xref: /openbmc/linux/drivers/usb/storage/alauda.c (revision c4ee0af3)
1 /*
2  * Driver for Alauda-based card readers
3  *
4  * Current development and maintenance by:
5  *   (c) 2005 Daniel Drake <dsd@gentoo.org>
6  *
7  * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
8  *
9  * Alauda implements a vendor-specific command set to access two media reader
10  * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11  * which are accepted by these devices.
12  *
13  * The driver was developed through reverse-engineering, with the help of the
14  * sddr09 driver which has many similarities, and with some help from the
15  * (very old) vendor-supplied GPL sma03 driver.
16  *
17  * For protocol info, see http://alauda.sourceforge.net
18  *
19  * This program is free software; you can redistribute it and/or modify it
20  * under the terms of the GNU General Public License as published by the
21  * Free Software Foundation; either version 2, or (at your option) any
22  * later version.
23  *
24  * This program is distributed in the hope that it will be useful, but
25  * WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License along
30  * with this program; if not, write to the Free Software Foundation, Inc.,
31  * 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/slab.h>
36 
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
40 
41 #include "usb.h"
42 #include "transport.h"
43 #include "protocol.h"
44 #include "debug.h"
45 
46 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
47 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
48 MODULE_LICENSE("GPL");
49 
50 /*
51  * Status bytes
52  */
53 #define ALAUDA_STATUS_ERROR		0x01
54 #define ALAUDA_STATUS_READY		0x40
55 
56 /*
57  * Control opcodes (for request field)
58  */
59 #define ALAUDA_GET_XD_MEDIA_STATUS	0x08
60 #define ALAUDA_GET_SM_MEDIA_STATUS	0x98
61 #define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
62 #define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
63 #define ALAUDA_GET_XD_MEDIA_SIG		0x86
64 #define ALAUDA_GET_SM_MEDIA_SIG		0x96
65 
66 /*
67  * Bulk command identity (byte 0)
68  */
69 #define ALAUDA_BULK_CMD			0x40
70 
71 /*
72  * Bulk opcodes (byte 1)
73  */
74 #define ALAUDA_BULK_GET_REDU_DATA	0x85
75 #define ALAUDA_BULK_READ_BLOCK		0x94
76 #define ALAUDA_BULK_ERASE_BLOCK		0xa3
77 #define ALAUDA_BULK_WRITE_BLOCK		0xb4
78 #define ALAUDA_BULK_GET_STATUS2		0xb7
79 #define ALAUDA_BULK_RESET_MEDIA		0xe0
80 
81 /*
82  * Port to operate on (byte 8)
83  */
84 #define ALAUDA_PORT_XD			0x00
85 #define ALAUDA_PORT_SM			0x01
86 
87 /*
88  * LBA and PBA are unsigned ints. Special values.
89  */
90 #define UNDEF    0xffff
91 #define SPARE    0xfffe
92 #define UNUSABLE 0xfffd
93 
94 struct alauda_media_info {
95 	unsigned long capacity;		/* total media size in bytes */
96 	unsigned int pagesize;		/* page size in bytes */
97 	unsigned int blocksize;		/* number of pages per block */
98 	unsigned int uzonesize;		/* number of usable blocks per zone */
99 	unsigned int zonesize;		/* number of blocks per zone */
100 	unsigned int blockmask;		/* mask to get page from address */
101 
102 	unsigned char pageshift;
103 	unsigned char blockshift;
104 	unsigned char zoneshift;
105 
106 	u16 **lba_to_pba;		/* logical to physical block map */
107 	u16 **pba_to_lba;		/* physical to logical block map */
108 };
109 
110 struct alauda_info {
111 	struct alauda_media_info port[2];
112 	int wr_ep;			/* endpoint to write data out of */
113 
114 	unsigned char sense_key;
115 	unsigned long sense_asc;	/* additional sense code */
116 	unsigned long sense_ascq;	/* additional sense code qualifier */
117 };
118 
119 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
120 #define LSB_of(s) ((s)&0xFF)
121 #define MSB_of(s) ((s)>>8)
122 
123 #define MEDIA_PORT(us) us->srb->device->lun
124 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
125 
126 #define PBA_LO(pba) ((pba & 0xF) << 5)
127 #define PBA_HI(pba) (pba >> 3)
128 #define PBA_ZONE(pba) (pba >> 11)
129 
130 static int init_alauda(struct us_data *us);
131 
132 
133 /*
134  * The table of devices
135  */
136 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
137 		    vendorName, productName, useProtocol, useTransport, \
138 		    initFunction, flags) \
139 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
140   .driver_info = (flags) }
141 
142 static struct usb_device_id alauda_usb_ids[] = {
143 #	include "unusual_alauda.h"
144 	{ }		/* Terminating entry */
145 };
146 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
147 
148 #undef UNUSUAL_DEV
149 
150 /*
151  * The flags table
152  */
153 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
154 		    vendor_name, product_name, use_protocol, use_transport, \
155 		    init_function, Flags) \
156 { \
157 	.vendorName = vendor_name,	\
158 	.productName = product_name,	\
159 	.useProtocol = use_protocol,	\
160 	.useTransport = use_transport,	\
161 	.initFunction = init_function,	\
162 }
163 
164 static struct us_unusual_dev alauda_unusual_dev_list[] = {
165 #	include "unusual_alauda.h"
166 	{ }		/* Terminating entry */
167 };
168 
169 #undef UNUSUAL_DEV
170 
171 
172 /*
173  * Media handling
174  */
175 
176 struct alauda_card_info {
177 	unsigned char id;		/* id byte */
178 	unsigned char chipshift;	/* 1<<cs bytes total capacity */
179 	unsigned char pageshift;	/* 1<<ps bytes in a page */
180 	unsigned char blockshift;	/* 1<<bs pages per block */
181 	unsigned char zoneshift;	/* 1<<zs blocks per zone */
182 };
183 
184 static struct alauda_card_info alauda_card_ids[] = {
185 	/* NAND flash */
186 	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
187 	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
188 	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
189 	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
190 	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
191 	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
192 	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
193 	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
194 	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
195 	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
196 	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
197 	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
198 	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
199 	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
200 
201 	/* MASK ROM */
202 	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
203 	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
204 	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
205 	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
206 	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
207 	{ 0,}
208 };
209 
210 static struct alauda_card_info *alauda_card_find_id(unsigned char id) {
211 	int i;
212 
213 	for (i = 0; alauda_card_ids[i].id != 0; i++)
214 		if (alauda_card_ids[i].id == id)
215 			return &(alauda_card_ids[i]);
216 	return NULL;
217 }
218 
219 /*
220  * ECC computation.
221  */
222 
223 static unsigned char parity[256];
224 static unsigned char ecc2[256];
225 
226 static void nand_init_ecc(void) {
227 	int i, j, a;
228 
229 	parity[0] = 0;
230 	for (i = 1; i < 256; i++)
231 		parity[i] = (parity[i&(i-1)] ^ 1);
232 
233 	for (i = 0; i < 256; i++) {
234 		a = 0;
235 		for (j = 0; j < 8; j++) {
236 			if (i & (1<<j)) {
237 				if ((j & 1) == 0)
238 					a ^= 0x04;
239 				if ((j & 2) == 0)
240 					a ^= 0x10;
241 				if ((j & 4) == 0)
242 					a ^= 0x40;
243 			}
244 		}
245 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
246 	}
247 }
248 
249 /* compute 3-byte ecc on 256 bytes */
250 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
251 	int i, j, a;
252 	unsigned char par = 0, bit, bits[8] = {0};
253 
254 	/* collect 16 checksum bits */
255 	for (i = 0; i < 256; i++) {
256 		par ^= data[i];
257 		bit = parity[data[i]];
258 		for (j = 0; j < 8; j++)
259 			if ((i & (1<<j)) == 0)
260 				bits[j] ^= bit;
261 	}
262 
263 	/* put 4+4+4 = 12 bits in the ecc */
264 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
265 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
266 
267 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
268 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
269 
270 	ecc[2] = ecc2[par];
271 }
272 
273 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
274 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
275 }
276 
277 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
278 	memcpy(data, ecc, 3);
279 }
280 
281 /*
282  * Alauda driver
283  */
284 
285 /*
286  * Forget our PBA <---> LBA mappings for a particular port
287  */
288 static void alauda_free_maps (struct alauda_media_info *media_info)
289 {
290 	unsigned int shift = media_info->zoneshift
291 		+ media_info->blockshift + media_info->pageshift;
292 	unsigned int num_zones = media_info->capacity >> shift;
293 	unsigned int i;
294 
295 	if (media_info->lba_to_pba != NULL)
296 		for (i = 0; i < num_zones; i++) {
297 			kfree(media_info->lba_to_pba[i]);
298 			media_info->lba_to_pba[i] = NULL;
299 		}
300 
301 	if (media_info->pba_to_lba != NULL)
302 		for (i = 0; i < num_zones; i++) {
303 			kfree(media_info->pba_to_lba[i]);
304 			media_info->pba_to_lba[i] = NULL;
305 		}
306 }
307 
308 /*
309  * Returns 2 bytes of status data
310  * The first byte describes media status, and second byte describes door status
311  */
312 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
313 {
314 	int rc;
315 	unsigned char command;
316 
317 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
318 		command = ALAUDA_GET_XD_MEDIA_STATUS;
319 	else
320 		command = ALAUDA_GET_SM_MEDIA_STATUS;
321 
322 	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
323 		command, 0xc0, 0, 1, data, 2);
324 
325 	usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
326 
327 	return rc;
328 }
329 
330 /*
331  * Clears the "media was changed" bit so that we know when it changes again
332  * in the future.
333  */
334 static int alauda_ack_media(struct us_data *us)
335 {
336 	unsigned char command;
337 
338 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
339 		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
340 	else
341 		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
342 
343 	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
344 		command, 0x40, 0, 1, NULL, 0);
345 }
346 
347 /*
348  * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
349  * and some other details.
350  */
351 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
352 {
353 	unsigned char command;
354 
355 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
356 		command = ALAUDA_GET_XD_MEDIA_SIG;
357 	else
358 		command = ALAUDA_GET_SM_MEDIA_SIG;
359 
360 	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
361 		command, 0xc0, 0, 0, data, 4);
362 }
363 
364 /*
365  * Resets the media status (but not the whole device?)
366  */
367 static int alauda_reset_media(struct us_data *us)
368 {
369 	unsigned char *command = us->iobuf;
370 
371 	memset(command, 0, 9);
372 	command[0] = ALAUDA_BULK_CMD;
373 	command[1] = ALAUDA_BULK_RESET_MEDIA;
374 	command[8] = MEDIA_PORT(us);
375 
376 	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
377 		command, 9, NULL);
378 }
379 
380 /*
381  * Examines the media and deduces capacity, etc.
382  */
383 static int alauda_init_media(struct us_data *us)
384 {
385 	unsigned char *data = us->iobuf;
386 	int ready = 0;
387 	struct alauda_card_info *media_info;
388 	unsigned int num_zones;
389 
390 	while (ready == 0) {
391 		msleep(20);
392 
393 		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
394 			return USB_STOR_TRANSPORT_ERROR;
395 
396 		if (data[0] & 0x10)
397 			ready = 1;
398 	}
399 
400 	usb_stor_dbg(us, "We are ready for action!\n");
401 
402 	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
403 		return USB_STOR_TRANSPORT_ERROR;
404 
405 	msleep(10);
406 
407 	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
408 		return USB_STOR_TRANSPORT_ERROR;
409 
410 	if (data[0] != 0x14) {
411 		usb_stor_dbg(us, "Media not ready after ack\n");
412 		return USB_STOR_TRANSPORT_ERROR;
413 	}
414 
415 	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
416 		return USB_STOR_TRANSPORT_ERROR;
417 
418 	usb_stor_dbg(us, "Media signature: %02X %02X %02X %02X\n",
419 		     data[0], data[1], data[2], data[3]);
420 	media_info = alauda_card_find_id(data[1]);
421 	if (media_info == NULL) {
422 		printk(KERN_WARNING
423 			"alauda_init_media: Unrecognised media signature: "
424 			"%02X %02X %02X %02X\n",
425 			data[0], data[1], data[2], data[3]);
426 		return USB_STOR_TRANSPORT_ERROR;
427 	}
428 
429 	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
430 	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
431 		     MEDIA_INFO(us).capacity >> 20);
432 
433 	MEDIA_INFO(us).pageshift = media_info->pageshift;
434 	MEDIA_INFO(us).blockshift = media_info->blockshift;
435 	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
436 
437 	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
438 	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
439 	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
440 
441 	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
442 	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
443 
444 	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
445 		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
446 	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
447 	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
448 
449 	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
450 		return USB_STOR_TRANSPORT_ERROR;
451 
452 	return USB_STOR_TRANSPORT_GOOD;
453 }
454 
455 /*
456  * Examines the media status and does the right thing when the media has gone,
457  * appeared, or changed.
458  */
459 static int alauda_check_media(struct us_data *us)
460 {
461 	struct alauda_info *info = (struct alauda_info *) us->extra;
462 	unsigned char status[2];
463 	int rc;
464 
465 	rc = alauda_get_media_status(us, status);
466 
467 	/* Check for no media or door open */
468 	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
469 		|| ((status[1] & 0x01) == 0)) {
470 		usb_stor_dbg(us, "No media, or door open\n");
471 		alauda_free_maps(&MEDIA_INFO(us));
472 		info->sense_key = 0x02;
473 		info->sense_asc = 0x3A;
474 		info->sense_ascq = 0x00;
475 		return USB_STOR_TRANSPORT_FAILED;
476 	}
477 
478 	/* Check for media change */
479 	if (status[0] & 0x08) {
480 		usb_stor_dbg(us, "Media change detected\n");
481 		alauda_free_maps(&MEDIA_INFO(us));
482 		alauda_init_media(us);
483 
484 		info->sense_key = UNIT_ATTENTION;
485 		info->sense_asc = 0x28;
486 		info->sense_ascq = 0x00;
487 		return USB_STOR_TRANSPORT_FAILED;
488 	}
489 
490 	return USB_STOR_TRANSPORT_GOOD;
491 }
492 
493 /*
494  * Checks the status from the 2nd status register
495  * Returns 3 bytes of status data, only the first is known
496  */
497 static int alauda_check_status2(struct us_data *us)
498 {
499 	int rc;
500 	unsigned char command[] = {
501 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
502 		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
503 	};
504 	unsigned char data[3];
505 
506 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
507 		command, 9, NULL);
508 	if (rc != USB_STOR_XFER_GOOD)
509 		return rc;
510 
511 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
512 		data, 3, NULL);
513 	if (rc != USB_STOR_XFER_GOOD)
514 		return rc;
515 
516 	usb_stor_dbg(us, "%02X %02X %02X\n", data[0], data[1], data[2]);
517 	if (data[0] & ALAUDA_STATUS_ERROR)
518 		return USB_STOR_XFER_ERROR;
519 
520 	return USB_STOR_XFER_GOOD;
521 }
522 
523 /*
524  * Gets the redundancy data for the first page of a PBA
525  * Returns 16 bytes.
526  */
527 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
528 {
529 	int rc;
530 	unsigned char command[] = {
531 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
532 		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
533 	};
534 
535 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
536 		command, 9, NULL);
537 	if (rc != USB_STOR_XFER_GOOD)
538 		return rc;
539 
540 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
541 		data, 16, NULL);
542 }
543 
544 /*
545  * Finds the first unused PBA in a zone
546  * Returns the absolute PBA of an unused PBA, or 0 if none found.
547  */
548 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
549 	unsigned int zone)
550 {
551 	u16 *pba_to_lba = info->pba_to_lba[zone];
552 	unsigned int i;
553 
554 	for (i = 0; i < info->zonesize; i++)
555 		if (pba_to_lba[i] == UNDEF)
556 			return (zone << info->zoneshift) + i;
557 
558 	return 0;
559 }
560 
561 /*
562  * Reads the redundancy data for all PBA's in a zone
563  * Produces lba <--> pba mappings
564  */
565 static int alauda_read_map(struct us_data *us, unsigned int zone)
566 {
567 	unsigned char *data = us->iobuf;
568 	int result;
569 	int i, j;
570 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
571 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
572 	unsigned int lba_offset, lba_real, blocknum;
573 	unsigned int zone_base_lba = zone * uzonesize;
574 	unsigned int zone_base_pba = zone * zonesize;
575 	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
576 	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
577 	if (lba_to_pba == NULL || pba_to_lba == NULL) {
578 		result = USB_STOR_TRANSPORT_ERROR;
579 		goto error;
580 	}
581 
582 	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
583 
584 	/* 1024 PBA's per zone */
585 	for (i = 0; i < zonesize; i++)
586 		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
587 
588 	for (i = 0; i < zonesize; i++) {
589 		blocknum = zone_base_pba + i;
590 
591 		result = alauda_get_redu_data(us, blocknum, data);
592 		if (result != USB_STOR_XFER_GOOD) {
593 			result = USB_STOR_TRANSPORT_ERROR;
594 			goto error;
595 		}
596 
597 		/* special PBAs have control field 0^16 */
598 		for (j = 0; j < 16; j++)
599 			if (data[j] != 0)
600 				goto nonz;
601 		pba_to_lba[i] = UNUSABLE;
602 		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
603 		continue;
604 
605 	nonz:
606 		/* unwritten PBAs have control field FF^16 */
607 		for (j = 0; j < 16; j++)
608 			if (data[j] != 0xff)
609 				goto nonff;
610 		continue;
611 
612 	nonff:
613 		/* normal PBAs start with six FFs */
614 		if (j < 6) {
615 			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
616 				     blocknum,
617 				     data[0], data[1], data[2], data[3],
618 				     data[4], data[5]);
619 			pba_to_lba[i] = UNUSABLE;
620 			continue;
621 		}
622 
623 		if ((data[6] >> 4) != 0x01) {
624 			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
625 				     blocknum, data[6], data[7],
626 				     data[11], data[12]);
627 			pba_to_lba[i] = UNUSABLE;
628 			continue;
629 		}
630 
631 		/* check even parity */
632 		if (parity[data[6] ^ data[7]]) {
633 			printk(KERN_WARNING
634 			       "alauda_read_map: Bad parity in LBA for block %d"
635 			       " (%02X %02X)\n", i, data[6], data[7]);
636 			pba_to_lba[i] = UNUSABLE;
637 			continue;
638 		}
639 
640 		lba_offset = short_pack(data[7], data[6]);
641 		lba_offset = (lba_offset & 0x07FF) >> 1;
642 		lba_real = lba_offset + zone_base_lba;
643 
644 		/*
645 		 * Every 1024 physical blocks ("zone"), the LBA numbers
646 		 * go back to zero, but are within a higher block of LBA's.
647 		 * Also, there is a maximum of 1000 LBA's per zone.
648 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
649 		 * which are really LBA 1000-1999. This allows for 24 bad
650 		 * or special physical blocks per zone.
651 		 */
652 
653 		if (lba_offset >= uzonesize) {
654 			printk(KERN_WARNING
655 			       "alauda_read_map: Bad low LBA %d for block %d\n",
656 			       lba_real, blocknum);
657 			continue;
658 		}
659 
660 		if (lba_to_pba[lba_offset] != UNDEF) {
661 			printk(KERN_WARNING
662 			       "alauda_read_map: "
663 			       "LBA %d seen for PBA %d and %d\n",
664 			       lba_real, lba_to_pba[lba_offset], blocknum);
665 			continue;
666 		}
667 
668 		pba_to_lba[i] = lba_real;
669 		lba_to_pba[lba_offset] = blocknum;
670 		continue;
671 	}
672 
673 	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
674 	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
675 	result = 0;
676 	goto out;
677 
678 error:
679 	kfree(lba_to_pba);
680 	kfree(pba_to_lba);
681 out:
682 	return result;
683 }
684 
685 /*
686  * Checks to see whether we have already mapped a certain zone
687  * If we haven't, the map is generated
688  */
689 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
690 {
691 	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
692 		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
693 		alauda_read_map(us, zone);
694 }
695 
696 /*
697  * Erases an entire block
698  */
699 static int alauda_erase_block(struct us_data *us, u16 pba)
700 {
701 	int rc;
702 	unsigned char command[] = {
703 		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
704 		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
705 	};
706 	unsigned char buf[2];
707 
708 	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
709 
710 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
711 		command, 9, NULL);
712 	if (rc != USB_STOR_XFER_GOOD)
713 		return rc;
714 
715 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
716 		buf, 2, NULL);
717 	if (rc != USB_STOR_XFER_GOOD)
718 		return rc;
719 
720 	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
721 	return rc;
722 }
723 
724 /*
725  * Reads data from a certain offset page inside a PBA, including interleaved
726  * redundancy data. Returns (pagesize+64)*pages bytes in data.
727  */
728 static int alauda_read_block_raw(struct us_data *us, u16 pba,
729 		unsigned int page, unsigned int pages, unsigned char *data)
730 {
731 	int rc;
732 	unsigned char command[] = {
733 		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
734 		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
735 	};
736 
737 	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
738 
739 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
740 		command, 9, NULL);
741 	if (rc != USB_STOR_XFER_GOOD)
742 		return rc;
743 
744 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
745 		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
746 }
747 
748 /*
749  * Reads data from a certain offset page inside a PBA, excluding redundancy
750  * data. Returns pagesize*pages bytes in data. Note that data must be big enough
751  * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
752  * trailing bytes outside this function.
753  */
754 static int alauda_read_block(struct us_data *us, u16 pba,
755 		unsigned int page, unsigned int pages, unsigned char *data)
756 {
757 	int i, rc;
758 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
759 
760 	rc = alauda_read_block_raw(us, pba, page, pages, data);
761 	if (rc != USB_STOR_XFER_GOOD)
762 		return rc;
763 
764 	/* Cut out the redundancy data */
765 	for (i = 0; i < pages; i++) {
766 		int dest_offset = i * pagesize;
767 		int src_offset = i * (pagesize + 64);
768 		memmove(data + dest_offset, data + src_offset, pagesize);
769 	}
770 
771 	return rc;
772 }
773 
774 /*
775  * Writes an entire block of data and checks status after write.
776  * Redundancy data must be already included in data. Data should be
777  * (pagesize+64)*blocksize bytes in length.
778  */
779 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
780 {
781 	int rc;
782 	struct alauda_info *info = (struct alauda_info *) us->extra;
783 	unsigned char command[] = {
784 		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
785 		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
786 	};
787 
788 	usb_stor_dbg(us, "pba %d\n", pba);
789 
790 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
791 		command, 9, NULL);
792 	if (rc != USB_STOR_XFER_GOOD)
793 		return rc;
794 
795 	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
796 		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
797 		NULL);
798 	if (rc != USB_STOR_XFER_GOOD)
799 		return rc;
800 
801 	return alauda_check_status2(us);
802 }
803 
804 /*
805  * Write some data to a specific LBA.
806  */
807 static int alauda_write_lba(struct us_data *us, u16 lba,
808 		 unsigned int page, unsigned int pages,
809 		 unsigned char *ptr, unsigned char *blockbuffer)
810 {
811 	u16 pba, lbap, new_pba;
812 	unsigned char *bptr, *cptr, *xptr;
813 	unsigned char ecc[3];
814 	int i, result;
815 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
816 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
817 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
818 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
819 	unsigned int lba_offset = lba % uzonesize;
820 	unsigned int new_pba_offset;
821 	unsigned int zone = lba / uzonesize;
822 
823 	alauda_ensure_map_for_zone(us, zone);
824 
825 	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
826 	if (pba == 1) {
827 		/* Maybe it is impossible to write to PBA 1.
828 		   Fake success, but don't do anything. */
829 		printk(KERN_WARNING
830 		       "alauda_write_lba: avoid writing to pba 1\n");
831 		return USB_STOR_TRANSPORT_GOOD;
832 	}
833 
834 	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
835 	if (!new_pba) {
836 		printk(KERN_WARNING
837 		       "alauda_write_lba: Out of unused blocks\n");
838 		return USB_STOR_TRANSPORT_ERROR;
839 	}
840 
841 	/* read old contents */
842 	if (pba != UNDEF) {
843 		result = alauda_read_block_raw(us, pba, 0,
844 			blocksize, blockbuffer);
845 		if (result != USB_STOR_XFER_GOOD)
846 			return result;
847 	} else {
848 		memset(blockbuffer, 0, blocksize * (pagesize + 64));
849 	}
850 
851 	lbap = (lba_offset << 1) | 0x1000;
852 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
853 		lbap ^= 1;
854 
855 	/* check old contents and fill lba */
856 	for (i = 0; i < blocksize; i++) {
857 		bptr = blockbuffer + (i * (pagesize + 64));
858 		cptr = bptr + pagesize;
859 		nand_compute_ecc(bptr, ecc);
860 		if (!nand_compare_ecc(cptr+13, ecc)) {
861 			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
862 				     i, pba);
863 			nand_store_ecc(cptr+13, ecc);
864 		}
865 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
866 		if (!nand_compare_ecc(cptr+8, ecc)) {
867 			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
868 				     i, pba);
869 			nand_store_ecc(cptr+8, ecc);
870 		}
871 		cptr[6] = cptr[11] = MSB_of(lbap);
872 		cptr[7] = cptr[12] = LSB_of(lbap);
873 	}
874 
875 	/* copy in new stuff and compute ECC */
876 	xptr = ptr;
877 	for (i = page; i < page+pages; i++) {
878 		bptr = blockbuffer + (i * (pagesize + 64));
879 		cptr = bptr + pagesize;
880 		memcpy(bptr, xptr, pagesize);
881 		xptr += pagesize;
882 		nand_compute_ecc(bptr, ecc);
883 		nand_store_ecc(cptr+13, ecc);
884 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
885 		nand_store_ecc(cptr+8, ecc);
886 	}
887 
888 	result = alauda_write_block(us, new_pba, blockbuffer);
889 	if (result != USB_STOR_XFER_GOOD)
890 		return result;
891 
892 	new_pba_offset = new_pba - (zone * zonesize);
893 	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
894 	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
895 	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
896 
897 	if (pba != UNDEF) {
898 		unsigned int pba_offset = pba - (zone * zonesize);
899 		result = alauda_erase_block(us, pba);
900 		if (result != USB_STOR_XFER_GOOD)
901 			return result;
902 		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
903 	}
904 
905 	return USB_STOR_TRANSPORT_GOOD;
906 }
907 
908 /*
909  * Read data from a specific sector address
910  */
911 static int alauda_read_data(struct us_data *us, unsigned long address,
912 		unsigned int sectors)
913 {
914 	unsigned char *buffer;
915 	u16 lba, max_lba;
916 	unsigned int page, len, offset;
917 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
918 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
919 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
920 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
921 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
922 	struct scatterlist *sg;
923 	int result;
924 
925 	/*
926 	 * Since we only read in one block at a time, we have to create
927 	 * a bounce buffer and move the data a piece at a time between the
928 	 * bounce buffer and the actual transfer buffer.
929 	 * We make this buffer big enough to hold temporary redundancy data,
930 	 * which we use when reading the data blocks.
931 	 */
932 
933 	len = min(sectors, blocksize) * (pagesize + 64);
934 	buffer = kmalloc(len, GFP_NOIO);
935 	if (buffer == NULL) {
936 		printk(KERN_WARNING "alauda_read_data: Out of memory\n");
937 		return USB_STOR_TRANSPORT_ERROR;
938 	}
939 
940 	/* Figure out the initial LBA and page */
941 	lba = address >> blockshift;
942 	page = (address & MEDIA_INFO(us).blockmask);
943 	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
944 
945 	result = USB_STOR_TRANSPORT_GOOD;
946 	offset = 0;
947 	sg = NULL;
948 
949 	while (sectors > 0) {
950 		unsigned int zone = lba / uzonesize; /* integer division */
951 		unsigned int lba_offset = lba - (zone * uzonesize);
952 		unsigned int pages;
953 		u16 pba;
954 		alauda_ensure_map_for_zone(us, zone);
955 
956 		/* Not overflowing capacity? */
957 		if (lba >= max_lba) {
958 			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
959 				     lba, max_lba);
960 			result = USB_STOR_TRANSPORT_ERROR;
961 			break;
962 		}
963 
964 		/* Find number of pages we can read in this block */
965 		pages = min(sectors, blocksize - page);
966 		len = pages << pageshift;
967 
968 		/* Find where this lba lives on disk */
969 		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
970 
971 		if (pba == UNDEF) {	/* this lba was never written */
972 			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
973 				     pages, lba, page);
974 
975 			/* This is not really an error. It just means
976 			   that the block has never been written.
977 			   Instead of returning USB_STOR_TRANSPORT_ERROR
978 			   it is better to return all zero data. */
979 
980 			memset(buffer, 0, len);
981 		} else {
982 			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
983 				     pages, pba, lba, page);
984 
985 			result = alauda_read_block(us, pba, page, pages, buffer);
986 			if (result != USB_STOR_TRANSPORT_GOOD)
987 				break;
988 		}
989 
990 		/* Store the data in the transfer buffer */
991 		usb_stor_access_xfer_buf(buffer, len, us->srb,
992 				&sg, &offset, TO_XFER_BUF);
993 
994 		page = 0;
995 		lba++;
996 		sectors -= pages;
997 	}
998 
999 	kfree(buffer);
1000 	return result;
1001 }
1002 
1003 /*
1004  * Write data to a specific sector address
1005  */
1006 static int alauda_write_data(struct us_data *us, unsigned long address,
1007 		unsigned int sectors)
1008 {
1009 	unsigned char *buffer, *blockbuffer;
1010 	unsigned int page, len, offset;
1011 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1012 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1013 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1014 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1015 	struct scatterlist *sg;
1016 	u16 lba, max_lba;
1017 	int result;
1018 
1019 	/*
1020 	 * Since we don't write the user data directly to the device,
1021 	 * we have to create a bounce buffer and move the data a piece
1022 	 * at a time between the bounce buffer and the actual transfer buffer.
1023 	 */
1024 
1025 	len = min(sectors, blocksize) * pagesize;
1026 	buffer = kmalloc(len, GFP_NOIO);
1027 	if (buffer == NULL) {
1028 		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1029 		return USB_STOR_TRANSPORT_ERROR;
1030 	}
1031 
1032 	/*
1033 	 * We also need a temporary block buffer, where we read in the old data,
1034 	 * overwrite parts with the new data, and manipulate the redundancy data
1035 	 */
1036 	blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1037 	if (blockbuffer == NULL) {
1038 		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1039 		kfree(buffer);
1040 		return USB_STOR_TRANSPORT_ERROR;
1041 	}
1042 
1043 	/* Figure out the initial LBA and page */
1044 	lba = address >> blockshift;
1045 	page = (address & MEDIA_INFO(us).blockmask);
1046 	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1047 
1048 	result = USB_STOR_TRANSPORT_GOOD;
1049 	offset = 0;
1050 	sg = NULL;
1051 
1052 	while (sectors > 0) {
1053 		/* Write as many sectors as possible in this block */
1054 		unsigned int pages = min(sectors, blocksize - page);
1055 		len = pages << pageshift;
1056 
1057 		/* Not overflowing capacity? */
1058 		if (lba >= max_lba) {
1059 			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1060 				     lba, max_lba);
1061 			result = USB_STOR_TRANSPORT_ERROR;
1062 			break;
1063 		}
1064 
1065 		/* Get the data from the transfer buffer */
1066 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1067 				&sg, &offset, FROM_XFER_BUF);
1068 
1069 		result = alauda_write_lba(us, lba, page, pages, buffer,
1070 			blockbuffer);
1071 		if (result != USB_STOR_TRANSPORT_GOOD)
1072 			break;
1073 
1074 		page = 0;
1075 		lba++;
1076 		sectors -= pages;
1077 	}
1078 
1079 	kfree(buffer);
1080 	kfree(blockbuffer);
1081 	return result;
1082 }
1083 
1084 /*
1085  * Our interface with the rest of the world
1086  */
1087 
1088 static void alauda_info_destructor(void *extra)
1089 {
1090 	struct alauda_info *info = (struct alauda_info *) extra;
1091 	int port;
1092 
1093 	if (!info)
1094 		return;
1095 
1096 	for (port = 0; port < 2; port++) {
1097 		struct alauda_media_info *media_info = &info->port[port];
1098 
1099 		alauda_free_maps(media_info);
1100 		kfree(media_info->lba_to_pba);
1101 		kfree(media_info->pba_to_lba);
1102 	}
1103 }
1104 
1105 /*
1106  * Initialize alauda_info struct and find the data-write endpoint
1107  */
1108 static int init_alauda(struct us_data *us)
1109 {
1110 	struct alauda_info *info;
1111 	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1112 	nand_init_ecc();
1113 
1114 	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1115 	if (!us->extra)
1116 		return USB_STOR_TRANSPORT_ERROR;
1117 
1118 	info = (struct alauda_info *) us->extra;
1119 	us->extra_destructor = alauda_info_destructor;
1120 
1121 	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1122 		altsetting->endpoint[0].desc.bEndpointAddress
1123 		& USB_ENDPOINT_NUMBER_MASK);
1124 
1125 	return USB_STOR_TRANSPORT_GOOD;
1126 }
1127 
1128 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1129 {
1130 	int rc;
1131 	struct alauda_info *info = (struct alauda_info *) us->extra;
1132 	unsigned char *ptr = us->iobuf;
1133 	static unsigned char inquiry_response[36] = {
1134 		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1135 	};
1136 
1137 	if (srb->cmnd[0] == INQUIRY) {
1138 		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1139 		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1140 		fill_inquiry_response(us, ptr, 36);
1141 		return USB_STOR_TRANSPORT_GOOD;
1142 	}
1143 
1144 	if (srb->cmnd[0] == TEST_UNIT_READY) {
1145 		usb_stor_dbg(us, "TEST_UNIT_READY\n");
1146 		return alauda_check_media(us);
1147 	}
1148 
1149 	if (srb->cmnd[0] == READ_CAPACITY) {
1150 		unsigned int num_zones;
1151 		unsigned long capacity;
1152 
1153 		rc = alauda_check_media(us);
1154 		if (rc != USB_STOR_TRANSPORT_GOOD)
1155 			return rc;
1156 
1157 		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1158 			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1159 
1160 		capacity = num_zones * MEDIA_INFO(us).uzonesize
1161 			* MEDIA_INFO(us).blocksize;
1162 
1163 		/* Report capacity and page size */
1164 		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1165 		((__be32 *) ptr)[1] = cpu_to_be32(512);
1166 
1167 		usb_stor_set_xfer_buf(ptr, 8, srb);
1168 		return USB_STOR_TRANSPORT_GOOD;
1169 	}
1170 
1171 	if (srb->cmnd[0] == READ_10) {
1172 		unsigned int page, pages;
1173 
1174 		rc = alauda_check_media(us);
1175 		if (rc != USB_STOR_TRANSPORT_GOOD)
1176 			return rc;
1177 
1178 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1179 		page <<= 16;
1180 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1181 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1182 
1183 		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1184 
1185 		return alauda_read_data(us, page, pages);
1186 	}
1187 
1188 	if (srb->cmnd[0] == WRITE_10) {
1189 		unsigned int page, pages;
1190 
1191 		rc = alauda_check_media(us);
1192 		if (rc != USB_STOR_TRANSPORT_GOOD)
1193 			return rc;
1194 
1195 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1196 		page <<= 16;
1197 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1198 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1199 
1200 		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1201 
1202 		return alauda_write_data(us, page, pages);
1203 	}
1204 
1205 	if (srb->cmnd[0] == REQUEST_SENSE) {
1206 		usb_stor_dbg(us, "REQUEST_SENSE\n");
1207 
1208 		memset(ptr, 0, 18);
1209 		ptr[0] = 0xF0;
1210 		ptr[2] = info->sense_key;
1211 		ptr[7] = 11;
1212 		ptr[12] = info->sense_asc;
1213 		ptr[13] = info->sense_ascq;
1214 		usb_stor_set_xfer_buf(ptr, 18, srb);
1215 
1216 		return USB_STOR_TRANSPORT_GOOD;
1217 	}
1218 
1219 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1220 		/* sure.  whatever.  not like we can stop the user from popping
1221 		   the media out of the device (no locking doors, etc) */
1222 		return USB_STOR_TRANSPORT_GOOD;
1223 	}
1224 
1225 	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1226 		     srb->cmnd[0], srb->cmnd[0]);
1227 	info->sense_key = 0x05;
1228 	info->sense_asc = 0x20;
1229 	info->sense_ascq = 0x00;
1230 	return USB_STOR_TRANSPORT_FAILED;
1231 }
1232 
1233 static int alauda_probe(struct usb_interface *intf,
1234 			 const struct usb_device_id *id)
1235 {
1236 	struct us_data *us;
1237 	int result;
1238 
1239 	result = usb_stor_probe1(&us, intf, id,
1240 			(id - alauda_usb_ids) + alauda_unusual_dev_list);
1241 	if (result)
1242 		return result;
1243 
1244 	us->transport_name  = "Alauda Control/Bulk";
1245 	us->transport = alauda_transport;
1246 	us->transport_reset = usb_stor_Bulk_reset;
1247 	us->max_lun = 1;
1248 
1249 	result = usb_stor_probe2(us);
1250 	return result;
1251 }
1252 
1253 static struct usb_driver alauda_driver = {
1254 	.name =		"ums-alauda",
1255 	.probe =	alauda_probe,
1256 	.disconnect =	usb_stor_disconnect,
1257 	.suspend =	usb_stor_suspend,
1258 	.resume =	usb_stor_resume,
1259 	.reset_resume =	usb_stor_reset_resume,
1260 	.pre_reset =	usb_stor_pre_reset,
1261 	.post_reset =	usb_stor_post_reset,
1262 	.id_table =	alauda_usb_ids,
1263 	.soft_unbind =	1,
1264 	.no_dynamic_id = 1,
1265 };
1266 
1267 module_usb_driver(alauda_driver);
1268