xref: /openbmc/linux/drivers/usb/storage/alauda.c (revision 63c43812ee99efe7903955bae8cd928e9582477a)
1 /*
2  * Driver for Alauda-based card readers
3  *
4  * Current development and maintenance by:
5  *   (c) 2005 Daniel Drake <dsd@gentoo.org>
6  *
7  * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
8  *
9  * Alauda implements a vendor-specific command set to access two media reader
10  * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11  * which are accepted by these devices.
12  *
13  * The driver was developed through reverse-engineering, with the help of the
14  * sddr09 driver which has many similarities, and with some help from the
15  * (very old) vendor-supplied GPL sma03 driver.
16  *
17  * For protocol info, see http://alauda.sourceforge.net
18  *
19  * This program is free software; you can redistribute it and/or modify it
20  * under the terms of the GNU General Public License as published by the
21  * Free Software Foundation; either version 2, or (at your option) any
22  * later version.
23  *
24  * This program is distributed in the hope that it will be useful, but
25  * WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License along
30  * with this program; if not, write to the Free Software Foundation, Inc.,
31  * 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/slab.h>
36 
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
40 
41 #include "usb.h"
42 #include "transport.h"
43 #include "protocol.h"
44 #include "debug.h"
45 
46 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
47 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
48 MODULE_LICENSE("GPL");
49 
50 /*
51  * Status bytes
52  */
53 #define ALAUDA_STATUS_ERROR		0x01
54 #define ALAUDA_STATUS_READY		0x40
55 
56 /*
57  * Control opcodes (for request field)
58  */
59 #define ALAUDA_GET_XD_MEDIA_STATUS	0x08
60 #define ALAUDA_GET_SM_MEDIA_STATUS	0x98
61 #define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
62 #define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
63 #define ALAUDA_GET_XD_MEDIA_SIG		0x86
64 #define ALAUDA_GET_SM_MEDIA_SIG		0x96
65 
66 /*
67  * Bulk command identity (byte 0)
68  */
69 #define ALAUDA_BULK_CMD			0x40
70 
71 /*
72  * Bulk opcodes (byte 1)
73  */
74 #define ALAUDA_BULK_GET_REDU_DATA	0x85
75 #define ALAUDA_BULK_READ_BLOCK		0x94
76 #define ALAUDA_BULK_ERASE_BLOCK		0xa3
77 #define ALAUDA_BULK_WRITE_BLOCK		0xb4
78 #define ALAUDA_BULK_GET_STATUS2		0xb7
79 #define ALAUDA_BULK_RESET_MEDIA		0xe0
80 
81 /*
82  * Port to operate on (byte 8)
83  */
84 #define ALAUDA_PORT_XD			0x00
85 #define ALAUDA_PORT_SM			0x01
86 
87 /*
88  * LBA and PBA are unsigned ints. Special values.
89  */
90 #define UNDEF    0xffff
91 #define SPARE    0xfffe
92 #define UNUSABLE 0xfffd
93 
94 struct alauda_media_info {
95 	unsigned long capacity;		/* total media size in bytes */
96 	unsigned int pagesize;		/* page size in bytes */
97 	unsigned int blocksize;		/* number of pages per block */
98 	unsigned int uzonesize;		/* number of usable blocks per zone */
99 	unsigned int zonesize;		/* number of blocks per zone */
100 	unsigned int blockmask;		/* mask to get page from address */
101 
102 	unsigned char pageshift;
103 	unsigned char blockshift;
104 	unsigned char zoneshift;
105 
106 	u16 **lba_to_pba;		/* logical to physical block map */
107 	u16 **pba_to_lba;		/* physical to logical block map */
108 };
109 
110 struct alauda_info {
111 	struct alauda_media_info port[2];
112 	int wr_ep;			/* endpoint to write data out of */
113 
114 	unsigned char sense_key;
115 	unsigned long sense_asc;	/* additional sense code */
116 	unsigned long sense_ascq;	/* additional sense code qualifier */
117 };
118 
119 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
120 #define LSB_of(s) ((s)&0xFF)
121 #define MSB_of(s) ((s)>>8)
122 
123 #define MEDIA_PORT(us) us->srb->device->lun
124 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
125 
126 #define PBA_LO(pba) ((pba & 0xF) << 5)
127 #define PBA_HI(pba) (pba >> 3)
128 #define PBA_ZONE(pba) (pba >> 11)
129 
130 static int init_alauda(struct us_data *us);
131 
132 
133 /*
134  * The table of devices
135  */
136 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
137 		    vendorName, productName, useProtocol, useTransport, \
138 		    initFunction, flags) \
139 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
140   .driver_info = (flags) }
141 
142 static struct usb_device_id alauda_usb_ids[] = {
143 #	include "unusual_alauda.h"
144 	{ }		/* Terminating entry */
145 };
146 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
147 
148 #undef UNUSUAL_DEV
149 
150 /*
151  * The flags table
152  */
153 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
154 		    vendor_name, product_name, use_protocol, use_transport, \
155 		    init_function, Flags) \
156 { \
157 	.vendorName = vendor_name,	\
158 	.productName = product_name,	\
159 	.useProtocol = use_protocol,	\
160 	.useTransport = use_transport,	\
161 	.initFunction = init_function,	\
162 }
163 
164 static struct us_unusual_dev alauda_unusual_dev_list[] = {
165 #	include "unusual_alauda.h"
166 	{ }		/* Terminating entry */
167 };
168 
169 #undef UNUSUAL_DEV
170 
171 
172 /*
173  * Media handling
174  */
175 
176 struct alauda_card_info {
177 	unsigned char id;		/* id byte */
178 	unsigned char chipshift;	/* 1<<cs bytes total capacity */
179 	unsigned char pageshift;	/* 1<<ps bytes in a page */
180 	unsigned char blockshift;	/* 1<<bs pages per block */
181 	unsigned char zoneshift;	/* 1<<zs blocks per zone */
182 };
183 
184 static struct alauda_card_info alauda_card_ids[] = {
185 	/* NAND flash */
186 	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
187 	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
188 	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
189 	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
190 	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
191 	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
192 	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
193 	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
194 	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
195 	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
196 	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
197 	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
198 	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
199 	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
200 
201 	/* MASK ROM */
202 	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
203 	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
204 	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
205 	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
206 	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
207 	{ 0,}
208 };
209 
210 static struct alauda_card_info *alauda_card_find_id(unsigned char id)
211 {
212 	int i;
213 
214 	for (i = 0; alauda_card_ids[i].id != 0; i++)
215 		if (alauda_card_ids[i].id == id)
216 			return &(alauda_card_ids[i]);
217 	return NULL;
218 }
219 
220 /*
221  * ECC computation.
222  */
223 
224 static unsigned char parity[256];
225 static unsigned char ecc2[256];
226 
227 static void nand_init_ecc(void)
228 {
229 	int i, j, a;
230 
231 	parity[0] = 0;
232 	for (i = 1; i < 256; i++)
233 		parity[i] = (parity[i&(i-1)] ^ 1);
234 
235 	for (i = 0; i < 256; i++) {
236 		a = 0;
237 		for (j = 0; j < 8; j++) {
238 			if (i & (1<<j)) {
239 				if ((j & 1) == 0)
240 					a ^= 0x04;
241 				if ((j & 2) == 0)
242 					a ^= 0x10;
243 				if ((j & 4) == 0)
244 					a ^= 0x40;
245 			}
246 		}
247 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
248 	}
249 }
250 
251 /* compute 3-byte ecc on 256 bytes */
252 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
253 {
254 	int i, j, a;
255 	unsigned char par = 0, bit, bits[8] = {0};
256 
257 	/* collect 16 checksum bits */
258 	for (i = 0; i < 256; i++) {
259 		par ^= data[i];
260 		bit = parity[data[i]];
261 		for (j = 0; j < 8; j++)
262 			if ((i & (1<<j)) == 0)
263 				bits[j] ^= bit;
264 	}
265 
266 	/* put 4+4+4 = 12 bits in the ecc */
267 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
268 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
269 
270 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
271 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
272 
273 	ecc[2] = ecc2[par];
274 }
275 
276 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
277 {
278 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
279 }
280 
281 static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
282 {
283 	memcpy(data, ecc, 3);
284 }
285 
286 /*
287  * Alauda driver
288  */
289 
290 /*
291  * Forget our PBA <---> LBA mappings for a particular port
292  */
293 static void alauda_free_maps (struct alauda_media_info *media_info)
294 {
295 	unsigned int shift = media_info->zoneshift
296 		+ media_info->blockshift + media_info->pageshift;
297 	unsigned int num_zones = media_info->capacity >> shift;
298 	unsigned int i;
299 
300 	if (media_info->lba_to_pba != NULL)
301 		for (i = 0; i < num_zones; i++) {
302 			kfree(media_info->lba_to_pba[i]);
303 			media_info->lba_to_pba[i] = NULL;
304 		}
305 
306 	if (media_info->pba_to_lba != NULL)
307 		for (i = 0; i < num_zones; i++) {
308 			kfree(media_info->pba_to_lba[i]);
309 			media_info->pba_to_lba[i] = NULL;
310 		}
311 }
312 
313 /*
314  * Returns 2 bytes of status data
315  * The first byte describes media status, and second byte describes door status
316  */
317 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
318 {
319 	int rc;
320 	unsigned char command;
321 
322 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
323 		command = ALAUDA_GET_XD_MEDIA_STATUS;
324 	else
325 		command = ALAUDA_GET_SM_MEDIA_STATUS;
326 
327 	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
328 		command, 0xc0, 0, 1, data, 2);
329 
330 	usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
331 
332 	return rc;
333 }
334 
335 /*
336  * Clears the "media was changed" bit so that we know when it changes again
337  * in the future.
338  */
339 static int alauda_ack_media(struct us_data *us)
340 {
341 	unsigned char command;
342 
343 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
344 		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
345 	else
346 		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
347 
348 	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
349 		command, 0x40, 0, 1, NULL, 0);
350 }
351 
352 /*
353  * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
354  * and some other details.
355  */
356 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
357 {
358 	unsigned char command;
359 
360 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
361 		command = ALAUDA_GET_XD_MEDIA_SIG;
362 	else
363 		command = ALAUDA_GET_SM_MEDIA_SIG;
364 
365 	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
366 		command, 0xc0, 0, 0, data, 4);
367 }
368 
369 /*
370  * Resets the media status (but not the whole device?)
371  */
372 static int alauda_reset_media(struct us_data *us)
373 {
374 	unsigned char *command = us->iobuf;
375 
376 	memset(command, 0, 9);
377 	command[0] = ALAUDA_BULK_CMD;
378 	command[1] = ALAUDA_BULK_RESET_MEDIA;
379 	command[8] = MEDIA_PORT(us);
380 
381 	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
382 		command, 9, NULL);
383 }
384 
385 /*
386  * Examines the media and deduces capacity, etc.
387  */
388 static int alauda_init_media(struct us_data *us)
389 {
390 	unsigned char *data = us->iobuf;
391 	int ready = 0;
392 	struct alauda_card_info *media_info;
393 	unsigned int num_zones;
394 
395 	while (ready == 0) {
396 		msleep(20);
397 
398 		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
399 			return USB_STOR_TRANSPORT_ERROR;
400 
401 		if (data[0] & 0x10)
402 			ready = 1;
403 	}
404 
405 	usb_stor_dbg(us, "We are ready for action!\n");
406 
407 	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
408 		return USB_STOR_TRANSPORT_ERROR;
409 
410 	msleep(10);
411 
412 	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
413 		return USB_STOR_TRANSPORT_ERROR;
414 
415 	if (data[0] != 0x14) {
416 		usb_stor_dbg(us, "Media not ready after ack\n");
417 		return USB_STOR_TRANSPORT_ERROR;
418 	}
419 
420 	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
421 		return USB_STOR_TRANSPORT_ERROR;
422 
423 	usb_stor_dbg(us, "Media signature: %4ph\n", data);
424 	media_info = alauda_card_find_id(data[1]);
425 	if (media_info == NULL) {
426 		pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
427 			data);
428 		return USB_STOR_TRANSPORT_ERROR;
429 	}
430 
431 	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
432 	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
433 		     MEDIA_INFO(us).capacity >> 20);
434 
435 	MEDIA_INFO(us).pageshift = media_info->pageshift;
436 	MEDIA_INFO(us).blockshift = media_info->blockshift;
437 	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
438 
439 	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
440 	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
441 	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
442 
443 	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
444 	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
445 
446 	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
447 		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
448 	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
449 	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
450 
451 	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
452 		return USB_STOR_TRANSPORT_ERROR;
453 
454 	return USB_STOR_TRANSPORT_GOOD;
455 }
456 
457 /*
458  * Examines the media status and does the right thing when the media has gone,
459  * appeared, or changed.
460  */
461 static int alauda_check_media(struct us_data *us)
462 {
463 	struct alauda_info *info = (struct alauda_info *) us->extra;
464 	unsigned char status[2];
465 	int rc;
466 
467 	rc = alauda_get_media_status(us, status);
468 
469 	/* Check for no media or door open */
470 	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
471 		|| ((status[1] & 0x01) == 0)) {
472 		usb_stor_dbg(us, "No media, or door open\n");
473 		alauda_free_maps(&MEDIA_INFO(us));
474 		info->sense_key = 0x02;
475 		info->sense_asc = 0x3A;
476 		info->sense_ascq = 0x00;
477 		return USB_STOR_TRANSPORT_FAILED;
478 	}
479 
480 	/* Check for media change */
481 	if (status[0] & 0x08) {
482 		usb_stor_dbg(us, "Media change detected\n");
483 		alauda_free_maps(&MEDIA_INFO(us));
484 		alauda_init_media(us);
485 
486 		info->sense_key = UNIT_ATTENTION;
487 		info->sense_asc = 0x28;
488 		info->sense_ascq = 0x00;
489 		return USB_STOR_TRANSPORT_FAILED;
490 	}
491 
492 	return USB_STOR_TRANSPORT_GOOD;
493 }
494 
495 /*
496  * Checks the status from the 2nd status register
497  * Returns 3 bytes of status data, only the first is known
498  */
499 static int alauda_check_status2(struct us_data *us)
500 {
501 	int rc;
502 	unsigned char command[] = {
503 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
504 		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
505 	};
506 	unsigned char data[3];
507 
508 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
509 		command, 9, NULL);
510 	if (rc != USB_STOR_XFER_GOOD)
511 		return rc;
512 
513 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
514 		data, 3, NULL);
515 	if (rc != USB_STOR_XFER_GOOD)
516 		return rc;
517 
518 	usb_stor_dbg(us, "%3ph\n", data);
519 	if (data[0] & ALAUDA_STATUS_ERROR)
520 		return USB_STOR_XFER_ERROR;
521 
522 	return USB_STOR_XFER_GOOD;
523 }
524 
525 /*
526  * Gets the redundancy data for the first page of a PBA
527  * Returns 16 bytes.
528  */
529 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
530 {
531 	int rc;
532 	unsigned char command[] = {
533 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
534 		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
535 	};
536 
537 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
538 		command, 9, NULL);
539 	if (rc != USB_STOR_XFER_GOOD)
540 		return rc;
541 
542 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
543 		data, 16, NULL);
544 }
545 
546 /*
547  * Finds the first unused PBA in a zone
548  * Returns the absolute PBA of an unused PBA, or 0 if none found.
549  */
550 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
551 	unsigned int zone)
552 {
553 	u16 *pba_to_lba = info->pba_to_lba[zone];
554 	unsigned int i;
555 
556 	for (i = 0; i < info->zonesize; i++)
557 		if (pba_to_lba[i] == UNDEF)
558 			return (zone << info->zoneshift) + i;
559 
560 	return 0;
561 }
562 
563 /*
564  * Reads the redundancy data for all PBA's in a zone
565  * Produces lba <--> pba mappings
566  */
567 static int alauda_read_map(struct us_data *us, unsigned int zone)
568 {
569 	unsigned char *data = us->iobuf;
570 	int result;
571 	int i, j;
572 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
573 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
574 	unsigned int lba_offset, lba_real, blocknum;
575 	unsigned int zone_base_lba = zone * uzonesize;
576 	unsigned int zone_base_pba = zone * zonesize;
577 	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
578 	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
579 	if (lba_to_pba == NULL || pba_to_lba == NULL) {
580 		result = USB_STOR_TRANSPORT_ERROR;
581 		goto error;
582 	}
583 
584 	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
585 
586 	/* 1024 PBA's per zone */
587 	for (i = 0; i < zonesize; i++)
588 		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
589 
590 	for (i = 0; i < zonesize; i++) {
591 		blocknum = zone_base_pba + i;
592 
593 		result = alauda_get_redu_data(us, blocknum, data);
594 		if (result != USB_STOR_XFER_GOOD) {
595 			result = USB_STOR_TRANSPORT_ERROR;
596 			goto error;
597 		}
598 
599 		/* special PBAs have control field 0^16 */
600 		for (j = 0; j < 16; j++)
601 			if (data[j] != 0)
602 				goto nonz;
603 		pba_to_lba[i] = UNUSABLE;
604 		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
605 		continue;
606 
607 	nonz:
608 		/* unwritten PBAs have control field FF^16 */
609 		for (j = 0; j < 16; j++)
610 			if (data[j] != 0xff)
611 				goto nonff;
612 		continue;
613 
614 	nonff:
615 		/* normal PBAs start with six FFs */
616 		if (j < 6) {
617 			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
618 				     blocknum,
619 				     data[0], data[1], data[2], data[3],
620 				     data[4], data[5]);
621 			pba_to_lba[i] = UNUSABLE;
622 			continue;
623 		}
624 
625 		if ((data[6] >> 4) != 0x01) {
626 			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
627 				     blocknum, data[6], data[7],
628 				     data[11], data[12]);
629 			pba_to_lba[i] = UNUSABLE;
630 			continue;
631 		}
632 
633 		/* check even parity */
634 		if (parity[data[6] ^ data[7]]) {
635 			printk(KERN_WARNING
636 			       "alauda_read_map: Bad parity in LBA for block %d"
637 			       " (%02X %02X)\n", i, data[6], data[7]);
638 			pba_to_lba[i] = UNUSABLE;
639 			continue;
640 		}
641 
642 		lba_offset = short_pack(data[7], data[6]);
643 		lba_offset = (lba_offset & 0x07FF) >> 1;
644 		lba_real = lba_offset + zone_base_lba;
645 
646 		/*
647 		 * Every 1024 physical blocks ("zone"), the LBA numbers
648 		 * go back to zero, but are within a higher block of LBA's.
649 		 * Also, there is a maximum of 1000 LBA's per zone.
650 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
651 		 * which are really LBA 1000-1999. This allows for 24 bad
652 		 * or special physical blocks per zone.
653 		 */
654 
655 		if (lba_offset >= uzonesize) {
656 			printk(KERN_WARNING
657 			       "alauda_read_map: Bad low LBA %d for block %d\n",
658 			       lba_real, blocknum);
659 			continue;
660 		}
661 
662 		if (lba_to_pba[lba_offset] != UNDEF) {
663 			printk(KERN_WARNING
664 			       "alauda_read_map: "
665 			       "LBA %d seen for PBA %d and %d\n",
666 			       lba_real, lba_to_pba[lba_offset], blocknum);
667 			continue;
668 		}
669 
670 		pba_to_lba[i] = lba_real;
671 		lba_to_pba[lba_offset] = blocknum;
672 		continue;
673 	}
674 
675 	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
676 	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
677 	result = 0;
678 	goto out;
679 
680 error:
681 	kfree(lba_to_pba);
682 	kfree(pba_to_lba);
683 out:
684 	return result;
685 }
686 
687 /*
688  * Checks to see whether we have already mapped a certain zone
689  * If we haven't, the map is generated
690  */
691 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
692 {
693 	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
694 		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
695 		alauda_read_map(us, zone);
696 }
697 
698 /*
699  * Erases an entire block
700  */
701 static int alauda_erase_block(struct us_data *us, u16 pba)
702 {
703 	int rc;
704 	unsigned char command[] = {
705 		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
706 		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
707 	};
708 	unsigned char buf[2];
709 
710 	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
711 
712 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
713 		command, 9, NULL);
714 	if (rc != USB_STOR_XFER_GOOD)
715 		return rc;
716 
717 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
718 		buf, 2, NULL);
719 	if (rc != USB_STOR_XFER_GOOD)
720 		return rc;
721 
722 	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
723 	return rc;
724 }
725 
726 /*
727  * Reads data from a certain offset page inside a PBA, including interleaved
728  * redundancy data. Returns (pagesize+64)*pages bytes in data.
729  */
730 static int alauda_read_block_raw(struct us_data *us, u16 pba,
731 		unsigned int page, unsigned int pages, unsigned char *data)
732 {
733 	int rc;
734 	unsigned char command[] = {
735 		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
736 		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
737 	};
738 
739 	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
740 
741 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
742 		command, 9, NULL);
743 	if (rc != USB_STOR_XFER_GOOD)
744 		return rc;
745 
746 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
747 		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
748 }
749 
750 /*
751  * Reads data from a certain offset page inside a PBA, excluding redundancy
752  * data. Returns pagesize*pages bytes in data. Note that data must be big enough
753  * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
754  * trailing bytes outside this function.
755  */
756 static int alauda_read_block(struct us_data *us, u16 pba,
757 		unsigned int page, unsigned int pages, unsigned char *data)
758 {
759 	int i, rc;
760 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
761 
762 	rc = alauda_read_block_raw(us, pba, page, pages, data);
763 	if (rc != USB_STOR_XFER_GOOD)
764 		return rc;
765 
766 	/* Cut out the redundancy data */
767 	for (i = 0; i < pages; i++) {
768 		int dest_offset = i * pagesize;
769 		int src_offset = i * (pagesize + 64);
770 		memmove(data + dest_offset, data + src_offset, pagesize);
771 	}
772 
773 	return rc;
774 }
775 
776 /*
777  * Writes an entire block of data and checks status after write.
778  * Redundancy data must be already included in data. Data should be
779  * (pagesize+64)*blocksize bytes in length.
780  */
781 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
782 {
783 	int rc;
784 	struct alauda_info *info = (struct alauda_info *) us->extra;
785 	unsigned char command[] = {
786 		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
787 		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
788 	};
789 
790 	usb_stor_dbg(us, "pba %d\n", pba);
791 
792 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
793 		command, 9, NULL);
794 	if (rc != USB_STOR_XFER_GOOD)
795 		return rc;
796 
797 	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
798 		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
799 		NULL);
800 	if (rc != USB_STOR_XFER_GOOD)
801 		return rc;
802 
803 	return alauda_check_status2(us);
804 }
805 
806 /*
807  * Write some data to a specific LBA.
808  */
809 static int alauda_write_lba(struct us_data *us, u16 lba,
810 		 unsigned int page, unsigned int pages,
811 		 unsigned char *ptr, unsigned char *blockbuffer)
812 {
813 	u16 pba, lbap, new_pba;
814 	unsigned char *bptr, *cptr, *xptr;
815 	unsigned char ecc[3];
816 	int i, result;
817 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
818 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
819 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
820 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
821 	unsigned int lba_offset = lba % uzonesize;
822 	unsigned int new_pba_offset;
823 	unsigned int zone = lba / uzonesize;
824 
825 	alauda_ensure_map_for_zone(us, zone);
826 
827 	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
828 	if (pba == 1) {
829 		/* Maybe it is impossible to write to PBA 1.
830 		   Fake success, but don't do anything. */
831 		printk(KERN_WARNING
832 		       "alauda_write_lba: avoid writing to pba 1\n");
833 		return USB_STOR_TRANSPORT_GOOD;
834 	}
835 
836 	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
837 	if (!new_pba) {
838 		printk(KERN_WARNING
839 		       "alauda_write_lba: Out of unused blocks\n");
840 		return USB_STOR_TRANSPORT_ERROR;
841 	}
842 
843 	/* read old contents */
844 	if (pba != UNDEF) {
845 		result = alauda_read_block_raw(us, pba, 0,
846 			blocksize, blockbuffer);
847 		if (result != USB_STOR_XFER_GOOD)
848 			return result;
849 	} else {
850 		memset(blockbuffer, 0, blocksize * (pagesize + 64));
851 	}
852 
853 	lbap = (lba_offset << 1) | 0x1000;
854 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
855 		lbap ^= 1;
856 
857 	/* check old contents and fill lba */
858 	for (i = 0; i < blocksize; i++) {
859 		bptr = blockbuffer + (i * (pagesize + 64));
860 		cptr = bptr + pagesize;
861 		nand_compute_ecc(bptr, ecc);
862 		if (!nand_compare_ecc(cptr+13, ecc)) {
863 			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
864 				     i, pba);
865 			nand_store_ecc(cptr+13, ecc);
866 		}
867 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
868 		if (!nand_compare_ecc(cptr+8, ecc)) {
869 			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
870 				     i, pba);
871 			nand_store_ecc(cptr+8, ecc);
872 		}
873 		cptr[6] = cptr[11] = MSB_of(lbap);
874 		cptr[7] = cptr[12] = LSB_of(lbap);
875 	}
876 
877 	/* copy in new stuff and compute ECC */
878 	xptr = ptr;
879 	for (i = page; i < page+pages; i++) {
880 		bptr = blockbuffer + (i * (pagesize + 64));
881 		cptr = bptr + pagesize;
882 		memcpy(bptr, xptr, pagesize);
883 		xptr += pagesize;
884 		nand_compute_ecc(bptr, ecc);
885 		nand_store_ecc(cptr+13, ecc);
886 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
887 		nand_store_ecc(cptr+8, ecc);
888 	}
889 
890 	result = alauda_write_block(us, new_pba, blockbuffer);
891 	if (result != USB_STOR_XFER_GOOD)
892 		return result;
893 
894 	new_pba_offset = new_pba - (zone * zonesize);
895 	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
896 	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
897 	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
898 
899 	if (pba != UNDEF) {
900 		unsigned int pba_offset = pba - (zone * zonesize);
901 		result = alauda_erase_block(us, pba);
902 		if (result != USB_STOR_XFER_GOOD)
903 			return result;
904 		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
905 	}
906 
907 	return USB_STOR_TRANSPORT_GOOD;
908 }
909 
910 /*
911  * Read data from a specific sector address
912  */
913 static int alauda_read_data(struct us_data *us, unsigned long address,
914 		unsigned int sectors)
915 {
916 	unsigned char *buffer;
917 	u16 lba, max_lba;
918 	unsigned int page, len, offset;
919 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
920 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
921 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
922 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
923 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
924 	struct scatterlist *sg;
925 	int result;
926 
927 	/*
928 	 * Since we only read in one block at a time, we have to create
929 	 * a bounce buffer and move the data a piece at a time between the
930 	 * bounce buffer and the actual transfer buffer.
931 	 * We make this buffer big enough to hold temporary redundancy data,
932 	 * which we use when reading the data blocks.
933 	 */
934 
935 	len = min(sectors, blocksize) * (pagesize + 64);
936 	buffer = kmalloc(len, GFP_NOIO);
937 	if (buffer == NULL) {
938 		printk(KERN_WARNING "alauda_read_data: Out of memory\n");
939 		return USB_STOR_TRANSPORT_ERROR;
940 	}
941 
942 	/* Figure out the initial LBA and page */
943 	lba = address >> blockshift;
944 	page = (address & MEDIA_INFO(us).blockmask);
945 	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
946 
947 	result = USB_STOR_TRANSPORT_GOOD;
948 	offset = 0;
949 	sg = NULL;
950 
951 	while (sectors > 0) {
952 		unsigned int zone = lba / uzonesize; /* integer division */
953 		unsigned int lba_offset = lba - (zone * uzonesize);
954 		unsigned int pages;
955 		u16 pba;
956 		alauda_ensure_map_for_zone(us, zone);
957 
958 		/* Not overflowing capacity? */
959 		if (lba >= max_lba) {
960 			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
961 				     lba, max_lba);
962 			result = USB_STOR_TRANSPORT_ERROR;
963 			break;
964 		}
965 
966 		/* Find number of pages we can read in this block */
967 		pages = min(sectors, blocksize - page);
968 		len = pages << pageshift;
969 
970 		/* Find where this lba lives on disk */
971 		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
972 
973 		if (pba == UNDEF) {	/* this lba was never written */
974 			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
975 				     pages, lba, page);
976 
977 			/* This is not really an error. It just means
978 			   that the block has never been written.
979 			   Instead of returning USB_STOR_TRANSPORT_ERROR
980 			   it is better to return all zero data. */
981 
982 			memset(buffer, 0, len);
983 		} else {
984 			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
985 				     pages, pba, lba, page);
986 
987 			result = alauda_read_block(us, pba, page, pages, buffer);
988 			if (result != USB_STOR_TRANSPORT_GOOD)
989 				break;
990 		}
991 
992 		/* Store the data in the transfer buffer */
993 		usb_stor_access_xfer_buf(buffer, len, us->srb,
994 				&sg, &offset, TO_XFER_BUF);
995 
996 		page = 0;
997 		lba++;
998 		sectors -= pages;
999 	}
1000 
1001 	kfree(buffer);
1002 	return result;
1003 }
1004 
1005 /*
1006  * Write data to a specific sector address
1007  */
1008 static int alauda_write_data(struct us_data *us, unsigned long address,
1009 		unsigned int sectors)
1010 {
1011 	unsigned char *buffer, *blockbuffer;
1012 	unsigned int page, len, offset;
1013 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1014 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1015 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1016 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1017 	struct scatterlist *sg;
1018 	u16 lba, max_lba;
1019 	int result;
1020 
1021 	/*
1022 	 * Since we don't write the user data directly to the device,
1023 	 * we have to create a bounce buffer and move the data a piece
1024 	 * at a time between the bounce buffer and the actual transfer buffer.
1025 	 */
1026 
1027 	len = min(sectors, blocksize) * pagesize;
1028 	buffer = kmalloc(len, GFP_NOIO);
1029 	if (buffer == NULL) {
1030 		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1031 		return USB_STOR_TRANSPORT_ERROR;
1032 	}
1033 
1034 	/*
1035 	 * We also need a temporary block buffer, where we read in the old data,
1036 	 * overwrite parts with the new data, and manipulate the redundancy data
1037 	 */
1038 	blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1039 	if (blockbuffer == NULL) {
1040 		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1041 		kfree(buffer);
1042 		return USB_STOR_TRANSPORT_ERROR;
1043 	}
1044 
1045 	/* Figure out the initial LBA and page */
1046 	lba = address >> blockshift;
1047 	page = (address & MEDIA_INFO(us).blockmask);
1048 	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1049 
1050 	result = USB_STOR_TRANSPORT_GOOD;
1051 	offset = 0;
1052 	sg = NULL;
1053 
1054 	while (sectors > 0) {
1055 		/* Write as many sectors as possible in this block */
1056 		unsigned int pages = min(sectors, blocksize - page);
1057 		len = pages << pageshift;
1058 
1059 		/* Not overflowing capacity? */
1060 		if (lba >= max_lba) {
1061 			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1062 				     lba, max_lba);
1063 			result = USB_STOR_TRANSPORT_ERROR;
1064 			break;
1065 		}
1066 
1067 		/* Get the data from the transfer buffer */
1068 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1069 				&sg, &offset, FROM_XFER_BUF);
1070 
1071 		result = alauda_write_lba(us, lba, page, pages, buffer,
1072 			blockbuffer);
1073 		if (result != USB_STOR_TRANSPORT_GOOD)
1074 			break;
1075 
1076 		page = 0;
1077 		lba++;
1078 		sectors -= pages;
1079 	}
1080 
1081 	kfree(buffer);
1082 	kfree(blockbuffer);
1083 	return result;
1084 }
1085 
1086 /*
1087  * Our interface with the rest of the world
1088  */
1089 
1090 static void alauda_info_destructor(void *extra)
1091 {
1092 	struct alauda_info *info = (struct alauda_info *) extra;
1093 	int port;
1094 
1095 	if (!info)
1096 		return;
1097 
1098 	for (port = 0; port < 2; port++) {
1099 		struct alauda_media_info *media_info = &info->port[port];
1100 
1101 		alauda_free_maps(media_info);
1102 		kfree(media_info->lba_to_pba);
1103 		kfree(media_info->pba_to_lba);
1104 	}
1105 }
1106 
1107 /*
1108  * Initialize alauda_info struct and find the data-write endpoint
1109  */
1110 static int init_alauda(struct us_data *us)
1111 {
1112 	struct alauda_info *info;
1113 	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1114 	nand_init_ecc();
1115 
1116 	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1117 	if (!us->extra)
1118 		return USB_STOR_TRANSPORT_ERROR;
1119 
1120 	info = (struct alauda_info *) us->extra;
1121 	us->extra_destructor = alauda_info_destructor;
1122 
1123 	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1124 		altsetting->endpoint[0].desc.bEndpointAddress
1125 		& USB_ENDPOINT_NUMBER_MASK);
1126 
1127 	return USB_STOR_TRANSPORT_GOOD;
1128 }
1129 
1130 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1131 {
1132 	int rc;
1133 	struct alauda_info *info = (struct alauda_info *) us->extra;
1134 	unsigned char *ptr = us->iobuf;
1135 	static unsigned char inquiry_response[36] = {
1136 		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1137 	};
1138 
1139 	if (srb->cmnd[0] == INQUIRY) {
1140 		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1141 		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1142 		fill_inquiry_response(us, ptr, 36);
1143 		return USB_STOR_TRANSPORT_GOOD;
1144 	}
1145 
1146 	if (srb->cmnd[0] == TEST_UNIT_READY) {
1147 		usb_stor_dbg(us, "TEST_UNIT_READY\n");
1148 		return alauda_check_media(us);
1149 	}
1150 
1151 	if (srb->cmnd[0] == READ_CAPACITY) {
1152 		unsigned int num_zones;
1153 		unsigned long capacity;
1154 
1155 		rc = alauda_check_media(us);
1156 		if (rc != USB_STOR_TRANSPORT_GOOD)
1157 			return rc;
1158 
1159 		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1160 			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1161 
1162 		capacity = num_zones * MEDIA_INFO(us).uzonesize
1163 			* MEDIA_INFO(us).blocksize;
1164 
1165 		/* Report capacity and page size */
1166 		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1167 		((__be32 *) ptr)[1] = cpu_to_be32(512);
1168 
1169 		usb_stor_set_xfer_buf(ptr, 8, srb);
1170 		return USB_STOR_TRANSPORT_GOOD;
1171 	}
1172 
1173 	if (srb->cmnd[0] == READ_10) {
1174 		unsigned int page, pages;
1175 
1176 		rc = alauda_check_media(us);
1177 		if (rc != USB_STOR_TRANSPORT_GOOD)
1178 			return rc;
1179 
1180 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1181 		page <<= 16;
1182 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1183 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1184 
1185 		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1186 
1187 		return alauda_read_data(us, page, pages);
1188 	}
1189 
1190 	if (srb->cmnd[0] == WRITE_10) {
1191 		unsigned int page, pages;
1192 
1193 		rc = alauda_check_media(us);
1194 		if (rc != USB_STOR_TRANSPORT_GOOD)
1195 			return rc;
1196 
1197 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1198 		page <<= 16;
1199 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1200 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1201 
1202 		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1203 
1204 		return alauda_write_data(us, page, pages);
1205 	}
1206 
1207 	if (srb->cmnd[0] == REQUEST_SENSE) {
1208 		usb_stor_dbg(us, "REQUEST_SENSE\n");
1209 
1210 		memset(ptr, 0, 18);
1211 		ptr[0] = 0xF0;
1212 		ptr[2] = info->sense_key;
1213 		ptr[7] = 11;
1214 		ptr[12] = info->sense_asc;
1215 		ptr[13] = info->sense_ascq;
1216 		usb_stor_set_xfer_buf(ptr, 18, srb);
1217 
1218 		return USB_STOR_TRANSPORT_GOOD;
1219 	}
1220 
1221 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1222 		/* sure.  whatever.  not like we can stop the user from popping
1223 		   the media out of the device (no locking doors, etc) */
1224 		return USB_STOR_TRANSPORT_GOOD;
1225 	}
1226 
1227 	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1228 		     srb->cmnd[0], srb->cmnd[0]);
1229 	info->sense_key = 0x05;
1230 	info->sense_asc = 0x20;
1231 	info->sense_ascq = 0x00;
1232 	return USB_STOR_TRANSPORT_FAILED;
1233 }
1234 
1235 static int alauda_probe(struct usb_interface *intf,
1236 			 const struct usb_device_id *id)
1237 {
1238 	struct us_data *us;
1239 	int result;
1240 
1241 	result = usb_stor_probe1(&us, intf, id,
1242 			(id - alauda_usb_ids) + alauda_unusual_dev_list);
1243 	if (result)
1244 		return result;
1245 
1246 	us->transport_name  = "Alauda Control/Bulk";
1247 	us->transport = alauda_transport;
1248 	us->transport_reset = usb_stor_Bulk_reset;
1249 	us->max_lun = 1;
1250 
1251 	result = usb_stor_probe2(us);
1252 	return result;
1253 }
1254 
1255 static struct usb_driver alauda_driver = {
1256 	.name =		"ums-alauda",
1257 	.probe =	alauda_probe,
1258 	.disconnect =	usb_stor_disconnect,
1259 	.suspend =	usb_stor_suspend,
1260 	.resume =	usb_stor_resume,
1261 	.reset_resume =	usb_stor_reset_resume,
1262 	.pre_reset =	usb_stor_pre_reset,
1263 	.post_reset =	usb_stor_post_reset,
1264 	.id_table =	alauda_usb_ids,
1265 	.soft_unbind =	1,
1266 	.no_dynamic_id = 1,
1267 };
1268 
1269 module_usb_driver(alauda_driver);
1270