xref: /openbmc/linux/drivers/usb/storage/alauda.c (revision 39b6f3aa)
1 /*
2  * Driver for Alauda-based card readers
3  *
4  * Current development and maintenance by:
5  *   (c) 2005 Daniel Drake <dsd@gentoo.org>
6  *
7  * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
8  *
9  * Alauda implements a vendor-specific command set to access two media reader
10  * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11  * which are accepted by these devices.
12  *
13  * The driver was developed through reverse-engineering, with the help of the
14  * sddr09 driver which has many similarities, and with some help from the
15  * (very old) vendor-supplied GPL sma03 driver.
16  *
17  * For protocol info, see http://alauda.sourceforge.net
18  *
19  * This program is free software; you can redistribute it and/or modify it
20  * under the terms of the GNU General Public License as published by the
21  * Free Software Foundation; either version 2, or (at your option) any
22  * later version.
23  *
24  * This program is distributed in the hope that it will be useful, but
25  * WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License along
30  * with this program; if not, write to the Free Software Foundation, Inc.,
31  * 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/slab.h>
36 
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
40 
41 #include "usb.h"
42 #include "transport.h"
43 #include "protocol.h"
44 #include "debug.h"
45 
46 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
47 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
48 MODULE_LICENSE("GPL");
49 
50 /*
51  * Status bytes
52  */
53 #define ALAUDA_STATUS_ERROR		0x01
54 #define ALAUDA_STATUS_READY		0x40
55 
56 /*
57  * Control opcodes (for request field)
58  */
59 #define ALAUDA_GET_XD_MEDIA_STATUS	0x08
60 #define ALAUDA_GET_SM_MEDIA_STATUS	0x98
61 #define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
62 #define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
63 #define ALAUDA_GET_XD_MEDIA_SIG		0x86
64 #define ALAUDA_GET_SM_MEDIA_SIG		0x96
65 
66 /*
67  * Bulk command identity (byte 0)
68  */
69 #define ALAUDA_BULK_CMD			0x40
70 
71 /*
72  * Bulk opcodes (byte 1)
73  */
74 #define ALAUDA_BULK_GET_REDU_DATA	0x85
75 #define ALAUDA_BULK_READ_BLOCK		0x94
76 #define ALAUDA_BULK_ERASE_BLOCK		0xa3
77 #define ALAUDA_BULK_WRITE_BLOCK		0xb4
78 #define ALAUDA_BULK_GET_STATUS2		0xb7
79 #define ALAUDA_BULK_RESET_MEDIA		0xe0
80 
81 /*
82  * Port to operate on (byte 8)
83  */
84 #define ALAUDA_PORT_XD			0x00
85 #define ALAUDA_PORT_SM			0x01
86 
87 /*
88  * LBA and PBA are unsigned ints. Special values.
89  */
90 #define UNDEF    0xffff
91 #define SPARE    0xfffe
92 #define UNUSABLE 0xfffd
93 
94 struct alauda_media_info {
95 	unsigned long capacity;		/* total media size in bytes */
96 	unsigned int pagesize;		/* page size in bytes */
97 	unsigned int blocksize;		/* number of pages per block */
98 	unsigned int uzonesize;		/* number of usable blocks per zone */
99 	unsigned int zonesize;		/* number of blocks per zone */
100 	unsigned int blockmask;		/* mask to get page from address */
101 
102 	unsigned char pageshift;
103 	unsigned char blockshift;
104 	unsigned char zoneshift;
105 
106 	u16 **lba_to_pba;		/* logical to physical block map */
107 	u16 **pba_to_lba;		/* physical to logical block map */
108 };
109 
110 struct alauda_info {
111 	struct alauda_media_info port[2];
112 	int wr_ep;			/* endpoint to write data out of */
113 
114 	unsigned char sense_key;
115 	unsigned long sense_asc;	/* additional sense code */
116 	unsigned long sense_ascq;	/* additional sense code qualifier */
117 };
118 
119 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
120 #define LSB_of(s) ((s)&0xFF)
121 #define MSB_of(s) ((s)>>8)
122 
123 #define MEDIA_PORT(us) us->srb->device->lun
124 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
125 
126 #define PBA_LO(pba) ((pba & 0xF) << 5)
127 #define PBA_HI(pba) (pba >> 3)
128 #define PBA_ZONE(pba) (pba >> 11)
129 
130 static int init_alauda(struct us_data *us);
131 
132 
133 /*
134  * The table of devices
135  */
136 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
137 		    vendorName, productName, useProtocol, useTransport, \
138 		    initFunction, flags) \
139 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
140   .driver_info = (flags) }
141 
142 static struct usb_device_id alauda_usb_ids[] = {
143 #	include "unusual_alauda.h"
144 	{ }		/* Terminating entry */
145 };
146 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
147 
148 #undef UNUSUAL_DEV
149 
150 /*
151  * The flags table
152  */
153 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
154 		    vendor_name, product_name, use_protocol, use_transport, \
155 		    init_function, Flags) \
156 { \
157 	.vendorName = vendor_name,	\
158 	.productName = product_name,	\
159 	.useProtocol = use_protocol,	\
160 	.useTransport = use_transport,	\
161 	.initFunction = init_function,	\
162 }
163 
164 static struct us_unusual_dev alauda_unusual_dev_list[] = {
165 #	include "unusual_alauda.h"
166 	{ }		/* Terminating entry */
167 };
168 
169 #undef UNUSUAL_DEV
170 
171 
172 /*
173  * Media handling
174  */
175 
176 struct alauda_card_info {
177 	unsigned char id;		/* id byte */
178 	unsigned char chipshift;	/* 1<<cs bytes total capacity */
179 	unsigned char pageshift;	/* 1<<ps bytes in a page */
180 	unsigned char blockshift;	/* 1<<bs pages per block */
181 	unsigned char zoneshift;	/* 1<<zs blocks per zone */
182 };
183 
184 static struct alauda_card_info alauda_card_ids[] = {
185 	/* NAND flash */
186 	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
187 	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
188 	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
189 	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
190 	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
191 	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
192 	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
193 	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
194 	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
195 	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
196 	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
197 	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
198 	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
199 	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
200 
201 	/* MASK ROM */
202 	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
203 	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
204 	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
205 	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
206 	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
207 	{ 0,}
208 };
209 
210 static struct alauda_card_info *alauda_card_find_id(unsigned char id) {
211 	int i;
212 
213 	for (i = 0; alauda_card_ids[i].id != 0; i++)
214 		if (alauda_card_ids[i].id == id)
215 			return &(alauda_card_ids[i]);
216 	return NULL;
217 }
218 
219 /*
220  * ECC computation.
221  */
222 
223 static unsigned char parity[256];
224 static unsigned char ecc2[256];
225 
226 static void nand_init_ecc(void) {
227 	int i, j, a;
228 
229 	parity[0] = 0;
230 	for (i = 1; i < 256; i++)
231 		parity[i] = (parity[i&(i-1)] ^ 1);
232 
233 	for (i = 0; i < 256; i++) {
234 		a = 0;
235 		for (j = 0; j < 8; j++) {
236 			if (i & (1<<j)) {
237 				if ((j & 1) == 0)
238 					a ^= 0x04;
239 				if ((j & 2) == 0)
240 					a ^= 0x10;
241 				if ((j & 4) == 0)
242 					a ^= 0x40;
243 			}
244 		}
245 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
246 	}
247 }
248 
249 /* compute 3-byte ecc on 256 bytes */
250 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
251 	int i, j, a;
252 	unsigned char par, bit, bits[8];
253 
254 	par = 0;
255 	for (j = 0; j < 8; j++)
256 		bits[j] = 0;
257 
258 	/* collect 16 checksum bits */
259 	for (i = 0; i < 256; i++) {
260 		par ^= data[i];
261 		bit = parity[data[i]];
262 		for (j = 0; j < 8; j++)
263 			if ((i & (1<<j)) == 0)
264 				bits[j] ^= bit;
265 	}
266 
267 	/* put 4+4+4 = 12 bits in the ecc */
268 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
269 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
270 
271 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
272 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
273 
274 	ecc[2] = ecc2[par];
275 }
276 
277 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
278 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
279 }
280 
281 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
282 	memcpy(data, ecc, 3);
283 }
284 
285 /*
286  * Alauda driver
287  */
288 
289 /*
290  * Forget our PBA <---> LBA mappings for a particular port
291  */
292 static void alauda_free_maps (struct alauda_media_info *media_info)
293 {
294 	unsigned int shift = media_info->zoneshift
295 		+ media_info->blockshift + media_info->pageshift;
296 	unsigned int num_zones = media_info->capacity >> shift;
297 	unsigned int i;
298 
299 	if (media_info->lba_to_pba != NULL)
300 		for (i = 0; i < num_zones; i++) {
301 			kfree(media_info->lba_to_pba[i]);
302 			media_info->lba_to_pba[i] = NULL;
303 		}
304 
305 	if (media_info->pba_to_lba != NULL)
306 		for (i = 0; i < num_zones; i++) {
307 			kfree(media_info->pba_to_lba[i]);
308 			media_info->pba_to_lba[i] = NULL;
309 		}
310 }
311 
312 /*
313  * Returns 2 bytes of status data
314  * The first byte describes media status, and second byte describes door status
315  */
316 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
317 {
318 	int rc;
319 	unsigned char command;
320 
321 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
322 		command = ALAUDA_GET_XD_MEDIA_STATUS;
323 	else
324 		command = ALAUDA_GET_SM_MEDIA_STATUS;
325 
326 	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
327 		command, 0xc0, 0, 1, data, 2);
328 
329 	usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
330 
331 	return rc;
332 }
333 
334 /*
335  * Clears the "media was changed" bit so that we know when it changes again
336  * in the future.
337  */
338 static int alauda_ack_media(struct us_data *us)
339 {
340 	unsigned char command;
341 
342 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
343 		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
344 	else
345 		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
346 
347 	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
348 		command, 0x40, 0, 1, NULL, 0);
349 }
350 
351 /*
352  * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
353  * and some other details.
354  */
355 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
356 {
357 	unsigned char command;
358 
359 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
360 		command = ALAUDA_GET_XD_MEDIA_SIG;
361 	else
362 		command = ALAUDA_GET_SM_MEDIA_SIG;
363 
364 	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
365 		command, 0xc0, 0, 0, data, 4);
366 }
367 
368 /*
369  * Resets the media status (but not the whole device?)
370  */
371 static int alauda_reset_media(struct us_data *us)
372 {
373 	unsigned char *command = us->iobuf;
374 
375 	memset(command, 0, 9);
376 	command[0] = ALAUDA_BULK_CMD;
377 	command[1] = ALAUDA_BULK_RESET_MEDIA;
378 	command[8] = MEDIA_PORT(us);
379 
380 	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
381 		command, 9, NULL);
382 }
383 
384 /*
385  * Examines the media and deduces capacity, etc.
386  */
387 static int alauda_init_media(struct us_data *us)
388 {
389 	unsigned char *data = us->iobuf;
390 	int ready = 0;
391 	struct alauda_card_info *media_info;
392 	unsigned int num_zones;
393 
394 	while (ready == 0) {
395 		msleep(20);
396 
397 		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
398 			return USB_STOR_TRANSPORT_ERROR;
399 
400 		if (data[0] & 0x10)
401 			ready = 1;
402 	}
403 
404 	usb_stor_dbg(us, "We are ready for action!\n");
405 
406 	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
407 		return USB_STOR_TRANSPORT_ERROR;
408 
409 	msleep(10);
410 
411 	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
412 		return USB_STOR_TRANSPORT_ERROR;
413 
414 	if (data[0] != 0x14) {
415 		usb_stor_dbg(us, "Media not ready after ack\n");
416 		return USB_STOR_TRANSPORT_ERROR;
417 	}
418 
419 	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
420 		return USB_STOR_TRANSPORT_ERROR;
421 
422 	usb_stor_dbg(us, "Media signature: %02X %02X %02X %02X\n",
423 		     data[0], data[1], data[2], data[3]);
424 	media_info = alauda_card_find_id(data[1]);
425 	if (media_info == NULL) {
426 		printk(KERN_WARNING
427 			"alauda_init_media: Unrecognised media signature: "
428 			"%02X %02X %02X %02X\n",
429 			data[0], data[1], data[2], data[3]);
430 		return USB_STOR_TRANSPORT_ERROR;
431 	}
432 
433 	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
434 	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
435 		     MEDIA_INFO(us).capacity >> 20);
436 
437 	MEDIA_INFO(us).pageshift = media_info->pageshift;
438 	MEDIA_INFO(us).blockshift = media_info->blockshift;
439 	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
440 
441 	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
442 	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
443 	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
444 
445 	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
446 	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
447 
448 	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
449 		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
450 	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
451 	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
452 
453 	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
454 		return USB_STOR_TRANSPORT_ERROR;
455 
456 	return USB_STOR_TRANSPORT_GOOD;
457 }
458 
459 /*
460  * Examines the media status and does the right thing when the media has gone,
461  * appeared, or changed.
462  */
463 static int alauda_check_media(struct us_data *us)
464 {
465 	struct alauda_info *info = (struct alauda_info *) us->extra;
466 	unsigned char status[2];
467 	int rc;
468 
469 	rc = alauda_get_media_status(us, status);
470 
471 	/* Check for no media or door open */
472 	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
473 		|| ((status[1] & 0x01) == 0)) {
474 		usb_stor_dbg(us, "No media, or door open\n");
475 		alauda_free_maps(&MEDIA_INFO(us));
476 		info->sense_key = 0x02;
477 		info->sense_asc = 0x3A;
478 		info->sense_ascq = 0x00;
479 		return USB_STOR_TRANSPORT_FAILED;
480 	}
481 
482 	/* Check for media change */
483 	if (status[0] & 0x08) {
484 		usb_stor_dbg(us, "Media change detected\n");
485 		alauda_free_maps(&MEDIA_INFO(us));
486 		alauda_init_media(us);
487 
488 		info->sense_key = UNIT_ATTENTION;
489 		info->sense_asc = 0x28;
490 		info->sense_ascq = 0x00;
491 		return USB_STOR_TRANSPORT_FAILED;
492 	}
493 
494 	return USB_STOR_TRANSPORT_GOOD;
495 }
496 
497 /*
498  * Checks the status from the 2nd status register
499  * Returns 3 bytes of status data, only the first is known
500  */
501 static int alauda_check_status2(struct us_data *us)
502 {
503 	int rc;
504 	unsigned char command[] = {
505 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
506 		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
507 	};
508 	unsigned char data[3];
509 
510 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
511 		command, 9, NULL);
512 	if (rc != USB_STOR_XFER_GOOD)
513 		return rc;
514 
515 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
516 		data, 3, NULL);
517 	if (rc != USB_STOR_XFER_GOOD)
518 		return rc;
519 
520 	usb_stor_dbg(us, "%02X %02X %02X\n", data[0], data[1], data[2]);
521 	if (data[0] & ALAUDA_STATUS_ERROR)
522 		return USB_STOR_XFER_ERROR;
523 
524 	return USB_STOR_XFER_GOOD;
525 }
526 
527 /*
528  * Gets the redundancy data for the first page of a PBA
529  * Returns 16 bytes.
530  */
531 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
532 {
533 	int rc;
534 	unsigned char command[] = {
535 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
536 		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
537 	};
538 
539 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
540 		command, 9, NULL);
541 	if (rc != USB_STOR_XFER_GOOD)
542 		return rc;
543 
544 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
545 		data, 16, NULL);
546 }
547 
548 /*
549  * Finds the first unused PBA in a zone
550  * Returns the absolute PBA of an unused PBA, or 0 if none found.
551  */
552 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
553 	unsigned int zone)
554 {
555 	u16 *pba_to_lba = info->pba_to_lba[zone];
556 	unsigned int i;
557 
558 	for (i = 0; i < info->zonesize; i++)
559 		if (pba_to_lba[i] == UNDEF)
560 			return (zone << info->zoneshift) + i;
561 
562 	return 0;
563 }
564 
565 /*
566  * Reads the redundancy data for all PBA's in a zone
567  * Produces lba <--> pba mappings
568  */
569 static int alauda_read_map(struct us_data *us, unsigned int zone)
570 {
571 	unsigned char *data = us->iobuf;
572 	int result;
573 	int i, j;
574 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
575 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
576 	unsigned int lba_offset, lba_real, blocknum;
577 	unsigned int zone_base_lba = zone * uzonesize;
578 	unsigned int zone_base_pba = zone * zonesize;
579 	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
580 	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
581 	if (lba_to_pba == NULL || pba_to_lba == NULL) {
582 		result = USB_STOR_TRANSPORT_ERROR;
583 		goto error;
584 	}
585 
586 	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
587 
588 	/* 1024 PBA's per zone */
589 	for (i = 0; i < zonesize; i++)
590 		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
591 
592 	for (i = 0; i < zonesize; i++) {
593 		blocknum = zone_base_pba + i;
594 
595 		result = alauda_get_redu_data(us, blocknum, data);
596 		if (result != USB_STOR_XFER_GOOD) {
597 			result = USB_STOR_TRANSPORT_ERROR;
598 			goto error;
599 		}
600 
601 		/* special PBAs have control field 0^16 */
602 		for (j = 0; j < 16; j++)
603 			if (data[j] != 0)
604 				goto nonz;
605 		pba_to_lba[i] = UNUSABLE;
606 		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
607 		continue;
608 
609 	nonz:
610 		/* unwritten PBAs have control field FF^16 */
611 		for (j = 0; j < 16; j++)
612 			if (data[j] != 0xff)
613 				goto nonff;
614 		continue;
615 
616 	nonff:
617 		/* normal PBAs start with six FFs */
618 		if (j < 6) {
619 			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
620 				     blocknum,
621 				     data[0], data[1], data[2], data[3],
622 				     data[4], data[5]);
623 			pba_to_lba[i] = UNUSABLE;
624 			continue;
625 		}
626 
627 		if ((data[6] >> 4) != 0x01) {
628 			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
629 				     blocknum, data[6], data[7],
630 				     data[11], data[12]);
631 			pba_to_lba[i] = UNUSABLE;
632 			continue;
633 		}
634 
635 		/* check even parity */
636 		if (parity[data[6] ^ data[7]]) {
637 			printk(KERN_WARNING
638 			       "alauda_read_map: Bad parity in LBA for block %d"
639 			       " (%02X %02X)\n", i, data[6], data[7]);
640 			pba_to_lba[i] = UNUSABLE;
641 			continue;
642 		}
643 
644 		lba_offset = short_pack(data[7], data[6]);
645 		lba_offset = (lba_offset & 0x07FF) >> 1;
646 		lba_real = lba_offset + zone_base_lba;
647 
648 		/*
649 		 * Every 1024 physical blocks ("zone"), the LBA numbers
650 		 * go back to zero, but are within a higher block of LBA's.
651 		 * Also, there is a maximum of 1000 LBA's per zone.
652 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
653 		 * which are really LBA 1000-1999. This allows for 24 bad
654 		 * or special physical blocks per zone.
655 		 */
656 
657 		if (lba_offset >= uzonesize) {
658 			printk(KERN_WARNING
659 			       "alauda_read_map: Bad low LBA %d for block %d\n",
660 			       lba_real, blocknum);
661 			continue;
662 		}
663 
664 		if (lba_to_pba[lba_offset] != UNDEF) {
665 			printk(KERN_WARNING
666 			       "alauda_read_map: "
667 			       "LBA %d seen for PBA %d and %d\n",
668 			       lba_real, lba_to_pba[lba_offset], blocknum);
669 			continue;
670 		}
671 
672 		pba_to_lba[i] = lba_real;
673 		lba_to_pba[lba_offset] = blocknum;
674 		continue;
675 	}
676 
677 	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
678 	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
679 	result = 0;
680 	goto out;
681 
682 error:
683 	kfree(lba_to_pba);
684 	kfree(pba_to_lba);
685 out:
686 	return result;
687 }
688 
689 /*
690  * Checks to see whether we have already mapped a certain zone
691  * If we haven't, the map is generated
692  */
693 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
694 {
695 	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
696 		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
697 		alauda_read_map(us, zone);
698 }
699 
700 /*
701  * Erases an entire block
702  */
703 static int alauda_erase_block(struct us_data *us, u16 pba)
704 {
705 	int rc;
706 	unsigned char command[] = {
707 		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
708 		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
709 	};
710 	unsigned char buf[2];
711 
712 	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
713 
714 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
715 		command, 9, NULL);
716 	if (rc != USB_STOR_XFER_GOOD)
717 		return rc;
718 
719 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
720 		buf, 2, NULL);
721 	if (rc != USB_STOR_XFER_GOOD)
722 		return rc;
723 
724 	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
725 	return rc;
726 }
727 
728 /*
729  * Reads data from a certain offset page inside a PBA, including interleaved
730  * redundancy data. Returns (pagesize+64)*pages bytes in data.
731  */
732 static int alauda_read_block_raw(struct us_data *us, u16 pba,
733 		unsigned int page, unsigned int pages, unsigned char *data)
734 {
735 	int rc;
736 	unsigned char command[] = {
737 		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
738 		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
739 	};
740 
741 	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
742 
743 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
744 		command, 9, NULL);
745 	if (rc != USB_STOR_XFER_GOOD)
746 		return rc;
747 
748 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
749 		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
750 }
751 
752 /*
753  * Reads data from a certain offset page inside a PBA, excluding redundancy
754  * data. Returns pagesize*pages bytes in data. Note that data must be big enough
755  * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
756  * trailing bytes outside this function.
757  */
758 static int alauda_read_block(struct us_data *us, u16 pba,
759 		unsigned int page, unsigned int pages, unsigned char *data)
760 {
761 	int i, rc;
762 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
763 
764 	rc = alauda_read_block_raw(us, pba, page, pages, data);
765 	if (rc != USB_STOR_XFER_GOOD)
766 		return rc;
767 
768 	/* Cut out the redundancy data */
769 	for (i = 0; i < pages; i++) {
770 		int dest_offset = i * pagesize;
771 		int src_offset = i * (pagesize + 64);
772 		memmove(data + dest_offset, data + src_offset, pagesize);
773 	}
774 
775 	return rc;
776 }
777 
778 /*
779  * Writes an entire block of data and checks status after write.
780  * Redundancy data must be already included in data. Data should be
781  * (pagesize+64)*blocksize bytes in length.
782  */
783 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
784 {
785 	int rc;
786 	struct alauda_info *info = (struct alauda_info *) us->extra;
787 	unsigned char command[] = {
788 		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
789 		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
790 	};
791 
792 	usb_stor_dbg(us, "pba %d\n", pba);
793 
794 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
795 		command, 9, NULL);
796 	if (rc != USB_STOR_XFER_GOOD)
797 		return rc;
798 
799 	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
800 		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
801 		NULL);
802 	if (rc != USB_STOR_XFER_GOOD)
803 		return rc;
804 
805 	return alauda_check_status2(us);
806 }
807 
808 /*
809  * Write some data to a specific LBA.
810  */
811 static int alauda_write_lba(struct us_data *us, u16 lba,
812 		 unsigned int page, unsigned int pages,
813 		 unsigned char *ptr, unsigned char *blockbuffer)
814 {
815 	u16 pba, lbap, new_pba;
816 	unsigned char *bptr, *cptr, *xptr;
817 	unsigned char ecc[3];
818 	int i, result;
819 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
820 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
821 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
822 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
823 	unsigned int lba_offset = lba % uzonesize;
824 	unsigned int new_pba_offset;
825 	unsigned int zone = lba / uzonesize;
826 
827 	alauda_ensure_map_for_zone(us, zone);
828 
829 	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
830 	if (pba == 1) {
831 		/* Maybe it is impossible to write to PBA 1.
832 		   Fake success, but don't do anything. */
833 		printk(KERN_WARNING
834 		       "alauda_write_lba: avoid writing to pba 1\n");
835 		return USB_STOR_TRANSPORT_GOOD;
836 	}
837 
838 	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
839 	if (!new_pba) {
840 		printk(KERN_WARNING
841 		       "alauda_write_lba: Out of unused blocks\n");
842 		return USB_STOR_TRANSPORT_ERROR;
843 	}
844 
845 	/* read old contents */
846 	if (pba != UNDEF) {
847 		result = alauda_read_block_raw(us, pba, 0,
848 			blocksize, blockbuffer);
849 		if (result != USB_STOR_XFER_GOOD)
850 			return result;
851 	} else {
852 		memset(blockbuffer, 0, blocksize * (pagesize + 64));
853 	}
854 
855 	lbap = (lba_offset << 1) | 0x1000;
856 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
857 		lbap ^= 1;
858 
859 	/* check old contents and fill lba */
860 	for (i = 0; i < blocksize; i++) {
861 		bptr = blockbuffer + (i * (pagesize + 64));
862 		cptr = bptr + pagesize;
863 		nand_compute_ecc(bptr, ecc);
864 		if (!nand_compare_ecc(cptr+13, ecc)) {
865 			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
866 				     i, pba);
867 			nand_store_ecc(cptr+13, ecc);
868 		}
869 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
870 		if (!nand_compare_ecc(cptr+8, ecc)) {
871 			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
872 				     i, pba);
873 			nand_store_ecc(cptr+8, ecc);
874 		}
875 		cptr[6] = cptr[11] = MSB_of(lbap);
876 		cptr[7] = cptr[12] = LSB_of(lbap);
877 	}
878 
879 	/* copy in new stuff and compute ECC */
880 	xptr = ptr;
881 	for (i = page; i < page+pages; i++) {
882 		bptr = blockbuffer + (i * (pagesize + 64));
883 		cptr = bptr + pagesize;
884 		memcpy(bptr, xptr, pagesize);
885 		xptr += pagesize;
886 		nand_compute_ecc(bptr, ecc);
887 		nand_store_ecc(cptr+13, ecc);
888 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
889 		nand_store_ecc(cptr+8, ecc);
890 	}
891 
892 	result = alauda_write_block(us, new_pba, blockbuffer);
893 	if (result != USB_STOR_XFER_GOOD)
894 		return result;
895 
896 	new_pba_offset = new_pba - (zone * zonesize);
897 	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
898 	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
899 	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
900 
901 	if (pba != UNDEF) {
902 		unsigned int pba_offset = pba - (zone * zonesize);
903 		result = alauda_erase_block(us, pba);
904 		if (result != USB_STOR_XFER_GOOD)
905 			return result;
906 		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
907 	}
908 
909 	return USB_STOR_TRANSPORT_GOOD;
910 }
911 
912 /*
913  * Read data from a specific sector address
914  */
915 static int alauda_read_data(struct us_data *us, unsigned long address,
916 		unsigned int sectors)
917 {
918 	unsigned char *buffer;
919 	u16 lba, max_lba;
920 	unsigned int page, len, offset;
921 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
922 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
923 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
924 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
925 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
926 	struct scatterlist *sg;
927 	int result;
928 
929 	/*
930 	 * Since we only read in one block at a time, we have to create
931 	 * a bounce buffer and move the data a piece at a time between the
932 	 * bounce buffer and the actual transfer buffer.
933 	 * We make this buffer big enough to hold temporary redundancy data,
934 	 * which we use when reading the data blocks.
935 	 */
936 
937 	len = min(sectors, blocksize) * (pagesize + 64);
938 	buffer = kmalloc(len, GFP_NOIO);
939 	if (buffer == NULL) {
940 		printk(KERN_WARNING "alauda_read_data: Out of memory\n");
941 		return USB_STOR_TRANSPORT_ERROR;
942 	}
943 
944 	/* Figure out the initial LBA and page */
945 	lba = address >> blockshift;
946 	page = (address & MEDIA_INFO(us).blockmask);
947 	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
948 
949 	result = USB_STOR_TRANSPORT_GOOD;
950 	offset = 0;
951 	sg = NULL;
952 
953 	while (sectors > 0) {
954 		unsigned int zone = lba / uzonesize; /* integer division */
955 		unsigned int lba_offset = lba - (zone * uzonesize);
956 		unsigned int pages;
957 		u16 pba;
958 		alauda_ensure_map_for_zone(us, zone);
959 
960 		/* Not overflowing capacity? */
961 		if (lba >= max_lba) {
962 			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
963 				     lba, max_lba);
964 			result = USB_STOR_TRANSPORT_ERROR;
965 			break;
966 		}
967 
968 		/* Find number of pages we can read in this block */
969 		pages = min(sectors, blocksize - page);
970 		len = pages << pageshift;
971 
972 		/* Find where this lba lives on disk */
973 		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
974 
975 		if (pba == UNDEF) {	/* this lba was never written */
976 			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
977 				     pages, lba, page);
978 
979 			/* This is not really an error. It just means
980 			   that the block has never been written.
981 			   Instead of returning USB_STOR_TRANSPORT_ERROR
982 			   it is better to return all zero data. */
983 
984 			memset(buffer, 0, len);
985 		} else {
986 			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
987 				     pages, pba, lba, page);
988 
989 			result = alauda_read_block(us, pba, page, pages, buffer);
990 			if (result != USB_STOR_TRANSPORT_GOOD)
991 				break;
992 		}
993 
994 		/* Store the data in the transfer buffer */
995 		usb_stor_access_xfer_buf(buffer, len, us->srb,
996 				&sg, &offset, TO_XFER_BUF);
997 
998 		page = 0;
999 		lba++;
1000 		sectors -= pages;
1001 	}
1002 
1003 	kfree(buffer);
1004 	return result;
1005 }
1006 
1007 /*
1008  * Write data to a specific sector address
1009  */
1010 static int alauda_write_data(struct us_data *us, unsigned long address,
1011 		unsigned int sectors)
1012 {
1013 	unsigned char *buffer, *blockbuffer;
1014 	unsigned int page, len, offset;
1015 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1016 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1017 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1018 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1019 	struct scatterlist *sg;
1020 	u16 lba, max_lba;
1021 	int result;
1022 
1023 	/*
1024 	 * Since we don't write the user data directly to the device,
1025 	 * we have to create a bounce buffer and move the data a piece
1026 	 * at a time between the bounce buffer and the actual transfer buffer.
1027 	 */
1028 
1029 	len = min(sectors, blocksize) * pagesize;
1030 	buffer = kmalloc(len, GFP_NOIO);
1031 	if (buffer == NULL) {
1032 		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1033 		return USB_STOR_TRANSPORT_ERROR;
1034 	}
1035 
1036 	/*
1037 	 * We also need a temporary block buffer, where we read in the old data,
1038 	 * overwrite parts with the new data, and manipulate the redundancy data
1039 	 */
1040 	blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1041 	if (blockbuffer == NULL) {
1042 		printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1043 		kfree(buffer);
1044 		return USB_STOR_TRANSPORT_ERROR;
1045 	}
1046 
1047 	/* Figure out the initial LBA and page */
1048 	lba = address >> blockshift;
1049 	page = (address & MEDIA_INFO(us).blockmask);
1050 	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1051 
1052 	result = USB_STOR_TRANSPORT_GOOD;
1053 	offset = 0;
1054 	sg = NULL;
1055 
1056 	while (sectors > 0) {
1057 		/* Write as many sectors as possible in this block */
1058 		unsigned int pages = min(sectors, blocksize - page);
1059 		len = pages << pageshift;
1060 
1061 		/* Not overflowing capacity? */
1062 		if (lba >= max_lba) {
1063 			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1064 				     lba, max_lba);
1065 			result = USB_STOR_TRANSPORT_ERROR;
1066 			break;
1067 		}
1068 
1069 		/* Get the data from the transfer buffer */
1070 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1071 				&sg, &offset, FROM_XFER_BUF);
1072 
1073 		result = alauda_write_lba(us, lba, page, pages, buffer,
1074 			blockbuffer);
1075 		if (result != USB_STOR_TRANSPORT_GOOD)
1076 			break;
1077 
1078 		page = 0;
1079 		lba++;
1080 		sectors -= pages;
1081 	}
1082 
1083 	kfree(buffer);
1084 	kfree(blockbuffer);
1085 	return result;
1086 }
1087 
1088 /*
1089  * Our interface with the rest of the world
1090  */
1091 
1092 static void alauda_info_destructor(void *extra)
1093 {
1094 	struct alauda_info *info = (struct alauda_info *) extra;
1095 	int port;
1096 
1097 	if (!info)
1098 		return;
1099 
1100 	for (port = 0; port < 2; port++) {
1101 		struct alauda_media_info *media_info = &info->port[port];
1102 
1103 		alauda_free_maps(media_info);
1104 		kfree(media_info->lba_to_pba);
1105 		kfree(media_info->pba_to_lba);
1106 	}
1107 }
1108 
1109 /*
1110  * Initialize alauda_info struct and find the data-write endpoint
1111  */
1112 static int init_alauda(struct us_data *us)
1113 {
1114 	struct alauda_info *info;
1115 	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1116 	nand_init_ecc();
1117 
1118 	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1119 	if (!us->extra)
1120 		return USB_STOR_TRANSPORT_ERROR;
1121 
1122 	info = (struct alauda_info *) us->extra;
1123 	us->extra_destructor = alauda_info_destructor;
1124 
1125 	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1126 		altsetting->endpoint[0].desc.bEndpointAddress
1127 		& USB_ENDPOINT_NUMBER_MASK);
1128 
1129 	return USB_STOR_TRANSPORT_GOOD;
1130 }
1131 
1132 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1133 {
1134 	int rc;
1135 	struct alauda_info *info = (struct alauda_info *) us->extra;
1136 	unsigned char *ptr = us->iobuf;
1137 	static unsigned char inquiry_response[36] = {
1138 		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1139 	};
1140 
1141 	if (srb->cmnd[0] == INQUIRY) {
1142 		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1143 		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1144 		fill_inquiry_response(us, ptr, 36);
1145 		return USB_STOR_TRANSPORT_GOOD;
1146 	}
1147 
1148 	if (srb->cmnd[0] == TEST_UNIT_READY) {
1149 		usb_stor_dbg(us, "TEST_UNIT_READY\n");
1150 		return alauda_check_media(us);
1151 	}
1152 
1153 	if (srb->cmnd[0] == READ_CAPACITY) {
1154 		unsigned int num_zones;
1155 		unsigned long capacity;
1156 
1157 		rc = alauda_check_media(us);
1158 		if (rc != USB_STOR_TRANSPORT_GOOD)
1159 			return rc;
1160 
1161 		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1162 			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1163 
1164 		capacity = num_zones * MEDIA_INFO(us).uzonesize
1165 			* MEDIA_INFO(us).blocksize;
1166 
1167 		/* Report capacity and page size */
1168 		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1169 		((__be32 *) ptr)[1] = cpu_to_be32(512);
1170 
1171 		usb_stor_set_xfer_buf(ptr, 8, srb);
1172 		return USB_STOR_TRANSPORT_GOOD;
1173 	}
1174 
1175 	if (srb->cmnd[0] == READ_10) {
1176 		unsigned int page, pages;
1177 
1178 		rc = alauda_check_media(us);
1179 		if (rc != USB_STOR_TRANSPORT_GOOD)
1180 			return rc;
1181 
1182 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1183 		page <<= 16;
1184 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1185 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1186 
1187 		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1188 
1189 		return alauda_read_data(us, page, pages);
1190 	}
1191 
1192 	if (srb->cmnd[0] == WRITE_10) {
1193 		unsigned int page, pages;
1194 
1195 		rc = alauda_check_media(us);
1196 		if (rc != USB_STOR_TRANSPORT_GOOD)
1197 			return rc;
1198 
1199 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1200 		page <<= 16;
1201 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1202 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1203 
1204 		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1205 
1206 		return alauda_write_data(us, page, pages);
1207 	}
1208 
1209 	if (srb->cmnd[0] == REQUEST_SENSE) {
1210 		usb_stor_dbg(us, "REQUEST_SENSE\n");
1211 
1212 		memset(ptr, 0, 18);
1213 		ptr[0] = 0xF0;
1214 		ptr[2] = info->sense_key;
1215 		ptr[7] = 11;
1216 		ptr[12] = info->sense_asc;
1217 		ptr[13] = info->sense_ascq;
1218 		usb_stor_set_xfer_buf(ptr, 18, srb);
1219 
1220 		return USB_STOR_TRANSPORT_GOOD;
1221 	}
1222 
1223 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1224 		/* sure.  whatever.  not like we can stop the user from popping
1225 		   the media out of the device (no locking doors, etc) */
1226 		return USB_STOR_TRANSPORT_GOOD;
1227 	}
1228 
1229 	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1230 		     srb->cmnd[0], srb->cmnd[0]);
1231 	info->sense_key = 0x05;
1232 	info->sense_asc = 0x20;
1233 	info->sense_ascq = 0x00;
1234 	return USB_STOR_TRANSPORT_FAILED;
1235 }
1236 
1237 static int alauda_probe(struct usb_interface *intf,
1238 			 const struct usb_device_id *id)
1239 {
1240 	struct us_data *us;
1241 	int result;
1242 
1243 	result = usb_stor_probe1(&us, intf, id,
1244 			(id - alauda_usb_ids) + alauda_unusual_dev_list);
1245 	if (result)
1246 		return result;
1247 
1248 	us->transport_name  = "Alauda Control/Bulk";
1249 	us->transport = alauda_transport;
1250 	us->transport_reset = usb_stor_Bulk_reset;
1251 	us->max_lun = 1;
1252 
1253 	result = usb_stor_probe2(us);
1254 	return result;
1255 }
1256 
1257 static struct usb_driver alauda_driver = {
1258 	.name =		"ums-alauda",
1259 	.probe =	alauda_probe,
1260 	.disconnect =	usb_stor_disconnect,
1261 	.suspend =	usb_stor_suspend,
1262 	.resume =	usb_stor_resume,
1263 	.reset_resume =	usb_stor_reset_resume,
1264 	.pre_reset =	usb_stor_pre_reset,
1265 	.post_reset =	usb_stor_post_reset,
1266 	.id_table =	alauda_usb_ids,
1267 	.soft_unbind =	1,
1268 	.no_dynamic_id = 1,
1269 };
1270 
1271 module_usb_driver(alauda_driver);
1272