1 /* 2 * The USB Monitor, inspired by Dave Harding's USBMon. 3 * 4 * This is a binary format reader. 5 * 6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) 7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com) 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/cdev.h> 14 #include <linux/usb.h> 15 #include <linux/poll.h> 16 #include <linux/compat.h> 17 #include <linux/mm.h> 18 #include <linux/smp_lock.h> 19 20 #include <asm/uaccess.h> 21 22 #include "usb_mon.h" 23 24 /* 25 * Defined by USB 2.0 clause 9.3, table 9.2. 26 */ 27 #define SETUP_LEN 8 28 29 /* ioctl macros */ 30 #define MON_IOC_MAGIC 0x92 31 32 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) 33 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ 34 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) 35 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) 36 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) 37 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) 38 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) 39 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) 40 /* #9 was MON_IOCT_SETAPI */ 41 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get) 42 43 #ifdef CONFIG_COMPAT 44 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) 45 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) 46 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32) 47 #endif 48 49 /* 50 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). 51 * But it's all right. Just use a simple way to make sure the chunk is never 52 * smaller than a page. 53 * 54 * N.B. An application does not know our chunk size. 55 * 56 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with 57 * page-sized chunks for the time being. 58 */ 59 #define CHUNK_SIZE PAGE_SIZE 60 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) 61 62 /* 63 * The magic limit was calculated so that it allows the monitoring 64 * application to pick data once in two ticks. This way, another application, 65 * which presumably drives the bus, gets to hog CPU, yet we collect our data. 66 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an 67 * enormous overhead built into the bus protocol, so we need about 1000 KB. 68 * 69 * This is still too much for most cases, where we just snoop a few 70 * descriptor fetches for enumeration. So, the default is a "reasonable" 71 * amount for systems with HZ=250 and incomplete bus saturation. 72 * 73 * XXX What about multi-megabyte URBs which take minutes to transfer? 74 */ 75 #define BUFF_MAX CHUNK_ALIGN(1200*1024) 76 #define BUFF_DFL CHUNK_ALIGN(300*1024) 77 #define BUFF_MIN CHUNK_ALIGN(8*1024) 78 79 /* 80 * The per-event API header (2 per URB). 81 * 82 * This structure is seen in userland as defined by the documentation. 83 */ 84 struct mon_bin_hdr { 85 u64 id; /* URB ID - from submission to callback */ 86 unsigned char type; /* Same as in text API; extensible. */ 87 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ 88 unsigned char epnum; /* Endpoint number and transfer direction */ 89 unsigned char devnum; /* Device address */ 90 unsigned short busnum; /* Bus number */ 91 char flag_setup; 92 char flag_data; 93 s64 ts_sec; /* gettimeofday */ 94 s32 ts_usec; /* gettimeofday */ 95 int status; 96 unsigned int len_urb; /* Length of data (submitted or actual) */ 97 unsigned int len_cap; /* Delivered length */ 98 union { 99 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ 100 struct iso_rec { 101 int error_count; 102 int numdesc; 103 } iso; 104 } s; 105 int interval; 106 int start_frame; 107 unsigned int xfer_flags; 108 unsigned int ndesc; /* Actual number of ISO descriptors */ 109 }; 110 111 /* 112 * ISO vector, packed into the head of data stream. 113 * This has to take 16 bytes to make sure that the end of buffer 114 * wrap is not happening in the middle of a descriptor. 115 */ 116 struct mon_bin_isodesc { 117 int iso_status; 118 unsigned int iso_off; 119 unsigned int iso_len; 120 u32 _pad; 121 }; 122 123 /* per file statistic */ 124 struct mon_bin_stats { 125 u32 queued; 126 u32 dropped; 127 }; 128 129 struct mon_bin_get { 130 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */ 131 void __user *data; 132 size_t alloc; /* Length of data (can be zero) */ 133 }; 134 135 struct mon_bin_mfetch { 136 u32 __user *offvec; /* Vector of events fetched */ 137 u32 nfetch; /* Number of events to fetch (out: fetched) */ 138 u32 nflush; /* Number of events to flush */ 139 }; 140 141 #ifdef CONFIG_COMPAT 142 struct mon_bin_get32 { 143 u32 hdr32; 144 u32 data32; 145 u32 alloc32; 146 }; 147 148 struct mon_bin_mfetch32 { 149 u32 offvec32; 150 u32 nfetch32; 151 u32 nflush32; 152 }; 153 #endif 154 155 /* Having these two values same prevents wrapping of the mon_bin_hdr */ 156 #define PKT_ALIGN 64 157 #define PKT_SIZE 64 158 159 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */ 160 #define PKT_SZ_API1 64 /* API 1 size: extra fields */ 161 162 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */ 163 164 /* max number of USB bus supported */ 165 #define MON_BIN_MAX_MINOR 128 166 167 /* 168 * The buffer: map of used pages. 169 */ 170 struct mon_pgmap { 171 struct page *pg; 172 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ 173 }; 174 175 /* 176 * This gets associated with an open file struct. 177 */ 178 struct mon_reader_bin { 179 /* The buffer: one per open. */ 180 spinlock_t b_lock; /* Protect b_cnt, b_in */ 181 unsigned int b_size; /* Current size of the buffer - bytes */ 182 unsigned int b_cnt; /* Bytes used */ 183 unsigned int b_in, b_out; /* Offsets into buffer - bytes */ 184 unsigned int b_read; /* Amount of read data in curr. pkt. */ 185 struct mon_pgmap *b_vec; /* The map array */ 186 wait_queue_head_t b_wait; /* Wait for data here */ 187 188 struct mutex fetch_lock; /* Protect b_read, b_out */ 189 int mmap_active; 190 191 /* A list of these is needed for "bus 0". Some time later. */ 192 struct mon_reader r; 193 194 /* Stats */ 195 unsigned int cnt_lost; 196 }; 197 198 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, 199 unsigned int offset) 200 { 201 return (struct mon_bin_hdr *) 202 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 203 } 204 205 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) 206 207 static unsigned char xfer_to_pipe[4] = { 208 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT 209 }; 210 211 static struct class *mon_bin_class; 212 static dev_t mon_bin_dev0; 213 static struct cdev mon_bin_cdev; 214 215 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 216 unsigned int offset, unsigned int size); 217 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); 218 static int mon_alloc_buff(struct mon_pgmap *map, int npages); 219 static void mon_free_buff(struct mon_pgmap *map, int npages); 220 221 /* 222 * This is a "chunked memcpy". It does not manipulate any counters. 223 * But it returns the new offset for repeated application. 224 */ 225 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, 226 unsigned int off, const unsigned char *from, unsigned int length) 227 { 228 unsigned int step_len; 229 unsigned char *buf; 230 unsigned int in_page; 231 232 while (length) { 233 /* 234 * Determine step_len. 235 */ 236 step_len = length; 237 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 238 if (in_page < step_len) 239 step_len = in_page; 240 241 /* 242 * Copy data and advance pointers. 243 */ 244 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 245 memcpy(buf, from, step_len); 246 if ((off += step_len) >= this->b_size) off = 0; 247 from += step_len; 248 length -= step_len; 249 } 250 return off; 251 } 252 253 /* 254 * This is a little worse than the above because it's "chunked copy_to_user". 255 * The return value is an error code, not an offset. 256 */ 257 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, 258 char __user *to, int length) 259 { 260 unsigned int step_len; 261 unsigned char *buf; 262 unsigned int in_page; 263 264 while (length) { 265 /* 266 * Determine step_len. 267 */ 268 step_len = length; 269 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 270 if (in_page < step_len) 271 step_len = in_page; 272 273 /* 274 * Copy data and advance pointers. 275 */ 276 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 277 if (copy_to_user(to, buf, step_len)) 278 return -EINVAL; 279 if ((off += step_len) >= this->b_size) off = 0; 280 to += step_len; 281 length -= step_len; 282 } 283 return 0; 284 } 285 286 /* 287 * Allocate an (aligned) area in the buffer. 288 * This is called under b_lock. 289 * Returns ~0 on failure. 290 */ 291 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, 292 unsigned int size) 293 { 294 unsigned int offset; 295 296 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 297 if (rp->b_cnt + size > rp->b_size) 298 return ~0; 299 offset = rp->b_in; 300 rp->b_cnt += size; 301 if ((rp->b_in += size) >= rp->b_size) 302 rp->b_in -= rp->b_size; 303 return offset; 304 } 305 306 /* 307 * This is the same thing as mon_buff_area_alloc, only it does not allow 308 * buffers to wrap. This is needed by applications which pass references 309 * into mmap-ed buffers up their stacks (libpcap can do that). 310 * 311 * Currently, we always have the header stuck with the data, although 312 * it is not strictly speaking necessary. 313 * 314 * When a buffer would wrap, we place a filler packet to mark the space. 315 */ 316 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, 317 unsigned int size) 318 { 319 unsigned int offset; 320 unsigned int fill_size; 321 322 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 323 if (rp->b_cnt + size > rp->b_size) 324 return ~0; 325 if (rp->b_in + size > rp->b_size) { 326 /* 327 * This would wrap. Find if we still have space after 328 * skipping to the end of the buffer. If we do, place 329 * a filler packet and allocate a new packet. 330 */ 331 fill_size = rp->b_size - rp->b_in; 332 if (rp->b_cnt + size + fill_size > rp->b_size) 333 return ~0; 334 mon_buff_area_fill(rp, rp->b_in, fill_size); 335 336 offset = 0; 337 rp->b_in = size; 338 rp->b_cnt += size + fill_size; 339 } else if (rp->b_in + size == rp->b_size) { 340 offset = rp->b_in; 341 rp->b_in = 0; 342 rp->b_cnt += size; 343 } else { 344 offset = rp->b_in; 345 rp->b_in += size; 346 rp->b_cnt += size; 347 } 348 return offset; 349 } 350 351 /* 352 * Return a few (kilo-)bytes to the head of the buffer. 353 * This is used if a DMA fetch fails. 354 */ 355 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) 356 { 357 358 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 359 rp->b_cnt -= size; 360 if (rp->b_in < size) 361 rp->b_in += rp->b_size; 362 rp->b_in -= size; 363 } 364 365 /* 366 * This has to be called under both b_lock and fetch_lock, because 367 * it accesses both b_cnt and b_out. 368 */ 369 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) 370 { 371 372 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 373 rp->b_cnt -= size; 374 if ((rp->b_out += size) >= rp->b_size) 375 rp->b_out -= rp->b_size; 376 } 377 378 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 379 unsigned int offset, unsigned int size) 380 { 381 struct mon_bin_hdr *ep; 382 383 ep = MON_OFF2HDR(rp, offset); 384 memset(ep, 0, PKT_SIZE); 385 ep->type = '@'; 386 ep->len_cap = size - PKT_SIZE; 387 } 388 389 static inline char mon_bin_get_setup(unsigned char *setupb, 390 const struct urb *urb, char ev_type) 391 { 392 393 if (urb->setup_packet == NULL) 394 return 'Z'; 395 memcpy(setupb, urb->setup_packet, SETUP_LEN); 396 return 0; 397 } 398 399 static char mon_bin_get_data(const struct mon_reader_bin *rp, 400 unsigned int offset, struct urb *urb, unsigned int length) 401 { 402 403 if (urb->dev->bus->uses_dma && 404 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 405 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length); 406 return 0; 407 } 408 409 if (urb->transfer_buffer == NULL) 410 return 'Z'; 411 412 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); 413 return 0; 414 } 415 416 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp, 417 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc) 418 { 419 struct mon_bin_isodesc *dp; 420 struct usb_iso_packet_descriptor *fp; 421 422 fp = urb->iso_frame_desc; 423 while (ndesc-- != 0) { 424 dp = (struct mon_bin_isodesc *) 425 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 426 dp->iso_status = fp->status; 427 dp->iso_off = fp->offset; 428 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length; 429 dp->_pad = 0; 430 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size) 431 offset = 0; 432 fp++; 433 } 434 } 435 436 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, 437 char ev_type, int status) 438 { 439 const struct usb_endpoint_descriptor *epd = &urb->ep->desc; 440 unsigned long flags; 441 struct timeval ts; 442 unsigned int urb_length; 443 unsigned int offset; 444 unsigned int length; 445 unsigned int ndesc, lendesc; 446 unsigned char dir; 447 struct mon_bin_hdr *ep; 448 char data_tag = 0; 449 450 do_gettimeofday(&ts); 451 452 spin_lock_irqsave(&rp->b_lock, flags); 453 454 /* 455 * Find the maximum allowable length, then allocate space. 456 */ 457 if (usb_endpoint_xfer_isoc(epd)) { 458 if (urb->number_of_packets < 0) { 459 ndesc = 0; 460 } else if (urb->number_of_packets >= ISODESC_MAX) { 461 ndesc = ISODESC_MAX; 462 } else { 463 ndesc = urb->number_of_packets; 464 } 465 } else { 466 ndesc = 0; 467 } 468 lendesc = ndesc*sizeof(struct mon_bin_isodesc); 469 470 urb_length = (ev_type == 'S') ? 471 urb->transfer_buffer_length : urb->actual_length; 472 length = urb_length; 473 474 if (length >= rp->b_size/5) 475 length = rp->b_size/5; 476 477 if (usb_urb_dir_in(urb)) { 478 if (ev_type == 'S') { 479 length = 0; 480 data_tag = '<'; 481 } 482 /* Cannot rely on endpoint number in case of control ep.0 */ 483 dir = USB_DIR_IN; 484 } else { 485 if (ev_type == 'C') { 486 length = 0; 487 data_tag = '>'; 488 } 489 dir = 0; 490 } 491 492 if (rp->mmap_active) { 493 offset = mon_buff_area_alloc_contiguous(rp, 494 length + PKT_SIZE + lendesc); 495 } else { 496 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc); 497 } 498 if (offset == ~0) { 499 rp->cnt_lost++; 500 spin_unlock_irqrestore(&rp->b_lock, flags); 501 return; 502 } 503 504 ep = MON_OFF2HDR(rp, offset); 505 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; 506 507 /* 508 * Fill the allocated area. 509 */ 510 memset(ep, 0, PKT_SIZE); 511 ep->type = ev_type; 512 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)]; 513 ep->epnum = dir | usb_endpoint_num(epd); 514 ep->devnum = urb->dev->devnum; 515 ep->busnum = urb->dev->bus->busnum; 516 ep->id = (unsigned long) urb; 517 ep->ts_sec = ts.tv_sec; 518 ep->ts_usec = ts.tv_usec; 519 ep->status = status; 520 ep->len_urb = urb_length; 521 ep->len_cap = length + lendesc; 522 ep->xfer_flags = urb->transfer_flags; 523 524 if (usb_endpoint_xfer_int(epd)) { 525 ep->interval = urb->interval; 526 } else if (usb_endpoint_xfer_isoc(epd)) { 527 ep->interval = urb->interval; 528 ep->start_frame = urb->start_frame; 529 ep->s.iso.error_count = urb->error_count; 530 ep->s.iso.numdesc = urb->number_of_packets; 531 } 532 533 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') { 534 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type); 535 } else { 536 ep->flag_setup = '-'; 537 } 538 539 if (ndesc != 0) { 540 ep->ndesc = ndesc; 541 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc); 542 if ((offset += lendesc) >= rp->b_size) 543 offset -= rp->b_size; 544 } 545 546 if (length != 0) { 547 ep->flag_data = mon_bin_get_data(rp, offset, urb, length); 548 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */ 549 ep->len_cap = 0; 550 mon_buff_area_shrink(rp, length); 551 } 552 } else { 553 ep->flag_data = data_tag; 554 } 555 556 spin_unlock_irqrestore(&rp->b_lock, flags); 557 558 wake_up(&rp->b_wait); 559 } 560 561 static void mon_bin_submit(void *data, struct urb *urb) 562 { 563 struct mon_reader_bin *rp = data; 564 mon_bin_event(rp, urb, 'S', -EINPROGRESS); 565 } 566 567 static void mon_bin_complete(void *data, struct urb *urb, int status) 568 { 569 struct mon_reader_bin *rp = data; 570 mon_bin_event(rp, urb, 'C', status); 571 } 572 573 static void mon_bin_error(void *data, struct urb *urb, int error) 574 { 575 struct mon_reader_bin *rp = data; 576 unsigned long flags; 577 unsigned int offset; 578 struct mon_bin_hdr *ep; 579 580 spin_lock_irqsave(&rp->b_lock, flags); 581 582 offset = mon_buff_area_alloc(rp, PKT_SIZE); 583 if (offset == ~0) { 584 /* Not incrementing cnt_lost. Just because. */ 585 spin_unlock_irqrestore(&rp->b_lock, flags); 586 return; 587 } 588 589 ep = MON_OFF2HDR(rp, offset); 590 591 memset(ep, 0, PKT_SIZE); 592 ep->type = 'E'; 593 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)]; 594 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0; 595 ep->epnum |= usb_endpoint_num(&urb->ep->desc); 596 ep->devnum = urb->dev->devnum; 597 ep->busnum = urb->dev->bus->busnum; 598 ep->id = (unsigned long) urb; 599 ep->status = error; 600 601 ep->flag_setup = '-'; 602 ep->flag_data = 'E'; 603 604 spin_unlock_irqrestore(&rp->b_lock, flags); 605 606 wake_up(&rp->b_wait); 607 } 608 609 static int mon_bin_open(struct inode *inode, struct file *file) 610 { 611 struct mon_bus *mbus; 612 struct mon_reader_bin *rp; 613 size_t size; 614 int rc; 615 616 lock_kernel(); 617 mutex_lock(&mon_lock); 618 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) { 619 mutex_unlock(&mon_lock); 620 unlock_kernel(); 621 return -ENODEV; 622 } 623 if (mbus != &mon_bus0 && mbus->u_bus == NULL) { 624 printk(KERN_ERR TAG ": consistency error on open\n"); 625 mutex_unlock(&mon_lock); 626 unlock_kernel(); 627 return -ENODEV; 628 } 629 630 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); 631 if (rp == NULL) { 632 rc = -ENOMEM; 633 goto err_alloc; 634 } 635 spin_lock_init(&rp->b_lock); 636 init_waitqueue_head(&rp->b_wait); 637 mutex_init(&rp->fetch_lock); 638 639 rp->b_size = BUFF_DFL; 640 641 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); 642 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { 643 rc = -ENOMEM; 644 goto err_allocvec; 645 } 646 647 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) 648 goto err_allocbuff; 649 650 rp->r.m_bus = mbus; 651 rp->r.r_data = rp; 652 rp->r.rnf_submit = mon_bin_submit; 653 rp->r.rnf_error = mon_bin_error; 654 rp->r.rnf_complete = mon_bin_complete; 655 656 mon_reader_add(mbus, &rp->r); 657 658 file->private_data = rp; 659 mutex_unlock(&mon_lock); 660 unlock_kernel(); 661 return 0; 662 663 err_allocbuff: 664 kfree(rp->b_vec); 665 err_allocvec: 666 kfree(rp); 667 err_alloc: 668 mutex_unlock(&mon_lock); 669 unlock_kernel(); 670 return rc; 671 } 672 673 /* 674 * Extract an event from buffer and copy it to user space. 675 * Wait if there is no event ready. 676 * Returns zero or error. 677 */ 678 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, 679 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes, 680 void __user *data, unsigned int nbytes) 681 { 682 unsigned long flags; 683 struct mon_bin_hdr *ep; 684 size_t step_len; 685 unsigned int offset; 686 int rc; 687 688 mutex_lock(&rp->fetch_lock); 689 690 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 691 mutex_unlock(&rp->fetch_lock); 692 return rc; 693 } 694 695 ep = MON_OFF2HDR(rp, rp->b_out); 696 697 if (copy_to_user(hdr, ep, hdrbytes)) { 698 mutex_unlock(&rp->fetch_lock); 699 return -EFAULT; 700 } 701 702 step_len = min(ep->len_cap, nbytes); 703 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; 704 705 if (copy_from_buf(rp, offset, data, step_len)) { 706 mutex_unlock(&rp->fetch_lock); 707 return -EFAULT; 708 } 709 710 spin_lock_irqsave(&rp->b_lock, flags); 711 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 712 spin_unlock_irqrestore(&rp->b_lock, flags); 713 rp->b_read = 0; 714 715 mutex_unlock(&rp->fetch_lock); 716 return 0; 717 } 718 719 static int mon_bin_release(struct inode *inode, struct file *file) 720 { 721 struct mon_reader_bin *rp = file->private_data; 722 struct mon_bus* mbus = rp->r.m_bus; 723 724 mutex_lock(&mon_lock); 725 726 if (mbus->nreaders <= 0) { 727 printk(KERN_ERR TAG ": consistency error on close\n"); 728 mutex_unlock(&mon_lock); 729 return 0; 730 } 731 mon_reader_del(mbus, &rp->r); 732 733 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 734 kfree(rp->b_vec); 735 kfree(rp); 736 737 mutex_unlock(&mon_lock); 738 return 0; 739 } 740 741 static ssize_t mon_bin_read(struct file *file, char __user *buf, 742 size_t nbytes, loff_t *ppos) 743 { 744 struct mon_reader_bin *rp = file->private_data; 745 unsigned int hdrbytes = PKT_SZ_API0; 746 unsigned long flags; 747 struct mon_bin_hdr *ep; 748 unsigned int offset; 749 size_t step_len; 750 char *ptr; 751 ssize_t done = 0; 752 int rc; 753 754 mutex_lock(&rp->fetch_lock); 755 756 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 757 mutex_unlock(&rp->fetch_lock); 758 return rc; 759 } 760 761 ep = MON_OFF2HDR(rp, rp->b_out); 762 763 if (rp->b_read < hdrbytes) { 764 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read)); 765 ptr = ((char *)ep) + rp->b_read; 766 if (step_len && copy_to_user(buf, ptr, step_len)) { 767 mutex_unlock(&rp->fetch_lock); 768 return -EFAULT; 769 } 770 nbytes -= step_len; 771 buf += step_len; 772 rp->b_read += step_len; 773 done += step_len; 774 } 775 776 if (rp->b_read >= hdrbytes) { 777 step_len = ep->len_cap; 778 step_len -= rp->b_read - hdrbytes; 779 if (step_len > nbytes) 780 step_len = nbytes; 781 offset = rp->b_out + PKT_SIZE; 782 offset += rp->b_read - hdrbytes; 783 if (offset >= rp->b_size) 784 offset -= rp->b_size; 785 if (copy_from_buf(rp, offset, buf, step_len)) { 786 mutex_unlock(&rp->fetch_lock); 787 return -EFAULT; 788 } 789 nbytes -= step_len; 790 buf += step_len; 791 rp->b_read += step_len; 792 done += step_len; 793 } 794 795 /* 796 * Check if whole packet was read, and if so, jump to the next one. 797 */ 798 if (rp->b_read >= hdrbytes + ep->len_cap) { 799 spin_lock_irqsave(&rp->b_lock, flags); 800 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 801 spin_unlock_irqrestore(&rp->b_lock, flags); 802 rp->b_read = 0; 803 } 804 805 mutex_unlock(&rp->fetch_lock); 806 return done; 807 } 808 809 /* 810 * Remove at most nevents from chunked buffer. 811 * Returns the number of removed events. 812 */ 813 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) 814 { 815 unsigned long flags; 816 struct mon_bin_hdr *ep; 817 int i; 818 819 mutex_lock(&rp->fetch_lock); 820 spin_lock_irqsave(&rp->b_lock, flags); 821 for (i = 0; i < nevents; ++i) { 822 if (MON_RING_EMPTY(rp)) 823 break; 824 825 ep = MON_OFF2HDR(rp, rp->b_out); 826 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 827 } 828 spin_unlock_irqrestore(&rp->b_lock, flags); 829 rp->b_read = 0; 830 mutex_unlock(&rp->fetch_lock); 831 return i; 832 } 833 834 /* 835 * Fetch at most max event offsets into the buffer and put them into vec. 836 * The events are usually freed later with mon_bin_flush. 837 * Return the effective number of events fetched. 838 */ 839 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, 840 u32 __user *vec, unsigned int max) 841 { 842 unsigned int cur_out; 843 unsigned int bytes, avail; 844 unsigned int size; 845 unsigned int nevents; 846 struct mon_bin_hdr *ep; 847 unsigned long flags; 848 int rc; 849 850 mutex_lock(&rp->fetch_lock); 851 852 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 853 mutex_unlock(&rp->fetch_lock); 854 return rc; 855 } 856 857 spin_lock_irqsave(&rp->b_lock, flags); 858 avail = rp->b_cnt; 859 spin_unlock_irqrestore(&rp->b_lock, flags); 860 861 cur_out = rp->b_out; 862 nevents = 0; 863 bytes = 0; 864 while (bytes < avail) { 865 if (nevents >= max) 866 break; 867 868 ep = MON_OFF2HDR(rp, cur_out); 869 if (put_user(cur_out, &vec[nevents])) { 870 mutex_unlock(&rp->fetch_lock); 871 return -EFAULT; 872 } 873 874 nevents++; 875 size = ep->len_cap + PKT_SIZE; 876 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 877 if ((cur_out += size) >= rp->b_size) 878 cur_out -= rp->b_size; 879 bytes += size; 880 } 881 882 mutex_unlock(&rp->fetch_lock); 883 return nevents; 884 } 885 886 /* 887 * Count events. This is almost the same as the above mon_bin_fetch, 888 * only we do not store offsets into user vector, and we have no limit. 889 */ 890 static int mon_bin_queued(struct mon_reader_bin *rp) 891 { 892 unsigned int cur_out; 893 unsigned int bytes, avail; 894 unsigned int size; 895 unsigned int nevents; 896 struct mon_bin_hdr *ep; 897 unsigned long flags; 898 899 mutex_lock(&rp->fetch_lock); 900 901 spin_lock_irqsave(&rp->b_lock, flags); 902 avail = rp->b_cnt; 903 spin_unlock_irqrestore(&rp->b_lock, flags); 904 905 cur_out = rp->b_out; 906 nevents = 0; 907 bytes = 0; 908 while (bytes < avail) { 909 ep = MON_OFF2HDR(rp, cur_out); 910 911 nevents++; 912 size = ep->len_cap + PKT_SIZE; 913 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 914 if ((cur_out += size) >= rp->b_size) 915 cur_out -= rp->b_size; 916 bytes += size; 917 } 918 919 mutex_unlock(&rp->fetch_lock); 920 return nevents; 921 } 922 923 /* 924 */ 925 static int mon_bin_ioctl(struct inode *inode, struct file *file, 926 unsigned int cmd, unsigned long arg) 927 { 928 struct mon_reader_bin *rp = file->private_data; 929 // struct mon_bus* mbus = rp->r.m_bus; 930 int ret = 0; 931 struct mon_bin_hdr *ep; 932 unsigned long flags; 933 934 switch (cmd) { 935 936 case MON_IOCQ_URB_LEN: 937 /* 938 * N.B. This only returns the size of data, without the header. 939 */ 940 spin_lock_irqsave(&rp->b_lock, flags); 941 if (!MON_RING_EMPTY(rp)) { 942 ep = MON_OFF2HDR(rp, rp->b_out); 943 ret = ep->len_cap; 944 } 945 spin_unlock_irqrestore(&rp->b_lock, flags); 946 break; 947 948 case MON_IOCQ_RING_SIZE: 949 ret = rp->b_size; 950 break; 951 952 case MON_IOCT_RING_SIZE: 953 /* 954 * Changing the buffer size will flush it's contents; the new 955 * buffer is allocated before releasing the old one to be sure 956 * the device will stay functional also in case of memory 957 * pressure. 958 */ 959 { 960 int size; 961 struct mon_pgmap *vec; 962 963 if (arg < BUFF_MIN || arg > BUFF_MAX) 964 return -EINVAL; 965 966 size = CHUNK_ALIGN(arg); 967 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE), 968 GFP_KERNEL)) == NULL) { 969 ret = -ENOMEM; 970 break; 971 } 972 973 ret = mon_alloc_buff(vec, size/CHUNK_SIZE); 974 if (ret < 0) { 975 kfree(vec); 976 break; 977 } 978 979 mutex_lock(&rp->fetch_lock); 980 spin_lock_irqsave(&rp->b_lock, flags); 981 mon_free_buff(rp->b_vec, size/CHUNK_SIZE); 982 kfree(rp->b_vec); 983 rp->b_vec = vec; 984 rp->b_size = size; 985 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; 986 rp->cnt_lost = 0; 987 spin_unlock_irqrestore(&rp->b_lock, flags); 988 mutex_unlock(&rp->fetch_lock); 989 } 990 break; 991 992 case MON_IOCH_MFLUSH: 993 ret = mon_bin_flush(rp, arg); 994 break; 995 996 case MON_IOCX_GET: 997 case MON_IOCX_GETX: 998 { 999 struct mon_bin_get getb; 1000 1001 if (copy_from_user(&getb, (void __user *)arg, 1002 sizeof(struct mon_bin_get))) 1003 return -EFAULT; 1004 1005 if (getb.alloc > 0x10000000) /* Want to cast to u32 */ 1006 return -EINVAL; 1007 ret = mon_bin_get_event(file, rp, getb.hdr, 1008 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1, 1009 getb.data, (unsigned int)getb.alloc); 1010 } 1011 break; 1012 1013 case MON_IOCX_MFETCH: 1014 { 1015 struct mon_bin_mfetch mfetch; 1016 struct mon_bin_mfetch __user *uptr; 1017 1018 uptr = (struct mon_bin_mfetch __user *)arg; 1019 1020 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1021 return -EFAULT; 1022 1023 if (mfetch.nflush) { 1024 ret = mon_bin_flush(rp, mfetch.nflush); 1025 if (ret < 0) 1026 return ret; 1027 if (put_user(ret, &uptr->nflush)) 1028 return -EFAULT; 1029 } 1030 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); 1031 if (ret < 0) 1032 return ret; 1033 if (put_user(ret, &uptr->nfetch)) 1034 return -EFAULT; 1035 ret = 0; 1036 } 1037 break; 1038 1039 case MON_IOCG_STATS: { 1040 struct mon_bin_stats __user *sp; 1041 unsigned int nevents; 1042 unsigned int ndropped; 1043 1044 spin_lock_irqsave(&rp->b_lock, flags); 1045 ndropped = rp->cnt_lost; 1046 rp->cnt_lost = 0; 1047 spin_unlock_irqrestore(&rp->b_lock, flags); 1048 nevents = mon_bin_queued(rp); 1049 1050 sp = (struct mon_bin_stats __user *)arg; 1051 if (put_user(rp->cnt_lost, &sp->dropped)) 1052 return -EFAULT; 1053 if (put_user(nevents, &sp->queued)) 1054 return -EFAULT; 1055 1056 } 1057 break; 1058 1059 default: 1060 return -ENOTTY; 1061 } 1062 1063 return ret; 1064 } 1065 1066 #ifdef CONFIG_COMPAT 1067 static long mon_bin_compat_ioctl(struct file *file, 1068 unsigned int cmd, unsigned long arg) 1069 { 1070 struct mon_reader_bin *rp = file->private_data; 1071 int ret; 1072 1073 switch (cmd) { 1074 1075 case MON_IOCX_GET32: 1076 case MON_IOCX_GETX32: 1077 { 1078 struct mon_bin_get32 getb; 1079 1080 if (copy_from_user(&getb, (void __user *)arg, 1081 sizeof(struct mon_bin_get32))) 1082 return -EFAULT; 1083 1084 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32), 1085 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1, 1086 compat_ptr(getb.data32), getb.alloc32); 1087 if (ret < 0) 1088 return ret; 1089 } 1090 return 0; 1091 1092 case MON_IOCX_MFETCH32: 1093 { 1094 struct mon_bin_mfetch32 mfetch; 1095 struct mon_bin_mfetch32 __user *uptr; 1096 1097 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); 1098 1099 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1100 return -EFAULT; 1101 1102 if (mfetch.nflush32) { 1103 ret = mon_bin_flush(rp, mfetch.nflush32); 1104 if (ret < 0) 1105 return ret; 1106 if (put_user(ret, &uptr->nflush32)) 1107 return -EFAULT; 1108 } 1109 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), 1110 mfetch.nfetch32); 1111 if (ret < 0) 1112 return ret; 1113 if (put_user(ret, &uptr->nfetch32)) 1114 return -EFAULT; 1115 } 1116 return 0; 1117 1118 case MON_IOCG_STATS: 1119 return mon_bin_ioctl(NULL, file, cmd, 1120 (unsigned long) compat_ptr(arg)); 1121 1122 case MON_IOCQ_URB_LEN: 1123 case MON_IOCQ_RING_SIZE: 1124 case MON_IOCT_RING_SIZE: 1125 case MON_IOCH_MFLUSH: 1126 return mon_bin_ioctl(NULL, file, cmd, arg); 1127 1128 default: 1129 ; 1130 } 1131 return -ENOTTY; 1132 } 1133 #endif /* CONFIG_COMPAT */ 1134 1135 static unsigned int 1136 mon_bin_poll(struct file *file, struct poll_table_struct *wait) 1137 { 1138 struct mon_reader_bin *rp = file->private_data; 1139 unsigned int mask = 0; 1140 unsigned long flags; 1141 1142 if (file->f_mode & FMODE_READ) 1143 poll_wait(file, &rp->b_wait, wait); 1144 1145 spin_lock_irqsave(&rp->b_lock, flags); 1146 if (!MON_RING_EMPTY(rp)) 1147 mask |= POLLIN | POLLRDNORM; /* readable */ 1148 spin_unlock_irqrestore(&rp->b_lock, flags); 1149 return mask; 1150 } 1151 1152 /* 1153 * open and close: just keep track of how many times the device is 1154 * mapped, to use the proper memory allocation function. 1155 */ 1156 static void mon_bin_vma_open(struct vm_area_struct *vma) 1157 { 1158 struct mon_reader_bin *rp = vma->vm_private_data; 1159 rp->mmap_active++; 1160 } 1161 1162 static void mon_bin_vma_close(struct vm_area_struct *vma) 1163 { 1164 struct mon_reader_bin *rp = vma->vm_private_data; 1165 rp->mmap_active--; 1166 } 1167 1168 /* 1169 * Map ring pages to user space. 1170 */ 1171 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1172 { 1173 struct mon_reader_bin *rp = vma->vm_private_data; 1174 unsigned long offset, chunk_idx; 1175 struct page *pageptr; 1176 1177 offset = vmf->pgoff << PAGE_SHIFT; 1178 if (offset >= rp->b_size) 1179 return VM_FAULT_SIGBUS; 1180 chunk_idx = offset / CHUNK_SIZE; 1181 pageptr = rp->b_vec[chunk_idx].pg; 1182 get_page(pageptr); 1183 vmf->page = pageptr; 1184 return 0; 1185 } 1186 1187 static struct vm_operations_struct mon_bin_vm_ops = { 1188 .open = mon_bin_vma_open, 1189 .close = mon_bin_vma_close, 1190 .fault = mon_bin_vma_fault, 1191 }; 1192 1193 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) 1194 { 1195 /* don't do anything here: "fault" will set up page table entries */ 1196 vma->vm_ops = &mon_bin_vm_ops; 1197 vma->vm_flags |= VM_RESERVED; 1198 vma->vm_private_data = filp->private_data; 1199 mon_bin_vma_open(vma); 1200 return 0; 1201 } 1202 1203 static const struct file_operations mon_fops_binary = { 1204 .owner = THIS_MODULE, 1205 .open = mon_bin_open, 1206 .llseek = no_llseek, 1207 .read = mon_bin_read, 1208 /* .write = mon_text_write, */ 1209 .poll = mon_bin_poll, 1210 .ioctl = mon_bin_ioctl, 1211 #ifdef CONFIG_COMPAT 1212 .compat_ioctl = mon_bin_compat_ioctl, 1213 #endif 1214 .release = mon_bin_release, 1215 .mmap = mon_bin_mmap, 1216 }; 1217 1218 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) 1219 { 1220 DECLARE_WAITQUEUE(waita, current); 1221 unsigned long flags; 1222 1223 add_wait_queue(&rp->b_wait, &waita); 1224 set_current_state(TASK_INTERRUPTIBLE); 1225 1226 spin_lock_irqsave(&rp->b_lock, flags); 1227 while (MON_RING_EMPTY(rp)) { 1228 spin_unlock_irqrestore(&rp->b_lock, flags); 1229 1230 if (file->f_flags & O_NONBLOCK) { 1231 set_current_state(TASK_RUNNING); 1232 remove_wait_queue(&rp->b_wait, &waita); 1233 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ 1234 } 1235 schedule(); 1236 if (signal_pending(current)) { 1237 remove_wait_queue(&rp->b_wait, &waita); 1238 return -EINTR; 1239 } 1240 set_current_state(TASK_INTERRUPTIBLE); 1241 1242 spin_lock_irqsave(&rp->b_lock, flags); 1243 } 1244 spin_unlock_irqrestore(&rp->b_lock, flags); 1245 1246 set_current_state(TASK_RUNNING); 1247 remove_wait_queue(&rp->b_wait, &waita); 1248 return 0; 1249 } 1250 1251 static int mon_alloc_buff(struct mon_pgmap *map, int npages) 1252 { 1253 int n; 1254 unsigned long vaddr; 1255 1256 for (n = 0; n < npages; n++) { 1257 vaddr = get_zeroed_page(GFP_KERNEL); 1258 if (vaddr == 0) { 1259 while (n-- != 0) 1260 free_page((unsigned long) map[n].ptr); 1261 return -ENOMEM; 1262 } 1263 map[n].ptr = (unsigned char *) vaddr; 1264 map[n].pg = virt_to_page((void *) vaddr); 1265 } 1266 return 0; 1267 } 1268 1269 static void mon_free_buff(struct mon_pgmap *map, int npages) 1270 { 1271 int n; 1272 1273 for (n = 0; n < npages; n++) 1274 free_page((unsigned long) map[n].ptr); 1275 } 1276 1277 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) 1278 { 1279 struct device *dev; 1280 unsigned minor = ubus? ubus->busnum: 0; 1281 1282 if (minor >= MON_BIN_MAX_MINOR) 1283 return 0; 1284 1285 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL, 1286 MKDEV(MAJOR(mon_bin_dev0), minor), NULL, 1287 "usbmon%d", minor); 1288 if (IS_ERR(dev)) 1289 return 0; 1290 1291 mbus->classdev = dev; 1292 return 1; 1293 } 1294 1295 void mon_bin_del(struct mon_bus *mbus) 1296 { 1297 device_destroy(mon_bin_class, mbus->classdev->devt); 1298 } 1299 1300 int __init mon_bin_init(void) 1301 { 1302 int rc; 1303 1304 mon_bin_class = class_create(THIS_MODULE, "usbmon"); 1305 if (IS_ERR(mon_bin_class)) { 1306 rc = PTR_ERR(mon_bin_class); 1307 goto err_class; 1308 } 1309 1310 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); 1311 if (rc < 0) 1312 goto err_dev; 1313 1314 cdev_init(&mon_bin_cdev, &mon_fops_binary); 1315 mon_bin_cdev.owner = THIS_MODULE; 1316 1317 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); 1318 if (rc < 0) 1319 goto err_add; 1320 1321 return 0; 1322 1323 err_add: 1324 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1325 err_dev: 1326 class_destroy(mon_bin_class); 1327 err_class: 1328 return rc; 1329 } 1330 1331 void mon_bin_exit(void) 1332 { 1333 cdev_del(&mon_bin_cdev); 1334 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1335 class_destroy(mon_bin_class); 1336 } 1337