xref: /openbmc/linux/drivers/usb/storage/alauda.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Driver for Alauda-based card readers
3  *
4  * Current development and maintenance by:
5  *   (c) 2005 Daniel Drake <dsd@gentoo.org>
6  *
7  * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
8  *
9  * Alauda implements a vendor-specific command set to access two media reader
10  * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11  * which are accepted by these devices.
12  *
13  * The driver was developed through reverse-engineering, with the help of the
14  * sddr09 driver which has many similarities, and with some help from the
15  * (very old) vendor-supplied GPL sma03 driver.
16  *
17  * For protocol info, see http://alauda.sourceforge.net
18  *
19  * This program is free software; you can redistribute it and/or modify it
20  * under the terms of the GNU General Public License as published by the
21  * Free Software Foundation; either version 2, or (at your option) any
22  * later version.
23  *
24  * This program is distributed in the hope that it will be useful, but
25  * WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License along
30  * with this program; if not, write to the Free Software Foundation, Inc.,
31  * 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/slab.h>
36 
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
40 
41 #include "usb.h"
42 #include "transport.h"
43 #include "protocol.h"
44 #include "debug.h"
45 
46 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
47 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
48 MODULE_LICENSE("GPL");
49 
50 /*
51  * Status bytes
52  */
53 #define ALAUDA_STATUS_ERROR		0x01
54 #define ALAUDA_STATUS_READY		0x40
55 
56 /*
57  * Control opcodes (for request field)
58  */
59 #define ALAUDA_GET_XD_MEDIA_STATUS	0x08
60 #define ALAUDA_GET_SM_MEDIA_STATUS	0x98
61 #define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
62 #define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
63 #define ALAUDA_GET_XD_MEDIA_SIG		0x86
64 #define ALAUDA_GET_SM_MEDIA_SIG		0x96
65 
66 /*
67  * Bulk command identity (byte 0)
68  */
69 #define ALAUDA_BULK_CMD			0x40
70 
71 /*
72  * Bulk opcodes (byte 1)
73  */
74 #define ALAUDA_BULK_GET_REDU_DATA	0x85
75 #define ALAUDA_BULK_READ_BLOCK		0x94
76 #define ALAUDA_BULK_ERASE_BLOCK		0xa3
77 #define ALAUDA_BULK_WRITE_BLOCK		0xb4
78 #define ALAUDA_BULK_GET_STATUS2		0xb7
79 #define ALAUDA_BULK_RESET_MEDIA		0xe0
80 
81 /*
82  * Port to operate on (byte 8)
83  */
84 #define ALAUDA_PORT_XD			0x00
85 #define ALAUDA_PORT_SM			0x01
86 
87 /*
88  * LBA and PBA are unsigned ints. Special values.
89  */
90 #define UNDEF    0xffff
91 #define SPARE    0xfffe
92 #define UNUSABLE 0xfffd
93 
94 struct alauda_media_info {
95 	unsigned long capacity;		/* total media size in bytes */
96 	unsigned int pagesize;		/* page size in bytes */
97 	unsigned int blocksize;		/* number of pages per block */
98 	unsigned int uzonesize;		/* number of usable blocks per zone */
99 	unsigned int zonesize;		/* number of blocks per zone */
100 	unsigned int blockmask;		/* mask to get page from address */
101 
102 	unsigned char pageshift;
103 	unsigned char blockshift;
104 	unsigned char zoneshift;
105 
106 	u16 **lba_to_pba;		/* logical to physical block map */
107 	u16 **pba_to_lba;		/* physical to logical block map */
108 };
109 
110 struct alauda_info {
111 	struct alauda_media_info port[2];
112 	int wr_ep;			/* endpoint to write data out of */
113 
114 	unsigned char sense_key;
115 	unsigned long sense_asc;	/* additional sense code */
116 	unsigned long sense_ascq;	/* additional sense code qualifier */
117 };
118 
119 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
120 #define LSB_of(s) ((s)&0xFF)
121 #define MSB_of(s) ((s)>>8)
122 
123 #define MEDIA_PORT(us) us->srb->device->lun
124 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
125 
126 #define PBA_LO(pba) ((pba & 0xF) << 5)
127 #define PBA_HI(pba) (pba >> 3)
128 #define PBA_ZONE(pba) (pba >> 11)
129 
130 static int init_alauda(struct us_data *us);
131 
132 
133 /*
134  * The table of devices
135  */
136 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
137 		    vendorName, productName, useProtocol, useTransport, \
138 		    initFunction, flags) \
139 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
140   .driver_info = (flags)|(USB_US_TYPE_STOR<<24) }
141 
142 struct usb_device_id alauda_usb_ids[] = {
143 #	include "unusual_alauda.h"
144 	{ }		/* Terminating entry */
145 };
146 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
147 
148 #undef UNUSUAL_DEV
149 
150 /*
151  * The flags table
152  */
153 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
154 		    vendor_name, product_name, use_protocol, use_transport, \
155 		    init_function, Flags) \
156 { \
157 	.vendorName = vendor_name,	\
158 	.productName = product_name,	\
159 	.useProtocol = use_protocol,	\
160 	.useTransport = use_transport,	\
161 	.initFunction = init_function,	\
162 }
163 
164 static struct us_unusual_dev alauda_unusual_dev_list[] = {
165 #	include "unusual_alauda.h"
166 	{ }		/* Terminating entry */
167 };
168 
169 #undef UNUSUAL_DEV
170 
171 
172 /*
173  * Media handling
174  */
175 
176 struct alauda_card_info {
177 	unsigned char id;		/* id byte */
178 	unsigned char chipshift;	/* 1<<cs bytes total capacity */
179 	unsigned char pageshift;	/* 1<<ps bytes in a page */
180 	unsigned char blockshift;	/* 1<<bs pages per block */
181 	unsigned char zoneshift;	/* 1<<zs blocks per zone */
182 };
183 
184 static struct alauda_card_info alauda_card_ids[] = {
185 	/* NAND flash */
186 	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
187 	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
188 	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
189 	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
190 	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
191 	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
192 	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
193 	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
194 	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
195 	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
196 	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
197 	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
198 	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
199 	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
200 
201 	/* MASK ROM */
202 	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
203 	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
204 	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
205 	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
206 	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
207 	{ 0,}
208 };
209 
210 static struct alauda_card_info *alauda_card_find_id(unsigned char id) {
211 	int i;
212 
213 	for (i = 0; alauda_card_ids[i].id != 0; i++)
214 		if (alauda_card_ids[i].id == id)
215 			return &(alauda_card_ids[i]);
216 	return NULL;
217 }
218 
219 /*
220  * ECC computation.
221  */
222 
223 static unsigned char parity[256];
224 static unsigned char ecc2[256];
225 
226 static void nand_init_ecc(void) {
227 	int i, j, a;
228 
229 	parity[0] = 0;
230 	for (i = 1; i < 256; i++)
231 		parity[i] = (parity[i&(i-1)] ^ 1);
232 
233 	for (i = 0; i < 256; i++) {
234 		a = 0;
235 		for (j = 0; j < 8; j++) {
236 			if (i & (1<<j)) {
237 				if ((j & 1) == 0)
238 					a ^= 0x04;
239 				if ((j & 2) == 0)
240 					a ^= 0x10;
241 				if ((j & 4) == 0)
242 					a ^= 0x40;
243 			}
244 		}
245 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
246 	}
247 }
248 
249 /* compute 3-byte ecc on 256 bytes */
250 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
251 	int i, j, a;
252 	unsigned char par, bit, bits[8];
253 
254 	par = 0;
255 	for (j = 0; j < 8; j++)
256 		bits[j] = 0;
257 
258 	/* collect 16 checksum bits */
259 	for (i = 0; i < 256; i++) {
260 		par ^= data[i];
261 		bit = parity[data[i]];
262 		for (j = 0; j < 8; j++)
263 			if ((i & (1<<j)) == 0)
264 				bits[j] ^= bit;
265 	}
266 
267 	/* put 4+4+4 = 12 bits in the ecc */
268 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
269 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
270 
271 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
272 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
273 
274 	ecc[2] = ecc2[par];
275 }
276 
277 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
278 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
279 }
280 
281 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
282 	memcpy(data, ecc, 3);
283 }
284 
285 /*
286  * Alauda driver
287  */
288 
289 /*
290  * Forget our PBA <---> LBA mappings for a particular port
291  */
292 static void alauda_free_maps (struct alauda_media_info *media_info)
293 {
294 	unsigned int shift = media_info->zoneshift
295 		+ media_info->blockshift + media_info->pageshift;
296 	unsigned int num_zones = media_info->capacity >> shift;
297 	unsigned int i;
298 
299 	if (media_info->lba_to_pba != NULL)
300 		for (i = 0; i < num_zones; i++) {
301 			kfree(media_info->lba_to_pba[i]);
302 			media_info->lba_to_pba[i] = NULL;
303 		}
304 
305 	if (media_info->pba_to_lba != NULL)
306 		for (i = 0; i < num_zones; i++) {
307 			kfree(media_info->pba_to_lba[i]);
308 			media_info->pba_to_lba[i] = NULL;
309 		}
310 }
311 
312 /*
313  * Returns 2 bytes of status data
314  * The first byte describes media status, and second byte describes door status
315  */
316 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
317 {
318 	int rc;
319 	unsigned char command;
320 
321 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
322 		command = ALAUDA_GET_XD_MEDIA_STATUS;
323 	else
324 		command = ALAUDA_GET_SM_MEDIA_STATUS;
325 
326 	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
327 		command, 0xc0, 0, 1, data, 2);
328 
329 	US_DEBUGP("alauda_get_media_status: Media status %02X %02X\n",
330 		data[0], data[1]);
331 
332 	return rc;
333 }
334 
335 /*
336  * Clears the "media was changed" bit so that we know when it changes again
337  * in the future.
338  */
339 static int alauda_ack_media(struct us_data *us)
340 {
341 	unsigned char command;
342 
343 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
344 		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
345 	else
346 		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
347 
348 	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
349 		command, 0x40, 0, 1, NULL, 0);
350 }
351 
352 /*
353  * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
354  * and some other details.
355  */
356 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
357 {
358 	unsigned char command;
359 
360 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
361 		command = ALAUDA_GET_XD_MEDIA_SIG;
362 	else
363 		command = ALAUDA_GET_SM_MEDIA_SIG;
364 
365 	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
366 		command, 0xc0, 0, 0, data, 4);
367 }
368 
369 /*
370  * Resets the media status (but not the whole device?)
371  */
372 static int alauda_reset_media(struct us_data *us)
373 {
374 	unsigned char *command = us->iobuf;
375 
376 	memset(command, 0, 9);
377 	command[0] = ALAUDA_BULK_CMD;
378 	command[1] = ALAUDA_BULK_RESET_MEDIA;
379 	command[8] = MEDIA_PORT(us);
380 
381 	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
382 		command, 9, NULL);
383 }
384 
385 /*
386  * Examines the media and deduces capacity, etc.
387  */
388 static int alauda_init_media(struct us_data *us)
389 {
390 	unsigned char *data = us->iobuf;
391 	int ready = 0;
392 	struct alauda_card_info *media_info;
393 	unsigned int num_zones;
394 
395 	while (ready == 0) {
396 		msleep(20);
397 
398 		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
399 			return USB_STOR_TRANSPORT_ERROR;
400 
401 		if (data[0] & 0x10)
402 			ready = 1;
403 	}
404 
405 	US_DEBUGP("alauda_init_media: We are ready for action!\n");
406 
407 	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
408 		return USB_STOR_TRANSPORT_ERROR;
409 
410 	msleep(10);
411 
412 	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
413 		return USB_STOR_TRANSPORT_ERROR;
414 
415 	if (data[0] != 0x14) {
416 		US_DEBUGP("alauda_init_media: Media not ready after ack\n");
417 		return USB_STOR_TRANSPORT_ERROR;
418 	}
419 
420 	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
421 		return USB_STOR_TRANSPORT_ERROR;
422 
423 	US_DEBUGP("alauda_init_media: Media signature: %02X %02X %02X %02X\n",
424 		data[0], data[1], data[2], data[3]);
425 	media_info = alauda_card_find_id(data[1]);
426 	if (media_info == NULL) {
427 		printk(KERN_WARNING
428 			"alauda_init_media: Unrecognised media signature: "
429 			"%02X %02X %02X %02X\n",
430 			data[0], data[1], data[2], data[3]);
431 		return USB_STOR_TRANSPORT_ERROR;
432 	}
433 
434 	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
435 	US_DEBUGP("Found media with capacity: %ldMB\n",
436 		MEDIA_INFO(us).capacity >> 20);
437 
438 	MEDIA_INFO(us).pageshift = media_info->pageshift;
439 	MEDIA_INFO(us).blockshift = media_info->blockshift;
440 	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
441 
442 	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
443 	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
444 	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
445 
446 	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
447 	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
448 
449 	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
450 		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
451 	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
452 	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
453 
454 	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
455 		return USB_STOR_TRANSPORT_ERROR;
456 
457 	return USB_STOR_TRANSPORT_GOOD;
458 }
459 
460 /*
461  * Examines the media status and does the right thing when the media has gone,
462  * appeared, or changed.
463  */
464 static int alauda_check_media(struct us_data *us)
465 {
466 	struct alauda_info *info = (struct alauda_info *) us->extra;
467 	unsigned char status[2];
468 	int rc;
469 
470 	rc = alauda_get_media_status(us, status);
471 
472 	/* Check for no media or door open */
473 	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
474 		|| ((status[1] & 0x01) == 0)) {
475 		US_DEBUGP("alauda_check_media: No media, or door open\n");
476 		alauda_free_maps(&MEDIA_INFO(us));
477 		info->sense_key = 0x02;
478 		info->sense_asc = 0x3A;
479 		info->sense_ascq = 0x00;
480 		return USB_STOR_TRANSPORT_FAILED;
481 	}
482 
483 	/* Check for media change */
484 	if (status[0] & 0x08) {
485 		US_DEBUGP("alauda_check_media: Media change detected\n");
486 		alauda_free_maps(&MEDIA_INFO(us));
487 		alauda_init_media(us);
488 
489 		info->sense_key = UNIT_ATTENTION;
490 		info->sense_asc = 0x28;
491 		info->sense_ascq = 0x00;
492 		return USB_STOR_TRANSPORT_FAILED;
493 	}
494 
495 	return USB_STOR_TRANSPORT_GOOD;
496 }
497 
498 /*
499  * Checks the status from the 2nd status register
500  * Returns 3 bytes of status data, only the first is known
501  */
502 static int alauda_check_status2(struct us_data *us)
503 {
504 	int rc;
505 	unsigned char command[] = {
506 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
507 		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
508 	};
509 	unsigned char data[3];
510 
511 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
512 		command, 9, NULL);
513 	if (rc != USB_STOR_XFER_GOOD)
514 		return rc;
515 
516 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
517 		data, 3, NULL);
518 	if (rc != USB_STOR_XFER_GOOD)
519 		return rc;
520 
521 	US_DEBUGP("alauda_check_status2: %02X %02X %02X\n", data[0], data[1], data[2]);
522 	if (data[0] & ALAUDA_STATUS_ERROR)
523 		return USB_STOR_XFER_ERROR;
524 
525 	return USB_STOR_XFER_GOOD;
526 }
527 
528 /*
529  * Gets the redundancy data for the first page of a PBA
530  * Returns 16 bytes.
531  */
532 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
533 {
534 	int rc;
535 	unsigned char command[] = {
536 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
537 		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
538 	};
539 
540 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
541 		command, 9, NULL);
542 	if (rc != USB_STOR_XFER_GOOD)
543 		return rc;
544 
545 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
546 		data, 16, NULL);
547 }
548 
549 /*
550  * Finds the first unused PBA in a zone
551  * Returns the absolute PBA of an unused PBA, or 0 if none found.
552  */
553 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
554 	unsigned int zone)
555 {
556 	u16 *pba_to_lba = info->pba_to_lba[zone];
557 	unsigned int i;
558 
559 	for (i = 0; i < info->zonesize; i++)
560 		if (pba_to_lba[i] == UNDEF)
561 			return (zone << info->zoneshift) + i;
562 
563 	return 0;
564 }
565 
566 /*
567  * Reads the redundancy data for all PBA's in a zone
568  * Produces lba <--> pba mappings
569  */
570 static int alauda_read_map(struct us_data *us, unsigned int zone)
571 {
572 	unsigned char *data = us->iobuf;
573 	int result;
574 	int i, j;
575 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
576 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
577 	unsigned int lba_offset, lba_real, blocknum;
578 	unsigned int zone_base_lba = zone * uzonesize;
579 	unsigned int zone_base_pba = zone * zonesize;
580 	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
581 	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
582 	if (lba_to_pba == NULL || pba_to_lba == NULL) {
583 		result = USB_STOR_TRANSPORT_ERROR;
584 		goto error;
585 	}
586 
587 	US_DEBUGP("alauda_read_map: Mapping blocks for zone %d\n", zone);
588 
589 	/* 1024 PBA's per zone */
590 	for (i = 0; i < zonesize; i++)
591 		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
592 
593 	for (i = 0; i < zonesize; i++) {
594 		blocknum = zone_base_pba + i;
595 
596 		result = alauda_get_redu_data(us, blocknum, data);
597 		if (result != USB_STOR_XFER_GOOD) {
598 			result = USB_STOR_TRANSPORT_ERROR;
599 			goto error;
600 		}
601 
602 		/* special PBAs have control field 0^16 */
603 		for (j = 0; j < 16; j++)
604 			if (data[j] != 0)
605 				goto nonz;
606 		pba_to_lba[i] = UNUSABLE;
607 		US_DEBUGP("alauda_read_map: PBA %d has no logical mapping\n", blocknum);
608 		continue;
609 
610 	nonz:
611 		/* unwritten PBAs have control field FF^16 */
612 		for (j = 0; j < 16; j++)
613 			if (data[j] != 0xff)
614 				goto nonff;
615 		continue;
616 
617 	nonff:
618 		/* normal PBAs start with six FFs */
619 		if (j < 6) {
620 			US_DEBUGP("alauda_read_map: PBA %d has no logical mapping: "
621 			       "reserved area = %02X%02X%02X%02X "
622 			       "data status %02X block status %02X\n",
623 			       blocknum, data[0], data[1], data[2], data[3],
624 			       data[4], data[5]);
625 			pba_to_lba[i] = UNUSABLE;
626 			continue;
627 		}
628 
629 		if ((data[6] >> 4) != 0x01) {
630 			US_DEBUGP("alauda_read_map: PBA %d has invalid address "
631 			       "field %02X%02X/%02X%02X\n",
632 			       blocknum, data[6], data[7], data[11], data[12]);
633 			pba_to_lba[i] = UNUSABLE;
634 			continue;
635 		}
636 
637 		/* check even parity */
638 		if (parity[data[6] ^ data[7]]) {
639 			printk(KERN_WARNING
640 			       "alauda_read_map: Bad parity in LBA for block %d"
641 			       " (%02X %02X)\n", i, data[6], data[7]);
642 			pba_to_lba[i] = UNUSABLE;
643 			continue;
644 		}
645 
646 		lba_offset = short_pack(data[7], data[6]);
647 		lba_offset = (lba_offset & 0x07FF) >> 1;
648 		lba_real = lba_offset + zone_base_lba;
649 
650 		/*
651 		 * Every 1024 physical blocks ("zone"), the LBA numbers
652 		 * go back to zero, but are within a higher block of LBA's.
653 		 * Also, there is a maximum of 1000 LBA's per zone.
654 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
655 		 * which are really LBA 1000-1999. This allows for 24 bad
656 		 * or special physical blocks per zone.
657 		 */
658 
659 		if (lba_offset >= uzonesize) {
660 			printk(KERN_WARNING
661 			       "alauda_read_map: Bad low LBA %d for block %d\n",
662 			       lba_real, blocknum);
663 			continue;
664 		}
665 
666 		if (lba_to_pba[lba_offset] != UNDEF) {
667 			printk(KERN_WARNING
668 			       "alauda_read_map: "
669 			       "LBA %d seen for PBA %d and %d\n",
670 			       lba_real, lba_to_pba[lba_offset], blocknum);
671 			continue;
672 		}
673 
674 		pba_to_lba[i] = lba_real;
675 		lba_to_pba[lba_offset] = blocknum;
676 		continue;
677 	}
678 
679 	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
680 	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
681 	result = 0;
682 	goto out;
683 
684 error:
685 	kfree(lba_to_pba);
686 	kfree(pba_to_lba);
687 out:
688 	return result;
689 }
690 
691 /*
692  * Checks to see whether we have already mapped a certain zone
693  * If we haven't, the map is generated
694  */
695 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
696 {
697 	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
698 		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
699 		alauda_read_map(us, zone);
700 }
701 
702 /*
703  * Erases an entire block
704  */
705 static int alauda_erase_block(struct us_data *us, u16 pba)
706 {
707 	int rc;
708 	unsigned char command[] = {
709 		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
710 		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
711 	};
712 	unsigned char buf[2];
713 
714 	US_DEBUGP("alauda_erase_block: Erasing PBA %d\n", pba);
715 
716 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
717 		command, 9, NULL);
718 	if (rc != USB_STOR_XFER_GOOD)
719 		return rc;
720 
721 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
722 		buf, 2, NULL);
723 	if (rc != USB_STOR_XFER_GOOD)
724 		return rc;
725 
726 	US_DEBUGP("alauda_erase_block: Erase result: %02X %02X\n",
727 		buf[0], buf[1]);
728 	return rc;
729 }
730 
731 /*
732  * Reads data from a certain offset page inside a PBA, including interleaved
733  * redundancy data. Returns (pagesize+64)*pages bytes in data.
734  */
735 static int alauda_read_block_raw(struct us_data *us, u16 pba,
736 		unsigned int page, unsigned int pages, unsigned char *data)
737 {
738 	int rc;
739 	unsigned char command[] = {
740 		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
741 		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
742 	};
743 
744 	US_DEBUGP("alauda_read_block: pba %d page %d count %d\n",
745 		pba, page, pages);
746 
747 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
748 		command, 9, NULL);
749 	if (rc != USB_STOR_XFER_GOOD)
750 		return rc;
751 
752 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
753 		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
754 }
755 
756 /*
757  * Reads data from a certain offset page inside a PBA, excluding redundancy
758  * data. Returns pagesize*pages bytes in data. Note that data must be big enough
759  * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
760  * trailing bytes outside this function.
761  */
762 static int alauda_read_block(struct us_data *us, u16 pba,
763 		unsigned int page, unsigned int pages, unsigned char *data)
764 {
765 	int i, rc;
766 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
767 
768 	rc = alauda_read_block_raw(us, pba, page, pages, data);
769 	if (rc != USB_STOR_XFER_GOOD)
770 		return rc;
771 
772 	/* Cut out the redundancy data */
773 	for (i = 0; i < pages; i++) {
774 		int dest_offset = i * pagesize;
775 		int src_offset = i * (pagesize + 64);
776 		memmove(data + dest_offset, data + src_offset, pagesize);
777 	}
778 
779 	return rc;
780 }
781 
782 /*
783  * Writes an entire block of data and checks status after write.
784  * Redundancy data must be already included in data. Data should be
785  * (pagesize+64)*blocksize bytes in length.
786  */
787 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
788 {
789 	int rc;
790 	struct alauda_info *info = (struct alauda_info *) us->extra;
791 	unsigned char command[] = {
792 		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
793 		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
794 	};
795 
796 	US_DEBUGP("alauda_write_block: pba %d\n", pba);
797 
798 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
799 		command, 9, NULL);
800 	if (rc != USB_STOR_XFER_GOOD)
801 		return rc;
802 
803 	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
804 		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
805 		NULL);
806 	if (rc != USB_STOR_XFER_GOOD)
807 		return rc;
808 
809 	return alauda_check_status2(us);
810 }
811 
812 /*
813  * Write some data to a specific LBA.
814  */
815 static int alauda_write_lba(struct us_data *us, u16 lba,
816 		 unsigned int page, unsigned int pages,
817 		 unsigned char *ptr, unsigned char *blockbuffer)
818 {
819 	u16 pba, lbap, new_pba;
820 	unsigned char *bptr, *cptr, *xptr;
821 	unsigned char ecc[3];
822 	int i, result;
823 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
824 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
825 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
826 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
827 	unsigned int lba_offset = lba % uzonesize;
828 	unsigned int new_pba_offset;
829 	unsigned int zone = lba / uzonesize;
830 
831 	alauda_ensure_map_for_zone(us, zone);
832 
833 	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
834 	if (pba == 1) {
835 		/* Maybe it is impossible to write to PBA 1.
836 		   Fake success, but don't do anything. */
837 		printk(KERN_WARNING
838 		       "alauda_write_lba: avoid writing to pba 1\n");
839 		return USB_STOR_TRANSPORT_GOOD;
840 	}
841 
842 	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
843 	if (!new_pba) {
844 		printk(KERN_WARNING
845 		       "alauda_write_lba: Out of unused blocks\n");
846 		return USB_STOR_TRANSPORT_ERROR;
847 	}
848 
849 	/* read old contents */
850 	if (pba != UNDEF) {
851 		result = alauda_read_block_raw(us, pba, 0,
852 			blocksize, blockbuffer);
853 		if (result != USB_STOR_XFER_GOOD)
854 			return result;
855 	} else {
856 		memset(blockbuffer, 0, blocksize * (pagesize + 64));
857 	}
858 
859 	lbap = (lba_offset << 1) | 0x1000;
860 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
861 		lbap ^= 1;
862 
863 	/* check old contents and fill lba */
864 	for (i = 0; i < blocksize; i++) {
865 		bptr = blockbuffer + (i * (pagesize + 64));
866 		cptr = bptr + pagesize;
867 		nand_compute_ecc(bptr, ecc);
868 		if (!nand_compare_ecc(cptr+13, ecc)) {
869 			US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
870 				  i, pba);
871 			nand_store_ecc(cptr+13, ecc);
872 		}
873 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
874 		if (!nand_compare_ecc(cptr+8, ecc)) {
875 			US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
876 				  i, pba);
877 			nand_store_ecc(cptr+8, ecc);
878 		}
879 		cptr[6] = cptr[11] = MSB_of(lbap);
880 		cptr[7] = cptr[12] = LSB_of(lbap);
881 	}
882 
883 	/* copy in new stuff and compute ECC */
884 	xptr = ptr;
885 	for (i = page; i < page+pages; i++) {
886 		bptr = blockbuffer + (i * (pagesize + 64));
887 		cptr = bptr + pagesize;
888 		memcpy(bptr, xptr, pagesize);
889 		xptr += pagesize;
890 		nand_compute_ecc(bptr, ecc);
891 		nand_store_ecc(cptr+13, ecc);
892 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
893 		nand_store_ecc(cptr+8, ecc);
894 	}
895 
896 	result = alauda_write_block(us, new_pba, blockbuffer);
897 	if (result != USB_STOR_XFER_GOOD)
898 		return result;
899 
900 	new_pba_offset = new_pba - (zone * zonesize);
901 	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
902 	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
903 	US_DEBUGP("alauda_write_lba: Remapped LBA %d to PBA %d\n",
904 		lba, new_pba);
905 
906 	if (pba != UNDEF) {
907 		unsigned int pba_offset = pba - (zone * zonesize);
908 		result = alauda_erase_block(us, pba);
909 		if (result != USB_STOR_XFER_GOOD)
910 			return result;
911 		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
912 	}
913 
914 	return USB_STOR_TRANSPORT_GOOD;
915 }
916 
917 /*
918  * Read data from a specific sector address
919  */
920 static int alauda_read_data(struct us_data *us, unsigned long address,
921 		unsigned int sectors)
922 {
923 	unsigned char *buffer;
924 	u16 lba, max_lba;
925 	unsigned int page, len, offset;
926 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
927 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
928 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
929 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
930 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
931 	struct scatterlist *sg;
932 	int result;
933 
934 	/*
935 	 * Since we only read in one block at a time, we have to create
936 	 * a bounce buffer and move the data a piece at a time between the
937 	 * bounce buffer and the actual transfer buffer.
938 	 * We make this buffer big enough to hold temporary redundancy data,
939 	 * which we use when reading the data blocks.
940 	 */
941 
942 	len = min(sectors, blocksize) * (pagesize + 64);
943 	buffer = kmalloc(len, GFP_NOIO);
944 	if (buffer == NULL) {
945 		printk(KERN_WARNING "alauda_read_data: Out of memory\n");
946 		return USB_STOR_TRANSPORT_ERROR;
947 	}
948 
949 	/* Figure out the initial LBA and page */
950 	lba = address >> blockshift;
951 	page = (address & MEDIA_INFO(us).blockmask);
952 	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
953 
954 	result = USB_STOR_TRANSPORT_GOOD;
955 	offset = 0;
956 	sg = NULL;
957 
958 	while (sectors > 0) {
959 		unsigned int zone = lba / uzonesize; /* integer division */
960 		unsigned int lba_offset = lba - (zone * uzonesize);
961 		unsigned int pages;
962 		u16 pba;
963 		alauda_ensure_map_for_zone(us, zone);
964 
965 		/* Not overflowing capacity? */
966 		if (lba >= max_lba) {
967 			US_DEBUGP("Error: Requested lba %u exceeds "
968 				  "maximum %u\n", lba, max_lba);
969 			result = USB_STOR_TRANSPORT_ERROR;
970 			break;
971 		}
972 
973 		/* Find number of pages we can read in this block */
974 		pages = min(sectors, blocksize - page);
975 		len = pages << pageshift;
976 
977 		/* Find where this lba lives on disk */
978 		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
979 
980 		if (pba == UNDEF) {	/* this lba was never written */
981 			US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
982 				  pages, lba, page);
983 
984 			/* This is not really an error. It just means
985 			   that the block has never been written.
986 			   Instead of returning USB_STOR_TRANSPORT_ERROR
987 			   it is better to return all zero data. */
988 
989 			memset(buffer, 0, len);
990 		} else {
991 			US_DEBUGP("Read %d pages, from PBA %d"
992 				  " (LBA %d) page %d\n",
993 				  pages, pba, lba, page);
994 
995 			result = alauda_read_block(us, pba, page, pages, buffer);
996 			if (result != USB_STOR_TRANSPORT_GOOD)
997 				break;
998 		}
999 
1000 		/* Store the data in the transfer buffer */
1001 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1002 				&sg, &offset, TO_XFER_BUF);
1003 
1004 		page = 0;
1005 		lba++;
1006 		sectors -= pages;
1007 	}
1008 
1009 	kfree(buffer);
1010 	return result;
1011 }
1012 
1013 /*
1014  * Write data to a specific sector address
1015  */
1016 static int alauda_write_data(struct us_data *us, unsigned long address,
1017 		unsigned int sectors)
1018 {
1019 	unsigned char *buffer, *blockbuffer;
1020 	unsigned int page, len, offset;
1021 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1022 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1023 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1024 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1025 	struct scatterlist *sg;
1026 	u16 lba, max_lba;
1027 	int result;
1028 
1029 	/*
1030 	 * Since we don't write the user data directly to the device,
1031 	 * we have to create a bounce buffer and move the data a piece
1032 	 * at a time between the bounce buffer and the actual transfer buffer.
1033 	 */
1034 
1035 	len = min(sectors, blocksize) * pagesize;
1036 	buffer = kmalloc(len, GFP_NOIO);
1037 	if (buffer == NULL) {
1038 		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1039 		return USB_STOR_TRANSPORT_ERROR;
1040 	}
1041 
1042 	/*
1043 	 * We also need a temporary block buffer, where we read in the old data,
1044 	 * overwrite parts with the new data, and manipulate the redundancy data
1045 	 */
1046 	blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1047 	if (blockbuffer == NULL) {
1048 		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1049 		kfree(buffer);
1050 		return USB_STOR_TRANSPORT_ERROR;
1051 	}
1052 
1053 	/* Figure out the initial LBA and page */
1054 	lba = address >> blockshift;
1055 	page = (address & MEDIA_INFO(us).blockmask);
1056 	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1057 
1058 	result = USB_STOR_TRANSPORT_GOOD;
1059 	offset = 0;
1060 	sg = NULL;
1061 
1062 	while (sectors > 0) {
1063 		/* Write as many sectors as possible in this block */
1064 		unsigned int pages = min(sectors, blocksize - page);
1065 		len = pages << pageshift;
1066 
1067 		/* Not overflowing capacity? */
1068 		if (lba >= max_lba) {
1069 			US_DEBUGP("alauda_write_data: Requested lba %u exceeds "
1070 				  "maximum %u\n", lba, max_lba);
1071 			result = USB_STOR_TRANSPORT_ERROR;
1072 			break;
1073 		}
1074 
1075 		/* Get the data from the transfer buffer */
1076 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1077 				&sg, &offset, FROM_XFER_BUF);
1078 
1079 		result = alauda_write_lba(us, lba, page, pages, buffer,
1080 			blockbuffer);
1081 		if (result != USB_STOR_TRANSPORT_GOOD)
1082 			break;
1083 
1084 		page = 0;
1085 		lba++;
1086 		sectors -= pages;
1087 	}
1088 
1089 	kfree(buffer);
1090 	kfree(blockbuffer);
1091 	return result;
1092 }
1093 
1094 /*
1095  * Our interface with the rest of the world
1096  */
1097 
1098 static void alauda_info_destructor(void *extra)
1099 {
1100 	struct alauda_info *info = (struct alauda_info *) extra;
1101 	int port;
1102 
1103 	if (!info)
1104 		return;
1105 
1106 	for (port = 0; port < 2; port++) {
1107 		struct alauda_media_info *media_info = &info->port[port];
1108 
1109 		alauda_free_maps(media_info);
1110 		kfree(media_info->lba_to_pba);
1111 		kfree(media_info->pba_to_lba);
1112 	}
1113 }
1114 
1115 /*
1116  * Initialize alauda_info struct and find the data-write endpoint
1117  */
1118 static int init_alauda(struct us_data *us)
1119 {
1120 	struct alauda_info *info;
1121 	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1122 	nand_init_ecc();
1123 
1124 	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1125 	if (!us->extra) {
1126 		US_DEBUGP("init_alauda: Gah! Can't allocate storage for"
1127 			"alauda info struct!\n");
1128 		return USB_STOR_TRANSPORT_ERROR;
1129 	}
1130 	info = (struct alauda_info *) us->extra;
1131 	us->extra_destructor = alauda_info_destructor;
1132 
1133 	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1134 		altsetting->endpoint[0].desc.bEndpointAddress
1135 		& USB_ENDPOINT_NUMBER_MASK);
1136 
1137 	return USB_STOR_TRANSPORT_GOOD;
1138 }
1139 
1140 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1141 {
1142 	int rc;
1143 	struct alauda_info *info = (struct alauda_info *) us->extra;
1144 	unsigned char *ptr = us->iobuf;
1145 	static unsigned char inquiry_response[36] = {
1146 		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1147 	};
1148 
1149 	if (srb->cmnd[0] == INQUIRY) {
1150 		US_DEBUGP("alauda_transport: INQUIRY. "
1151 			"Returning bogus response.\n");
1152 		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1153 		fill_inquiry_response(us, ptr, 36);
1154 		return USB_STOR_TRANSPORT_GOOD;
1155 	}
1156 
1157 	if (srb->cmnd[0] == TEST_UNIT_READY) {
1158 		US_DEBUGP("alauda_transport: TEST_UNIT_READY.\n");
1159 		return alauda_check_media(us);
1160 	}
1161 
1162 	if (srb->cmnd[0] == READ_CAPACITY) {
1163 		unsigned int num_zones;
1164 		unsigned long capacity;
1165 
1166 		rc = alauda_check_media(us);
1167 		if (rc != USB_STOR_TRANSPORT_GOOD)
1168 			return rc;
1169 
1170 		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1171 			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1172 
1173 		capacity = num_zones * MEDIA_INFO(us).uzonesize
1174 			* MEDIA_INFO(us).blocksize;
1175 
1176 		/* Report capacity and page size */
1177 		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1178 		((__be32 *) ptr)[1] = cpu_to_be32(512);
1179 
1180 		usb_stor_set_xfer_buf(ptr, 8, srb);
1181 		return USB_STOR_TRANSPORT_GOOD;
1182 	}
1183 
1184 	if (srb->cmnd[0] == READ_10) {
1185 		unsigned int page, pages;
1186 
1187 		rc = alauda_check_media(us);
1188 		if (rc != USB_STOR_TRANSPORT_GOOD)
1189 			return rc;
1190 
1191 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1192 		page <<= 16;
1193 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1194 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1195 
1196 		US_DEBUGP("alauda_transport: READ_10: page %d pagect %d\n",
1197 			  page, pages);
1198 
1199 		return alauda_read_data(us, page, pages);
1200 	}
1201 
1202 	if (srb->cmnd[0] == WRITE_10) {
1203 		unsigned int page, pages;
1204 
1205 		rc = alauda_check_media(us);
1206 		if (rc != USB_STOR_TRANSPORT_GOOD)
1207 			return rc;
1208 
1209 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1210 		page <<= 16;
1211 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1212 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1213 
1214 		US_DEBUGP("alauda_transport: WRITE_10: page %d pagect %d\n",
1215 			  page, pages);
1216 
1217 		return alauda_write_data(us, page, pages);
1218 	}
1219 
1220 	if (srb->cmnd[0] == REQUEST_SENSE) {
1221 		US_DEBUGP("alauda_transport: REQUEST_SENSE.\n");
1222 
1223 		memset(ptr, 0, 18);
1224 		ptr[0] = 0xF0;
1225 		ptr[2] = info->sense_key;
1226 		ptr[7] = 11;
1227 		ptr[12] = info->sense_asc;
1228 		ptr[13] = info->sense_ascq;
1229 		usb_stor_set_xfer_buf(ptr, 18, srb);
1230 
1231 		return USB_STOR_TRANSPORT_GOOD;
1232 	}
1233 
1234 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1235 		/* sure.  whatever.  not like we can stop the user from popping
1236 		   the media out of the device (no locking doors, etc) */
1237 		return USB_STOR_TRANSPORT_GOOD;
1238 	}
1239 
1240 	US_DEBUGP("alauda_transport: Gah! Unknown command: %d (0x%x)\n",
1241 		srb->cmnd[0], srb->cmnd[0]);
1242 	info->sense_key = 0x05;
1243 	info->sense_asc = 0x20;
1244 	info->sense_ascq = 0x00;
1245 	return USB_STOR_TRANSPORT_FAILED;
1246 }
1247 
1248 static int alauda_probe(struct usb_interface *intf,
1249 			 const struct usb_device_id *id)
1250 {
1251 	struct us_data *us;
1252 	int result;
1253 
1254 	result = usb_stor_probe1(&us, intf, id,
1255 			(id - alauda_usb_ids) + alauda_unusual_dev_list);
1256 	if (result)
1257 		return result;
1258 
1259 	us->transport_name  = "Alauda Control/Bulk";
1260 	us->transport = alauda_transport;
1261 	us->transport_reset = usb_stor_Bulk_reset;
1262 	us->max_lun = 1;
1263 
1264 	result = usb_stor_probe2(us);
1265 	return result;
1266 }
1267 
1268 static struct usb_driver alauda_driver = {
1269 	.name =		"ums-alauda",
1270 	.probe =	alauda_probe,
1271 	.disconnect =	usb_stor_disconnect,
1272 	.suspend =	usb_stor_suspend,
1273 	.resume =	usb_stor_resume,
1274 	.reset_resume =	usb_stor_reset_resume,
1275 	.pre_reset =	usb_stor_pre_reset,
1276 	.post_reset =	usb_stor_post_reset,
1277 	.id_table =	alauda_usb_ids,
1278 	.soft_unbind =	1,
1279 };
1280 
1281 static int __init alauda_init(void)
1282 {
1283 	return usb_register(&alauda_driver);
1284 }
1285 
1286 static void __exit alauda_exit(void)
1287 {
1288 	usb_deregister(&alauda_driver);
1289 }
1290 
1291 module_init(alauda_init);
1292 module_exit(alauda_exit);
1293