xref: /openbmc/linux/drivers/usb/storage/sddr09.c (revision 8ac727c1)
1 /* Driver for SanDisk SDDR-09 SmartMedia reader
2  *
3  *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
4  *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
5  * Developed with the assistance of:
6  *   (c) 2002 Alan Stern <stern@rowland.org>
7  *
8  * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
9  * This chip is a programmable USB controller. In the SDDR-09, it has
10  * been programmed to obey a certain limited set of SCSI commands.
11  * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
12  * commands.
13  *
14  * This program is free software; you can redistribute it and/or modify it
15  * under the terms of the GNU General Public License as published by the
16  * Free Software Foundation; either version 2, or (at your option) any
17  * later version.
18  *
19  * This program is distributed in the hope that it will be useful, but
20  * WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  * General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License along
25  * with this program; if not, write to the Free Software Foundation, Inc.,
26  * 675 Mass Ave, Cambridge, MA 02139, USA.
27  */
28 
29 /*
30  * Known vendor commands: 12 bytes, first byte is opcode
31  *
32  * E7: read scatter gather
33  * E8: read
34  * E9: write
35  * EA: erase
36  * EB: reset
37  * EC: read status
38  * ED: read ID
39  * EE: write CIS (?)
40  * EF: compute checksum (?)
41  */
42 
43 #include <linux/errno.h>
44 #include <linux/module.h>
45 #include <linux/slab.h>
46 
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 
51 #include "usb.h"
52 #include "transport.h"
53 #include "protocol.h"
54 #include "debug.h"
55 
56 MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
57 MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
58 MODULE_LICENSE("GPL");
59 
60 static int usb_stor_sddr09_dpcm_init(struct us_data *us);
61 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
62 static int usb_stor_sddr09_init(struct us_data *us);
63 
64 
65 /*
66  * The table of devices
67  */
68 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
69 		    vendorName, productName, useProtocol, useTransport, \
70 		    initFunction, flags) \
71 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
72   .driver_info = (flags)|(USB_US_TYPE_STOR<<24) }
73 
74 struct usb_device_id sddr09_usb_ids[] = {
75 #	include "unusual_sddr09.h"
76 	{ }		/* Terminating entry */
77 };
78 MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
79 
80 #undef UNUSUAL_DEV
81 
82 /*
83  * The flags table
84  */
85 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
86 		    vendor_name, product_name, use_protocol, use_transport, \
87 		    init_function, Flags) \
88 { \
89 	.vendorName = vendor_name,	\
90 	.productName = product_name,	\
91 	.useProtocol = use_protocol,	\
92 	.useTransport = use_transport,	\
93 	.initFunction = init_function,	\
94 }
95 
96 static struct us_unusual_dev sddr09_unusual_dev_list[] = {
97 #	include "unusual_sddr09.h"
98 	{ }		/* Terminating entry */
99 };
100 
101 #undef UNUSUAL_DEV
102 
103 
104 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
105 #define LSB_of(s) ((s)&0xFF)
106 #define MSB_of(s) ((s)>>8)
107 
108 /* #define US_DEBUGP printk */
109 
110 /*
111  * First some stuff that does not belong here:
112  * data on SmartMedia and other cards, completely
113  * unrelated to this driver.
114  * Similar stuff occurs in <linux/mtd/nand_ids.h>.
115  */
116 
117 struct nand_flash_dev {
118 	int model_id;
119 	int chipshift;		/* 1<<cs bytes total capacity */
120 	char pageshift;		/* 1<<ps bytes in a page */
121 	char blockshift;	/* 1<<bs pages in an erase block */
122 	char zoneshift;		/* 1<<zs blocks in a zone */
123 				/* # of logical blocks is 125/128 of this */
124 	char pageadrlen;	/* length of an address in bytes - 1 */
125 };
126 
127 /*
128  * NAND Flash Manufacturer ID Codes
129  */
130 #define NAND_MFR_AMD		0x01
131 #define NAND_MFR_NATSEMI	0x8f
132 #define NAND_MFR_TOSHIBA	0x98
133 #define NAND_MFR_SAMSUNG	0xec
134 
135 static inline char *nand_flash_manufacturer(int manuf_id) {
136 	switch(manuf_id) {
137 	case NAND_MFR_AMD:
138 		return "AMD";
139 	case NAND_MFR_NATSEMI:
140 		return "NATSEMI";
141 	case NAND_MFR_TOSHIBA:
142 		return "Toshiba";
143 	case NAND_MFR_SAMSUNG:
144 		return "Samsung";
145 	default:
146 		return "unknown";
147 	}
148 }
149 
150 /*
151  * It looks like it is unnecessary to attach manufacturer to the
152  * remaining data: SSFDC prescribes manufacturer-independent id codes.
153  *
154  * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
155  */
156 
157 static struct nand_flash_dev nand_flash_ids[] = {
158 	/* NAND flash */
159 	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
160 	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
161 	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
162 	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
163 	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
164 	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
165 	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
166 	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
167 	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
168 	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
169 	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
170 	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
171 	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
172 
173 	/* MASK ROM */
174 	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
175 	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
176 	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
177 	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
178 	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
179 	{ 0,}
180 };
181 
182 static struct nand_flash_dev *
183 nand_find_id(unsigned char id) {
184 	int i;
185 
186 	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
187 		if (nand_flash_ids[i].model_id == id)
188 			return &(nand_flash_ids[i]);
189 	return NULL;
190 }
191 
192 /*
193  * ECC computation.
194  */
195 static unsigned char parity[256];
196 static unsigned char ecc2[256];
197 
198 static void nand_init_ecc(void) {
199 	int i, j, a;
200 
201 	parity[0] = 0;
202 	for (i = 1; i < 256; i++)
203 		parity[i] = (parity[i&(i-1)] ^ 1);
204 
205 	for (i = 0; i < 256; i++) {
206 		a = 0;
207 		for (j = 0; j < 8; j++) {
208 			if (i & (1<<j)) {
209 				if ((j & 1) == 0)
210 					a ^= 0x04;
211 				if ((j & 2) == 0)
212 					a ^= 0x10;
213 				if ((j & 4) == 0)
214 					a ^= 0x40;
215 			}
216 		}
217 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
218 	}
219 }
220 
221 /* compute 3-byte ecc on 256 bytes */
222 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
223 	int i, j, a;
224 	unsigned char par, bit, bits[8];
225 
226 	par = 0;
227 	for (j = 0; j < 8; j++)
228 		bits[j] = 0;
229 
230 	/* collect 16 checksum bits */
231 	for (i = 0; i < 256; i++) {
232 		par ^= data[i];
233 		bit = parity[data[i]];
234 		for (j = 0; j < 8; j++)
235 			if ((i & (1<<j)) == 0)
236 				bits[j] ^= bit;
237 	}
238 
239 	/* put 4+4+4 = 12 bits in the ecc */
240 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
241 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
242 
243 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
244 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
245 
246 	ecc[2] = ecc2[par];
247 }
248 
249 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
250 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
251 }
252 
253 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
254 	memcpy(data, ecc, 3);
255 }
256 
257 /*
258  * The actual driver starts here.
259  */
260 
261 struct sddr09_card_info {
262 	unsigned long	capacity;	/* Size of card in bytes */
263 	int		pagesize;	/* Size of page in bytes */
264 	int		pageshift;	/* log2 of pagesize */
265 	int		blocksize;	/* Size of block in pages */
266 	int		blockshift;	/* log2 of blocksize */
267 	int		blockmask;	/* 2^blockshift - 1 */
268 	int		*lba_to_pba;	/* logical to physical map */
269 	int		*pba_to_lba;	/* physical to logical map */
270 	int		lbact;		/* number of available pages */
271 	int		flags;
272 #define	SDDR09_WP	1		/* write protected */
273 };
274 
275 /*
276  * On my 16MB card, control blocks have size 64 (16 real control bytes,
277  * and 48 junk bytes). In reality of course the card uses 16 control bytes,
278  * so the reader makes up the remaining 48. Don't know whether these numbers
279  * depend on the card. For now a constant.
280  */
281 #define CONTROL_SHIFT 6
282 
283 /*
284  * On my Combo CF/SM reader, the SM reader has LUN 1.
285  * (and things fail with LUN 0).
286  * It seems LUN is irrelevant for others.
287  */
288 #define LUN	1
289 #define	LUNBITS	(LUN << 5)
290 
291 /*
292  * LBA and PBA are unsigned ints. Special values.
293  */
294 #define UNDEF    0xffffffff
295 #define SPARE    0xfffffffe
296 #define UNUSABLE 0xfffffffd
297 
298 static const int erase_bad_lba_entries = 0;
299 
300 /* send vendor interface command (0x41) */
301 /* called for requests 0, 1, 8 */
302 static int
303 sddr09_send_command(struct us_data *us,
304 		    unsigned char request,
305 		    unsigned char direction,
306 		    unsigned char *xfer_data,
307 		    unsigned int xfer_len) {
308 	unsigned int pipe;
309 	unsigned char requesttype = (0x41 | direction);
310 	int rc;
311 
312 	// Get the receive or send control pipe number
313 
314 	if (direction == USB_DIR_IN)
315 		pipe = us->recv_ctrl_pipe;
316 	else
317 		pipe = us->send_ctrl_pipe;
318 
319 	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
320 				   0, 0, xfer_data, xfer_len);
321 	switch (rc) {
322 		case USB_STOR_XFER_GOOD:	return 0;
323 		case USB_STOR_XFER_STALLED:	return -EPIPE;
324 		default:			return -EIO;
325 	}
326 }
327 
328 static int
329 sddr09_send_scsi_command(struct us_data *us,
330 			 unsigned char *command,
331 			 unsigned int command_len) {
332 	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
333 }
334 
335 #if 0
336 /*
337  * Test Unit Ready Command: 12 bytes.
338  * byte 0: opcode: 00
339  */
340 static int
341 sddr09_test_unit_ready(struct us_data *us) {
342 	unsigned char *command = us->iobuf;
343 	int result;
344 
345 	memset(command, 0, 6);
346 	command[1] = LUNBITS;
347 
348 	result = sddr09_send_scsi_command(us, command, 6);
349 
350 	US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);
351 
352 	return result;
353 }
354 #endif
355 
356 /*
357  * Request Sense Command: 12 bytes.
358  * byte 0: opcode: 03
359  * byte 4: data length
360  */
361 static int
362 sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
363 	unsigned char *command = us->iobuf;
364 	int result;
365 
366 	memset(command, 0, 12);
367 	command[0] = 0x03;
368 	command[1] = LUNBITS;
369 	command[4] = buflen;
370 
371 	result = sddr09_send_scsi_command(us, command, 12);
372 	if (result)
373 		return result;
374 
375 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
376 			sensebuf, buflen, NULL);
377 	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
378 }
379 
380 /*
381  * Read Command: 12 bytes.
382  * byte 0: opcode: E8
383  * byte 1: last two bits: 00: read data, 01: read blockwise control,
384  *			10: read both, 11: read pagewise control.
385  *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
386  * bytes 2-5: address (interpretation depends on byte 1, see below)
387  * bytes 10-11: count (idem)
388  *
389  * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
390  * A read data command gets data in 512-byte pages.
391  * A read control command gets control in 64-byte chunks.
392  * A read both command gets data+control in 576-byte chunks.
393  *
394  * Blocks are groups of 32 pages, and read blockwise control jumps to the
395  * next block, while read pagewise control jumps to the next page after
396  * reading a group of 64 control bytes.
397  * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
398  *
399  * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
400  */
401 
402 static int
403 sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
404 	     int nr_of_pages, int bulklen, unsigned char *buf,
405 	     int use_sg) {
406 
407 	unsigned char *command = us->iobuf;
408 	int result;
409 
410 	command[0] = 0xE8;
411 	command[1] = LUNBITS | x;
412 	command[2] = MSB_of(fromaddress>>16);
413 	command[3] = LSB_of(fromaddress>>16);
414 	command[4] = MSB_of(fromaddress & 0xFFFF);
415 	command[5] = LSB_of(fromaddress & 0xFFFF);
416 	command[6] = 0;
417 	command[7] = 0;
418 	command[8] = 0;
419 	command[9] = 0;
420 	command[10] = MSB_of(nr_of_pages);
421 	command[11] = LSB_of(nr_of_pages);
422 
423 	result = sddr09_send_scsi_command(us, command, 12);
424 
425 	if (result) {
426 		US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
427 			  x, result);
428 		return result;
429 	}
430 
431 	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
432 				       buf, bulklen, use_sg, NULL);
433 
434 	if (result != USB_STOR_XFER_GOOD) {
435 		US_DEBUGP("Result for bulk_transfer in sddr09_read2%d %d\n",
436 			  x, result);
437 		return -EIO;
438 	}
439 	return 0;
440 }
441 
442 /*
443  * Read Data
444  *
445  * fromaddress counts data shorts:
446  * increasing it by 256 shifts the bytestream by 512 bytes;
447  * the last 8 bits are ignored.
448  *
449  * nr_of_pages counts pages of size (1 << pageshift).
450  */
451 static int
452 sddr09_read20(struct us_data *us, unsigned long fromaddress,
453 	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
454 	int bulklen = nr_of_pages << pageshift;
455 
456 	/* The last 8 bits of fromaddress are ignored. */
457 	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
458 			    buf, use_sg);
459 }
460 
461 /*
462  * Read Blockwise Control
463  *
464  * fromaddress gives the starting position (as in read data;
465  * the last 8 bits are ignored); increasing it by 32*256 shifts
466  * the output stream by 64 bytes.
467  *
468  * count counts control groups of size (1 << controlshift).
469  * For me, controlshift = 6. Is this constant?
470  *
471  * After getting one control group, jump to the next block
472  * (fromaddress += 8192).
473  */
474 static int
475 sddr09_read21(struct us_data *us, unsigned long fromaddress,
476 	      int count, int controlshift, unsigned char *buf, int use_sg) {
477 
478 	int bulklen = (count << controlshift);
479 	return sddr09_readX(us, 1, fromaddress, count, bulklen,
480 			    buf, use_sg);
481 }
482 
483 /*
484  * Read both Data and Control
485  *
486  * fromaddress counts data shorts, ignoring control:
487  * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
488  * the last 8 bits are ignored.
489  *
490  * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
491  */
492 static int
493 sddr09_read22(struct us_data *us, unsigned long fromaddress,
494 	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
495 
496 	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
497 	US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
498 		  nr_of_pages, bulklen);
499 	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
500 			    buf, use_sg);
501 }
502 
503 #if 0
504 /*
505  * Read Pagewise Control
506  *
507  * fromaddress gives the starting position (as in read data;
508  * the last 8 bits are ignored); increasing it by 256 shifts
509  * the output stream by 64 bytes.
510  *
511  * count counts control groups of size (1 << controlshift).
512  * For me, controlshift = 6. Is this constant?
513  *
514  * After getting one control group, jump to the next page
515  * (fromaddress += 256).
516  */
517 static int
518 sddr09_read23(struct us_data *us, unsigned long fromaddress,
519 	      int count, int controlshift, unsigned char *buf, int use_sg) {
520 
521 	int bulklen = (count << controlshift);
522 	return sddr09_readX(us, 3, fromaddress, count, bulklen,
523 			    buf, use_sg);
524 }
525 #endif
526 
527 /*
528  * Erase Command: 12 bytes.
529  * byte 0: opcode: EA
530  * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
531  *
532  * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
533  * The byte address being erased is 2*Eaddress.
534  * The CIS cannot be erased.
535  */
536 static int
537 sddr09_erase(struct us_data *us, unsigned long Eaddress) {
538 	unsigned char *command = us->iobuf;
539 	int result;
540 
541 	US_DEBUGP("sddr09_erase: erase address %lu\n", Eaddress);
542 
543 	memset(command, 0, 12);
544 	command[0] = 0xEA;
545 	command[1] = LUNBITS;
546 	command[6] = MSB_of(Eaddress>>16);
547 	command[7] = LSB_of(Eaddress>>16);
548 	command[8] = MSB_of(Eaddress & 0xFFFF);
549 	command[9] = LSB_of(Eaddress & 0xFFFF);
550 
551 	result = sddr09_send_scsi_command(us, command, 12);
552 
553 	if (result)
554 		US_DEBUGP("Result for send_control in sddr09_erase %d\n",
555 			  result);
556 
557 	return result;
558 }
559 
560 /*
561  * Write CIS Command: 12 bytes.
562  * byte 0: opcode: EE
563  * bytes 2-5: write address in shorts
564  * bytes 10-11: sector count
565  *
566  * This writes at the indicated address. Don't know how it differs
567  * from E9. Maybe it does not erase? However, it will also write to
568  * the CIS.
569  *
570  * When two such commands on the same page follow each other directly,
571  * the second one is not done.
572  */
573 
574 /*
575  * Write Command: 12 bytes.
576  * byte 0: opcode: E9
577  * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
578  * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
579  * bytes 10-11: sector count (big-endian, in 512-byte sectors).
580  *
581  * If write address equals erase address, the erase is done first,
582  * otherwise the write is done first. When erase address equals zero
583  * no erase is done?
584  */
585 static int
586 sddr09_writeX(struct us_data *us,
587 	      unsigned long Waddress, unsigned long Eaddress,
588 	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
589 
590 	unsigned char *command = us->iobuf;
591 	int result;
592 
593 	command[0] = 0xE9;
594 	command[1] = LUNBITS;
595 
596 	command[2] = MSB_of(Waddress>>16);
597 	command[3] = LSB_of(Waddress>>16);
598 	command[4] = MSB_of(Waddress & 0xFFFF);
599 	command[5] = LSB_of(Waddress & 0xFFFF);
600 
601 	command[6] = MSB_of(Eaddress>>16);
602 	command[7] = LSB_of(Eaddress>>16);
603 	command[8] = MSB_of(Eaddress & 0xFFFF);
604 	command[9] = LSB_of(Eaddress & 0xFFFF);
605 
606 	command[10] = MSB_of(nr_of_pages);
607 	command[11] = LSB_of(nr_of_pages);
608 
609 	result = sddr09_send_scsi_command(us, command, 12);
610 
611 	if (result) {
612 		US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
613 			  result);
614 		return result;
615 	}
616 
617 	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
618 				       buf, bulklen, use_sg, NULL);
619 
620 	if (result != USB_STOR_XFER_GOOD) {
621 		US_DEBUGP("Result for bulk_transfer in sddr09_writeX %d\n",
622 			  result);
623 		return -EIO;
624 	}
625 	return 0;
626 }
627 
628 /* erase address, write same address */
629 static int
630 sddr09_write_inplace(struct us_data *us, unsigned long address,
631 		     int nr_of_pages, int pageshift, unsigned char *buf,
632 		     int use_sg) {
633 	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
634 	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
635 			     buf, use_sg);
636 }
637 
638 #if 0
639 /*
640  * Read Scatter Gather Command: 3+4n bytes.
641  * byte 0: opcode E7
642  * byte 2: n
643  * bytes 4i-1,4i,4i+1: page address
644  * byte 4i+2: page count
645  * (i=1..n)
646  *
647  * This reads several pages from the card to a single memory buffer.
648  * The last two bits of byte 1 have the same meaning as for E8.
649  */
650 static int
651 sddr09_read_sg_test_only(struct us_data *us) {
652 	unsigned char *command = us->iobuf;
653 	int result, bulklen, nsg, ct;
654 	unsigned char *buf;
655 	unsigned long address;
656 
657 	nsg = bulklen = 0;
658 	command[0] = 0xE7;
659 	command[1] = LUNBITS;
660 	command[2] = 0;
661 	address = 040000; ct = 1;
662 	nsg++;
663 	bulklen += (ct << 9);
664 	command[4*nsg+2] = ct;
665 	command[4*nsg+1] = ((address >> 9) & 0xFF);
666 	command[4*nsg+0] = ((address >> 17) & 0xFF);
667 	command[4*nsg-1] = ((address >> 25) & 0xFF);
668 
669 	address = 0340000; ct = 1;
670 	nsg++;
671 	bulklen += (ct << 9);
672 	command[4*nsg+2] = ct;
673 	command[4*nsg+1] = ((address >> 9) & 0xFF);
674 	command[4*nsg+0] = ((address >> 17) & 0xFF);
675 	command[4*nsg-1] = ((address >> 25) & 0xFF);
676 
677 	address = 01000000; ct = 2;
678 	nsg++;
679 	bulklen += (ct << 9);
680 	command[4*nsg+2] = ct;
681 	command[4*nsg+1] = ((address >> 9) & 0xFF);
682 	command[4*nsg+0] = ((address >> 17) & 0xFF);
683 	command[4*nsg-1] = ((address >> 25) & 0xFF);
684 
685 	command[2] = nsg;
686 
687 	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
688 
689 	if (result) {
690 		US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
691 			  result);
692 		return result;
693 	}
694 
695 	buf = kmalloc(bulklen, GFP_NOIO);
696 	if (!buf)
697 		return -ENOMEM;
698 
699 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
700 				       buf, bulklen, NULL);
701 	kfree(buf);
702 	if (result != USB_STOR_XFER_GOOD) {
703 		US_DEBUGP("Result for bulk_transfer in sddr09_read_sg %d\n",
704 			  result);
705 		return -EIO;
706 	}
707 
708 	return 0;
709 }
710 #endif
711 
712 /*
713  * Read Status Command: 12 bytes.
714  * byte 0: opcode: EC
715  *
716  * Returns 64 bytes, all zero except for the first.
717  * bit 0: 1: Error
718  * bit 5: 1: Suspended
719  * bit 6: 1: Ready
720  * bit 7: 1: Not write-protected
721  */
722 
723 static int
724 sddr09_read_status(struct us_data *us, unsigned char *status) {
725 
726 	unsigned char *command = us->iobuf;
727 	unsigned char *data = us->iobuf;
728 	int result;
729 
730 	US_DEBUGP("Reading status...\n");
731 
732 	memset(command, 0, 12);
733 	command[0] = 0xEC;
734 	command[1] = LUNBITS;
735 
736 	result = sddr09_send_scsi_command(us, command, 12);
737 	if (result)
738 		return result;
739 
740 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
741 				       data, 64, NULL);
742 	*status = data[0];
743 	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
744 }
745 
746 static int
747 sddr09_read_data(struct us_data *us,
748 		 unsigned long address,
749 		 unsigned int sectors) {
750 
751 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
752 	unsigned char *buffer;
753 	unsigned int lba, maxlba, pba;
754 	unsigned int page, pages;
755 	unsigned int len, offset;
756 	struct scatterlist *sg;
757 	int result;
758 
759 	// Figure out the initial LBA and page
760 	lba = address >> info->blockshift;
761 	page = (address & info->blockmask);
762 	maxlba = info->capacity >> (info->pageshift + info->blockshift);
763 	if (lba >= maxlba)
764 		return -EIO;
765 
766 	// Since we only read in one block at a time, we have to create
767 	// a bounce buffer and move the data a piece at a time between the
768 	// bounce buffer and the actual transfer buffer.
769 
770 	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
771 	buffer = kmalloc(len, GFP_NOIO);
772 	if (buffer == NULL) {
773 		printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
774 		return -ENOMEM;
775 	}
776 
777 	// This could be made much more efficient by checking for
778 	// contiguous LBA's. Another exercise left to the student.
779 
780 	result = 0;
781 	offset = 0;
782 	sg = NULL;
783 
784 	while (sectors > 0) {
785 
786 		/* Find number of pages we can read in this block */
787 		pages = min(sectors, info->blocksize - page);
788 		len = pages << info->pageshift;
789 
790 		/* Not overflowing capacity? */
791 		if (lba >= maxlba) {
792 			US_DEBUGP("Error: Requested lba %u exceeds "
793 				  "maximum %u\n", lba, maxlba);
794 			result = -EIO;
795 			break;
796 		}
797 
798 		/* Find where this lba lives on disk */
799 		pba = info->lba_to_pba[lba];
800 
801 		if (pba == UNDEF) {	/* this lba was never written */
802 
803 			US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
804 				  pages, lba, page);
805 
806 			/* This is not really an error. It just means
807 			   that the block has never been written.
808 			   Instead of returning an error
809 			   it is better to return all zero data. */
810 
811 			memset(buffer, 0, len);
812 
813 		} else {
814 			US_DEBUGP("Read %d pages, from PBA %d"
815 				  " (LBA %d) page %d\n",
816 				  pages, pba, lba, page);
817 
818 			address = ((pba << info->blockshift) + page) <<
819 				info->pageshift;
820 
821 			result = sddr09_read20(us, address>>1,
822 					pages, info->pageshift, buffer, 0);
823 			if (result)
824 				break;
825 		}
826 
827 		// Store the data in the transfer buffer
828 		usb_stor_access_xfer_buf(buffer, len, us->srb,
829 				&sg, &offset, TO_XFER_BUF);
830 
831 		page = 0;
832 		lba++;
833 		sectors -= pages;
834 	}
835 
836 	kfree(buffer);
837 	return result;
838 }
839 
840 static unsigned int
841 sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
842 	static unsigned int lastpba = 1;
843 	int zonestart, end, i;
844 
845 	zonestart = (lba/1000) << 10;
846 	end = info->capacity >> (info->blockshift + info->pageshift);
847 	end -= zonestart;
848 	if (end > 1024)
849 		end = 1024;
850 
851 	for (i = lastpba+1; i < end; i++) {
852 		if (info->pba_to_lba[zonestart+i] == UNDEF) {
853 			lastpba = i;
854 			return zonestart+i;
855 		}
856 	}
857 	for (i = 0; i <= lastpba; i++) {
858 		if (info->pba_to_lba[zonestart+i] == UNDEF) {
859 			lastpba = i;
860 			return zonestart+i;
861 		}
862 	}
863 	return 0;
864 }
865 
866 static int
867 sddr09_write_lba(struct us_data *us, unsigned int lba,
868 		 unsigned int page, unsigned int pages,
869 		 unsigned char *ptr, unsigned char *blockbuffer) {
870 
871 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
872 	unsigned long address;
873 	unsigned int pba, lbap;
874 	unsigned int pagelen;
875 	unsigned char *bptr, *cptr, *xptr;
876 	unsigned char ecc[3];
877 	int i, result, isnew;
878 
879 	lbap = ((lba % 1000) << 1) | 0x1000;
880 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
881 		lbap ^= 1;
882 	pba = info->lba_to_pba[lba];
883 	isnew = 0;
884 
885 	if (pba == UNDEF) {
886 		pba = sddr09_find_unused_pba(info, lba);
887 		if (!pba) {
888 			printk(KERN_WARNING
889 			       "sddr09_write_lba: Out of unused blocks\n");
890 			return -ENOSPC;
891 		}
892 		info->pba_to_lba[pba] = lba;
893 		info->lba_to_pba[lba] = pba;
894 		isnew = 1;
895 	}
896 
897 	if (pba == 1) {
898 		/* Maybe it is impossible to write to PBA 1.
899 		   Fake success, but don't do anything. */
900 		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
901 		return 0;
902 	}
903 
904 	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
905 
906 	/* read old contents */
907 	address = (pba << (info->pageshift + info->blockshift));
908 	result = sddr09_read22(us, address>>1, info->blocksize,
909 			       info->pageshift, blockbuffer, 0);
910 	if (result)
911 		return result;
912 
913 	/* check old contents and fill lba */
914 	for (i = 0; i < info->blocksize; i++) {
915 		bptr = blockbuffer + i*pagelen;
916 		cptr = bptr + info->pagesize;
917 		nand_compute_ecc(bptr, ecc);
918 		if (!nand_compare_ecc(cptr+13, ecc)) {
919 			US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
920 				  i, pba);
921 			nand_store_ecc(cptr+13, ecc);
922 		}
923 		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
924 		if (!nand_compare_ecc(cptr+8, ecc)) {
925 			US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
926 				  i, pba);
927 			nand_store_ecc(cptr+8, ecc);
928 		}
929 		cptr[6] = cptr[11] = MSB_of(lbap);
930 		cptr[7] = cptr[12] = LSB_of(lbap);
931 	}
932 
933 	/* copy in new stuff and compute ECC */
934 	xptr = ptr;
935 	for (i = page; i < page+pages; i++) {
936 		bptr = blockbuffer + i*pagelen;
937 		cptr = bptr + info->pagesize;
938 		memcpy(bptr, xptr, info->pagesize);
939 		xptr += info->pagesize;
940 		nand_compute_ecc(bptr, ecc);
941 		nand_store_ecc(cptr+13, ecc);
942 		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
943 		nand_store_ecc(cptr+8, ecc);
944 	}
945 
946 	US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);
947 
948 	result = sddr09_write_inplace(us, address>>1, info->blocksize,
949 				      info->pageshift, blockbuffer, 0);
950 
951 	US_DEBUGP("sddr09_write_inplace returns %d\n", result);
952 
953 #if 0
954 	{
955 		unsigned char status = 0;
956 		int result2 = sddr09_read_status(us, &status);
957 		if (result2)
958 			US_DEBUGP("sddr09_write_inplace: cannot read status\n");
959 		else if (status != 0xc0)
960 			US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
961 				  status);
962 	}
963 #endif
964 
965 #if 0
966 	{
967 		int result2 = sddr09_test_unit_ready(us);
968 	}
969 #endif
970 
971 	return result;
972 }
973 
974 static int
975 sddr09_write_data(struct us_data *us,
976 		  unsigned long address,
977 		  unsigned int sectors) {
978 
979 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
980 	unsigned int lba, maxlba, page, pages;
981 	unsigned int pagelen, blocklen;
982 	unsigned char *blockbuffer;
983 	unsigned char *buffer;
984 	unsigned int len, offset;
985 	struct scatterlist *sg;
986 	int result;
987 
988 	// Figure out the initial LBA and page
989 	lba = address >> info->blockshift;
990 	page = (address & info->blockmask);
991 	maxlba = info->capacity >> (info->pageshift + info->blockshift);
992 	if (lba >= maxlba)
993 		return -EIO;
994 
995 	// blockbuffer is used for reading in the old data, overwriting
996 	// with the new data, and performing ECC calculations
997 
998 	/* TODO: instead of doing kmalloc/kfree for each write,
999 	   add a bufferpointer to the info structure */
1000 
1001 	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1002 	blocklen = (pagelen << info->blockshift);
1003 	blockbuffer = kmalloc(blocklen, GFP_NOIO);
1004 	if (!blockbuffer) {
1005 		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1006 		return -ENOMEM;
1007 	}
1008 
1009 	// Since we don't write the user data directly to the device,
1010 	// we have to create a bounce buffer and move the data a piece
1011 	// at a time between the bounce buffer and the actual transfer buffer.
1012 
1013 	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1014 	buffer = kmalloc(len, GFP_NOIO);
1015 	if (buffer == NULL) {
1016 		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1017 		kfree(blockbuffer);
1018 		return -ENOMEM;
1019 	}
1020 
1021 	result = 0;
1022 	offset = 0;
1023 	sg = NULL;
1024 
1025 	while (sectors > 0) {
1026 
1027 		// Write as many sectors as possible in this block
1028 
1029 		pages = min(sectors, info->blocksize - page);
1030 		len = (pages << info->pageshift);
1031 
1032 		/* Not overflowing capacity? */
1033 		if (lba >= maxlba) {
1034 			US_DEBUGP("Error: Requested lba %u exceeds "
1035 				  "maximum %u\n", lba, maxlba);
1036 			result = -EIO;
1037 			break;
1038 		}
1039 
1040 		// Get the data from the transfer buffer
1041 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1042 				&sg, &offset, FROM_XFER_BUF);
1043 
1044 		result = sddr09_write_lba(us, lba, page, pages,
1045 				buffer, blockbuffer);
1046 		if (result)
1047 			break;
1048 
1049 		page = 0;
1050 		lba++;
1051 		sectors -= pages;
1052 	}
1053 
1054 	kfree(buffer);
1055 	kfree(blockbuffer);
1056 
1057 	return result;
1058 }
1059 
1060 static int
1061 sddr09_read_control(struct us_data *us,
1062 		unsigned long address,
1063 		unsigned int blocks,
1064 		unsigned char *content,
1065 		int use_sg) {
1066 
1067 	US_DEBUGP("Read control address %lu, blocks %d\n",
1068 		address, blocks);
1069 
1070 	return sddr09_read21(us, address, blocks,
1071 			     CONTROL_SHIFT, content, use_sg);
1072 }
1073 
1074 /*
1075  * Read Device ID Command: 12 bytes.
1076  * byte 0: opcode: ED
1077  *
1078  * Returns 2 bytes: Manufacturer ID and Device ID.
1079  * On more recent cards 3 bytes: the third byte is an option code A5
1080  * signifying that the secret command to read an 128-bit ID is available.
1081  * On still more recent cards 4 bytes: the fourth byte C0 means that
1082  * a second read ID cmd is available.
1083  */
1084 static int
1085 sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1086 	unsigned char *command = us->iobuf;
1087 	unsigned char *content = us->iobuf;
1088 	int result, i;
1089 
1090 	memset(command, 0, 12);
1091 	command[0] = 0xED;
1092 	command[1] = LUNBITS;
1093 
1094 	result = sddr09_send_scsi_command(us, command, 12);
1095 	if (result)
1096 		return result;
1097 
1098 	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1099 			content, 64, NULL);
1100 
1101 	for (i = 0; i < 4; i++)
1102 		deviceID[i] = content[i];
1103 
1104 	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1105 }
1106 
1107 static int
1108 sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1109 	int result;
1110 	unsigned char status;
1111 
1112 	result = sddr09_read_status(us, &status);
1113 	if (result) {
1114 		US_DEBUGP("sddr09_get_wp: read_status fails\n");
1115 		return result;
1116 	}
1117 	US_DEBUGP("sddr09_get_wp: status 0x%02X", status);
1118 	if ((status & 0x80) == 0) {
1119 		info->flags |= SDDR09_WP;	/* write protected */
1120 		US_DEBUGP(" WP");
1121 	}
1122 	if (status & 0x40)
1123 		US_DEBUGP(" Ready");
1124 	if (status & LUNBITS)
1125 		US_DEBUGP(" Suspended");
1126 	if (status & 0x1)
1127 		US_DEBUGP(" Error");
1128 	US_DEBUGP("\n");
1129 	return 0;
1130 }
1131 
1132 #if 0
1133 /*
1134  * Reset Command: 12 bytes.
1135  * byte 0: opcode: EB
1136  */
1137 static int
1138 sddr09_reset(struct us_data *us) {
1139 
1140 	unsigned char *command = us->iobuf;
1141 
1142 	memset(command, 0, 12);
1143 	command[0] = 0xEB;
1144 	command[1] = LUNBITS;
1145 
1146 	return sddr09_send_scsi_command(us, command, 12);
1147 }
1148 #endif
1149 
1150 static struct nand_flash_dev *
1151 sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1152 	struct nand_flash_dev *cardinfo;
1153 	unsigned char deviceID[4];
1154 	char blurbtxt[256];
1155 	int result;
1156 
1157 	US_DEBUGP("Reading capacity...\n");
1158 
1159 	result = sddr09_read_deviceID(us, deviceID);
1160 
1161 	if (result) {
1162 		US_DEBUGP("Result of read_deviceID is %d\n", result);
1163 		printk(KERN_WARNING "sddr09: could not read card info\n");
1164 		return NULL;
1165 	}
1166 
1167 	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1168 		deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
1169 
1170 	/* Byte 0 is the manufacturer */
1171 	sprintf(blurbtxt + strlen(blurbtxt),
1172 		": Manuf. %s",
1173 		nand_flash_manufacturer(deviceID[0]));
1174 
1175 	/* Byte 1 is the device type */
1176 	cardinfo = nand_find_id(deviceID[1]);
1177 	if (cardinfo) {
1178 		/* MB or MiB? It is neither. A 16 MB card has
1179 		   17301504 raw bytes, of which 16384000 are
1180 		   usable for user data. */
1181 		sprintf(blurbtxt + strlen(blurbtxt),
1182 			", %d MB", 1<<(cardinfo->chipshift - 20));
1183 	} else {
1184 		sprintf(blurbtxt + strlen(blurbtxt),
1185 			", type unrecognized");
1186 	}
1187 
1188 	/* Byte 2 is code to signal availability of 128-bit ID */
1189 	if (deviceID[2] == 0xa5) {
1190 		sprintf(blurbtxt + strlen(blurbtxt),
1191 			", 128-bit ID");
1192 	}
1193 
1194 	/* Byte 3 announces the availability of another read ID command */
1195 	if (deviceID[3] == 0xc0) {
1196 		sprintf(blurbtxt + strlen(blurbtxt),
1197 			", extra cmd");
1198 	}
1199 
1200 	if (flags & SDDR09_WP)
1201 		sprintf(blurbtxt + strlen(blurbtxt),
1202 			", WP");
1203 
1204 	printk(KERN_WARNING "%s\n", blurbtxt);
1205 
1206 	return cardinfo;
1207 }
1208 
1209 static int
1210 sddr09_read_map(struct us_data *us) {
1211 
1212 	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1213 	int numblocks, alloc_len, alloc_blocks;
1214 	int i, j, result;
1215 	unsigned char *buffer, *buffer_end, *ptr;
1216 	unsigned int lba, lbact;
1217 
1218 	if (!info->capacity)
1219 		return -1;
1220 
1221 	// size of a block is 1 << (blockshift + pageshift) bytes
1222 	// divide into the total capacity to get the number of blocks
1223 
1224 	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1225 
1226 	// read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1227 	// but only use a 64 KB buffer
1228 	// buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1229 #define SDDR09_READ_MAP_BUFSZ 65536
1230 
1231 	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1232 	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1233 	buffer = kmalloc(alloc_len, GFP_NOIO);
1234 	if (buffer == NULL) {
1235 		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1236 		result = -1;
1237 		goto done;
1238 	}
1239 	buffer_end = buffer + alloc_len;
1240 
1241 #undef SDDR09_READ_MAP_BUFSZ
1242 
1243 	kfree(info->lba_to_pba);
1244 	kfree(info->pba_to_lba);
1245 	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1246 	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1247 
1248 	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1249 		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1250 		result = -1;
1251 		goto done;
1252 	}
1253 
1254 	for (i = 0; i < numblocks; i++)
1255 		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1256 
1257 	/*
1258 	 * Define lba-pba translation table
1259 	 */
1260 
1261 	ptr = buffer_end;
1262 	for (i = 0; i < numblocks; i++) {
1263 		ptr += (1 << CONTROL_SHIFT);
1264 		if (ptr >= buffer_end) {
1265 			unsigned long address;
1266 
1267 			address = i << (info->pageshift + info->blockshift);
1268 			result = sddr09_read_control(
1269 				us, address>>1,
1270 				min(alloc_blocks, numblocks - i),
1271 				buffer, 0);
1272 			if (result) {
1273 				result = -1;
1274 				goto done;
1275 			}
1276 			ptr = buffer;
1277 		}
1278 
1279 		if (i == 0 || i == 1) {
1280 			info->pba_to_lba[i] = UNUSABLE;
1281 			continue;
1282 		}
1283 
1284 		/* special PBAs have control field 0^16 */
1285 		for (j = 0; j < 16; j++)
1286 			if (ptr[j] != 0)
1287 				goto nonz;
1288 		info->pba_to_lba[i] = UNUSABLE;
1289 		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1290 		       i);
1291 		continue;
1292 
1293 	nonz:
1294 		/* unwritten PBAs have control field FF^16 */
1295 		for (j = 0; j < 16; j++)
1296 			if (ptr[j] != 0xff)
1297 				goto nonff;
1298 		continue;
1299 
1300 	nonff:
1301 		/* normal PBAs start with six FFs */
1302 		if (j < 6) {
1303 			printk(KERN_WARNING
1304 			       "sddr09: PBA %d has no logical mapping: "
1305 			       "reserved area = %02X%02X%02X%02X "
1306 			       "data status %02X block status %02X\n",
1307 			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1308 			       ptr[4], ptr[5]);
1309 			info->pba_to_lba[i] = UNUSABLE;
1310 			continue;
1311 		}
1312 
1313 		if ((ptr[6] >> 4) != 0x01) {
1314 			printk(KERN_WARNING
1315 			       "sddr09: PBA %d has invalid address field "
1316 			       "%02X%02X/%02X%02X\n",
1317 			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1318 			info->pba_to_lba[i] = UNUSABLE;
1319 			continue;
1320 		}
1321 
1322 		/* check even parity */
1323 		if (parity[ptr[6] ^ ptr[7]]) {
1324 			printk(KERN_WARNING
1325 			       "sddr09: Bad parity in LBA for block %d"
1326 			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1327 			info->pba_to_lba[i] = UNUSABLE;
1328 			continue;
1329 		}
1330 
1331 		lba = short_pack(ptr[7], ptr[6]);
1332 		lba = (lba & 0x07FF) >> 1;
1333 
1334 		/*
1335 		 * Every 1024 physical blocks ("zone"), the LBA numbers
1336 		 * go back to zero, but are within a higher block of LBA's.
1337 		 * Also, there is a maximum of 1000 LBA's per zone.
1338 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1339 		 * which are really LBA 1000-1999. This allows for 24 bad
1340 		 * or special physical blocks per zone.
1341 		 */
1342 
1343 		if (lba >= 1000) {
1344 			printk(KERN_WARNING
1345 			       "sddr09: Bad low LBA %d for block %d\n",
1346 			       lba, i);
1347 			goto possibly_erase;
1348 		}
1349 
1350 		lba += 1000*(i/0x400);
1351 
1352 		if (info->lba_to_pba[lba] != UNDEF) {
1353 			printk(KERN_WARNING
1354 			       "sddr09: LBA %d seen for PBA %d and %d\n",
1355 			       lba, info->lba_to_pba[lba], i);
1356 			goto possibly_erase;
1357 		}
1358 
1359 		info->pba_to_lba[i] = lba;
1360 		info->lba_to_pba[lba] = i;
1361 		continue;
1362 
1363 	possibly_erase:
1364 		if (erase_bad_lba_entries) {
1365 			unsigned long address;
1366 
1367 			address = (i << (info->pageshift + info->blockshift));
1368 			sddr09_erase(us, address>>1);
1369 			info->pba_to_lba[i] = UNDEF;
1370 		} else
1371 			info->pba_to_lba[i] = UNUSABLE;
1372 	}
1373 
1374 	/*
1375 	 * Approximate capacity. This is not entirely correct yet,
1376 	 * since a zone with less than 1000 usable pages leads to
1377 	 * missing LBAs. Especially if it is the last zone, some
1378 	 * LBAs can be past capacity.
1379 	 */
1380 	lbact = 0;
1381 	for (i = 0; i < numblocks; i += 1024) {
1382 		int ct = 0;
1383 
1384 		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1385 			if (info->pba_to_lba[i+j] != UNUSABLE) {
1386 				if (ct >= 1000)
1387 					info->pba_to_lba[i+j] = SPARE;
1388 				else
1389 					ct++;
1390 			}
1391 		}
1392 		lbact += ct;
1393 	}
1394 	info->lbact = lbact;
1395 	US_DEBUGP("Found %d LBA's\n", lbact);
1396 	result = 0;
1397 
1398  done:
1399 	if (result != 0) {
1400 		kfree(info->lba_to_pba);
1401 		kfree(info->pba_to_lba);
1402 		info->lba_to_pba = NULL;
1403 		info->pba_to_lba = NULL;
1404 	}
1405 	kfree(buffer);
1406 	return result;
1407 }
1408 
1409 static void
1410 sddr09_card_info_destructor(void *extra) {
1411 	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1412 
1413 	if (!info)
1414 		return;
1415 
1416 	kfree(info->lba_to_pba);
1417 	kfree(info->pba_to_lba);
1418 }
1419 
1420 static int
1421 sddr09_common_init(struct us_data *us) {
1422 	int result;
1423 
1424 	/* set the configuration -- STALL is an acceptable response here */
1425 	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1426 		US_DEBUGP("active config #%d != 1 ??\n", us->pusb_dev
1427 				->actconfig->desc.bConfigurationValue);
1428 		return -EINVAL;
1429 	}
1430 
1431 	result = usb_reset_configuration(us->pusb_dev);
1432 	US_DEBUGP("Result of usb_reset_configuration is %d\n", result);
1433 	if (result == -EPIPE) {
1434 		US_DEBUGP("-- stall on control interface\n");
1435 	} else if (result != 0) {
1436 		/* it's not a stall, but another error -- time to bail */
1437 		US_DEBUGP("-- Unknown error.  Rejecting device\n");
1438 		return -EINVAL;
1439 	}
1440 
1441 	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1442 	if (!us->extra)
1443 		return -ENOMEM;
1444 	us->extra_destructor = sddr09_card_info_destructor;
1445 
1446 	nand_init_ecc();
1447 	return 0;
1448 }
1449 
1450 
1451 /*
1452  * This is needed at a very early stage. If this is not listed in the
1453  * unusual devices list but called from here then LUN 0 of the combo reader
1454  * is not recognized. But I do not know what precisely these calls do.
1455  */
1456 static int
1457 usb_stor_sddr09_dpcm_init(struct us_data *us) {
1458 	int result;
1459 	unsigned char *data = us->iobuf;
1460 
1461 	result = sddr09_common_init(us);
1462 	if (result)
1463 		return result;
1464 
1465 	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1466 	if (result) {
1467 		US_DEBUGP("sddr09_init: send_command fails\n");
1468 		return result;
1469 	}
1470 
1471 	US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1472 	// get 07 02
1473 
1474 	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1475 	if (result) {
1476 		US_DEBUGP("sddr09_init: 2nd send_command fails\n");
1477 		return result;
1478 	}
1479 
1480 	US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1481 	// get 07 00
1482 
1483 	result = sddr09_request_sense(us, data, 18);
1484 	if (result == 0 && data[2] != 0) {
1485 		int j;
1486 		for (j=0; j<18; j++)
1487 			printk(" %02X", data[j]);
1488 		printk("\n");
1489 		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1490 		// 70: current command
1491 		// sense key 0, sense code 0, extd sense code 0
1492 		// additional transfer length * = sizeof(data) - 7
1493 		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1494 		// sense key 06, sense code 28: unit attention,
1495 		// not ready to ready transition
1496 	}
1497 
1498 	// test unit ready
1499 
1500 	return 0;		/* not result */
1501 }
1502 
1503 /*
1504  * Transport for the Microtech DPCM-USB
1505  */
1506 static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1507 {
1508 	int ret;
1509 
1510 	US_DEBUGP("dpcm_transport: LUN=%d\n", srb->device->lun);
1511 
1512 	switch (srb->device->lun) {
1513 	case 0:
1514 
1515 		/*
1516 		 * LUN 0 corresponds to the CompactFlash card reader.
1517 		 */
1518 		ret = usb_stor_CB_transport(srb, us);
1519 		break;
1520 
1521 	case 1:
1522 
1523 		/*
1524 		 * LUN 1 corresponds to the SmartMedia card reader.
1525 		 */
1526 
1527 		/*
1528 		 * Set the LUN to 0 (just in case).
1529 		 */
1530 		srb->device->lun = 0;
1531 		ret = sddr09_transport(srb, us);
1532 		srb->device->lun = 1;
1533 		break;
1534 
1535 	default:
1536 		US_DEBUGP("dpcm_transport: Invalid LUN %d\n",
1537 				srb->device->lun);
1538 		ret = USB_STOR_TRANSPORT_ERROR;
1539 		break;
1540 	}
1541 	return ret;
1542 }
1543 
1544 
1545 /*
1546  * Transport for the Sandisk SDDR-09
1547  */
1548 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1549 {
1550 	static unsigned char sensekey = 0, sensecode = 0;
1551 	static unsigned char havefakesense = 0;
1552 	int result, i;
1553 	unsigned char *ptr = us->iobuf;
1554 	unsigned long capacity;
1555 	unsigned int page, pages;
1556 
1557 	struct sddr09_card_info *info;
1558 
1559 	static unsigned char inquiry_response[8] = {
1560 		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1561 	};
1562 
1563 	/* note: no block descriptor support */
1564 	static unsigned char mode_page_01[19] = {
1565 		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1566 		0x01, 0x0A,
1567 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1568 	};
1569 
1570 	info = (struct sddr09_card_info *)us->extra;
1571 
1572 	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1573 		/* for a faked command, we have to follow with a faked sense */
1574 		memset(ptr, 0, 18);
1575 		ptr[0] = 0x70;
1576 		ptr[2] = sensekey;
1577 		ptr[7] = 11;
1578 		ptr[12] = sensecode;
1579 		usb_stor_set_xfer_buf(ptr, 18, srb);
1580 		sensekey = sensecode = havefakesense = 0;
1581 		return USB_STOR_TRANSPORT_GOOD;
1582 	}
1583 
1584 	havefakesense = 1;
1585 
1586 	/* Dummy up a response for INQUIRY since SDDR09 doesn't
1587 	   respond to INQUIRY commands */
1588 
1589 	if (srb->cmnd[0] == INQUIRY) {
1590 		memcpy(ptr, inquiry_response, 8);
1591 		fill_inquiry_response(us, ptr, 36);
1592 		return USB_STOR_TRANSPORT_GOOD;
1593 	}
1594 
1595 	if (srb->cmnd[0] == READ_CAPACITY) {
1596 		struct nand_flash_dev *cardinfo;
1597 
1598 		sddr09_get_wp(us, info);	/* read WP bit */
1599 
1600 		cardinfo = sddr09_get_cardinfo(us, info->flags);
1601 		if (!cardinfo) {
1602 			/* probably no media */
1603 		init_error:
1604 			sensekey = 0x02;	/* not ready */
1605 			sensecode = 0x3a;	/* medium not present */
1606 			return USB_STOR_TRANSPORT_FAILED;
1607 		}
1608 
1609 		info->capacity = (1 << cardinfo->chipshift);
1610 		info->pageshift = cardinfo->pageshift;
1611 		info->pagesize = (1 << info->pageshift);
1612 		info->blockshift = cardinfo->blockshift;
1613 		info->blocksize = (1 << info->blockshift);
1614 		info->blockmask = info->blocksize - 1;
1615 
1616 		// map initialization, must follow get_cardinfo()
1617 		if (sddr09_read_map(us)) {
1618 			/* probably out of memory */
1619 			goto init_error;
1620 		}
1621 
1622 		// Report capacity
1623 
1624 		capacity = (info->lbact << info->blockshift) - 1;
1625 
1626 		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1627 
1628 		// Report page size
1629 
1630 		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1631 		usb_stor_set_xfer_buf(ptr, 8, srb);
1632 
1633 		return USB_STOR_TRANSPORT_GOOD;
1634 	}
1635 
1636 	if (srb->cmnd[0] == MODE_SENSE_10) {
1637 		int modepage = (srb->cmnd[2] & 0x3F);
1638 
1639 		/* They ask for the Read/Write error recovery page,
1640 		   or for all pages. */
1641 		/* %% We should check DBD %% */
1642 		if (modepage == 0x01 || modepage == 0x3F) {
1643 			US_DEBUGP("SDDR09: Dummy up request for "
1644 				  "mode page 0x%x\n", modepage);
1645 
1646 			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1647 			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1648 			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1649 			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1650 			return USB_STOR_TRANSPORT_GOOD;
1651 		}
1652 
1653 		sensekey = 0x05;	/* illegal request */
1654 		sensecode = 0x24;	/* invalid field in CDB */
1655 		return USB_STOR_TRANSPORT_FAILED;
1656 	}
1657 
1658 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1659 		return USB_STOR_TRANSPORT_GOOD;
1660 
1661 	havefakesense = 0;
1662 
1663 	if (srb->cmnd[0] == READ_10) {
1664 
1665 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1666 		page <<= 16;
1667 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1668 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1669 
1670 		US_DEBUGP("READ_10: read page %d pagect %d\n",
1671 			  page, pages);
1672 
1673 		result = sddr09_read_data(us, page, pages);
1674 		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1675 				USB_STOR_TRANSPORT_ERROR);
1676 	}
1677 
1678 	if (srb->cmnd[0] == WRITE_10) {
1679 
1680 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1681 		page <<= 16;
1682 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1683 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1684 
1685 		US_DEBUGP("WRITE_10: write page %d pagect %d\n",
1686 			  page, pages);
1687 
1688 		result = sddr09_write_data(us, page, pages);
1689 		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1690 				USB_STOR_TRANSPORT_ERROR);
1691 	}
1692 
1693 	/* catch-all for all other commands, except
1694 	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1695 	 */
1696 	if (srb->cmnd[0] != TEST_UNIT_READY &&
1697 	    srb->cmnd[0] != REQUEST_SENSE) {
1698 		sensekey = 0x05;	/* illegal request */
1699 		sensecode = 0x20;	/* invalid command */
1700 		havefakesense = 1;
1701 		return USB_STOR_TRANSPORT_FAILED;
1702 	}
1703 
1704 	for (; srb->cmd_len<12; srb->cmd_len++)
1705 		srb->cmnd[srb->cmd_len] = 0;
1706 
1707 	srb->cmnd[1] = LUNBITS;
1708 
1709 	ptr[0] = 0;
1710 	for (i=0; i<12; i++)
1711 		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1712 
1713 	US_DEBUGP("SDDR09: Send control for command %s\n", ptr);
1714 
1715 	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1716 	if (result) {
1717 		US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
1718 			  "returns %d\n", result);
1719 		return USB_STOR_TRANSPORT_ERROR;
1720 	}
1721 
1722 	if (scsi_bufflen(srb) == 0)
1723 		return USB_STOR_TRANSPORT_GOOD;
1724 
1725 	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1726 	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1727 		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1728 				? us->send_bulk_pipe : us->recv_bulk_pipe;
1729 
1730 		US_DEBUGP("SDDR09: %s %d bytes\n",
1731 			  (srb->sc_data_direction == DMA_TO_DEVICE) ?
1732 			  "sending" : "receiving",
1733 			  scsi_bufflen(srb));
1734 
1735 		result = usb_stor_bulk_srb(us, pipe, srb);
1736 
1737 		return (result == USB_STOR_XFER_GOOD ?
1738 			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1739 	}
1740 
1741 	return USB_STOR_TRANSPORT_GOOD;
1742 }
1743 
1744 /*
1745  * Initialization routine for the sddr09 subdriver
1746  */
1747 static int
1748 usb_stor_sddr09_init(struct us_data *us) {
1749 	return sddr09_common_init(us);
1750 }
1751 
1752 static int sddr09_probe(struct usb_interface *intf,
1753 			 const struct usb_device_id *id)
1754 {
1755 	struct us_data *us;
1756 	int result;
1757 
1758 	result = usb_stor_probe1(&us, intf, id,
1759 			(id - sddr09_usb_ids) + sddr09_unusual_dev_list);
1760 	if (result)
1761 		return result;
1762 
1763 	if (us->protocol == USB_PR_DPCM_USB) {
1764 		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1765 		us->transport = dpcm_transport;
1766 		us->transport_reset = usb_stor_CB_reset;
1767 		us->max_lun = 1;
1768 	} else {
1769 		us->transport_name = "EUSB/SDDR09";
1770 		us->transport = sddr09_transport;
1771 		us->transport_reset = usb_stor_CB_reset;
1772 		us->max_lun = 0;
1773 	}
1774 
1775 	result = usb_stor_probe2(us);
1776 	return result;
1777 }
1778 
1779 static struct usb_driver sddr09_driver = {
1780 	.name =		"ums-sddr09",
1781 	.probe =	sddr09_probe,
1782 	.disconnect =	usb_stor_disconnect,
1783 	.suspend =	usb_stor_suspend,
1784 	.resume =	usb_stor_resume,
1785 	.reset_resume =	usb_stor_reset_resume,
1786 	.pre_reset =	usb_stor_pre_reset,
1787 	.post_reset =	usb_stor_post_reset,
1788 	.id_table =	sddr09_usb_ids,
1789 	.soft_unbind =	1,
1790 };
1791 
1792 static int __init sddr09_init(void)
1793 {
1794 	return usb_register(&sddr09_driver);
1795 }
1796 
1797 static void __exit sddr09_exit(void)
1798 {
1799 	usb_deregister(&sddr09_driver);
1800 }
1801 
1802 module_init(sddr09_init);
1803 module_exit(sddr09_exit);
1804