xref: /openbmc/linux/drivers/usb/storage/alauda.c (revision 86bee12f)
1 /*
2  * Driver for Alauda-based card readers
3  *
4  * Current development and maintenance by:
5  *   (c) 2005 Daniel Drake <dsd@gentoo.org>
6  *
7  * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
8  *
9  * Alauda implements a vendor-specific command set to access two media reader
10  * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11  * which are accepted by these devices.
12  *
13  * The driver was developed through reverse-engineering, with the help of the
14  * sddr09 driver which has many similarities, and with some help from the
15  * (very old) vendor-supplied GPL sma03 driver.
16  *
17  * For protocol info, see http://alauda.sourceforge.net
18  *
19  * This program is free software; you can redistribute it and/or modify it
20  * under the terms of the GNU General Public License as published by the
21  * Free Software Foundation; either version 2, or (at your option) any
22  * later version.
23  *
24  * This program is distributed in the hope that it will be useful, but
25  * WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License along
30  * with this program; if not, write to the Free Software Foundation, Inc.,
31  * 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/slab.h>
36 
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
40 
41 #include "usb.h"
42 #include "transport.h"
43 #include "protocol.h"
44 #include "debug.h"
45 #include "scsiglue.h"
46 
47 #define DRV_NAME "ums-alauda"
48 
49 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
50 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
51 MODULE_LICENSE("GPL");
52 
53 /*
54  * Status bytes
55  */
56 #define ALAUDA_STATUS_ERROR		0x01
57 #define ALAUDA_STATUS_READY		0x40
58 
59 /*
60  * Control opcodes (for request field)
61  */
62 #define ALAUDA_GET_XD_MEDIA_STATUS	0x08
63 #define ALAUDA_GET_SM_MEDIA_STATUS	0x98
64 #define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
65 #define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
66 #define ALAUDA_GET_XD_MEDIA_SIG		0x86
67 #define ALAUDA_GET_SM_MEDIA_SIG		0x96
68 
69 /*
70  * Bulk command identity (byte 0)
71  */
72 #define ALAUDA_BULK_CMD			0x40
73 
74 /*
75  * Bulk opcodes (byte 1)
76  */
77 #define ALAUDA_BULK_GET_REDU_DATA	0x85
78 #define ALAUDA_BULK_READ_BLOCK		0x94
79 #define ALAUDA_BULK_ERASE_BLOCK		0xa3
80 #define ALAUDA_BULK_WRITE_BLOCK		0xb4
81 #define ALAUDA_BULK_GET_STATUS2		0xb7
82 #define ALAUDA_BULK_RESET_MEDIA		0xe0
83 
84 /*
85  * Port to operate on (byte 8)
86  */
87 #define ALAUDA_PORT_XD			0x00
88 #define ALAUDA_PORT_SM			0x01
89 
90 /*
91  * LBA and PBA are unsigned ints. Special values.
92  */
93 #define UNDEF    0xffff
94 #define SPARE    0xfffe
95 #define UNUSABLE 0xfffd
96 
97 struct alauda_media_info {
98 	unsigned long capacity;		/* total media size in bytes */
99 	unsigned int pagesize;		/* page size in bytes */
100 	unsigned int blocksize;		/* number of pages per block */
101 	unsigned int uzonesize;		/* number of usable blocks per zone */
102 	unsigned int zonesize;		/* number of blocks per zone */
103 	unsigned int blockmask;		/* mask to get page from address */
104 
105 	unsigned char pageshift;
106 	unsigned char blockshift;
107 	unsigned char zoneshift;
108 
109 	u16 **lba_to_pba;		/* logical to physical block map */
110 	u16 **pba_to_lba;		/* physical to logical block map */
111 };
112 
113 struct alauda_info {
114 	struct alauda_media_info port[2];
115 	int wr_ep;			/* endpoint to write data out of */
116 
117 	unsigned char sense_key;
118 	unsigned long sense_asc;	/* additional sense code */
119 	unsigned long sense_ascq;	/* additional sense code qualifier */
120 };
121 
122 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
123 #define LSB_of(s) ((s)&0xFF)
124 #define MSB_of(s) ((s)>>8)
125 
126 #define MEDIA_PORT(us) us->srb->device->lun
127 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
128 
129 #define PBA_LO(pba) ((pba & 0xF) << 5)
130 #define PBA_HI(pba) (pba >> 3)
131 #define PBA_ZONE(pba) (pba >> 11)
132 
133 static int init_alauda(struct us_data *us);
134 
135 
136 /*
137  * The table of devices
138  */
139 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
140 		    vendorName, productName, useProtocol, useTransport, \
141 		    initFunction, flags) \
142 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
143   .driver_info = (flags) }
144 
145 static struct usb_device_id alauda_usb_ids[] = {
146 #	include "unusual_alauda.h"
147 	{ }		/* Terminating entry */
148 };
149 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
150 
151 #undef UNUSUAL_DEV
152 
153 /*
154  * The flags table
155  */
156 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
157 		    vendor_name, product_name, use_protocol, use_transport, \
158 		    init_function, Flags) \
159 { \
160 	.vendorName = vendor_name,	\
161 	.productName = product_name,	\
162 	.useProtocol = use_protocol,	\
163 	.useTransport = use_transport,	\
164 	.initFunction = init_function,	\
165 }
166 
167 static struct us_unusual_dev alauda_unusual_dev_list[] = {
168 #	include "unusual_alauda.h"
169 	{ }		/* Terminating entry */
170 };
171 
172 #undef UNUSUAL_DEV
173 
174 
175 /*
176  * Media handling
177  */
178 
179 struct alauda_card_info {
180 	unsigned char id;		/* id byte */
181 	unsigned char chipshift;	/* 1<<cs bytes total capacity */
182 	unsigned char pageshift;	/* 1<<ps bytes in a page */
183 	unsigned char blockshift;	/* 1<<bs pages per block */
184 	unsigned char zoneshift;	/* 1<<zs blocks per zone */
185 };
186 
187 static struct alauda_card_info alauda_card_ids[] = {
188 	/* NAND flash */
189 	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
190 	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
191 	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
192 	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
193 	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
194 	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
195 	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
196 	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
197 	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
198 	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
199 	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
200 	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
201 	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
202 	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
203 
204 	/* MASK ROM */
205 	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
206 	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
207 	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
208 	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
209 	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
210 	{ 0,}
211 };
212 
213 static struct alauda_card_info *alauda_card_find_id(unsigned char id)
214 {
215 	int i;
216 
217 	for (i = 0; alauda_card_ids[i].id != 0; i++)
218 		if (alauda_card_ids[i].id == id)
219 			return &(alauda_card_ids[i]);
220 	return NULL;
221 }
222 
223 /*
224  * ECC computation.
225  */
226 
227 static unsigned char parity[256];
228 static unsigned char ecc2[256];
229 
230 static void nand_init_ecc(void)
231 {
232 	int i, j, a;
233 
234 	parity[0] = 0;
235 	for (i = 1; i < 256; i++)
236 		parity[i] = (parity[i&(i-1)] ^ 1);
237 
238 	for (i = 0; i < 256; i++) {
239 		a = 0;
240 		for (j = 0; j < 8; j++) {
241 			if (i & (1<<j)) {
242 				if ((j & 1) == 0)
243 					a ^= 0x04;
244 				if ((j & 2) == 0)
245 					a ^= 0x10;
246 				if ((j & 4) == 0)
247 					a ^= 0x40;
248 			}
249 		}
250 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
251 	}
252 }
253 
254 /* compute 3-byte ecc on 256 bytes */
255 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
256 {
257 	int i, j, a;
258 	unsigned char par = 0, bit, bits[8] = {0};
259 
260 	/* collect 16 checksum bits */
261 	for (i = 0; i < 256; i++) {
262 		par ^= data[i];
263 		bit = parity[data[i]];
264 		for (j = 0; j < 8; j++)
265 			if ((i & (1<<j)) == 0)
266 				bits[j] ^= bit;
267 	}
268 
269 	/* put 4+4+4 = 12 bits in the ecc */
270 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
271 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
272 
273 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
274 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
275 
276 	ecc[2] = ecc2[par];
277 }
278 
279 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
280 {
281 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
282 }
283 
284 static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
285 {
286 	memcpy(data, ecc, 3);
287 }
288 
289 /*
290  * Alauda driver
291  */
292 
293 /*
294  * Forget our PBA <---> LBA mappings for a particular port
295  */
296 static void alauda_free_maps (struct alauda_media_info *media_info)
297 {
298 	unsigned int shift = media_info->zoneshift
299 		+ media_info->blockshift + media_info->pageshift;
300 	unsigned int num_zones = media_info->capacity >> shift;
301 	unsigned int i;
302 
303 	if (media_info->lba_to_pba != NULL)
304 		for (i = 0; i < num_zones; i++) {
305 			kfree(media_info->lba_to_pba[i]);
306 			media_info->lba_to_pba[i] = NULL;
307 		}
308 
309 	if (media_info->pba_to_lba != NULL)
310 		for (i = 0; i < num_zones; i++) {
311 			kfree(media_info->pba_to_lba[i]);
312 			media_info->pba_to_lba[i] = NULL;
313 		}
314 }
315 
316 /*
317  * Returns 2 bytes of status data
318  * The first byte describes media status, and second byte describes door status
319  */
320 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
321 {
322 	int rc;
323 	unsigned char command;
324 
325 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
326 		command = ALAUDA_GET_XD_MEDIA_STATUS;
327 	else
328 		command = ALAUDA_GET_SM_MEDIA_STATUS;
329 
330 	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
331 		command, 0xc0, 0, 1, data, 2);
332 
333 	usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
334 
335 	return rc;
336 }
337 
338 /*
339  * Clears the "media was changed" bit so that we know when it changes again
340  * in the future.
341  */
342 static int alauda_ack_media(struct us_data *us)
343 {
344 	unsigned char command;
345 
346 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
347 		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
348 	else
349 		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
350 
351 	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
352 		command, 0x40, 0, 1, NULL, 0);
353 }
354 
355 /*
356  * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
357  * and some other details.
358  */
359 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
360 {
361 	unsigned char command;
362 
363 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
364 		command = ALAUDA_GET_XD_MEDIA_SIG;
365 	else
366 		command = ALAUDA_GET_SM_MEDIA_SIG;
367 
368 	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
369 		command, 0xc0, 0, 0, data, 4);
370 }
371 
372 /*
373  * Resets the media status (but not the whole device?)
374  */
375 static int alauda_reset_media(struct us_data *us)
376 {
377 	unsigned char *command = us->iobuf;
378 
379 	memset(command, 0, 9);
380 	command[0] = ALAUDA_BULK_CMD;
381 	command[1] = ALAUDA_BULK_RESET_MEDIA;
382 	command[8] = MEDIA_PORT(us);
383 
384 	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
385 		command, 9, NULL);
386 }
387 
388 /*
389  * Examines the media and deduces capacity, etc.
390  */
391 static int alauda_init_media(struct us_data *us)
392 {
393 	unsigned char *data = us->iobuf;
394 	int ready = 0;
395 	struct alauda_card_info *media_info;
396 	unsigned int num_zones;
397 
398 	while (ready == 0) {
399 		msleep(20);
400 
401 		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
402 			return USB_STOR_TRANSPORT_ERROR;
403 
404 		if (data[0] & 0x10)
405 			ready = 1;
406 	}
407 
408 	usb_stor_dbg(us, "We are ready for action!\n");
409 
410 	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
411 		return USB_STOR_TRANSPORT_ERROR;
412 
413 	msleep(10);
414 
415 	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
416 		return USB_STOR_TRANSPORT_ERROR;
417 
418 	if (data[0] != 0x14) {
419 		usb_stor_dbg(us, "Media not ready after ack\n");
420 		return USB_STOR_TRANSPORT_ERROR;
421 	}
422 
423 	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
424 		return USB_STOR_TRANSPORT_ERROR;
425 
426 	usb_stor_dbg(us, "Media signature: %4ph\n", data);
427 	media_info = alauda_card_find_id(data[1]);
428 	if (media_info == NULL) {
429 		pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
430 			data);
431 		return USB_STOR_TRANSPORT_ERROR;
432 	}
433 
434 	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
435 	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
436 		     MEDIA_INFO(us).capacity >> 20);
437 
438 	MEDIA_INFO(us).pageshift = media_info->pageshift;
439 	MEDIA_INFO(us).blockshift = media_info->blockshift;
440 	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
441 
442 	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
443 	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
444 	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
445 
446 	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
447 	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
448 
449 	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
450 		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
451 	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
452 	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
453 
454 	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
455 		return USB_STOR_TRANSPORT_ERROR;
456 
457 	return USB_STOR_TRANSPORT_GOOD;
458 }
459 
460 /*
461  * Examines the media status and does the right thing when the media has gone,
462  * appeared, or changed.
463  */
464 static int alauda_check_media(struct us_data *us)
465 {
466 	struct alauda_info *info = (struct alauda_info *) us->extra;
467 	unsigned char status[2];
468 	int rc;
469 
470 	rc = alauda_get_media_status(us, status);
471 
472 	/* Check for no media or door open */
473 	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
474 		|| ((status[1] & 0x01) == 0)) {
475 		usb_stor_dbg(us, "No media, or door open\n");
476 		alauda_free_maps(&MEDIA_INFO(us));
477 		info->sense_key = 0x02;
478 		info->sense_asc = 0x3A;
479 		info->sense_ascq = 0x00;
480 		return USB_STOR_TRANSPORT_FAILED;
481 	}
482 
483 	/* Check for media change */
484 	if (status[0] & 0x08) {
485 		usb_stor_dbg(us, "Media change detected\n");
486 		alauda_free_maps(&MEDIA_INFO(us));
487 		alauda_init_media(us);
488 
489 		info->sense_key = UNIT_ATTENTION;
490 		info->sense_asc = 0x28;
491 		info->sense_ascq = 0x00;
492 		return USB_STOR_TRANSPORT_FAILED;
493 	}
494 
495 	return USB_STOR_TRANSPORT_GOOD;
496 }
497 
498 /*
499  * Checks the status from the 2nd status register
500  * Returns 3 bytes of status data, only the first is known
501  */
502 static int alauda_check_status2(struct us_data *us)
503 {
504 	int rc;
505 	unsigned char command[] = {
506 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
507 		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
508 	};
509 	unsigned char data[3];
510 
511 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
512 		command, 9, NULL);
513 	if (rc != USB_STOR_XFER_GOOD)
514 		return rc;
515 
516 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
517 		data, 3, NULL);
518 	if (rc != USB_STOR_XFER_GOOD)
519 		return rc;
520 
521 	usb_stor_dbg(us, "%3ph\n", data);
522 	if (data[0] & ALAUDA_STATUS_ERROR)
523 		return USB_STOR_XFER_ERROR;
524 
525 	return USB_STOR_XFER_GOOD;
526 }
527 
528 /*
529  * Gets the redundancy data for the first page of a PBA
530  * Returns 16 bytes.
531  */
532 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
533 {
534 	int rc;
535 	unsigned char command[] = {
536 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
537 		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
538 	};
539 
540 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
541 		command, 9, NULL);
542 	if (rc != USB_STOR_XFER_GOOD)
543 		return rc;
544 
545 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
546 		data, 16, NULL);
547 }
548 
549 /*
550  * Finds the first unused PBA in a zone
551  * Returns the absolute PBA of an unused PBA, or 0 if none found.
552  */
553 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
554 	unsigned int zone)
555 {
556 	u16 *pba_to_lba = info->pba_to_lba[zone];
557 	unsigned int i;
558 
559 	for (i = 0; i < info->zonesize; i++)
560 		if (pba_to_lba[i] == UNDEF)
561 			return (zone << info->zoneshift) + i;
562 
563 	return 0;
564 }
565 
566 /*
567  * Reads the redundancy data for all PBA's in a zone
568  * Produces lba <--> pba mappings
569  */
570 static int alauda_read_map(struct us_data *us, unsigned int zone)
571 {
572 	unsigned char *data = us->iobuf;
573 	int result;
574 	int i, j;
575 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
576 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
577 	unsigned int lba_offset, lba_real, blocknum;
578 	unsigned int zone_base_lba = zone * uzonesize;
579 	unsigned int zone_base_pba = zone * zonesize;
580 	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
581 	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
582 	if (lba_to_pba == NULL || pba_to_lba == NULL) {
583 		result = USB_STOR_TRANSPORT_ERROR;
584 		goto error;
585 	}
586 
587 	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
588 
589 	/* 1024 PBA's per zone */
590 	for (i = 0; i < zonesize; i++)
591 		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
592 
593 	for (i = 0; i < zonesize; i++) {
594 		blocknum = zone_base_pba + i;
595 
596 		result = alauda_get_redu_data(us, blocknum, data);
597 		if (result != USB_STOR_XFER_GOOD) {
598 			result = USB_STOR_TRANSPORT_ERROR;
599 			goto error;
600 		}
601 
602 		/* special PBAs have control field 0^16 */
603 		for (j = 0; j < 16; j++)
604 			if (data[j] != 0)
605 				goto nonz;
606 		pba_to_lba[i] = UNUSABLE;
607 		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
608 		continue;
609 
610 	nonz:
611 		/* unwritten PBAs have control field FF^16 */
612 		for (j = 0; j < 16; j++)
613 			if (data[j] != 0xff)
614 				goto nonff;
615 		continue;
616 
617 	nonff:
618 		/* normal PBAs start with six FFs */
619 		if (j < 6) {
620 			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
621 				     blocknum,
622 				     data[0], data[1], data[2], data[3],
623 				     data[4], data[5]);
624 			pba_to_lba[i] = UNUSABLE;
625 			continue;
626 		}
627 
628 		if ((data[6] >> 4) != 0x01) {
629 			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
630 				     blocknum, data[6], data[7],
631 				     data[11], data[12]);
632 			pba_to_lba[i] = UNUSABLE;
633 			continue;
634 		}
635 
636 		/* check even parity */
637 		if (parity[data[6] ^ data[7]]) {
638 			printk(KERN_WARNING
639 			       "alauda_read_map: Bad parity in LBA for block %d"
640 			       " (%02X %02X)\n", i, data[6], data[7]);
641 			pba_to_lba[i] = UNUSABLE;
642 			continue;
643 		}
644 
645 		lba_offset = short_pack(data[7], data[6]);
646 		lba_offset = (lba_offset & 0x07FF) >> 1;
647 		lba_real = lba_offset + zone_base_lba;
648 
649 		/*
650 		 * Every 1024 physical blocks ("zone"), the LBA numbers
651 		 * go back to zero, but are within a higher block of LBA's.
652 		 * Also, there is a maximum of 1000 LBA's per zone.
653 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
654 		 * which are really LBA 1000-1999. This allows for 24 bad
655 		 * or special physical blocks per zone.
656 		 */
657 
658 		if (lba_offset >= uzonesize) {
659 			printk(KERN_WARNING
660 			       "alauda_read_map: Bad low LBA %d for block %d\n",
661 			       lba_real, blocknum);
662 			continue;
663 		}
664 
665 		if (lba_to_pba[lba_offset] != UNDEF) {
666 			printk(KERN_WARNING
667 			       "alauda_read_map: "
668 			       "LBA %d seen for PBA %d and %d\n",
669 			       lba_real, lba_to_pba[lba_offset], blocknum);
670 			continue;
671 		}
672 
673 		pba_to_lba[i] = lba_real;
674 		lba_to_pba[lba_offset] = blocknum;
675 		continue;
676 	}
677 
678 	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
679 	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
680 	result = 0;
681 	goto out;
682 
683 error:
684 	kfree(lba_to_pba);
685 	kfree(pba_to_lba);
686 out:
687 	return result;
688 }
689 
690 /*
691  * Checks to see whether we have already mapped a certain zone
692  * If we haven't, the map is generated
693  */
694 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
695 {
696 	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
697 		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
698 		alauda_read_map(us, zone);
699 }
700 
701 /*
702  * Erases an entire block
703  */
704 static int alauda_erase_block(struct us_data *us, u16 pba)
705 {
706 	int rc;
707 	unsigned char command[] = {
708 		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
709 		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
710 	};
711 	unsigned char buf[2];
712 
713 	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
714 
715 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
716 		command, 9, NULL);
717 	if (rc != USB_STOR_XFER_GOOD)
718 		return rc;
719 
720 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
721 		buf, 2, NULL);
722 	if (rc != USB_STOR_XFER_GOOD)
723 		return rc;
724 
725 	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
726 	return rc;
727 }
728 
729 /*
730  * Reads data from a certain offset page inside a PBA, including interleaved
731  * redundancy data. Returns (pagesize+64)*pages bytes in data.
732  */
733 static int alauda_read_block_raw(struct us_data *us, u16 pba,
734 		unsigned int page, unsigned int pages, unsigned char *data)
735 {
736 	int rc;
737 	unsigned char command[] = {
738 		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
739 		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
740 	};
741 
742 	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
743 
744 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
745 		command, 9, NULL);
746 	if (rc != USB_STOR_XFER_GOOD)
747 		return rc;
748 
749 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
750 		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
751 }
752 
753 /*
754  * Reads data from a certain offset page inside a PBA, excluding redundancy
755  * data. Returns pagesize*pages bytes in data. Note that data must be big enough
756  * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
757  * trailing bytes outside this function.
758  */
759 static int alauda_read_block(struct us_data *us, u16 pba,
760 		unsigned int page, unsigned int pages, unsigned char *data)
761 {
762 	int i, rc;
763 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
764 
765 	rc = alauda_read_block_raw(us, pba, page, pages, data);
766 	if (rc != USB_STOR_XFER_GOOD)
767 		return rc;
768 
769 	/* Cut out the redundancy data */
770 	for (i = 0; i < pages; i++) {
771 		int dest_offset = i * pagesize;
772 		int src_offset = i * (pagesize + 64);
773 		memmove(data + dest_offset, data + src_offset, pagesize);
774 	}
775 
776 	return rc;
777 }
778 
779 /*
780  * Writes an entire block of data and checks status after write.
781  * Redundancy data must be already included in data. Data should be
782  * (pagesize+64)*blocksize bytes in length.
783  */
784 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
785 {
786 	int rc;
787 	struct alauda_info *info = (struct alauda_info *) us->extra;
788 	unsigned char command[] = {
789 		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
790 		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
791 	};
792 
793 	usb_stor_dbg(us, "pba %d\n", pba);
794 
795 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
796 		command, 9, NULL);
797 	if (rc != USB_STOR_XFER_GOOD)
798 		return rc;
799 
800 	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
801 		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
802 		NULL);
803 	if (rc != USB_STOR_XFER_GOOD)
804 		return rc;
805 
806 	return alauda_check_status2(us);
807 }
808 
809 /*
810  * Write some data to a specific LBA.
811  */
812 static int alauda_write_lba(struct us_data *us, u16 lba,
813 		 unsigned int page, unsigned int pages,
814 		 unsigned char *ptr, unsigned char *blockbuffer)
815 {
816 	u16 pba, lbap, new_pba;
817 	unsigned char *bptr, *cptr, *xptr;
818 	unsigned char ecc[3];
819 	int i, result;
820 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
821 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
822 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
823 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
824 	unsigned int lba_offset = lba % uzonesize;
825 	unsigned int new_pba_offset;
826 	unsigned int zone = lba / uzonesize;
827 
828 	alauda_ensure_map_for_zone(us, zone);
829 
830 	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
831 	if (pba == 1) {
832 		/*
833 		 * Maybe it is impossible to write to PBA 1.
834 		 * Fake success, but don't do anything.
835 		 */
836 		printk(KERN_WARNING
837 		       "alauda_write_lba: avoid writing to pba 1\n");
838 		return USB_STOR_TRANSPORT_GOOD;
839 	}
840 
841 	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
842 	if (!new_pba) {
843 		printk(KERN_WARNING
844 		       "alauda_write_lba: Out of unused blocks\n");
845 		return USB_STOR_TRANSPORT_ERROR;
846 	}
847 
848 	/* read old contents */
849 	if (pba != UNDEF) {
850 		result = alauda_read_block_raw(us, pba, 0,
851 			blocksize, blockbuffer);
852 		if (result != USB_STOR_XFER_GOOD)
853 			return result;
854 	} else {
855 		memset(blockbuffer, 0, blocksize * (pagesize + 64));
856 	}
857 
858 	lbap = (lba_offset << 1) | 0x1000;
859 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
860 		lbap ^= 1;
861 
862 	/* check old contents and fill lba */
863 	for (i = 0; i < blocksize; i++) {
864 		bptr = blockbuffer + (i * (pagesize + 64));
865 		cptr = bptr + pagesize;
866 		nand_compute_ecc(bptr, ecc);
867 		if (!nand_compare_ecc(cptr+13, ecc)) {
868 			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
869 				     i, pba);
870 			nand_store_ecc(cptr+13, ecc);
871 		}
872 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
873 		if (!nand_compare_ecc(cptr+8, ecc)) {
874 			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
875 				     i, pba);
876 			nand_store_ecc(cptr+8, ecc);
877 		}
878 		cptr[6] = cptr[11] = MSB_of(lbap);
879 		cptr[7] = cptr[12] = LSB_of(lbap);
880 	}
881 
882 	/* copy in new stuff and compute ECC */
883 	xptr = ptr;
884 	for (i = page; i < page+pages; i++) {
885 		bptr = blockbuffer + (i * (pagesize + 64));
886 		cptr = bptr + pagesize;
887 		memcpy(bptr, xptr, pagesize);
888 		xptr += pagesize;
889 		nand_compute_ecc(bptr, ecc);
890 		nand_store_ecc(cptr+13, ecc);
891 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
892 		nand_store_ecc(cptr+8, ecc);
893 	}
894 
895 	result = alauda_write_block(us, new_pba, blockbuffer);
896 	if (result != USB_STOR_XFER_GOOD)
897 		return result;
898 
899 	new_pba_offset = new_pba - (zone * zonesize);
900 	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
901 	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
902 	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
903 
904 	if (pba != UNDEF) {
905 		unsigned int pba_offset = pba - (zone * zonesize);
906 		result = alauda_erase_block(us, pba);
907 		if (result != USB_STOR_XFER_GOOD)
908 			return result;
909 		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
910 	}
911 
912 	return USB_STOR_TRANSPORT_GOOD;
913 }
914 
915 /*
916  * Read data from a specific sector address
917  */
918 static int alauda_read_data(struct us_data *us, unsigned long address,
919 		unsigned int sectors)
920 {
921 	unsigned char *buffer;
922 	u16 lba, max_lba;
923 	unsigned int page, len, offset;
924 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
925 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
926 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
927 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
928 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
929 	struct scatterlist *sg;
930 	int result;
931 
932 	/*
933 	 * Since we only read in one block at a time, we have to create
934 	 * a bounce buffer and move the data a piece at a time between the
935 	 * bounce buffer and the actual transfer buffer.
936 	 * We make this buffer big enough to hold temporary redundancy data,
937 	 * which we use when reading the data blocks.
938 	 */
939 
940 	len = min(sectors, blocksize) * (pagesize + 64);
941 	buffer = kmalloc(len, GFP_NOIO);
942 	if (buffer == NULL) {
943 		printk(KERN_WARNING "alauda_read_data: Out of memory\n");
944 		return USB_STOR_TRANSPORT_ERROR;
945 	}
946 
947 	/* Figure out the initial LBA and page */
948 	lba = address >> blockshift;
949 	page = (address & MEDIA_INFO(us).blockmask);
950 	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
951 
952 	result = USB_STOR_TRANSPORT_GOOD;
953 	offset = 0;
954 	sg = NULL;
955 
956 	while (sectors > 0) {
957 		unsigned int zone = lba / uzonesize; /* integer division */
958 		unsigned int lba_offset = lba - (zone * uzonesize);
959 		unsigned int pages;
960 		u16 pba;
961 		alauda_ensure_map_for_zone(us, zone);
962 
963 		/* Not overflowing capacity? */
964 		if (lba >= max_lba) {
965 			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
966 				     lba, max_lba);
967 			result = USB_STOR_TRANSPORT_ERROR;
968 			break;
969 		}
970 
971 		/* Find number of pages we can read in this block */
972 		pages = min(sectors, blocksize - page);
973 		len = pages << pageshift;
974 
975 		/* Find where this lba lives on disk */
976 		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
977 
978 		if (pba == UNDEF) {	/* this lba was never written */
979 			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
980 				     pages, lba, page);
981 
982 			/*
983 			 * This is not really an error. It just means
984 			 * that the block has never been written.
985 			 * Instead of returning USB_STOR_TRANSPORT_ERROR
986 			 * it is better to return all zero data.
987 			 */
988 
989 			memset(buffer, 0, len);
990 		} else {
991 			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
992 				     pages, pba, lba, page);
993 
994 			result = alauda_read_block(us, pba, page, pages, buffer);
995 			if (result != USB_STOR_TRANSPORT_GOOD)
996 				break;
997 		}
998 
999 		/* Store the data in the transfer buffer */
1000 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1001 				&sg, &offset, TO_XFER_BUF);
1002 
1003 		page = 0;
1004 		lba++;
1005 		sectors -= pages;
1006 	}
1007 
1008 	kfree(buffer);
1009 	return result;
1010 }
1011 
1012 /*
1013  * Write data to a specific sector address
1014  */
1015 static int alauda_write_data(struct us_data *us, unsigned long address,
1016 		unsigned int sectors)
1017 {
1018 	unsigned char *buffer, *blockbuffer;
1019 	unsigned int page, len, offset;
1020 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1021 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1022 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1023 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1024 	struct scatterlist *sg;
1025 	u16 lba, max_lba;
1026 	int result;
1027 
1028 	/*
1029 	 * Since we don't write the user data directly to the device,
1030 	 * we have to create a bounce buffer and move the data a piece
1031 	 * at a time between the bounce buffer and the actual transfer buffer.
1032 	 */
1033 
1034 	len = min(sectors, blocksize) * pagesize;
1035 	buffer = kmalloc(len, GFP_NOIO);
1036 	if (buffer == NULL) {
1037 		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1038 		return USB_STOR_TRANSPORT_ERROR;
1039 	}
1040 
1041 	/*
1042 	 * We also need a temporary block buffer, where we read in the old data,
1043 	 * overwrite parts with the new data, and manipulate the redundancy data
1044 	 */
1045 	blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1046 	if (blockbuffer == NULL) {
1047 		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1048 		kfree(buffer);
1049 		return USB_STOR_TRANSPORT_ERROR;
1050 	}
1051 
1052 	/* Figure out the initial LBA and page */
1053 	lba = address >> blockshift;
1054 	page = (address & MEDIA_INFO(us).blockmask);
1055 	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1056 
1057 	result = USB_STOR_TRANSPORT_GOOD;
1058 	offset = 0;
1059 	sg = NULL;
1060 
1061 	while (sectors > 0) {
1062 		/* Write as many sectors as possible in this block */
1063 		unsigned int pages = min(sectors, blocksize - page);
1064 		len = pages << pageshift;
1065 
1066 		/* Not overflowing capacity? */
1067 		if (lba >= max_lba) {
1068 			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1069 				     lba, max_lba);
1070 			result = USB_STOR_TRANSPORT_ERROR;
1071 			break;
1072 		}
1073 
1074 		/* Get the data from the transfer buffer */
1075 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1076 				&sg, &offset, FROM_XFER_BUF);
1077 
1078 		result = alauda_write_lba(us, lba, page, pages, buffer,
1079 			blockbuffer);
1080 		if (result != USB_STOR_TRANSPORT_GOOD)
1081 			break;
1082 
1083 		page = 0;
1084 		lba++;
1085 		sectors -= pages;
1086 	}
1087 
1088 	kfree(buffer);
1089 	kfree(blockbuffer);
1090 	return result;
1091 }
1092 
1093 /*
1094  * Our interface with the rest of the world
1095  */
1096 
1097 static void alauda_info_destructor(void *extra)
1098 {
1099 	struct alauda_info *info = (struct alauda_info *) extra;
1100 	int port;
1101 
1102 	if (!info)
1103 		return;
1104 
1105 	for (port = 0; port < 2; port++) {
1106 		struct alauda_media_info *media_info = &info->port[port];
1107 
1108 		alauda_free_maps(media_info);
1109 		kfree(media_info->lba_to_pba);
1110 		kfree(media_info->pba_to_lba);
1111 	}
1112 }
1113 
1114 /*
1115  * Initialize alauda_info struct and find the data-write endpoint
1116  */
1117 static int init_alauda(struct us_data *us)
1118 {
1119 	struct alauda_info *info;
1120 	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1121 	nand_init_ecc();
1122 
1123 	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1124 	if (!us->extra)
1125 		return USB_STOR_TRANSPORT_ERROR;
1126 
1127 	info = (struct alauda_info *) us->extra;
1128 	us->extra_destructor = alauda_info_destructor;
1129 
1130 	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1131 		altsetting->endpoint[0].desc.bEndpointAddress
1132 		& USB_ENDPOINT_NUMBER_MASK);
1133 
1134 	return USB_STOR_TRANSPORT_GOOD;
1135 }
1136 
1137 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1138 {
1139 	int rc;
1140 	struct alauda_info *info = (struct alauda_info *) us->extra;
1141 	unsigned char *ptr = us->iobuf;
1142 	static unsigned char inquiry_response[36] = {
1143 		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1144 	};
1145 
1146 	if (srb->cmnd[0] == INQUIRY) {
1147 		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1148 		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1149 		fill_inquiry_response(us, ptr, 36);
1150 		return USB_STOR_TRANSPORT_GOOD;
1151 	}
1152 
1153 	if (srb->cmnd[0] == TEST_UNIT_READY) {
1154 		usb_stor_dbg(us, "TEST_UNIT_READY\n");
1155 		return alauda_check_media(us);
1156 	}
1157 
1158 	if (srb->cmnd[0] == READ_CAPACITY) {
1159 		unsigned int num_zones;
1160 		unsigned long capacity;
1161 
1162 		rc = alauda_check_media(us);
1163 		if (rc != USB_STOR_TRANSPORT_GOOD)
1164 			return rc;
1165 
1166 		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1167 			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1168 
1169 		capacity = num_zones * MEDIA_INFO(us).uzonesize
1170 			* MEDIA_INFO(us).blocksize;
1171 
1172 		/* Report capacity and page size */
1173 		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1174 		((__be32 *) ptr)[1] = cpu_to_be32(512);
1175 
1176 		usb_stor_set_xfer_buf(ptr, 8, srb);
1177 		return USB_STOR_TRANSPORT_GOOD;
1178 	}
1179 
1180 	if (srb->cmnd[0] == READ_10) {
1181 		unsigned int page, pages;
1182 
1183 		rc = alauda_check_media(us);
1184 		if (rc != USB_STOR_TRANSPORT_GOOD)
1185 			return rc;
1186 
1187 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1188 		page <<= 16;
1189 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1190 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1191 
1192 		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1193 
1194 		return alauda_read_data(us, page, pages);
1195 	}
1196 
1197 	if (srb->cmnd[0] == WRITE_10) {
1198 		unsigned int page, pages;
1199 
1200 		rc = alauda_check_media(us);
1201 		if (rc != USB_STOR_TRANSPORT_GOOD)
1202 			return rc;
1203 
1204 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1205 		page <<= 16;
1206 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1207 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1208 
1209 		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1210 
1211 		return alauda_write_data(us, page, pages);
1212 	}
1213 
1214 	if (srb->cmnd[0] == REQUEST_SENSE) {
1215 		usb_stor_dbg(us, "REQUEST_SENSE\n");
1216 
1217 		memset(ptr, 0, 18);
1218 		ptr[0] = 0xF0;
1219 		ptr[2] = info->sense_key;
1220 		ptr[7] = 11;
1221 		ptr[12] = info->sense_asc;
1222 		ptr[13] = info->sense_ascq;
1223 		usb_stor_set_xfer_buf(ptr, 18, srb);
1224 
1225 		return USB_STOR_TRANSPORT_GOOD;
1226 	}
1227 
1228 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1229 		/*
1230 		 * sure.  whatever.  not like we can stop the user from popping
1231 		 * the media out of the device (no locking doors, etc)
1232 		 */
1233 		return USB_STOR_TRANSPORT_GOOD;
1234 	}
1235 
1236 	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1237 		     srb->cmnd[0], srb->cmnd[0]);
1238 	info->sense_key = 0x05;
1239 	info->sense_asc = 0x20;
1240 	info->sense_ascq = 0x00;
1241 	return USB_STOR_TRANSPORT_FAILED;
1242 }
1243 
1244 static struct scsi_host_template alauda_host_template;
1245 
1246 static int alauda_probe(struct usb_interface *intf,
1247 			 const struct usb_device_id *id)
1248 {
1249 	struct us_data *us;
1250 	int result;
1251 
1252 	result = usb_stor_probe1(&us, intf, id,
1253 			(id - alauda_usb_ids) + alauda_unusual_dev_list,
1254 			&alauda_host_template);
1255 	if (result)
1256 		return result;
1257 
1258 	us->transport_name  = "Alauda Control/Bulk";
1259 	us->transport = alauda_transport;
1260 	us->transport_reset = usb_stor_Bulk_reset;
1261 	us->max_lun = 1;
1262 
1263 	result = usb_stor_probe2(us);
1264 	return result;
1265 }
1266 
1267 static struct usb_driver alauda_driver = {
1268 	.name =		DRV_NAME,
1269 	.probe =	alauda_probe,
1270 	.disconnect =	usb_stor_disconnect,
1271 	.suspend =	usb_stor_suspend,
1272 	.resume =	usb_stor_resume,
1273 	.reset_resume =	usb_stor_reset_resume,
1274 	.pre_reset =	usb_stor_pre_reset,
1275 	.post_reset =	usb_stor_post_reset,
1276 	.id_table =	alauda_usb_ids,
1277 	.soft_unbind =	1,
1278 	.no_dynamic_id = 1,
1279 };
1280 
1281 module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
1282