1 /* 2 * Driver for Alauda-based card readers 3 * 4 * Current development and maintenance by: 5 * (c) 2005 Daniel Drake <dsd@gentoo.org> 6 * 7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use. 8 * 9 * Alauda implements a vendor-specific command set to access two media reader 10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands 11 * which are accepted by these devices. 12 * 13 * The driver was developed through reverse-engineering, with the help of the 14 * sddr09 driver which has many similarities, and with some help from the 15 * (very old) vendor-supplied GPL sma03 driver. 16 * 17 * For protocol info, see http://alauda.sourceforge.net 18 * 19 * This program is free software; you can redistribute it and/or modify it 20 * under the terms of the GNU General Public License as published by the 21 * Free Software Foundation; either version 2, or (at your option) any 22 * later version. 23 * 24 * This program is distributed in the hope that it will be useful, but 25 * WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 27 * General Public License for more details. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/slab.h> 36 37 #include <scsi/scsi.h> 38 #include <scsi/scsi_cmnd.h> 39 #include <scsi/scsi_device.h> 40 41 #include "usb.h" 42 #include "transport.h" 43 #include "protocol.h" 44 #include "debug.h" 45 46 MODULE_DESCRIPTION("Driver for Alauda-based card readers"); 47 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>"); 48 MODULE_LICENSE("GPL"); 49 50 /* 51 * Status bytes 52 */ 53 #define ALAUDA_STATUS_ERROR 0x01 54 #define ALAUDA_STATUS_READY 0x40 55 56 /* 57 * Control opcodes (for request field) 58 */ 59 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08 60 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98 61 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a 62 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a 63 #define ALAUDA_GET_XD_MEDIA_SIG 0x86 64 #define ALAUDA_GET_SM_MEDIA_SIG 0x96 65 66 /* 67 * Bulk command identity (byte 0) 68 */ 69 #define ALAUDA_BULK_CMD 0x40 70 71 /* 72 * Bulk opcodes (byte 1) 73 */ 74 #define ALAUDA_BULK_GET_REDU_DATA 0x85 75 #define ALAUDA_BULK_READ_BLOCK 0x94 76 #define ALAUDA_BULK_ERASE_BLOCK 0xa3 77 #define ALAUDA_BULK_WRITE_BLOCK 0xb4 78 #define ALAUDA_BULK_GET_STATUS2 0xb7 79 #define ALAUDA_BULK_RESET_MEDIA 0xe0 80 81 /* 82 * Port to operate on (byte 8) 83 */ 84 #define ALAUDA_PORT_XD 0x00 85 #define ALAUDA_PORT_SM 0x01 86 87 /* 88 * LBA and PBA are unsigned ints. Special values. 89 */ 90 #define UNDEF 0xffff 91 #define SPARE 0xfffe 92 #define UNUSABLE 0xfffd 93 94 struct alauda_media_info { 95 unsigned long capacity; /* total media size in bytes */ 96 unsigned int pagesize; /* page size in bytes */ 97 unsigned int blocksize; /* number of pages per block */ 98 unsigned int uzonesize; /* number of usable blocks per zone */ 99 unsigned int zonesize; /* number of blocks per zone */ 100 unsigned int blockmask; /* mask to get page from address */ 101 102 unsigned char pageshift; 103 unsigned char blockshift; 104 unsigned char zoneshift; 105 106 u16 **lba_to_pba; /* logical to physical block map */ 107 u16 **pba_to_lba; /* physical to logical block map */ 108 }; 109 110 struct alauda_info { 111 struct alauda_media_info port[2]; 112 int wr_ep; /* endpoint to write data out of */ 113 114 unsigned char sense_key; 115 unsigned long sense_asc; /* additional sense code */ 116 unsigned long sense_ascq; /* additional sense code qualifier */ 117 }; 118 119 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) 120 #define LSB_of(s) ((s)&0xFF) 121 #define MSB_of(s) ((s)>>8) 122 123 #define MEDIA_PORT(us) us->srb->device->lun 124 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] 125 126 #define PBA_LO(pba) ((pba & 0xF) << 5) 127 #define PBA_HI(pba) (pba >> 3) 128 #define PBA_ZONE(pba) (pba >> 11) 129 130 static int init_alauda(struct us_data *us); 131 132 133 /* 134 * The table of devices 135 */ 136 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ 137 vendorName, productName, useProtocol, useTransport, \ 138 initFunction, flags) \ 139 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ 140 .driver_info = (flags)|(USB_US_TYPE_STOR<<24) } 141 142 struct usb_device_id alauda_usb_ids[] = { 143 # include "unusual_alauda.h" 144 { } /* Terminating entry */ 145 }; 146 MODULE_DEVICE_TABLE(usb, alauda_usb_ids); 147 148 #undef UNUSUAL_DEV 149 150 /* 151 * The flags table 152 */ 153 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ 154 vendor_name, product_name, use_protocol, use_transport, \ 155 init_function, Flags) \ 156 { \ 157 .vendorName = vendor_name, \ 158 .productName = product_name, \ 159 .useProtocol = use_protocol, \ 160 .useTransport = use_transport, \ 161 .initFunction = init_function, \ 162 } 163 164 static struct us_unusual_dev alauda_unusual_dev_list[] = { 165 # include "unusual_alauda.h" 166 { } /* Terminating entry */ 167 }; 168 169 #undef UNUSUAL_DEV 170 171 172 /* 173 * Media handling 174 */ 175 176 struct alauda_card_info { 177 unsigned char id; /* id byte */ 178 unsigned char chipshift; /* 1<<cs bytes total capacity */ 179 unsigned char pageshift; /* 1<<ps bytes in a page */ 180 unsigned char blockshift; /* 1<<bs pages per block */ 181 unsigned char zoneshift; /* 1<<zs blocks per zone */ 182 }; 183 184 static struct alauda_card_info alauda_card_ids[] = { 185 /* NAND flash */ 186 { 0x6e, 20, 8, 4, 8}, /* 1 MB */ 187 { 0xe8, 20, 8, 4, 8}, /* 1 MB */ 188 { 0xec, 20, 8, 4, 8}, /* 1 MB */ 189 { 0x64, 21, 8, 4, 9}, /* 2 MB */ 190 { 0xea, 21, 8, 4, 9}, /* 2 MB */ 191 { 0x6b, 22, 9, 4, 9}, /* 4 MB */ 192 { 0xe3, 22, 9, 4, 9}, /* 4 MB */ 193 { 0xe5, 22, 9, 4, 9}, /* 4 MB */ 194 { 0xe6, 23, 9, 4, 10}, /* 8 MB */ 195 { 0x73, 24, 9, 5, 10}, /* 16 MB */ 196 { 0x75, 25, 9, 5, 10}, /* 32 MB */ 197 { 0x76, 26, 9, 5, 10}, /* 64 MB */ 198 { 0x79, 27, 9, 5, 10}, /* 128 MB */ 199 { 0x71, 28, 9, 5, 10}, /* 256 MB */ 200 201 /* MASK ROM */ 202 { 0x5d, 21, 9, 4, 8}, /* 2 MB */ 203 { 0xd5, 22, 9, 4, 9}, /* 4 MB */ 204 { 0xd6, 23, 9, 4, 10}, /* 8 MB */ 205 { 0x57, 24, 9, 4, 11}, /* 16 MB */ 206 { 0x58, 25, 9, 4, 12}, /* 32 MB */ 207 { 0,} 208 }; 209 210 static struct alauda_card_info *alauda_card_find_id(unsigned char id) { 211 int i; 212 213 for (i = 0; alauda_card_ids[i].id != 0; i++) 214 if (alauda_card_ids[i].id == id) 215 return &(alauda_card_ids[i]); 216 return NULL; 217 } 218 219 /* 220 * ECC computation. 221 */ 222 223 static unsigned char parity[256]; 224 static unsigned char ecc2[256]; 225 226 static void nand_init_ecc(void) { 227 int i, j, a; 228 229 parity[0] = 0; 230 for (i = 1; i < 256; i++) 231 parity[i] = (parity[i&(i-1)] ^ 1); 232 233 for (i = 0; i < 256; i++) { 234 a = 0; 235 for (j = 0; j < 8; j++) { 236 if (i & (1<<j)) { 237 if ((j & 1) == 0) 238 a ^= 0x04; 239 if ((j & 2) == 0) 240 a ^= 0x10; 241 if ((j & 4) == 0) 242 a ^= 0x40; 243 } 244 } 245 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); 246 } 247 } 248 249 /* compute 3-byte ecc on 256 bytes */ 250 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) { 251 int i, j, a; 252 unsigned char par, bit, bits[8]; 253 254 par = 0; 255 for (j = 0; j < 8; j++) 256 bits[j] = 0; 257 258 /* collect 16 checksum bits */ 259 for (i = 0; i < 256; i++) { 260 par ^= data[i]; 261 bit = parity[data[i]]; 262 for (j = 0; j < 8; j++) 263 if ((i & (1<<j)) == 0) 264 bits[j] ^= bit; 265 } 266 267 /* put 4+4+4 = 12 bits in the ecc */ 268 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; 269 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 270 271 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; 272 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 273 274 ecc[2] = ecc2[par]; 275 } 276 277 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) { 278 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); 279 } 280 281 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) { 282 memcpy(data, ecc, 3); 283 } 284 285 /* 286 * Alauda driver 287 */ 288 289 /* 290 * Forget our PBA <---> LBA mappings for a particular port 291 */ 292 static void alauda_free_maps (struct alauda_media_info *media_info) 293 { 294 unsigned int shift = media_info->zoneshift 295 + media_info->blockshift + media_info->pageshift; 296 unsigned int num_zones = media_info->capacity >> shift; 297 unsigned int i; 298 299 if (media_info->lba_to_pba != NULL) 300 for (i = 0; i < num_zones; i++) { 301 kfree(media_info->lba_to_pba[i]); 302 media_info->lba_to_pba[i] = NULL; 303 } 304 305 if (media_info->pba_to_lba != NULL) 306 for (i = 0; i < num_zones; i++) { 307 kfree(media_info->pba_to_lba[i]); 308 media_info->pba_to_lba[i] = NULL; 309 } 310 } 311 312 /* 313 * Returns 2 bytes of status data 314 * The first byte describes media status, and second byte describes door status 315 */ 316 static int alauda_get_media_status(struct us_data *us, unsigned char *data) 317 { 318 int rc; 319 unsigned char command; 320 321 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 322 command = ALAUDA_GET_XD_MEDIA_STATUS; 323 else 324 command = ALAUDA_GET_SM_MEDIA_STATUS; 325 326 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 327 command, 0xc0, 0, 1, data, 2); 328 329 US_DEBUGP("alauda_get_media_status: Media status %02X %02X\n", 330 data[0], data[1]); 331 332 return rc; 333 } 334 335 /* 336 * Clears the "media was changed" bit so that we know when it changes again 337 * in the future. 338 */ 339 static int alauda_ack_media(struct us_data *us) 340 { 341 unsigned char command; 342 343 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 344 command = ALAUDA_ACK_XD_MEDIA_CHANGE; 345 else 346 command = ALAUDA_ACK_SM_MEDIA_CHANGE; 347 348 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 349 command, 0x40, 0, 1, NULL, 0); 350 } 351 352 /* 353 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, 354 * and some other details. 355 */ 356 static int alauda_get_media_signature(struct us_data *us, unsigned char *data) 357 { 358 unsigned char command; 359 360 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 361 command = ALAUDA_GET_XD_MEDIA_SIG; 362 else 363 command = ALAUDA_GET_SM_MEDIA_SIG; 364 365 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 366 command, 0xc0, 0, 0, data, 4); 367 } 368 369 /* 370 * Resets the media status (but not the whole device?) 371 */ 372 static int alauda_reset_media(struct us_data *us) 373 { 374 unsigned char *command = us->iobuf; 375 376 memset(command, 0, 9); 377 command[0] = ALAUDA_BULK_CMD; 378 command[1] = ALAUDA_BULK_RESET_MEDIA; 379 command[8] = MEDIA_PORT(us); 380 381 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 382 command, 9, NULL); 383 } 384 385 /* 386 * Examines the media and deduces capacity, etc. 387 */ 388 static int alauda_init_media(struct us_data *us) 389 { 390 unsigned char *data = us->iobuf; 391 int ready = 0; 392 struct alauda_card_info *media_info; 393 unsigned int num_zones; 394 395 while (ready == 0) { 396 msleep(20); 397 398 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 399 return USB_STOR_TRANSPORT_ERROR; 400 401 if (data[0] & 0x10) 402 ready = 1; 403 } 404 405 US_DEBUGP("alauda_init_media: We are ready for action!\n"); 406 407 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) 408 return USB_STOR_TRANSPORT_ERROR; 409 410 msleep(10); 411 412 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 413 return USB_STOR_TRANSPORT_ERROR; 414 415 if (data[0] != 0x14) { 416 US_DEBUGP("alauda_init_media: Media not ready after ack\n"); 417 return USB_STOR_TRANSPORT_ERROR; 418 } 419 420 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) 421 return USB_STOR_TRANSPORT_ERROR; 422 423 US_DEBUGP("alauda_init_media: Media signature: %02X %02X %02X %02X\n", 424 data[0], data[1], data[2], data[3]); 425 media_info = alauda_card_find_id(data[1]); 426 if (media_info == NULL) { 427 printk(KERN_WARNING 428 "alauda_init_media: Unrecognised media signature: " 429 "%02X %02X %02X %02X\n", 430 data[0], data[1], data[2], data[3]); 431 return USB_STOR_TRANSPORT_ERROR; 432 } 433 434 MEDIA_INFO(us).capacity = 1 << media_info->chipshift; 435 US_DEBUGP("Found media with capacity: %ldMB\n", 436 MEDIA_INFO(us).capacity >> 20); 437 438 MEDIA_INFO(us).pageshift = media_info->pageshift; 439 MEDIA_INFO(us).blockshift = media_info->blockshift; 440 MEDIA_INFO(us).zoneshift = media_info->zoneshift; 441 442 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; 443 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; 444 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; 445 446 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; 447 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; 448 449 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 450 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 451 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 452 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 453 454 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) 455 return USB_STOR_TRANSPORT_ERROR; 456 457 return USB_STOR_TRANSPORT_GOOD; 458 } 459 460 /* 461 * Examines the media status and does the right thing when the media has gone, 462 * appeared, or changed. 463 */ 464 static int alauda_check_media(struct us_data *us) 465 { 466 struct alauda_info *info = (struct alauda_info *) us->extra; 467 unsigned char status[2]; 468 int rc; 469 470 rc = alauda_get_media_status(us, status); 471 472 /* Check for no media or door open */ 473 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) 474 || ((status[1] & 0x01) == 0)) { 475 US_DEBUGP("alauda_check_media: No media, or door open\n"); 476 alauda_free_maps(&MEDIA_INFO(us)); 477 info->sense_key = 0x02; 478 info->sense_asc = 0x3A; 479 info->sense_ascq = 0x00; 480 return USB_STOR_TRANSPORT_FAILED; 481 } 482 483 /* Check for media change */ 484 if (status[0] & 0x08) { 485 US_DEBUGP("alauda_check_media: Media change detected\n"); 486 alauda_free_maps(&MEDIA_INFO(us)); 487 alauda_init_media(us); 488 489 info->sense_key = UNIT_ATTENTION; 490 info->sense_asc = 0x28; 491 info->sense_ascq = 0x00; 492 return USB_STOR_TRANSPORT_FAILED; 493 } 494 495 return USB_STOR_TRANSPORT_GOOD; 496 } 497 498 /* 499 * Checks the status from the 2nd status register 500 * Returns 3 bytes of status data, only the first is known 501 */ 502 static int alauda_check_status2(struct us_data *us) 503 { 504 int rc; 505 unsigned char command[] = { 506 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, 507 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) 508 }; 509 unsigned char data[3]; 510 511 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 512 command, 9, NULL); 513 if (rc != USB_STOR_XFER_GOOD) 514 return rc; 515 516 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 517 data, 3, NULL); 518 if (rc != USB_STOR_XFER_GOOD) 519 return rc; 520 521 US_DEBUGP("alauda_check_status2: %02X %02X %02X\n", data[0], data[1], data[2]); 522 if (data[0] & ALAUDA_STATUS_ERROR) 523 return USB_STOR_XFER_ERROR; 524 525 return USB_STOR_XFER_GOOD; 526 } 527 528 /* 529 * Gets the redundancy data for the first page of a PBA 530 * Returns 16 bytes. 531 */ 532 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) 533 { 534 int rc; 535 unsigned char command[] = { 536 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, 537 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) 538 }; 539 540 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 541 command, 9, NULL); 542 if (rc != USB_STOR_XFER_GOOD) 543 return rc; 544 545 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 546 data, 16, NULL); 547 } 548 549 /* 550 * Finds the first unused PBA in a zone 551 * Returns the absolute PBA of an unused PBA, or 0 if none found. 552 */ 553 static u16 alauda_find_unused_pba(struct alauda_media_info *info, 554 unsigned int zone) 555 { 556 u16 *pba_to_lba = info->pba_to_lba[zone]; 557 unsigned int i; 558 559 for (i = 0; i < info->zonesize; i++) 560 if (pba_to_lba[i] == UNDEF) 561 return (zone << info->zoneshift) + i; 562 563 return 0; 564 } 565 566 /* 567 * Reads the redundancy data for all PBA's in a zone 568 * Produces lba <--> pba mappings 569 */ 570 static int alauda_read_map(struct us_data *us, unsigned int zone) 571 { 572 unsigned char *data = us->iobuf; 573 int result; 574 int i, j; 575 unsigned int zonesize = MEDIA_INFO(us).zonesize; 576 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 577 unsigned int lba_offset, lba_real, blocknum; 578 unsigned int zone_base_lba = zone * uzonesize; 579 unsigned int zone_base_pba = zone * zonesize; 580 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 581 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 582 if (lba_to_pba == NULL || pba_to_lba == NULL) { 583 result = USB_STOR_TRANSPORT_ERROR; 584 goto error; 585 } 586 587 US_DEBUGP("alauda_read_map: Mapping blocks for zone %d\n", zone); 588 589 /* 1024 PBA's per zone */ 590 for (i = 0; i < zonesize; i++) 591 lba_to_pba[i] = pba_to_lba[i] = UNDEF; 592 593 for (i = 0; i < zonesize; i++) { 594 blocknum = zone_base_pba + i; 595 596 result = alauda_get_redu_data(us, blocknum, data); 597 if (result != USB_STOR_XFER_GOOD) { 598 result = USB_STOR_TRANSPORT_ERROR; 599 goto error; 600 } 601 602 /* special PBAs have control field 0^16 */ 603 for (j = 0; j < 16; j++) 604 if (data[j] != 0) 605 goto nonz; 606 pba_to_lba[i] = UNUSABLE; 607 US_DEBUGP("alauda_read_map: PBA %d has no logical mapping\n", blocknum); 608 continue; 609 610 nonz: 611 /* unwritten PBAs have control field FF^16 */ 612 for (j = 0; j < 16; j++) 613 if (data[j] != 0xff) 614 goto nonff; 615 continue; 616 617 nonff: 618 /* normal PBAs start with six FFs */ 619 if (j < 6) { 620 US_DEBUGP("alauda_read_map: PBA %d has no logical mapping: " 621 "reserved area = %02X%02X%02X%02X " 622 "data status %02X block status %02X\n", 623 blocknum, data[0], data[1], data[2], data[3], 624 data[4], data[5]); 625 pba_to_lba[i] = UNUSABLE; 626 continue; 627 } 628 629 if ((data[6] >> 4) != 0x01) { 630 US_DEBUGP("alauda_read_map: PBA %d has invalid address " 631 "field %02X%02X/%02X%02X\n", 632 blocknum, data[6], data[7], data[11], data[12]); 633 pba_to_lba[i] = UNUSABLE; 634 continue; 635 } 636 637 /* check even parity */ 638 if (parity[data[6] ^ data[7]]) { 639 printk(KERN_WARNING 640 "alauda_read_map: Bad parity in LBA for block %d" 641 " (%02X %02X)\n", i, data[6], data[7]); 642 pba_to_lba[i] = UNUSABLE; 643 continue; 644 } 645 646 lba_offset = short_pack(data[7], data[6]); 647 lba_offset = (lba_offset & 0x07FF) >> 1; 648 lba_real = lba_offset + zone_base_lba; 649 650 /* 651 * Every 1024 physical blocks ("zone"), the LBA numbers 652 * go back to zero, but are within a higher block of LBA's. 653 * Also, there is a maximum of 1000 LBA's per zone. 654 * In other words, in PBA 1024-2047 you will find LBA 0-999 655 * which are really LBA 1000-1999. This allows for 24 bad 656 * or special physical blocks per zone. 657 */ 658 659 if (lba_offset >= uzonesize) { 660 printk(KERN_WARNING 661 "alauda_read_map: Bad low LBA %d for block %d\n", 662 lba_real, blocknum); 663 continue; 664 } 665 666 if (lba_to_pba[lba_offset] != UNDEF) { 667 printk(KERN_WARNING 668 "alauda_read_map: " 669 "LBA %d seen for PBA %d and %d\n", 670 lba_real, lba_to_pba[lba_offset], blocknum); 671 continue; 672 } 673 674 pba_to_lba[i] = lba_real; 675 lba_to_pba[lba_offset] = blocknum; 676 continue; 677 } 678 679 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; 680 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; 681 result = 0; 682 goto out; 683 684 error: 685 kfree(lba_to_pba); 686 kfree(pba_to_lba); 687 out: 688 return result; 689 } 690 691 /* 692 * Checks to see whether we have already mapped a certain zone 693 * If we haven't, the map is generated 694 */ 695 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) 696 { 697 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL 698 || MEDIA_INFO(us).pba_to_lba[zone] == NULL) 699 alauda_read_map(us, zone); 700 } 701 702 /* 703 * Erases an entire block 704 */ 705 static int alauda_erase_block(struct us_data *us, u16 pba) 706 { 707 int rc; 708 unsigned char command[] = { 709 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), 710 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) 711 }; 712 unsigned char buf[2]; 713 714 US_DEBUGP("alauda_erase_block: Erasing PBA %d\n", pba); 715 716 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 717 command, 9, NULL); 718 if (rc != USB_STOR_XFER_GOOD) 719 return rc; 720 721 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 722 buf, 2, NULL); 723 if (rc != USB_STOR_XFER_GOOD) 724 return rc; 725 726 US_DEBUGP("alauda_erase_block: Erase result: %02X %02X\n", 727 buf[0], buf[1]); 728 return rc; 729 } 730 731 /* 732 * Reads data from a certain offset page inside a PBA, including interleaved 733 * redundancy data. Returns (pagesize+64)*pages bytes in data. 734 */ 735 static int alauda_read_block_raw(struct us_data *us, u16 pba, 736 unsigned int page, unsigned int pages, unsigned char *data) 737 { 738 int rc; 739 unsigned char command[] = { 740 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), 741 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) 742 }; 743 744 US_DEBUGP("alauda_read_block: pba %d page %d count %d\n", 745 pba, page, pages); 746 747 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 748 command, 9, NULL); 749 if (rc != USB_STOR_XFER_GOOD) 750 return rc; 751 752 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 753 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); 754 } 755 756 /* 757 * Reads data from a certain offset page inside a PBA, excluding redundancy 758 * data. Returns pagesize*pages bytes in data. Note that data must be big enough 759 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' 760 * trailing bytes outside this function. 761 */ 762 static int alauda_read_block(struct us_data *us, u16 pba, 763 unsigned int page, unsigned int pages, unsigned char *data) 764 { 765 int i, rc; 766 unsigned int pagesize = MEDIA_INFO(us).pagesize; 767 768 rc = alauda_read_block_raw(us, pba, page, pages, data); 769 if (rc != USB_STOR_XFER_GOOD) 770 return rc; 771 772 /* Cut out the redundancy data */ 773 for (i = 0; i < pages; i++) { 774 int dest_offset = i * pagesize; 775 int src_offset = i * (pagesize + 64); 776 memmove(data + dest_offset, data + src_offset, pagesize); 777 } 778 779 return rc; 780 } 781 782 /* 783 * Writes an entire block of data and checks status after write. 784 * Redundancy data must be already included in data. Data should be 785 * (pagesize+64)*blocksize bytes in length. 786 */ 787 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) 788 { 789 int rc; 790 struct alauda_info *info = (struct alauda_info *) us->extra; 791 unsigned char command[] = { 792 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), 793 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) 794 }; 795 796 US_DEBUGP("alauda_write_block: pba %d\n", pba); 797 798 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 799 command, 9, NULL); 800 if (rc != USB_STOR_XFER_GOOD) 801 return rc; 802 803 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, 804 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, 805 NULL); 806 if (rc != USB_STOR_XFER_GOOD) 807 return rc; 808 809 return alauda_check_status2(us); 810 } 811 812 /* 813 * Write some data to a specific LBA. 814 */ 815 static int alauda_write_lba(struct us_data *us, u16 lba, 816 unsigned int page, unsigned int pages, 817 unsigned char *ptr, unsigned char *blockbuffer) 818 { 819 u16 pba, lbap, new_pba; 820 unsigned char *bptr, *cptr, *xptr; 821 unsigned char ecc[3]; 822 int i, result; 823 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 824 unsigned int zonesize = MEDIA_INFO(us).zonesize; 825 unsigned int pagesize = MEDIA_INFO(us).pagesize; 826 unsigned int blocksize = MEDIA_INFO(us).blocksize; 827 unsigned int lba_offset = lba % uzonesize; 828 unsigned int new_pba_offset; 829 unsigned int zone = lba / uzonesize; 830 831 alauda_ensure_map_for_zone(us, zone); 832 833 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 834 if (pba == 1) { 835 /* Maybe it is impossible to write to PBA 1. 836 Fake success, but don't do anything. */ 837 printk(KERN_WARNING 838 "alauda_write_lba: avoid writing to pba 1\n"); 839 return USB_STOR_TRANSPORT_GOOD; 840 } 841 842 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); 843 if (!new_pba) { 844 printk(KERN_WARNING 845 "alauda_write_lba: Out of unused blocks\n"); 846 return USB_STOR_TRANSPORT_ERROR; 847 } 848 849 /* read old contents */ 850 if (pba != UNDEF) { 851 result = alauda_read_block_raw(us, pba, 0, 852 blocksize, blockbuffer); 853 if (result != USB_STOR_XFER_GOOD) 854 return result; 855 } else { 856 memset(blockbuffer, 0, blocksize * (pagesize + 64)); 857 } 858 859 lbap = (lba_offset << 1) | 0x1000; 860 if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) 861 lbap ^= 1; 862 863 /* check old contents and fill lba */ 864 for (i = 0; i < blocksize; i++) { 865 bptr = blockbuffer + (i * (pagesize + 64)); 866 cptr = bptr + pagesize; 867 nand_compute_ecc(bptr, ecc); 868 if (!nand_compare_ecc(cptr+13, ecc)) { 869 US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n", 870 i, pba); 871 nand_store_ecc(cptr+13, ecc); 872 } 873 nand_compute_ecc(bptr + (pagesize / 2), ecc); 874 if (!nand_compare_ecc(cptr+8, ecc)) { 875 US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n", 876 i, pba); 877 nand_store_ecc(cptr+8, ecc); 878 } 879 cptr[6] = cptr[11] = MSB_of(lbap); 880 cptr[7] = cptr[12] = LSB_of(lbap); 881 } 882 883 /* copy in new stuff and compute ECC */ 884 xptr = ptr; 885 for (i = page; i < page+pages; i++) { 886 bptr = blockbuffer + (i * (pagesize + 64)); 887 cptr = bptr + pagesize; 888 memcpy(bptr, xptr, pagesize); 889 xptr += pagesize; 890 nand_compute_ecc(bptr, ecc); 891 nand_store_ecc(cptr+13, ecc); 892 nand_compute_ecc(bptr + (pagesize / 2), ecc); 893 nand_store_ecc(cptr+8, ecc); 894 } 895 896 result = alauda_write_block(us, new_pba, blockbuffer); 897 if (result != USB_STOR_XFER_GOOD) 898 return result; 899 900 new_pba_offset = new_pba - (zone * zonesize); 901 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; 902 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; 903 US_DEBUGP("alauda_write_lba: Remapped LBA %d to PBA %d\n", 904 lba, new_pba); 905 906 if (pba != UNDEF) { 907 unsigned int pba_offset = pba - (zone * zonesize); 908 result = alauda_erase_block(us, pba); 909 if (result != USB_STOR_XFER_GOOD) 910 return result; 911 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; 912 } 913 914 return USB_STOR_TRANSPORT_GOOD; 915 } 916 917 /* 918 * Read data from a specific sector address 919 */ 920 static int alauda_read_data(struct us_data *us, unsigned long address, 921 unsigned int sectors) 922 { 923 unsigned char *buffer; 924 u16 lba, max_lba; 925 unsigned int page, len, offset; 926 unsigned int blockshift = MEDIA_INFO(us).blockshift; 927 unsigned int pageshift = MEDIA_INFO(us).pageshift; 928 unsigned int blocksize = MEDIA_INFO(us).blocksize; 929 unsigned int pagesize = MEDIA_INFO(us).pagesize; 930 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 931 struct scatterlist *sg; 932 int result; 933 934 /* 935 * Since we only read in one block at a time, we have to create 936 * a bounce buffer and move the data a piece at a time between the 937 * bounce buffer and the actual transfer buffer. 938 * We make this buffer big enough to hold temporary redundancy data, 939 * which we use when reading the data blocks. 940 */ 941 942 len = min(sectors, blocksize) * (pagesize + 64); 943 buffer = kmalloc(len, GFP_NOIO); 944 if (buffer == NULL) { 945 printk(KERN_WARNING "alauda_read_data: Out of memory\n"); 946 return USB_STOR_TRANSPORT_ERROR; 947 } 948 949 /* Figure out the initial LBA and page */ 950 lba = address >> blockshift; 951 page = (address & MEDIA_INFO(us).blockmask); 952 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); 953 954 result = USB_STOR_TRANSPORT_GOOD; 955 offset = 0; 956 sg = NULL; 957 958 while (sectors > 0) { 959 unsigned int zone = lba / uzonesize; /* integer division */ 960 unsigned int lba_offset = lba - (zone * uzonesize); 961 unsigned int pages; 962 u16 pba; 963 alauda_ensure_map_for_zone(us, zone); 964 965 /* Not overflowing capacity? */ 966 if (lba >= max_lba) { 967 US_DEBUGP("Error: Requested lba %u exceeds " 968 "maximum %u\n", lba, max_lba); 969 result = USB_STOR_TRANSPORT_ERROR; 970 break; 971 } 972 973 /* Find number of pages we can read in this block */ 974 pages = min(sectors, blocksize - page); 975 len = pages << pageshift; 976 977 /* Find where this lba lives on disk */ 978 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 979 980 if (pba == UNDEF) { /* this lba was never written */ 981 US_DEBUGP("Read %d zero pages (LBA %d) page %d\n", 982 pages, lba, page); 983 984 /* This is not really an error. It just means 985 that the block has never been written. 986 Instead of returning USB_STOR_TRANSPORT_ERROR 987 it is better to return all zero data. */ 988 989 memset(buffer, 0, len); 990 } else { 991 US_DEBUGP("Read %d pages, from PBA %d" 992 " (LBA %d) page %d\n", 993 pages, pba, lba, page); 994 995 result = alauda_read_block(us, pba, page, pages, buffer); 996 if (result != USB_STOR_TRANSPORT_GOOD) 997 break; 998 } 999 1000 /* Store the data in the transfer buffer */ 1001 usb_stor_access_xfer_buf(buffer, len, us->srb, 1002 &sg, &offset, TO_XFER_BUF); 1003 1004 page = 0; 1005 lba++; 1006 sectors -= pages; 1007 } 1008 1009 kfree(buffer); 1010 return result; 1011 } 1012 1013 /* 1014 * Write data to a specific sector address 1015 */ 1016 static int alauda_write_data(struct us_data *us, unsigned long address, 1017 unsigned int sectors) 1018 { 1019 unsigned char *buffer, *blockbuffer; 1020 unsigned int page, len, offset; 1021 unsigned int blockshift = MEDIA_INFO(us).blockshift; 1022 unsigned int pageshift = MEDIA_INFO(us).pageshift; 1023 unsigned int blocksize = MEDIA_INFO(us).blocksize; 1024 unsigned int pagesize = MEDIA_INFO(us).pagesize; 1025 struct scatterlist *sg; 1026 u16 lba, max_lba; 1027 int result; 1028 1029 /* 1030 * Since we don't write the user data directly to the device, 1031 * we have to create a bounce buffer and move the data a piece 1032 * at a time between the bounce buffer and the actual transfer buffer. 1033 */ 1034 1035 len = min(sectors, blocksize) * pagesize; 1036 buffer = kmalloc(len, GFP_NOIO); 1037 if (buffer == NULL) { 1038 printk(KERN_WARNING "alauda_write_data: Out of memory\n"); 1039 return USB_STOR_TRANSPORT_ERROR; 1040 } 1041 1042 /* 1043 * We also need a temporary block buffer, where we read in the old data, 1044 * overwrite parts with the new data, and manipulate the redundancy data 1045 */ 1046 blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO); 1047 if (blockbuffer == NULL) { 1048 printk(KERN_WARNING "alauda_write_data: Out of memory\n"); 1049 kfree(buffer); 1050 return USB_STOR_TRANSPORT_ERROR; 1051 } 1052 1053 /* Figure out the initial LBA and page */ 1054 lba = address >> blockshift; 1055 page = (address & MEDIA_INFO(us).blockmask); 1056 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); 1057 1058 result = USB_STOR_TRANSPORT_GOOD; 1059 offset = 0; 1060 sg = NULL; 1061 1062 while (sectors > 0) { 1063 /* Write as many sectors as possible in this block */ 1064 unsigned int pages = min(sectors, blocksize - page); 1065 len = pages << pageshift; 1066 1067 /* Not overflowing capacity? */ 1068 if (lba >= max_lba) { 1069 US_DEBUGP("alauda_write_data: Requested lba %u exceeds " 1070 "maximum %u\n", lba, max_lba); 1071 result = USB_STOR_TRANSPORT_ERROR; 1072 break; 1073 } 1074 1075 /* Get the data from the transfer buffer */ 1076 usb_stor_access_xfer_buf(buffer, len, us->srb, 1077 &sg, &offset, FROM_XFER_BUF); 1078 1079 result = alauda_write_lba(us, lba, page, pages, buffer, 1080 blockbuffer); 1081 if (result != USB_STOR_TRANSPORT_GOOD) 1082 break; 1083 1084 page = 0; 1085 lba++; 1086 sectors -= pages; 1087 } 1088 1089 kfree(buffer); 1090 kfree(blockbuffer); 1091 return result; 1092 } 1093 1094 /* 1095 * Our interface with the rest of the world 1096 */ 1097 1098 static void alauda_info_destructor(void *extra) 1099 { 1100 struct alauda_info *info = (struct alauda_info *) extra; 1101 int port; 1102 1103 if (!info) 1104 return; 1105 1106 for (port = 0; port < 2; port++) { 1107 struct alauda_media_info *media_info = &info->port[port]; 1108 1109 alauda_free_maps(media_info); 1110 kfree(media_info->lba_to_pba); 1111 kfree(media_info->pba_to_lba); 1112 } 1113 } 1114 1115 /* 1116 * Initialize alauda_info struct and find the data-write endpoint 1117 */ 1118 static int init_alauda(struct us_data *us) 1119 { 1120 struct alauda_info *info; 1121 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; 1122 nand_init_ecc(); 1123 1124 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); 1125 if (!us->extra) { 1126 US_DEBUGP("init_alauda: Gah! Can't allocate storage for" 1127 "alauda info struct!\n"); 1128 return USB_STOR_TRANSPORT_ERROR; 1129 } 1130 info = (struct alauda_info *) us->extra; 1131 us->extra_destructor = alauda_info_destructor; 1132 1133 info->wr_ep = usb_sndbulkpipe(us->pusb_dev, 1134 altsetting->endpoint[0].desc.bEndpointAddress 1135 & USB_ENDPOINT_NUMBER_MASK); 1136 1137 return USB_STOR_TRANSPORT_GOOD; 1138 } 1139 1140 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) 1141 { 1142 int rc; 1143 struct alauda_info *info = (struct alauda_info *) us->extra; 1144 unsigned char *ptr = us->iobuf; 1145 static unsigned char inquiry_response[36] = { 1146 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 1147 }; 1148 1149 if (srb->cmnd[0] == INQUIRY) { 1150 US_DEBUGP("alauda_transport: INQUIRY. " 1151 "Returning bogus response.\n"); 1152 memcpy(ptr, inquiry_response, sizeof(inquiry_response)); 1153 fill_inquiry_response(us, ptr, 36); 1154 return USB_STOR_TRANSPORT_GOOD; 1155 } 1156 1157 if (srb->cmnd[0] == TEST_UNIT_READY) { 1158 US_DEBUGP("alauda_transport: TEST_UNIT_READY.\n"); 1159 return alauda_check_media(us); 1160 } 1161 1162 if (srb->cmnd[0] == READ_CAPACITY) { 1163 unsigned int num_zones; 1164 unsigned long capacity; 1165 1166 rc = alauda_check_media(us); 1167 if (rc != USB_STOR_TRANSPORT_GOOD) 1168 return rc; 1169 1170 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 1171 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 1172 1173 capacity = num_zones * MEDIA_INFO(us).uzonesize 1174 * MEDIA_INFO(us).blocksize; 1175 1176 /* Report capacity and page size */ 1177 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); 1178 ((__be32 *) ptr)[1] = cpu_to_be32(512); 1179 1180 usb_stor_set_xfer_buf(ptr, 8, srb); 1181 return USB_STOR_TRANSPORT_GOOD; 1182 } 1183 1184 if (srb->cmnd[0] == READ_10) { 1185 unsigned int page, pages; 1186 1187 rc = alauda_check_media(us); 1188 if (rc != USB_STOR_TRANSPORT_GOOD) 1189 return rc; 1190 1191 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1192 page <<= 16; 1193 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1194 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1195 1196 US_DEBUGP("alauda_transport: READ_10: page %d pagect %d\n", 1197 page, pages); 1198 1199 return alauda_read_data(us, page, pages); 1200 } 1201 1202 if (srb->cmnd[0] == WRITE_10) { 1203 unsigned int page, pages; 1204 1205 rc = alauda_check_media(us); 1206 if (rc != USB_STOR_TRANSPORT_GOOD) 1207 return rc; 1208 1209 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1210 page <<= 16; 1211 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1212 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1213 1214 US_DEBUGP("alauda_transport: WRITE_10: page %d pagect %d\n", 1215 page, pages); 1216 1217 return alauda_write_data(us, page, pages); 1218 } 1219 1220 if (srb->cmnd[0] == REQUEST_SENSE) { 1221 US_DEBUGP("alauda_transport: REQUEST_SENSE.\n"); 1222 1223 memset(ptr, 0, 18); 1224 ptr[0] = 0xF0; 1225 ptr[2] = info->sense_key; 1226 ptr[7] = 11; 1227 ptr[12] = info->sense_asc; 1228 ptr[13] = info->sense_ascq; 1229 usb_stor_set_xfer_buf(ptr, 18, srb); 1230 1231 return USB_STOR_TRANSPORT_GOOD; 1232 } 1233 1234 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { 1235 /* sure. whatever. not like we can stop the user from popping 1236 the media out of the device (no locking doors, etc) */ 1237 return USB_STOR_TRANSPORT_GOOD; 1238 } 1239 1240 US_DEBUGP("alauda_transport: Gah! Unknown command: %d (0x%x)\n", 1241 srb->cmnd[0], srb->cmnd[0]); 1242 info->sense_key = 0x05; 1243 info->sense_asc = 0x20; 1244 info->sense_ascq = 0x00; 1245 return USB_STOR_TRANSPORT_FAILED; 1246 } 1247 1248 static int alauda_probe(struct usb_interface *intf, 1249 const struct usb_device_id *id) 1250 { 1251 struct us_data *us; 1252 int result; 1253 1254 result = usb_stor_probe1(&us, intf, id, 1255 (id - alauda_usb_ids) + alauda_unusual_dev_list); 1256 if (result) 1257 return result; 1258 1259 us->transport_name = "Alauda Control/Bulk"; 1260 us->transport = alauda_transport; 1261 us->transport_reset = usb_stor_Bulk_reset; 1262 us->max_lun = 1; 1263 1264 result = usb_stor_probe2(us); 1265 return result; 1266 } 1267 1268 static struct usb_driver alauda_driver = { 1269 .name = "ums-alauda", 1270 .probe = alauda_probe, 1271 .disconnect = usb_stor_disconnect, 1272 .suspend = usb_stor_suspend, 1273 .resume = usb_stor_resume, 1274 .reset_resume = usb_stor_reset_resume, 1275 .pre_reset = usb_stor_pre_reset, 1276 .post_reset = usb_stor_post_reset, 1277 .id_table = alauda_usb_ids, 1278 .soft_unbind = 1, 1279 }; 1280 1281 static int __init alauda_init(void) 1282 { 1283 return usb_register(&alauda_driver); 1284 } 1285 1286 static void __exit alauda_exit(void) 1287 { 1288 usb_deregister(&alauda_driver); 1289 } 1290 1291 module_init(alauda_init); 1292 module_exit(alauda_exit); 1293