1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Alauda-based card readers 4 * 5 * Current development and maintenance by: 6 * (c) 2005 Daniel Drake <dsd@gentoo.org> 7 * 8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use. 9 * 10 * Alauda implements a vendor-specific command set to access two media reader 11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands 12 * which are accepted by these devices. 13 * 14 * The driver was developed through reverse-engineering, with the help of the 15 * sddr09 driver which has many similarities, and with some help from the 16 * (very old) vendor-supplied GPL sma03 driver. 17 * 18 * For protocol info, see http://alauda.sourceforge.net 19 */ 20 21 #include <linux/module.h> 22 #include <linux/slab.h> 23 24 #include <scsi/scsi.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_device.h> 27 28 #include "usb.h" 29 #include "transport.h" 30 #include "protocol.h" 31 #include "debug.h" 32 #include "scsiglue.h" 33 34 #define DRV_NAME "ums-alauda" 35 36 MODULE_DESCRIPTION("Driver for Alauda-based card readers"); 37 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>"); 38 MODULE_LICENSE("GPL"); 39 40 /* 41 * Status bytes 42 */ 43 #define ALAUDA_STATUS_ERROR 0x01 44 #define ALAUDA_STATUS_READY 0x40 45 46 /* 47 * Control opcodes (for request field) 48 */ 49 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08 50 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98 51 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a 52 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a 53 #define ALAUDA_GET_XD_MEDIA_SIG 0x86 54 #define ALAUDA_GET_SM_MEDIA_SIG 0x96 55 56 /* 57 * Bulk command identity (byte 0) 58 */ 59 #define ALAUDA_BULK_CMD 0x40 60 61 /* 62 * Bulk opcodes (byte 1) 63 */ 64 #define ALAUDA_BULK_GET_REDU_DATA 0x85 65 #define ALAUDA_BULK_READ_BLOCK 0x94 66 #define ALAUDA_BULK_ERASE_BLOCK 0xa3 67 #define ALAUDA_BULK_WRITE_BLOCK 0xb4 68 #define ALAUDA_BULK_GET_STATUS2 0xb7 69 #define ALAUDA_BULK_RESET_MEDIA 0xe0 70 71 /* 72 * Port to operate on (byte 8) 73 */ 74 #define ALAUDA_PORT_XD 0x00 75 #define ALAUDA_PORT_SM 0x01 76 77 /* 78 * LBA and PBA are unsigned ints. Special values. 79 */ 80 #define UNDEF 0xffff 81 #define SPARE 0xfffe 82 #define UNUSABLE 0xfffd 83 84 struct alauda_media_info { 85 unsigned long capacity; /* total media size in bytes */ 86 unsigned int pagesize; /* page size in bytes */ 87 unsigned int blocksize; /* number of pages per block */ 88 unsigned int uzonesize; /* number of usable blocks per zone */ 89 unsigned int zonesize; /* number of blocks per zone */ 90 unsigned int blockmask; /* mask to get page from address */ 91 92 unsigned char pageshift; 93 unsigned char blockshift; 94 unsigned char zoneshift; 95 96 u16 **lba_to_pba; /* logical to physical block map */ 97 u16 **pba_to_lba; /* physical to logical block map */ 98 }; 99 100 struct alauda_info { 101 struct alauda_media_info port[2]; 102 int wr_ep; /* endpoint to write data out of */ 103 104 unsigned char sense_key; 105 unsigned long sense_asc; /* additional sense code */ 106 unsigned long sense_ascq; /* additional sense code qualifier */ 107 }; 108 109 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) 110 #define LSB_of(s) ((s)&0xFF) 111 #define MSB_of(s) ((s)>>8) 112 113 #define MEDIA_PORT(us) us->srb->device->lun 114 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] 115 116 #define PBA_LO(pba) ((pba & 0xF) << 5) 117 #define PBA_HI(pba) (pba >> 3) 118 #define PBA_ZONE(pba) (pba >> 11) 119 120 static int init_alauda(struct us_data *us); 121 122 123 /* 124 * The table of devices 125 */ 126 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ 127 vendorName, productName, useProtocol, useTransport, \ 128 initFunction, flags) \ 129 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ 130 .driver_info = (flags) } 131 132 static struct usb_device_id alauda_usb_ids[] = { 133 # include "unusual_alauda.h" 134 { } /* Terminating entry */ 135 }; 136 MODULE_DEVICE_TABLE(usb, alauda_usb_ids); 137 138 #undef UNUSUAL_DEV 139 140 /* 141 * The flags table 142 */ 143 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ 144 vendor_name, product_name, use_protocol, use_transport, \ 145 init_function, Flags) \ 146 { \ 147 .vendorName = vendor_name, \ 148 .productName = product_name, \ 149 .useProtocol = use_protocol, \ 150 .useTransport = use_transport, \ 151 .initFunction = init_function, \ 152 } 153 154 static struct us_unusual_dev alauda_unusual_dev_list[] = { 155 # include "unusual_alauda.h" 156 { } /* Terminating entry */ 157 }; 158 159 #undef UNUSUAL_DEV 160 161 162 /* 163 * Media handling 164 */ 165 166 struct alauda_card_info { 167 unsigned char id; /* id byte */ 168 unsigned char chipshift; /* 1<<cs bytes total capacity */ 169 unsigned char pageshift; /* 1<<ps bytes in a page */ 170 unsigned char blockshift; /* 1<<bs pages per block */ 171 unsigned char zoneshift; /* 1<<zs blocks per zone */ 172 }; 173 174 static struct alauda_card_info alauda_card_ids[] = { 175 /* NAND flash */ 176 { 0x6e, 20, 8, 4, 8}, /* 1 MB */ 177 { 0xe8, 20, 8, 4, 8}, /* 1 MB */ 178 { 0xec, 20, 8, 4, 8}, /* 1 MB */ 179 { 0x64, 21, 8, 4, 9}, /* 2 MB */ 180 { 0xea, 21, 8, 4, 9}, /* 2 MB */ 181 { 0x6b, 22, 9, 4, 9}, /* 4 MB */ 182 { 0xe3, 22, 9, 4, 9}, /* 4 MB */ 183 { 0xe5, 22, 9, 4, 9}, /* 4 MB */ 184 { 0xe6, 23, 9, 4, 10}, /* 8 MB */ 185 { 0x73, 24, 9, 5, 10}, /* 16 MB */ 186 { 0x75, 25, 9, 5, 10}, /* 32 MB */ 187 { 0x76, 26, 9, 5, 10}, /* 64 MB */ 188 { 0x79, 27, 9, 5, 10}, /* 128 MB */ 189 { 0x71, 28, 9, 5, 10}, /* 256 MB */ 190 191 /* MASK ROM */ 192 { 0x5d, 21, 9, 4, 8}, /* 2 MB */ 193 { 0xd5, 22, 9, 4, 9}, /* 4 MB */ 194 { 0xd6, 23, 9, 4, 10}, /* 8 MB */ 195 { 0x57, 24, 9, 4, 11}, /* 16 MB */ 196 { 0x58, 25, 9, 4, 12}, /* 32 MB */ 197 { 0,} 198 }; 199 200 static struct alauda_card_info *alauda_card_find_id(unsigned char id) 201 { 202 int i; 203 204 for (i = 0; alauda_card_ids[i].id != 0; i++) 205 if (alauda_card_ids[i].id == id) 206 return &(alauda_card_ids[i]); 207 return NULL; 208 } 209 210 /* 211 * ECC computation. 212 */ 213 214 static unsigned char parity[256]; 215 static unsigned char ecc2[256]; 216 217 static void nand_init_ecc(void) 218 { 219 int i, j, a; 220 221 parity[0] = 0; 222 for (i = 1; i < 256; i++) 223 parity[i] = (parity[i&(i-1)] ^ 1); 224 225 for (i = 0; i < 256; i++) { 226 a = 0; 227 for (j = 0; j < 8; j++) { 228 if (i & (1<<j)) { 229 if ((j & 1) == 0) 230 a ^= 0x04; 231 if ((j & 2) == 0) 232 a ^= 0x10; 233 if ((j & 4) == 0) 234 a ^= 0x40; 235 } 236 } 237 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); 238 } 239 } 240 241 /* compute 3-byte ecc on 256 bytes */ 242 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) 243 { 244 int i, j, a; 245 unsigned char par = 0, bit, bits[8] = {0}; 246 247 /* collect 16 checksum bits */ 248 for (i = 0; i < 256; i++) { 249 par ^= data[i]; 250 bit = parity[data[i]]; 251 for (j = 0; j < 8; j++) 252 if ((i & (1<<j)) == 0) 253 bits[j] ^= bit; 254 } 255 256 /* put 4+4+4 = 12 bits in the ecc */ 257 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; 258 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 259 260 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; 261 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 262 263 ecc[2] = ecc2[par]; 264 } 265 266 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) 267 { 268 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); 269 } 270 271 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) 272 { 273 memcpy(data, ecc, 3); 274 } 275 276 /* 277 * Alauda driver 278 */ 279 280 /* 281 * Forget our PBA <---> LBA mappings for a particular port 282 */ 283 static void alauda_free_maps (struct alauda_media_info *media_info) 284 { 285 unsigned int shift = media_info->zoneshift 286 + media_info->blockshift + media_info->pageshift; 287 unsigned int num_zones = media_info->capacity >> shift; 288 unsigned int i; 289 290 if (media_info->lba_to_pba != NULL) 291 for (i = 0; i < num_zones; i++) { 292 kfree(media_info->lba_to_pba[i]); 293 media_info->lba_to_pba[i] = NULL; 294 } 295 296 if (media_info->pba_to_lba != NULL) 297 for (i = 0; i < num_zones; i++) { 298 kfree(media_info->pba_to_lba[i]); 299 media_info->pba_to_lba[i] = NULL; 300 } 301 } 302 303 /* 304 * Returns 2 bytes of status data 305 * The first byte describes media status, and second byte describes door status 306 */ 307 static int alauda_get_media_status(struct us_data *us, unsigned char *data) 308 { 309 int rc; 310 unsigned char command; 311 312 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 313 command = ALAUDA_GET_XD_MEDIA_STATUS; 314 else 315 command = ALAUDA_GET_SM_MEDIA_STATUS; 316 317 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 318 command, 0xc0, 0, 1, data, 2); 319 320 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]); 321 322 return rc; 323 } 324 325 /* 326 * Clears the "media was changed" bit so that we know when it changes again 327 * in the future. 328 */ 329 static int alauda_ack_media(struct us_data *us) 330 { 331 unsigned char command; 332 333 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 334 command = ALAUDA_ACK_XD_MEDIA_CHANGE; 335 else 336 command = ALAUDA_ACK_SM_MEDIA_CHANGE; 337 338 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 339 command, 0x40, 0, 1, NULL, 0); 340 } 341 342 /* 343 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, 344 * and some other details. 345 */ 346 static int alauda_get_media_signature(struct us_data *us, unsigned char *data) 347 { 348 unsigned char command; 349 350 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 351 command = ALAUDA_GET_XD_MEDIA_SIG; 352 else 353 command = ALAUDA_GET_SM_MEDIA_SIG; 354 355 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 356 command, 0xc0, 0, 0, data, 4); 357 } 358 359 /* 360 * Resets the media status (but not the whole device?) 361 */ 362 static int alauda_reset_media(struct us_data *us) 363 { 364 unsigned char *command = us->iobuf; 365 366 memset(command, 0, 9); 367 command[0] = ALAUDA_BULK_CMD; 368 command[1] = ALAUDA_BULK_RESET_MEDIA; 369 command[8] = MEDIA_PORT(us); 370 371 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 372 command, 9, NULL); 373 } 374 375 /* 376 * Examines the media and deduces capacity, etc. 377 */ 378 static int alauda_init_media(struct us_data *us) 379 { 380 unsigned char *data = us->iobuf; 381 int ready = 0; 382 struct alauda_card_info *media_info; 383 unsigned int num_zones; 384 385 while (ready == 0) { 386 msleep(20); 387 388 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 389 return USB_STOR_TRANSPORT_ERROR; 390 391 if (data[0] & 0x10) 392 ready = 1; 393 } 394 395 usb_stor_dbg(us, "We are ready for action!\n"); 396 397 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) 398 return USB_STOR_TRANSPORT_ERROR; 399 400 msleep(10); 401 402 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 403 return USB_STOR_TRANSPORT_ERROR; 404 405 if (data[0] != 0x14) { 406 usb_stor_dbg(us, "Media not ready after ack\n"); 407 return USB_STOR_TRANSPORT_ERROR; 408 } 409 410 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) 411 return USB_STOR_TRANSPORT_ERROR; 412 413 usb_stor_dbg(us, "Media signature: %4ph\n", data); 414 media_info = alauda_card_find_id(data[1]); 415 if (media_info == NULL) { 416 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n", 417 data); 418 return USB_STOR_TRANSPORT_ERROR; 419 } 420 421 MEDIA_INFO(us).capacity = 1 << media_info->chipshift; 422 usb_stor_dbg(us, "Found media with capacity: %ldMB\n", 423 MEDIA_INFO(us).capacity >> 20); 424 425 MEDIA_INFO(us).pageshift = media_info->pageshift; 426 MEDIA_INFO(us).blockshift = media_info->blockshift; 427 MEDIA_INFO(us).zoneshift = media_info->zoneshift; 428 429 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; 430 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; 431 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; 432 433 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; 434 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; 435 436 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 437 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 438 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 439 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 440 441 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) 442 return USB_STOR_TRANSPORT_ERROR; 443 444 return USB_STOR_TRANSPORT_GOOD; 445 } 446 447 /* 448 * Examines the media status and does the right thing when the media has gone, 449 * appeared, or changed. 450 */ 451 static int alauda_check_media(struct us_data *us) 452 { 453 struct alauda_info *info = (struct alauda_info *) us->extra; 454 unsigned char status[2]; 455 int rc; 456 457 rc = alauda_get_media_status(us, status); 458 459 /* Check for no media or door open */ 460 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) 461 || ((status[1] & 0x01) == 0)) { 462 usb_stor_dbg(us, "No media, or door open\n"); 463 alauda_free_maps(&MEDIA_INFO(us)); 464 info->sense_key = 0x02; 465 info->sense_asc = 0x3A; 466 info->sense_ascq = 0x00; 467 return USB_STOR_TRANSPORT_FAILED; 468 } 469 470 /* Check for media change */ 471 if (status[0] & 0x08) { 472 usb_stor_dbg(us, "Media change detected\n"); 473 alauda_free_maps(&MEDIA_INFO(us)); 474 alauda_init_media(us); 475 476 info->sense_key = UNIT_ATTENTION; 477 info->sense_asc = 0x28; 478 info->sense_ascq = 0x00; 479 return USB_STOR_TRANSPORT_FAILED; 480 } 481 482 return USB_STOR_TRANSPORT_GOOD; 483 } 484 485 /* 486 * Checks the status from the 2nd status register 487 * Returns 3 bytes of status data, only the first is known 488 */ 489 static int alauda_check_status2(struct us_data *us) 490 { 491 int rc; 492 unsigned char command[] = { 493 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, 494 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) 495 }; 496 unsigned char data[3]; 497 498 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 499 command, 9, NULL); 500 if (rc != USB_STOR_XFER_GOOD) 501 return rc; 502 503 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 504 data, 3, NULL); 505 if (rc != USB_STOR_XFER_GOOD) 506 return rc; 507 508 usb_stor_dbg(us, "%3ph\n", data); 509 if (data[0] & ALAUDA_STATUS_ERROR) 510 return USB_STOR_XFER_ERROR; 511 512 return USB_STOR_XFER_GOOD; 513 } 514 515 /* 516 * Gets the redundancy data for the first page of a PBA 517 * Returns 16 bytes. 518 */ 519 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) 520 { 521 int rc; 522 unsigned char command[] = { 523 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, 524 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) 525 }; 526 527 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 528 command, 9, NULL); 529 if (rc != USB_STOR_XFER_GOOD) 530 return rc; 531 532 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 533 data, 16, NULL); 534 } 535 536 /* 537 * Finds the first unused PBA in a zone 538 * Returns the absolute PBA of an unused PBA, or 0 if none found. 539 */ 540 static u16 alauda_find_unused_pba(struct alauda_media_info *info, 541 unsigned int zone) 542 { 543 u16 *pba_to_lba = info->pba_to_lba[zone]; 544 unsigned int i; 545 546 for (i = 0; i < info->zonesize; i++) 547 if (pba_to_lba[i] == UNDEF) 548 return (zone << info->zoneshift) + i; 549 550 return 0; 551 } 552 553 /* 554 * Reads the redundancy data for all PBA's in a zone 555 * Produces lba <--> pba mappings 556 */ 557 static int alauda_read_map(struct us_data *us, unsigned int zone) 558 { 559 unsigned char *data = us->iobuf; 560 int result; 561 int i, j; 562 unsigned int zonesize = MEDIA_INFO(us).zonesize; 563 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 564 unsigned int lba_offset, lba_real, blocknum; 565 unsigned int zone_base_lba = zone * uzonesize; 566 unsigned int zone_base_pba = zone * zonesize; 567 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 568 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 569 if (lba_to_pba == NULL || pba_to_lba == NULL) { 570 result = USB_STOR_TRANSPORT_ERROR; 571 goto error; 572 } 573 574 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone); 575 576 /* 1024 PBA's per zone */ 577 for (i = 0; i < zonesize; i++) 578 lba_to_pba[i] = pba_to_lba[i] = UNDEF; 579 580 for (i = 0; i < zonesize; i++) { 581 blocknum = zone_base_pba + i; 582 583 result = alauda_get_redu_data(us, blocknum, data); 584 if (result != USB_STOR_XFER_GOOD) { 585 result = USB_STOR_TRANSPORT_ERROR; 586 goto error; 587 } 588 589 /* special PBAs have control field 0^16 */ 590 for (j = 0; j < 16; j++) 591 if (data[j] != 0) 592 goto nonz; 593 pba_to_lba[i] = UNUSABLE; 594 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum); 595 continue; 596 597 nonz: 598 /* unwritten PBAs have control field FF^16 */ 599 for (j = 0; j < 16; j++) 600 if (data[j] != 0xff) 601 goto nonff; 602 continue; 603 604 nonff: 605 /* normal PBAs start with six FFs */ 606 if (j < 6) { 607 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n", 608 blocknum, 609 data[0], data[1], data[2], data[3], 610 data[4], data[5]); 611 pba_to_lba[i] = UNUSABLE; 612 continue; 613 } 614 615 if ((data[6] >> 4) != 0x01) { 616 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n", 617 blocknum, data[6], data[7], 618 data[11], data[12]); 619 pba_to_lba[i] = UNUSABLE; 620 continue; 621 } 622 623 /* check even parity */ 624 if (parity[data[6] ^ data[7]]) { 625 printk(KERN_WARNING 626 "alauda_read_map: Bad parity in LBA for block %d" 627 " (%02X %02X)\n", i, data[6], data[7]); 628 pba_to_lba[i] = UNUSABLE; 629 continue; 630 } 631 632 lba_offset = short_pack(data[7], data[6]); 633 lba_offset = (lba_offset & 0x07FF) >> 1; 634 lba_real = lba_offset + zone_base_lba; 635 636 /* 637 * Every 1024 physical blocks ("zone"), the LBA numbers 638 * go back to zero, but are within a higher block of LBA's. 639 * Also, there is a maximum of 1000 LBA's per zone. 640 * In other words, in PBA 1024-2047 you will find LBA 0-999 641 * which are really LBA 1000-1999. This allows for 24 bad 642 * or special physical blocks per zone. 643 */ 644 645 if (lba_offset >= uzonesize) { 646 printk(KERN_WARNING 647 "alauda_read_map: Bad low LBA %d for block %d\n", 648 lba_real, blocknum); 649 continue; 650 } 651 652 if (lba_to_pba[lba_offset] != UNDEF) { 653 printk(KERN_WARNING 654 "alauda_read_map: " 655 "LBA %d seen for PBA %d and %d\n", 656 lba_real, lba_to_pba[lba_offset], blocknum); 657 continue; 658 } 659 660 pba_to_lba[i] = lba_real; 661 lba_to_pba[lba_offset] = blocknum; 662 continue; 663 } 664 665 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; 666 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; 667 result = 0; 668 goto out; 669 670 error: 671 kfree(lba_to_pba); 672 kfree(pba_to_lba); 673 out: 674 return result; 675 } 676 677 /* 678 * Checks to see whether we have already mapped a certain zone 679 * If we haven't, the map is generated 680 */ 681 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) 682 { 683 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL 684 || MEDIA_INFO(us).pba_to_lba[zone] == NULL) 685 alauda_read_map(us, zone); 686 } 687 688 /* 689 * Erases an entire block 690 */ 691 static int alauda_erase_block(struct us_data *us, u16 pba) 692 { 693 int rc; 694 unsigned char command[] = { 695 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), 696 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) 697 }; 698 unsigned char buf[2]; 699 700 usb_stor_dbg(us, "Erasing PBA %d\n", pba); 701 702 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 703 command, 9, NULL); 704 if (rc != USB_STOR_XFER_GOOD) 705 return rc; 706 707 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 708 buf, 2, NULL); 709 if (rc != USB_STOR_XFER_GOOD) 710 return rc; 711 712 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]); 713 return rc; 714 } 715 716 /* 717 * Reads data from a certain offset page inside a PBA, including interleaved 718 * redundancy data. Returns (pagesize+64)*pages bytes in data. 719 */ 720 static int alauda_read_block_raw(struct us_data *us, u16 pba, 721 unsigned int page, unsigned int pages, unsigned char *data) 722 { 723 int rc; 724 unsigned char command[] = { 725 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), 726 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) 727 }; 728 729 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages); 730 731 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 732 command, 9, NULL); 733 if (rc != USB_STOR_XFER_GOOD) 734 return rc; 735 736 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 737 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); 738 } 739 740 /* 741 * Reads data from a certain offset page inside a PBA, excluding redundancy 742 * data. Returns pagesize*pages bytes in data. Note that data must be big enough 743 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' 744 * trailing bytes outside this function. 745 */ 746 static int alauda_read_block(struct us_data *us, u16 pba, 747 unsigned int page, unsigned int pages, unsigned char *data) 748 { 749 int i, rc; 750 unsigned int pagesize = MEDIA_INFO(us).pagesize; 751 752 rc = alauda_read_block_raw(us, pba, page, pages, data); 753 if (rc != USB_STOR_XFER_GOOD) 754 return rc; 755 756 /* Cut out the redundancy data */ 757 for (i = 0; i < pages; i++) { 758 int dest_offset = i * pagesize; 759 int src_offset = i * (pagesize + 64); 760 memmove(data + dest_offset, data + src_offset, pagesize); 761 } 762 763 return rc; 764 } 765 766 /* 767 * Writes an entire block of data and checks status after write. 768 * Redundancy data must be already included in data. Data should be 769 * (pagesize+64)*blocksize bytes in length. 770 */ 771 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) 772 { 773 int rc; 774 struct alauda_info *info = (struct alauda_info *) us->extra; 775 unsigned char command[] = { 776 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), 777 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) 778 }; 779 780 usb_stor_dbg(us, "pba %d\n", pba); 781 782 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 783 command, 9, NULL); 784 if (rc != USB_STOR_XFER_GOOD) 785 return rc; 786 787 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, 788 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, 789 NULL); 790 if (rc != USB_STOR_XFER_GOOD) 791 return rc; 792 793 return alauda_check_status2(us); 794 } 795 796 /* 797 * Write some data to a specific LBA. 798 */ 799 static int alauda_write_lba(struct us_data *us, u16 lba, 800 unsigned int page, unsigned int pages, 801 unsigned char *ptr, unsigned char *blockbuffer) 802 { 803 u16 pba, lbap, new_pba; 804 unsigned char *bptr, *cptr, *xptr; 805 unsigned char ecc[3]; 806 int i, result; 807 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 808 unsigned int zonesize = MEDIA_INFO(us).zonesize; 809 unsigned int pagesize = MEDIA_INFO(us).pagesize; 810 unsigned int blocksize = MEDIA_INFO(us).blocksize; 811 unsigned int lba_offset = lba % uzonesize; 812 unsigned int new_pba_offset; 813 unsigned int zone = lba / uzonesize; 814 815 alauda_ensure_map_for_zone(us, zone); 816 817 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 818 if (pba == 1) { 819 /* 820 * Maybe it is impossible to write to PBA 1. 821 * Fake success, but don't do anything. 822 */ 823 printk(KERN_WARNING 824 "alauda_write_lba: avoid writing to pba 1\n"); 825 return USB_STOR_TRANSPORT_GOOD; 826 } 827 828 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); 829 if (!new_pba) { 830 printk(KERN_WARNING 831 "alauda_write_lba: Out of unused blocks\n"); 832 return USB_STOR_TRANSPORT_ERROR; 833 } 834 835 /* read old contents */ 836 if (pba != UNDEF) { 837 result = alauda_read_block_raw(us, pba, 0, 838 blocksize, blockbuffer); 839 if (result != USB_STOR_XFER_GOOD) 840 return result; 841 } else { 842 memset(blockbuffer, 0, blocksize * (pagesize + 64)); 843 } 844 845 lbap = (lba_offset << 1) | 0x1000; 846 if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) 847 lbap ^= 1; 848 849 /* check old contents and fill lba */ 850 for (i = 0; i < blocksize; i++) { 851 bptr = blockbuffer + (i * (pagesize + 64)); 852 cptr = bptr + pagesize; 853 nand_compute_ecc(bptr, ecc); 854 if (!nand_compare_ecc(cptr+13, ecc)) { 855 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n", 856 i, pba); 857 nand_store_ecc(cptr+13, ecc); 858 } 859 nand_compute_ecc(bptr + (pagesize / 2), ecc); 860 if (!nand_compare_ecc(cptr+8, ecc)) { 861 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n", 862 i, pba); 863 nand_store_ecc(cptr+8, ecc); 864 } 865 cptr[6] = cptr[11] = MSB_of(lbap); 866 cptr[7] = cptr[12] = LSB_of(lbap); 867 } 868 869 /* copy in new stuff and compute ECC */ 870 xptr = ptr; 871 for (i = page; i < page+pages; i++) { 872 bptr = blockbuffer + (i * (pagesize + 64)); 873 cptr = bptr + pagesize; 874 memcpy(bptr, xptr, pagesize); 875 xptr += pagesize; 876 nand_compute_ecc(bptr, ecc); 877 nand_store_ecc(cptr+13, ecc); 878 nand_compute_ecc(bptr + (pagesize / 2), ecc); 879 nand_store_ecc(cptr+8, ecc); 880 } 881 882 result = alauda_write_block(us, new_pba, blockbuffer); 883 if (result != USB_STOR_XFER_GOOD) 884 return result; 885 886 new_pba_offset = new_pba - (zone * zonesize); 887 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; 888 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; 889 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba); 890 891 if (pba != UNDEF) { 892 unsigned int pba_offset = pba - (zone * zonesize); 893 result = alauda_erase_block(us, pba); 894 if (result != USB_STOR_XFER_GOOD) 895 return result; 896 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; 897 } 898 899 return USB_STOR_TRANSPORT_GOOD; 900 } 901 902 /* 903 * Read data from a specific sector address 904 */ 905 static int alauda_read_data(struct us_data *us, unsigned long address, 906 unsigned int sectors) 907 { 908 unsigned char *buffer; 909 u16 lba, max_lba; 910 unsigned int page, len, offset; 911 unsigned int blockshift = MEDIA_INFO(us).blockshift; 912 unsigned int pageshift = MEDIA_INFO(us).pageshift; 913 unsigned int blocksize = MEDIA_INFO(us).blocksize; 914 unsigned int pagesize = MEDIA_INFO(us).pagesize; 915 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 916 struct scatterlist *sg; 917 int result; 918 919 /* 920 * Since we only read in one block at a time, we have to create 921 * a bounce buffer and move the data a piece at a time between the 922 * bounce buffer and the actual transfer buffer. 923 * We make this buffer big enough to hold temporary redundancy data, 924 * which we use when reading the data blocks. 925 */ 926 927 len = min(sectors, blocksize) * (pagesize + 64); 928 buffer = kmalloc(len, GFP_NOIO); 929 if (!buffer) 930 return USB_STOR_TRANSPORT_ERROR; 931 932 /* Figure out the initial LBA and page */ 933 lba = address >> blockshift; 934 page = (address & MEDIA_INFO(us).blockmask); 935 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); 936 937 result = USB_STOR_TRANSPORT_GOOD; 938 offset = 0; 939 sg = NULL; 940 941 while (sectors > 0) { 942 unsigned int zone = lba / uzonesize; /* integer division */ 943 unsigned int lba_offset = lba - (zone * uzonesize); 944 unsigned int pages; 945 u16 pba; 946 alauda_ensure_map_for_zone(us, zone); 947 948 /* Not overflowing capacity? */ 949 if (lba >= max_lba) { 950 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", 951 lba, max_lba); 952 result = USB_STOR_TRANSPORT_ERROR; 953 break; 954 } 955 956 /* Find number of pages we can read in this block */ 957 pages = min(sectors, blocksize - page); 958 len = pages << pageshift; 959 960 /* Find where this lba lives on disk */ 961 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 962 963 if (pba == UNDEF) { /* this lba was never written */ 964 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n", 965 pages, lba, page); 966 967 /* 968 * This is not really an error. It just means 969 * that the block has never been written. 970 * Instead of returning USB_STOR_TRANSPORT_ERROR 971 * it is better to return all zero data. 972 */ 973 974 memset(buffer, 0, len); 975 } else { 976 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n", 977 pages, pba, lba, page); 978 979 result = alauda_read_block(us, pba, page, pages, buffer); 980 if (result != USB_STOR_TRANSPORT_GOOD) 981 break; 982 } 983 984 /* Store the data in the transfer buffer */ 985 usb_stor_access_xfer_buf(buffer, len, us->srb, 986 &sg, &offset, TO_XFER_BUF); 987 988 page = 0; 989 lba++; 990 sectors -= pages; 991 } 992 993 kfree(buffer); 994 return result; 995 } 996 997 /* 998 * Write data to a specific sector address 999 */ 1000 static int alauda_write_data(struct us_data *us, unsigned long address, 1001 unsigned int sectors) 1002 { 1003 unsigned char *buffer, *blockbuffer; 1004 unsigned int page, len, offset; 1005 unsigned int blockshift = MEDIA_INFO(us).blockshift; 1006 unsigned int pageshift = MEDIA_INFO(us).pageshift; 1007 unsigned int blocksize = MEDIA_INFO(us).blocksize; 1008 unsigned int pagesize = MEDIA_INFO(us).pagesize; 1009 struct scatterlist *sg; 1010 u16 lba, max_lba; 1011 int result; 1012 1013 /* 1014 * Since we don't write the user data directly to the device, 1015 * we have to create a bounce buffer and move the data a piece 1016 * at a time between the bounce buffer and the actual transfer buffer. 1017 */ 1018 1019 len = min(sectors, blocksize) * pagesize; 1020 buffer = kmalloc(len, GFP_NOIO); 1021 if (!buffer) 1022 return USB_STOR_TRANSPORT_ERROR; 1023 1024 /* 1025 * We also need a temporary block buffer, where we read in the old data, 1026 * overwrite parts with the new data, and manipulate the redundancy data 1027 */ 1028 blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO); 1029 if (!blockbuffer) { 1030 kfree(buffer); 1031 return USB_STOR_TRANSPORT_ERROR; 1032 } 1033 1034 /* Figure out the initial LBA and page */ 1035 lba = address >> blockshift; 1036 page = (address & MEDIA_INFO(us).blockmask); 1037 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); 1038 1039 result = USB_STOR_TRANSPORT_GOOD; 1040 offset = 0; 1041 sg = NULL; 1042 1043 while (sectors > 0) { 1044 /* Write as many sectors as possible in this block */ 1045 unsigned int pages = min(sectors, blocksize - page); 1046 len = pages << pageshift; 1047 1048 /* Not overflowing capacity? */ 1049 if (lba >= max_lba) { 1050 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n", 1051 lba, max_lba); 1052 result = USB_STOR_TRANSPORT_ERROR; 1053 break; 1054 } 1055 1056 /* Get the data from the transfer buffer */ 1057 usb_stor_access_xfer_buf(buffer, len, us->srb, 1058 &sg, &offset, FROM_XFER_BUF); 1059 1060 result = alauda_write_lba(us, lba, page, pages, buffer, 1061 blockbuffer); 1062 if (result != USB_STOR_TRANSPORT_GOOD) 1063 break; 1064 1065 page = 0; 1066 lba++; 1067 sectors -= pages; 1068 } 1069 1070 kfree(buffer); 1071 kfree(blockbuffer); 1072 return result; 1073 } 1074 1075 /* 1076 * Our interface with the rest of the world 1077 */ 1078 1079 static void alauda_info_destructor(void *extra) 1080 { 1081 struct alauda_info *info = (struct alauda_info *) extra; 1082 int port; 1083 1084 if (!info) 1085 return; 1086 1087 for (port = 0; port < 2; port++) { 1088 struct alauda_media_info *media_info = &info->port[port]; 1089 1090 alauda_free_maps(media_info); 1091 kfree(media_info->lba_to_pba); 1092 kfree(media_info->pba_to_lba); 1093 } 1094 } 1095 1096 /* 1097 * Initialize alauda_info struct and find the data-write endpoint 1098 */ 1099 static int init_alauda(struct us_data *us) 1100 { 1101 struct alauda_info *info; 1102 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; 1103 nand_init_ecc(); 1104 1105 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); 1106 if (!us->extra) 1107 return USB_STOR_TRANSPORT_ERROR; 1108 1109 info = (struct alauda_info *) us->extra; 1110 us->extra_destructor = alauda_info_destructor; 1111 1112 info->wr_ep = usb_sndbulkpipe(us->pusb_dev, 1113 altsetting->endpoint[0].desc.bEndpointAddress 1114 & USB_ENDPOINT_NUMBER_MASK); 1115 1116 return USB_STOR_TRANSPORT_GOOD; 1117 } 1118 1119 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) 1120 { 1121 int rc; 1122 struct alauda_info *info = (struct alauda_info *) us->extra; 1123 unsigned char *ptr = us->iobuf; 1124 static unsigned char inquiry_response[36] = { 1125 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 1126 }; 1127 1128 if (srb->cmnd[0] == INQUIRY) { 1129 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n"); 1130 memcpy(ptr, inquiry_response, sizeof(inquiry_response)); 1131 fill_inquiry_response(us, ptr, 36); 1132 return USB_STOR_TRANSPORT_GOOD; 1133 } 1134 1135 if (srb->cmnd[0] == TEST_UNIT_READY) { 1136 usb_stor_dbg(us, "TEST_UNIT_READY\n"); 1137 return alauda_check_media(us); 1138 } 1139 1140 if (srb->cmnd[0] == READ_CAPACITY) { 1141 unsigned int num_zones; 1142 unsigned long capacity; 1143 1144 rc = alauda_check_media(us); 1145 if (rc != USB_STOR_TRANSPORT_GOOD) 1146 return rc; 1147 1148 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 1149 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 1150 1151 capacity = num_zones * MEDIA_INFO(us).uzonesize 1152 * MEDIA_INFO(us).blocksize; 1153 1154 /* Report capacity and page size */ 1155 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); 1156 ((__be32 *) ptr)[1] = cpu_to_be32(512); 1157 1158 usb_stor_set_xfer_buf(ptr, 8, srb); 1159 return USB_STOR_TRANSPORT_GOOD; 1160 } 1161 1162 if (srb->cmnd[0] == READ_10) { 1163 unsigned int page, pages; 1164 1165 rc = alauda_check_media(us); 1166 if (rc != USB_STOR_TRANSPORT_GOOD) 1167 return rc; 1168 1169 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1170 page <<= 16; 1171 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1172 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1173 1174 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages); 1175 1176 return alauda_read_data(us, page, pages); 1177 } 1178 1179 if (srb->cmnd[0] == WRITE_10) { 1180 unsigned int page, pages; 1181 1182 rc = alauda_check_media(us); 1183 if (rc != USB_STOR_TRANSPORT_GOOD) 1184 return rc; 1185 1186 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1187 page <<= 16; 1188 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1189 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1190 1191 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages); 1192 1193 return alauda_write_data(us, page, pages); 1194 } 1195 1196 if (srb->cmnd[0] == REQUEST_SENSE) { 1197 usb_stor_dbg(us, "REQUEST_SENSE\n"); 1198 1199 memset(ptr, 0, 18); 1200 ptr[0] = 0xF0; 1201 ptr[2] = info->sense_key; 1202 ptr[7] = 11; 1203 ptr[12] = info->sense_asc; 1204 ptr[13] = info->sense_ascq; 1205 usb_stor_set_xfer_buf(ptr, 18, srb); 1206 1207 return USB_STOR_TRANSPORT_GOOD; 1208 } 1209 1210 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { 1211 /* 1212 * sure. whatever. not like we can stop the user from popping 1213 * the media out of the device (no locking doors, etc) 1214 */ 1215 return USB_STOR_TRANSPORT_GOOD; 1216 } 1217 1218 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n", 1219 srb->cmnd[0], srb->cmnd[0]); 1220 info->sense_key = 0x05; 1221 info->sense_asc = 0x20; 1222 info->sense_ascq = 0x00; 1223 return USB_STOR_TRANSPORT_FAILED; 1224 } 1225 1226 static struct scsi_host_template alauda_host_template; 1227 1228 static int alauda_probe(struct usb_interface *intf, 1229 const struct usb_device_id *id) 1230 { 1231 struct us_data *us; 1232 int result; 1233 1234 result = usb_stor_probe1(&us, intf, id, 1235 (id - alauda_usb_ids) + alauda_unusual_dev_list, 1236 &alauda_host_template); 1237 if (result) 1238 return result; 1239 1240 us->transport_name = "Alauda Control/Bulk"; 1241 us->transport = alauda_transport; 1242 us->transport_reset = usb_stor_Bulk_reset; 1243 us->max_lun = 1; 1244 1245 result = usb_stor_probe2(us); 1246 return result; 1247 } 1248 1249 static struct usb_driver alauda_driver = { 1250 .name = DRV_NAME, 1251 .probe = alauda_probe, 1252 .disconnect = usb_stor_disconnect, 1253 .suspend = usb_stor_suspend, 1254 .resume = usb_stor_resume, 1255 .reset_resume = usb_stor_reset_resume, 1256 .pre_reset = usb_stor_pre_reset, 1257 .post_reset = usb_stor_post_reset, 1258 .id_table = alauda_usb_ids, 1259 .soft_unbind = 1, 1260 .no_dynamic_id = 1, 1261 }; 1262 1263 module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME); 1264