1 /* 2 * Driver for Alauda-based card readers 3 * 4 * Current development and maintenance by: 5 * (c) 2005 Daniel Drake <dsd@gentoo.org> 6 * 7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use. 8 * 9 * Alauda implements a vendor-specific command set to access two media reader 10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands 11 * which are accepted by these devices. 12 * 13 * The driver was developed through reverse-engineering, with the help of the 14 * sddr09 driver which has many similarities, and with some help from the 15 * (very old) vendor-supplied GPL sma03 driver. 16 * 17 * For protocol info, see http://alauda.sourceforge.net 18 * 19 * This program is free software; you can redistribute it and/or modify it 20 * under the terms of the GNU General Public License as published by the 21 * Free Software Foundation; either version 2, or (at your option) any 22 * later version. 23 * 24 * This program is distributed in the hope that it will be useful, but 25 * WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 27 * General Public License for more details. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/slab.h> 36 37 #include <scsi/scsi.h> 38 #include <scsi/scsi_cmnd.h> 39 #include <scsi/scsi_device.h> 40 41 #include "usb.h" 42 #include "transport.h" 43 #include "protocol.h" 44 #include "debug.h" 45 46 MODULE_DESCRIPTION("Driver for Alauda-based card readers"); 47 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>"); 48 MODULE_LICENSE("GPL"); 49 50 /* 51 * Status bytes 52 */ 53 #define ALAUDA_STATUS_ERROR 0x01 54 #define ALAUDA_STATUS_READY 0x40 55 56 /* 57 * Control opcodes (for request field) 58 */ 59 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08 60 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98 61 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a 62 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a 63 #define ALAUDA_GET_XD_MEDIA_SIG 0x86 64 #define ALAUDA_GET_SM_MEDIA_SIG 0x96 65 66 /* 67 * Bulk command identity (byte 0) 68 */ 69 #define ALAUDA_BULK_CMD 0x40 70 71 /* 72 * Bulk opcodes (byte 1) 73 */ 74 #define ALAUDA_BULK_GET_REDU_DATA 0x85 75 #define ALAUDA_BULK_READ_BLOCK 0x94 76 #define ALAUDA_BULK_ERASE_BLOCK 0xa3 77 #define ALAUDA_BULK_WRITE_BLOCK 0xb4 78 #define ALAUDA_BULK_GET_STATUS2 0xb7 79 #define ALAUDA_BULK_RESET_MEDIA 0xe0 80 81 /* 82 * Port to operate on (byte 8) 83 */ 84 #define ALAUDA_PORT_XD 0x00 85 #define ALAUDA_PORT_SM 0x01 86 87 /* 88 * LBA and PBA are unsigned ints. Special values. 89 */ 90 #define UNDEF 0xffff 91 #define SPARE 0xfffe 92 #define UNUSABLE 0xfffd 93 94 struct alauda_media_info { 95 unsigned long capacity; /* total media size in bytes */ 96 unsigned int pagesize; /* page size in bytes */ 97 unsigned int blocksize; /* number of pages per block */ 98 unsigned int uzonesize; /* number of usable blocks per zone */ 99 unsigned int zonesize; /* number of blocks per zone */ 100 unsigned int blockmask; /* mask to get page from address */ 101 102 unsigned char pageshift; 103 unsigned char blockshift; 104 unsigned char zoneshift; 105 106 u16 **lba_to_pba; /* logical to physical block map */ 107 u16 **pba_to_lba; /* physical to logical block map */ 108 }; 109 110 struct alauda_info { 111 struct alauda_media_info port[2]; 112 int wr_ep; /* endpoint to write data out of */ 113 114 unsigned char sense_key; 115 unsigned long sense_asc; /* additional sense code */ 116 unsigned long sense_ascq; /* additional sense code qualifier */ 117 }; 118 119 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) 120 #define LSB_of(s) ((s)&0xFF) 121 #define MSB_of(s) ((s)>>8) 122 123 #define MEDIA_PORT(us) us->srb->device->lun 124 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] 125 126 #define PBA_LO(pba) ((pba & 0xF) << 5) 127 #define PBA_HI(pba) (pba >> 3) 128 #define PBA_ZONE(pba) (pba >> 11) 129 130 static int init_alauda(struct us_data *us); 131 132 133 /* 134 * The table of devices 135 */ 136 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ 137 vendorName, productName, useProtocol, useTransport, \ 138 initFunction, flags) \ 139 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ 140 .driver_info = (flags) } 141 142 static struct usb_device_id alauda_usb_ids[] = { 143 # include "unusual_alauda.h" 144 { } /* Terminating entry */ 145 }; 146 MODULE_DEVICE_TABLE(usb, alauda_usb_ids); 147 148 #undef UNUSUAL_DEV 149 150 /* 151 * The flags table 152 */ 153 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ 154 vendor_name, product_name, use_protocol, use_transport, \ 155 init_function, Flags) \ 156 { \ 157 .vendorName = vendor_name, \ 158 .productName = product_name, \ 159 .useProtocol = use_protocol, \ 160 .useTransport = use_transport, \ 161 .initFunction = init_function, \ 162 } 163 164 static struct us_unusual_dev alauda_unusual_dev_list[] = { 165 # include "unusual_alauda.h" 166 { } /* Terminating entry */ 167 }; 168 169 #undef UNUSUAL_DEV 170 171 172 /* 173 * Media handling 174 */ 175 176 struct alauda_card_info { 177 unsigned char id; /* id byte */ 178 unsigned char chipshift; /* 1<<cs bytes total capacity */ 179 unsigned char pageshift; /* 1<<ps bytes in a page */ 180 unsigned char blockshift; /* 1<<bs pages per block */ 181 unsigned char zoneshift; /* 1<<zs blocks per zone */ 182 }; 183 184 static struct alauda_card_info alauda_card_ids[] = { 185 /* NAND flash */ 186 { 0x6e, 20, 8, 4, 8}, /* 1 MB */ 187 { 0xe8, 20, 8, 4, 8}, /* 1 MB */ 188 { 0xec, 20, 8, 4, 8}, /* 1 MB */ 189 { 0x64, 21, 8, 4, 9}, /* 2 MB */ 190 { 0xea, 21, 8, 4, 9}, /* 2 MB */ 191 { 0x6b, 22, 9, 4, 9}, /* 4 MB */ 192 { 0xe3, 22, 9, 4, 9}, /* 4 MB */ 193 { 0xe5, 22, 9, 4, 9}, /* 4 MB */ 194 { 0xe6, 23, 9, 4, 10}, /* 8 MB */ 195 { 0x73, 24, 9, 5, 10}, /* 16 MB */ 196 { 0x75, 25, 9, 5, 10}, /* 32 MB */ 197 { 0x76, 26, 9, 5, 10}, /* 64 MB */ 198 { 0x79, 27, 9, 5, 10}, /* 128 MB */ 199 { 0x71, 28, 9, 5, 10}, /* 256 MB */ 200 201 /* MASK ROM */ 202 { 0x5d, 21, 9, 4, 8}, /* 2 MB */ 203 { 0xd5, 22, 9, 4, 9}, /* 4 MB */ 204 { 0xd6, 23, 9, 4, 10}, /* 8 MB */ 205 { 0x57, 24, 9, 4, 11}, /* 16 MB */ 206 { 0x58, 25, 9, 4, 12}, /* 32 MB */ 207 { 0,} 208 }; 209 210 static struct alauda_card_info *alauda_card_find_id(unsigned char id) { 211 int i; 212 213 for (i = 0; alauda_card_ids[i].id != 0; i++) 214 if (alauda_card_ids[i].id == id) 215 return &(alauda_card_ids[i]); 216 return NULL; 217 } 218 219 /* 220 * ECC computation. 221 */ 222 223 static unsigned char parity[256]; 224 static unsigned char ecc2[256]; 225 226 static void nand_init_ecc(void) { 227 int i, j, a; 228 229 parity[0] = 0; 230 for (i = 1; i < 256; i++) 231 parity[i] = (parity[i&(i-1)] ^ 1); 232 233 for (i = 0; i < 256; i++) { 234 a = 0; 235 for (j = 0; j < 8; j++) { 236 if (i & (1<<j)) { 237 if ((j & 1) == 0) 238 a ^= 0x04; 239 if ((j & 2) == 0) 240 a ^= 0x10; 241 if ((j & 4) == 0) 242 a ^= 0x40; 243 } 244 } 245 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); 246 } 247 } 248 249 /* compute 3-byte ecc on 256 bytes */ 250 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) { 251 int i, j, a; 252 unsigned char par = 0, bit, bits[8] = {0}; 253 254 /* collect 16 checksum bits */ 255 for (i = 0; i < 256; i++) { 256 par ^= data[i]; 257 bit = parity[data[i]]; 258 for (j = 0; j < 8; j++) 259 if ((i & (1<<j)) == 0) 260 bits[j] ^= bit; 261 } 262 263 /* put 4+4+4 = 12 bits in the ecc */ 264 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; 265 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 266 267 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; 268 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 269 270 ecc[2] = ecc2[par]; 271 } 272 273 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) { 274 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); 275 } 276 277 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) { 278 memcpy(data, ecc, 3); 279 } 280 281 /* 282 * Alauda driver 283 */ 284 285 /* 286 * Forget our PBA <---> LBA mappings for a particular port 287 */ 288 static void alauda_free_maps (struct alauda_media_info *media_info) 289 { 290 unsigned int shift = media_info->zoneshift 291 + media_info->blockshift + media_info->pageshift; 292 unsigned int num_zones = media_info->capacity >> shift; 293 unsigned int i; 294 295 if (media_info->lba_to_pba != NULL) 296 for (i = 0; i < num_zones; i++) { 297 kfree(media_info->lba_to_pba[i]); 298 media_info->lba_to_pba[i] = NULL; 299 } 300 301 if (media_info->pba_to_lba != NULL) 302 for (i = 0; i < num_zones; i++) { 303 kfree(media_info->pba_to_lba[i]); 304 media_info->pba_to_lba[i] = NULL; 305 } 306 } 307 308 /* 309 * Returns 2 bytes of status data 310 * The first byte describes media status, and second byte describes door status 311 */ 312 static int alauda_get_media_status(struct us_data *us, unsigned char *data) 313 { 314 int rc; 315 unsigned char command; 316 317 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 318 command = ALAUDA_GET_XD_MEDIA_STATUS; 319 else 320 command = ALAUDA_GET_SM_MEDIA_STATUS; 321 322 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 323 command, 0xc0, 0, 1, data, 2); 324 325 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]); 326 327 return rc; 328 } 329 330 /* 331 * Clears the "media was changed" bit so that we know when it changes again 332 * in the future. 333 */ 334 static int alauda_ack_media(struct us_data *us) 335 { 336 unsigned char command; 337 338 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 339 command = ALAUDA_ACK_XD_MEDIA_CHANGE; 340 else 341 command = ALAUDA_ACK_SM_MEDIA_CHANGE; 342 343 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 344 command, 0x40, 0, 1, NULL, 0); 345 } 346 347 /* 348 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, 349 * and some other details. 350 */ 351 static int alauda_get_media_signature(struct us_data *us, unsigned char *data) 352 { 353 unsigned char command; 354 355 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 356 command = ALAUDA_GET_XD_MEDIA_SIG; 357 else 358 command = ALAUDA_GET_SM_MEDIA_SIG; 359 360 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 361 command, 0xc0, 0, 0, data, 4); 362 } 363 364 /* 365 * Resets the media status (but not the whole device?) 366 */ 367 static int alauda_reset_media(struct us_data *us) 368 { 369 unsigned char *command = us->iobuf; 370 371 memset(command, 0, 9); 372 command[0] = ALAUDA_BULK_CMD; 373 command[1] = ALAUDA_BULK_RESET_MEDIA; 374 command[8] = MEDIA_PORT(us); 375 376 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 377 command, 9, NULL); 378 } 379 380 /* 381 * Examines the media and deduces capacity, etc. 382 */ 383 static int alauda_init_media(struct us_data *us) 384 { 385 unsigned char *data = us->iobuf; 386 int ready = 0; 387 struct alauda_card_info *media_info; 388 unsigned int num_zones; 389 390 while (ready == 0) { 391 msleep(20); 392 393 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 394 return USB_STOR_TRANSPORT_ERROR; 395 396 if (data[0] & 0x10) 397 ready = 1; 398 } 399 400 usb_stor_dbg(us, "We are ready for action!\n"); 401 402 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) 403 return USB_STOR_TRANSPORT_ERROR; 404 405 msleep(10); 406 407 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 408 return USB_STOR_TRANSPORT_ERROR; 409 410 if (data[0] != 0x14) { 411 usb_stor_dbg(us, "Media not ready after ack\n"); 412 return USB_STOR_TRANSPORT_ERROR; 413 } 414 415 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) 416 return USB_STOR_TRANSPORT_ERROR; 417 418 usb_stor_dbg(us, "Media signature: %02X %02X %02X %02X\n", 419 data[0], data[1], data[2], data[3]); 420 media_info = alauda_card_find_id(data[1]); 421 if (media_info == NULL) { 422 printk(KERN_WARNING 423 "alauda_init_media: Unrecognised media signature: " 424 "%02X %02X %02X %02X\n", 425 data[0], data[1], data[2], data[3]); 426 return USB_STOR_TRANSPORT_ERROR; 427 } 428 429 MEDIA_INFO(us).capacity = 1 << media_info->chipshift; 430 usb_stor_dbg(us, "Found media with capacity: %ldMB\n", 431 MEDIA_INFO(us).capacity >> 20); 432 433 MEDIA_INFO(us).pageshift = media_info->pageshift; 434 MEDIA_INFO(us).blockshift = media_info->blockshift; 435 MEDIA_INFO(us).zoneshift = media_info->zoneshift; 436 437 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; 438 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; 439 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; 440 441 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; 442 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; 443 444 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 445 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 446 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 447 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 448 449 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) 450 return USB_STOR_TRANSPORT_ERROR; 451 452 return USB_STOR_TRANSPORT_GOOD; 453 } 454 455 /* 456 * Examines the media status and does the right thing when the media has gone, 457 * appeared, or changed. 458 */ 459 static int alauda_check_media(struct us_data *us) 460 { 461 struct alauda_info *info = (struct alauda_info *) us->extra; 462 unsigned char status[2]; 463 int rc; 464 465 rc = alauda_get_media_status(us, status); 466 467 /* Check for no media or door open */ 468 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) 469 || ((status[1] & 0x01) == 0)) { 470 usb_stor_dbg(us, "No media, or door open\n"); 471 alauda_free_maps(&MEDIA_INFO(us)); 472 info->sense_key = 0x02; 473 info->sense_asc = 0x3A; 474 info->sense_ascq = 0x00; 475 return USB_STOR_TRANSPORT_FAILED; 476 } 477 478 /* Check for media change */ 479 if (status[0] & 0x08) { 480 usb_stor_dbg(us, "Media change detected\n"); 481 alauda_free_maps(&MEDIA_INFO(us)); 482 alauda_init_media(us); 483 484 info->sense_key = UNIT_ATTENTION; 485 info->sense_asc = 0x28; 486 info->sense_ascq = 0x00; 487 return USB_STOR_TRANSPORT_FAILED; 488 } 489 490 return USB_STOR_TRANSPORT_GOOD; 491 } 492 493 /* 494 * Checks the status from the 2nd status register 495 * Returns 3 bytes of status data, only the first is known 496 */ 497 static int alauda_check_status2(struct us_data *us) 498 { 499 int rc; 500 unsigned char command[] = { 501 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, 502 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) 503 }; 504 unsigned char data[3]; 505 506 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 507 command, 9, NULL); 508 if (rc != USB_STOR_XFER_GOOD) 509 return rc; 510 511 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 512 data, 3, NULL); 513 if (rc != USB_STOR_XFER_GOOD) 514 return rc; 515 516 usb_stor_dbg(us, "%02X %02X %02X\n", data[0], data[1], data[2]); 517 if (data[0] & ALAUDA_STATUS_ERROR) 518 return USB_STOR_XFER_ERROR; 519 520 return USB_STOR_XFER_GOOD; 521 } 522 523 /* 524 * Gets the redundancy data for the first page of a PBA 525 * Returns 16 bytes. 526 */ 527 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) 528 { 529 int rc; 530 unsigned char command[] = { 531 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, 532 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) 533 }; 534 535 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 536 command, 9, NULL); 537 if (rc != USB_STOR_XFER_GOOD) 538 return rc; 539 540 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 541 data, 16, NULL); 542 } 543 544 /* 545 * Finds the first unused PBA in a zone 546 * Returns the absolute PBA of an unused PBA, or 0 if none found. 547 */ 548 static u16 alauda_find_unused_pba(struct alauda_media_info *info, 549 unsigned int zone) 550 { 551 u16 *pba_to_lba = info->pba_to_lba[zone]; 552 unsigned int i; 553 554 for (i = 0; i < info->zonesize; i++) 555 if (pba_to_lba[i] == UNDEF) 556 return (zone << info->zoneshift) + i; 557 558 return 0; 559 } 560 561 /* 562 * Reads the redundancy data for all PBA's in a zone 563 * Produces lba <--> pba mappings 564 */ 565 static int alauda_read_map(struct us_data *us, unsigned int zone) 566 { 567 unsigned char *data = us->iobuf; 568 int result; 569 int i, j; 570 unsigned int zonesize = MEDIA_INFO(us).zonesize; 571 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 572 unsigned int lba_offset, lba_real, blocknum; 573 unsigned int zone_base_lba = zone * uzonesize; 574 unsigned int zone_base_pba = zone * zonesize; 575 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 576 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 577 if (lba_to_pba == NULL || pba_to_lba == NULL) { 578 result = USB_STOR_TRANSPORT_ERROR; 579 goto error; 580 } 581 582 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone); 583 584 /* 1024 PBA's per zone */ 585 for (i = 0; i < zonesize; i++) 586 lba_to_pba[i] = pba_to_lba[i] = UNDEF; 587 588 for (i = 0; i < zonesize; i++) { 589 blocknum = zone_base_pba + i; 590 591 result = alauda_get_redu_data(us, blocknum, data); 592 if (result != USB_STOR_XFER_GOOD) { 593 result = USB_STOR_TRANSPORT_ERROR; 594 goto error; 595 } 596 597 /* special PBAs have control field 0^16 */ 598 for (j = 0; j < 16; j++) 599 if (data[j] != 0) 600 goto nonz; 601 pba_to_lba[i] = UNUSABLE; 602 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum); 603 continue; 604 605 nonz: 606 /* unwritten PBAs have control field FF^16 */ 607 for (j = 0; j < 16; j++) 608 if (data[j] != 0xff) 609 goto nonff; 610 continue; 611 612 nonff: 613 /* normal PBAs start with six FFs */ 614 if (j < 6) { 615 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n", 616 blocknum, 617 data[0], data[1], data[2], data[3], 618 data[4], data[5]); 619 pba_to_lba[i] = UNUSABLE; 620 continue; 621 } 622 623 if ((data[6] >> 4) != 0x01) { 624 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n", 625 blocknum, data[6], data[7], 626 data[11], data[12]); 627 pba_to_lba[i] = UNUSABLE; 628 continue; 629 } 630 631 /* check even parity */ 632 if (parity[data[6] ^ data[7]]) { 633 printk(KERN_WARNING 634 "alauda_read_map: Bad parity in LBA for block %d" 635 " (%02X %02X)\n", i, data[6], data[7]); 636 pba_to_lba[i] = UNUSABLE; 637 continue; 638 } 639 640 lba_offset = short_pack(data[7], data[6]); 641 lba_offset = (lba_offset & 0x07FF) >> 1; 642 lba_real = lba_offset + zone_base_lba; 643 644 /* 645 * Every 1024 physical blocks ("zone"), the LBA numbers 646 * go back to zero, but are within a higher block of LBA's. 647 * Also, there is a maximum of 1000 LBA's per zone. 648 * In other words, in PBA 1024-2047 you will find LBA 0-999 649 * which are really LBA 1000-1999. This allows for 24 bad 650 * or special physical blocks per zone. 651 */ 652 653 if (lba_offset >= uzonesize) { 654 printk(KERN_WARNING 655 "alauda_read_map: Bad low LBA %d for block %d\n", 656 lba_real, blocknum); 657 continue; 658 } 659 660 if (lba_to_pba[lba_offset] != UNDEF) { 661 printk(KERN_WARNING 662 "alauda_read_map: " 663 "LBA %d seen for PBA %d and %d\n", 664 lba_real, lba_to_pba[lba_offset], blocknum); 665 continue; 666 } 667 668 pba_to_lba[i] = lba_real; 669 lba_to_pba[lba_offset] = blocknum; 670 continue; 671 } 672 673 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; 674 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; 675 result = 0; 676 goto out; 677 678 error: 679 kfree(lba_to_pba); 680 kfree(pba_to_lba); 681 out: 682 return result; 683 } 684 685 /* 686 * Checks to see whether we have already mapped a certain zone 687 * If we haven't, the map is generated 688 */ 689 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) 690 { 691 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL 692 || MEDIA_INFO(us).pba_to_lba[zone] == NULL) 693 alauda_read_map(us, zone); 694 } 695 696 /* 697 * Erases an entire block 698 */ 699 static int alauda_erase_block(struct us_data *us, u16 pba) 700 { 701 int rc; 702 unsigned char command[] = { 703 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), 704 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) 705 }; 706 unsigned char buf[2]; 707 708 usb_stor_dbg(us, "Erasing PBA %d\n", pba); 709 710 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 711 command, 9, NULL); 712 if (rc != USB_STOR_XFER_GOOD) 713 return rc; 714 715 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 716 buf, 2, NULL); 717 if (rc != USB_STOR_XFER_GOOD) 718 return rc; 719 720 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]); 721 return rc; 722 } 723 724 /* 725 * Reads data from a certain offset page inside a PBA, including interleaved 726 * redundancy data. Returns (pagesize+64)*pages bytes in data. 727 */ 728 static int alauda_read_block_raw(struct us_data *us, u16 pba, 729 unsigned int page, unsigned int pages, unsigned char *data) 730 { 731 int rc; 732 unsigned char command[] = { 733 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), 734 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) 735 }; 736 737 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages); 738 739 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 740 command, 9, NULL); 741 if (rc != USB_STOR_XFER_GOOD) 742 return rc; 743 744 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 745 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); 746 } 747 748 /* 749 * Reads data from a certain offset page inside a PBA, excluding redundancy 750 * data. Returns pagesize*pages bytes in data. Note that data must be big enough 751 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' 752 * trailing bytes outside this function. 753 */ 754 static int alauda_read_block(struct us_data *us, u16 pba, 755 unsigned int page, unsigned int pages, unsigned char *data) 756 { 757 int i, rc; 758 unsigned int pagesize = MEDIA_INFO(us).pagesize; 759 760 rc = alauda_read_block_raw(us, pba, page, pages, data); 761 if (rc != USB_STOR_XFER_GOOD) 762 return rc; 763 764 /* Cut out the redundancy data */ 765 for (i = 0; i < pages; i++) { 766 int dest_offset = i * pagesize; 767 int src_offset = i * (pagesize + 64); 768 memmove(data + dest_offset, data + src_offset, pagesize); 769 } 770 771 return rc; 772 } 773 774 /* 775 * Writes an entire block of data and checks status after write. 776 * Redundancy data must be already included in data. Data should be 777 * (pagesize+64)*blocksize bytes in length. 778 */ 779 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) 780 { 781 int rc; 782 struct alauda_info *info = (struct alauda_info *) us->extra; 783 unsigned char command[] = { 784 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), 785 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) 786 }; 787 788 usb_stor_dbg(us, "pba %d\n", pba); 789 790 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 791 command, 9, NULL); 792 if (rc != USB_STOR_XFER_GOOD) 793 return rc; 794 795 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, 796 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, 797 NULL); 798 if (rc != USB_STOR_XFER_GOOD) 799 return rc; 800 801 return alauda_check_status2(us); 802 } 803 804 /* 805 * Write some data to a specific LBA. 806 */ 807 static int alauda_write_lba(struct us_data *us, u16 lba, 808 unsigned int page, unsigned int pages, 809 unsigned char *ptr, unsigned char *blockbuffer) 810 { 811 u16 pba, lbap, new_pba; 812 unsigned char *bptr, *cptr, *xptr; 813 unsigned char ecc[3]; 814 int i, result; 815 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 816 unsigned int zonesize = MEDIA_INFO(us).zonesize; 817 unsigned int pagesize = MEDIA_INFO(us).pagesize; 818 unsigned int blocksize = MEDIA_INFO(us).blocksize; 819 unsigned int lba_offset = lba % uzonesize; 820 unsigned int new_pba_offset; 821 unsigned int zone = lba / uzonesize; 822 823 alauda_ensure_map_for_zone(us, zone); 824 825 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 826 if (pba == 1) { 827 /* Maybe it is impossible to write to PBA 1. 828 Fake success, but don't do anything. */ 829 printk(KERN_WARNING 830 "alauda_write_lba: avoid writing to pba 1\n"); 831 return USB_STOR_TRANSPORT_GOOD; 832 } 833 834 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); 835 if (!new_pba) { 836 printk(KERN_WARNING 837 "alauda_write_lba: Out of unused blocks\n"); 838 return USB_STOR_TRANSPORT_ERROR; 839 } 840 841 /* read old contents */ 842 if (pba != UNDEF) { 843 result = alauda_read_block_raw(us, pba, 0, 844 blocksize, blockbuffer); 845 if (result != USB_STOR_XFER_GOOD) 846 return result; 847 } else { 848 memset(blockbuffer, 0, blocksize * (pagesize + 64)); 849 } 850 851 lbap = (lba_offset << 1) | 0x1000; 852 if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) 853 lbap ^= 1; 854 855 /* check old contents and fill lba */ 856 for (i = 0; i < blocksize; i++) { 857 bptr = blockbuffer + (i * (pagesize + 64)); 858 cptr = bptr + pagesize; 859 nand_compute_ecc(bptr, ecc); 860 if (!nand_compare_ecc(cptr+13, ecc)) { 861 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n", 862 i, pba); 863 nand_store_ecc(cptr+13, ecc); 864 } 865 nand_compute_ecc(bptr + (pagesize / 2), ecc); 866 if (!nand_compare_ecc(cptr+8, ecc)) { 867 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n", 868 i, pba); 869 nand_store_ecc(cptr+8, ecc); 870 } 871 cptr[6] = cptr[11] = MSB_of(lbap); 872 cptr[7] = cptr[12] = LSB_of(lbap); 873 } 874 875 /* copy in new stuff and compute ECC */ 876 xptr = ptr; 877 for (i = page; i < page+pages; i++) { 878 bptr = blockbuffer + (i * (pagesize + 64)); 879 cptr = bptr + pagesize; 880 memcpy(bptr, xptr, pagesize); 881 xptr += pagesize; 882 nand_compute_ecc(bptr, ecc); 883 nand_store_ecc(cptr+13, ecc); 884 nand_compute_ecc(bptr + (pagesize / 2), ecc); 885 nand_store_ecc(cptr+8, ecc); 886 } 887 888 result = alauda_write_block(us, new_pba, blockbuffer); 889 if (result != USB_STOR_XFER_GOOD) 890 return result; 891 892 new_pba_offset = new_pba - (zone * zonesize); 893 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; 894 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; 895 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba); 896 897 if (pba != UNDEF) { 898 unsigned int pba_offset = pba - (zone * zonesize); 899 result = alauda_erase_block(us, pba); 900 if (result != USB_STOR_XFER_GOOD) 901 return result; 902 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; 903 } 904 905 return USB_STOR_TRANSPORT_GOOD; 906 } 907 908 /* 909 * Read data from a specific sector address 910 */ 911 static int alauda_read_data(struct us_data *us, unsigned long address, 912 unsigned int sectors) 913 { 914 unsigned char *buffer; 915 u16 lba, max_lba; 916 unsigned int page, len, offset; 917 unsigned int blockshift = MEDIA_INFO(us).blockshift; 918 unsigned int pageshift = MEDIA_INFO(us).pageshift; 919 unsigned int blocksize = MEDIA_INFO(us).blocksize; 920 unsigned int pagesize = MEDIA_INFO(us).pagesize; 921 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 922 struct scatterlist *sg; 923 int result; 924 925 /* 926 * Since we only read in one block at a time, we have to create 927 * a bounce buffer and move the data a piece at a time between the 928 * bounce buffer and the actual transfer buffer. 929 * We make this buffer big enough to hold temporary redundancy data, 930 * which we use when reading the data blocks. 931 */ 932 933 len = min(sectors, blocksize) * (pagesize + 64); 934 buffer = kmalloc(len, GFP_NOIO); 935 if (buffer == NULL) { 936 printk(KERN_WARNING "alauda_read_data: Out of memory\n"); 937 return USB_STOR_TRANSPORT_ERROR; 938 } 939 940 /* Figure out the initial LBA and page */ 941 lba = address >> blockshift; 942 page = (address & MEDIA_INFO(us).blockmask); 943 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); 944 945 result = USB_STOR_TRANSPORT_GOOD; 946 offset = 0; 947 sg = NULL; 948 949 while (sectors > 0) { 950 unsigned int zone = lba / uzonesize; /* integer division */ 951 unsigned int lba_offset = lba - (zone * uzonesize); 952 unsigned int pages; 953 u16 pba; 954 alauda_ensure_map_for_zone(us, zone); 955 956 /* Not overflowing capacity? */ 957 if (lba >= max_lba) { 958 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", 959 lba, max_lba); 960 result = USB_STOR_TRANSPORT_ERROR; 961 break; 962 } 963 964 /* Find number of pages we can read in this block */ 965 pages = min(sectors, blocksize - page); 966 len = pages << pageshift; 967 968 /* Find where this lba lives on disk */ 969 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 970 971 if (pba == UNDEF) { /* this lba was never written */ 972 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n", 973 pages, lba, page); 974 975 /* This is not really an error. It just means 976 that the block has never been written. 977 Instead of returning USB_STOR_TRANSPORT_ERROR 978 it is better to return all zero data. */ 979 980 memset(buffer, 0, len); 981 } else { 982 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n", 983 pages, pba, lba, page); 984 985 result = alauda_read_block(us, pba, page, pages, buffer); 986 if (result != USB_STOR_TRANSPORT_GOOD) 987 break; 988 } 989 990 /* Store the data in the transfer buffer */ 991 usb_stor_access_xfer_buf(buffer, len, us->srb, 992 &sg, &offset, TO_XFER_BUF); 993 994 page = 0; 995 lba++; 996 sectors -= pages; 997 } 998 999 kfree(buffer); 1000 return result; 1001 } 1002 1003 /* 1004 * Write data to a specific sector address 1005 */ 1006 static int alauda_write_data(struct us_data *us, unsigned long address, 1007 unsigned int sectors) 1008 { 1009 unsigned char *buffer, *blockbuffer; 1010 unsigned int page, len, offset; 1011 unsigned int blockshift = MEDIA_INFO(us).blockshift; 1012 unsigned int pageshift = MEDIA_INFO(us).pageshift; 1013 unsigned int blocksize = MEDIA_INFO(us).blocksize; 1014 unsigned int pagesize = MEDIA_INFO(us).pagesize; 1015 struct scatterlist *sg; 1016 u16 lba, max_lba; 1017 int result; 1018 1019 /* 1020 * Since we don't write the user data directly to the device, 1021 * we have to create a bounce buffer and move the data a piece 1022 * at a time between the bounce buffer and the actual transfer buffer. 1023 */ 1024 1025 len = min(sectors, blocksize) * pagesize; 1026 buffer = kmalloc(len, GFP_NOIO); 1027 if (buffer == NULL) { 1028 printk(KERN_WARNING "alauda_write_data: Out of memory\n"); 1029 return USB_STOR_TRANSPORT_ERROR; 1030 } 1031 1032 /* 1033 * We also need a temporary block buffer, where we read in the old data, 1034 * overwrite parts with the new data, and manipulate the redundancy data 1035 */ 1036 blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO); 1037 if (blockbuffer == NULL) { 1038 printk(KERN_WARNING "alauda_write_data: Out of memory\n"); 1039 kfree(buffer); 1040 return USB_STOR_TRANSPORT_ERROR; 1041 } 1042 1043 /* Figure out the initial LBA and page */ 1044 lba = address >> blockshift; 1045 page = (address & MEDIA_INFO(us).blockmask); 1046 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); 1047 1048 result = USB_STOR_TRANSPORT_GOOD; 1049 offset = 0; 1050 sg = NULL; 1051 1052 while (sectors > 0) { 1053 /* Write as many sectors as possible in this block */ 1054 unsigned int pages = min(sectors, blocksize - page); 1055 len = pages << pageshift; 1056 1057 /* Not overflowing capacity? */ 1058 if (lba >= max_lba) { 1059 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n", 1060 lba, max_lba); 1061 result = USB_STOR_TRANSPORT_ERROR; 1062 break; 1063 } 1064 1065 /* Get the data from the transfer buffer */ 1066 usb_stor_access_xfer_buf(buffer, len, us->srb, 1067 &sg, &offset, FROM_XFER_BUF); 1068 1069 result = alauda_write_lba(us, lba, page, pages, buffer, 1070 blockbuffer); 1071 if (result != USB_STOR_TRANSPORT_GOOD) 1072 break; 1073 1074 page = 0; 1075 lba++; 1076 sectors -= pages; 1077 } 1078 1079 kfree(buffer); 1080 kfree(blockbuffer); 1081 return result; 1082 } 1083 1084 /* 1085 * Our interface with the rest of the world 1086 */ 1087 1088 static void alauda_info_destructor(void *extra) 1089 { 1090 struct alauda_info *info = (struct alauda_info *) extra; 1091 int port; 1092 1093 if (!info) 1094 return; 1095 1096 for (port = 0; port < 2; port++) { 1097 struct alauda_media_info *media_info = &info->port[port]; 1098 1099 alauda_free_maps(media_info); 1100 kfree(media_info->lba_to_pba); 1101 kfree(media_info->pba_to_lba); 1102 } 1103 } 1104 1105 /* 1106 * Initialize alauda_info struct and find the data-write endpoint 1107 */ 1108 static int init_alauda(struct us_data *us) 1109 { 1110 struct alauda_info *info; 1111 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; 1112 nand_init_ecc(); 1113 1114 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); 1115 if (!us->extra) 1116 return USB_STOR_TRANSPORT_ERROR; 1117 1118 info = (struct alauda_info *) us->extra; 1119 us->extra_destructor = alauda_info_destructor; 1120 1121 info->wr_ep = usb_sndbulkpipe(us->pusb_dev, 1122 altsetting->endpoint[0].desc.bEndpointAddress 1123 & USB_ENDPOINT_NUMBER_MASK); 1124 1125 return USB_STOR_TRANSPORT_GOOD; 1126 } 1127 1128 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) 1129 { 1130 int rc; 1131 struct alauda_info *info = (struct alauda_info *) us->extra; 1132 unsigned char *ptr = us->iobuf; 1133 static unsigned char inquiry_response[36] = { 1134 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 1135 }; 1136 1137 if (srb->cmnd[0] == INQUIRY) { 1138 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n"); 1139 memcpy(ptr, inquiry_response, sizeof(inquiry_response)); 1140 fill_inquiry_response(us, ptr, 36); 1141 return USB_STOR_TRANSPORT_GOOD; 1142 } 1143 1144 if (srb->cmnd[0] == TEST_UNIT_READY) { 1145 usb_stor_dbg(us, "TEST_UNIT_READY\n"); 1146 return alauda_check_media(us); 1147 } 1148 1149 if (srb->cmnd[0] == READ_CAPACITY) { 1150 unsigned int num_zones; 1151 unsigned long capacity; 1152 1153 rc = alauda_check_media(us); 1154 if (rc != USB_STOR_TRANSPORT_GOOD) 1155 return rc; 1156 1157 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 1158 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 1159 1160 capacity = num_zones * MEDIA_INFO(us).uzonesize 1161 * MEDIA_INFO(us).blocksize; 1162 1163 /* Report capacity and page size */ 1164 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); 1165 ((__be32 *) ptr)[1] = cpu_to_be32(512); 1166 1167 usb_stor_set_xfer_buf(ptr, 8, srb); 1168 return USB_STOR_TRANSPORT_GOOD; 1169 } 1170 1171 if (srb->cmnd[0] == READ_10) { 1172 unsigned int page, pages; 1173 1174 rc = alauda_check_media(us); 1175 if (rc != USB_STOR_TRANSPORT_GOOD) 1176 return rc; 1177 1178 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1179 page <<= 16; 1180 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1181 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1182 1183 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages); 1184 1185 return alauda_read_data(us, page, pages); 1186 } 1187 1188 if (srb->cmnd[0] == WRITE_10) { 1189 unsigned int page, pages; 1190 1191 rc = alauda_check_media(us); 1192 if (rc != USB_STOR_TRANSPORT_GOOD) 1193 return rc; 1194 1195 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1196 page <<= 16; 1197 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1198 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1199 1200 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages); 1201 1202 return alauda_write_data(us, page, pages); 1203 } 1204 1205 if (srb->cmnd[0] == REQUEST_SENSE) { 1206 usb_stor_dbg(us, "REQUEST_SENSE\n"); 1207 1208 memset(ptr, 0, 18); 1209 ptr[0] = 0xF0; 1210 ptr[2] = info->sense_key; 1211 ptr[7] = 11; 1212 ptr[12] = info->sense_asc; 1213 ptr[13] = info->sense_ascq; 1214 usb_stor_set_xfer_buf(ptr, 18, srb); 1215 1216 return USB_STOR_TRANSPORT_GOOD; 1217 } 1218 1219 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { 1220 /* sure. whatever. not like we can stop the user from popping 1221 the media out of the device (no locking doors, etc) */ 1222 return USB_STOR_TRANSPORT_GOOD; 1223 } 1224 1225 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n", 1226 srb->cmnd[0], srb->cmnd[0]); 1227 info->sense_key = 0x05; 1228 info->sense_asc = 0x20; 1229 info->sense_ascq = 0x00; 1230 return USB_STOR_TRANSPORT_FAILED; 1231 } 1232 1233 static int alauda_probe(struct usb_interface *intf, 1234 const struct usb_device_id *id) 1235 { 1236 struct us_data *us; 1237 int result; 1238 1239 result = usb_stor_probe1(&us, intf, id, 1240 (id - alauda_usb_ids) + alauda_unusual_dev_list); 1241 if (result) 1242 return result; 1243 1244 us->transport_name = "Alauda Control/Bulk"; 1245 us->transport = alauda_transport; 1246 us->transport_reset = usb_stor_Bulk_reset; 1247 us->max_lun = 1; 1248 1249 result = usb_stor_probe2(us); 1250 return result; 1251 } 1252 1253 static struct usb_driver alauda_driver = { 1254 .name = "ums-alauda", 1255 .probe = alauda_probe, 1256 .disconnect = usb_stor_disconnect, 1257 .suspend = usb_stor_suspend, 1258 .resume = usb_stor_resume, 1259 .reset_resume = usb_stor_reset_resume, 1260 .pre_reset = usb_stor_pre_reset, 1261 .post_reset = usb_stor_post_reset, 1262 .id_table = alauda_usb_ids, 1263 .soft_unbind = 1, 1264 .no_dynamic_id = 1, 1265 }; 1266 1267 module_usb_driver(alauda_driver); 1268