1 /* 2 * Driver for Alauda-based card readers 3 * 4 * Current development and maintenance by: 5 * (c) 2005 Daniel Drake <dsd@gentoo.org> 6 * 7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use. 8 * 9 * Alauda implements a vendor-specific command set to access two media reader 10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands 11 * which are accepted by these devices. 12 * 13 * The driver was developed through reverse-engineering, with the help of the 14 * sddr09 driver which has many similarities, and with some help from the 15 * (very old) vendor-supplied GPL sma03 driver. 16 * 17 * For protocol info, see http://alauda.sourceforge.net 18 * 19 * This program is free software; you can redistribute it and/or modify it 20 * under the terms of the GNU General Public License as published by the 21 * Free Software Foundation; either version 2, or (at your option) any 22 * later version. 23 * 24 * This program is distributed in the hope that it will be useful, but 25 * WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 27 * General Public License for more details. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/slab.h> 36 37 #include <scsi/scsi.h> 38 #include <scsi/scsi_cmnd.h> 39 #include <scsi/scsi_device.h> 40 41 #include "usb.h" 42 #include "transport.h" 43 #include "protocol.h" 44 #include "debug.h" 45 46 MODULE_DESCRIPTION("Driver for Alauda-based card readers"); 47 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>"); 48 MODULE_LICENSE("GPL"); 49 50 /* 51 * Status bytes 52 */ 53 #define ALAUDA_STATUS_ERROR 0x01 54 #define ALAUDA_STATUS_READY 0x40 55 56 /* 57 * Control opcodes (for request field) 58 */ 59 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08 60 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98 61 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a 62 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a 63 #define ALAUDA_GET_XD_MEDIA_SIG 0x86 64 #define ALAUDA_GET_SM_MEDIA_SIG 0x96 65 66 /* 67 * Bulk command identity (byte 0) 68 */ 69 #define ALAUDA_BULK_CMD 0x40 70 71 /* 72 * Bulk opcodes (byte 1) 73 */ 74 #define ALAUDA_BULK_GET_REDU_DATA 0x85 75 #define ALAUDA_BULK_READ_BLOCK 0x94 76 #define ALAUDA_BULK_ERASE_BLOCK 0xa3 77 #define ALAUDA_BULK_WRITE_BLOCK 0xb4 78 #define ALAUDA_BULK_GET_STATUS2 0xb7 79 #define ALAUDA_BULK_RESET_MEDIA 0xe0 80 81 /* 82 * Port to operate on (byte 8) 83 */ 84 #define ALAUDA_PORT_XD 0x00 85 #define ALAUDA_PORT_SM 0x01 86 87 /* 88 * LBA and PBA are unsigned ints. Special values. 89 */ 90 #define UNDEF 0xffff 91 #define SPARE 0xfffe 92 #define UNUSABLE 0xfffd 93 94 struct alauda_media_info { 95 unsigned long capacity; /* total media size in bytes */ 96 unsigned int pagesize; /* page size in bytes */ 97 unsigned int blocksize; /* number of pages per block */ 98 unsigned int uzonesize; /* number of usable blocks per zone */ 99 unsigned int zonesize; /* number of blocks per zone */ 100 unsigned int blockmask; /* mask to get page from address */ 101 102 unsigned char pageshift; 103 unsigned char blockshift; 104 unsigned char zoneshift; 105 106 u16 **lba_to_pba; /* logical to physical block map */ 107 u16 **pba_to_lba; /* physical to logical block map */ 108 }; 109 110 struct alauda_info { 111 struct alauda_media_info port[2]; 112 int wr_ep; /* endpoint to write data out of */ 113 114 unsigned char sense_key; 115 unsigned long sense_asc; /* additional sense code */ 116 unsigned long sense_ascq; /* additional sense code qualifier */ 117 }; 118 119 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) 120 #define LSB_of(s) ((s)&0xFF) 121 #define MSB_of(s) ((s)>>8) 122 123 #define MEDIA_PORT(us) us->srb->device->lun 124 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] 125 126 #define PBA_LO(pba) ((pba & 0xF) << 5) 127 #define PBA_HI(pba) (pba >> 3) 128 #define PBA_ZONE(pba) (pba >> 11) 129 130 static int init_alauda(struct us_data *us); 131 132 133 /* 134 * The table of devices 135 */ 136 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ 137 vendorName, productName, useProtocol, useTransport, \ 138 initFunction, flags) \ 139 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ 140 .driver_info = (flags) } 141 142 static struct usb_device_id alauda_usb_ids[] = { 143 # include "unusual_alauda.h" 144 { } /* Terminating entry */ 145 }; 146 MODULE_DEVICE_TABLE(usb, alauda_usb_ids); 147 148 #undef UNUSUAL_DEV 149 150 /* 151 * The flags table 152 */ 153 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ 154 vendor_name, product_name, use_protocol, use_transport, \ 155 init_function, Flags) \ 156 { \ 157 .vendorName = vendor_name, \ 158 .productName = product_name, \ 159 .useProtocol = use_protocol, \ 160 .useTransport = use_transport, \ 161 .initFunction = init_function, \ 162 } 163 164 static struct us_unusual_dev alauda_unusual_dev_list[] = { 165 # include "unusual_alauda.h" 166 { } /* Terminating entry */ 167 }; 168 169 #undef UNUSUAL_DEV 170 171 172 /* 173 * Media handling 174 */ 175 176 struct alauda_card_info { 177 unsigned char id; /* id byte */ 178 unsigned char chipshift; /* 1<<cs bytes total capacity */ 179 unsigned char pageshift; /* 1<<ps bytes in a page */ 180 unsigned char blockshift; /* 1<<bs pages per block */ 181 unsigned char zoneshift; /* 1<<zs blocks per zone */ 182 }; 183 184 static struct alauda_card_info alauda_card_ids[] = { 185 /* NAND flash */ 186 { 0x6e, 20, 8, 4, 8}, /* 1 MB */ 187 { 0xe8, 20, 8, 4, 8}, /* 1 MB */ 188 { 0xec, 20, 8, 4, 8}, /* 1 MB */ 189 { 0x64, 21, 8, 4, 9}, /* 2 MB */ 190 { 0xea, 21, 8, 4, 9}, /* 2 MB */ 191 { 0x6b, 22, 9, 4, 9}, /* 4 MB */ 192 { 0xe3, 22, 9, 4, 9}, /* 4 MB */ 193 { 0xe5, 22, 9, 4, 9}, /* 4 MB */ 194 { 0xe6, 23, 9, 4, 10}, /* 8 MB */ 195 { 0x73, 24, 9, 5, 10}, /* 16 MB */ 196 { 0x75, 25, 9, 5, 10}, /* 32 MB */ 197 { 0x76, 26, 9, 5, 10}, /* 64 MB */ 198 { 0x79, 27, 9, 5, 10}, /* 128 MB */ 199 { 0x71, 28, 9, 5, 10}, /* 256 MB */ 200 201 /* MASK ROM */ 202 { 0x5d, 21, 9, 4, 8}, /* 2 MB */ 203 { 0xd5, 22, 9, 4, 9}, /* 4 MB */ 204 { 0xd6, 23, 9, 4, 10}, /* 8 MB */ 205 { 0x57, 24, 9, 4, 11}, /* 16 MB */ 206 { 0x58, 25, 9, 4, 12}, /* 32 MB */ 207 { 0,} 208 }; 209 210 static struct alauda_card_info *alauda_card_find_id(unsigned char id) { 211 int i; 212 213 for (i = 0; alauda_card_ids[i].id != 0; i++) 214 if (alauda_card_ids[i].id == id) 215 return &(alauda_card_ids[i]); 216 return NULL; 217 } 218 219 /* 220 * ECC computation. 221 */ 222 223 static unsigned char parity[256]; 224 static unsigned char ecc2[256]; 225 226 static void nand_init_ecc(void) { 227 int i, j, a; 228 229 parity[0] = 0; 230 for (i = 1; i < 256; i++) 231 parity[i] = (parity[i&(i-1)] ^ 1); 232 233 for (i = 0; i < 256; i++) { 234 a = 0; 235 for (j = 0; j < 8; j++) { 236 if (i & (1<<j)) { 237 if ((j & 1) == 0) 238 a ^= 0x04; 239 if ((j & 2) == 0) 240 a ^= 0x10; 241 if ((j & 4) == 0) 242 a ^= 0x40; 243 } 244 } 245 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); 246 } 247 } 248 249 /* compute 3-byte ecc on 256 bytes */ 250 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) { 251 int i, j, a; 252 unsigned char par, bit, bits[8]; 253 254 par = 0; 255 for (j = 0; j < 8; j++) 256 bits[j] = 0; 257 258 /* collect 16 checksum bits */ 259 for (i = 0; i < 256; i++) { 260 par ^= data[i]; 261 bit = parity[data[i]]; 262 for (j = 0; j < 8; j++) 263 if ((i & (1<<j)) == 0) 264 bits[j] ^= bit; 265 } 266 267 /* put 4+4+4 = 12 bits in the ecc */ 268 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; 269 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 270 271 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; 272 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 273 274 ecc[2] = ecc2[par]; 275 } 276 277 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) { 278 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); 279 } 280 281 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) { 282 memcpy(data, ecc, 3); 283 } 284 285 /* 286 * Alauda driver 287 */ 288 289 /* 290 * Forget our PBA <---> LBA mappings for a particular port 291 */ 292 static void alauda_free_maps (struct alauda_media_info *media_info) 293 { 294 unsigned int shift = media_info->zoneshift 295 + media_info->blockshift + media_info->pageshift; 296 unsigned int num_zones = media_info->capacity >> shift; 297 unsigned int i; 298 299 if (media_info->lba_to_pba != NULL) 300 for (i = 0; i < num_zones; i++) { 301 kfree(media_info->lba_to_pba[i]); 302 media_info->lba_to_pba[i] = NULL; 303 } 304 305 if (media_info->pba_to_lba != NULL) 306 for (i = 0; i < num_zones; i++) { 307 kfree(media_info->pba_to_lba[i]); 308 media_info->pba_to_lba[i] = NULL; 309 } 310 } 311 312 /* 313 * Returns 2 bytes of status data 314 * The first byte describes media status, and second byte describes door status 315 */ 316 static int alauda_get_media_status(struct us_data *us, unsigned char *data) 317 { 318 int rc; 319 unsigned char command; 320 321 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 322 command = ALAUDA_GET_XD_MEDIA_STATUS; 323 else 324 command = ALAUDA_GET_SM_MEDIA_STATUS; 325 326 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 327 command, 0xc0, 0, 1, data, 2); 328 329 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]); 330 331 return rc; 332 } 333 334 /* 335 * Clears the "media was changed" bit so that we know when it changes again 336 * in the future. 337 */ 338 static int alauda_ack_media(struct us_data *us) 339 { 340 unsigned char command; 341 342 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 343 command = ALAUDA_ACK_XD_MEDIA_CHANGE; 344 else 345 command = ALAUDA_ACK_SM_MEDIA_CHANGE; 346 347 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 348 command, 0x40, 0, 1, NULL, 0); 349 } 350 351 /* 352 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, 353 * and some other details. 354 */ 355 static int alauda_get_media_signature(struct us_data *us, unsigned char *data) 356 { 357 unsigned char command; 358 359 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 360 command = ALAUDA_GET_XD_MEDIA_SIG; 361 else 362 command = ALAUDA_GET_SM_MEDIA_SIG; 363 364 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 365 command, 0xc0, 0, 0, data, 4); 366 } 367 368 /* 369 * Resets the media status (but not the whole device?) 370 */ 371 static int alauda_reset_media(struct us_data *us) 372 { 373 unsigned char *command = us->iobuf; 374 375 memset(command, 0, 9); 376 command[0] = ALAUDA_BULK_CMD; 377 command[1] = ALAUDA_BULK_RESET_MEDIA; 378 command[8] = MEDIA_PORT(us); 379 380 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 381 command, 9, NULL); 382 } 383 384 /* 385 * Examines the media and deduces capacity, etc. 386 */ 387 static int alauda_init_media(struct us_data *us) 388 { 389 unsigned char *data = us->iobuf; 390 int ready = 0; 391 struct alauda_card_info *media_info; 392 unsigned int num_zones; 393 394 while (ready == 0) { 395 msleep(20); 396 397 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 398 return USB_STOR_TRANSPORT_ERROR; 399 400 if (data[0] & 0x10) 401 ready = 1; 402 } 403 404 usb_stor_dbg(us, "We are ready for action!\n"); 405 406 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) 407 return USB_STOR_TRANSPORT_ERROR; 408 409 msleep(10); 410 411 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 412 return USB_STOR_TRANSPORT_ERROR; 413 414 if (data[0] != 0x14) { 415 usb_stor_dbg(us, "Media not ready after ack\n"); 416 return USB_STOR_TRANSPORT_ERROR; 417 } 418 419 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) 420 return USB_STOR_TRANSPORT_ERROR; 421 422 usb_stor_dbg(us, "Media signature: %02X %02X %02X %02X\n", 423 data[0], data[1], data[2], data[3]); 424 media_info = alauda_card_find_id(data[1]); 425 if (media_info == NULL) { 426 printk(KERN_WARNING 427 "alauda_init_media: Unrecognised media signature: " 428 "%02X %02X %02X %02X\n", 429 data[0], data[1], data[2], data[3]); 430 return USB_STOR_TRANSPORT_ERROR; 431 } 432 433 MEDIA_INFO(us).capacity = 1 << media_info->chipshift; 434 usb_stor_dbg(us, "Found media with capacity: %ldMB\n", 435 MEDIA_INFO(us).capacity >> 20); 436 437 MEDIA_INFO(us).pageshift = media_info->pageshift; 438 MEDIA_INFO(us).blockshift = media_info->blockshift; 439 MEDIA_INFO(us).zoneshift = media_info->zoneshift; 440 441 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; 442 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; 443 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; 444 445 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; 446 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; 447 448 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 449 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 450 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 451 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 452 453 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) 454 return USB_STOR_TRANSPORT_ERROR; 455 456 return USB_STOR_TRANSPORT_GOOD; 457 } 458 459 /* 460 * Examines the media status and does the right thing when the media has gone, 461 * appeared, or changed. 462 */ 463 static int alauda_check_media(struct us_data *us) 464 { 465 struct alauda_info *info = (struct alauda_info *) us->extra; 466 unsigned char status[2]; 467 int rc; 468 469 rc = alauda_get_media_status(us, status); 470 471 /* Check for no media or door open */ 472 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) 473 || ((status[1] & 0x01) == 0)) { 474 usb_stor_dbg(us, "No media, or door open\n"); 475 alauda_free_maps(&MEDIA_INFO(us)); 476 info->sense_key = 0x02; 477 info->sense_asc = 0x3A; 478 info->sense_ascq = 0x00; 479 return USB_STOR_TRANSPORT_FAILED; 480 } 481 482 /* Check for media change */ 483 if (status[0] & 0x08) { 484 usb_stor_dbg(us, "Media change detected\n"); 485 alauda_free_maps(&MEDIA_INFO(us)); 486 alauda_init_media(us); 487 488 info->sense_key = UNIT_ATTENTION; 489 info->sense_asc = 0x28; 490 info->sense_ascq = 0x00; 491 return USB_STOR_TRANSPORT_FAILED; 492 } 493 494 return USB_STOR_TRANSPORT_GOOD; 495 } 496 497 /* 498 * Checks the status from the 2nd status register 499 * Returns 3 bytes of status data, only the first is known 500 */ 501 static int alauda_check_status2(struct us_data *us) 502 { 503 int rc; 504 unsigned char command[] = { 505 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, 506 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) 507 }; 508 unsigned char data[3]; 509 510 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 511 command, 9, NULL); 512 if (rc != USB_STOR_XFER_GOOD) 513 return rc; 514 515 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 516 data, 3, NULL); 517 if (rc != USB_STOR_XFER_GOOD) 518 return rc; 519 520 usb_stor_dbg(us, "%02X %02X %02X\n", data[0], data[1], data[2]); 521 if (data[0] & ALAUDA_STATUS_ERROR) 522 return USB_STOR_XFER_ERROR; 523 524 return USB_STOR_XFER_GOOD; 525 } 526 527 /* 528 * Gets the redundancy data for the first page of a PBA 529 * Returns 16 bytes. 530 */ 531 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) 532 { 533 int rc; 534 unsigned char command[] = { 535 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, 536 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) 537 }; 538 539 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 540 command, 9, NULL); 541 if (rc != USB_STOR_XFER_GOOD) 542 return rc; 543 544 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 545 data, 16, NULL); 546 } 547 548 /* 549 * Finds the first unused PBA in a zone 550 * Returns the absolute PBA of an unused PBA, or 0 if none found. 551 */ 552 static u16 alauda_find_unused_pba(struct alauda_media_info *info, 553 unsigned int zone) 554 { 555 u16 *pba_to_lba = info->pba_to_lba[zone]; 556 unsigned int i; 557 558 for (i = 0; i < info->zonesize; i++) 559 if (pba_to_lba[i] == UNDEF) 560 return (zone << info->zoneshift) + i; 561 562 return 0; 563 } 564 565 /* 566 * Reads the redundancy data for all PBA's in a zone 567 * Produces lba <--> pba mappings 568 */ 569 static int alauda_read_map(struct us_data *us, unsigned int zone) 570 { 571 unsigned char *data = us->iobuf; 572 int result; 573 int i, j; 574 unsigned int zonesize = MEDIA_INFO(us).zonesize; 575 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 576 unsigned int lba_offset, lba_real, blocknum; 577 unsigned int zone_base_lba = zone * uzonesize; 578 unsigned int zone_base_pba = zone * zonesize; 579 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 580 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 581 if (lba_to_pba == NULL || pba_to_lba == NULL) { 582 result = USB_STOR_TRANSPORT_ERROR; 583 goto error; 584 } 585 586 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone); 587 588 /* 1024 PBA's per zone */ 589 for (i = 0; i < zonesize; i++) 590 lba_to_pba[i] = pba_to_lba[i] = UNDEF; 591 592 for (i = 0; i < zonesize; i++) { 593 blocknum = zone_base_pba + i; 594 595 result = alauda_get_redu_data(us, blocknum, data); 596 if (result != USB_STOR_XFER_GOOD) { 597 result = USB_STOR_TRANSPORT_ERROR; 598 goto error; 599 } 600 601 /* special PBAs have control field 0^16 */ 602 for (j = 0; j < 16; j++) 603 if (data[j] != 0) 604 goto nonz; 605 pba_to_lba[i] = UNUSABLE; 606 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum); 607 continue; 608 609 nonz: 610 /* unwritten PBAs have control field FF^16 */ 611 for (j = 0; j < 16; j++) 612 if (data[j] != 0xff) 613 goto nonff; 614 continue; 615 616 nonff: 617 /* normal PBAs start with six FFs */ 618 if (j < 6) { 619 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n", 620 blocknum, 621 data[0], data[1], data[2], data[3], 622 data[4], data[5]); 623 pba_to_lba[i] = UNUSABLE; 624 continue; 625 } 626 627 if ((data[6] >> 4) != 0x01) { 628 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n", 629 blocknum, data[6], data[7], 630 data[11], data[12]); 631 pba_to_lba[i] = UNUSABLE; 632 continue; 633 } 634 635 /* check even parity */ 636 if (parity[data[6] ^ data[7]]) { 637 printk(KERN_WARNING 638 "alauda_read_map: Bad parity in LBA for block %d" 639 " (%02X %02X)\n", i, data[6], data[7]); 640 pba_to_lba[i] = UNUSABLE; 641 continue; 642 } 643 644 lba_offset = short_pack(data[7], data[6]); 645 lba_offset = (lba_offset & 0x07FF) >> 1; 646 lba_real = lba_offset + zone_base_lba; 647 648 /* 649 * Every 1024 physical blocks ("zone"), the LBA numbers 650 * go back to zero, but are within a higher block of LBA's. 651 * Also, there is a maximum of 1000 LBA's per zone. 652 * In other words, in PBA 1024-2047 you will find LBA 0-999 653 * which are really LBA 1000-1999. This allows for 24 bad 654 * or special physical blocks per zone. 655 */ 656 657 if (lba_offset >= uzonesize) { 658 printk(KERN_WARNING 659 "alauda_read_map: Bad low LBA %d for block %d\n", 660 lba_real, blocknum); 661 continue; 662 } 663 664 if (lba_to_pba[lba_offset] != UNDEF) { 665 printk(KERN_WARNING 666 "alauda_read_map: " 667 "LBA %d seen for PBA %d and %d\n", 668 lba_real, lba_to_pba[lba_offset], blocknum); 669 continue; 670 } 671 672 pba_to_lba[i] = lba_real; 673 lba_to_pba[lba_offset] = blocknum; 674 continue; 675 } 676 677 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; 678 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; 679 result = 0; 680 goto out; 681 682 error: 683 kfree(lba_to_pba); 684 kfree(pba_to_lba); 685 out: 686 return result; 687 } 688 689 /* 690 * Checks to see whether we have already mapped a certain zone 691 * If we haven't, the map is generated 692 */ 693 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) 694 { 695 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL 696 || MEDIA_INFO(us).pba_to_lba[zone] == NULL) 697 alauda_read_map(us, zone); 698 } 699 700 /* 701 * Erases an entire block 702 */ 703 static int alauda_erase_block(struct us_data *us, u16 pba) 704 { 705 int rc; 706 unsigned char command[] = { 707 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), 708 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) 709 }; 710 unsigned char buf[2]; 711 712 usb_stor_dbg(us, "Erasing PBA %d\n", pba); 713 714 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 715 command, 9, NULL); 716 if (rc != USB_STOR_XFER_GOOD) 717 return rc; 718 719 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 720 buf, 2, NULL); 721 if (rc != USB_STOR_XFER_GOOD) 722 return rc; 723 724 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]); 725 return rc; 726 } 727 728 /* 729 * Reads data from a certain offset page inside a PBA, including interleaved 730 * redundancy data. Returns (pagesize+64)*pages bytes in data. 731 */ 732 static int alauda_read_block_raw(struct us_data *us, u16 pba, 733 unsigned int page, unsigned int pages, unsigned char *data) 734 { 735 int rc; 736 unsigned char command[] = { 737 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), 738 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) 739 }; 740 741 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages); 742 743 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 744 command, 9, NULL); 745 if (rc != USB_STOR_XFER_GOOD) 746 return rc; 747 748 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 749 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); 750 } 751 752 /* 753 * Reads data from a certain offset page inside a PBA, excluding redundancy 754 * data. Returns pagesize*pages bytes in data. Note that data must be big enough 755 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' 756 * trailing bytes outside this function. 757 */ 758 static int alauda_read_block(struct us_data *us, u16 pba, 759 unsigned int page, unsigned int pages, unsigned char *data) 760 { 761 int i, rc; 762 unsigned int pagesize = MEDIA_INFO(us).pagesize; 763 764 rc = alauda_read_block_raw(us, pba, page, pages, data); 765 if (rc != USB_STOR_XFER_GOOD) 766 return rc; 767 768 /* Cut out the redundancy data */ 769 for (i = 0; i < pages; i++) { 770 int dest_offset = i * pagesize; 771 int src_offset = i * (pagesize + 64); 772 memmove(data + dest_offset, data + src_offset, pagesize); 773 } 774 775 return rc; 776 } 777 778 /* 779 * Writes an entire block of data and checks status after write. 780 * Redundancy data must be already included in data. Data should be 781 * (pagesize+64)*blocksize bytes in length. 782 */ 783 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) 784 { 785 int rc; 786 struct alauda_info *info = (struct alauda_info *) us->extra; 787 unsigned char command[] = { 788 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), 789 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) 790 }; 791 792 usb_stor_dbg(us, "pba %d\n", pba); 793 794 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 795 command, 9, NULL); 796 if (rc != USB_STOR_XFER_GOOD) 797 return rc; 798 799 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, 800 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, 801 NULL); 802 if (rc != USB_STOR_XFER_GOOD) 803 return rc; 804 805 return alauda_check_status2(us); 806 } 807 808 /* 809 * Write some data to a specific LBA. 810 */ 811 static int alauda_write_lba(struct us_data *us, u16 lba, 812 unsigned int page, unsigned int pages, 813 unsigned char *ptr, unsigned char *blockbuffer) 814 { 815 u16 pba, lbap, new_pba; 816 unsigned char *bptr, *cptr, *xptr; 817 unsigned char ecc[3]; 818 int i, result; 819 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 820 unsigned int zonesize = MEDIA_INFO(us).zonesize; 821 unsigned int pagesize = MEDIA_INFO(us).pagesize; 822 unsigned int blocksize = MEDIA_INFO(us).blocksize; 823 unsigned int lba_offset = lba % uzonesize; 824 unsigned int new_pba_offset; 825 unsigned int zone = lba / uzonesize; 826 827 alauda_ensure_map_for_zone(us, zone); 828 829 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 830 if (pba == 1) { 831 /* Maybe it is impossible to write to PBA 1. 832 Fake success, but don't do anything. */ 833 printk(KERN_WARNING 834 "alauda_write_lba: avoid writing to pba 1\n"); 835 return USB_STOR_TRANSPORT_GOOD; 836 } 837 838 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); 839 if (!new_pba) { 840 printk(KERN_WARNING 841 "alauda_write_lba: Out of unused blocks\n"); 842 return USB_STOR_TRANSPORT_ERROR; 843 } 844 845 /* read old contents */ 846 if (pba != UNDEF) { 847 result = alauda_read_block_raw(us, pba, 0, 848 blocksize, blockbuffer); 849 if (result != USB_STOR_XFER_GOOD) 850 return result; 851 } else { 852 memset(blockbuffer, 0, blocksize * (pagesize + 64)); 853 } 854 855 lbap = (lba_offset << 1) | 0x1000; 856 if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) 857 lbap ^= 1; 858 859 /* check old contents and fill lba */ 860 for (i = 0; i < blocksize; i++) { 861 bptr = blockbuffer + (i * (pagesize + 64)); 862 cptr = bptr + pagesize; 863 nand_compute_ecc(bptr, ecc); 864 if (!nand_compare_ecc(cptr+13, ecc)) { 865 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n", 866 i, pba); 867 nand_store_ecc(cptr+13, ecc); 868 } 869 nand_compute_ecc(bptr + (pagesize / 2), ecc); 870 if (!nand_compare_ecc(cptr+8, ecc)) { 871 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n", 872 i, pba); 873 nand_store_ecc(cptr+8, ecc); 874 } 875 cptr[6] = cptr[11] = MSB_of(lbap); 876 cptr[7] = cptr[12] = LSB_of(lbap); 877 } 878 879 /* copy in new stuff and compute ECC */ 880 xptr = ptr; 881 for (i = page; i < page+pages; i++) { 882 bptr = blockbuffer + (i * (pagesize + 64)); 883 cptr = bptr + pagesize; 884 memcpy(bptr, xptr, pagesize); 885 xptr += pagesize; 886 nand_compute_ecc(bptr, ecc); 887 nand_store_ecc(cptr+13, ecc); 888 nand_compute_ecc(bptr + (pagesize / 2), ecc); 889 nand_store_ecc(cptr+8, ecc); 890 } 891 892 result = alauda_write_block(us, new_pba, blockbuffer); 893 if (result != USB_STOR_XFER_GOOD) 894 return result; 895 896 new_pba_offset = new_pba - (zone * zonesize); 897 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; 898 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; 899 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba); 900 901 if (pba != UNDEF) { 902 unsigned int pba_offset = pba - (zone * zonesize); 903 result = alauda_erase_block(us, pba); 904 if (result != USB_STOR_XFER_GOOD) 905 return result; 906 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; 907 } 908 909 return USB_STOR_TRANSPORT_GOOD; 910 } 911 912 /* 913 * Read data from a specific sector address 914 */ 915 static int alauda_read_data(struct us_data *us, unsigned long address, 916 unsigned int sectors) 917 { 918 unsigned char *buffer; 919 u16 lba, max_lba; 920 unsigned int page, len, offset; 921 unsigned int blockshift = MEDIA_INFO(us).blockshift; 922 unsigned int pageshift = MEDIA_INFO(us).pageshift; 923 unsigned int blocksize = MEDIA_INFO(us).blocksize; 924 unsigned int pagesize = MEDIA_INFO(us).pagesize; 925 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 926 struct scatterlist *sg; 927 int result; 928 929 /* 930 * Since we only read in one block at a time, we have to create 931 * a bounce buffer and move the data a piece at a time between the 932 * bounce buffer and the actual transfer buffer. 933 * We make this buffer big enough to hold temporary redundancy data, 934 * which we use when reading the data blocks. 935 */ 936 937 len = min(sectors, blocksize) * (pagesize + 64); 938 buffer = kmalloc(len, GFP_NOIO); 939 if (buffer == NULL) { 940 printk(KERN_WARNING "alauda_read_data: Out of memory\n"); 941 return USB_STOR_TRANSPORT_ERROR; 942 } 943 944 /* Figure out the initial LBA and page */ 945 lba = address >> blockshift; 946 page = (address & MEDIA_INFO(us).blockmask); 947 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); 948 949 result = USB_STOR_TRANSPORT_GOOD; 950 offset = 0; 951 sg = NULL; 952 953 while (sectors > 0) { 954 unsigned int zone = lba / uzonesize; /* integer division */ 955 unsigned int lba_offset = lba - (zone * uzonesize); 956 unsigned int pages; 957 u16 pba; 958 alauda_ensure_map_for_zone(us, zone); 959 960 /* Not overflowing capacity? */ 961 if (lba >= max_lba) { 962 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", 963 lba, max_lba); 964 result = USB_STOR_TRANSPORT_ERROR; 965 break; 966 } 967 968 /* Find number of pages we can read in this block */ 969 pages = min(sectors, blocksize - page); 970 len = pages << pageshift; 971 972 /* Find where this lba lives on disk */ 973 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 974 975 if (pba == UNDEF) { /* this lba was never written */ 976 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n", 977 pages, lba, page); 978 979 /* This is not really an error. It just means 980 that the block has never been written. 981 Instead of returning USB_STOR_TRANSPORT_ERROR 982 it is better to return all zero data. */ 983 984 memset(buffer, 0, len); 985 } else { 986 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n", 987 pages, pba, lba, page); 988 989 result = alauda_read_block(us, pba, page, pages, buffer); 990 if (result != USB_STOR_TRANSPORT_GOOD) 991 break; 992 } 993 994 /* Store the data in the transfer buffer */ 995 usb_stor_access_xfer_buf(buffer, len, us->srb, 996 &sg, &offset, TO_XFER_BUF); 997 998 page = 0; 999 lba++; 1000 sectors -= pages; 1001 } 1002 1003 kfree(buffer); 1004 return result; 1005 } 1006 1007 /* 1008 * Write data to a specific sector address 1009 */ 1010 static int alauda_write_data(struct us_data *us, unsigned long address, 1011 unsigned int sectors) 1012 { 1013 unsigned char *buffer, *blockbuffer; 1014 unsigned int page, len, offset; 1015 unsigned int blockshift = MEDIA_INFO(us).blockshift; 1016 unsigned int pageshift = MEDIA_INFO(us).pageshift; 1017 unsigned int blocksize = MEDIA_INFO(us).blocksize; 1018 unsigned int pagesize = MEDIA_INFO(us).pagesize; 1019 struct scatterlist *sg; 1020 u16 lba, max_lba; 1021 int result; 1022 1023 /* 1024 * Since we don't write the user data directly to the device, 1025 * we have to create a bounce buffer and move the data a piece 1026 * at a time between the bounce buffer and the actual transfer buffer. 1027 */ 1028 1029 len = min(sectors, blocksize) * pagesize; 1030 buffer = kmalloc(len, GFP_NOIO); 1031 if (buffer == NULL) { 1032 printk(KERN_WARNING "alauda_write_data: Out of memory\n"); 1033 return USB_STOR_TRANSPORT_ERROR; 1034 } 1035 1036 /* 1037 * We also need a temporary block buffer, where we read in the old data, 1038 * overwrite parts with the new data, and manipulate the redundancy data 1039 */ 1040 blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO); 1041 if (blockbuffer == NULL) { 1042 printk(KERN_WARNING "alauda_write_data: Out of memory\n"); 1043 kfree(buffer); 1044 return USB_STOR_TRANSPORT_ERROR; 1045 } 1046 1047 /* Figure out the initial LBA and page */ 1048 lba = address >> blockshift; 1049 page = (address & MEDIA_INFO(us).blockmask); 1050 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); 1051 1052 result = USB_STOR_TRANSPORT_GOOD; 1053 offset = 0; 1054 sg = NULL; 1055 1056 while (sectors > 0) { 1057 /* Write as many sectors as possible in this block */ 1058 unsigned int pages = min(sectors, blocksize - page); 1059 len = pages << pageshift; 1060 1061 /* Not overflowing capacity? */ 1062 if (lba >= max_lba) { 1063 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n", 1064 lba, max_lba); 1065 result = USB_STOR_TRANSPORT_ERROR; 1066 break; 1067 } 1068 1069 /* Get the data from the transfer buffer */ 1070 usb_stor_access_xfer_buf(buffer, len, us->srb, 1071 &sg, &offset, FROM_XFER_BUF); 1072 1073 result = alauda_write_lba(us, lba, page, pages, buffer, 1074 blockbuffer); 1075 if (result != USB_STOR_TRANSPORT_GOOD) 1076 break; 1077 1078 page = 0; 1079 lba++; 1080 sectors -= pages; 1081 } 1082 1083 kfree(buffer); 1084 kfree(blockbuffer); 1085 return result; 1086 } 1087 1088 /* 1089 * Our interface with the rest of the world 1090 */ 1091 1092 static void alauda_info_destructor(void *extra) 1093 { 1094 struct alauda_info *info = (struct alauda_info *) extra; 1095 int port; 1096 1097 if (!info) 1098 return; 1099 1100 for (port = 0; port < 2; port++) { 1101 struct alauda_media_info *media_info = &info->port[port]; 1102 1103 alauda_free_maps(media_info); 1104 kfree(media_info->lba_to_pba); 1105 kfree(media_info->pba_to_lba); 1106 } 1107 } 1108 1109 /* 1110 * Initialize alauda_info struct and find the data-write endpoint 1111 */ 1112 static int init_alauda(struct us_data *us) 1113 { 1114 struct alauda_info *info; 1115 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; 1116 nand_init_ecc(); 1117 1118 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); 1119 if (!us->extra) 1120 return USB_STOR_TRANSPORT_ERROR; 1121 1122 info = (struct alauda_info *) us->extra; 1123 us->extra_destructor = alauda_info_destructor; 1124 1125 info->wr_ep = usb_sndbulkpipe(us->pusb_dev, 1126 altsetting->endpoint[0].desc.bEndpointAddress 1127 & USB_ENDPOINT_NUMBER_MASK); 1128 1129 return USB_STOR_TRANSPORT_GOOD; 1130 } 1131 1132 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) 1133 { 1134 int rc; 1135 struct alauda_info *info = (struct alauda_info *) us->extra; 1136 unsigned char *ptr = us->iobuf; 1137 static unsigned char inquiry_response[36] = { 1138 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 1139 }; 1140 1141 if (srb->cmnd[0] == INQUIRY) { 1142 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n"); 1143 memcpy(ptr, inquiry_response, sizeof(inquiry_response)); 1144 fill_inquiry_response(us, ptr, 36); 1145 return USB_STOR_TRANSPORT_GOOD; 1146 } 1147 1148 if (srb->cmnd[0] == TEST_UNIT_READY) { 1149 usb_stor_dbg(us, "TEST_UNIT_READY\n"); 1150 return alauda_check_media(us); 1151 } 1152 1153 if (srb->cmnd[0] == READ_CAPACITY) { 1154 unsigned int num_zones; 1155 unsigned long capacity; 1156 1157 rc = alauda_check_media(us); 1158 if (rc != USB_STOR_TRANSPORT_GOOD) 1159 return rc; 1160 1161 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 1162 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 1163 1164 capacity = num_zones * MEDIA_INFO(us).uzonesize 1165 * MEDIA_INFO(us).blocksize; 1166 1167 /* Report capacity and page size */ 1168 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); 1169 ((__be32 *) ptr)[1] = cpu_to_be32(512); 1170 1171 usb_stor_set_xfer_buf(ptr, 8, srb); 1172 return USB_STOR_TRANSPORT_GOOD; 1173 } 1174 1175 if (srb->cmnd[0] == READ_10) { 1176 unsigned int page, pages; 1177 1178 rc = alauda_check_media(us); 1179 if (rc != USB_STOR_TRANSPORT_GOOD) 1180 return rc; 1181 1182 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1183 page <<= 16; 1184 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1185 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1186 1187 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages); 1188 1189 return alauda_read_data(us, page, pages); 1190 } 1191 1192 if (srb->cmnd[0] == WRITE_10) { 1193 unsigned int page, pages; 1194 1195 rc = alauda_check_media(us); 1196 if (rc != USB_STOR_TRANSPORT_GOOD) 1197 return rc; 1198 1199 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1200 page <<= 16; 1201 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1202 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1203 1204 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages); 1205 1206 return alauda_write_data(us, page, pages); 1207 } 1208 1209 if (srb->cmnd[0] == REQUEST_SENSE) { 1210 usb_stor_dbg(us, "REQUEST_SENSE\n"); 1211 1212 memset(ptr, 0, 18); 1213 ptr[0] = 0xF0; 1214 ptr[2] = info->sense_key; 1215 ptr[7] = 11; 1216 ptr[12] = info->sense_asc; 1217 ptr[13] = info->sense_ascq; 1218 usb_stor_set_xfer_buf(ptr, 18, srb); 1219 1220 return USB_STOR_TRANSPORT_GOOD; 1221 } 1222 1223 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { 1224 /* sure. whatever. not like we can stop the user from popping 1225 the media out of the device (no locking doors, etc) */ 1226 return USB_STOR_TRANSPORT_GOOD; 1227 } 1228 1229 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n", 1230 srb->cmnd[0], srb->cmnd[0]); 1231 info->sense_key = 0x05; 1232 info->sense_asc = 0x20; 1233 info->sense_ascq = 0x00; 1234 return USB_STOR_TRANSPORT_FAILED; 1235 } 1236 1237 static int alauda_probe(struct usb_interface *intf, 1238 const struct usb_device_id *id) 1239 { 1240 struct us_data *us; 1241 int result; 1242 1243 result = usb_stor_probe1(&us, intf, id, 1244 (id - alauda_usb_ids) + alauda_unusual_dev_list); 1245 if (result) 1246 return result; 1247 1248 us->transport_name = "Alauda Control/Bulk"; 1249 us->transport = alauda_transport; 1250 us->transport_reset = usb_stor_Bulk_reset; 1251 us->max_lun = 1; 1252 1253 result = usb_stor_probe2(us); 1254 return result; 1255 } 1256 1257 static struct usb_driver alauda_driver = { 1258 .name = "ums-alauda", 1259 .probe = alauda_probe, 1260 .disconnect = usb_stor_disconnect, 1261 .suspend = usb_stor_suspend, 1262 .resume = usb_stor_resume, 1263 .reset_resume = usb_stor_reset_resume, 1264 .pre_reset = usb_stor_pre_reset, 1265 .post_reset = usb_stor_post_reset, 1266 .id_table = alauda_usb_ids, 1267 .soft_unbind = 1, 1268 .no_dynamic_id = 1, 1269 }; 1270 1271 module_usb_driver(alauda_driver); 1272