xref: /openbmc/linux/drivers/usb/storage/alauda.c (revision 10c1d542c7e871865bca381842fd04a92d2b95ec)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Alauda-based card readers
4  *
5  * Current development and maintenance by:
6  *   (c) 2005 Daniel Drake <dsd@gentoo.org>
7  *
8  * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
9  *
10  * Alauda implements a vendor-specific command set to access two media reader
11  * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
12  * which are accepted by these devices.
13  *
14  * The driver was developed through reverse-engineering, with the help of the
15  * sddr09 driver which has many similarities, and with some help from the
16  * (very old) vendor-supplied GPL sma03 driver.
17  *
18  * For protocol info, see http://alauda.sourceforge.net
19  */
20 
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_device.h>
27 
28 #include "usb.h"
29 #include "transport.h"
30 #include "protocol.h"
31 #include "debug.h"
32 #include "scsiglue.h"
33 
34 #define DRV_NAME "ums-alauda"
35 
36 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
37 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
38 MODULE_LICENSE("GPL");
39 
40 /*
41  * Status bytes
42  */
43 #define ALAUDA_STATUS_ERROR		0x01
44 #define ALAUDA_STATUS_READY		0x40
45 
46 /*
47  * Control opcodes (for request field)
48  */
49 #define ALAUDA_GET_XD_MEDIA_STATUS	0x08
50 #define ALAUDA_GET_SM_MEDIA_STATUS	0x98
51 #define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
52 #define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
53 #define ALAUDA_GET_XD_MEDIA_SIG		0x86
54 #define ALAUDA_GET_SM_MEDIA_SIG		0x96
55 
56 /*
57  * Bulk command identity (byte 0)
58  */
59 #define ALAUDA_BULK_CMD			0x40
60 
61 /*
62  * Bulk opcodes (byte 1)
63  */
64 #define ALAUDA_BULK_GET_REDU_DATA	0x85
65 #define ALAUDA_BULK_READ_BLOCK		0x94
66 #define ALAUDA_BULK_ERASE_BLOCK		0xa3
67 #define ALAUDA_BULK_WRITE_BLOCK		0xb4
68 #define ALAUDA_BULK_GET_STATUS2		0xb7
69 #define ALAUDA_BULK_RESET_MEDIA		0xe0
70 
71 /*
72  * Port to operate on (byte 8)
73  */
74 #define ALAUDA_PORT_XD			0x00
75 #define ALAUDA_PORT_SM			0x01
76 
77 /*
78  * LBA and PBA are unsigned ints. Special values.
79  */
80 #define UNDEF    0xffff
81 #define SPARE    0xfffe
82 #define UNUSABLE 0xfffd
83 
84 struct alauda_media_info {
85 	unsigned long capacity;		/* total media size in bytes */
86 	unsigned int pagesize;		/* page size in bytes */
87 	unsigned int blocksize;		/* number of pages per block */
88 	unsigned int uzonesize;		/* number of usable blocks per zone */
89 	unsigned int zonesize;		/* number of blocks per zone */
90 	unsigned int blockmask;		/* mask to get page from address */
91 
92 	unsigned char pageshift;
93 	unsigned char blockshift;
94 	unsigned char zoneshift;
95 
96 	u16 **lba_to_pba;		/* logical to physical block map */
97 	u16 **pba_to_lba;		/* physical to logical block map */
98 };
99 
100 struct alauda_info {
101 	struct alauda_media_info port[2];
102 	int wr_ep;			/* endpoint to write data out of */
103 
104 	unsigned char sense_key;
105 	unsigned long sense_asc;	/* additional sense code */
106 	unsigned long sense_ascq;	/* additional sense code qualifier */
107 };
108 
109 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
110 #define LSB_of(s) ((s)&0xFF)
111 #define MSB_of(s) ((s)>>8)
112 
113 #define MEDIA_PORT(us) us->srb->device->lun
114 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
115 
116 #define PBA_LO(pba) ((pba & 0xF) << 5)
117 #define PBA_HI(pba) (pba >> 3)
118 #define PBA_ZONE(pba) (pba >> 11)
119 
120 static int init_alauda(struct us_data *us);
121 
122 
123 /*
124  * The table of devices
125  */
126 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
127 		    vendorName, productName, useProtocol, useTransport, \
128 		    initFunction, flags) \
129 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
130   .driver_info = (flags) }
131 
132 static struct usb_device_id alauda_usb_ids[] = {
133 #	include "unusual_alauda.h"
134 	{ }		/* Terminating entry */
135 };
136 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
137 
138 #undef UNUSUAL_DEV
139 
140 /*
141  * The flags table
142  */
143 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
144 		    vendor_name, product_name, use_protocol, use_transport, \
145 		    init_function, Flags) \
146 { \
147 	.vendorName = vendor_name,	\
148 	.productName = product_name,	\
149 	.useProtocol = use_protocol,	\
150 	.useTransport = use_transport,	\
151 	.initFunction = init_function,	\
152 }
153 
154 static struct us_unusual_dev alauda_unusual_dev_list[] = {
155 #	include "unusual_alauda.h"
156 	{ }		/* Terminating entry */
157 };
158 
159 #undef UNUSUAL_DEV
160 
161 
162 /*
163  * Media handling
164  */
165 
166 struct alauda_card_info {
167 	unsigned char id;		/* id byte */
168 	unsigned char chipshift;	/* 1<<cs bytes total capacity */
169 	unsigned char pageshift;	/* 1<<ps bytes in a page */
170 	unsigned char blockshift;	/* 1<<bs pages per block */
171 	unsigned char zoneshift;	/* 1<<zs blocks per zone */
172 };
173 
174 static struct alauda_card_info alauda_card_ids[] = {
175 	/* NAND flash */
176 	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
177 	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
178 	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
179 	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
180 	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
181 	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
182 	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
183 	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
184 	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
185 	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
186 	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
187 	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
188 	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
189 	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
190 
191 	/* MASK ROM */
192 	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
193 	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
194 	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
195 	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
196 	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
197 	{ 0,}
198 };
199 
200 static struct alauda_card_info *alauda_card_find_id(unsigned char id)
201 {
202 	int i;
203 
204 	for (i = 0; alauda_card_ids[i].id != 0; i++)
205 		if (alauda_card_ids[i].id == id)
206 			return &(alauda_card_ids[i]);
207 	return NULL;
208 }
209 
210 /*
211  * ECC computation.
212  */
213 
214 static unsigned char parity[256];
215 static unsigned char ecc2[256];
216 
217 static void nand_init_ecc(void)
218 {
219 	int i, j, a;
220 
221 	parity[0] = 0;
222 	for (i = 1; i < 256; i++)
223 		parity[i] = (parity[i&(i-1)] ^ 1);
224 
225 	for (i = 0; i < 256; i++) {
226 		a = 0;
227 		for (j = 0; j < 8; j++) {
228 			if (i & (1<<j)) {
229 				if ((j & 1) == 0)
230 					a ^= 0x04;
231 				if ((j & 2) == 0)
232 					a ^= 0x10;
233 				if ((j & 4) == 0)
234 					a ^= 0x40;
235 			}
236 		}
237 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
238 	}
239 }
240 
241 /* compute 3-byte ecc on 256 bytes */
242 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
243 {
244 	int i, j, a;
245 	unsigned char par = 0, bit, bits[8] = {0};
246 
247 	/* collect 16 checksum bits */
248 	for (i = 0; i < 256; i++) {
249 		par ^= data[i];
250 		bit = parity[data[i]];
251 		for (j = 0; j < 8; j++)
252 			if ((i & (1<<j)) == 0)
253 				bits[j] ^= bit;
254 	}
255 
256 	/* put 4+4+4 = 12 bits in the ecc */
257 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
258 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
259 
260 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
261 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
262 
263 	ecc[2] = ecc2[par];
264 }
265 
266 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
267 {
268 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
269 }
270 
271 static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
272 {
273 	memcpy(data, ecc, 3);
274 }
275 
276 /*
277  * Alauda driver
278  */
279 
280 /*
281  * Forget our PBA <---> LBA mappings for a particular port
282  */
283 static void alauda_free_maps (struct alauda_media_info *media_info)
284 {
285 	unsigned int shift = media_info->zoneshift
286 		+ media_info->blockshift + media_info->pageshift;
287 	unsigned int num_zones = media_info->capacity >> shift;
288 	unsigned int i;
289 
290 	if (media_info->lba_to_pba != NULL)
291 		for (i = 0; i < num_zones; i++) {
292 			kfree(media_info->lba_to_pba[i]);
293 			media_info->lba_to_pba[i] = NULL;
294 		}
295 
296 	if (media_info->pba_to_lba != NULL)
297 		for (i = 0; i < num_zones; i++) {
298 			kfree(media_info->pba_to_lba[i]);
299 			media_info->pba_to_lba[i] = NULL;
300 		}
301 }
302 
303 /*
304  * Returns 2 bytes of status data
305  * The first byte describes media status, and second byte describes door status
306  */
307 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
308 {
309 	int rc;
310 	unsigned char command;
311 
312 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
313 		command = ALAUDA_GET_XD_MEDIA_STATUS;
314 	else
315 		command = ALAUDA_GET_SM_MEDIA_STATUS;
316 
317 	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
318 		command, 0xc0, 0, 1, data, 2);
319 
320 	usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
321 
322 	return rc;
323 }
324 
325 /*
326  * Clears the "media was changed" bit so that we know when it changes again
327  * in the future.
328  */
329 static int alauda_ack_media(struct us_data *us)
330 {
331 	unsigned char command;
332 
333 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
334 		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
335 	else
336 		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
337 
338 	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
339 		command, 0x40, 0, 1, NULL, 0);
340 }
341 
342 /*
343  * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
344  * and some other details.
345  */
346 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
347 {
348 	unsigned char command;
349 
350 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
351 		command = ALAUDA_GET_XD_MEDIA_SIG;
352 	else
353 		command = ALAUDA_GET_SM_MEDIA_SIG;
354 
355 	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
356 		command, 0xc0, 0, 0, data, 4);
357 }
358 
359 /*
360  * Resets the media status (but not the whole device?)
361  */
362 static int alauda_reset_media(struct us_data *us)
363 {
364 	unsigned char *command = us->iobuf;
365 
366 	memset(command, 0, 9);
367 	command[0] = ALAUDA_BULK_CMD;
368 	command[1] = ALAUDA_BULK_RESET_MEDIA;
369 	command[8] = MEDIA_PORT(us);
370 
371 	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
372 		command, 9, NULL);
373 }
374 
375 /*
376  * Examines the media and deduces capacity, etc.
377  */
378 static int alauda_init_media(struct us_data *us)
379 {
380 	unsigned char *data = us->iobuf;
381 	int ready = 0;
382 	struct alauda_card_info *media_info;
383 	unsigned int num_zones;
384 
385 	while (ready == 0) {
386 		msleep(20);
387 
388 		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
389 			return USB_STOR_TRANSPORT_ERROR;
390 
391 		if (data[0] & 0x10)
392 			ready = 1;
393 	}
394 
395 	usb_stor_dbg(us, "We are ready for action!\n");
396 
397 	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
398 		return USB_STOR_TRANSPORT_ERROR;
399 
400 	msleep(10);
401 
402 	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
403 		return USB_STOR_TRANSPORT_ERROR;
404 
405 	if (data[0] != 0x14) {
406 		usb_stor_dbg(us, "Media not ready after ack\n");
407 		return USB_STOR_TRANSPORT_ERROR;
408 	}
409 
410 	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
411 		return USB_STOR_TRANSPORT_ERROR;
412 
413 	usb_stor_dbg(us, "Media signature: %4ph\n", data);
414 	media_info = alauda_card_find_id(data[1]);
415 	if (media_info == NULL) {
416 		pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
417 			data);
418 		return USB_STOR_TRANSPORT_ERROR;
419 	}
420 
421 	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
422 	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
423 		     MEDIA_INFO(us).capacity >> 20);
424 
425 	MEDIA_INFO(us).pageshift = media_info->pageshift;
426 	MEDIA_INFO(us).blockshift = media_info->blockshift;
427 	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
428 
429 	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
430 	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
431 	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
432 
433 	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
434 	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
435 
436 	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
437 		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
438 	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
439 	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
440 
441 	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
442 		return USB_STOR_TRANSPORT_ERROR;
443 
444 	return USB_STOR_TRANSPORT_GOOD;
445 }
446 
447 /*
448  * Examines the media status and does the right thing when the media has gone,
449  * appeared, or changed.
450  */
451 static int alauda_check_media(struct us_data *us)
452 {
453 	struct alauda_info *info = (struct alauda_info *) us->extra;
454 	unsigned char status[2];
455 	int rc;
456 
457 	rc = alauda_get_media_status(us, status);
458 
459 	/* Check for no media or door open */
460 	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
461 		|| ((status[1] & 0x01) == 0)) {
462 		usb_stor_dbg(us, "No media, or door open\n");
463 		alauda_free_maps(&MEDIA_INFO(us));
464 		info->sense_key = 0x02;
465 		info->sense_asc = 0x3A;
466 		info->sense_ascq = 0x00;
467 		return USB_STOR_TRANSPORT_FAILED;
468 	}
469 
470 	/* Check for media change */
471 	if (status[0] & 0x08) {
472 		usb_stor_dbg(us, "Media change detected\n");
473 		alauda_free_maps(&MEDIA_INFO(us));
474 		alauda_init_media(us);
475 
476 		info->sense_key = UNIT_ATTENTION;
477 		info->sense_asc = 0x28;
478 		info->sense_ascq = 0x00;
479 		return USB_STOR_TRANSPORT_FAILED;
480 	}
481 
482 	return USB_STOR_TRANSPORT_GOOD;
483 }
484 
485 /*
486  * Checks the status from the 2nd status register
487  * Returns 3 bytes of status data, only the first is known
488  */
489 static int alauda_check_status2(struct us_data *us)
490 {
491 	int rc;
492 	unsigned char command[] = {
493 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
494 		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
495 	};
496 	unsigned char data[3];
497 
498 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
499 		command, 9, NULL);
500 	if (rc != USB_STOR_XFER_GOOD)
501 		return rc;
502 
503 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
504 		data, 3, NULL);
505 	if (rc != USB_STOR_XFER_GOOD)
506 		return rc;
507 
508 	usb_stor_dbg(us, "%3ph\n", data);
509 	if (data[0] & ALAUDA_STATUS_ERROR)
510 		return USB_STOR_XFER_ERROR;
511 
512 	return USB_STOR_XFER_GOOD;
513 }
514 
515 /*
516  * Gets the redundancy data for the first page of a PBA
517  * Returns 16 bytes.
518  */
519 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
520 {
521 	int rc;
522 	unsigned char command[] = {
523 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
524 		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
525 	};
526 
527 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
528 		command, 9, NULL);
529 	if (rc != USB_STOR_XFER_GOOD)
530 		return rc;
531 
532 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
533 		data, 16, NULL);
534 }
535 
536 /*
537  * Finds the first unused PBA in a zone
538  * Returns the absolute PBA of an unused PBA, or 0 if none found.
539  */
540 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
541 	unsigned int zone)
542 {
543 	u16 *pba_to_lba = info->pba_to_lba[zone];
544 	unsigned int i;
545 
546 	for (i = 0; i < info->zonesize; i++)
547 		if (pba_to_lba[i] == UNDEF)
548 			return (zone << info->zoneshift) + i;
549 
550 	return 0;
551 }
552 
553 /*
554  * Reads the redundancy data for all PBA's in a zone
555  * Produces lba <--> pba mappings
556  */
557 static int alauda_read_map(struct us_data *us, unsigned int zone)
558 {
559 	unsigned char *data = us->iobuf;
560 	int result;
561 	int i, j;
562 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
563 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
564 	unsigned int lba_offset, lba_real, blocknum;
565 	unsigned int zone_base_lba = zone * uzonesize;
566 	unsigned int zone_base_pba = zone * zonesize;
567 	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
568 	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
569 	if (lba_to_pba == NULL || pba_to_lba == NULL) {
570 		result = USB_STOR_TRANSPORT_ERROR;
571 		goto error;
572 	}
573 
574 	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
575 
576 	/* 1024 PBA's per zone */
577 	for (i = 0; i < zonesize; i++)
578 		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
579 
580 	for (i = 0; i < zonesize; i++) {
581 		blocknum = zone_base_pba + i;
582 
583 		result = alauda_get_redu_data(us, blocknum, data);
584 		if (result != USB_STOR_XFER_GOOD) {
585 			result = USB_STOR_TRANSPORT_ERROR;
586 			goto error;
587 		}
588 
589 		/* special PBAs have control field 0^16 */
590 		for (j = 0; j < 16; j++)
591 			if (data[j] != 0)
592 				goto nonz;
593 		pba_to_lba[i] = UNUSABLE;
594 		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
595 		continue;
596 
597 	nonz:
598 		/* unwritten PBAs have control field FF^16 */
599 		for (j = 0; j < 16; j++)
600 			if (data[j] != 0xff)
601 				goto nonff;
602 		continue;
603 
604 	nonff:
605 		/* normal PBAs start with six FFs */
606 		if (j < 6) {
607 			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
608 				     blocknum,
609 				     data[0], data[1], data[2], data[3],
610 				     data[4], data[5]);
611 			pba_to_lba[i] = UNUSABLE;
612 			continue;
613 		}
614 
615 		if ((data[6] >> 4) != 0x01) {
616 			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
617 				     blocknum, data[6], data[7],
618 				     data[11], data[12]);
619 			pba_to_lba[i] = UNUSABLE;
620 			continue;
621 		}
622 
623 		/* check even parity */
624 		if (parity[data[6] ^ data[7]]) {
625 			printk(KERN_WARNING
626 			       "alauda_read_map: Bad parity in LBA for block %d"
627 			       " (%02X %02X)\n", i, data[6], data[7]);
628 			pba_to_lba[i] = UNUSABLE;
629 			continue;
630 		}
631 
632 		lba_offset = short_pack(data[7], data[6]);
633 		lba_offset = (lba_offset & 0x07FF) >> 1;
634 		lba_real = lba_offset + zone_base_lba;
635 
636 		/*
637 		 * Every 1024 physical blocks ("zone"), the LBA numbers
638 		 * go back to zero, but are within a higher block of LBA's.
639 		 * Also, there is a maximum of 1000 LBA's per zone.
640 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
641 		 * which are really LBA 1000-1999. This allows for 24 bad
642 		 * or special physical blocks per zone.
643 		 */
644 
645 		if (lba_offset >= uzonesize) {
646 			printk(KERN_WARNING
647 			       "alauda_read_map: Bad low LBA %d for block %d\n",
648 			       lba_real, blocknum);
649 			continue;
650 		}
651 
652 		if (lba_to_pba[lba_offset] != UNDEF) {
653 			printk(KERN_WARNING
654 			       "alauda_read_map: "
655 			       "LBA %d seen for PBA %d and %d\n",
656 			       lba_real, lba_to_pba[lba_offset], blocknum);
657 			continue;
658 		}
659 
660 		pba_to_lba[i] = lba_real;
661 		lba_to_pba[lba_offset] = blocknum;
662 		continue;
663 	}
664 
665 	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
666 	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
667 	result = 0;
668 	goto out;
669 
670 error:
671 	kfree(lba_to_pba);
672 	kfree(pba_to_lba);
673 out:
674 	return result;
675 }
676 
677 /*
678  * Checks to see whether we have already mapped a certain zone
679  * If we haven't, the map is generated
680  */
681 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
682 {
683 	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
684 		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
685 		alauda_read_map(us, zone);
686 }
687 
688 /*
689  * Erases an entire block
690  */
691 static int alauda_erase_block(struct us_data *us, u16 pba)
692 {
693 	int rc;
694 	unsigned char command[] = {
695 		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
696 		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
697 	};
698 	unsigned char buf[2];
699 
700 	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
701 
702 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
703 		command, 9, NULL);
704 	if (rc != USB_STOR_XFER_GOOD)
705 		return rc;
706 
707 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
708 		buf, 2, NULL);
709 	if (rc != USB_STOR_XFER_GOOD)
710 		return rc;
711 
712 	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
713 	return rc;
714 }
715 
716 /*
717  * Reads data from a certain offset page inside a PBA, including interleaved
718  * redundancy data. Returns (pagesize+64)*pages bytes in data.
719  */
720 static int alauda_read_block_raw(struct us_data *us, u16 pba,
721 		unsigned int page, unsigned int pages, unsigned char *data)
722 {
723 	int rc;
724 	unsigned char command[] = {
725 		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
726 		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
727 	};
728 
729 	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
730 
731 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
732 		command, 9, NULL);
733 	if (rc != USB_STOR_XFER_GOOD)
734 		return rc;
735 
736 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
737 		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
738 }
739 
740 /*
741  * Reads data from a certain offset page inside a PBA, excluding redundancy
742  * data. Returns pagesize*pages bytes in data. Note that data must be big enough
743  * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
744  * trailing bytes outside this function.
745  */
746 static int alauda_read_block(struct us_data *us, u16 pba,
747 		unsigned int page, unsigned int pages, unsigned char *data)
748 {
749 	int i, rc;
750 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
751 
752 	rc = alauda_read_block_raw(us, pba, page, pages, data);
753 	if (rc != USB_STOR_XFER_GOOD)
754 		return rc;
755 
756 	/* Cut out the redundancy data */
757 	for (i = 0; i < pages; i++) {
758 		int dest_offset = i * pagesize;
759 		int src_offset = i * (pagesize + 64);
760 		memmove(data + dest_offset, data + src_offset, pagesize);
761 	}
762 
763 	return rc;
764 }
765 
766 /*
767  * Writes an entire block of data and checks status after write.
768  * Redundancy data must be already included in data. Data should be
769  * (pagesize+64)*blocksize bytes in length.
770  */
771 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
772 {
773 	int rc;
774 	struct alauda_info *info = (struct alauda_info *) us->extra;
775 	unsigned char command[] = {
776 		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
777 		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
778 	};
779 
780 	usb_stor_dbg(us, "pba %d\n", pba);
781 
782 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
783 		command, 9, NULL);
784 	if (rc != USB_STOR_XFER_GOOD)
785 		return rc;
786 
787 	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
788 		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
789 		NULL);
790 	if (rc != USB_STOR_XFER_GOOD)
791 		return rc;
792 
793 	return alauda_check_status2(us);
794 }
795 
796 /*
797  * Write some data to a specific LBA.
798  */
799 static int alauda_write_lba(struct us_data *us, u16 lba,
800 		 unsigned int page, unsigned int pages,
801 		 unsigned char *ptr, unsigned char *blockbuffer)
802 {
803 	u16 pba, lbap, new_pba;
804 	unsigned char *bptr, *cptr, *xptr;
805 	unsigned char ecc[3];
806 	int i, result;
807 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
808 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
809 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
810 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
811 	unsigned int lba_offset = lba % uzonesize;
812 	unsigned int new_pba_offset;
813 	unsigned int zone = lba / uzonesize;
814 
815 	alauda_ensure_map_for_zone(us, zone);
816 
817 	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
818 	if (pba == 1) {
819 		/*
820 		 * Maybe it is impossible to write to PBA 1.
821 		 * Fake success, but don't do anything.
822 		 */
823 		printk(KERN_WARNING
824 		       "alauda_write_lba: avoid writing to pba 1\n");
825 		return USB_STOR_TRANSPORT_GOOD;
826 	}
827 
828 	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
829 	if (!new_pba) {
830 		printk(KERN_WARNING
831 		       "alauda_write_lba: Out of unused blocks\n");
832 		return USB_STOR_TRANSPORT_ERROR;
833 	}
834 
835 	/* read old contents */
836 	if (pba != UNDEF) {
837 		result = alauda_read_block_raw(us, pba, 0,
838 			blocksize, blockbuffer);
839 		if (result != USB_STOR_XFER_GOOD)
840 			return result;
841 	} else {
842 		memset(blockbuffer, 0, blocksize * (pagesize + 64));
843 	}
844 
845 	lbap = (lba_offset << 1) | 0x1000;
846 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
847 		lbap ^= 1;
848 
849 	/* check old contents and fill lba */
850 	for (i = 0; i < blocksize; i++) {
851 		bptr = blockbuffer + (i * (pagesize + 64));
852 		cptr = bptr + pagesize;
853 		nand_compute_ecc(bptr, ecc);
854 		if (!nand_compare_ecc(cptr+13, ecc)) {
855 			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
856 				     i, pba);
857 			nand_store_ecc(cptr+13, ecc);
858 		}
859 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
860 		if (!nand_compare_ecc(cptr+8, ecc)) {
861 			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
862 				     i, pba);
863 			nand_store_ecc(cptr+8, ecc);
864 		}
865 		cptr[6] = cptr[11] = MSB_of(lbap);
866 		cptr[7] = cptr[12] = LSB_of(lbap);
867 	}
868 
869 	/* copy in new stuff and compute ECC */
870 	xptr = ptr;
871 	for (i = page; i < page+pages; i++) {
872 		bptr = blockbuffer + (i * (pagesize + 64));
873 		cptr = bptr + pagesize;
874 		memcpy(bptr, xptr, pagesize);
875 		xptr += pagesize;
876 		nand_compute_ecc(bptr, ecc);
877 		nand_store_ecc(cptr+13, ecc);
878 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
879 		nand_store_ecc(cptr+8, ecc);
880 	}
881 
882 	result = alauda_write_block(us, new_pba, blockbuffer);
883 	if (result != USB_STOR_XFER_GOOD)
884 		return result;
885 
886 	new_pba_offset = new_pba - (zone * zonesize);
887 	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
888 	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
889 	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
890 
891 	if (pba != UNDEF) {
892 		unsigned int pba_offset = pba - (zone * zonesize);
893 		result = alauda_erase_block(us, pba);
894 		if (result != USB_STOR_XFER_GOOD)
895 			return result;
896 		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
897 	}
898 
899 	return USB_STOR_TRANSPORT_GOOD;
900 }
901 
902 /*
903  * Read data from a specific sector address
904  */
905 static int alauda_read_data(struct us_data *us, unsigned long address,
906 		unsigned int sectors)
907 {
908 	unsigned char *buffer;
909 	u16 lba, max_lba;
910 	unsigned int page, len, offset;
911 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
912 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
913 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
914 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
915 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
916 	struct scatterlist *sg;
917 	int result;
918 
919 	/*
920 	 * Since we only read in one block at a time, we have to create
921 	 * a bounce buffer and move the data a piece at a time between the
922 	 * bounce buffer and the actual transfer buffer.
923 	 * We make this buffer big enough to hold temporary redundancy data,
924 	 * which we use when reading the data blocks.
925 	 */
926 
927 	len = min(sectors, blocksize) * (pagesize + 64);
928 	buffer = kmalloc(len, GFP_NOIO);
929 	if (!buffer)
930 		return USB_STOR_TRANSPORT_ERROR;
931 
932 	/* Figure out the initial LBA and page */
933 	lba = address >> blockshift;
934 	page = (address & MEDIA_INFO(us).blockmask);
935 	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
936 
937 	result = USB_STOR_TRANSPORT_GOOD;
938 	offset = 0;
939 	sg = NULL;
940 
941 	while (sectors > 0) {
942 		unsigned int zone = lba / uzonesize; /* integer division */
943 		unsigned int lba_offset = lba - (zone * uzonesize);
944 		unsigned int pages;
945 		u16 pba;
946 		alauda_ensure_map_for_zone(us, zone);
947 
948 		/* Not overflowing capacity? */
949 		if (lba >= max_lba) {
950 			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
951 				     lba, max_lba);
952 			result = USB_STOR_TRANSPORT_ERROR;
953 			break;
954 		}
955 
956 		/* Find number of pages we can read in this block */
957 		pages = min(sectors, blocksize - page);
958 		len = pages << pageshift;
959 
960 		/* Find where this lba lives on disk */
961 		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
962 
963 		if (pba == UNDEF) {	/* this lba was never written */
964 			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
965 				     pages, lba, page);
966 
967 			/*
968 			 * This is not really an error. It just means
969 			 * that the block has never been written.
970 			 * Instead of returning USB_STOR_TRANSPORT_ERROR
971 			 * it is better to return all zero data.
972 			 */
973 
974 			memset(buffer, 0, len);
975 		} else {
976 			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
977 				     pages, pba, lba, page);
978 
979 			result = alauda_read_block(us, pba, page, pages, buffer);
980 			if (result != USB_STOR_TRANSPORT_GOOD)
981 				break;
982 		}
983 
984 		/* Store the data in the transfer buffer */
985 		usb_stor_access_xfer_buf(buffer, len, us->srb,
986 				&sg, &offset, TO_XFER_BUF);
987 
988 		page = 0;
989 		lba++;
990 		sectors -= pages;
991 	}
992 
993 	kfree(buffer);
994 	return result;
995 }
996 
997 /*
998  * Write data to a specific sector address
999  */
1000 static int alauda_write_data(struct us_data *us, unsigned long address,
1001 		unsigned int sectors)
1002 {
1003 	unsigned char *buffer, *blockbuffer;
1004 	unsigned int page, len, offset;
1005 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1006 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1007 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1008 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1009 	struct scatterlist *sg;
1010 	u16 lba, max_lba;
1011 	int result;
1012 
1013 	/*
1014 	 * Since we don't write the user data directly to the device,
1015 	 * we have to create a bounce buffer and move the data a piece
1016 	 * at a time between the bounce buffer and the actual transfer buffer.
1017 	 */
1018 
1019 	len = min(sectors, blocksize) * pagesize;
1020 	buffer = kmalloc(len, GFP_NOIO);
1021 	if (!buffer)
1022 		return USB_STOR_TRANSPORT_ERROR;
1023 
1024 	/*
1025 	 * We also need a temporary block buffer, where we read in the old data,
1026 	 * overwrite parts with the new data, and manipulate the redundancy data
1027 	 */
1028 	blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1029 	if (!blockbuffer) {
1030 		kfree(buffer);
1031 		return USB_STOR_TRANSPORT_ERROR;
1032 	}
1033 
1034 	/* Figure out the initial LBA and page */
1035 	lba = address >> blockshift;
1036 	page = (address & MEDIA_INFO(us).blockmask);
1037 	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1038 
1039 	result = USB_STOR_TRANSPORT_GOOD;
1040 	offset = 0;
1041 	sg = NULL;
1042 
1043 	while (sectors > 0) {
1044 		/* Write as many sectors as possible in this block */
1045 		unsigned int pages = min(sectors, blocksize - page);
1046 		len = pages << pageshift;
1047 
1048 		/* Not overflowing capacity? */
1049 		if (lba >= max_lba) {
1050 			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1051 				     lba, max_lba);
1052 			result = USB_STOR_TRANSPORT_ERROR;
1053 			break;
1054 		}
1055 
1056 		/* Get the data from the transfer buffer */
1057 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1058 				&sg, &offset, FROM_XFER_BUF);
1059 
1060 		result = alauda_write_lba(us, lba, page, pages, buffer,
1061 			blockbuffer);
1062 		if (result != USB_STOR_TRANSPORT_GOOD)
1063 			break;
1064 
1065 		page = 0;
1066 		lba++;
1067 		sectors -= pages;
1068 	}
1069 
1070 	kfree(buffer);
1071 	kfree(blockbuffer);
1072 	return result;
1073 }
1074 
1075 /*
1076  * Our interface with the rest of the world
1077  */
1078 
1079 static void alauda_info_destructor(void *extra)
1080 {
1081 	struct alauda_info *info = (struct alauda_info *) extra;
1082 	int port;
1083 
1084 	if (!info)
1085 		return;
1086 
1087 	for (port = 0; port < 2; port++) {
1088 		struct alauda_media_info *media_info = &info->port[port];
1089 
1090 		alauda_free_maps(media_info);
1091 		kfree(media_info->lba_to_pba);
1092 		kfree(media_info->pba_to_lba);
1093 	}
1094 }
1095 
1096 /*
1097  * Initialize alauda_info struct and find the data-write endpoint
1098  */
1099 static int init_alauda(struct us_data *us)
1100 {
1101 	struct alauda_info *info;
1102 	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1103 	nand_init_ecc();
1104 
1105 	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1106 	if (!us->extra)
1107 		return USB_STOR_TRANSPORT_ERROR;
1108 
1109 	info = (struct alauda_info *) us->extra;
1110 	us->extra_destructor = alauda_info_destructor;
1111 
1112 	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1113 		altsetting->endpoint[0].desc.bEndpointAddress
1114 		& USB_ENDPOINT_NUMBER_MASK);
1115 
1116 	return USB_STOR_TRANSPORT_GOOD;
1117 }
1118 
1119 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1120 {
1121 	int rc;
1122 	struct alauda_info *info = (struct alauda_info *) us->extra;
1123 	unsigned char *ptr = us->iobuf;
1124 	static unsigned char inquiry_response[36] = {
1125 		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1126 	};
1127 
1128 	if (srb->cmnd[0] == INQUIRY) {
1129 		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1130 		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1131 		fill_inquiry_response(us, ptr, 36);
1132 		return USB_STOR_TRANSPORT_GOOD;
1133 	}
1134 
1135 	if (srb->cmnd[0] == TEST_UNIT_READY) {
1136 		usb_stor_dbg(us, "TEST_UNIT_READY\n");
1137 		return alauda_check_media(us);
1138 	}
1139 
1140 	if (srb->cmnd[0] == READ_CAPACITY) {
1141 		unsigned int num_zones;
1142 		unsigned long capacity;
1143 
1144 		rc = alauda_check_media(us);
1145 		if (rc != USB_STOR_TRANSPORT_GOOD)
1146 			return rc;
1147 
1148 		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1149 			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1150 
1151 		capacity = num_zones * MEDIA_INFO(us).uzonesize
1152 			* MEDIA_INFO(us).blocksize;
1153 
1154 		/* Report capacity and page size */
1155 		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1156 		((__be32 *) ptr)[1] = cpu_to_be32(512);
1157 
1158 		usb_stor_set_xfer_buf(ptr, 8, srb);
1159 		return USB_STOR_TRANSPORT_GOOD;
1160 	}
1161 
1162 	if (srb->cmnd[0] == READ_10) {
1163 		unsigned int page, pages;
1164 
1165 		rc = alauda_check_media(us);
1166 		if (rc != USB_STOR_TRANSPORT_GOOD)
1167 			return rc;
1168 
1169 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1170 		page <<= 16;
1171 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1172 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1173 
1174 		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1175 
1176 		return alauda_read_data(us, page, pages);
1177 	}
1178 
1179 	if (srb->cmnd[0] == WRITE_10) {
1180 		unsigned int page, pages;
1181 
1182 		rc = alauda_check_media(us);
1183 		if (rc != USB_STOR_TRANSPORT_GOOD)
1184 			return rc;
1185 
1186 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1187 		page <<= 16;
1188 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1189 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1190 
1191 		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1192 
1193 		return alauda_write_data(us, page, pages);
1194 	}
1195 
1196 	if (srb->cmnd[0] == REQUEST_SENSE) {
1197 		usb_stor_dbg(us, "REQUEST_SENSE\n");
1198 
1199 		memset(ptr, 0, 18);
1200 		ptr[0] = 0xF0;
1201 		ptr[2] = info->sense_key;
1202 		ptr[7] = 11;
1203 		ptr[12] = info->sense_asc;
1204 		ptr[13] = info->sense_ascq;
1205 		usb_stor_set_xfer_buf(ptr, 18, srb);
1206 
1207 		return USB_STOR_TRANSPORT_GOOD;
1208 	}
1209 
1210 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1211 		/*
1212 		 * sure.  whatever.  not like we can stop the user from popping
1213 		 * the media out of the device (no locking doors, etc)
1214 		 */
1215 		return USB_STOR_TRANSPORT_GOOD;
1216 	}
1217 
1218 	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1219 		     srb->cmnd[0], srb->cmnd[0]);
1220 	info->sense_key = 0x05;
1221 	info->sense_asc = 0x20;
1222 	info->sense_ascq = 0x00;
1223 	return USB_STOR_TRANSPORT_FAILED;
1224 }
1225 
1226 static struct scsi_host_template alauda_host_template;
1227 
1228 static int alauda_probe(struct usb_interface *intf,
1229 			 const struct usb_device_id *id)
1230 {
1231 	struct us_data *us;
1232 	int result;
1233 
1234 	result = usb_stor_probe1(&us, intf, id,
1235 			(id - alauda_usb_ids) + alauda_unusual_dev_list,
1236 			&alauda_host_template);
1237 	if (result)
1238 		return result;
1239 
1240 	us->transport_name  = "Alauda Control/Bulk";
1241 	us->transport = alauda_transport;
1242 	us->transport_reset = usb_stor_Bulk_reset;
1243 	us->max_lun = 1;
1244 
1245 	result = usb_stor_probe2(us);
1246 	return result;
1247 }
1248 
1249 static struct usb_driver alauda_driver = {
1250 	.name =		DRV_NAME,
1251 	.probe =	alauda_probe,
1252 	.disconnect =	usb_stor_disconnect,
1253 	.suspend =	usb_stor_suspend,
1254 	.resume =	usb_stor_resume,
1255 	.reset_resume =	usb_stor_reset_resume,
1256 	.pre_reset =	usb_stor_pre_reset,
1257 	.post_reset =	usb_stor_post_reset,
1258 	.id_table =	alauda_usb_ids,
1259 	.soft_unbind =	1,
1260 	.no_dynamic_id = 1,
1261 };
1262 
1263 module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
1264