1 /* 2 * Driver for SanDisk SDDR-09 SmartMedia reader 3 * 4 * (c) 2000, 2001 Robert Baruch (autophile@starband.net) 5 * (c) 2002 Andries Brouwer (aeb@cwi.nl) 6 * Developed with the assistance of: 7 * (c) 2002 Alan Stern <stern@rowland.org> 8 * 9 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip. 10 * This chip is a programmable USB controller. In the SDDR-09, it has 11 * been programmed to obey a certain limited set of SCSI commands. 12 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI 13 * commands. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2, or (at your option) any 18 * later version. 19 * 20 * This program is distributed in the hope that it will be useful, but 21 * WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 23 * General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License along 26 * with this program; if not, write to the Free Software Foundation, Inc., 27 * 675 Mass Ave, Cambridge, MA 02139, USA. 28 */ 29 30 /* 31 * Known vendor commands: 12 bytes, first byte is opcode 32 * 33 * E7: read scatter gather 34 * E8: read 35 * E9: write 36 * EA: erase 37 * EB: reset 38 * EC: read status 39 * ED: read ID 40 * EE: write CIS (?) 41 * EF: compute checksum (?) 42 */ 43 44 #include <linux/errno.h> 45 #include <linux/module.h> 46 #include <linux/slab.h> 47 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_device.h> 51 52 #include "usb.h" 53 #include "transport.h" 54 #include "protocol.h" 55 #include "debug.h" 56 #include "scsiglue.h" 57 58 #define DRV_NAME "ums-sddr09" 59 60 MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader"); 61 MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>"); 62 MODULE_LICENSE("GPL"); 63 64 static int usb_stor_sddr09_dpcm_init(struct us_data *us); 65 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us); 66 static int usb_stor_sddr09_init(struct us_data *us); 67 68 69 /* 70 * The table of devices 71 */ 72 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ 73 vendorName, productName, useProtocol, useTransport, \ 74 initFunction, flags) \ 75 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ 76 .driver_info = (flags) } 77 78 static struct usb_device_id sddr09_usb_ids[] = { 79 # include "unusual_sddr09.h" 80 { } /* Terminating entry */ 81 }; 82 MODULE_DEVICE_TABLE(usb, sddr09_usb_ids); 83 84 #undef UNUSUAL_DEV 85 86 /* 87 * The flags table 88 */ 89 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ 90 vendor_name, product_name, use_protocol, use_transport, \ 91 init_function, Flags) \ 92 { \ 93 .vendorName = vendor_name, \ 94 .productName = product_name, \ 95 .useProtocol = use_protocol, \ 96 .useTransport = use_transport, \ 97 .initFunction = init_function, \ 98 } 99 100 static struct us_unusual_dev sddr09_unusual_dev_list[] = { 101 # include "unusual_sddr09.h" 102 { } /* Terminating entry */ 103 }; 104 105 #undef UNUSUAL_DEV 106 107 108 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) 109 #define LSB_of(s) ((s)&0xFF) 110 #define MSB_of(s) ((s)>>8) 111 112 /* 113 * First some stuff that does not belong here: 114 * data on SmartMedia and other cards, completely 115 * unrelated to this driver. 116 * Similar stuff occurs in <linux/mtd/nand_ids.h>. 117 */ 118 119 struct nand_flash_dev { 120 int model_id; 121 int chipshift; /* 1<<cs bytes total capacity */ 122 char pageshift; /* 1<<ps bytes in a page */ 123 char blockshift; /* 1<<bs pages in an erase block */ 124 char zoneshift; /* 1<<zs blocks in a zone */ 125 /* # of logical blocks is 125/128 of this */ 126 char pageadrlen; /* length of an address in bytes - 1 */ 127 }; 128 129 /* 130 * NAND Flash Manufacturer ID Codes 131 */ 132 #define NAND_MFR_AMD 0x01 133 #define NAND_MFR_NATSEMI 0x8f 134 #define NAND_MFR_TOSHIBA 0x98 135 #define NAND_MFR_SAMSUNG 0xec 136 137 static inline char *nand_flash_manufacturer(int manuf_id) { 138 switch(manuf_id) { 139 case NAND_MFR_AMD: 140 return "AMD"; 141 case NAND_MFR_NATSEMI: 142 return "NATSEMI"; 143 case NAND_MFR_TOSHIBA: 144 return "Toshiba"; 145 case NAND_MFR_SAMSUNG: 146 return "Samsung"; 147 default: 148 return "unknown"; 149 } 150 } 151 152 /* 153 * It looks like it is unnecessary to attach manufacturer to the 154 * remaining data: SSFDC prescribes manufacturer-independent id codes. 155 * 156 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda. 157 */ 158 159 static struct nand_flash_dev nand_flash_ids[] = { 160 /* NAND flash */ 161 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */ 162 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */ 163 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */ 164 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */ 165 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */ 166 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */ 167 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */ 168 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */ 169 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */ 170 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */ 171 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */ 172 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */ 173 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */ 174 175 /* MASK ROM */ 176 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */ 177 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */ 178 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */ 179 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */ 180 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */ 181 { 0,} 182 }; 183 184 static struct nand_flash_dev * 185 nand_find_id(unsigned char id) { 186 int i; 187 188 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++) 189 if (nand_flash_ids[i].model_id == id) 190 return &(nand_flash_ids[i]); 191 return NULL; 192 } 193 194 /* 195 * ECC computation. 196 */ 197 static unsigned char parity[256]; 198 static unsigned char ecc2[256]; 199 200 static void nand_init_ecc(void) { 201 int i, j, a; 202 203 parity[0] = 0; 204 for (i = 1; i < 256; i++) 205 parity[i] = (parity[i&(i-1)] ^ 1); 206 207 for (i = 0; i < 256; i++) { 208 a = 0; 209 for (j = 0; j < 8; j++) { 210 if (i & (1<<j)) { 211 if ((j & 1) == 0) 212 a ^= 0x04; 213 if ((j & 2) == 0) 214 a ^= 0x10; 215 if ((j & 4) == 0) 216 a ^= 0x40; 217 } 218 } 219 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); 220 } 221 } 222 223 /* compute 3-byte ecc on 256 bytes */ 224 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) { 225 int i, j, a; 226 unsigned char par = 0, bit, bits[8] = {0}; 227 228 /* collect 16 checksum bits */ 229 for (i = 0; i < 256; i++) { 230 par ^= data[i]; 231 bit = parity[data[i]]; 232 for (j = 0; j < 8; j++) 233 if ((i & (1<<j)) == 0) 234 bits[j] ^= bit; 235 } 236 237 /* put 4+4+4 = 12 bits in the ecc */ 238 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; 239 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 240 241 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; 242 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 243 244 ecc[2] = ecc2[par]; 245 } 246 247 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) { 248 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); 249 } 250 251 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) { 252 memcpy(data, ecc, 3); 253 } 254 255 /* 256 * The actual driver starts here. 257 */ 258 259 struct sddr09_card_info { 260 unsigned long capacity; /* Size of card in bytes */ 261 int pagesize; /* Size of page in bytes */ 262 int pageshift; /* log2 of pagesize */ 263 int blocksize; /* Size of block in pages */ 264 int blockshift; /* log2 of blocksize */ 265 int blockmask; /* 2^blockshift - 1 */ 266 int *lba_to_pba; /* logical to physical map */ 267 int *pba_to_lba; /* physical to logical map */ 268 int lbact; /* number of available pages */ 269 int flags; 270 #define SDDR09_WP 1 /* write protected */ 271 }; 272 273 /* 274 * On my 16MB card, control blocks have size 64 (16 real control bytes, 275 * and 48 junk bytes). In reality of course the card uses 16 control bytes, 276 * so the reader makes up the remaining 48. Don't know whether these numbers 277 * depend on the card. For now a constant. 278 */ 279 #define CONTROL_SHIFT 6 280 281 /* 282 * On my Combo CF/SM reader, the SM reader has LUN 1. 283 * (and things fail with LUN 0). 284 * It seems LUN is irrelevant for others. 285 */ 286 #define LUN 1 287 #define LUNBITS (LUN << 5) 288 289 /* 290 * LBA and PBA are unsigned ints. Special values. 291 */ 292 #define UNDEF 0xffffffff 293 #define SPARE 0xfffffffe 294 #define UNUSABLE 0xfffffffd 295 296 static const int erase_bad_lba_entries = 0; 297 298 /* send vendor interface command (0x41) */ 299 /* called for requests 0, 1, 8 */ 300 static int 301 sddr09_send_command(struct us_data *us, 302 unsigned char request, 303 unsigned char direction, 304 unsigned char *xfer_data, 305 unsigned int xfer_len) { 306 unsigned int pipe; 307 unsigned char requesttype = (0x41 | direction); 308 int rc; 309 310 // Get the receive or send control pipe number 311 312 if (direction == USB_DIR_IN) 313 pipe = us->recv_ctrl_pipe; 314 else 315 pipe = us->send_ctrl_pipe; 316 317 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype, 318 0, 0, xfer_data, xfer_len); 319 switch (rc) { 320 case USB_STOR_XFER_GOOD: return 0; 321 case USB_STOR_XFER_STALLED: return -EPIPE; 322 default: return -EIO; 323 } 324 } 325 326 static int 327 sddr09_send_scsi_command(struct us_data *us, 328 unsigned char *command, 329 unsigned int command_len) { 330 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len); 331 } 332 333 #if 0 334 /* 335 * Test Unit Ready Command: 12 bytes. 336 * byte 0: opcode: 00 337 */ 338 static int 339 sddr09_test_unit_ready(struct us_data *us) { 340 unsigned char *command = us->iobuf; 341 int result; 342 343 memset(command, 0, 6); 344 command[1] = LUNBITS; 345 346 result = sddr09_send_scsi_command(us, command, 6); 347 348 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result); 349 350 return result; 351 } 352 #endif 353 354 /* 355 * Request Sense Command: 12 bytes. 356 * byte 0: opcode: 03 357 * byte 4: data length 358 */ 359 static int 360 sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) { 361 unsigned char *command = us->iobuf; 362 int result; 363 364 memset(command, 0, 12); 365 command[0] = 0x03; 366 command[1] = LUNBITS; 367 command[4] = buflen; 368 369 result = sddr09_send_scsi_command(us, command, 12); 370 if (result) 371 return result; 372 373 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 374 sensebuf, buflen, NULL); 375 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO); 376 } 377 378 /* 379 * Read Command: 12 bytes. 380 * byte 0: opcode: E8 381 * byte 1: last two bits: 00: read data, 01: read blockwise control, 382 * 10: read both, 11: read pagewise control. 383 * It turns out we need values 20, 21, 22, 23 here (LUN 1). 384 * bytes 2-5: address (interpretation depends on byte 1, see below) 385 * bytes 10-11: count (idem) 386 * 387 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk). 388 * A read data command gets data in 512-byte pages. 389 * A read control command gets control in 64-byte chunks. 390 * A read both command gets data+control in 576-byte chunks. 391 * 392 * Blocks are groups of 32 pages, and read blockwise control jumps to the 393 * next block, while read pagewise control jumps to the next page after 394 * reading a group of 64 control bytes. 395 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?] 396 * 397 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.) 398 */ 399 400 static int 401 sddr09_readX(struct us_data *us, int x, unsigned long fromaddress, 402 int nr_of_pages, int bulklen, unsigned char *buf, 403 int use_sg) { 404 405 unsigned char *command = us->iobuf; 406 int result; 407 408 command[0] = 0xE8; 409 command[1] = LUNBITS | x; 410 command[2] = MSB_of(fromaddress>>16); 411 command[3] = LSB_of(fromaddress>>16); 412 command[4] = MSB_of(fromaddress & 0xFFFF); 413 command[5] = LSB_of(fromaddress & 0xFFFF); 414 command[6] = 0; 415 command[7] = 0; 416 command[8] = 0; 417 command[9] = 0; 418 command[10] = MSB_of(nr_of_pages); 419 command[11] = LSB_of(nr_of_pages); 420 421 result = sddr09_send_scsi_command(us, command, 12); 422 423 if (result) { 424 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n", 425 x, result); 426 return result; 427 } 428 429 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe, 430 buf, bulklen, use_sg, NULL); 431 432 if (result != USB_STOR_XFER_GOOD) { 433 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n", 434 x, result); 435 return -EIO; 436 } 437 return 0; 438 } 439 440 /* 441 * Read Data 442 * 443 * fromaddress counts data shorts: 444 * increasing it by 256 shifts the bytestream by 512 bytes; 445 * the last 8 bits are ignored. 446 * 447 * nr_of_pages counts pages of size (1 << pageshift). 448 */ 449 static int 450 sddr09_read20(struct us_data *us, unsigned long fromaddress, 451 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) { 452 int bulklen = nr_of_pages << pageshift; 453 454 /* The last 8 bits of fromaddress are ignored. */ 455 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen, 456 buf, use_sg); 457 } 458 459 /* 460 * Read Blockwise Control 461 * 462 * fromaddress gives the starting position (as in read data; 463 * the last 8 bits are ignored); increasing it by 32*256 shifts 464 * the output stream by 64 bytes. 465 * 466 * count counts control groups of size (1 << controlshift). 467 * For me, controlshift = 6. Is this constant? 468 * 469 * After getting one control group, jump to the next block 470 * (fromaddress += 8192). 471 */ 472 static int 473 sddr09_read21(struct us_data *us, unsigned long fromaddress, 474 int count, int controlshift, unsigned char *buf, int use_sg) { 475 476 int bulklen = (count << controlshift); 477 return sddr09_readX(us, 1, fromaddress, count, bulklen, 478 buf, use_sg); 479 } 480 481 /* 482 * Read both Data and Control 483 * 484 * fromaddress counts data shorts, ignoring control: 485 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes; 486 * the last 8 bits are ignored. 487 * 488 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift). 489 */ 490 static int 491 sddr09_read22(struct us_data *us, unsigned long fromaddress, 492 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) { 493 494 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT); 495 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen); 496 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen, 497 buf, use_sg); 498 } 499 500 #if 0 501 /* 502 * Read Pagewise Control 503 * 504 * fromaddress gives the starting position (as in read data; 505 * the last 8 bits are ignored); increasing it by 256 shifts 506 * the output stream by 64 bytes. 507 * 508 * count counts control groups of size (1 << controlshift). 509 * For me, controlshift = 6. Is this constant? 510 * 511 * After getting one control group, jump to the next page 512 * (fromaddress += 256). 513 */ 514 static int 515 sddr09_read23(struct us_data *us, unsigned long fromaddress, 516 int count, int controlshift, unsigned char *buf, int use_sg) { 517 518 int bulklen = (count << controlshift); 519 return sddr09_readX(us, 3, fromaddress, count, bulklen, 520 buf, use_sg); 521 } 522 #endif 523 524 /* 525 * Erase Command: 12 bytes. 526 * byte 0: opcode: EA 527 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned). 528 * 529 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored. 530 * The byte address being erased is 2*Eaddress. 531 * The CIS cannot be erased. 532 */ 533 static int 534 sddr09_erase(struct us_data *us, unsigned long Eaddress) { 535 unsigned char *command = us->iobuf; 536 int result; 537 538 usb_stor_dbg(us, "erase address %lu\n", Eaddress); 539 540 memset(command, 0, 12); 541 command[0] = 0xEA; 542 command[1] = LUNBITS; 543 command[6] = MSB_of(Eaddress>>16); 544 command[7] = LSB_of(Eaddress>>16); 545 command[8] = MSB_of(Eaddress & 0xFFFF); 546 command[9] = LSB_of(Eaddress & 0xFFFF); 547 548 result = sddr09_send_scsi_command(us, command, 12); 549 550 if (result) 551 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n", 552 result); 553 554 return result; 555 } 556 557 /* 558 * Write CIS Command: 12 bytes. 559 * byte 0: opcode: EE 560 * bytes 2-5: write address in shorts 561 * bytes 10-11: sector count 562 * 563 * This writes at the indicated address. Don't know how it differs 564 * from E9. Maybe it does not erase? However, it will also write to 565 * the CIS. 566 * 567 * When two such commands on the same page follow each other directly, 568 * the second one is not done. 569 */ 570 571 /* 572 * Write Command: 12 bytes. 573 * byte 0: opcode: E9 574 * bytes 2-5: write address (big-endian, counting shorts, sector aligned). 575 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned). 576 * bytes 10-11: sector count (big-endian, in 512-byte sectors). 577 * 578 * If write address equals erase address, the erase is done first, 579 * otherwise the write is done first. When erase address equals zero 580 * no erase is done? 581 */ 582 static int 583 sddr09_writeX(struct us_data *us, 584 unsigned long Waddress, unsigned long Eaddress, 585 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) { 586 587 unsigned char *command = us->iobuf; 588 int result; 589 590 command[0] = 0xE9; 591 command[1] = LUNBITS; 592 593 command[2] = MSB_of(Waddress>>16); 594 command[3] = LSB_of(Waddress>>16); 595 command[4] = MSB_of(Waddress & 0xFFFF); 596 command[5] = LSB_of(Waddress & 0xFFFF); 597 598 command[6] = MSB_of(Eaddress>>16); 599 command[7] = LSB_of(Eaddress>>16); 600 command[8] = MSB_of(Eaddress & 0xFFFF); 601 command[9] = LSB_of(Eaddress & 0xFFFF); 602 603 command[10] = MSB_of(nr_of_pages); 604 command[11] = LSB_of(nr_of_pages); 605 606 result = sddr09_send_scsi_command(us, command, 12); 607 608 if (result) { 609 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n", 610 result); 611 return result; 612 } 613 614 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe, 615 buf, bulklen, use_sg, NULL); 616 617 if (result != USB_STOR_XFER_GOOD) { 618 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n", 619 result); 620 return -EIO; 621 } 622 return 0; 623 } 624 625 /* erase address, write same address */ 626 static int 627 sddr09_write_inplace(struct us_data *us, unsigned long address, 628 int nr_of_pages, int pageshift, unsigned char *buf, 629 int use_sg) { 630 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT); 631 return sddr09_writeX(us, address, address, nr_of_pages, bulklen, 632 buf, use_sg); 633 } 634 635 #if 0 636 /* 637 * Read Scatter Gather Command: 3+4n bytes. 638 * byte 0: opcode E7 639 * byte 2: n 640 * bytes 4i-1,4i,4i+1: page address 641 * byte 4i+2: page count 642 * (i=1..n) 643 * 644 * This reads several pages from the card to a single memory buffer. 645 * The last two bits of byte 1 have the same meaning as for E8. 646 */ 647 static int 648 sddr09_read_sg_test_only(struct us_data *us) { 649 unsigned char *command = us->iobuf; 650 int result, bulklen, nsg, ct; 651 unsigned char *buf; 652 unsigned long address; 653 654 nsg = bulklen = 0; 655 command[0] = 0xE7; 656 command[1] = LUNBITS; 657 command[2] = 0; 658 address = 040000; ct = 1; 659 nsg++; 660 bulklen += (ct << 9); 661 command[4*nsg+2] = ct; 662 command[4*nsg+1] = ((address >> 9) & 0xFF); 663 command[4*nsg+0] = ((address >> 17) & 0xFF); 664 command[4*nsg-1] = ((address >> 25) & 0xFF); 665 666 address = 0340000; ct = 1; 667 nsg++; 668 bulklen += (ct << 9); 669 command[4*nsg+2] = ct; 670 command[4*nsg+1] = ((address >> 9) & 0xFF); 671 command[4*nsg+0] = ((address >> 17) & 0xFF); 672 command[4*nsg-1] = ((address >> 25) & 0xFF); 673 674 address = 01000000; ct = 2; 675 nsg++; 676 bulklen += (ct << 9); 677 command[4*nsg+2] = ct; 678 command[4*nsg+1] = ((address >> 9) & 0xFF); 679 command[4*nsg+0] = ((address >> 17) & 0xFF); 680 command[4*nsg-1] = ((address >> 25) & 0xFF); 681 682 command[2] = nsg; 683 684 result = sddr09_send_scsi_command(us, command, 4*nsg+3); 685 686 if (result) { 687 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n", 688 result); 689 return result; 690 } 691 692 buf = kmalloc(bulklen, GFP_NOIO); 693 if (!buf) 694 return -ENOMEM; 695 696 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 697 buf, bulklen, NULL); 698 kfree(buf); 699 if (result != USB_STOR_XFER_GOOD) { 700 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n", 701 result); 702 return -EIO; 703 } 704 705 return 0; 706 } 707 #endif 708 709 /* 710 * Read Status Command: 12 bytes. 711 * byte 0: opcode: EC 712 * 713 * Returns 64 bytes, all zero except for the first. 714 * bit 0: 1: Error 715 * bit 5: 1: Suspended 716 * bit 6: 1: Ready 717 * bit 7: 1: Not write-protected 718 */ 719 720 static int 721 sddr09_read_status(struct us_data *us, unsigned char *status) { 722 723 unsigned char *command = us->iobuf; 724 unsigned char *data = us->iobuf; 725 int result; 726 727 usb_stor_dbg(us, "Reading status...\n"); 728 729 memset(command, 0, 12); 730 command[0] = 0xEC; 731 command[1] = LUNBITS; 732 733 result = sddr09_send_scsi_command(us, command, 12); 734 if (result) 735 return result; 736 737 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 738 data, 64, NULL); 739 *status = data[0]; 740 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO); 741 } 742 743 static int 744 sddr09_read_data(struct us_data *us, 745 unsigned long address, 746 unsigned int sectors) { 747 748 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra; 749 unsigned char *buffer; 750 unsigned int lba, maxlba, pba; 751 unsigned int page, pages; 752 unsigned int len, offset; 753 struct scatterlist *sg; 754 int result; 755 756 // Figure out the initial LBA and page 757 lba = address >> info->blockshift; 758 page = (address & info->blockmask); 759 maxlba = info->capacity >> (info->pageshift + info->blockshift); 760 if (lba >= maxlba) 761 return -EIO; 762 763 // Since we only read in one block at a time, we have to create 764 // a bounce buffer and move the data a piece at a time between the 765 // bounce buffer and the actual transfer buffer. 766 767 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize; 768 buffer = kmalloc(len, GFP_NOIO); 769 if (buffer == NULL) { 770 printk(KERN_WARNING "sddr09_read_data: Out of memory\n"); 771 return -ENOMEM; 772 } 773 774 // This could be made much more efficient by checking for 775 // contiguous LBA's. Another exercise left to the student. 776 777 result = 0; 778 offset = 0; 779 sg = NULL; 780 781 while (sectors > 0) { 782 783 /* Find number of pages we can read in this block */ 784 pages = min(sectors, info->blocksize - page); 785 len = pages << info->pageshift; 786 787 /* Not overflowing capacity? */ 788 if (lba >= maxlba) { 789 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", 790 lba, maxlba); 791 result = -EIO; 792 break; 793 } 794 795 /* Find where this lba lives on disk */ 796 pba = info->lba_to_pba[lba]; 797 798 if (pba == UNDEF) { /* this lba was never written */ 799 800 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n", 801 pages, lba, page); 802 803 /* 804 * This is not really an error. It just means 805 * that the block has never been written. 806 * Instead of returning an error 807 * it is better to return all zero data. 808 */ 809 810 memset(buffer, 0, len); 811 812 } else { 813 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n", 814 pages, pba, lba, page); 815 816 address = ((pba << info->blockshift) + page) << 817 info->pageshift; 818 819 result = sddr09_read20(us, address>>1, 820 pages, info->pageshift, buffer, 0); 821 if (result) 822 break; 823 } 824 825 // Store the data in the transfer buffer 826 usb_stor_access_xfer_buf(buffer, len, us->srb, 827 &sg, &offset, TO_XFER_BUF); 828 829 page = 0; 830 lba++; 831 sectors -= pages; 832 } 833 834 kfree(buffer); 835 return result; 836 } 837 838 static unsigned int 839 sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) { 840 static unsigned int lastpba = 1; 841 int zonestart, end, i; 842 843 zonestart = (lba/1000) << 10; 844 end = info->capacity >> (info->blockshift + info->pageshift); 845 end -= zonestart; 846 if (end > 1024) 847 end = 1024; 848 849 for (i = lastpba+1; i < end; i++) { 850 if (info->pba_to_lba[zonestart+i] == UNDEF) { 851 lastpba = i; 852 return zonestart+i; 853 } 854 } 855 for (i = 0; i <= lastpba; i++) { 856 if (info->pba_to_lba[zonestart+i] == UNDEF) { 857 lastpba = i; 858 return zonestart+i; 859 } 860 } 861 return 0; 862 } 863 864 static int 865 sddr09_write_lba(struct us_data *us, unsigned int lba, 866 unsigned int page, unsigned int pages, 867 unsigned char *ptr, unsigned char *blockbuffer) { 868 869 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra; 870 unsigned long address; 871 unsigned int pba, lbap; 872 unsigned int pagelen; 873 unsigned char *bptr, *cptr, *xptr; 874 unsigned char ecc[3]; 875 int i, result, isnew; 876 877 lbap = ((lba % 1000) << 1) | 0x1000; 878 if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) 879 lbap ^= 1; 880 pba = info->lba_to_pba[lba]; 881 isnew = 0; 882 883 if (pba == UNDEF) { 884 pba = sddr09_find_unused_pba(info, lba); 885 if (!pba) { 886 printk(KERN_WARNING 887 "sddr09_write_lba: Out of unused blocks\n"); 888 return -ENOSPC; 889 } 890 info->pba_to_lba[pba] = lba; 891 info->lba_to_pba[lba] = pba; 892 isnew = 1; 893 } 894 895 if (pba == 1) { 896 /* 897 * Maybe it is impossible to write to PBA 1. 898 * Fake success, but don't do anything. 899 */ 900 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n"); 901 return 0; 902 } 903 904 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT); 905 906 /* read old contents */ 907 address = (pba << (info->pageshift + info->blockshift)); 908 result = sddr09_read22(us, address>>1, info->blocksize, 909 info->pageshift, blockbuffer, 0); 910 if (result) 911 return result; 912 913 /* check old contents and fill lba */ 914 for (i = 0; i < info->blocksize; i++) { 915 bptr = blockbuffer + i*pagelen; 916 cptr = bptr + info->pagesize; 917 nand_compute_ecc(bptr, ecc); 918 if (!nand_compare_ecc(cptr+13, ecc)) { 919 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n", 920 i, pba); 921 nand_store_ecc(cptr+13, ecc); 922 } 923 nand_compute_ecc(bptr+(info->pagesize / 2), ecc); 924 if (!nand_compare_ecc(cptr+8, ecc)) { 925 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n", 926 i, pba); 927 nand_store_ecc(cptr+8, ecc); 928 } 929 cptr[6] = cptr[11] = MSB_of(lbap); 930 cptr[7] = cptr[12] = LSB_of(lbap); 931 } 932 933 /* copy in new stuff and compute ECC */ 934 xptr = ptr; 935 for (i = page; i < page+pages; i++) { 936 bptr = blockbuffer + i*pagelen; 937 cptr = bptr + info->pagesize; 938 memcpy(bptr, xptr, info->pagesize); 939 xptr += info->pagesize; 940 nand_compute_ecc(bptr, ecc); 941 nand_store_ecc(cptr+13, ecc); 942 nand_compute_ecc(bptr+(info->pagesize / 2), ecc); 943 nand_store_ecc(cptr+8, ecc); 944 } 945 946 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba); 947 948 result = sddr09_write_inplace(us, address>>1, info->blocksize, 949 info->pageshift, blockbuffer, 0); 950 951 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result); 952 953 #if 0 954 { 955 unsigned char status = 0; 956 int result2 = sddr09_read_status(us, &status); 957 if (result2) 958 usb_stor_dbg(us, "cannot read status\n"); 959 else if (status != 0xc0) 960 usb_stor_dbg(us, "status after write: 0x%x\n", status); 961 } 962 #endif 963 964 #if 0 965 { 966 int result2 = sddr09_test_unit_ready(us); 967 } 968 #endif 969 970 return result; 971 } 972 973 static int 974 sddr09_write_data(struct us_data *us, 975 unsigned long address, 976 unsigned int sectors) { 977 978 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra; 979 unsigned int lba, maxlba, page, pages; 980 unsigned int pagelen, blocklen; 981 unsigned char *blockbuffer; 982 unsigned char *buffer; 983 unsigned int len, offset; 984 struct scatterlist *sg; 985 int result; 986 987 /* Figure out the initial LBA and page */ 988 lba = address >> info->blockshift; 989 page = (address & info->blockmask); 990 maxlba = info->capacity >> (info->pageshift + info->blockshift); 991 if (lba >= maxlba) 992 return -EIO; 993 994 /* 995 * blockbuffer is used for reading in the old data, overwriting 996 * with the new data, and performing ECC calculations 997 */ 998 999 /* 1000 * TODO: instead of doing kmalloc/kfree for each write, 1001 * add a bufferpointer to the info structure 1002 */ 1003 1004 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT); 1005 blocklen = (pagelen << info->blockshift); 1006 blockbuffer = kmalloc(blocklen, GFP_NOIO); 1007 if (!blockbuffer) { 1008 printk(KERN_WARNING "sddr09_write_data: Out of memory\n"); 1009 return -ENOMEM; 1010 } 1011 1012 /* 1013 * Since we don't write the user data directly to the device, 1014 * we have to create a bounce buffer and move the data a piece 1015 * at a time between the bounce buffer and the actual transfer buffer. 1016 */ 1017 1018 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize; 1019 buffer = kmalloc(len, GFP_NOIO); 1020 if (buffer == NULL) { 1021 printk(KERN_WARNING "sddr09_write_data: Out of memory\n"); 1022 kfree(blockbuffer); 1023 return -ENOMEM; 1024 } 1025 1026 result = 0; 1027 offset = 0; 1028 sg = NULL; 1029 1030 while (sectors > 0) { 1031 1032 /* Write as many sectors as possible in this block */ 1033 1034 pages = min(sectors, info->blocksize - page); 1035 len = (pages << info->pageshift); 1036 1037 /* Not overflowing capacity? */ 1038 if (lba >= maxlba) { 1039 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", 1040 lba, maxlba); 1041 result = -EIO; 1042 break; 1043 } 1044 1045 /* Get the data from the transfer buffer */ 1046 usb_stor_access_xfer_buf(buffer, len, us->srb, 1047 &sg, &offset, FROM_XFER_BUF); 1048 1049 result = sddr09_write_lba(us, lba, page, pages, 1050 buffer, blockbuffer); 1051 if (result) 1052 break; 1053 1054 page = 0; 1055 lba++; 1056 sectors -= pages; 1057 } 1058 1059 kfree(buffer); 1060 kfree(blockbuffer); 1061 1062 return result; 1063 } 1064 1065 static int 1066 sddr09_read_control(struct us_data *us, 1067 unsigned long address, 1068 unsigned int blocks, 1069 unsigned char *content, 1070 int use_sg) { 1071 1072 usb_stor_dbg(us, "Read control address %lu, blocks %d\n", 1073 address, blocks); 1074 1075 return sddr09_read21(us, address, blocks, 1076 CONTROL_SHIFT, content, use_sg); 1077 } 1078 1079 /* 1080 * Read Device ID Command: 12 bytes. 1081 * byte 0: opcode: ED 1082 * 1083 * Returns 2 bytes: Manufacturer ID and Device ID. 1084 * On more recent cards 3 bytes: the third byte is an option code A5 1085 * signifying that the secret command to read an 128-bit ID is available. 1086 * On still more recent cards 4 bytes: the fourth byte C0 means that 1087 * a second read ID cmd is available. 1088 */ 1089 static int 1090 sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) { 1091 unsigned char *command = us->iobuf; 1092 unsigned char *content = us->iobuf; 1093 int result, i; 1094 1095 memset(command, 0, 12); 1096 command[0] = 0xED; 1097 command[1] = LUNBITS; 1098 1099 result = sddr09_send_scsi_command(us, command, 12); 1100 if (result) 1101 return result; 1102 1103 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1104 content, 64, NULL); 1105 1106 for (i = 0; i < 4; i++) 1107 deviceID[i] = content[i]; 1108 1109 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO); 1110 } 1111 1112 static int 1113 sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) { 1114 int result; 1115 unsigned char status; 1116 const char *wp_fmt; 1117 1118 result = sddr09_read_status(us, &status); 1119 if (result) { 1120 usb_stor_dbg(us, "read_status fails\n"); 1121 return result; 1122 } 1123 if ((status & 0x80) == 0) { 1124 info->flags |= SDDR09_WP; /* write protected */ 1125 wp_fmt = " WP"; 1126 } else { 1127 wp_fmt = ""; 1128 } 1129 usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt, 1130 status & 0x40 ? " Ready" : "", 1131 status & LUNBITS ? " Suspended" : "", 1132 status & 0x01 ? " Error" : ""); 1133 1134 return 0; 1135 } 1136 1137 #if 0 1138 /* 1139 * Reset Command: 12 bytes. 1140 * byte 0: opcode: EB 1141 */ 1142 static int 1143 sddr09_reset(struct us_data *us) { 1144 1145 unsigned char *command = us->iobuf; 1146 1147 memset(command, 0, 12); 1148 command[0] = 0xEB; 1149 command[1] = LUNBITS; 1150 1151 return sddr09_send_scsi_command(us, command, 12); 1152 } 1153 #endif 1154 1155 static struct nand_flash_dev * 1156 sddr09_get_cardinfo(struct us_data *us, unsigned char flags) { 1157 struct nand_flash_dev *cardinfo; 1158 unsigned char deviceID[4]; 1159 char blurbtxt[256]; 1160 int result; 1161 1162 usb_stor_dbg(us, "Reading capacity...\n"); 1163 1164 result = sddr09_read_deviceID(us, deviceID); 1165 1166 if (result) { 1167 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result); 1168 printk(KERN_WARNING "sddr09: could not read card info\n"); 1169 return NULL; 1170 } 1171 1172 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID); 1173 1174 /* Byte 0 is the manufacturer */ 1175 sprintf(blurbtxt + strlen(blurbtxt), 1176 ": Manuf. %s", 1177 nand_flash_manufacturer(deviceID[0])); 1178 1179 /* Byte 1 is the device type */ 1180 cardinfo = nand_find_id(deviceID[1]); 1181 if (cardinfo) { 1182 /* 1183 * MB or MiB? It is neither. A 16 MB card has 1184 * 17301504 raw bytes, of which 16384000 are 1185 * usable for user data. 1186 */ 1187 sprintf(blurbtxt + strlen(blurbtxt), 1188 ", %d MB", 1<<(cardinfo->chipshift - 20)); 1189 } else { 1190 sprintf(blurbtxt + strlen(blurbtxt), 1191 ", type unrecognized"); 1192 } 1193 1194 /* Byte 2 is code to signal availability of 128-bit ID */ 1195 if (deviceID[2] == 0xa5) { 1196 sprintf(blurbtxt + strlen(blurbtxt), 1197 ", 128-bit ID"); 1198 } 1199 1200 /* Byte 3 announces the availability of another read ID command */ 1201 if (deviceID[3] == 0xc0) { 1202 sprintf(blurbtxt + strlen(blurbtxt), 1203 ", extra cmd"); 1204 } 1205 1206 if (flags & SDDR09_WP) 1207 sprintf(blurbtxt + strlen(blurbtxt), 1208 ", WP"); 1209 1210 printk(KERN_WARNING "%s\n", blurbtxt); 1211 1212 return cardinfo; 1213 } 1214 1215 static int 1216 sddr09_read_map(struct us_data *us) { 1217 1218 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra; 1219 int numblocks, alloc_len, alloc_blocks; 1220 int i, j, result; 1221 unsigned char *buffer, *buffer_end, *ptr; 1222 unsigned int lba, lbact; 1223 1224 if (!info->capacity) 1225 return -1; 1226 1227 /* 1228 * size of a block is 1 << (blockshift + pageshift) bytes 1229 * divide into the total capacity to get the number of blocks 1230 */ 1231 1232 numblocks = info->capacity >> (info->blockshift + info->pageshift); 1233 1234 /* 1235 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT) 1236 * but only use a 64 KB buffer 1237 * buffer size used must be a multiple of (1 << CONTROL_SHIFT) 1238 */ 1239 #define SDDR09_READ_MAP_BUFSZ 65536 1240 1241 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT); 1242 alloc_len = (alloc_blocks << CONTROL_SHIFT); 1243 buffer = kmalloc(alloc_len, GFP_NOIO); 1244 if (buffer == NULL) { 1245 printk(KERN_WARNING "sddr09_read_map: out of memory\n"); 1246 result = -1; 1247 goto done; 1248 } 1249 buffer_end = buffer + alloc_len; 1250 1251 #undef SDDR09_READ_MAP_BUFSZ 1252 1253 kfree(info->lba_to_pba); 1254 kfree(info->pba_to_lba); 1255 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO); 1256 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO); 1257 1258 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) { 1259 printk(KERN_WARNING "sddr09_read_map: out of memory\n"); 1260 result = -1; 1261 goto done; 1262 } 1263 1264 for (i = 0; i < numblocks; i++) 1265 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF; 1266 1267 /* 1268 * Define lba-pba translation table 1269 */ 1270 1271 ptr = buffer_end; 1272 for (i = 0; i < numblocks; i++) { 1273 ptr += (1 << CONTROL_SHIFT); 1274 if (ptr >= buffer_end) { 1275 unsigned long address; 1276 1277 address = i << (info->pageshift + info->blockshift); 1278 result = sddr09_read_control( 1279 us, address>>1, 1280 min(alloc_blocks, numblocks - i), 1281 buffer, 0); 1282 if (result) { 1283 result = -1; 1284 goto done; 1285 } 1286 ptr = buffer; 1287 } 1288 1289 if (i == 0 || i == 1) { 1290 info->pba_to_lba[i] = UNUSABLE; 1291 continue; 1292 } 1293 1294 /* special PBAs have control field 0^16 */ 1295 for (j = 0; j < 16; j++) 1296 if (ptr[j] != 0) 1297 goto nonz; 1298 info->pba_to_lba[i] = UNUSABLE; 1299 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n", 1300 i); 1301 continue; 1302 1303 nonz: 1304 /* unwritten PBAs have control field FF^16 */ 1305 for (j = 0; j < 16; j++) 1306 if (ptr[j] != 0xff) 1307 goto nonff; 1308 continue; 1309 1310 nonff: 1311 /* normal PBAs start with six FFs */ 1312 if (j < 6) { 1313 printk(KERN_WARNING 1314 "sddr09: PBA %d has no logical mapping: " 1315 "reserved area = %02X%02X%02X%02X " 1316 "data status %02X block status %02X\n", 1317 i, ptr[0], ptr[1], ptr[2], ptr[3], 1318 ptr[4], ptr[5]); 1319 info->pba_to_lba[i] = UNUSABLE; 1320 continue; 1321 } 1322 1323 if ((ptr[6] >> 4) != 0x01) { 1324 printk(KERN_WARNING 1325 "sddr09: PBA %d has invalid address field " 1326 "%02X%02X/%02X%02X\n", 1327 i, ptr[6], ptr[7], ptr[11], ptr[12]); 1328 info->pba_to_lba[i] = UNUSABLE; 1329 continue; 1330 } 1331 1332 /* check even parity */ 1333 if (parity[ptr[6] ^ ptr[7]]) { 1334 printk(KERN_WARNING 1335 "sddr09: Bad parity in LBA for block %d" 1336 " (%02X %02X)\n", i, ptr[6], ptr[7]); 1337 info->pba_to_lba[i] = UNUSABLE; 1338 continue; 1339 } 1340 1341 lba = short_pack(ptr[7], ptr[6]); 1342 lba = (lba & 0x07FF) >> 1; 1343 1344 /* 1345 * Every 1024 physical blocks ("zone"), the LBA numbers 1346 * go back to zero, but are within a higher block of LBA's. 1347 * Also, there is a maximum of 1000 LBA's per zone. 1348 * In other words, in PBA 1024-2047 you will find LBA 0-999 1349 * which are really LBA 1000-1999. This allows for 24 bad 1350 * or special physical blocks per zone. 1351 */ 1352 1353 if (lba >= 1000) { 1354 printk(KERN_WARNING 1355 "sddr09: Bad low LBA %d for block %d\n", 1356 lba, i); 1357 goto possibly_erase; 1358 } 1359 1360 lba += 1000*(i/0x400); 1361 1362 if (info->lba_to_pba[lba] != UNDEF) { 1363 printk(KERN_WARNING 1364 "sddr09: LBA %d seen for PBA %d and %d\n", 1365 lba, info->lba_to_pba[lba], i); 1366 goto possibly_erase; 1367 } 1368 1369 info->pba_to_lba[i] = lba; 1370 info->lba_to_pba[lba] = i; 1371 continue; 1372 1373 possibly_erase: 1374 if (erase_bad_lba_entries) { 1375 unsigned long address; 1376 1377 address = (i << (info->pageshift + info->blockshift)); 1378 sddr09_erase(us, address>>1); 1379 info->pba_to_lba[i] = UNDEF; 1380 } else 1381 info->pba_to_lba[i] = UNUSABLE; 1382 } 1383 1384 /* 1385 * Approximate capacity. This is not entirely correct yet, 1386 * since a zone with less than 1000 usable pages leads to 1387 * missing LBAs. Especially if it is the last zone, some 1388 * LBAs can be past capacity. 1389 */ 1390 lbact = 0; 1391 for (i = 0; i < numblocks; i += 1024) { 1392 int ct = 0; 1393 1394 for (j = 0; j < 1024 && i+j < numblocks; j++) { 1395 if (info->pba_to_lba[i+j] != UNUSABLE) { 1396 if (ct >= 1000) 1397 info->pba_to_lba[i+j] = SPARE; 1398 else 1399 ct++; 1400 } 1401 } 1402 lbact += ct; 1403 } 1404 info->lbact = lbact; 1405 usb_stor_dbg(us, "Found %d LBA's\n", lbact); 1406 result = 0; 1407 1408 done: 1409 if (result != 0) { 1410 kfree(info->lba_to_pba); 1411 kfree(info->pba_to_lba); 1412 info->lba_to_pba = NULL; 1413 info->pba_to_lba = NULL; 1414 } 1415 kfree(buffer); 1416 return result; 1417 } 1418 1419 static void 1420 sddr09_card_info_destructor(void *extra) { 1421 struct sddr09_card_info *info = (struct sddr09_card_info *)extra; 1422 1423 if (!info) 1424 return; 1425 1426 kfree(info->lba_to_pba); 1427 kfree(info->pba_to_lba); 1428 } 1429 1430 static int 1431 sddr09_common_init(struct us_data *us) { 1432 int result; 1433 1434 /* set the configuration -- STALL is an acceptable response here */ 1435 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) { 1436 usb_stor_dbg(us, "active config #%d != 1 ??\n", 1437 us->pusb_dev->actconfig->desc.bConfigurationValue); 1438 return -EINVAL; 1439 } 1440 1441 result = usb_reset_configuration(us->pusb_dev); 1442 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result); 1443 if (result == -EPIPE) { 1444 usb_stor_dbg(us, "-- stall on control interface\n"); 1445 } else if (result != 0) { 1446 /* it's not a stall, but another error -- time to bail */ 1447 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n"); 1448 return -EINVAL; 1449 } 1450 1451 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO); 1452 if (!us->extra) 1453 return -ENOMEM; 1454 us->extra_destructor = sddr09_card_info_destructor; 1455 1456 nand_init_ecc(); 1457 return 0; 1458 } 1459 1460 1461 /* 1462 * This is needed at a very early stage. If this is not listed in the 1463 * unusual devices list but called from here then LUN 0 of the combo reader 1464 * is not recognized. But I do not know what precisely these calls do. 1465 */ 1466 static int 1467 usb_stor_sddr09_dpcm_init(struct us_data *us) { 1468 int result; 1469 unsigned char *data = us->iobuf; 1470 1471 result = sddr09_common_init(us); 1472 if (result) 1473 return result; 1474 1475 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2); 1476 if (result) { 1477 usb_stor_dbg(us, "send_command fails\n"); 1478 return result; 1479 } 1480 1481 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]); 1482 // get 07 02 1483 1484 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2); 1485 if (result) { 1486 usb_stor_dbg(us, "2nd send_command fails\n"); 1487 return result; 1488 } 1489 1490 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]); 1491 // get 07 00 1492 1493 result = sddr09_request_sense(us, data, 18); 1494 if (result == 0 && data[2] != 0) { 1495 int j; 1496 for (j=0; j<18; j++) 1497 printk(" %02X", data[j]); 1498 printk("\n"); 1499 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00 1500 // 70: current command 1501 // sense key 0, sense code 0, extd sense code 0 1502 // additional transfer length * = sizeof(data) - 7 1503 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00 1504 // sense key 06, sense code 28: unit attention, 1505 // not ready to ready transition 1506 } 1507 1508 // test unit ready 1509 1510 return 0; /* not result */ 1511 } 1512 1513 /* 1514 * Transport for the Microtech DPCM-USB 1515 */ 1516 static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us) 1517 { 1518 int ret; 1519 1520 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun); 1521 1522 switch (srb->device->lun) { 1523 case 0: 1524 1525 /* 1526 * LUN 0 corresponds to the CompactFlash card reader. 1527 */ 1528 ret = usb_stor_CB_transport(srb, us); 1529 break; 1530 1531 case 1: 1532 1533 /* 1534 * LUN 1 corresponds to the SmartMedia card reader. 1535 */ 1536 1537 /* 1538 * Set the LUN to 0 (just in case). 1539 */ 1540 srb->device->lun = 0; 1541 ret = sddr09_transport(srb, us); 1542 srb->device->lun = 1; 1543 break; 1544 1545 default: 1546 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun); 1547 ret = USB_STOR_TRANSPORT_ERROR; 1548 break; 1549 } 1550 return ret; 1551 } 1552 1553 1554 /* 1555 * Transport for the Sandisk SDDR-09 1556 */ 1557 static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us) 1558 { 1559 static unsigned char sensekey = 0, sensecode = 0; 1560 static unsigned char havefakesense = 0; 1561 int result, i; 1562 unsigned char *ptr = us->iobuf; 1563 unsigned long capacity; 1564 unsigned int page, pages; 1565 1566 struct sddr09_card_info *info; 1567 1568 static unsigned char inquiry_response[8] = { 1569 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00 1570 }; 1571 1572 /* note: no block descriptor support */ 1573 static unsigned char mode_page_01[19] = { 1574 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00, 1575 0x01, 0x0A, 1576 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 1577 }; 1578 1579 info = (struct sddr09_card_info *)us->extra; 1580 1581 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) { 1582 /* for a faked command, we have to follow with a faked sense */ 1583 memset(ptr, 0, 18); 1584 ptr[0] = 0x70; 1585 ptr[2] = sensekey; 1586 ptr[7] = 11; 1587 ptr[12] = sensecode; 1588 usb_stor_set_xfer_buf(ptr, 18, srb); 1589 sensekey = sensecode = havefakesense = 0; 1590 return USB_STOR_TRANSPORT_GOOD; 1591 } 1592 1593 havefakesense = 1; 1594 1595 /* 1596 * Dummy up a response for INQUIRY since SDDR09 doesn't 1597 * respond to INQUIRY commands 1598 */ 1599 1600 if (srb->cmnd[0] == INQUIRY) { 1601 memcpy(ptr, inquiry_response, 8); 1602 fill_inquiry_response(us, ptr, 36); 1603 return USB_STOR_TRANSPORT_GOOD; 1604 } 1605 1606 if (srb->cmnd[0] == READ_CAPACITY) { 1607 struct nand_flash_dev *cardinfo; 1608 1609 sddr09_get_wp(us, info); /* read WP bit */ 1610 1611 cardinfo = sddr09_get_cardinfo(us, info->flags); 1612 if (!cardinfo) { 1613 /* probably no media */ 1614 init_error: 1615 sensekey = 0x02; /* not ready */ 1616 sensecode = 0x3a; /* medium not present */ 1617 return USB_STOR_TRANSPORT_FAILED; 1618 } 1619 1620 info->capacity = (1 << cardinfo->chipshift); 1621 info->pageshift = cardinfo->pageshift; 1622 info->pagesize = (1 << info->pageshift); 1623 info->blockshift = cardinfo->blockshift; 1624 info->blocksize = (1 << info->blockshift); 1625 info->blockmask = info->blocksize - 1; 1626 1627 // map initialization, must follow get_cardinfo() 1628 if (sddr09_read_map(us)) { 1629 /* probably out of memory */ 1630 goto init_error; 1631 } 1632 1633 // Report capacity 1634 1635 capacity = (info->lbact << info->blockshift) - 1; 1636 1637 ((__be32 *) ptr)[0] = cpu_to_be32(capacity); 1638 1639 // Report page size 1640 1641 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize); 1642 usb_stor_set_xfer_buf(ptr, 8, srb); 1643 1644 return USB_STOR_TRANSPORT_GOOD; 1645 } 1646 1647 if (srb->cmnd[0] == MODE_SENSE_10) { 1648 int modepage = (srb->cmnd[2] & 0x3F); 1649 1650 /* 1651 * They ask for the Read/Write error recovery page, 1652 * or for all pages. 1653 */ 1654 /* %% We should check DBD %% */ 1655 if (modepage == 0x01 || modepage == 0x3F) { 1656 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n", 1657 modepage); 1658 1659 memcpy(ptr, mode_page_01, sizeof(mode_page_01)); 1660 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2); 1661 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0; 1662 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb); 1663 return USB_STOR_TRANSPORT_GOOD; 1664 } 1665 1666 sensekey = 0x05; /* illegal request */ 1667 sensecode = 0x24; /* invalid field in CDB */ 1668 return USB_STOR_TRANSPORT_FAILED; 1669 } 1670 1671 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) 1672 return USB_STOR_TRANSPORT_GOOD; 1673 1674 havefakesense = 0; 1675 1676 if (srb->cmnd[0] == READ_10) { 1677 1678 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1679 page <<= 16; 1680 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1681 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1682 1683 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n", 1684 page, pages); 1685 1686 result = sddr09_read_data(us, page, pages); 1687 return (result == 0 ? USB_STOR_TRANSPORT_GOOD : 1688 USB_STOR_TRANSPORT_ERROR); 1689 } 1690 1691 if (srb->cmnd[0] == WRITE_10) { 1692 1693 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1694 page <<= 16; 1695 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1696 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1697 1698 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n", 1699 page, pages); 1700 1701 result = sddr09_write_data(us, page, pages); 1702 return (result == 0 ? USB_STOR_TRANSPORT_GOOD : 1703 USB_STOR_TRANSPORT_ERROR); 1704 } 1705 1706 /* 1707 * catch-all for all other commands, except 1708 * pass TEST_UNIT_READY and REQUEST_SENSE through 1709 */ 1710 if (srb->cmnd[0] != TEST_UNIT_READY && 1711 srb->cmnd[0] != REQUEST_SENSE) { 1712 sensekey = 0x05; /* illegal request */ 1713 sensecode = 0x20; /* invalid command */ 1714 havefakesense = 1; 1715 return USB_STOR_TRANSPORT_FAILED; 1716 } 1717 1718 for (; srb->cmd_len<12; srb->cmd_len++) 1719 srb->cmnd[srb->cmd_len] = 0; 1720 1721 srb->cmnd[1] = LUNBITS; 1722 1723 ptr[0] = 0; 1724 for (i=0; i<12; i++) 1725 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]); 1726 1727 usb_stor_dbg(us, "Send control for command %s\n", ptr); 1728 1729 result = sddr09_send_scsi_command(us, srb->cmnd, 12); 1730 if (result) { 1731 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n", 1732 result); 1733 return USB_STOR_TRANSPORT_ERROR; 1734 } 1735 1736 if (scsi_bufflen(srb) == 0) 1737 return USB_STOR_TRANSPORT_GOOD; 1738 1739 if (srb->sc_data_direction == DMA_TO_DEVICE || 1740 srb->sc_data_direction == DMA_FROM_DEVICE) { 1741 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE) 1742 ? us->send_bulk_pipe : us->recv_bulk_pipe; 1743 1744 usb_stor_dbg(us, "%s %d bytes\n", 1745 (srb->sc_data_direction == DMA_TO_DEVICE) ? 1746 "sending" : "receiving", 1747 scsi_bufflen(srb)); 1748 1749 result = usb_stor_bulk_srb(us, pipe, srb); 1750 1751 return (result == USB_STOR_XFER_GOOD ? 1752 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR); 1753 } 1754 1755 return USB_STOR_TRANSPORT_GOOD; 1756 } 1757 1758 /* 1759 * Initialization routine for the sddr09 subdriver 1760 */ 1761 static int 1762 usb_stor_sddr09_init(struct us_data *us) { 1763 return sddr09_common_init(us); 1764 } 1765 1766 static struct scsi_host_template sddr09_host_template; 1767 1768 static int sddr09_probe(struct usb_interface *intf, 1769 const struct usb_device_id *id) 1770 { 1771 struct us_data *us; 1772 int result; 1773 1774 result = usb_stor_probe1(&us, intf, id, 1775 (id - sddr09_usb_ids) + sddr09_unusual_dev_list, 1776 &sddr09_host_template); 1777 if (result) 1778 return result; 1779 1780 if (us->protocol == USB_PR_DPCM_USB) { 1781 us->transport_name = "Control/Bulk-EUSB/SDDR09"; 1782 us->transport = dpcm_transport; 1783 us->transport_reset = usb_stor_CB_reset; 1784 us->max_lun = 1; 1785 } else { 1786 us->transport_name = "EUSB/SDDR09"; 1787 us->transport = sddr09_transport; 1788 us->transport_reset = usb_stor_CB_reset; 1789 us->max_lun = 0; 1790 } 1791 1792 result = usb_stor_probe2(us); 1793 return result; 1794 } 1795 1796 static struct usb_driver sddr09_driver = { 1797 .name = DRV_NAME, 1798 .probe = sddr09_probe, 1799 .disconnect = usb_stor_disconnect, 1800 .suspend = usb_stor_suspend, 1801 .resume = usb_stor_resume, 1802 .reset_resume = usb_stor_reset_resume, 1803 .pre_reset = usb_stor_pre_reset, 1804 .post_reset = usb_stor_post_reset, 1805 .id_table = sddr09_usb_ids, 1806 .soft_unbind = 1, 1807 .no_dynamic_id = 1, 1808 }; 1809 1810 module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME); 1811