1 /* 2 * Driver for Alauda-based card readers 3 * 4 * Current development and maintenance by: 5 * (c) 2005 Daniel Drake <dsd@gentoo.org> 6 * 7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use. 8 * 9 * Alauda implements a vendor-specific command set to access two media reader 10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands 11 * which are accepted by these devices. 12 * 13 * The driver was developed through reverse-engineering, with the help of the 14 * sddr09 driver which has many similarities, and with some help from the 15 * (very old) vendor-supplied GPL sma03 driver. 16 * 17 * For protocol info, see http://alauda.sourceforge.net 18 * 19 * This program is free software; you can redistribute it and/or modify it 20 * under the terms of the GNU General Public License as published by the 21 * Free Software Foundation; either version 2, or (at your option) any 22 * later version. 23 * 24 * This program is distributed in the hope that it will be useful, but 25 * WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 27 * General Public License for more details. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 36 #include <scsi/scsi.h> 37 #include <scsi/scsi_cmnd.h> 38 #include <scsi/scsi_device.h> 39 40 #include "usb.h" 41 #include "transport.h" 42 #include "protocol.h" 43 #include "debug.h" 44 45 MODULE_DESCRIPTION("Driver for Alauda-based card readers"); 46 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>"); 47 MODULE_LICENSE("GPL"); 48 49 /* 50 * Status bytes 51 */ 52 #define ALAUDA_STATUS_ERROR 0x01 53 #define ALAUDA_STATUS_READY 0x40 54 55 /* 56 * Control opcodes (for request field) 57 */ 58 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08 59 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98 60 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a 61 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a 62 #define ALAUDA_GET_XD_MEDIA_SIG 0x86 63 #define ALAUDA_GET_SM_MEDIA_SIG 0x96 64 65 /* 66 * Bulk command identity (byte 0) 67 */ 68 #define ALAUDA_BULK_CMD 0x40 69 70 /* 71 * Bulk opcodes (byte 1) 72 */ 73 #define ALAUDA_BULK_GET_REDU_DATA 0x85 74 #define ALAUDA_BULK_READ_BLOCK 0x94 75 #define ALAUDA_BULK_ERASE_BLOCK 0xa3 76 #define ALAUDA_BULK_WRITE_BLOCK 0xb4 77 #define ALAUDA_BULK_GET_STATUS2 0xb7 78 #define ALAUDA_BULK_RESET_MEDIA 0xe0 79 80 /* 81 * Port to operate on (byte 8) 82 */ 83 #define ALAUDA_PORT_XD 0x00 84 #define ALAUDA_PORT_SM 0x01 85 86 /* 87 * LBA and PBA are unsigned ints. Special values. 88 */ 89 #define UNDEF 0xffff 90 #define SPARE 0xfffe 91 #define UNUSABLE 0xfffd 92 93 struct alauda_media_info { 94 unsigned long capacity; /* total media size in bytes */ 95 unsigned int pagesize; /* page size in bytes */ 96 unsigned int blocksize; /* number of pages per block */ 97 unsigned int uzonesize; /* number of usable blocks per zone */ 98 unsigned int zonesize; /* number of blocks per zone */ 99 unsigned int blockmask; /* mask to get page from address */ 100 101 unsigned char pageshift; 102 unsigned char blockshift; 103 unsigned char zoneshift; 104 105 u16 **lba_to_pba; /* logical to physical block map */ 106 u16 **pba_to_lba; /* physical to logical block map */ 107 }; 108 109 struct alauda_info { 110 struct alauda_media_info port[2]; 111 int wr_ep; /* endpoint to write data out of */ 112 113 unsigned char sense_key; 114 unsigned long sense_asc; /* additional sense code */ 115 unsigned long sense_ascq; /* additional sense code qualifier */ 116 }; 117 118 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) 119 #define LSB_of(s) ((s)&0xFF) 120 #define MSB_of(s) ((s)>>8) 121 122 #define MEDIA_PORT(us) us->srb->device->lun 123 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] 124 125 #define PBA_LO(pba) ((pba & 0xF) << 5) 126 #define PBA_HI(pba) (pba >> 3) 127 #define PBA_ZONE(pba) (pba >> 11) 128 129 static int init_alauda(struct us_data *us); 130 131 132 /* 133 * The table of devices 134 */ 135 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ 136 vendorName, productName, useProtocol, useTransport, \ 137 initFunction, flags) \ 138 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ 139 .driver_info = (flags)|(USB_US_TYPE_STOR<<24) } 140 141 struct usb_device_id alauda_usb_ids[] = { 142 # include "unusual_alauda.h" 143 { } /* Terminating entry */ 144 }; 145 MODULE_DEVICE_TABLE(usb, alauda_usb_ids); 146 147 #undef UNUSUAL_DEV 148 149 /* 150 * The flags table 151 */ 152 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ 153 vendor_name, product_name, use_protocol, use_transport, \ 154 init_function, Flags) \ 155 { \ 156 .vendorName = vendor_name, \ 157 .productName = product_name, \ 158 .useProtocol = use_protocol, \ 159 .useTransport = use_transport, \ 160 .initFunction = init_function, \ 161 } 162 163 static struct us_unusual_dev alauda_unusual_dev_list[] = { 164 # include "unusual_alauda.h" 165 { } /* Terminating entry */ 166 }; 167 168 #undef UNUSUAL_DEV 169 170 171 /* 172 * Media handling 173 */ 174 175 struct alauda_card_info { 176 unsigned char id; /* id byte */ 177 unsigned char chipshift; /* 1<<cs bytes total capacity */ 178 unsigned char pageshift; /* 1<<ps bytes in a page */ 179 unsigned char blockshift; /* 1<<bs pages per block */ 180 unsigned char zoneshift; /* 1<<zs blocks per zone */ 181 }; 182 183 static struct alauda_card_info alauda_card_ids[] = { 184 /* NAND flash */ 185 { 0x6e, 20, 8, 4, 8}, /* 1 MB */ 186 { 0xe8, 20, 8, 4, 8}, /* 1 MB */ 187 { 0xec, 20, 8, 4, 8}, /* 1 MB */ 188 { 0x64, 21, 8, 4, 9}, /* 2 MB */ 189 { 0xea, 21, 8, 4, 9}, /* 2 MB */ 190 { 0x6b, 22, 9, 4, 9}, /* 4 MB */ 191 { 0xe3, 22, 9, 4, 9}, /* 4 MB */ 192 { 0xe5, 22, 9, 4, 9}, /* 4 MB */ 193 { 0xe6, 23, 9, 4, 10}, /* 8 MB */ 194 { 0x73, 24, 9, 5, 10}, /* 16 MB */ 195 { 0x75, 25, 9, 5, 10}, /* 32 MB */ 196 { 0x76, 26, 9, 5, 10}, /* 64 MB */ 197 { 0x79, 27, 9, 5, 10}, /* 128 MB */ 198 { 0x71, 28, 9, 5, 10}, /* 256 MB */ 199 200 /* MASK ROM */ 201 { 0x5d, 21, 9, 4, 8}, /* 2 MB */ 202 { 0xd5, 22, 9, 4, 9}, /* 4 MB */ 203 { 0xd6, 23, 9, 4, 10}, /* 8 MB */ 204 { 0x57, 24, 9, 4, 11}, /* 16 MB */ 205 { 0x58, 25, 9, 4, 12}, /* 32 MB */ 206 { 0,} 207 }; 208 209 static struct alauda_card_info *alauda_card_find_id(unsigned char id) { 210 int i; 211 212 for (i = 0; alauda_card_ids[i].id != 0; i++) 213 if (alauda_card_ids[i].id == id) 214 return &(alauda_card_ids[i]); 215 return NULL; 216 } 217 218 /* 219 * ECC computation. 220 */ 221 222 static unsigned char parity[256]; 223 static unsigned char ecc2[256]; 224 225 static void nand_init_ecc(void) { 226 int i, j, a; 227 228 parity[0] = 0; 229 for (i = 1; i < 256; i++) 230 parity[i] = (parity[i&(i-1)] ^ 1); 231 232 for (i = 0; i < 256; i++) { 233 a = 0; 234 for (j = 0; j < 8; j++) { 235 if (i & (1<<j)) { 236 if ((j & 1) == 0) 237 a ^= 0x04; 238 if ((j & 2) == 0) 239 a ^= 0x10; 240 if ((j & 4) == 0) 241 a ^= 0x40; 242 } 243 } 244 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); 245 } 246 } 247 248 /* compute 3-byte ecc on 256 bytes */ 249 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) { 250 int i, j, a; 251 unsigned char par, bit, bits[8]; 252 253 par = 0; 254 for (j = 0; j < 8; j++) 255 bits[j] = 0; 256 257 /* collect 16 checksum bits */ 258 for (i = 0; i < 256; i++) { 259 par ^= data[i]; 260 bit = parity[data[i]]; 261 for (j = 0; j < 8; j++) 262 if ((i & (1<<j)) == 0) 263 bits[j] ^= bit; 264 } 265 266 /* put 4+4+4 = 12 bits in the ecc */ 267 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; 268 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 269 270 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; 271 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 272 273 ecc[2] = ecc2[par]; 274 } 275 276 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) { 277 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); 278 } 279 280 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) { 281 memcpy(data, ecc, 3); 282 } 283 284 /* 285 * Alauda driver 286 */ 287 288 /* 289 * Forget our PBA <---> LBA mappings for a particular port 290 */ 291 static void alauda_free_maps (struct alauda_media_info *media_info) 292 { 293 unsigned int shift = media_info->zoneshift 294 + media_info->blockshift + media_info->pageshift; 295 unsigned int num_zones = media_info->capacity >> shift; 296 unsigned int i; 297 298 if (media_info->lba_to_pba != NULL) 299 for (i = 0; i < num_zones; i++) { 300 kfree(media_info->lba_to_pba[i]); 301 media_info->lba_to_pba[i] = NULL; 302 } 303 304 if (media_info->pba_to_lba != NULL) 305 for (i = 0; i < num_zones; i++) { 306 kfree(media_info->pba_to_lba[i]); 307 media_info->pba_to_lba[i] = NULL; 308 } 309 } 310 311 /* 312 * Returns 2 bytes of status data 313 * The first byte describes media status, and second byte describes door status 314 */ 315 static int alauda_get_media_status(struct us_data *us, unsigned char *data) 316 { 317 int rc; 318 unsigned char command; 319 320 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 321 command = ALAUDA_GET_XD_MEDIA_STATUS; 322 else 323 command = ALAUDA_GET_SM_MEDIA_STATUS; 324 325 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 326 command, 0xc0, 0, 1, data, 2); 327 328 US_DEBUGP("alauda_get_media_status: Media status %02X %02X\n", 329 data[0], data[1]); 330 331 return rc; 332 } 333 334 /* 335 * Clears the "media was changed" bit so that we know when it changes again 336 * in the future. 337 */ 338 static int alauda_ack_media(struct us_data *us) 339 { 340 unsigned char command; 341 342 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 343 command = ALAUDA_ACK_XD_MEDIA_CHANGE; 344 else 345 command = ALAUDA_ACK_SM_MEDIA_CHANGE; 346 347 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 348 command, 0x40, 0, 1, NULL, 0); 349 } 350 351 /* 352 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, 353 * and some other details. 354 */ 355 static int alauda_get_media_signature(struct us_data *us, unsigned char *data) 356 { 357 unsigned char command; 358 359 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 360 command = ALAUDA_GET_XD_MEDIA_SIG; 361 else 362 command = ALAUDA_GET_SM_MEDIA_SIG; 363 364 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 365 command, 0xc0, 0, 0, data, 4); 366 } 367 368 /* 369 * Resets the media status (but not the whole device?) 370 */ 371 static int alauda_reset_media(struct us_data *us) 372 { 373 unsigned char *command = us->iobuf; 374 375 memset(command, 0, 9); 376 command[0] = ALAUDA_BULK_CMD; 377 command[1] = ALAUDA_BULK_RESET_MEDIA; 378 command[8] = MEDIA_PORT(us); 379 380 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 381 command, 9, NULL); 382 } 383 384 /* 385 * Examines the media and deduces capacity, etc. 386 */ 387 static int alauda_init_media(struct us_data *us) 388 { 389 unsigned char *data = us->iobuf; 390 int ready = 0; 391 struct alauda_card_info *media_info; 392 unsigned int num_zones; 393 394 while (ready == 0) { 395 msleep(20); 396 397 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 398 return USB_STOR_TRANSPORT_ERROR; 399 400 if (data[0] & 0x10) 401 ready = 1; 402 } 403 404 US_DEBUGP("alauda_init_media: We are ready for action!\n"); 405 406 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) 407 return USB_STOR_TRANSPORT_ERROR; 408 409 msleep(10); 410 411 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 412 return USB_STOR_TRANSPORT_ERROR; 413 414 if (data[0] != 0x14) { 415 US_DEBUGP("alauda_init_media: Media not ready after ack\n"); 416 return USB_STOR_TRANSPORT_ERROR; 417 } 418 419 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) 420 return USB_STOR_TRANSPORT_ERROR; 421 422 US_DEBUGP("alauda_init_media: Media signature: %02X %02X %02X %02X\n", 423 data[0], data[1], data[2], data[3]); 424 media_info = alauda_card_find_id(data[1]); 425 if (media_info == NULL) { 426 printk(KERN_WARNING 427 "alauda_init_media: Unrecognised media signature: " 428 "%02X %02X %02X %02X\n", 429 data[0], data[1], data[2], data[3]); 430 return USB_STOR_TRANSPORT_ERROR; 431 } 432 433 MEDIA_INFO(us).capacity = 1 << media_info->chipshift; 434 US_DEBUGP("Found media with capacity: %ldMB\n", 435 MEDIA_INFO(us).capacity >> 20); 436 437 MEDIA_INFO(us).pageshift = media_info->pageshift; 438 MEDIA_INFO(us).blockshift = media_info->blockshift; 439 MEDIA_INFO(us).zoneshift = media_info->zoneshift; 440 441 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; 442 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; 443 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; 444 445 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; 446 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; 447 448 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 449 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 450 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 451 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 452 453 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) 454 return USB_STOR_TRANSPORT_ERROR; 455 456 return USB_STOR_TRANSPORT_GOOD; 457 } 458 459 /* 460 * Examines the media status and does the right thing when the media has gone, 461 * appeared, or changed. 462 */ 463 static int alauda_check_media(struct us_data *us) 464 { 465 struct alauda_info *info = (struct alauda_info *) us->extra; 466 unsigned char status[2]; 467 int rc; 468 469 rc = alauda_get_media_status(us, status); 470 471 /* Check for no media or door open */ 472 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) 473 || ((status[1] & 0x01) == 0)) { 474 US_DEBUGP("alauda_check_media: No media, or door open\n"); 475 alauda_free_maps(&MEDIA_INFO(us)); 476 info->sense_key = 0x02; 477 info->sense_asc = 0x3A; 478 info->sense_ascq = 0x00; 479 return USB_STOR_TRANSPORT_FAILED; 480 } 481 482 /* Check for media change */ 483 if (status[0] & 0x08) { 484 US_DEBUGP("alauda_check_media: Media change detected\n"); 485 alauda_free_maps(&MEDIA_INFO(us)); 486 alauda_init_media(us); 487 488 info->sense_key = UNIT_ATTENTION; 489 info->sense_asc = 0x28; 490 info->sense_ascq = 0x00; 491 return USB_STOR_TRANSPORT_FAILED; 492 } 493 494 return USB_STOR_TRANSPORT_GOOD; 495 } 496 497 /* 498 * Checks the status from the 2nd status register 499 * Returns 3 bytes of status data, only the first is known 500 */ 501 static int alauda_check_status2(struct us_data *us) 502 { 503 int rc; 504 unsigned char command[] = { 505 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, 506 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) 507 }; 508 unsigned char data[3]; 509 510 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 511 command, 9, NULL); 512 if (rc != USB_STOR_XFER_GOOD) 513 return rc; 514 515 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 516 data, 3, NULL); 517 if (rc != USB_STOR_XFER_GOOD) 518 return rc; 519 520 US_DEBUGP("alauda_check_status2: %02X %02X %02X\n", data[0], data[1], data[2]); 521 if (data[0] & ALAUDA_STATUS_ERROR) 522 return USB_STOR_XFER_ERROR; 523 524 return USB_STOR_XFER_GOOD; 525 } 526 527 /* 528 * Gets the redundancy data for the first page of a PBA 529 * Returns 16 bytes. 530 */ 531 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) 532 { 533 int rc; 534 unsigned char command[] = { 535 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, 536 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) 537 }; 538 539 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 540 command, 9, NULL); 541 if (rc != USB_STOR_XFER_GOOD) 542 return rc; 543 544 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 545 data, 16, NULL); 546 } 547 548 /* 549 * Finds the first unused PBA in a zone 550 * Returns the absolute PBA of an unused PBA, or 0 if none found. 551 */ 552 static u16 alauda_find_unused_pba(struct alauda_media_info *info, 553 unsigned int zone) 554 { 555 u16 *pba_to_lba = info->pba_to_lba[zone]; 556 unsigned int i; 557 558 for (i = 0; i < info->zonesize; i++) 559 if (pba_to_lba[i] == UNDEF) 560 return (zone << info->zoneshift) + i; 561 562 return 0; 563 } 564 565 /* 566 * Reads the redundancy data for all PBA's in a zone 567 * Produces lba <--> pba mappings 568 */ 569 static int alauda_read_map(struct us_data *us, unsigned int zone) 570 { 571 unsigned char *data = us->iobuf; 572 int result; 573 int i, j; 574 unsigned int zonesize = MEDIA_INFO(us).zonesize; 575 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 576 unsigned int lba_offset, lba_real, blocknum; 577 unsigned int zone_base_lba = zone * uzonesize; 578 unsigned int zone_base_pba = zone * zonesize; 579 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 580 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 581 if (lba_to_pba == NULL || pba_to_lba == NULL) { 582 result = USB_STOR_TRANSPORT_ERROR; 583 goto error; 584 } 585 586 US_DEBUGP("alauda_read_map: Mapping blocks for zone %d\n", zone); 587 588 /* 1024 PBA's per zone */ 589 for (i = 0; i < zonesize; i++) 590 lba_to_pba[i] = pba_to_lba[i] = UNDEF; 591 592 for (i = 0; i < zonesize; i++) { 593 blocknum = zone_base_pba + i; 594 595 result = alauda_get_redu_data(us, blocknum, data); 596 if (result != USB_STOR_XFER_GOOD) { 597 result = USB_STOR_TRANSPORT_ERROR; 598 goto error; 599 } 600 601 /* special PBAs have control field 0^16 */ 602 for (j = 0; j < 16; j++) 603 if (data[j] != 0) 604 goto nonz; 605 pba_to_lba[i] = UNUSABLE; 606 US_DEBUGP("alauda_read_map: PBA %d has no logical mapping\n", blocknum); 607 continue; 608 609 nonz: 610 /* unwritten PBAs have control field FF^16 */ 611 for (j = 0; j < 16; j++) 612 if (data[j] != 0xff) 613 goto nonff; 614 continue; 615 616 nonff: 617 /* normal PBAs start with six FFs */ 618 if (j < 6) { 619 US_DEBUGP("alauda_read_map: PBA %d has no logical mapping: " 620 "reserved area = %02X%02X%02X%02X " 621 "data status %02X block status %02X\n", 622 blocknum, data[0], data[1], data[2], data[3], 623 data[4], data[5]); 624 pba_to_lba[i] = UNUSABLE; 625 continue; 626 } 627 628 if ((data[6] >> 4) != 0x01) { 629 US_DEBUGP("alauda_read_map: PBA %d has invalid address " 630 "field %02X%02X/%02X%02X\n", 631 blocknum, data[6], data[7], data[11], data[12]); 632 pba_to_lba[i] = UNUSABLE; 633 continue; 634 } 635 636 /* check even parity */ 637 if (parity[data[6] ^ data[7]]) { 638 printk(KERN_WARNING 639 "alauda_read_map: Bad parity in LBA for block %d" 640 " (%02X %02X)\n", i, data[6], data[7]); 641 pba_to_lba[i] = UNUSABLE; 642 continue; 643 } 644 645 lba_offset = short_pack(data[7], data[6]); 646 lba_offset = (lba_offset & 0x07FF) >> 1; 647 lba_real = lba_offset + zone_base_lba; 648 649 /* 650 * Every 1024 physical blocks ("zone"), the LBA numbers 651 * go back to zero, but are within a higher block of LBA's. 652 * Also, there is a maximum of 1000 LBA's per zone. 653 * In other words, in PBA 1024-2047 you will find LBA 0-999 654 * which are really LBA 1000-1999. This allows for 24 bad 655 * or special physical blocks per zone. 656 */ 657 658 if (lba_offset >= uzonesize) { 659 printk(KERN_WARNING 660 "alauda_read_map: Bad low LBA %d for block %d\n", 661 lba_real, blocknum); 662 continue; 663 } 664 665 if (lba_to_pba[lba_offset] != UNDEF) { 666 printk(KERN_WARNING 667 "alauda_read_map: " 668 "LBA %d seen for PBA %d and %d\n", 669 lba_real, lba_to_pba[lba_offset], blocknum); 670 continue; 671 } 672 673 pba_to_lba[i] = lba_real; 674 lba_to_pba[lba_offset] = blocknum; 675 continue; 676 } 677 678 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; 679 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; 680 result = 0; 681 goto out; 682 683 error: 684 kfree(lba_to_pba); 685 kfree(pba_to_lba); 686 out: 687 return result; 688 } 689 690 /* 691 * Checks to see whether we have already mapped a certain zone 692 * If we haven't, the map is generated 693 */ 694 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) 695 { 696 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL 697 || MEDIA_INFO(us).pba_to_lba[zone] == NULL) 698 alauda_read_map(us, zone); 699 } 700 701 /* 702 * Erases an entire block 703 */ 704 static int alauda_erase_block(struct us_data *us, u16 pba) 705 { 706 int rc; 707 unsigned char command[] = { 708 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), 709 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) 710 }; 711 unsigned char buf[2]; 712 713 US_DEBUGP("alauda_erase_block: Erasing PBA %d\n", pba); 714 715 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 716 command, 9, NULL); 717 if (rc != USB_STOR_XFER_GOOD) 718 return rc; 719 720 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 721 buf, 2, NULL); 722 if (rc != USB_STOR_XFER_GOOD) 723 return rc; 724 725 US_DEBUGP("alauda_erase_block: Erase result: %02X %02X\n", 726 buf[0], buf[1]); 727 return rc; 728 } 729 730 /* 731 * Reads data from a certain offset page inside a PBA, including interleaved 732 * redundancy data. Returns (pagesize+64)*pages bytes in data. 733 */ 734 static int alauda_read_block_raw(struct us_data *us, u16 pba, 735 unsigned int page, unsigned int pages, unsigned char *data) 736 { 737 int rc; 738 unsigned char command[] = { 739 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), 740 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) 741 }; 742 743 US_DEBUGP("alauda_read_block: pba %d page %d count %d\n", 744 pba, page, pages); 745 746 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 747 command, 9, NULL); 748 if (rc != USB_STOR_XFER_GOOD) 749 return rc; 750 751 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 752 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); 753 } 754 755 /* 756 * Reads data from a certain offset page inside a PBA, excluding redundancy 757 * data. Returns pagesize*pages bytes in data. Note that data must be big enough 758 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' 759 * trailing bytes outside this function. 760 */ 761 static int alauda_read_block(struct us_data *us, u16 pba, 762 unsigned int page, unsigned int pages, unsigned char *data) 763 { 764 int i, rc; 765 unsigned int pagesize = MEDIA_INFO(us).pagesize; 766 767 rc = alauda_read_block_raw(us, pba, page, pages, data); 768 if (rc != USB_STOR_XFER_GOOD) 769 return rc; 770 771 /* Cut out the redundancy data */ 772 for (i = 0; i < pages; i++) { 773 int dest_offset = i * pagesize; 774 int src_offset = i * (pagesize + 64); 775 memmove(data + dest_offset, data + src_offset, pagesize); 776 } 777 778 return rc; 779 } 780 781 /* 782 * Writes an entire block of data and checks status after write. 783 * Redundancy data must be already included in data. Data should be 784 * (pagesize+64)*blocksize bytes in length. 785 */ 786 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) 787 { 788 int rc; 789 struct alauda_info *info = (struct alauda_info *) us->extra; 790 unsigned char command[] = { 791 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), 792 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) 793 }; 794 795 US_DEBUGP("alauda_write_block: pba %d\n", pba); 796 797 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 798 command, 9, NULL); 799 if (rc != USB_STOR_XFER_GOOD) 800 return rc; 801 802 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, 803 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, 804 NULL); 805 if (rc != USB_STOR_XFER_GOOD) 806 return rc; 807 808 return alauda_check_status2(us); 809 } 810 811 /* 812 * Write some data to a specific LBA. 813 */ 814 static int alauda_write_lba(struct us_data *us, u16 lba, 815 unsigned int page, unsigned int pages, 816 unsigned char *ptr, unsigned char *blockbuffer) 817 { 818 u16 pba, lbap, new_pba; 819 unsigned char *bptr, *cptr, *xptr; 820 unsigned char ecc[3]; 821 int i, result; 822 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 823 unsigned int zonesize = MEDIA_INFO(us).zonesize; 824 unsigned int pagesize = MEDIA_INFO(us).pagesize; 825 unsigned int blocksize = MEDIA_INFO(us).blocksize; 826 unsigned int lba_offset = lba % uzonesize; 827 unsigned int new_pba_offset; 828 unsigned int zone = lba / uzonesize; 829 830 alauda_ensure_map_for_zone(us, zone); 831 832 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 833 if (pba == 1) { 834 /* Maybe it is impossible to write to PBA 1. 835 Fake success, but don't do anything. */ 836 printk(KERN_WARNING 837 "alauda_write_lba: avoid writing to pba 1\n"); 838 return USB_STOR_TRANSPORT_GOOD; 839 } 840 841 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); 842 if (!new_pba) { 843 printk(KERN_WARNING 844 "alauda_write_lba: Out of unused blocks\n"); 845 return USB_STOR_TRANSPORT_ERROR; 846 } 847 848 /* read old contents */ 849 if (pba != UNDEF) { 850 result = alauda_read_block_raw(us, pba, 0, 851 blocksize, blockbuffer); 852 if (result != USB_STOR_XFER_GOOD) 853 return result; 854 } else { 855 memset(blockbuffer, 0, blocksize * (pagesize + 64)); 856 } 857 858 lbap = (lba_offset << 1) | 0x1000; 859 if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) 860 lbap ^= 1; 861 862 /* check old contents and fill lba */ 863 for (i = 0; i < blocksize; i++) { 864 bptr = blockbuffer + (i * (pagesize + 64)); 865 cptr = bptr + pagesize; 866 nand_compute_ecc(bptr, ecc); 867 if (!nand_compare_ecc(cptr+13, ecc)) { 868 US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n", 869 i, pba); 870 nand_store_ecc(cptr+13, ecc); 871 } 872 nand_compute_ecc(bptr + (pagesize / 2), ecc); 873 if (!nand_compare_ecc(cptr+8, ecc)) { 874 US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n", 875 i, pba); 876 nand_store_ecc(cptr+8, ecc); 877 } 878 cptr[6] = cptr[11] = MSB_of(lbap); 879 cptr[7] = cptr[12] = LSB_of(lbap); 880 } 881 882 /* copy in new stuff and compute ECC */ 883 xptr = ptr; 884 for (i = page; i < page+pages; i++) { 885 bptr = blockbuffer + (i * (pagesize + 64)); 886 cptr = bptr + pagesize; 887 memcpy(bptr, xptr, pagesize); 888 xptr += pagesize; 889 nand_compute_ecc(bptr, ecc); 890 nand_store_ecc(cptr+13, ecc); 891 nand_compute_ecc(bptr + (pagesize / 2), ecc); 892 nand_store_ecc(cptr+8, ecc); 893 } 894 895 result = alauda_write_block(us, new_pba, blockbuffer); 896 if (result != USB_STOR_XFER_GOOD) 897 return result; 898 899 new_pba_offset = new_pba - (zone * zonesize); 900 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; 901 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; 902 US_DEBUGP("alauda_write_lba: Remapped LBA %d to PBA %d\n", 903 lba, new_pba); 904 905 if (pba != UNDEF) { 906 unsigned int pba_offset = pba - (zone * zonesize); 907 result = alauda_erase_block(us, pba); 908 if (result != USB_STOR_XFER_GOOD) 909 return result; 910 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; 911 } 912 913 return USB_STOR_TRANSPORT_GOOD; 914 } 915 916 /* 917 * Read data from a specific sector address 918 */ 919 static int alauda_read_data(struct us_data *us, unsigned long address, 920 unsigned int sectors) 921 { 922 unsigned char *buffer; 923 u16 lba, max_lba; 924 unsigned int page, len, offset; 925 unsigned int blockshift = MEDIA_INFO(us).blockshift; 926 unsigned int pageshift = MEDIA_INFO(us).pageshift; 927 unsigned int blocksize = MEDIA_INFO(us).blocksize; 928 unsigned int pagesize = MEDIA_INFO(us).pagesize; 929 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 930 struct scatterlist *sg; 931 int result; 932 933 /* 934 * Since we only read in one block at a time, we have to create 935 * a bounce buffer and move the data a piece at a time between the 936 * bounce buffer and the actual transfer buffer. 937 * We make this buffer big enough to hold temporary redundancy data, 938 * which we use when reading the data blocks. 939 */ 940 941 len = min(sectors, blocksize) * (pagesize + 64); 942 buffer = kmalloc(len, GFP_NOIO); 943 if (buffer == NULL) { 944 printk(KERN_WARNING "alauda_read_data: Out of memory\n"); 945 return USB_STOR_TRANSPORT_ERROR; 946 } 947 948 /* Figure out the initial LBA and page */ 949 lba = address >> blockshift; 950 page = (address & MEDIA_INFO(us).blockmask); 951 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); 952 953 result = USB_STOR_TRANSPORT_GOOD; 954 offset = 0; 955 sg = NULL; 956 957 while (sectors > 0) { 958 unsigned int zone = lba / uzonesize; /* integer division */ 959 unsigned int lba_offset = lba - (zone * uzonesize); 960 unsigned int pages; 961 u16 pba; 962 alauda_ensure_map_for_zone(us, zone); 963 964 /* Not overflowing capacity? */ 965 if (lba >= max_lba) { 966 US_DEBUGP("Error: Requested lba %u exceeds " 967 "maximum %u\n", lba, max_lba); 968 result = USB_STOR_TRANSPORT_ERROR; 969 break; 970 } 971 972 /* Find number of pages we can read in this block */ 973 pages = min(sectors, blocksize - page); 974 len = pages << pageshift; 975 976 /* Find where this lba lives on disk */ 977 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 978 979 if (pba == UNDEF) { /* this lba was never written */ 980 US_DEBUGP("Read %d zero pages (LBA %d) page %d\n", 981 pages, lba, page); 982 983 /* This is not really an error. It just means 984 that the block has never been written. 985 Instead of returning USB_STOR_TRANSPORT_ERROR 986 it is better to return all zero data. */ 987 988 memset(buffer, 0, len); 989 } else { 990 US_DEBUGP("Read %d pages, from PBA %d" 991 " (LBA %d) page %d\n", 992 pages, pba, lba, page); 993 994 result = alauda_read_block(us, pba, page, pages, buffer); 995 if (result != USB_STOR_TRANSPORT_GOOD) 996 break; 997 } 998 999 /* Store the data in the transfer buffer */ 1000 usb_stor_access_xfer_buf(buffer, len, us->srb, 1001 &sg, &offset, TO_XFER_BUF); 1002 1003 page = 0; 1004 lba++; 1005 sectors -= pages; 1006 } 1007 1008 kfree(buffer); 1009 return result; 1010 } 1011 1012 /* 1013 * Write data to a specific sector address 1014 */ 1015 static int alauda_write_data(struct us_data *us, unsigned long address, 1016 unsigned int sectors) 1017 { 1018 unsigned char *buffer, *blockbuffer; 1019 unsigned int page, len, offset; 1020 unsigned int blockshift = MEDIA_INFO(us).blockshift; 1021 unsigned int pageshift = MEDIA_INFO(us).pageshift; 1022 unsigned int blocksize = MEDIA_INFO(us).blocksize; 1023 unsigned int pagesize = MEDIA_INFO(us).pagesize; 1024 struct scatterlist *sg; 1025 u16 lba, max_lba; 1026 int result; 1027 1028 /* 1029 * Since we don't write the user data directly to the device, 1030 * we have to create a bounce buffer and move the data a piece 1031 * at a time between the bounce buffer and the actual transfer buffer. 1032 */ 1033 1034 len = min(sectors, blocksize) * pagesize; 1035 buffer = kmalloc(len, GFP_NOIO); 1036 if (buffer == NULL) { 1037 printk(KERN_WARNING "alauda_write_data: Out of memory\n"); 1038 return USB_STOR_TRANSPORT_ERROR; 1039 } 1040 1041 /* 1042 * We also need a temporary block buffer, where we read in the old data, 1043 * overwrite parts with the new data, and manipulate the redundancy data 1044 */ 1045 blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO); 1046 if (blockbuffer == NULL) { 1047 printk(KERN_WARNING "alauda_write_data: Out of memory\n"); 1048 kfree(buffer); 1049 return USB_STOR_TRANSPORT_ERROR; 1050 } 1051 1052 /* Figure out the initial LBA and page */ 1053 lba = address >> blockshift; 1054 page = (address & MEDIA_INFO(us).blockmask); 1055 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); 1056 1057 result = USB_STOR_TRANSPORT_GOOD; 1058 offset = 0; 1059 sg = NULL; 1060 1061 while (sectors > 0) { 1062 /* Write as many sectors as possible in this block */ 1063 unsigned int pages = min(sectors, blocksize - page); 1064 len = pages << pageshift; 1065 1066 /* Not overflowing capacity? */ 1067 if (lba >= max_lba) { 1068 US_DEBUGP("alauda_write_data: Requested lba %u exceeds " 1069 "maximum %u\n", lba, max_lba); 1070 result = USB_STOR_TRANSPORT_ERROR; 1071 break; 1072 } 1073 1074 /* Get the data from the transfer buffer */ 1075 usb_stor_access_xfer_buf(buffer, len, us->srb, 1076 &sg, &offset, FROM_XFER_BUF); 1077 1078 result = alauda_write_lba(us, lba, page, pages, buffer, 1079 blockbuffer); 1080 if (result != USB_STOR_TRANSPORT_GOOD) 1081 break; 1082 1083 page = 0; 1084 lba++; 1085 sectors -= pages; 1086 } 1087 1088 kfree(buffer); 1089 kfree(blockbuffer); 1090 return result; 1091 } 1092 1093 /* 1094 * Our interface with the rest of the world 1095 */ 1096 1097 static void alauda_info_destructor(void *extra) 1098 { 1099 struct alauda_info *info = (struct alauda_info *) extra; 1100 int port; 1101 1102 if (!info) 1103 return; 1104 1105 for (port = 0; port < 2; port++) { 1106 struct alauda_media_info *media_info = &info->port[port]; 1107 1108 alauda_free_maps(media_info); 1109 kfree(media_info->lba_to_pba); 1110 kfree(media_info->pba_to_lba); 1111 } 1112 } 1113 1114 /* 1115 * Initialize alauda_info struct and find the data-write endpoint 1116 */ 1117 static int init_alauda(struct us_data *us) 1118 { 1119 struct alauda_info *info; 1120 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; 1121 nand_init_ecc(); 1122 1123 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); 1124 if (!us->extra) { 1125 US_DEBUGP("init_alauda: Gah! Can't allocate storage for" 1126 "alauda info struct!\n"); 1127 return USB_STOR_TRANSPORT_ERROR; 1128 } 1129 info = (struct alauda_info *) us->extra; 1130 us->extra_destructor = alauda_info_destructor; 1131 1132 info->wr_ep = usb_sndbulkpipe(us->pusb_dev, 1133 altsetting->endpoint[0].desc.bEndpointAddress 1134 & USB_ENDPOINT_NUMBER_MASK); 1135 1136 return USB_STOR_TRANSPORT_GOOD; 1137 } 1138 1139 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) 1140 { 1141 int rc; 1142 struct alauda_info *info = (struct alauda_info *) us->extra; 1143 unsigned char *ptr = us->iobuf; 1144 static unsigned char inquiry_response[36] = { 1145 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 1146 }; 1147 1148 if (srb->cmnd[0] == INQUIRY) { 1149 US_DEBUGP("alauda_transport: INQUIRY. " 1150 "Returning bogus response.\n"); 1151 memcpy(ptr, inquiry_response, sizeof(inquiry_response)); 1152 fill_inquiry_response(us, ptr, 36); 1153 return USB_STOR_TRANSPORT_GOOD; 1154 } 1155 1156 if (srb->cmnd[0] == TEST_UNIT_READY) { 1157 US_DEBUGP("alauda_transport: TEST_UNIT_READY.\n"); 1158 return alauda_check_media(us); 1159 } 1160 1161 if (srb->cmnd[0] == READ_CAPACITY) { 1162 unsigned int num_zones; 1163 unsigned long capacity; 1164 1165 rc = alauda_check_media(us); 1166 if (rc != USB_STOR_TRANSPORT_GOOD) 1167 return rc; 1168 1169 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 1170 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 1171 1172 capacity = num_zones * MEDIA_INFO(us).uzonesize 1173 * MEDIA_INFO(us).blocksize; 1174 1175 /* Report capacity and page size */ 1176 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); 1177 ((__be32 *) ptr)[1] = cpu_to_be32(512); 1178 1179 usb_stor_set_xfer_buf(ptr, 8, srb); 1180 return USB_STOR_TRANSPORT_GOOD; 1181 } 1182 1183 if (srb->cmnd[0] == READ_10) { 1184 unsigned int page, pages; 1185 1186 rc = alauda_check_media(us); 1187 if (rc != USB_STOR_TRANSPORT_GOOD) 1188 return rc; 1189 1190 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1191 page <<= 16; 1192 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1193 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1194 1195 US_DEBUGP("alauda_transport: READ_10: page %d pagect %d\n", 1196 page, pages); 1197 1198 return alauda_read_data(us, page, pages); 1199 } 1200 1201 if (srb->cmnd[0] == WRITE_10) { 1202 unsigned int page, pages; 1203 1204 rc = alauda_check_media(us); 1205 if (rc != USB_STOR_TRANSPORT_GOOD) 1206 return rc; 1207 1208 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1209 page <<= 16; 1210 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1211 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1212 1213 US_DEBUGP("alauda_transport: WRITE_10: page %d pagect %d\n", 1214 page, pages); 1215 1216 return alauda_write_data(us, page, pages); 1217 } 1218 1219 if (srb->cmnd[0] == REQUEST_SENSE) { 1220 US_DEBUGP("alauda_transport: REQUEST_SENSE.\n"); 1221 1222 memset(ptr, 0, 18); 1223 ptr[0] = 0xF0; 1224 ptr[2] = info->sense_key; 1225 ptr[7] = 11; 1226 ptr[12] = info->sense_asc; 1227 ptr[13] = info->sense_ascq; 1228 usb_stor_set_xfer_buf(ptr, 18, srb); 1229 1230 return USB_STOR_TRANSPORT_GOOD; 1231 } 1232 1233 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { 1234 /* sure. whatever. not like we can stop the user from popping 1235 the media out of the device (no locking doors, etc) */ 1236 return USB_STOR_TRANSPORT_GOOD; 1237 } 1238 1239 US_DEBUGP("alauda_transport: Gah! Unknown command: %d (0x%x)\n", 1240 srb->cmnd[0], srb->cmnd[0]); 1241 info->sense_key = 0x05; 1242 info->sense_asc = 0x20; 1243 info->sense_ascq = 0x00; 1244 return USB_STOR_TRANSPORT_FAILED; 1245 } 1246 1247 static int alauda_probe(struct usb_interface *intf, 1248 const struct usb_device_id *id) 1249 { 1250 struct us_data *us; 1251 int result; 1252 1253 result = usb_stor_probe1(&us, intf, id, 1254 (id - alauda_usb_ids) + alauda_unusual_dev_list); 1255 if (result) 1256 return result; 1257 1258 us->transport_name = "Alauda Control/Bulk"; 1259 us->transport = alauda_transport; 1260 us->transport_reset = usb_stor_Bulk_reset; 1261 us->max_lun = 1; 1262 1263 result = usb_stor_probe2(us); 1264 return result; 1265 } 1266 1267 static struct usb_driver alauda_driver = { 1268 .name = "ums-alauda", 1269 .probe = alauda_probe, 1270 .disconnect = usb_stor_disconnect, 1271 .suspend = usb_stor_suspend, 1272 .resume = usb_stor_resume, 1273 .reset_resume = usb_stor_reset_resume, 1274 .pre_reset = usb_stor_pre_reset, 1275 .post_reset = usb_stor_post_reset, 1276 .id_table = alauda_usb_ids, 1277 .soft_unbind = 1, 1278 }; 1279 1280 static int __init alauda_init(void) 1281 { 1282 return usb_register(&alauda_driver); 1283 } 1284 1285 static void __exit alauda_exit(void) 1286 { 1287 usb_deregister(&alauda_driver); 1288 } 1289 1290 module_init(alauda_init); 1291 module_exit(alauda_exit); 1292