
846 			return zonestart+i;
847 		}
848 	}
849 	for (i = 0; i <= lastpba; i++) {
850 		if (info->pba_to_lba[zonestart+i] == UNDEF) {
851 			lastpba = i;
852 			return zonestart+i;
853 		}
854 	}
855 	return 0;
856 }
857 
858 static int
859 sddr09_write_lba(struct us_data *us, unsigned int lba,
860 		 unsigned int page, unsigned int pages,
861 		 unsigned char *ptr, unsigned char *blockbuffer) {
862 
863 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
864 	unsigned long address;
865 	unsigned int pba, lbap;
866 	unsigned int pagelen;
867 	unsigned char *bptr, *cptr, *xptr;
868 	unsigned char ecc[3];
869 	int i, result, isnew;
870 
871 	lbap = ((lba % 1000) << 1) | 0x1000;
872 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
873 		lbap ^= 1;
874 	pba = info->lba_to_pba[lba];
875 	isnew = 0;
876 
877 	if (pba == UNDEF) {
878 		pba = sddr09_find_unused_pba(info, lba);
879 		if (!pba) {
880 			printk(KERN_WARNING
881 			       "sddr09_write_lba: Out of unused blocks\n");
882 			return -ENOSPC;
883 		}
884 		info->pba_to_lba[pba] = lba;
885 		info->lba_to_pba[lba] = pba;
886 		isnew = 1;
887 	}
888 
889 	if (pba == 1) {
890 		/* Maybe it is impossible to write to PBA 1.
891 		   Fake success, but don't do anything. */
892 		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
893 		return 0;
894 	}
895 
896 	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
897 
898 	/* read old contents */
899 	address = (pba << (info->pageshift + info->blockshift));
900 	result = sddr09_read22(us, address>>1, info->blocksize,
901 			       info->pageshift, blockbuffer, 0);
902 	if (result)
903 		return result;
904 
905 	/* check old contents and fill lba */
906 	for (i = 0; i < info->blocksize; i++) {
907 		bptr = blockbuffer + i*pagelen;
908 		cptr = bptr + info->pagesize;
909 		nand_compute_ecc(bptr, ecc);
910 		if (!nand_compare_ecc(cptr+13, ecc)) {
911 			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
912 				     i, pba);
913 			nand_store_ecc(cptr+13, ecc);
914 		}
915 		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
916 		if (!nand_compare_ecc(cptr+8, ecc)) {
917 			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
918 				     i, pba);
919 			nand_store_ecc(cptr+8, ecc);
920 		}
921 		cptr[6] = cptr[11] = MSB_of(lbap);
922 		cptr[7] = cptr[12] = LSB_of(lbap);
923 	}
924 
925 	/* copy in new stuff and compute ECC */
926 	xptr = ptr;
927 	for (i = page; i < page+pages; i++) {
928 		bptr = blockbuffer + i*pagelen;
929 		cptr = bptr + info->pagesize;
930 		memcpy(bptr, xptr, info->pagesize);
931 		xptr += info->pagesize;
932 		nand_compute_ecc(bptr, ecc);
933 		nand_store_ecc(cptr+13, ecc);
934 		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
935 		nand_store_ecc(cptr+8, ecc);
936 	}
937 
938 	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
939 
940 	result = sddr09_write_inplace(us, address>>1, info->blocksize,
941 				      info->pageshift, blockbuffer, 0);
942 
943 	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
944 
945 #if 0
946 	{
947 		unsigned char status = 0;
948 		int result2 = sddr09_read_status(us, &status);
949 		if (result2)
950 			usb_stor_dbg(us, "cannot read status\n");
951 		else if (status != 0xc0)
952 			usb_stor_dbg(us, "status after write: 0x%x\n", status);
953 	}
954 #endif
955 
956 #if 0
957 	{
958 		int result2 = sddr09_test_unit_ready(us);
959 	}
960 #endif
961 
962 	return result;
963 }
964 
965 static int
966 sddr09_write_data(struct us_data *us,
967 		  unsigned long address,
968 		  unsigned int sectors) {
969 
970 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
971 	unsigned int lba, maxlba, page, pages;
972 	unsigned int pagelen, blocklen;
973 	unsigned char *blockbuffer;
974 	unsigned char *buffer;
975 	unsigned int len, offset;
976 	struct scatterlist *sg;
977 	int result;
978 
979 	// Figure out the initial LBA and page
980 	lba = address >> info->blockshift;
981 	page = (address & info->blockmask);
982 	maxlba = info->capacity >> (info->pageshift + info->blockshift);
983 	if (lba >= maxlba)
984 		return -EIO;
985 
986 	// blockbuffer is used for reading in the old data, overwriting
987 	// with the new data, and performing ECC calculations
988 
989 	/* TODO: instead of doing kmalloc/kfree for each write,
990 	   add a bufferpointer to the info structure */
991 
992 	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
993 	blocklen = (pagelen << info->blockshift);
994 	blockbuffer = kmalloc(blocklen, GFP_NOIO);
995 	if (!blockbuffer) {
996 		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
997 		return -ENOMEM;
998 	}
999 
1000 	// Since we don't write the user data directly to the device,
1001 	// we have to create a bounce buffer and move the data a piece
1002 	// at a time between the bounce buffer and the actual transfer buffer.
1003 
1004 	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1005 	buffer = kmalloc(len, GFP_NOIO);
1006 	if (buffer == NULL) {
1007 		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1008 		kfree(blockbuffer);
1009 		return -ENOMEM;
1010 	}
1011 
1012 	result = 0;
1013 	offset = 0;
1014 	sg = NULL;
1015 
1016 	while (sectors > 0) {
1017 
1018 		// Write as many sectors as possible in this block
1019 
1020 		pages = min(sectors, info->blocksize - page);
1021 		len = (pages << info->pageshift);
1022 
1023 		/* Not overflowing capacity? */
1024 		if (lba >= maxlba) {
1025 			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1026 				     lba, maxlba);
1027 			result = -EIO;
1028 			break;
1029 		}
1030 
1031 		// Get the data from the transfer buffer
1032 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1033 				&sg, &offset, FROM_XFER_BUF);
1034 
1035 		result = sddr09_write_lba(us, lba, page, pages,
1036 				buffer, blockbuffer);
1037 		if (result)
1038 			break;
1039 
1040 		page = 0;
1041 		lba++;
1042 		sectors -= pages;
1043 	}
1044 
1045 	kfree(buffer);
1046 	kfree(blockbuffer);
1047 
1048 	return result;
1049 }
1050 
1051 static int
1052 sddr09_read_control(struct us_data *us,
1053 		unsigned long address,
1054 		unsigned int blocks,
1055 		unsigned char *content,
1056 		int use_sg) {
1057 
1058 	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1059 		     address, blocks);
1060 
1061 	return sddr09_read21(us, address, blocks,
1062 			     CONTROL_SHIFT, content, use_sg);
1063 }
1064 
1065 /*
1066  * Read Device ID Command: 12 bytes.
1067  * byte 0: opcode: ED
1068  *
1069  * Returns 2 bytes: Manufacturer ID and Device ID.
1070  * On more recent cards 3 bytes: the third byte is an option code A5
1071  * signifying that the secret command to read an 128-bit ID is available.
1072  * On still more recent cards 4 bytes: the fourth byte C0 means that
1073  * a second read ID cmd is available.
1074  */
1075 static int
1076 sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1077 	unsigned char *command = us->iobuf;
1078 	unsigned char *content = us->iobuf;
1079 	int result, i;
1080 
1081 	memset(command, 0, 12);
1082 	command[0] = 0xED;
1083 	command[1] = LUNBITS;
1084 
1085 	result = sddr09_send_scsi_command(us, command, 12);
1086 	if (result)
1087 		return result;
1088 
1089 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1090 			content, 64, NULL);
1091 
1092 	for (i = 0; i < 4; i++)
1093 		deviceID[i] = content[i];
1094 
1095 	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1096 }
1097 
1098 static int
1099 sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1100 	int result;
1101 	unsigned char status;
1102 
1103 	result = sddr09_read_status(us, &status);
1104 	if (result) {
1105 		usb_stor_dbg(us, "read_status fails\n");
1106 		return result;
1107 	}
1108 	usb_stor_dbg(us, "status 0x%02X", status);
1109 	if ((status & 0x80) == 0) {
1110 		info->flags |= SDDR09_WP;	/* write protected */
1111 		US_DEBUGPX(" WP");
1112 	}
1113 	if (status & 0x40)
1114 		US_DEBUGPX(" Ready");
1115 	if (status & LUNBITS)
1116 		US_DEBUGPX(" Suspended");
1117 	if (status & 0x1)
1118 		US_DEBUGPX(" Error");
1119 	US_DEBUGPX("\n");
1120 	return 0;
1121 }
1122 
1123 #if 0
1124 /*
1125  * Reset Command: 12 bytes.
1126  * byte 0: opcode: EB
1127  */
1128 static int
1129 sddr09_reset(struct us_data *us) {
1130 
1131 	unsigned char *command = us->iobuf;
1132 
1133 	memset(command, 0, 12);
1134 	command[0] = 0xEB;
1135 	command[1] = LUNBITS;
1136 
1137 	return sddr09_send_scsi_command(us, command, 12);
1138 }
1139 #endif
1140 
1141 static struct nand_flash_dev *
1142 sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1143 	struct nand_flash_dev *cardinfo;
1144 	unsigned char deviceID[4];
1145 	char blurbtxt[256];
1146 	int result;
1147 
1148 	usb_stor_dbg(us, "Reading capacity...\n");
1149 
1150 	result = sddr09_read_deviceID(us, deviceID);
1151 
1152 	if (result) {
1153 		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1154 		printk(KERN_WARNING "sddr09: could not read card info\n");
1155 		return NULL;
1156 	}
1157 
1158 	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1159 
1160 	/* Byte 0 is the manufacturer */
1161 	sprintf(blurbtxt + strlen(blurbtxt),
1162 		": Manuf. %s",
1163 		nand_flash_manufacturer(deviceID[0]));
1164 
1165 	/* Byte 1 is the device type */
1166 	cardinfo = nand_find_id(deviceID[1]);
1167 	if (cardinfo) {
1168 		/* MB or MiB? It is neither. A 16 MB card has
1169 		   17301504 raw bytes, of which 16384000 are
1170 		   usable for user data. */
1171 		sprintf(blurbtxt + strlen(blurbtxt),
1172 			", %d MB", 1<<(cardinfo->chipshift - 20));
1173 	} else {
1174 		sprintf(blurbtxt + strlen(blurbtxt),
1175 			", type unrecognized");
1176 	}
1177 
1178 	/* Byte 2 is code to signal availability of 128-bit ID */
1179 	if (deviceID[2] == 0xa5) {
1180 		sprintf(blurbtxt + strlen(blurbtxt),
1181 			", 128-bit ID");
1182 	}
1183 
1184 	/* Byte 3 announces the availability of another read ID command */
1185 	if (deviceID[3] == 0xc0) {
1186 		sprintf(blurbtxt + strlen(blurbtxt),
1187 			", extra cmd");
1188 	}
1189 
1190 	if (flags & SDDR09_WP)
1191 		sprintf(blurbtxt + strlen(blurbtxt),
1192 			", WP");
1193 
1194 	printk(KERN_WARNING "%s\n", blurbtxt);
1195 
1196 	return cardinfo;
1197 }
1198 
1199 static int
1200 sddr09_read_map(struct us_data *us) {
1201 
1202 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1203 	int numblocks, alloc_len, alloc_blocks;
1204 	int i, j, result;
1205 	unsigned char *buffer, *buffer_end, *ptr;
1206 	unsigned int lba, lbact;
1207 
1208 	if (!info->capacity)
1209 		return -1;
1210 
1211 	// size of a block is 1 << (blockshift + pageshift) bytes
1212 	// divide into the total capacity to get the number of blocks
1213 
1214 	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1215 
1216 	// read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1217 	// but only use a 64 KB buffer
1218 	// buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1219 #define SDDR09_READ_MAP_BUFSZ 65536
1220 
1221 	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1222 	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1223 	buffer = kmalloc(alloc_len, GFP_NOIO);
1224 	if (buffer == NULL) {
1225 		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1226 		result = -1;
1227 		goto done;
1228 	}
1229 	buffer_end = buffer + alloc_len;
1230 
1231 #undef SDDR09_READ_MAP_BUFSZ
1232 
1233 	kfree(info->lba_to_pba);
1234 	kfree(info->pba_to_lba);
1235 	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1236 	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1237 
1238 	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1239 		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1240 		result = -1;
1241 		goto done;
1242 	}
1243 
1244 	for (i = 0; i < numblocks; i++)
1245 		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1246 
1247 	/*
1248 	 * Define lba-pba translation table
1249 	 */
1250 
1251 	ptr = buffer_end;
1252 	for (i = 0; i < numblocks; i++) {
1253 		ptr += (1 << CONTROL_SHIFT);
1254 		if (ptr >= buffer_end) {
1255 			unsigned long address;
1256 
1257 			address = i << (info->pageshift + info->blockshift);
1258 			result = sddr09_read_control(
1259 				us, address>>1,
1260 				min(alloc_blocks, numblocks - i),
1261 				buffer, 0);
1262 			if (result) {
1263 				result = -1;
1264 				goto done;
1265 			}
1266 			ptr = buffer;
1267 		}
1268 
1269 		if (i == 0 || i == 1) {
1270 			info->pba_to_lba[i] = UNUSABLE;
1271 			continue;
1272 		}
1273 
1274 		/* special PBAs have control field 0^16 */
1275 		for (j = 0; j < 16; j++)
1276 			if (ptr[j] != 0)
1277 				goto nonz;
1278 		info->pba_to_lba[i] = UNUSABLE;
1279 		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1280 		       i);
1281 		continue;
1282 
1283 	nonz:
1284 		/* unwritten PBAs have control field FF^16 */
1285 		for (j = 0; j < 16; j++)
1286 			if (ptr[j] != 0xff)
1287 				goto nonff;
1288 		continue;
1289 
1290 	nonff:
1291 		/* normal PBAs start with six FFs */
1292 		if (j < 6) {
1293 			printk(KERN_WARNING
1294 			       "sddr09: PBA %d has no logical mapping: "
1295 			       "reserved area = %02X%02X%02X%02X "
1296 			       "data status %02X block status %02X\n",
1297 			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1298 			       ptr[4], ptr[5]);
1299 			info->pba_to_lba[i] = UNUSABLE;
1300 			continue;
1301 		}
1302 
1303 		if ((ptr[6] >> 4) != 0x01) {
1304 			printk(KERN_WARNING
1305 			       "sddr09: PBA %d has invalid address field "
1306 			       "%02X%02X/%02X%02X\n",
1307 			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1308 			info->pba_to_lba[i] = UNUSABLE;
1309 			continue;
1310 		}
1311 
1312 		/* check even parity */
1313 		if (parity[ptr[6] ^ ptr[7]]) {
1314 			printk(KERN_WARNING
1315 			       "sddr09: Bad parity in LBA for block %d"
1316 			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1317 			info->pba_to_lba[i] = UNUSABLE;
1318 			continue;
1319 		}
1320 
1321 		lba = short_pack(ptr[7], ptr[6]);
1322 		lba = (lba & 0x07FF) >> 1;
1323 
1324 		/*
1325 		 * Every 1024 physical blocks ("zone"), the LBA numbers
1326 		 * go back to zero, but are within a higher block of LBA's.
1327 		 * Also, there is a maximum of 1000 LBA's per zone.
1328 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1329 		 * which are really LBA 1000-1999. This allows for 24 bad
1330 		 * or special physical blocks per zone.
1331 		 */
1332 
1333 		if (lba >= 1000) {
1334 			printk(KERN_WARNING
1335 			       "sddr09: Bad low LBA %d for block %d\n",
1336 			       lba, i);
1337 			goto possibly_erase;
1338 		}
1339 
1340 		lba += 1000*(i/0x400);
1341 
1342 		if (info->lba_to_pba[lba] != UNDEF) {
1343 			printk(KERN_WARNING
1344 			       "sddr09: LBA %d seen for PBA %d and %d\n",
1345 			       lba, info->lba_to_pba[lba], i);
1346 			goto possibly_erase;
1347 		}
1348 
1349 		info->pba_to_lba[i] = lba;
1350 		info->lba_to_pba[lba] = i;
1351 		continue;
1352 
1353 	possibly_erase:
1354 		if (erase_bad_lba_entries) {
1355 			unsigned long address;
1356 
1357 			address = (i << (info->pageshift + info->blockshift));
1358 			sddr09_erase(us, address>>1);
1359 			info->pba_to_lba[i] = UNDEF;
1360 		} else
1361 			info->pba_to_lba[i] = UNUSABLE;
1362 	}
1363 
1364 	/*
1365 	 * Approximate capacity. This is not entirely correct yet,
1366 	 * since a zone with less than 1000 usable pages leads to
1367 	 * missing LBAs. Especially if it is the last zone, some
1368 	 * LBAs can be past capacity.
1369 	 */
1370 	lbact = 0;
1371 	for (i = 0; i < numblocks; i += 1024) {
1372 		int ct = 0;
1373 
1374 		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1375 			if (info->pba_to_lba[i+j] != UNUSABLE) {
1376 				if (ct >= 1000)
1377 					info->pba_to_lba[i+j] = SPARE;
1378 				else
1379 					ct++;
1380 			}
1381 		}
1382 		lbact += ct;
1383 	}
1384 	info->lbact = lbact;
1385 	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1386 	result = 0;
1387 
1388  done:
1389 	if (result != 0) {
1390 		kfree(info->lba_to_pba);
1391 		kfree(info->pba_to_lba);
1392 		info->lba_to_pba = NULL;
1393 		info->pba_to_lba = NULL;
1394 	}
1395 	kfree(buffer);
1396 	return result;
1397 }
1398 
1399 static void
1400 sddr09_card_info_destructor(void *extra) {
1401 	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1402 
1403 	if (!info)
1404 		return;
1405 
1406 	kfree(info->lba_to_pba);
1407 	kfree(info->pba_to_lba);
1408 }
1409 
1410 static int
1411 sddr09_common_init(struct us_data *us) {
1412 	int result;
1413 
1414 	/* set the configuration -- STALL is an acceptable response here */
1415 	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1416 		usb_stor_dbg(us, "active config #%d != 1 ??\n",
1417 			     us->pusb_dev->actconfig->desc.bConfigurationValue);
1418 		return -EINVAL;
1419 	}
1420 
1421 	result = usb_reset_configuration(us->pusb_dev);
1422 	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1423 	if (result == -EPIPE) {
1424 		usb_stor_dbg(us, "-- stall on control interface\n");
1425 	} else if (result != 0) {
1426 		/* it's not a stall, but another error -- time to bail */
1427 		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1428 		return -EINVAL;
1429 	}
1430 
1431 	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1432 	if (!us->extra)
1433 		return -ENOMEM;
1434 	us->extra_destructor = sddr09_card_info_destructor;
1435 
1436 	nand_init_ecc();
1437 	return 0;
1438 }
1439 
1440 
1441 /*
1442  * This is needed at a very early stage. If this is not listed in the
1443  * unusual devices list but called from here then LUN 0 of the combo reader
1444  * is not recognized. But I do not know what precisely these calls do.
1445  */
1446 static int
1447 usb_stor_sddr09_dpcm_init(struct us_data *us) {
1448 	int result;
1449 	unsigned char *data = us->iobuf;
1450 
1451 	result = sddr09_common_init(us);
1452 	if (result)
1453 		return result;
1454 
1455 	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1456 	if (result) {
1457 		usb_stor_dbg(us, "send_command fails\n");
1458 		return result;
1459 	}
1460 
1461 	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1462 	// get 07 02
1463 
1464 	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1465 	if (result) {
1466 		usb_stor_dbg(us, "2nd send_command fails\n");
1467 		return result;
1468 	}
1469 
1470 	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1471 	// get 07 00
1472 
1473 	result = sddr09_request_sense(us, data, 18);
1474 	if (result == 0 && data[2] != 0) {
1475 		int j;
1476 		for (j=0; j<18; j++)
1477 			printk(" %02X", data[j]);
1478 		printk("\n");
1479 		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1480 		// 70: current command
1481 		// sense key 0, sense code 0, extd sense code 0
1482 		// additional transfer length * = sizeof(data) - 7
1483 		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1484 		// sense key 06, sense code 28: unit attention,
1485 		// not ready to ready transition
1486 	}
1487 
1488 	// test unit ready
1489 
1490 	return 0;		/* not result */
1491 }
1492 
1493 /*
1494  * Transport for the Microtech DPCM-USB
1495  */
1496 static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1497 {
1498 	int ret;
1499 
1500 	usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1501 
1502 	switch (srb->device->lun) {
1503 	case 0:
1504 
1505 		/*
1506 		 * LUN 0 corresponds to the CompactFlash card reader.
1507 		 */
1508 		ret = usb_stor_CB_transport(srb, us);
1509 		break;
1510 
1511 	case 1:
1512 
1513 		/*
1514 		 * LUN 1 corresponds to the SmartMedia card reader.
1515 		 */
1516 
1517 		/*
1518 		 * Set the LUN to 0 (just in case).
1519 		 */
1520 		srb->device->lun = 0;
1521 		ret = sddr09_transport(srb, us);
1522 		srb->device->lun = 1;
1523 		break;
1524 
1525 	default:
1526 	    usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1527 		ret = USB_STOR_TRANSPORT_ERROR;
1528 		break;
1529 	}
1530 	return ret;
1531 }
1532 
1533 
1534 /*
1535  * Transport for the Sandisk SDDR-09
1536  */
1537 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1538 {
1539 	static unsigned char sensekey = 0, sensecode = 0;
1540 	static unsigned char havefakesense = 0;
1541 	int result, i;
1542 	unsigned char *ptr = us->iobuf;
1543 	unsigned long capacity;
1544 	unsigned int page, pages;
1545 
1546 	struct sddr09_card_info *info;
1547 
1548 	static unsigned char inquiry_response[8] = {
1549 		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1550 	};
1551 
1552 	/* note: no block descriptor support */
1553 	static unsigned char mode_page_01[19] = {
1554 		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1555 		0x01, 0x0A,
1556 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1557 	};
1558 
1559 	info = (struct sddr09_card_info *)us->extra;
1560 
1561 	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1562 		/* for a faked command, we have to follow with a faked sense */
1563 		memset(ptr, 0, 18);
1564 		ptr[0] = 0x70;
1565 		ptr[2] = sensekey;
1566 		ptr[7] = 11;
1567 		ptr[12] = sensecode;
1568 		usb_stor_set_xfer_buf(ptr, 18, srb);
1569 		sensekey = sensecode = havefakesense = 0;
1570 		return USB_STOR_TRANSPORT_GOOD;
1571 	}
1572 
1573 	havefakesense = 1;
1574 
1575 	/* Dummy up a response for INQUIRY since SDDR09 doesn't
1576 	   respond to INQUIRY commands */
1577 
1578 	if (srb->cmnd[0] == INQUIRY) {
1579 		memcpy(ptr, inquiry_response, 8);
1580 		fill_inquiry_response(us, ptr, 36);
1581 		return USB_STOR_TRANSPORT_GOOD;
1582 	}
1583 
1584 	if (srb->cmnd[0] == READ_CAPACITY) {
1585 		struct nand_flash_dev *cardinfo;
1586 
1587 		sddr09_get_wp(us, info);	/* read WP bit */
1588 
1589 		cardinfo = sddr09_get_cardinfo(us, info->flags);
1590 		if (!cardinfo) {
1591 			/* probably no media */
1592 		init_error:
1593 			sensekey = 0x02;	/* not ready */
1594 			sensecode = 0x3a;	/* medium not present */
1595 			return USB_STOR_TRANSPORT_FAILED;
1596 		}
1597 
1598 		info->capacity = (1 << cardinfo->chipshift);
1599 		info->pageshift = cardinfo->pageshift;
1600 		info->pagesize = (1 << info->pageshift);
1601 		info->blockshift = cardinfo->blockshift;
1602 		info->blocksize = (1 << info->blockshift);
1603 		info->blockmask = info->blocksize - 1;
1604 
1605 		// map initialization, must follow get_cardinfo()
1606 		if (sddr09_read_map(us)) {
1607 			/* probably out of memory */
1608 			goto init_error;
1609 		}
1610 
1611 		// Report capacity
1612 
1613 		capacity = (info->lbact << info->blockshift) - 1;
1614 
1615 		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1616 
1617 		// Report page size
1618 
1619 		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1620 		usb_stor_set_xfer_buf(ptr, 8, srb);
1621 
1622 		return USB_STOR_TRANSPORT_GOOD;
1623 	}
1624 
1625 	if (srb->cmnd[0] == MODE_SENSE_10) {
1626 		int modepage = (srb->cmnd[2] & 0x3F);
1627 
1628 		/* They ask for the Read/Write error recovery page,
1629 		   or for all pages. */
1630 		/* %% We should check DBD %% */
1631 		if (modepage == 0x01 || modepage == 0x3F) {
1632 			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1633 				     modepage);
1634 
1635 			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1636 			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1637 			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1638 			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1639 			return USB_STOR_TRANSPORT_GOOD;
1640 		}
1641 
1642 		sensekey = 0x05;	/* illegal request */
1643 		sensecode = 0x24;	/* invalid field in CDB */
1644 		return USB_STOR_TRANSPORT_FAILED;
1645 	}
1646 
1647 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1648 		return USB_STOR_TRANSPORT_GOOD;
1649 
1650 	havefakesense = 0;
1651 
1652 	if (srb->cmnd[0] == READ_10) {
1653 
1654 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1655 		page <<= 16;
1656 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1657 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1658 
1659 		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1660 			     page, pages);
1661 
1662 		result = sddr09_read_data(us, page, pages);
1663 		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1664 				USB_STOR_TRANSPORT_ERROR);
1665 	}
1666 
1667 	if (srb->cmnd[0] == WRITE_10) {
1668 
1669 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1670 		page <<= 16;
1671 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1672 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1673 
1674 		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1675 			     page, pages);
1676 
1677 		result = sddr09_write_data(us, page, pages);
1678 		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1679 				USB_STOR_TRANSPORT_ERROR);
1680 	}
1681 
1682 	/* catch-all for all other commands, except
1683 	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1684 	 */
1685 	if (srb->cmnd[0] != TEST_UNIT_READY &&
1686 	    srb->cmnd[0] != REQUEST_SENSE) {
1687 		sensekey = 0x05;	/* illegal request */
1688 		sensecode = 0x20;	/* invalid command */
1689 		havefakesense = 1;
1690 		return USB_STOR_TRANSPORT_FAILED;
1691 	}
1692 
1693 	for (; srb->cmd_len<12; srb->cmd_len++)
1694 		srb->cmnd[srb->cmd_len] = 0;
1695 
1696 	srb->cmnd[1] = LUNBITS;
1697 
1698 	ptr[0] = 0;
1699 	for (i=0; i<12; i++)
1700 		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1701 
1702 	usb_stor_dbg(us, "Send control for command %s\n", ptr);
1703 
1704 	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1705 	if (result) {
1706 		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1707 			     result);
1708 		return USB_STOR_TRANSPORT_ERROR;
1709 	}
1710 
1711 	if (scsi_bufflen(srb) == 0)
1712 		return USB_STOR_TRANSPORT_GOOD;
1713 
1714 	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1715 	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1716 		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1717 				? us->send_bulk_pipe : us->recv_bulk_pipe;
1718 
1719 		usb_stor_dbg(us, "%s %d bytes\n",
1720 			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
1721 			     "sending" : "receiving",
1722 			     scsi_bufflen(srb));
1723 
1724 		result = usb_stor_bulk_srb(us, pipe, srb);
1725 
1726 		return (result == USB_STOR_XFER_GOOD ?
1727 			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1728 	}
1729 
1730 	return USB_STOR_TRANSPORT_GOOD;
1731 }
1732 
1733 /*
1734  * Initialization routine for the sddr09 subdriver
1735  */
1736 static int
1737 usb_stor_sddr09_init(struct us_data *us) {
1738 	return sddr09_common_init(us);
1739 }
1740 
1741 static int sddr09_probe(struct usb_interface *intf,
1742 			 const struct usb_device_id *id)
1743 {
1744 	struct us_data *us;
1745 	int result;
1746 
1747 	result = usb_stor_probe1(&us, intf, id,
1748 			(id - sddr09_usb_ids) + sddr09_unusual_dev_list);
1749 	if (result)
1750 		return result;
1751 
1752 	if (us->protocol == USB_PR_DPCM_USB) {
1753 		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1754 		us->transport = dpcm_transport;
1755 		us->transport_reset = usb_stor_CB_reset;
1756 		us->max_lun = 1;
1757 	} else {
1758 		us->transport_name = "EUSB/SDDR09";
1759 		us->transport = sddr09_transport;
1760 		us->transport_reset = usb_stor_CB_reset;
1761 		us->max_lun = 0;
1762 	}
1763 
1764 	result = usb_stor_probe2(us);
1765 	return result;
1766 }
1767 
1768 static struct usb_driver sddr09_driver = {
1769 	.name =		"ums-sddr09",
1770 	.probe =	sddr09_probe,
1771 	.disconnect =	usb_stor_disconnect,
1772 	.suspend =	usb_stor_suspend,
1773 	.resume =	usb_stor_resume,
1774 	.reset_resume =	usb_stor_reset_resume,
1775 	.pre_reset =	usb_stor_pre_reset,
1776 	.post_reset =	usb_stor_post_reset,
1777 	.id_table =	sddr09_usb_ids,
1778 	.soft_unbind =	1,
1779 	.no_dynamic_id = 1,
1780 };
1781 
1782 module_usb_driver(sddr09_driver);
1783