1 /* 2 * Driver for Alauda-based card readers 3 * 4 * Current development and maintenance by: 5 * (c) 2005 Daniel Drake <dsd@gentoo.org> 6 * 7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use. 8 * 9 * Alauda implements a vendor-specific command set to access two media reader 10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands 11 * which are accepted by these devices. 12 * 13 * The driver was developed through reverse-engineering, with the help of the 14 * sddr09 driver which has many similarities, and with some help from the 15 * (very old) vendor-supplied GPL sma03 driver. 16 * 17 * For protocol info, see http://alauda.sourceforge.net 18 * 19 * This program is free software; you can redistribute it and/or modify it 20 * under the terms of the GNU General Public License as published by the 21 * Free Software Foundation; either version 2, or (at your option) any 22 * later version. 23 * 24 * This program is distributed in the hope that it will be useful, but 25 * WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 27 * General Public License for more details. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/slab.h> 36 37 #include <scsi/scsi.h> 38 #include <scsi/scsi_cmnd.h> 39 #include <scsi/scsi_device.h> 40 41 #include "usb.h" 42 #include "transport.h" 43 #include "protocol.h" 44 #include "debug.h" 45 46 MODULE_DESCRIPTION("Driver for Alauda-based card readers"); 47 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>"); 48 MODULE_LICENSE("GPL"); 49 50 /* 51 * Status bytes 52 */ 53 #define ALAUDA_STATUS_ERROR 0x01 54 #define ALAUDA_STATUS_READY 0x40 55 56 /* 57 * Control opcodes (for request field) 58 */ 59 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08 60 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98 61 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a 62 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a 63 #define ALAUDA_GET_XD_MEDIA_SIG 0x86 64 #define ALAUDA_GET_SM_MEDIA_SIG 0x96 65 66 /* 67 * Bulk command identity (byte 0) 68 */ 69 #define ALAUDA_BULK_CMD 0x40 70 71 /* 72 * Bulk opcodes (byte 1) 73 */ 74 #define ALAUDA_BULK_GET_REDU_DATA 0x85 75 #define ALAUDA_BULK_READ_BLOCK 0x94 76 #define ALAUDA_BULK_ERASE_BLOCK 0xa3 77 #define ALAUDA_BULK_WRITE_BLOCK 0xb4 78 #define ALAUDA_BULK_GET_STATUS2 0xb7 79 #define ALAUDA_BULK_RESET_MEDIA 0xe0 80 81 /* 82 * Port to operate on (byte 8) 83 */ 84 #define ALAUDA_PORT_XD 0x00 85 #define ALAUDA_PORT_SM 0x01 86 87 /* 88 * LBA and PBA are unsigned ints. Special values. 89 */ 90 #define UNDEF 0xffff 91 #define SPARE 0xfffe 92 #define UNUSABLE 0xfffd 93 94 struct alauda_media_info { 95 unsigned long capacity; /* total media size in bytes */ 96 unsigned int pagesize; /* page size in bytes */ 97 unsigned int blocksize; /* number of pages per block */ 98 unsigned int uzonesize; /* number of usable blocks per zone */ 99 unsigned int zonesize; /* number of blocks per zone */ 100 unsigned int blockmask; /* mask to get page from address */ 101 102 unsigned char pageshift; 103 unsigned char blockshift; 104 unsigned char zoneshift; 105 106 u16 **lba_to_pba; /* logical to physical block map */ 107 u16 **pba_to_lba; /* physical to logical block map */ 108 }; 109 110 struct alauda_info { 111 struct alauda_media_info port[2]; 112 int wr_ep; /* endpoint to write data out of */ 113 114 unsigned char sense_key; 115 unsigned long sense_asc; /* additional sense code */ 116 unsigned long sense_ascq; /* additional sense code qualifier */ 117 }; 118 119 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) 120 #define LSB_of(s) ((s)&0xFF) 121 #define MSB_of(s) ((s)>>8) 122 123 #define MEDIA_PORT(us) us->srb->device->lun 124 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] 125 126 #define PBA_LO(pba) ((pba & 0xF) << 5) 127 #define PBA_HI(pba) (pba >> 3) 128 #define PBA_ZONE(pba) (pba >> 11) 129 130 static int init_alauda(struct us_data *us); 131 132 133 /* 134 * The table of devices 135 */ 136 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ 137 vendorName, productName, useProtocol, useTransport, \ 138 initFunction, flags) \ 139 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ 140 .driver_info = (flags) } 141 142 static struct usb_device_id alauda_usb_ids[] = { 143 # include "unusual_alauda.h" 144 { } /* Terminating entry */ 145 }; 146 MODULE_DEVICE_TABLE(usb, alauda_usb_ids); 147 148 #undef UNUSUAL_DEV 149 150 /* 151 * The flags table 152 */ 153 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ 154 vendor_name, product_name, use_protocol, use_transport, \ 155 init_function, Flags) \ 156 { \ 157 .vendorName = vendor_name, \ 158 .productName = product_name, \ 159 .useProtocol = use_protocol, \ 160 .useTransport = use_transport, \ 161 .initFunction = init_function, \ 162 } 163 164 static struct us_unusual_dev alauda_unusual_dev_list[] = { 165 # include "unusual_alauda.h" 166 { } /* Terminating entry */ 167 }; 168 169 #undef UNUSUAL_DEV 170 171 172 /* 173 * Media handling 174 */ 175 176 struct alauda_card_info { 177 unsigned char id; /* id byte */ 178 unsigned char chipshift; /* 1<<cs bytes total capacity */ 179 unsigned char pageshift; /* 1<<ps bytes in a page */ 180 unsigned char blockshift; /* 1<<bs pages per block */ 181 unsigned char zoneshift; /* 1<<zs blocks per zone */ 182 }; 183 184 static struct alauda_card_info alauda_card_ids[] = { 185 /* NAND flash */ 186 { 0x6e, 20, 8, 4, 8}, /* 1 MB */ 187 { 0xe8, 20, 8, 4, 8}, /* 1 MB */ 188 { 0xec, 20, 8, 4, 8}, /* 1 MB */ 189 { 0x64, 21, 8, 4, 9}, /* 2 MB */ 190 { 0xea, 21, 8, 4, 9}, /* 2 MB */ 191 { 0x6b, 22, 9, 4, 9}, /* 4 MB */ 192 { 0xe3, 22, 9, 4, 9}, /* 4 MB */ 193 { 0xe5, 22, 9, 4, 9}, /* 4 MB */ 194 { 0xe6, 23, 9, 4, 10}, /* 8 MB */ 195 { 0x73, 24, 9, 5, 10}, /* 16 MB */ 196 { 0x75, 25, 9, 5, 10}, /* 32 MB */ 197 { 0x76, 26, 9, 5, 10}, /* 64 MB */ 198 { 0x79, 27, 9, 5, 10}, /* 128 MB */ 199 { 0x71, 28, 9, 5, 10}, /* 256 MB */ 200 201 /* MASK ROM */ 202 { 0x5d, 21, 9, 4, 8}, /* 2 MB */ 203 { 0xd5, 22, 9, 4, 9}, /* 4 MB */ 204 { 0xd6, 23, 9, 4, 10}, /* 8 MB */ 205 { 0x57, 24, 9, 4, 11}, /* 16 MB */ 206 { 0x58, 25, 9, 4, 12}, /* 32 MB */ 207 { 0,} 208 }; 209 210 static struct alauda_card_info *alauda_card_find_id(unsigned char id) 211 { 212 int i; 213 214 for (i = 0; alauda_card_ids[i].id != 0; i++) 215 if (alauda_card_ids[i].id == id) 216 return &(alauda_card_ids[i]); 217 return NULL; 218 } 219 220 /* 221 * ECC computation. 222 */ 223 224 static unsigned char parity[256]; 225 static unsigned char ecc2[256]; 226 227 static void nand_init_ecc(void) 228 { 229 int i, j, a; 230 231 parity[0] = 0; 232 for (i = 1; i < 256; i++) 233 parity[i] = (parity[i&(i-1)] ^ 1); 234 235 for (i = 0; i < 256; i++) { 236 a = 0; 237 for (j = 0; j < 8; j++) { 238 if (i & (1<<j)) { 239 if ((j & 1) == 0) 240 a ^= 0x04; 241 if ((j & 2) == 0) 242 a ^= 0x10; 243 if ((j & 4) == 0) 244 a ^= 0x40; 245 } 246 } 247 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); 248 } 249 } 250 251 /* compute 3-byte ecc on 256 bytes */ 252 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) 253 { 254 int i, j, a; 255 unsigned char par = 0, bit, bits[8] = {0}; 256 257 /* collect 16 checksum bits */ 258 for (i = 0; i < 256; i++) { 259 par ^= data[i]; 260 bit = parity[data[i]]; 261 for (j = 0; j < 8; j++) 262 if ((i & (1<<j)) == 0) 263 bits[j] ^= bit; 264 } 265 266 /* put 4+4+4 = 12 bits in the ecc */ 267 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; 268 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 269 270 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; 271 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 272 273 ecc[2] = ecc2[par]; 274 } 275 276 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) 277 { 278 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); 279 } 280 281 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) 282 { 283 memcpy(data, ecc, 3); 284 } 285 286 /* 287 * Alauda driver 288 */ 289 290 /* 291 * Forget our PBA <---> LBA mappings for a particular port 292 */ 293 static void alauda_free_maps (struct alauda_media_info *media_info) 294 { 295 unsigned int shift = media_info->zoneshift 296 + media_info->blockshift + media_info->pageshift; 297 unsigned int num_zones = media_info->capacity >> shift; 298 unsigned int i; 299 300 if (media_info->lba_to_pba != NULL) 301 for (i = 0; i < num_zones; i++) { 302 kfree(media_info->lba_to_pba[i]); 303 media_info->lba_to_pba[i] = NULL; 304 } 305 306 if (media_info->pba_to_lba != NULL) 307 for (i = 0; i < num_zones; i++) { 308 kfree(media_info->pba_to_lba[i]); 309 media_info->pba_to_lba[i] = NULL; 310 } 311 } 312 313 /* 314 * Returns 2 bytes of status data 315 * The first byte describes media status, and second byte describes door status 316 */ 317 static int alauda_get_media_status(struct us_data *us, unsigned char *data) 318 { 319 int rc; 320 unsigned char command; 321 322 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 323 command = ALAUDA_GET_XD_MEDIA_STATUS; 324 else 325 command = ALAUDA_GET_SM_MEDIA_STATUS; 326 327 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 328 command, 0xc0, 0, 1, data, 2); 329 330 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]); 331 332 return rc; 333 } 334 335 /* 336 * Clears the "media was changed" bit so that we know when it changes again 337 * in the future. 338 */ 339 static int alauda_ack_media(struct us_data *us) 340 { 341 unsigned char command; 342 343 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 344 command = ALAUDA_ACK_XD_MEDIA_CHANGE; 345 else 346 command = ALAUDA_ACK_SM_MEDIA_CHANGE; 347 348 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 349 command, 0x40, 0, 1, NULL, 0); 350 } 351 352 /* 353 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, 354 * and some other details. 355 */ 356 static int alauda_get_media_signature(struct us_data *us, unsigned char *data) 357 { 358 unsigned char command; 359 360 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 361 command = ALAUDA_GET_XD_MEDIA_SIG; 362 else 363 command = ALAUDA_GET_SM_MEDIA_SIG; 364 365 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 366 command, 0xc0, 0, 0, data, 4); 367 } 368 369 /* 370 * Resets the media status (but not the whole device?) 371 */ 372 static int alauda_reset_media(struct us_data *us) 373 { 374 unsigned char *command = us->iobuf; 375 376 memset(command, 0, 9); 377 command[0] = ALAUDA_BULK_CMD; 378 command[1] = ALAUDA_BULK_RESET_MEDIA; 379 command[8] = MEDIA_PORT(us); 380 381 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 382 command, 9, NULL); 383 } 384 385 /* 386 * Examines the media and deduces capacity, etc. 387 */ 388 static int alauda_init_media(struct us_data *us) 389 { 390 unsigned char *data = us->iobuf; 391 int ready = 0; 392 struct alauda_card_info *media_info; 393 unsigned int num_zones; 394 395 while (ready == 0) { 396 msleep(20); 397 398 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 399 return USB_STOR_TRANSPORT_ERROR; 400 401 if (data[0] & 0x10) 402 ready = 1; 403 } 404 405 usb_stor_dbg(us, "We are ready for action!\n"); 406 407 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) 408 return USB_STOR_TRANSPORT_ERROR; 409 410 msleep(10); 411 412 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 413 return USB_STOR_TRANSPORT_ERROR; 414 415 if (data[0] != 0x14) { 416 usb_stor_dbg(us, "Media not ready after ack\n"); 417 return USB_STOR_TRANSPORT_ERROR; 418 } 419 420 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) 421 return USB_STOR_TRANSPORT_ERROR; 422 423 usb_stor_dbg(us, "Media signature: %4ph\n", data); 424 media_info = alauda_card_find_id(data[1]); 425 if (media_info == NULL) { 426 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n", 427 data); 428 return USB_STOR_TRANSPORT_ERROR; 429 } 430 431 MEDIA_INFO(us).capacity = 1 << media_info->chipshift; 432 usb_stor_dbg(us, "Found media with capacity: %ldMB\n", 433 MEDIA_INFO(us).capacity >> 20); 434 435 MEDIA_INFO(us).pageshift = media_info->pageshift; 436 MEDIA_INFO(us).blockshift = media_info->blockshift; 437 MEDIA_INFO(us).zoneshift = media_info->zoneshift; 438 439 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; 440 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; 441 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; 442 443 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; 444 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; 445 446 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 447 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 448 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 449 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 450 451 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) 452 return USB_STOR_TRANSPORT_ERROR; 453 454 return USB_STOR_TRANSPORT_GOOD; 455 } 456 457 /* 458 * Examines the media status and does the right thing when the media has gone, 459 * appeared, or changed. 460 */ 461 static int alauda_check_media(struct us_data *us) 462 { 463 struct alauda_info *info = (struct alauda_info *) us->extra; 464 unsigned char status[2]; 465 int rc; 466 467 rc = alauda_get_media_status(us, status); 468 469 /* Check for no media or door open */ 470 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) 471 || ((status[1] & 0x01) == 0)) { 472 usb_stor_dbg(us, "No media, or door open\n"); 473 alauda_free_maps(&MEDIA_INFO(us)); 474 info->sense_key = 0x02; 475 info->sense_asc = 0x3A; 476 info->sense_ascq = 0x00; 477 return USB_STOR_TRANSPORT_FAILED; 478 } 479 480 /* Check for media change */ 481 if (status[0] & 0x08) { 482 usb_stor_dbg(us, "Media change detected\n"); 483 alauda_free_maps(&MEDIA_INFO(us)); 484 alauda_init_media(us); 485 486 info->sense_key = UNIT_ATTENTION; 487 info->sense_asc = 0x28; 488 info->sense_ascq = 0x00; 489 return USB_STOR_TRANSPORT_FAILED; 490 } 491 492 return USB_STOR_TRANSPORT_GOOD; 493 } 494 495 /* 496 * Checks the status from the 2nd status register 497 * Returns 3 bytes of status data, only the first is known 498 */ 499 static int alauda_check_status2(struct us_data *us) 500 { 501 int rc; 502 unsigned char command[] = { 503 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, 504 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) 505 }; 506 unsigned char data[3]; 507 508 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 509 command, 9, NULL); 510 if (rc != USB_STOR_XFER_GOOD) 511 return rc; 512 513 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 514 data, 3, NULL); 515 if (rc != USB_STOR_XFER_GOOD) 516 return rc; 517 518 usb_stor_dbg(us, "%3ph\n", data); 519 if (data[0] & ALAUDA_STATUS_ERROR) 520 return USB_STOR_XFER_ERROR; 521 522 return USB_STOR_XFER_GOOD; 523 } 524 525 /* 526 * Gets the redundancy data for the first page of a PBA 527 * Returns 16 bytes. 528 */ 529 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) 530 { 531 int rc; 532 unsigned char command[] = { 533 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, 534 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) 535 }; 536 537 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 538 command, 9, NULL); 539 if (rc != USB_STOR_XFER_GOOD) 540 return rc; 541 542 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 543 data, 16, NULL); 544 } 545 546 /* 547 * Finds the first unused PBA in a zone 548 * Returns the absolute PBA of an unused PBA, or 0 if none found. 549 */ 550 static u16 alauda_find_unused_pba(struct alauda_media_info *info, 551 unsigned int zone) 552 { 553 u16 *pba_to_lba = info->pba_to_lba[zone]; 554 unsigned int i; 555 556 for (i = 0; i < info->zonesize; i++) 557 if (pba_to_lba[i] == UNDEF) 558 return (zone << info->zoneshift) + i; 559 560 return 0; 561 } 562 563 /* 564 * Reads the redundancy data for all PBA's in a zone 565 * Produces lba <--> pba mappings 566 */ 567 static int alauda_read_map(struct us_data *us, unsigned int zone) 568 { 569 unsigned char *data = us->iobuf; 570 int result; 571 int i, j; 572 unsigned int zonesize = MEDIA_INFO(us).zonesize; 573 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 574 unsigned int lba_offset, lba_real, blocknum; 575 unsigned int zone_base_lba = zone * uzonesize; 576 unsigned int zone_base_pba = zone * zonesize; 577 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 578 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 579 if (lba_to_pba == NULL || pba_to_lba == NULL) { 580 result = USB_STOR_TRANSPORT_ERROR; 581 goto error; 582 } 583 584 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone); 585 586 /* 1024 PBA's per zone */ 587 for (i = 0; i < zonesize; i++) 588 lba_to_pba[i] = pba_to_lba[i] = UNDEF; 589 590 for (i = 0; i < zonesize; i++) { 591 blocknum = zone_base_pba + i; 592 593 result = alauda_get_redu_data(us, blocknum, data); 594 if (result != USB_STOR_XFER_GOOD) { 595 result = USB_STOR_TRANSPORT_ERROR; 596 goto error; 597 } 598 599 /* special PBAs have control field 0^16 */ 600 for (j = 0; j < 16; j++) 601 if (data[j] != 0) 602 goto nonz; 603 pba_to_lba[i] = UNUSABLE; 604 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum); 605 continue; 606 607 nonz: 608 /* unwritten PBAs have control field FF^16 */ 609 for (j = 0; j < 16; j++) 610 if (data[j] != 0xff) 611 goto nonff; 612 continue; 613 614 nonff: 615 /* normal PBAs start with six FFs */ 616 if (j < 6) { 617 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n", 618 blocknum, 619 data[0], data[1], data[2], data[3], 620 data[4], data[5]); 621 pba_to_lba[i] = UNUSABLE; 622 continue; 623 } 624 625 if ((data[6] >> 4) != 0x01) { 626 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n", 627 blocknum, data[6], data[7], 628 data[11], data[12]); 629 pba_to_lba[i] = UNUSABLE; 630 continue; 631 } 632 633 /* check even parity */ 634 if (parity[data[6] ^ data[7]]) { 635 printk(KERN_WARNING 636 "alauda_read_map: Bad parity in LBA for block %d" 637 " (%02X %02X)\n", i, data[6], data[7]); 638 pba_to_lba[i] = UNUSABLE; 639 continue; 640 } 641 642 lba_offset = short_pack(data[7], data[6]); 643 lba_offset = (lba_offset & 0x07FF) >> 1; 644 lba_real = lba_offset + zone_base_lba; 645 646 /* 647 * Every 1024 physical blocks ("zone"), the LBA numbers 648 * go back to zero, but are within a higher block of LBA's. 649 * Also, there is a maximum of 1000 LBA's per zone. 650 * In other words, in PBA 1024-2047 you will find LBA 0-999 651 * which are really LBA 1000-1999. This allows for 24 bad 652 * or special physical blocks per zone. 653 */ 654 655 if (lba_offset >= uzonesize) { 656 printk(KERN_WARNING 657 "alauda_read_map: Bad low LBA %d for block %d\n", 658 lba_real, blocknum); 659 continue; 660 } 661 662 if (lba_to_pba[lba_offset] != UNDEF) { 663 printk(KERN_WARNING 664 "alauda_read_map: " 665 "LBA %d seen for PBA %d and %d\n", 666 lba_real, lba_to_pba[lba_offset], blocknum); 667 continue; 668 } 669 670 pba_to_lba[i] = lba_real; 671 lba_to_pba[lba_offset] = blocknum; 672 continue; 673 } 674 675 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; 676 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; 677 result = 0; 678 goto out; 679 680 error: 681 kfree(lba_to_pba); 682 kfree(pba_to_lba); 683 out: 684 return result; 685 } 686 687 /* 688 * Checks to see whether we have already mapped a certain zone 689 * If we haven't, the map is generated 690 */ 691 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) 692 { 693 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL 694 || MEDIA_INFO(us).pba_to_lba[zone] == NULL) 695 alauda_read_map(us, zone); 696 } 697 698 /* 699 * Erases an entire block 700 */ 701 static int alauda_erase_block(struct us_data *us, u16 pba) 702 { 703 int rc; 704 unsigned char command[] = { 705 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), 706 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) 707 }; 708 unsigned char buf[2]; 709 710 usb_stor_dbg(us, "Erasing PBA %d\n", pba); 711 712 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 713 command, 9, NULL); 714 if (rc != USB_STOR_XFER_GOOD) 715 return rc; 716 717 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 718 buf, 2, NULL); 719 if (rc != USB_STOR_XFER_GOOD) 720 return rc; 721 722 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]); 723 return rc; 724 } 725 726 /* 727 * Reads data from a certain offset page inside a PBA, including interleaved 728 * redundancy data. Returns (pagesize+64)*pages bytes in data. 729 */ 730 static int alauda_read_block_raw(struct us_data *us, u16 pba, 731 unsigned int page, unsigned int pages, unsigned char *data) 732 { 733 int rc; 734 unsigned char command[] = { 735 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), 736 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) 737 }; 738 739 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages); 740 741 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 742 command, 9, NULL); 743 if (rc != USB_STOR_XFER_GOOD) 744 return rc; 745 746 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 747 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); 748 } 749 750 /* 751 * Reads data from a certain offset page inside a PBA, excluding redundancy 752 * data. Returns pagesize*pages bytes in data. Note that data must be big enough 753 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' 754 * trailing bytes outside this function. 755 */ 756 static int alauda_read_block(struct us_data *us, u16 pba, 757 unsigned int page, unsigned int pages, unsigned char *data) 758 { 759 int i, rc; 760 unsigned int pagesize = MEDIA_INFO(us).pagesize; 761 762 rc = alauda_read_block_raw(us, pba, page, pages, data); 763 if (rc != USB_STOR_XFER_GOOD) 764 return rc; 765 766 /* Cut out the redundancy data */ 767 for (i = 0; i < pages; i++) { 768 int dest_offset = i * pagesize; 769 int src_offset = i * (pagesize + 64); 770 memmove(data + dest_offset, data + src_offset, pagesize); 771 } 772 773 return rc; 774 } 775 776 /* 777 * Writes an entire block of data and checks status after write. 778 * Redundancy data must be already included in data. Data should be 779 * (pagesize+64)*blocksize bytes in length. 780 */ 781 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) 782 { 783 int rc; 784 struct alauda_info *info = (struct alauda_info *) us->extra; 785 unsigned char command[] = { 786 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), 787 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) 788 }; 789 790 usb_stor_dbg(us, "pba %d\n", pba); 791 792 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 793 command, 9, NULL); 794 if (rc != USB_STOR_XFER_GOOD) 795 return rc; 796 797 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, 798 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, 799 NULL); 800 if (rc != USB_STOR_XFER_GOOD) 801 return rc; 802 803 return alauda_check_status2(us); 804 } 805 806 /* 807 * Write some data to a specific LBA. 808 */ 809 static int alauda_write_lba(struct us_data *us, u16 lba, 810 unsigned int page, unsigned int pages, 811 unsigned char *ptr, unsigned char *blockbuffer) 812 { 813 u16 pba, lbap, new_pba; 814 unsigned char *bptr, *cptr, *xptr; 815 unsigned char ecc[3]; 816 int i, result; 817 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 818 unsigned int zonesize = MEDIA_INFO(us).zonesize; 819 unsigned int pagesize = MEDIA_INFO(us).pagesize; 820 unsigned int blocksize = MEDIA_INFO(us).blocksize; 821 unsigned int lba_offset = lba % uzonesize; 822 unsigned int new_pba_offset; 823 unsigned int zone = lba / uzonesize; 824 825 alauda_ensure_map_for_zone(us, zone); 826 827 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 828 if (pba == 1) { 829 /* Maybe it is impossible to write to PBA 1. 830 Fake success, but don't do anything. */ 831 printk(KERN_WARNING 832 "alauda_write_lba: avoid writing to pba 1\n"); 833 return USB_STOR_TRANSPORT_GOOD; 834 } 835 836 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); 837 if (!new_pba) { 838 printk(KERN_WARNING 839 "alauda_write_lba: Out of unused blocks\n"); 840 return USB_STOR_TRANSPORT_ERROR; 841 } 842 843 /* read old contents */ 844 if (pba != UNDEF) { 845 result = alauda_read_block_raw(us, pba, 0, 846 blocksize, blockbuffer); 847 if (result != USB_STOR_XFER_GOOD) 848 return result; 849 } else { 850 memset(blockbuffer, 0, blocksize * (pagesize + 64)); 851 } 852 853 lbap = (lba_offset << 1) | 0x1000; 854 if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) 855 lbap ^= 1; 856 857 /* check old contents and fill lba */ 858 for (i = 0; i < blocksize; i++) { 859 bptr = blockbuffer + (i * (pagesize + 64)); 860 cptr = bptr + pagesize; 861 nand_compute_ecc(bptr, ecc); 862 if (!nand_compare_ecc(cptr+13, ecc)) { 863 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n", 864 i, pba); 865 nand_store_ecc(cptr+13, ecc); 866 } 867 nand_compute_ecc(bptr + (pagesize / 2), ecc); 868 if (!nand_compare_ecc(cptr+8, ecc)) { 869 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n", 870 i, pba); 871 nand_store_ecc(cptr+8, ecc); 872 } 873 cptr[6] = cptr[11] = MSB_of(lbap); 874 cptr[7] = cptr[12] = LSB_of(lbap); 875 } 876 877 /* copy in new stuff and compute ECC */ 878 xptr = ptr; 879 for (i = page; i < page+pages; i++) { 880 bptr = blockbuffer + (i * (pagesize + 64)); 881 cptr = bptr + pagesize; 882 memcpy(bptr, xptr, pagesize); 883 xptr += pagesize; 884 nand_compute_ecc(bptr, ecc); 885 nand_store_ecc(cptr+13, ecc); 886 nand_compute_ecc(bptr + (pagesize / 2), ecc); 887 nand_store_ecc(cptr+8, ecc); 888 } 889 890 result = alauda_write_block(us, new_pba, blockbuffer); 891 if (result != USB_STOR_XFER_GOOD) 892 return result; 893 894 new_pba_offset = new_pba - (zone * zonesize); 895 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; 896 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; 897 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba); 898 899 if (pba != UNDEF) { 900 unsigned int pba_offset = pba - (zone * zonesize); 901 result = alauda_erase_block(us, pba); 902 if (result != USB_STOR_XFER_GOOD) 903 return result; 904 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; 905 } 906 907 return USB_STOR_TRANSPORT_GOOD; 908 } 909 910 /* 911 * Read data from a specific sector address 912 */ 913 static int alauda_read_data(struct us_data *us, unsigned long address, 914 unsigned int sectors) 915 { 916 unsigned char *buffer; 917 u16 lba, max_lba; 918 unsigned int page, len, offset; 919 unsigned int blockshift = MEDIA_INFO(us).blockshift; 920 unsigned int pageshift = MEDIA_INFO(us).pageshift; 921 unsigned int blocksize = MEDIA_INFO(us).blocksize; 922 unsigned int pagesize = MEDIA_INFO(us).pagesize; 923 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 924 struct scatterlist *sg; 925 int result; 926 927 /* 928 * Since we only read in one block at a time, we have to create 929 * a bounce buffer and move the data a piece at a time between the 930 * bounce buffer and the actual transfer buffer. 931 * We make this buffer big enough to hold temporary redundancy data, 932 * which we use when reading the data blocks. 933 */ 934 935 len = min(sectors, blocksize) * (pagesize + 64); 936 buffer = kmalloc(len, GFP_NOIO); 937 if (buffer == NULL) { 938 printk(KERN_WARNING "alauda_read_data: Out of memory\n"); 939 return USB_STOR_TRANSPORT_ERROR; 940 } 941 942 /* Figure out the initial LBA and page */ 943 lba = address >> blockshift; 944 page = (address & MEDIA_INFO(us).blockmask); 945 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); 946 947 result = USB_STOR_TRANSPORT_GOOD; 948 offset = 0; 949 sg = NULL; 950 951 while (sectors > 0) { 952 unsigned int zone = lba / uzonesize; /* integer division */ 953 unsigned int lba_offset = lba - (zone * uzonesize); 954 unsigned int pages; 955 u16 pba; 956 alauda_ensure_map_for_zone(us, zone); 957 958 /* Not overflowing capacity? */ 959 if (lba >= max_lba) { 960 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", 961 lba, max_lba); 962 result = USB_STOR_TRANSPORT_ERROR; 963 break; 964 } 965 966 /* Find number of pages we can read in this block */ 967 pages = min(sectors, blocksize - page); 968 len = pages << pageshift; 969 970 /* Find where this lba lives on disk */ 971 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 972 973 if (pba == UNDEF) { /* this lba was never written */ 974 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n", 975 pages, lba, page); 976 977 /* This is not really an error. It just means 978 that the block has never been written. 979 Instead of returning USB_STOR_TRANSPORT_ERROR 980 it is better to return all zero data. */ 981 982 memset(buffer, 0, len); 983 } else { 984 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n", 985 pages, pba, lba, page); 986 987 result = alauda_read_block(us, pba, page, pages, buffer); 988 if (result != USB_STOR_TRANSPORT_GOOD) 989 break; 990 } 991 992 /* Store the data in the transfer buffer */ 993 usb_stor_access_xfer_buf(buffer, len, us->srb, 994 &sg, &offset, TO_XFER_BUF); 995 996 page = 0; 997 lba++; 998 sectors -= pages; 999 } 1000 1001 kfree(buffer); 1002 return result; 1003 } 1004 1005 /* 1006 * Write data to a specific sector address 1007 */ 1008 static int alauda_write_data(struct us_data *us, unsigned long address, 1009 unsigned int sectors) 1010 { 1011 unsigned char *buffer, *blockbuffer; 1012 unsigned int page, len, offset; 1013 unsigned int blockshift = MEDIA_INFO(us).blockshift; 1014 unsigned int pageshift = MEDIA_INFO(us).pageshift; 1015 unsigned int blocksize = MEDIA_INFO(us).blocksize; 1016 unsigned int pagesize = MEDIA_INFO(us).pagesize; 1017 struct scatterlist *sg; 1018 u16 lba, max_lba; 1019 int result; 1020 1021 /* 1022 * Since we don't write the user data directly to the device, 1023 * we have to create a bounce buffer and move the data a piece 1024 * at a time between the bounce buffer and the actual transfer buffer. 1025 */ 1026 1027 len = min(sectors, blocksize) * pagesize; 1028 buffer = kmalloc(len, GFP_NOIO); 1029 if (buffer == NULL) { 1030 printk(KERN_WARNING "alauda_write_data: Out of memory\n"); 1031 return USB_STOR_TRANSPORT_ERROR; 1032 } 1033 1034 /* 1035 * We also need a temporary block buffer, where we read in the old data, 1036 * overwrite parts with the new data, and manipulate the redundancy data 1037 */ 1038 blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO); 1039 if (blockbuffer == NULL) { 1040 printk(KERN_WARNING "alauda_write_data: Out of memory\n"); 1041 kfree(buffer); 1042 return USB_STOR_TRANSPORT_ERROR; 1043 } 1044 1045 /* Figure out the initial LBA and page */ 1046 lba = address >> blockshift; 1047 page = (address & MEDIA_INFO(us).blockmask); 1048 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); 1049 1050 result = USB_STOR_TRANSPORT_GOOD; 1051 offset = 0; 1052 sg = NULL; 1053 1054 while (sectors > 0) { 1055 /* Write as many sectors as possible in this block */ 1056 unsigned int pages = min(sectors, blocksize - page); 1057 len = pages << pageshift; 1058 1059 /* Not overflowing capacity? */ 1060 if (lba >= max_lba) { 1061 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n", 1062 lba, max_lba); 1063 result = USB_STOR_TRANSPORT_ERROR; 1064 break; 1065 } 1066 1067 /* Get the data from the transfer buffer */ 1068 usb_stor_access_xfer_buf(buffer, len, us->srb, 1069 &sg, &offset, FROM_XFER_BUF); 1070 1071 result = alauda_write_lba(us, lba, page, pages, buffer, 1072 blockbuffer); 1073 if (result != USB_STOR_TRANSPORT_GOOD) 1074 break; 1075 1076 page = 0; 1077 lba++; 1078 sectors -= pages; 1079 } 1080 1081 kfree(buffer); 1082 kfree(blockbuffer); 1083 return result; 1084 } 1085 1086 /* 1087 * Our interface with the rest of the world 1088 */ 1089 1090 static void alauda_info_destructor(void *extra) 1091 { 1092 struct alauda_info *info = (struct alauda_info *) extra; 1093 int port; 1094 1095 if (!info) 1096 return; 1097 1098 for (port = 0; port < 2; port++) { 1099 struct alauda_media_info *media_info = &info->port[port]; 1100 1101 alauda_free_maps(media_info); 1102 kfree(media_info->lba_to_pba); 1103 kfree(media_info->pba_to_lba); 1104 } 1105 } 1106 1107 /* 1108 * Initialize alauda_info struct and find the data-write endpoint 1109 */ 1110 static int init_alauda(struct us_data *us) 1111 { 1112 struct alauda_info *info; 1113 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; 1114 nand_init_ecc(); 1115 1116 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); 1117 if (!us->extra) 1118 return USB_STOR_TRANSPORT_ERROR; 1119 1120 info = (struct alauda_info *) us->extra; 1121 us->extra_destructor = alauda_info_destructor; 1122 1123 info->wr_ep = usb_sndbulkpipe(us->pusb_dev, 1124 altsetting->endpoint[0].desc.bEndpointAddress 1125 & USB_ENDPOINT_NUMBER_MASK); 1126 1127 return USB_STOR_TRANSPORT_GOOD; 1128 } 1129 1130 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) 1131 { 1132 int rc; 1133 struct alauda_info *info = (struct alauda_info *) us->extra; 1134 unsigned char *ptr = us->iobuf; 1135 static unsigned char inquiry_response[36] = { 1136 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 1137 }; 1138 1139 if (srb->cmnd[0] == INQUIRY) { 1140 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n"); 1141 memcpy(ptr, inquiry_response, sizeof(inquiry_response)); 1142 fill_inquiry_response(us, ptr, 36); 1143 return USB_STOR_TRANSPORT_GOOD; 1144 } 1145 1146 if (srb->cmnd[0] == TEST_UNIT_READY) { 1147 usb_stor_dbg(us, "TEST_UNIT_READY\n"); 1148 return alauda_check_media(us); 1149 } 1150 1151 if (srb->cmnd[0] == READ_CAPACITY) { 1152 unsigned int num_zones; 1153 unsigned long capacity; 1154 1155 rc = alauda_check_media(us); 1156 if (rc != USB_STOR_TRANSPORT_GOOD) 1157 return rc; 1158 1159 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 1160 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 1161 1162 capacity = num_zones * MEDIA_INFO(us).uzonesize 1163 * MEDIA_INFO(us).blocksize; 1164 1165 /* Report capacity and page size */ 1166 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); 1167 ((__be32 *) ptr)[1] = cpu_to_be32(512); 1168 1169 usb_stor_set_xfer_buf(ptr, 8, srb); 1170 return USB_STOR_TRANSPORT_GOOD; 1171 } 1172 1173 if (srb->cmnd[0] == READ_10) { 1174 unsigned int page, pages; 1175 1176 rc = alauda_check_media(us); 1177 if (rc != USB_STOR_TRANSPORT_GOOD) 1178 return rc; 1179 1180 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1181 page <<= 16; 1182 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1183 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1184 1185 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages); 1186 1187 return alauda_read_data(us, page, pages); 1188 } 1189 1190 if (srb->cmnd[0] == WRITE_10) { 1191 unsigned int page, pages; 1192 1193 rc = alauda_check_media(us); 1194 if (rc != USB_STOR_TRANSPORT_GOOD) 1195 return rc; 1196 1197 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1198 page <<= 16; 1199 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1200 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1201 1202 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages); 1203 1204 return alauda_write_data(us, page, pages); 1205 } 1206 1207 if (srb->cmnd[0] == REQUEST_SENSE) { 1208 usb_stor_dbg(us, "REQUEST_SENSE\n"); 1209 1210 memset(ptr, 0, 18); 1211 ptr[0] = 0xF0; 1212 ptr[2] = info->sense_key; 1213 ptr[7] = 11; 1214 ptr[12] = info->sense_asc; 1215 ptr[13] = info->sense_ascq; 1216 usb_stor_set_xfer_buf(ptr, 18, srb); 1217 1218 return USB_STOR_TRANSPORT_GOOD; 1219 } 1220 1221 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { 1222 /* sure. whatever. not like we can stop the user from popping 1223 the media out of the device (no locking doors, etc) */ 1224 return USB_STOR_TRANSPORT_GOOD; 1225 } 1226 1227 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n", 1228 srb->cmnd[0], srb->cmnd[0]); 1229 info->sense_key = 0x05; 1230 info->sense_asc = 0x20; 1231 info->sense_ascq = 0x00; 1232 return USB_STOR_TRANSPORT_FAILED; 1233 } 1234 1235 static int alauda_probe(struct usb_interface *intf, 1236 const struct usb_device_id *id) 1237 { 1238 struct us_data *us; 1239 int result; 1240 1241 result = usb_stor_probe1(&us, intf, id, 1242 (id - alauda_usb_ids) + alauda_unusual_dev_list); 1243 if (result) 1244 return result; 1245 1246 us->transport_name = "Alauda Control/Bulk"; 1247 us->transport = alauda_transport; 1248 us->transport_reset = usb_stor_Bulk_reset; 1249 us->max_lun = 1; 1250 1251 result = usb_stor_probe2(us); 1252 return result; 1253 } 1254 1255 static struct usb_driver alauda_driver = { 1256 .name = "ums-alauda", 1257 .probe = alauda_probe, 1258 .disconnect = usb_stor_disconnect, 1259 .suspend = usb_stor_suspend, 1260 .resume = usb_stor_resume, 1261 .reset_resume = usb_stor_reset_resume, 1262 .pre_reset = usb_stor_pre_reset, 1263 .post_reset = usb_stor_post_reset, 1264 .id_table = alauda_usb_ids, 1265 .soft_unbind = 1, 1266 .no_dynamic_id = 1, 1267 }; 1268 1269 module_usb_driver(alauda_driver); 1270