1 /* 2 * MUSB OTG driver peripheral support 3 * 4 * Copyright 2005 Mentor Graphics Corporation 5 * Copyright (C) 2005-2006 by Texas Instruments 6 * Copyright (C) 2006-2007 Nokia Corporation 7 * Copyright (C) 2009 MontaVista Software, Inc. <source@mvista.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * version 2 as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 21 * 02110-1301 USA 22 * 23 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED 24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 26 * NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 29 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 30 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * 34 */ 35 36 #include <linux/kernel.h> 37 #include <linux/list.h> 38 #include <linux/timer.h> 39 #include <linux/module.h> 40 #include <linux/smp.h> 41 #include <linux/spinlock.h> 42 #include <linux/delay.h> 43 #include <linux/dma-mapping.h> 44 #include <linux/slab.h> 45 46 #include "musb_core.h" 47 48 49 /* MUSB PERIPHERAL status 3-mar-2006: 50 * 51 * - EP0 seems solid. It passes both USBCV and usbtest control cases. 52 * Minor glitches: 53 * 54 * + remote wakeup to Linux hosts work, but saw USBCV failures; 55 * in one test run (operator error?) 56 * + endpoint halt tests -- in both usbtest and usbcv -- seem 57 * to break when dma is enabled ... is something wrongly 58 * clearing SENDSTALL? 59 * 60 * - Mass storage behaved ok when last tested. Network traffic patterns 61 * (with lots of short transfers etc) need retesting; they turn up the 62 * worst cases of the DMA, since short packets are typical but are not 63 * required. 64 * 65 * - TX/IN 66 * + both pio and dma behave in with network and g_zero tests 67 * + no cppi throughput issues other than no-hw-queueing 68 * + failed with FLAT_REG (DaVinci) 69 * + seems to behave with double buffering, PIO -and- CPPI 70 * + with gadgetfs + AIO, requests got lost? 71 * 72 * - RX/OUT 73 * + both pio and dma behave in with network and g_zero tests 74 * + dma is slow in typical case (short_not_ok is clear) 75 * + double buffering ok with PIO 76 * + double buffering *FAILS* with CPPI, wrong data bytes sometimes 77 * + request lossage observed with gadgetfs 78 * 79 * - ISO not tested ... might work, but only weakly isochronous 80 * 81 * - Gadget driver disabling of softconnect during bind() is ignored; so 82 * drivers can't hold off host requests until userspace is ready. 83 * (Workaround: they can turn it off later.) 84 * 85 * - PORTABILITY (assumes PIO works): 86 * + DaVinci, basically works with cppi dma 87 * + OMAP 2430, ditto with mentor dma 88 * + TUSB 6010, platform-specific dma in the works 89 */ 90 91 /* ----------------------------------------------------------------------- */ 92 93 #define is_buffer_mapped(req) (is_dma_capable() && \ 94 (req->map_state != UN_MAPPED)) 95 96 /* Maps the buffer to dma */ 97 98 static inline void map_dma_buffer(struct musb_request *request, 99 struct musb *musb, struct musb_ep *musb_ep) 100 { 101 int compatible = true; 102 struct dma_controller *dma = musb->dma_controller; 103 104 request->map_state = UN_MAPPED; 105 106 if (!is_dma_capable() || !musb_ep->dma) 107 return; 108 109 /* Check if DMA engine can handle this request. 110 * DMA code must reject the USB request explicitly. 111 * Default behaviour is to map the request. 112 */ 113 if (dma->is_compatible) 114 compatible = dma->is_compatible(musb_ep->dma, 115 musb_ep->packet_sz, request->request.buf, 116 request->request.length); 117 if (!compatible) 118 return; 119 120 if (request->request.dma == DMA_ADDR_INVALID) { 121 request->request.dma = dma_map_single( 122 musb->controller, 123 request->request.buf, 124 request->request.length, 125 request->tx 126 ? DMA_TO_DEVICE 127 : DMA_FROM_DEVICE); 128 request->map_state = MUSB_MAPPED; 129 } else { 130 dma_sync_single_for_device(musb->controller, 131 request->request.dma, 132 request->request.length, 133 request->tx 134 ? DMA_TO_DEVICE 135 : DMA_FROM_DEVICE); 136 request->map_state = PRE_MAPPED; 137 } 138 } 139 140 /* Unmap the buffer from dma and maps it back to cpu */ 141 static inline void unmap_dma_buffer(struct musb_request *request, 142 struct musb *musb) 143 { 144 if (!is_buffer_mapped(request)) 145 return; 146 147 if (request->request.dma == DMA_ADDR_INVALID) { 148 dev_vdbg(musb->controller, 149 "not unmapping a never mapped buffer\n"); 150 return; 151 } 152 if (request->map_state == MUSB_MAPPED) { 153 dma_unmap_single(musb->controller, 154 request->request.dma, 155 request->request.length, 156 request->tx 157 ? DMA_TO_DEVICE 158 : DMA_FROM_DEVICE); 159 request->request.dma = DMA_ADDR_INVALID; 160 } else { /* PRE_MAPPED */ 161 dma_sync_single_for_cpu(musb->controller, 162 request->request.dma, 163 request->request.length, 164 request->tx 165 ? DMA_TO_DEVICE 166 : DMA_FROM_DEVICE); 167 } 168 request->map_state = UN_MAPPED; 169 } 170 171 /* 172 * Immediately complete a request. 173 * 174 * @param request the request to complete 175 * @param status the status to complete the request with 176 * Context: controller locked, IRQs blocked. 177 */ 178 void musb_g_giveback( 179 struct musb_ep *ep, 180 struct usb_request *request, 181 int status) 182 __releases(ep->musb->lock) 183 __acquires(ep->musb->lock) 184 { 185 struct musb_request *req; 186 struct musb *musb; 187 int busy = ep->busy; 188 189 req = to_musb_request(request); 190 191 list_del(&req->list); 192 if (req->request.status == -EINPROGRESS) 193 req->request.status = status; 194 musb = req->musb; 195 196 ep->busy = 1; 197 spin_unlock(&musb->lock); 198 unmap_dma_buffer(req, musb); 199 if (request->status == 0) 200 dev_dbg(musb->controller, "%s done request %p, %d/%d\n", 201 ep->end_point.name, request, 202 req->request.actual, req->request.length); 203 else 204 dev_dbg(musb->controller, "%s request %p, %d/%d fault %d\n", 205 ep->end_point.name, request, 206 req->request.actual, req->request.length, 207 request->status); 208 req->request.complete(&req->ep->end_point, &req->request); 209 spin_lock(&musb->lock); 210 ep->busy = busy; 211 } 212 213 /* ----------------------------------------------------------------------- */ 214 215 /* 216 * Abort requests queued to an endpoint using the status. Synchronous. 217 * caller locked controller and blocked irqs, and selected this ep. 218 */ 219 static void nuke(struct musb_ep *ep, const int status) 220 { 221 struct musb *musb = ep->musb; 222 struct musb_request *req = NULL; 223 void __iomem *epio = ep->musb->endpoints[ep->current_epnum].regs; 224 225 ep->busy = 1; 226 227 if (is_dma_capable() && ep->dma) { 228 struct dma_controller *c = ep->musb->dma_controller; 229 int value; 230 231 if (ep->is_in) { 232 /* 233 * The programming guide says that we must not clear 234 * the DMAMODE bit before DMAENAB, so we only 235 * clear it in the second write... 236 */ 237 musb_writew(epio, MUSB_TXCSR, 238 MUSB_TXCSR_DMAMODE | MUSB_TXCSR_FLUSHFIFO); 239 musb_writew(epio, MUSB_TXCSR, 240 0 | MUSB_TXCSR_FLUSHFIFO); 241 } else { 242 musb_writew(epio, MUSB_RXCSR, 243 0 | MUSB_RXCSR_FLUSHFIFO); 244 musb_writew(epio, MUSB_RXCSR, 245 0 | MUSB_RXCSR_FLUSHFIFO); 246 } 247 248 value = c->channel_abort(ep->dma); 249 dev_dbg(musb->controller, "%s: abort DMA --> %d\n", 250 ep->name, value); 251 c->channel_release(ep->dma); 252 ep->dma = NULL; 253 } 254 255 while (!list_empty(&ep->req_list)) { 256 req = list_first_entry(&ep->req_list, struct musb_request, list); 257 musb_g_giveback(ep, &req->request, status); 258 } 259 } 260 261 /* ----------------------------------------------------------------------- */ 262 263 /* Data transfers - pure PIO, pure DMA, or mixed mode */ 264 265 /* 266 * This assumes the separate CPPI engine is responding to DMA requests 267 * from the usb core ... sequenced a bit differently from mentor dma. 268 */ 269 270 static inline int max_ep_writesize(struct musb *musb, struct musb_ep *ep) 271 { 272 if (can_bulk_split(musb, ep->type)) 273 return ep->hw_ep->max_packet_sz_tx; 274 else 275 return ep->packet_sz; 276 } 277 278 279 #ifdef CONFIG_USB_INVENTRA_DMA 280 281 /* Peripheral tx (IN) using Mentor DMA works as follows: 282 Only mode 0 is used for transfers <= wPktSize, 283 mode 1 is used for larger transfers, 284 285 One of the following happens: 286 - Host sends IN token which causes an endpoint interrupt 287 -> TxAvail 288 -> if DMA is currently busy, exit. 289 -> if queue is non-empty, txstate(). 290 291 - Request is queued by the gadget driver. 292 -> if queue was previously empty, txstate() 293 294 txstate() 295 -> start 296 /\ -> setup DMA 297 | (data is transferred to the FIFO, then sent out when 298 | IN token(s) are recd from Host. 299 | -> DMA interrupt on completion 300 | calls TxAvail. 301 | -> stop DMA, ~DMAENAB, 302 | -> set TxPktRdy for last short pkt or zlp 303 | -> Complete Request 304 | -> Continue next request (call txstate) 305 |___________________________________| 306 307 * Non-Mentor DMA engines can of course work differently, such as by 308 * upleveling from irq-per-packet to irq-per-buffer. 309 */ 310 311 #endif 312 313 /* 314 * An endpoint is transmitting data. This can be called either from 315 * the IRQ routine or from ep.queue() to kickstart a request on an 316 * endpoint. 317 * 318 * Context: controller locked, IRQs blocked, endpoint selected 319 */ 320 static void txstate(struct musb *musb, struct musb_request *req) 321 { 322 u8 epnum = req->epnum; 323 struct musb_ep *musb_ep; 324 void __iomem *epio = musb->endpoints[epnum].regs; 325 struct usb_request *request; 326 u16 fifo_count = 0, csr; 327 int use_dma = 0; 328 329 musb_ep = req->ep; 330 331 /* Check if EP is disabled */ 332 if (!musb_ep->desc) { 333 dev_dbg(musb->controller, "ep:%s disabled - ignore request\n", 334 musb_ep->end_point.name); 335 return; 336 } 337 338 /* we shouldn't get here while DMA is active ... but we do ... */ 339 if (dma_channel_status(musb_ep->dma) == MUSB_DMA_STATUS_BUSY) { 340 dev_dbg(musb->controller, "dma pending...\n"); 341 return; 342 } 343 344 /* read TXCSR before */ 345 csr = musb_readw(epio, MUSB_TXCSR); 346 347 request = &req->request; 348 fifo_count = min(max_ep_writesize(musb, musb_ep), 349 (int)(request->length - request->actual)); 350 351 if (csr & MUSB_TXCSR_TXPKTRDY) { 352 dev_dbg(musb->controller, "%s old packet still ready , txcsr %03x\n", 353 musb_ep->end_point.name, csr); 354 return; 355 } 356 357 if (csr & MUSB_TXCSR_P_SENDSTALL) { 358 dev_dbg(musb->controller, "%s stalling, txcsr %03x\n", 359 musb_ep->end_point.name, csr); 360 return; 361 } 362 363 dev_dbg(musb->controller, "hw_ep%d, maxpacket %d, fifo count %d, txcsr %03x\n", 364 epnum, musb_ep->packet_sz, fifo_count, 365 csr); 366 367 #ifndef CONFIG_MUSB_PIO_ONLY 368 if (is_buffer_mapped(req)) { 369 struct dma_controller *c = musb->dma_controller; 370 size_t request_size; 371 372 /* setup DMA, then program endpoint CSR */ 373 request_size = min_t(size_t, request->length - request->actual, 374 musb_ep->dma->max_len); 375 376 use_dma = (request->dma != DMA_ADDR_INVALID && request_size); 377 378 /* MUSB_TXCSR_P_ISO is still set correctly */ 379 380 #if defined(CONFIG_USB_INVENTRA_DMA) || defined(CONFIG_USB_UX500_DMA) 381 { 382 if (request_size < musb_ep->packet_sz) 383 musb_ep->dma->desired_mode = 0; 384 else 385 musb_ep->dma->desired_mode = 1; 386 387 use_dma = use_dma && c->channel_program( 388 musb_ep->dma, musb_ep->packet_sz, 389 musb_ep->dma->desired_mode, 390 request->dma + request->actual, request_size); 391 if (use_dma) { 392 if (musb_ep->dma->desired_mode == 0) { 393 /* 394 * We must not clear the DMAMODE bit 395 * before the DMAENAB bit -- and the 396 * latter doesn't always get cleared 397 * before we get here... 398 */ 399 csr &= ~(MUSB_TXCSR_AUTOSET 400 | MUSB_TXCSR_DMAENAB); 401 musb_writew(epio, MUSB_TXCSR, csr 402 | MUSB_TXCSR_P_WZC_BITS); 403 csr &= ~MUSB_TXCSR_DMAMODE; 404 csr |= (MUSB_TXCSR_DMAENAB | 405 MUSB_TXCSR_MODE); 406 /* against programming guide */ 407 } else { 408 csr |= (MUSB_TXCSR_DMAENAB 409 | MUSB_TXCSR_DMAMODE 410 | MUSB_TXCSR_MODE); 411 if (!musb_ep->hb_mult) 412 csr |= MUSB_TXCSR_AUTOSET; 413 } 414 csr &= ~MUSB_TXCSR_P_UNDERRUN; 415 416 musb_writew(epio, MUSB_TXCSR, csr); 417 } 418 } 419 420 #elif defined(CONFIG_USB_TI_CPPI_DMA) 421 /* program endpoint CSR first, then setup DMA */ 422 csr &= ~(MUSB_TXCSR_P_UNDERRUN | MUSB_TXCSR_TXPKTRDY); 423 csr |= MUSB_TXCSR_DMAENAB | MUSB_TXCSR_DMAMODE | 424 MUSB_TXCSR_MODE; 425 musb_writew(epio, MUSB_TXCSR, 426 (MUSB_TXCSR_P_WZC_BITS & ~MUSB_TXCSR_P_UNDERRUN) 427 | csr); 428 429 /* ensure writebuffer is empty */ 430 csr = musb_readw(epio, MUSB_TXCSR); 431 432 /* NOTE host side sets DMAENAB later than this; both are 433 * OK since the transfer dma glue (between CPPI and Mentor 434 * fifos) just tells CPPI it could start. Data only moves 435 * to the USB TX fifo when both fifos are ready. 436 */ 437 438 /* "mode" is irrelevant here; handle terminating ZLPs like 439 * PIO does, since the hardware RNDIS mode seems unreliable 440 * except for the last-packet-is-already-short case. 441 */ 442 use_dma = use_dma && c->channel_program( 443 musb_ep->dma, musb_ep->packet_sz, 444 0, 445 request->dma + request->actual, 446 request_size); 447 if (!use_dma) { 448 c->channel_release(musb_ep->dma); 449 musb_ep->dma = NULL; 450 csr &= ~MUSB_TXCSR_DMAENAB; 451 musb_writew(epio, MUSB_TXCSR, csr); 452 /* invariant: prequest->buf is non-null */ 453 } 454 #elif defined(CONFIG_USB_TUSB_OMAP_DMA) 455 use_dma = use_dma && c->channel_program( 456 musb_ep->dma, musb_ep->packet_sz, 457 request->zero, 458 request->dma + request->actual, 459 request_size); 460 #endif 461 } 462 #endif 463 464 if (!use_dma) { 465 /* 466 * Unmap the dma buffer back to cpu if dma channel 467 * programming fails 468 */ 469 unmap_dma_buffer(req, musb); 470 471 musb_write_fifo(musb_ep->hw_ep, fifo_count, 472 (u8 *) (request->buf + request->actual)); 473 request->actual += fifo_count; 474 csr |= MUSB_TXCSR_TXPKTRDY; 475 csr &= ~MUSB_TXCSR_P_UNDERRUN; 476 musb_writew(epio, MUSB_TXCSR, csr); 477 } 478 479 /* host may already have the data when this message shows... */ 480 dev_dbg(musb->controller, "%s TX/IN %s len %d/%d, txcsr %04x, fifo %d/%d\n", 481 musb_ep->end_point.name, use_dma ? "dma" : "pio", 482 request->actual, request->length, 483 musb_readw(epio, MUSB_TXCSR), 484 fifo_count, 485 musb_readw(epio, MUSB_TXMAXP)); 486 } 487 488 /* 489 * FIFO state update (e.g. data ready). 490 * Called from IRQ, with controller locked. 491 */ 492 void musb_g_tx(struct musb *musb, u8 epnum) 493 { 494 u16 csr; 495 struct musb_request *req; 496 struct usb_request *request; 497 u8 __iomem *mbase = musb->mregs; 498 struct musb_ep *musb_ep = &musb->endpoints[epnum].ep_in; 499 void __iomem *epio = musb->endpoints[epnum].regs; 500 struct dma_channel *dma; 501 502 musb_ep_select(mbase, epnum); 503 req = next_request(musb_ep); 504 request = &req->request; 505 506 csr = musb_readw(epio, MUSB_TXCSR); 507 dev_dbg(musb->controller, "<== %s, txcsr %04x\n", musb_ep->end_point.name, csr); 508 509 dma = is_dma_capable() ? musb_ep->dma : NULL; 510 511 /* 512 * REVISIT: for high bandwidth, MUSB_TXCSR_P_INCOMPTX 513 * probably rates reporting as a host error. 514 */ 515 if (csr & MUSB_TXCSR_P_SENTSTALL) { 516 csr |= MUSB_TXCSR_P_WZC_BITS; 517 csr &= ~MUSB_TXCSR_P_SENTSTALL; 518 musb_writew(epio, MUSB_TXCSR, csr); 519 return; 520 } 521 522 if (csr & MUSB_TXCSR_P_UNDERRUN) { 523 /* We NAKed, no big deal... little reason to care. */ 524 csr |= MUSB_TXCSR_P_WZC_BITS; 525 csr &= ~(MUSB_TXCSR_P_UNDERRUN | MUSB_TXCSR_TXPKTRDY); 526 musb_writew(epio, MUSB_TXCSR, csr); 527 dev_vdbg(musb->controller, "underrun on ep%d, req %p\n", 528 epnum, request); 529 } 530 531 if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { 532 /* 533 * SHOULD NOT HAPPEN... has with CPPI though, after 534 * changing SENDSTALL (and other cases); harmless? 535 */ 536 dev_dbg(musb->controller, "%s dma still busy?\n", musb_ep->end_point.name); 537 return; 538 } 539 540 if (request) { 541 u8 is_dma = 0; 542 543 if (dma && (csr & MUSB_TXCSR_DMAENAB)) { 544 is_dma = 1; 545 csr |= MUSB_TXCSR_P_WZC_BITS; 546 csr &= ~(MUSB_TXCSR_DMAENAB | MUSB_TXCSR_P_UNDERRUN | 547 MUSB_TXCSR_TXPKTRDY | MUSB_TXCSR_AUTOSET); 548 musb_writew(epio, MUSB_TXCSR, csr); 549 /* Ensure writebuffer is empty. */ 550 csr = musb_readw(epio, MUSB_TXCSR); 551 request->actual += musb_ep->dma->actual_len; 552 dev_dbg(musb->controller, "TXCSR%d %04x, DMA off, len %zu, req %p\n", 553 epnum, csr, musb_ep->dma->actual_len, request); 554 } 555 556 /* 557 * First, maybe a terminating short packet. Some DMA 558 * engines might handle this by themselves. 559 */ 560 if ((request->zero && request->length 561 && (request->length % musb_ep->packet_sz == 0) 562 && (request->actual == request->length)) 563 #if defined(CONFIG_USB_INVENTRA_DMA) || defined(CONFIG_USB_UX500_DMA) 564 || (is_dma && (!dma->desired_mode || 565 (request->actual & 566 (musb_ep->packet_sz - 1)))) 567 #endif 568 ) { 569 /* 570 * On DMA completion, FIFO may not be 571 * available yet... 572 */ 573 if (csr & MUSB_TXCSR_TXPKTRDY) 574 return; 575 576 dev_dbg(musb->controller, "sending zero pkt\n"); 577 musb_writew(epio, MUSB_TXCSR, MUSB_TXCSR_MODE 578 | MUSB_TXCSR_TXPKTRDY); 579 request->zero = 0; 580 } 581 582 if (request->actual == request->length) { 583 musb_g_giveback(musb_ep, request, 0); 584 /* 585 * In the giveback function the MUSB lock is 586 * released and acquired after sometime. During 587 * this time period the INDEX register could get 588 * changed by the gadget_queue function especially 589 * on SMP systems. Reselect the INDEX to be sure 590 * we are reading/modifying the right registers 591 */ 592 musb_ep_select(mbase, epnum); 593 req = musb_ep->desc ? next_request(musb_ep) : NULL; 594 if (!req) { 595 dev_dbg(musb->controller, "%s idle now\n", 596 musb_ep->end_point.name); 597 return; 598 } 599 } 600 601 txstate(musb, req); 602 } 603 } 604 605 /* ------------------------------------------------------------ */ 606 607 #ifdef CONFIG_USB_INVENTRA_DMA 608 609 /* Peripheral rx (OUT) using Mentor DMA works as follows: 610 - Only mode 0 is used. 611 612 - Request is queued by the gadget class driver. 613 -> if queue was previously empty, rxstate() 614 615 - Host sends OUT token which causes an endpoint interrupt 616 /\ -> RxReady 617 | -> if request queued, call rxstate 618 | /\ -> setup DMA 619 | | -> DMA interrupt on completion 620 | | -> RxReady 621 | | -> stop DMA 622 | | -> ack the read 623 | | -> if data recd = max expected 624 | | by the request, or host 625 | | sent a short packet, 626 | | complete the request, 627 | | and start the next one. 628 | |_____________________________________| 629 | else just wait for the host 630 | to send the next OUT token. 631 |__________________________________________________| 632 633 * Non-Mentor DMA engines can of course work differently. 634 */ 635 636 #endif 637 638 /* 639 * Context: controller locked, IRQs blocked, endpoint selected 640 */ 641 static void rxstate(struct musb *musb, struct musb_request *req) 642 { 643 const u8 epnum = req->epnum; 644 struct usb_request *request = &req->request; 645 struct musb_ep *musb_ep; 646 void __iomem *epio = musb->endpoints[epnum].regs; 647 unsigned len = 0; 648 u16 fifo_count; 649 u16 csr = musb_readw(epio, MUSB_RXCSR); 650 struct musb_hw_ep *hw_ep = &musb->endpoints[epnum]; 651 u8 use_mode_1; 652 653 if (hw_ep->is_shared_fifo) 654 musb_ep = &hw_ep->ep_in; 655 else 656 musb_ep = &hw_ep->ep_out; 657 658 fifo_count = musb_ep->packet_sz; 659 660 /* Check if EP is disabled */ 661 if (!musb_ep->desc) { 662 dev_dbg(musb->controller, "ep:%s disabled - ignore request\n", 663 musb_ep->end_point.name); 664 return; 665 } 666 667 /* We shouldn't get here while DMA is active, but we do... */ 668 if (dma_channel_status(musb_ep->dma) == MUSB_DMA_STATUS_BUSY) { 669 dev_dbg(musb->controller, "DMA pending...\n"); 670 return; 671 } 672 673 if (csr & MUSB_RXCSR_P_SENDSTALL) { 674 dev_dbg(musb->controller, "%s stalling, RXCSR %04x\n", 675 musb_ep->end_point.name, csr); 676 return; 677 } 678 679 if (is_cppi_enabled() && is_buffer_mapped(req)) { 680 struct dma_controller *c = musb->dma_controller; 681 struct dma_channel *channel = musb_ep->dma; 682 683 /* NOTE: CPPI won't actually stop advancing the DMA 684 * queue after short packet transfers, so this is almost 685 * always going to run as IRQ-per-packet DMA so that 686 * faults will be handled correctly. 687 */ 688 if (c->channel_program(channel, 689 musb_ep->packet_sz, 690 !request->short_not_ok, 691 request->dma + request->actual, 692 request->length - request->actual)) { 693 694 /* make sure that if an rxpkt arrived after the irq, 695 * the cppi engine will be ready to take it as soon 696 * as DMA is enabled 697 */ 698 csr &= ~(MUSB_RXCSR_AUTOCLEAR 699 | MUSB_RXCSR_DMAMODE); 700 csr |= MUSB_RXCSR_DMAENAB | MUSB_RXCSR_P_WZC_BITS; 701 musb_writew(epio, MUSB_RXCSR, csr); 702 return; 703 } 704 } 705 706 if (csr & MUSB_RXCSR_RXPKTRDY) { 707 fifo_count = musb_readw(epio, MUSB_RXCOUNT); 708 709 /* 710 * Enable Mode 1 on RX transfers only when short_not_ok flag 711 * is set. Currently short_not_ok flag is set only from 712 * file_storage and f_mass_storage drivers 713 */ 714 715 if (request->short_not_ok && fifo_count == musb_ep->packet_sz) 716 use_mode_1 = 1; 717 else 718 use_mode_1 = 0; 719 720 if (request->actual < request->length) { 721 #ifdef CONFIG_USB_INVENTRA_DMA 722 if (is_buffer_mapped(req)) { 723 struct dma_controller *c; 724 struct dma_channel *channel; 725 int use_dma = 0; 726 int transfer_size; 727 728 c = musb->dma_controller; 729 channel = musb_ep->dma; 730 731 /* We use DMA Req mode 0 in rx_csr, and DMA controller operates in 732 * mode 0 only. So we do not get endpoint interrupts due to DMA 733 * completion. We only get interrupts from DMA controller. 734 * 735 * We could operate in DMA mode 1 if we knew the size of the tranfer 736 * in advance. For mass storage class, request->length = what the host 737 * sends, so that'd work. But for pretty much everything else, 738 * request->length is routinely more than what the host sends. For 739 * most these gadgets, end of is signified either by a short packet, 740 * or filling the last byte of the buffer. (Sending extra data in 741 * that last pckate should trigger an overflow fault.) But in mode 1, 742 * we don't get DMA completion interrupt for short packets. 743 * 744 * Theoretically, we could enable DMAReq irq (MUSB_RXCSR_DMAMODE = 1), 745 * to get endpoint interrupt on every DMA req, but that didn't seem 746 * to work reliably. 747 * 748 * REVISIT an updated g_file_storage can set req->short_not_ok, which 749 * then becomes usable as a runtime "use mode 1" hint... 750 */ 751 752 /* Experimental: Mode1 works with mass storage use cases */ 753 if (use_mode_1) { 754 csr |= MUSB_RXCSR_AUTOCLEAR; 755 musb_writew(epio, MUSB_RXCSR, csr); 756 csr |= MUSB_RXCSR_DMAENAB; 757 musb_writew(epio, MUSB_RXCSR, csr); 758 759 /* 760 * this special sequence (enabling and then 761 * disabling MUSB_RXCSR_DMAMODE) is required 762 * to get DMAReq to activate 763 */ 764 musb_writew(epio, MUSB_RXCSR, 765 csr | MUSB_RXCSR_DMAMODE); 766 musb_writew(epio, MUSB_RXCSR, csr); 767 768 transfer_size = min(request->length - request->actual, 769 channel->max_len); 770 musb_ep->dma->desired_mode = 1; 771 772 } else { 773 if (!musb_ep->hb_mult && 774 musb_ep->hw_ep->rx_double_buffered) 775 csr |= MUSB_RXCSR_AUTOCLEAR; 776 csr |= MUSB_RXCSR_DMAENAB; 777 musb_writew(epio, MUSB_RXCSR, csr); 778 779 transfer_size = min(request->length - request->actual, 780 (unsigned)fifo_count); 781 musb_ep->dma->desired_mode = 0; 782 } 783 784 use_dma = c->channel_program( 785 channel, 786 musb_ep->packet_sz, 787 channel->desired_mode, 788 request->dma 789 + request->actual, 790 transfer_size); 791 792 if (use_dma) 793 return; 794 } 795 #elif defined(CONFIG_USB_UX500_DMA) 796 if ((is_buffer_mapped(req)) && 797 (request->actual < request->length)) { 798 799 struct dma_controller *c; 800 struct dma_channel *channel; 801 int transfer_size = 0; 802 803 c = musb->dma_controller; 804 channel = musb_ep->dma; 805 806 /* In case first packet is short */ 807 if (fifo_count < musb_ep->packet_sz) 808 transfer_size = fifo_count; 809 else if (request->short_not_ok) 810 transfer_size = min(request->length - 811 request->actual, 812 channel->max_len); 813 else 814 transfer_size = min(request->length - 815 request->actual, 816 (unsigned)fifo_count); 817 818 csr &= ~MUSB_RXCSR_DMAMODE; 819 csr |= (MUSB_RXCSR_DMAENAB | 820 MUSB_RXCSR_AUTOCLEAR); 821 822 musb_writew(epio, MUSB_RXCSR, csr); 823 824 if (transfer_size <= musb_ep->packet_sz) { 825 musb_ep->dma->desired_mode = 0; 826 } else { 827 musb_ep->dma->desired_mode = 1; 828 /* Mode must be set after DMAENAB */ 829 csr |= MUSB_RXCSR_DMAMODE; 830 musb_writew(epio, MUSB_RXCSR, csr); 831 } 832 833 if (c->channel_program(channel, 834 musb_ep->packet_sz, 835 channel->desired_mode, 836 request->dma 837 + request->actual, 838 transfer_size)) 839 840 return; 841 } 842 #endif /* Mentor's DMA */ 843 844 len = request->length - request->actual; 845 dev_dbg(musb->controller, "%s OUT/RX pio fifo %d/%d, maxpacket %d\n", 846 musb_ep->end_point.name, 847 fifo_count, len, 848 musb_ep->packet_sz); 849 850 fifo_count = min_t(unsigned, len, fifo_count); 851 852 #ifdef CONFIG_USB_TUSB_OMAP_DMA 853 if (tusb_dma_omap() && is_buffer_mapped(req)) { 854 struct dma_controller *c = musb->dma_controller; 855 struct dma_channel *channel = musb_ep->dma; 856 u32 dma_addr = request->dma + request->actual; 857 int ret; 858 859 ret = c->channel_program(channel, 860 musb_ep->packet_sz, 861 channel->desired_mode, 862 dma_addr, 863 fifo_count); 864 if (ret) 865 return; 866 } 867 #endif 868 /* 869 * Unmap the dma buffer back to cpu if dma channel 870 * programming fails. This buffer is mapped if the 871 * channel allocation is successful 872 */ 873 if (is_buffer_mapped(req)) { 874 unmap_dma_buffer(req, musb); 875 876 /* 877 * Clear DMAENAB and AUTOCLEAR for the 878 * PIO mode transfer 879 */ 880 csr &= ~(MUSB_RXCSR_DMAENAB | MUSB_RXCSR_AUTOCLEAR); 881 musb_writew(epio, MUSB_RXCSR, csr); 882 } 883 884 musb_read_fifo(musb_ep->hw_ep, fifo_count, (u8 *) 885 (request->buf + request->actual)); 886 request->actual += fifo_count; 887 888 /* REVISIT if we left anything in the fifo, flush 889 * it and report -EOVERFLOW 890 */ 891 892 /* ack the read! */ 893 csr |= MUSB_RXCSR_P_WZC_BITS; 894 csr &= ~MUSB_RXCSR_RXPKTRDY; 895 musb_writew(epio, MUSB_RXCSR, csr); 896 } 897 } 898 899 /* reach the end or short packet detected */ 900 if (request->actual == request->length || 901 fifo_count < musb_ep->packet_sz) 902 musb_g_giveback(musb_ep, request, 0); 903 } 904 905 /* 906 * Data ready for a request; called from IRQ 907 */ 908 void musb_g_rx(struct musb *musb, u8 epnum) 909 { 910 u16 csr; 911 struct musb_request *req; 912 struct usb_request *request; 913 void __iomem *mbase = musb->mregs; 914 struct musb_ep *musb_ep; 915 void __iomem *epio = musb->endpoints[epnum].regs; 916 struct dma_channel *dma; 917 struct musb_hw_ep *hw_ep = &musb->endpoints[epnum]; 918 919 if (hw_ep->is_shared_fifo) 920 musb_ep = &hw_ep->ep_in; 921 else 922 musb_ep = &hw_ep->ep_out; 923 924 musb_ep_select(mbase, epnum); 925 926 req = next_request(musb_ep); 927 if (!req) 928 return; 929 930 request = &req->request; 931 932 csr = musb_readw(epio, MUSB_RXCSR); 933 dma = is_dma_capable() ? musb_ep->dma : NULL; 934 935 dev_dbg(musb->controller, "<== %s, rxcsr %04x%s %p\n", musb_ep->end_point.name, 936 csr, dma ? " (dma)" : "", request); 937 938 if (csr & MUSB_RXCSR_P_SENTSTALL) { 939 csr |= MUSB_RXCSR_P_WZC_BITS; 940 csr &= ~MUSB_RXCSR_P_SENTSTALL; 941 musb_writew(epio, MUSB_RXCSR, csr); 942 return; 943 } 944 945 if (csr & MUSB_RXCSR_P_OVERRUN) { 946 /* csr |= MUSB_RXCSR_P_WZC_BITS; */ 947 csr &= ~MUSB_RXCSR_P_OVERRUN; 948 musb_writew(epio, MUSB_RXCSR, csr); 949 950 dev_dbg(musb->controller, "%s iso overrun on %p\n", musb_ep->name, request); 951 if (request->status == -EINPROGRESS) 952 request->status = -EOVERFLOW; 953 } 954 if (csr & MUSB_RXCSR_INCOMPRX) { 955 /* REVISIT not necessarily an error */ 956 dev_dbg(musb->controller, "%s, incomprx\n", musb_ep->end_point.name); 957 } 958 959 if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) { 960 /* "should not happen"; likely RXPKTRDY pending for DMA */ 961 dev_dbg(musb->controller, "%s busy, csr %04x\n", 962 musb_ep->end_point.name, csr); 963 return; 964 } 965 966 if (dma && (csr & MUSB_RXCSR_DMAENAB)) { 967 csr &= ~(MUSB_RXCSR_AUTOCLEAR 968 | MUSB_RXCSR_DMAENAB 969 | MUSB_RXCSR_DMAMODE); 970 musb_writew(epio, MUSB_RXCSR, 971 MUSB_RXCSR_P_WZC_BITS | csr); 972 973 request->actual += musb_ep->dma->actual_len; 974 975 dev_dbg(musb->controller, "RXCSR%d %04x, dma off, %04x, len %zu, req %p\n", 976 epnum, csr, 977 musb_readw(epio, MUSB_RXCSR), 978 musb_ep->dma->actual_len, request); 979 980 #if defined(CONFIG_USB_INVENTRA_DMA) || defined(CONFIG_USB_TUSB_OMAP_DMA) || \ 981 defined(CONFIG_USB_UX500_DMA) 982 /* Autoclear doesn't clear RxPktRdy for short packets */ 983 if ((dma->desired_mode == 0 && !hw_ep->rx_double_buffered) 984 || (dma->actual_len 985 & (musb_ep->packet_sz - 1))) { 986 /* ack the read! */ 987 csr &= ~MUSB_RXCSR_RXPKTRDY; 988 musb_writew(epio, MUSB_RXCSR, csr); 989 } 990 991 /* incomplete, and not short? wait for next IN packet */ 992 if ((request->actual < request->length) 993 && (musb_ep->dma->actual_len 994 == musb_ep->packet_sz)) { 995 /* In double buffer case, continue to unload fifo if 996 * there is Rx packet in FIFO. 997 **/ 998 csr = musb_readw(epio, MUSB_RXCSR); 999 if ((csr & MUSB_RXCSR_RXPKTRDY) && 1000 hw_ep->rx_double_buffered) 1001 goto exit; 1002 return; 1003 } 1004 #endif 1005 musb_g_giveback(musb_ep, request, 0); 1006 /* 1007 * In the giveback function the MUSB lock is 1008 * released and acquired after sometime. During 1009 * this time period the INDEX register could get 1010 * changed by the gadget_queue function especially 1011 * on SMP systems. Reselect the INDEX to be sure 1012 * we are reading/modifying the right registers 1013 */ 1014 musb_ep_select(mbase, epnum); 1015 1016 req = next_request(musb_ep); 1017 if (!req) 1018 return; 1019 } 1020 #if defined(CONFIG_USB_INVENTRA_DMA) || defined(CONFIG_USB_TUSB_OMAP_DMA) || \ 1021 defined(CONFIG_USB_UX500_DMA) 1022 exit: 1023 #endif 1024 /* Analyze request */ 1025 rxstate(musb, req); 1026 } 1027 1028 /* ------------------------------------------------------------ */ 1029 1030 static int musb_gadget_enable(struct usb_ep *ep, 1031 const struct usb_endpoint_descriptor *desc) 1032 { 1033 unsigned long flags; 1034 struct musb_ep *musb_ep; 1035 struct musb_hw_ep *hw_ep; 1036 void __iomem *regs; 1037 struct musb *musb; 1038 void __iomem *mbase; 1039 u8 epnum; 1040 u16 csr; 1041 unsigned tmp; 1042 int status = -EINVAL; 1043 1044 if (!ep || !desc) 1045 return -EINVAL; 1046 1047 musb_ep = to_musb_ep(ep); 1048 hw_ep = musb_ep->hw_ep; 1049 regs = hw_ep->regs; 1050 musb = musb_ep->musb; 1051 mbase = musb->mregs; 1052 epnum = musb_ep->current_epnum; 1053 1054 spin_lock_irqsave(&musb->lock, flags); 1055 1056 if (musb_ep->desc) { 1057 status = -EBUSY; 1058 goto fail; 1059 } 1060 musb_ep->type = usb_endpoint_type(desc); 1061 1062 /* check direction and (later) maxpacket size against endpoint */ 1063 if (usb_endpoint_num(desc) != epnum) 1064 goto fail; 1065 1066 /* REVISIT this rules out high bandwidth periodic transfers */ 1067 tmp = usb_endpoint_maxp(desc); 1068 if (tmp & ~0x07ff) { 1069 int ok; 1070 1071 if (usb_endpoint_dir_in(desc)) 1072 ok = musb->hb_iso_tx; 1073 else 1074 ok = musb->hb_iso_rx; 1075 1076 if (!ok) { 1077 dev_dbg(musb->controller, "no support for high bandwidth ISO\n"); 1078 goto fail; 1079 } 1080 musb_ep->hb_mult = (tmp >> 11) & 3; 1081 } else { 1082 musb_ep->hb_mult = 0; 1083 } 1084 1085 musb_ep->packet_sz = tmp & 0x7ff; 1086 tmp = musb_ep->packet_sz * (musb_ep->hb_mult + 1); 1087 1088 /* enable the interrupts for the endpoint, set the endpoint 1089 * packet size (or fail), set the mode, clear the fifo 1090 */ 1091 musb_ep_select(mbase, epnum); 1092 if (usb_endpoint_dir_in(desc)) { 1093 1094 if (hw_ep->is_shared_fifo) 1095 musb_ep->is_in = 1; 1096 if (!musb_ep->is_in) 1097 goto fail; 1098 1099 if (tmp > hw_ep->max_packet_sz_tx) { 1100 dev_dbg(musb->controller, "packet size beyond hardware FIFO size\n"); 1101 goto fail; 1102 } 1103 1104 musb->intrtxe |= (1 << epnum); 1105 musb_writew(mbase, MUSB_INTRTXE, musb->intrtxe); 1106 1107 /* REVISIT if can_bulk_split(), use by updating "tmp"; 1108 * likewise high bandwidth periodic tx 1109 */ 1110 /* Set TXMAXP with the FIFO size of the endpoint 1111 * to disable double buffering mode. 1112 */ 1113 if (musb->double_buffer_not_ok) 1114 musb_writew(regs, MUSB_TXMAXP, hw_ep->max_packet_sz_tx); 1115 else 1116 musb_writew(regs, MUSB_TXMAXP, musb_ep->packet_sz 1117 | (musb_ep->hb_mult << 11)); 1118 1119 csr = MUSB_TXCSR_MODE | MUSB_TXCSR_CLRDATATOG; 1120 if (musb_readw(regs, MUSB_TXCSR) 1121 & MUSB_TXCSR_FIFONOTEMPTY) 1122 csr |= MUSB_TXCSR_FLUSHFIFO; 1123 if (musb_ep->type == USB_ENDPOINT_XFER_ISOC) 1124 csr |= MUSB_TXCSR_P_ISO; 1125 1126 /* set twice in case of double buffering */ 1127 musb_writew(regs, MUSB_TXCSR, csr); 1128 /* REVISIT may be inappropriate w/o FIFONOTEMPTY ... */ 1129 musb_writew(regs, MUSB_TXCSR, csr); 1130 1131 } else { 1132 1133 if (hw_ep->is_shared_fifo) 1134 musb_ep->is_in = 0; 1135 if (musb_ep->is_in) 1136 goto fail; 1137 1138 if (tmp > hw_ep->max_packet_sz_rx) { 1139 dev_dbg(musb->controller, "packet size beyond hardware FIFO size\n"); 1140 goto fail; 1141 } 1142 1143 musb->intrrxe |= (1 << epnum); 1144 musb_writew(mbase, MUSB_INTRRXE, musb->intrrxe); 1145 1146 /* REVISIT if can_bulk_combine() use by updating "tmp" 1147 * likewise high bandwidth periodic rx 1148 */ 1149 /* Set RXMAXP with the FIFO size of the endpoint 1150 * to disable double buffering mode. 1151 */ 1152 if (musb->double_buffer_not_ok) 1153 musb_writew(regs, MUSB_RXMAXP, hw_ep->max_packet_sz_tx); 1154 else 1155 musb_writew(regs, MUSB_RXMAXP, musb_ep->packet_sz 1156 | (musb_ep->hb_mult << 11)); 1157 1158 /* force shared fifo to OUT-only mode */ 1159 if (hw_ep->is_shared_fifo) { 1160 csr = musb_readw(regs, MUSB_TXCSR); 1161 csr &= ~(MUSB_TXCSR_MODE | MUSB_TXCSR_TXPKTRDY); 1162 musb_writew(regs, MUSB_TXCSR, csr); 1163 } 1164 1165 csr = MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_CLRDATATOG; 1166 if (musb_ep->type == USB_ENDPOINT_XFER_ISOC) 1167 csr |= MUSB_RXCSR_P_ISO; 1168 else if (musb_ep->type == USB_ENDPOINT_XFER_INT) 1169 csr |= MUSB_RXCSR_DISNYET; 1170 1171 /* set twice in case of double buffering */ 1172 musb_writew(regs, MUSB_RXCSR, csr); 1173 musb_writew(regs, MUSB_RXCSR, csr); 1174 } 1175 1176 /* NOTE: all the I/O code _should_ work fine without DMA, in case 1177 * for some reason you run out of channels here. 1178 */ 1179 if (is_dma_capable() && musb->dma_controller) { 1180 struct dma_controller *c = musb->dma_controller; 1181 1182 musb_ep->dma = c->channel_alloc(c, hw_ep, 1183 (desc->bEndpointAddress & USB_DIR_IN)); 1184 } else 1185 musb_ep->dma = NULL; 1186 1187 musb_ep->desc = desc; 1188 musb_ep->busy = 0; 1189 musb_ep->wedged = 0; 1190 status = 0; 1191 1192 pr_debug("%s periph: enabled %s for %s %s, %smaxpacket %d\n", 1193 musb_driver_name, musb_ep->end_point.name, 1194 ({ char *s; switch (musb_ep->type) { 1195 case USB_ENDPOINT_XFER_BULK: s = "bulk"; break; 1196 case USB_ENDPOINT_XFER_INT: s = "int"; break; 1197 default: s = "iso"; break; 1198 }; s; }), 1199 musb_ep->is_in ? "IN" : "OUT", 1200 musb_ep->dma ? "dma, " : "", 1201 musb_ep->packet_sz); 1202 1203 schedule_work(&musb->irq_work); 1204 1205 fail: 1206 spin_unlock_irqrestore(&musb->lock, flags); 1207 return status; 1208 } 1209 1210 /* 1211 * Disable an endpoint flushing all requests queued. 1212 */ 1213 static int musb_gadget_disable(struct usb_ep *ep) 1214 { 1215 unsigned long flags; 1216 struct musb *musb; 1217 u8 epnum; 1218 struct musb_ep *musb_ep; 1219 void __iomem *epio; 1220 int status = 0; 1221 1222 musb_ep = to_musb_ep(ep); 1223 musb = musb_ep->musb; 1224 epnum = musb_ep->current_epnum; 1225 epio = musb->endpoints[epnum].regs; 1226 1227 spin_lock_irqsave(&musb->lock, flags); 1228 musb_ep_select(musb->mregs, epnum); 1229 1230 /* zero the endpoint sizes */ 1231 if (musb_ep->is_in) { 1232 musb->intrtxe &= ~(1 << epnum); 1233 musb_writew(musb->mregs, MUSB_INTRTXE, musb->intrtxe); 1234 musb_writew(epio, MUSB_TXMAXP, 0); 1235 } else { 1236 musb->intrrxe &= ~(1 << epnum); 1237 musb_writew(musb->mregs, MUSB_INTRRXE, musb->intrrxe); 1238 musb_writew(epio, MUSB_RXMAXP, 0); 1239 } 1240 1241 musb_ep->desc = NULL; 1242 musb_ep->end_point.desc = NULL; 1243 1244 /* abort all pending DMA and requests */ 1245 nuke(musb_ep, -ESHUTDOWN); 1246 1247 schedule_work(&musb->irq_work); 1248 1249 spin_unlock_irqrestore(&(musb->lock), flags); 1250 1251 dev_dbg(musb->controller, "%s\n", musb_ep->end_point.name); 1252 1253 return status; 1254 } 1255 1256 /* 1257 * Allocate a request for an endpoint. 1258 * Reused by ep0 code. 1259 */ 1260 struct usb_request *musb_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) 1261 { 1262 struct musb_ep *musb_ep = to_musb_ep(ep); 1263 struct musb *musb = musb_ep->musb; 1264 struct musb_request *request = NULL; 1265 1266 request = kzalloc(sizeof *request, gfp_flags); 1267 if (!request) { 1268 dev_dbg(musb->controller, "not enough memory\n"); 1269 return NULL; 1270 } 1271 1272 request->request.dma = DMA_ADDR_INVALID; 1273 request->epnum = musb_ep->current_epnum; 1274 request->ep = musb_ep; 1275 1276 return &request->request; 1277 } 1278 1279 /* 1280 * Free a request 1281 * Reused by ep0 code. 1282 */ 1283 void musb_free_request(struct usb_ep *ep, struct usb_request *req) 1284 { 1285 kfree(to_musb_request(req)); 1286 } 1287 1288 static LIST_HEAD(buffers); 1289 1290 struct free_record { 1291 struct list_head list; 1292 struct device *dev; 1293 unsigned bytes; 1294 dma_addr_t dma; 1295 }; 1296 1297 /* 1298 * Context: controller locked, IRQs blocked. 1299 */ 1300 void musb_ep_restart(struct musb *musb, struct musb_request *req) 1301 { 1302 dev_dbg(musb->controller, "<== %s request %p len %u on hw_ep%d\n", 1303 req->tx ? "TX/IN" : "RX/OUT", 1304 &req->request, req->request.length, req->epnum); 1305 1306 musb_ep_select(musb->mregs, req->epnum); 1307 if (req->tx) 1308 txstate(musb, req); 1309 else 1310 rxstate(musb, req); 1311 } 1312 1313 static int musb_gadget_queue(struct usb_ep *ep, struct usb_request *req, 1314 gfp_t gfp_flags) 1315 { 1316 struct musb_ep *musb_ep; 1317 struct musb_request *request; 1318 struct musb *musb; 1319 int status = 0; 1320 unsigned long lockflags; 1321 1322 if (!ep || !req) 1323 return -EINVAL; 1324 if (!req->buf) 1325 return -ENODATA; 1326 1327 musb_ep = to_musb_ep(ep); 1328 musb = musb_ep->musb; 1329 1330 request = to_musb_request(req); 1331 request->musb = musb; 1332 1333 if (request->ep != musb_ep) 1334 return -EINVAL; 1335 1336 dev_dbg(musb->controller, "<== to %s request=%p\n", ep->name, req); 1337 1338 /* request is mine now... */ 1339 request->request.actual = 0; 1340 request->request.status = -EINPROGRESS; 1341 request->epnum = musb_ep->current_epnum; 1342 request->tx = musb_ep->is_in; 1343 1344 map_dma_buffer(request, musb, musb_ep); 1345 1346 spin_lock_irqsave(&musb->lock, lockflags); 1347 1348 /* don't queue if the ep is down */ 1349 if (!musb_ep->desc) { 1350 dev_dbg(musb->controller, "req %p queued to %s while ep %s\n", 1351 req, ep->name, "disabled"); 1352 status = -ESHUTDOWN; 1353 goto cleanup; 1354 } 1355 1356 /* add request to the list */ 1357 list_add_tail(&request->list, &musb_ep->req_list); 1358 1359 /* it this is the head of the queue, start i/o ... */ 1360 if (!musb_ep->busy && &request->list == musb_ep->req_list.next) 1361 musb_ep_restart(musb, request); 1362 1363 cleanup: 1364 spin_unlock_irqrestore(&musb->lock, lockflags); 1365 return status; 1366 } 1367 1368 static int musb_gadget_dequeue(struct usb_ep *ep, struct usb_request *request) 1369 { 1370 struct musb_ep *musb_ep = to_musb_ep(ep); 1371 struct musb_request *req = to_musb_request(request); 1372 struct musb_request *r; 1373 unsigned long flags; 1374 int status = 0; 1375 struct musb *musb = musb_ep->musb; 1376 1377 if (!ep || !request || to_musb_request(request)->ep != musb_ep) 1378 return -EINVAL; 1379 1380 spin_lock_irqsave(&musb->lock, flags); 1381 1382 list_for_each_entry(r, &musb_ep->req_list, list) { 1383 if (r == req) 1384 break; 1385 } 1386 if (r != req) { 1387 dev_dbg(musb->controller, "request %p not queued to %s\n", request, ep->name); 1388 status = -EINVAL; 1389 goto done; 1390 } 1391 1392 /* if the hardware doesn't have the request, easy ... */ 1393 if (musb_ep->req_list.next != &req->list || musb_ep->busy) 1394 musb_g_giveback(musb_ep, request, -ECONNRESET); 1395 1396 /* ... else abort the dma transfer ... */ 1397 else if (is_dma_capable() && musb_ep->dma) { 1398 struct dma_controller *c = musb->dma_controller; 1399 1400 musb_ep_select(musb->mregs, musb_ep->current_epnum); 1401 if (c->channel_abort) 1402 status = c->channel_abort(musb_ep->dma); 1403 else 1404 status = -EBUSY; 1405 if (status == 0) 1406 musb_g_giveback(musb_ep, request, -ECONNRESET); 1407 } else { 1408 /* NOTE: by sticking to easily tested hardware/driver states, 1409 * we leave counting of in-flight packets imprecise. 1410 */ 1411 musb_g_giveback(musb_ep, request, -ECONNRESET); 1412 } 1413 1414 done: 1415 spin_unlock_irqrestore(&musb->lock, flags); 1416 return status; 1417 } 1418 1419 /* 1420 * Set or clear the halt bit of an endpoint. A halted enpoint won't tx/rx any 1421 * data but will queue requests. 1422 * 1423 * exported to ep0 code 1424 */ 1425 static int musb_gadget_set_halt(struct usb_ep *ep, int value) 1426 { 1427 struct musb_ep *musb_ep = to_musb_ep(ep); 1428 u8 epnum = musb_ep->current_epnum; 1429 struct musb *musb = musb_ep->musb; 1430 void __iomem *epio = musb->endpoints[epnum].regs; 1431 void __iomem *mbase; 1432 unsigned long flags; 1433 u16 csr; 1434 struct musb_request *request; 1435 int status = 0; 1436 1437 if (!ep) 1438 return -EINVAL; 1439 mbase = musb->mregs; 1440 1441 spin_lock_irqsave(&musb->lock, flags); 1442 1443 if ((USB_ENDPOINT_XFER_ISOC == musb_ep->type)) { 1444 status = -EINVAL; 1445 goto done; 1446 } 1447 1448 musb_ep_select(mbase, epnum); 1449 1450 request = next_request(musb_ep); 1451 if (value) { 1452 if (request) { 1453 dev_dbg(musb->controller, "request in progress, cannot halt %s\n", 1454 ep->name); 1455 status = -EAGAIN; 1456 goto done; 1457 } 1458 /* Cannot portably stall with non-empty FIFO */ 1459 if (musb_ep->is_in) { 1460 csr = musb_readw(epio, MUSB_TXCSR); 1461 if (csr & MUSB_TXCSR_FIFONOTEMPTY) { 1462 dev_dbg(musb->controller, "FIFO busy, cannot halt %s\n", ep->name); 1463 status = -EAGAIN; 1464 goto done; 1465 } 1466 } 1467 } else 1468 musb_ep->wedged = 0; 1469 1470 /* set/clear the stall and toggle bits */ 1471 dev_dbg(musb->controller, "%s: %s stall\n", ep->name, value ? "set" : "clear"); 1472 if (musb_ep->is_in) { 1473 csr = musb_readw(epio, MUSB_TXCSR); 1474 csr |= MUSB_TXCSR_P_WZC_BITS 1475 | MUSB_TXCSR_CLRDATATOG; 1476 if (value) 1477 csr |= MUSB_TXCSR_P_SENDSTALL; 1478 else 1479 csr &= ~(MUSB_TXCSR_P_SENDSTALL 1480 | MUSB_TXCSR_P_SENTSTALL); 1481 csr &= ~MUSB_TXCSR_TXPKTRDY; 1482 musb_writew(epio, MUSB_TXCSR, csr); 1483 } else { 1484 csr = musb_readw(epio, MUSB_RXCSR); 1485 csr |= MUSB_RXCSR_P_WZC_BITS 1486 | MUSB_RXCSR_FLUSHFIFO 1487 | MUSB_RXCSR_CLRDATATOG; 1488 if (value) 1489 csr |= MUSB_RXCSR_P_SENDSTALL; 1490 else 1491 csr &= ~(MUSB_RXCSR_P_SENDSTALL 1492 | MUSB_RXCSR_P_SENTSTALL); 1493 musb_writew(epio, MUSB_RXCSR, csr); 1494 } 1495 1496 /* maybe start the first request in the queue */ 1497 if (!musb_ep->busy && !value && request) { 1498 dev_dbg(musb->controller, "restarting the request\n"); 1499 musb_ep_restart(musb, request); 1500 } 1501 1502 done: 1503 spin_unlock_irqrestore(&musb->lock, flags); 1504 return status; 1505 } 1506 1507 /* 1508 * Sets the halt feature with the clear requests ignored 1509 */ 1510 static int musb_gadget_set_wedge(struct usb_ep *ep) 1511 { 1512 struct musb_ep *musb_ep = to_musb_ep(ep); 1513 1514 if (!ep) 1515 return -EINVAL; 1516 1517 musb_ep->wedged = 1; 1518 1519 return usb_ep_set_halt(ep); 1520 } 1521 1522 static int musb_gadget_fifo_status(struct usb_ep *ep) 1523 { 1524 struct musb_ep *musb_ep = to_musb_ep(ep); 1525 void __iomem *epio = musb_ep->hw_ep->regs; 1526 int retval = -EINVAL; 1527 1528 if (musb_ep->desc && !musb_ep->is_in) { 1529 struct musb *musb = musb_ep->musb; 1530 int epnum = musb_ep->current_epnum; 1531 void __iomem *mbase = musb->mregs; 1532 unsigned long flags; 1533 1534 spin_lock_irqsave(&musb->lock, flags); 1535 1536 musb_ep_select(mbase, epnum); 1537 /* FIXME return zero unless RXPKTRDY is set */ 1538 retval = musb_readw(epio, MUSB_RXCOUNT); 1539 1540 spin_unlock_irqrestore(&musb->lock, flags); 1541 } 1542 return retval; 1543 } 1544 1545 static void musb_gadget_fifo_flush(struct usb_ep *ep) 1546 { 1547 struct musb_ep *musb_ep = to_musb_ep(ep); 1548 struct musb *musb = musb_ep->musb; 1549 u8 epnum = musb_ep->current_epnum; 1550 void __iomem *epio = musb->endpoints[epnum].regs; 1551 void __iomem *mbase; 1552 unsigned long flags; 1553 u16 csr; 1554 1555 mbase = musb->mregs; 1556 1557 spin_lock_irqsave(&musb->lock, flags); 1558 musb_ep_select(mbase, (u8) epnum); 1559 1560 /* disable interrupts */ 1561 musb_writew(mbase, MUSB_INTRTXE, musb->intrtxe & ~(1 << epnum)); 1562 1563 if (musb_ep->is_in) { 1564 csr = musb_readw(epio, MUSB_TXCSR); 1565 if (csr & MUSB_TXCSR_FIFONOTEMPTY) { 1566 csr |= MUSB_TXCSR_FLUSHFIFO | MUSB_TXCSR_P_WZC_BITS; 1567 /* 1568 * Setting both TXPKTRDY and FLUSHFIFO makes controller 1569 * to interrupt current FIFO loading, but not flushing 1570 * the already loaded ones. 1571 */ 1572 csr &= ~MUSB_TXCSR_TXPKTRDY; 1573 musb_writew(epio, MUSB_TXCSR, csr); 1574 /* REVISIT may be inappropriate w/o FIFONOTEMPTY ... */ 1575 musb_writew(epio, MUSB_TXCSR, csr); 1576 } 1577 } else { 1578 csr = musb_readw(epio, MUSB_RXCSR); 1579 csr |= MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_P_WZC_BITS; 1580 musb_writew(epio, MUSB_RXCSR, csr); 1581 musb_writew(epio, MUSB_RXCSR, csr); 1582 } 1583 1584 /* re-enable interrupt */ 1585 musb_writew(mbase, MUSB_INTRTXE, musb->intrtxe); 1586 spin_unlock_irqrestore(&musb->lock, flags); 1587 } 1588 1589 static const struct usb_ep_ops musb_ep_ops = { 1590 .enable = musb_gadget_enable, 1591 .disable = musb_gadget_disable, 1592 .alloc_request = musb_alloc_request, 1593 .free_request = musb_free_request, 1594 .queue = musb_gadget_queue, 1595 .dequeue = musb_gadget_dequeue, 1596 .set_halt = musb_gadget_set_halt, 1597 .set_wedge = musb_gadget_set_wedge, 1598 .fifo_status = musb_gadget_fifo_status, 1599 .fifo_flush = musb_gadget_fifo_flush 1600 }; 1601 1602 /* ----------------------------------------------------------------------- */ 1603 1604 static int musb_gadget_get_frame(struct usb_gadget *gadget) 1605 { 1606 struct musb *musb = gadget_to_musb(gadget); 1607 1608 return (int)musb_readw(musb->mregs, MUSB_FRAME); 1609 } 1610 1611 static int musb_gadget_wakeup(struct usb_gadget *gadget) 1612 { 1613 struct musb *musb = gadget_to_musb(gadget); 1614 void __iomem *mregs = musb->mregs; 1615 unsigned long flags; 1616 int status = -EINVAL; 1617 u8 power, devctl; 1618 int retries; 1619 1620 spin_lock_irqsave(&musb->lock, flags); 1621 1622 switch (musb->xceiv->state) { 1623 case OTG_STATE_B_PERIPHERAL: 1624 /* NOTE: OTG state machine doesn't include B_SUSPENDED; 1625 * that's part of the standard usb 1.1 state machine, and 1626 * doesn't affect OTG transitions. 1627 */ 1628 if (musb->may_wakeup && musb->is_suspended) 1629 break; 1630 goto done; 1631 case OTG_STATE_B_IDLE: 1632 /* Start SRP ... OTG not required. */ 1633 devctl = musb_readb(mregs, MUSB_DEVCTL); 1634 dev_dbg(musb->controller, "Sending SRP: devctl: %02x\n", devctl); 1635 devctl |= MUSB_DEVCTL_SESSION; 1636 musb_writeb(mregs, MUSB_DEVCTL, devctl); 1637 devctl = musb_readb(mregs, MUSB_DEVCTL); 1638 retries = 100; 1639 while (!(devctl & MUSB_DEVCTL_SESSION)) { 1640 devctl = musb_readb(mregs, MUSB_DEVCTL); 1641 if (retries-- < 1) 1642 break; 1643 } 1644 retries = 10000; 1645 while (devctl & MUSB_DEVCTL_SESSION) { 1646 devctl = musb_readb(mregs, MUSB_DEVCTL); 1647 if (retries-- < 1) 1648 break; 1649 } 1650 1651 spin_unlock_irqrestore(&musb->lock, flags); 1652 otg_start_srp(musb->xceiv->otg); 1653 spin_lock_irqsave(&musb->lock, flags); 1654 1655 /* Block idling for at least 1s */ 1656 musb_platform_try_idle(musb, 1657 jiffies + msecs_to_jiffies(1 * HZ)); 1658 1659 status = 0; 1660 goto done; 1661 default: 1662 dev_dbg(musb->controller, "Unhandled wake: %s\n", 1663 otg_state_string(musb->xceiv->state)); 1664 goto done; 1665 } 1666 1667 status = 0; 1668 1669 power = musb_readb(mregs, MUSB_POWER); 1670 power |= MUSB_POWER_RESUME; 1671 musb_writeb(mregs, MUSB_POWER, power); 1672 dev_dbg(musb->controller, "issue wakeup\n"); 1673 1674 /* FIXME do this next chunk in a timer callback, no udelay */ 1675 mdelay(2); 1676 1677 power = musb_readb(mregs, MUSB_POWER); 1678 power &= ~MUSB_POWER_RESUME; 1679 musb_writeb(mregs, MUSB_POWER, power); 1680 done: 1681 spin_unlock_irqrestore(&musb->lock, flags); 1682 return status; 1683 } 1684 1685 static int 1686 musb_gadget_set_self_powered(struct usb_gadget *gadget, int is_selfpowered) 1687 { 1688 struct musb *musb = gadget_to_musb(gadget); 1689 1690 musb->is_self_powered = !!is_selfpowered; 1691 return 0; 1692 } 1693 1694 static void musb_pullup(struct musb *musb, int is_on) 1695 { 1696 u8 power; 1697 1698 power = musb_readb(musb->mregs, MUSB_POWER); 1699 if (is_on) 1700 power |= MUSB_POWER_SOFTCONN; 1701 else 1702 power &= ~MUSB_POWER_SOFTCONN; 1703 1704 /* FIXME if on, HdrcStart; if off, HdrcStop */ 1705 1706 dev_dbg(musb->controller, "gadget D+ pullup %s\n", 1707 is_on ? "on" : "off"); 1708 musb_writeb(musb->mregs, MUSB_POWER, power); 1709 } 1710 1711 #if 0 1712 static int musb_gadget_vbus_session(struct usb_gadget *gadget, int is_active) 1713 { 1714 dev_dbg(musb->controller, "<= %s =>\n", __func__); 1715 1716 /* 1717 * FIXME iff driver's softconnect flag is set (as it is during probe, 1718 * though that can clear it), just musb_pullup(). 1719 */ 1720 1721 return -EINVAL; 1722 } 1723 #endif 1724 1725 static int musb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 1726 { 1727 struct musb *musb = gadget_to_musb(gadget); 1728 1729 if (!musb->xceiv->set_power) 1730 return -EOPNOTSUPP; 1731 return usb_phy_set_power(musb->xceiv, mA); 1732 } 1733 1734 static int musb_gadget_pullup(struct usb_gadget *gadget, int is_on) 1735 { 1736 struct musb *musb = gadget_to_musb(gadget); 1737 unsigned long flags; 1738 1739 is_on = !!is_on; 1740 1741 pm_runtime_get_sync(musb->controller); 1742 1743 /* NOTE: this assumes we are sensing vbus; we'd rather 1744 * not pullup unless the B-session is active. 1745 */ 1746 spin_lock_irqsave(&musb->lock, flags); 1747 if (is_on != musb->softconnect) { 1748 musb->softconnect = is_on; 1749 musb_pullup(musb, is_on); 1750 } 1751 spin_unlock_irqrestore(&musb->lock, flags); 1752 1753 pm_runtime_put(musb->controller); 1754 1755 return 0; 1756 } 1757 1758 static int musb_gadget_start(struct usb_gadget *g, 1759 struct usb_gadget_driver *driver); 1760 static int musb_gadget_stop(struct usb_gadget *g, 1761 struct usb_gadget_driver *driver); 1762 1763 static const struct usb_gadget_ops musb_gadget_operations = { 1764 .get_frame = musb_gadget_get_frame, 1765 .wakeup = musb_gadget_wakeup, 1766 .set_selfpowered = musb_gadget_set_self_powered, 1767 /* .vbus_session = musb_gadget_vbus_session, */ 1768 .vbus_draw = musb_gadget_vbus_draw, 1769 .pullup = musb_gadget_pullup, 1770 .udc_start = musb_gadget_start, 1771 .udc_stop = musb_gadget_stop, 1772 }; 1773 1774 /* ----------------------------------------------------------------------- */ 1775 1776 /* Registration */ 1777 1778 /* Only this registration code "knows" the rule (from USB standards) 1779 * about there being only one external upstream port. It assumes 1780 * all peripheral ports are external... 1781 */ 1782 1783 static void musb_gadget_release(struct device *dev) 1784 { 1785 /* kref_put(WHAT) */ 1786 dev_dbg(dev, "%s\n", __func__); 1787 } 1788 1789 1790 static void 1791 init_peripheral_ep(struct musb *musb, struct musb_ep *ep, u8 epnum, int is_in) 1792 { 1793 struct musb_hw_ep *hw_ep = musb->endpoints + epnum; 1794 1795 memset(ep, 0, sizeof *ep); 1796 1797 ep->current_epnum = epnum; 1798 ep->musb = musb; 1799 ep->hw_ep = hw_ep; 1800 ep->is_in = is_in; 1801 1802 INIT_LIST_HEAD(&ep->req_list); 1803 1804 sprintf(ep->name, "ep%d%s", epnum, 1805 (!epnum || hw_ep->is_shared_fifo) ? "" : ( 1806 is_in ? "in" : "out")); 1807 ep->end_point.name = ep->name; 1808 INIT_LIST_HEAD(&ep->end_point.ep_list); 1809 if (!epnum) { 1810 ep->end_point.maxpacket = 64; 1811 ep->end_point.ops = &musb_g_ep0_ops; 1812 musb->g.ep0 = &ep->end_point; 1813 } else { 1814 if (is_in) 1815 ep->end_point.maxpacket = hw_ep->max_packet_sz_tx; 1816 else 1817 ep->end_point.maxpacket = hw_ep->max_packet_sz_rx; 1818 ep->end_point.ops = &musb_ep_ops; 1819 list_add_tail(&ep->end_point.ep_list, &musb->g.ep_list); 1820 } 1821 } 1822 1823 /* 1824 * Initialize the endpoints exposed to peripheral drivers, with backlinks 1825 * to the rest of the driver state. 1826 */ 1827 static inline void musb_g_init_endpoints(struct musb *musb) 1828 { 1829 u8 epnum; 1830 struct musb_hw_ep *hw_ep; 1831 unsigned count = 0; 1832 1833 /* initialize endpoint list just once */ 1834 INIT_LIST_HEAD(&(musb->g.ep_list)); 1835 1836 for (epnum = 0, hw_ep = musb->endpoints; 1837 epnum < musb->nr_endpoints; 1838 epnum++, hw_ep++) { 1839 if (hw_ep->is_shared_fifo /* || !epnum */) { 1840 init_peripheral_ep(musb, &hw_ep->ep_in, epnum, 0); 1841 count++; 1842 } else { 1843 if (hw_ep->max_packet_sz_tx) { 1844 init_peripheral_ep(musb, &hw_ep->ep_in, 1845 epnum, 1); 1846 count++; 1847 } 1848 if (hw_ep->max_packet_sz_rx) { 1849 init_peripheral_ep(musb, &hw_ep->ep_out, 1850 epnum, 0); 1851 count++; 1852 } 1853 } 1854 } 1855 } 1856 1857 /* called once during driver setup to initialize and link into 1858 * the driver model; memory is zeroed. 1859 */ 1860 int musb_gadget_setup(struct musb *musb) 1861 { 1862 int status; 1863 1864 /* REVISIT minor race: if (erroneously) setting up two 1865 * musb peripherals at the same time, only the bus lock 1866 * is probably held. 1867 */ 1868 1869 musb->g.ops = &musb_gadget_operations; 1870 musb->g.max_speed = USB_SPEED_HIGH; 1871 musb->g.speed = USB_SPEED_UNKNOWN; 1872 1873 /* this "gadget" abstracts/virtualizes the controller */ 1874 dev_set_name(&musb->g.dev, "gadget"); 1875 musb->g.dev.parent = musb->controller; 1876 musb->g.dev.dma_mask = musb->controller->dma_mask; 1877 musb->g.dev.release = musb_gadget_release; 1878 musb->g.name = musb_driver_name; 1879 1880 musb->g.is_otg = 1; 1881 1882 musb_g_init_endpoints(musb); 1883 1884 musb->is_active = 0; 1885 musb_platform_try_idle(musb, 0); 1886 1887 status = device_register(&musb->g.dev); 1888 if (status != 0) { 1889 put_device(&musb->g.dev); 1890 return status; 1891 } 1892 status = usb_add_gadget_udc(musb->controller, &musb->g); 1893 if (status) 1894 goto err; 1895 1896 return 0; 1897 err: 1898 musb->g.dev.parent = NULL; 1899 device_unregister(&musb->g.dev); 1900 return status; 1901 } 1902 1903 void musb_gadget_cleanup(struct musb *musb) 1904 { 1905 usb_del_gadget_udc(&musb->g); 1906 if (musb->g.dev.parent) 1907 device_unregister(&musb->g.dev); 1908 } 1909 1910 /* 1911 * Register the gadget driver. Used by gadget drivers when 1912 * registering themselves with the controller. 1913 * 1914 * -EINVAL something went wrong (not driver) 1915 * -EBUSY another gadget is already using the controller 1916 * -ENOMEM no memory to perform the operation 1917 * 1918 * @param driver the gadget driver 1919 * @return <0 if error, 0 if everything is fine 1920 */ 1921 static int musb_gadget_start(struct usb_gadget *g, 1922 struct usb_gadget_driver *driver) 1923 { 1924 struct musb *musb = gadget_to_musb(g); 1925 struct usb_otg *otg = musb->xceiv->otg; 1926 struct usb_hcd *hcd = musb_to_hcd(musb); 1927 unsigned long flags; 1928 int retval = 0; 1929 1930 if (driver->max_speed < USB_SPEED_HIGH) { 1931 retval = -EINVAL; 1932 goto err; 1933 } 1934 1935 pm_runtime_get_sync(musb->controller); 1936 1937 dev_dbg(musb->controller, "registering driver %s\n", driver->function); 1938 1939 musb->softconnect = 0; 1940 musb->gadget_driver = driver; 1941 1942 spin_lock_irqsave(&musb->lock, flags); 1943 musb->is_active = 1; 1944 1945 otg_set_peripheral(otg, &musb->g); 1946 musb->xceiv->state = OTG_STATE_B_IDLE; 1947 spin_unlock_irqrestore(&musb->lock, flags); 1948 1949 /* REVISIT: funcall to other code, which also 1950 * handles power budgeting ... this way also 1951 * ensures HdrcStart is indirectly called. 1952 */ 1953 retval = usb_add_hcd(hcd, 0, 0); 1954 if (retval < 0) { 1955 dev_dbg(musb->controller, "add_hcd failed, %d\n", retval); 1956 goto err; 1957 } 1958 1959 if ((musb->xceiv->last_event == USB_EVENT_ID) 1960 && otg->set_vbus) 1961 otg_set_vbus(otg, 1); 1962 1963 hcd->self.uses_pio_for_control = 1; 1964 1965 if (musb->xceiv->last_event == USB_EVENT_NONE) 1966 pm_runtime_put(musb->controller); 1967 1968 return 0; 1969 1970 err: 1971 return retval; 1972 } 1973 1974 static void stop_activity(struct musb *musb, struct usb_gadget_driver *driver) 1975 { 1976 int i; 1977 struct musb_hw_ep *hw_ep; 1978 1979 /* don't disconnect if it's not connected */ 1980 if (musb->g.speed == USB_SPEED_UNKNOWN) 1981 driver = NULL; 1982 else 1983 musb->g.speed = USB_SPEED_UNKNOWN; 1984 1985 /* deactivate the hardware */ 1986 if (musb->softconnect) { 1987 musb->softconnect = 0; 1988 musb_pullup(musb, 0); 1989 } 1990 musb_stop(musb); 1991 1992 /* killing any outstanding requests will quiesce the driver; 1993 * then report disconnect 1994 */ 1995 if (driver) { 1996 for (i = 0, hw_ep = musb->endpoints; 1997 i < musb->nr_endpoints; 1998 i++, hw_ep++) { 1999 musb_ep_select(musb->mregs, i); 2000 if (hw_ep->is_shared_fifo /* || !epnum */) { 2001 nuke(&hw_ep->ep_in, -ESHUTDOWN); 2002 } else { 2003 if (hw_ep->max_packet_sz_tx) 2004 nuke(&hw_ep->ep_in, -ESHUTDOWN); 2005 if (hw_ep->max_packet_sz_rx) 2006 nuke(&hw_ep->ep_out, -ESHUTDOWN); 2007 } 2008 } 2009 } 2010 } 2011 2012 /* 2013 * Unregister the gadget driver. Used by gadget drivers when 2014 * unregistering themselves from the controller. 2015 * 2016 * @param driver the gadget driver to unregister 2017 */ 2018 static int musb_gadget_stop(struct usb_gadget *g, 2019 struct usb_gadget_driver *driver) 2020 { 2021 struct musb *musb = gadget_to_musb(g); 2022 unsigned long flags; 2023 2024 if (musb->xceiv->last_event == USB_EVENT_NONE) 2025 pm_runtime_get_sync(musb->controller); 2026 2027 /* 2028 * REVISIT always use otg_set_peripheral() here too; 2029 * this needs to shut down the OTG engine. 2030 */ 2031 2032 spin_lock_irqsave(&musb->lock, flags); 2033 2034 musb_hnp_stop(musb); 2035 2036 (void) musb_gadget_vbus_draw(&musb->g, 0); 2037 2038 musb->xceiv->state = OTG_STATE_UNDEFINED; 2039 stop_activity(musb, driver); 2040 otg_set_peripheral(musb->xceiv->otg, NULL); 2041 2042 dev_dbg(musb->controller, "unregistering driver %s\n", driver->function); 2043 2044 musb->is_active = 0; 2045 musb_platform_try_idle(musb, 0); 2046 spin_unlock_irqrestore(&musb->lock, flags); 2047 2048 usb_remove_hcd(musb_to_hcd(musb)); 2049 /* 2050 * FIXME we need to be able to register another 2051 * gadget driver here and have everything work; 2052 * that currently misbehaves. 2053 */ 2054 2055 pm_runtime_put(musb->controller); 2056 2057 return 0; 2058 } 2059 2060 /* ----------------------------------------------------------------------- */ 2061 2062 /* lifecycle operations called through plat_uds.c */ 2063 2064 void musb_g_resume(struct musb *musb) 2065 { 2066 musb->is_suspended = 0; 2067 switch (musb->xceiv->state) { 2068 case OTG_STATE_B_IDLE: 2069 break; 2070 case OTG_STATE_B_WAIT_ACON: 2071 case OTG_STATE_B_PERIPHERAL: 2072 musb->is_active = 1; 2073 if (musb->gadget_driver && musb->gadget_driver->resume) { 2074 spin_unlock(&musb->lock); 2075 musb->gadget_driver->resume(&musb->g); 2076 spin_lock(&musb->lock); 2077 } 2078 break; 2079 default: 2080 WARNING("unhandled RESUME transition (%s)\n", 2081 otg_state_string(musb->xceiv->state)); 2082 } 2083 } 2084 2085 /* called when SOF packets stop for 3+ msec */ 2086 void musb_g_suspend(struct musb *musb) 2087 { 2088 u8 devctl; 2089 2090 devctl = musb_readb(musb->mregs, MUSB_DEVCTL); 2091 dev_dbg(musb->controller, "devctl %02x\n", devctl); 2092 2093 switch (musb->xceiv->state) { 2094 case OTG_STATE_B_IDLE: 2095 if ((devctl & MUSB_DEVCTL_VBUS) == MUSB_DEVCTL_VBUS) 2096 musb->xceiv->state = OTG_STATE_B_PERIPHERAL; 2097 break; 2098 case OTG_STATE_B_PERIPHERAL: 2099 musb->is_suspended = 1; 2100 if (musb->gadget_driver && musb->gadget_driver->suspend) { 2101 spin_unlock(&musb->lock); 2102 musb->gadget_driver->suspend(&musb->g); 2103 spin_lock(&musb->lock); 2104 } 2105 break; 2106 default: 2107 /* REVISIT if B_HOST, clear DEVCTL.HOSTREQ; 2108 * A_PERIPHERAL may need care too 2109 */ 2110 WARNING("unhandled SUSPEND transition (%s)\n", 2111 otg_state_string(musb->xceiv->state)); 2112 } 2113 } 2114 2115 /* Called during SRP */ 2116 void musb_g_wakeup(struct musb *musb) 2117 { 2118 musb_gadget_wakeup(&musb->g); 2119 } 2120 2121 /* called when VBUS drops below session threshold, and in other cases */ 2122 void musb_g_disconnect(struct musb *musb) 2123 { 2124 void __iomem *mregs = musb->mregs; 2125 u8 devctl = musb_readb(mregs, MUSB_DEVCTL); 2126 2127 dev_dbg(musb->controller, "devctl %02x\n", devctl); 2128 2129 /* clear HR */ 2130 musb_writeb(mregs, MUSB_DEVCTL, devctl & MUSB_DEVCTL_SESSION); 2131 2132 /* don't draw vbus until new b-default session */ 2133 (void) musb_gadget_vbus_draw(&musb->g, 0); 2134 2135 musb->g.speed = USB_SPEED_UNKNOWN; 2136 if (musb->gadget_driver && musb->gadget_driver->disconnect) { 2137 spin_unlock(&musb->lock); 2138 musb->gadget_driver->disconnect(&musb->g); 2139 spin_lock(&musb->lock); 2140 } 2141 2142 switch (musb->xceiv->state) { 2143 default: 2144 dev_dbg(musb->controller, "Unhandled disconnect %s, setting a_idle\n", 2145 otg_state_string(musb->xceiv->state)); 2146 musb->xceiv->state = OTG_STATE_A_IDLE; 2147 MUSB_HST_MODE(musb); 2148 break; 2149 case OTG_STATE_A_PERIPHERAL: 2150 musb->xceiv->state = OTG_STATE_A_WAIT_BCON; 2151 MUSB_HST_MODE(musb); 2152 break; 2153 case OTG_STATE_B_WAIT_ACON: 2154 case OTG_STATE_B_HOST: 2155 case OTG_STATE_B_PERIPHERAL: 2156 case OTG_STATE_B_IDLE: 2157 musb->xceiv->state = OTG_STATE_B_IDLE; 2158 break; 2159 case OTG_STATE_B_SRP_INIT: 2160 break; 2161 } 2162 2163 musb->is_active = 0; 2164 } 2165 2166 void musb_g_reset(struct musb *musb) 2167 __releases(musb->lock) 2168 __acquires(musb->lock) 2169 { 2170 void __iomem *mbase = musb->mregs; 2171 u8 devctl = musb_readb(mbase, MUSB_DEVCTL); 2172 u8 power; 2173 2174 dev_dbg(musb->controller, "<== %s driver '%s'\n", 2175 (devctl & MUSB_DEVCTL_BDEVICE) 2176 ? "B-Device" : "A-Device", 2177 musb->gadget_driver 2178 ? musb->gadget_driver->driver.name 2179 : NULL 2180 ); 2181 2182 /* report disconnect, if we didn't already (flushing EP state) */ 2183 if (musb->g.speed != USB_SPEED_UNKNOWN) 2184 musb_g_disconnect(musb); 2185 2186 /* clear HR */ 2187 else if (devctl & MUSB_DEVCTL_HR) 2188 musb_writeb(mbase, MUSB_DEVCTL, MUSB_DEVCTL_SESSION); 2189 2190 2191 /* what speed did we negotiate? */ 2192 power = musb_readb(mbase, MUSB_POWER); 2193 musb->g.speed = (power & MUSB_POWER_HSMODE) 2194 ? USB_SPEED_HIGH : USB_SPEED_FULL; 2195 2196 /* start in USB_STATE_DEFAULT */ 2197 musb->is_active = 1; 2198 musb->is_suspended = 0; 2199 MUSB_DEV_MODE(musb); 2200 musb->address = 0; 2201 musb->ep0_state = MUSB_EP0_STAGE_SETUP; 2202 2203 musb->may_wakeup = 0; 2204 musb->g.b_hnp_enable = 0; 2205 musb->g.a_alt_hnp_support = 0; 2206 musb->g.a_hnp_support = 0; 2207 2208 /* Normal reset, as B-Device; 2209 * or else after HNP, as A-Device 2210 */ 2211 if (devctl & MUSB_DEVCTL_BDEVICE) { 2212 musb->xceiv->state = OTG_STATE_B_PERIPHERAL; 2213 musb->g.is_a_peripheral = 0; 2214 } else { 2215 musb->xceiv->state = OTG_STATE_A_PERIPHERAL; 2216 musb->g.is_a_peripheral = 1; 2217 } 2218 2219 /* start with default limits on VBUS power draw */ 2220 (void) musb_gadget_vbus_draw(&musb->g, 8); 2221 } 2222