1 /* 2 * The USB Monitor, inspired by Dave Harding's USBMon. 3 * 4 * This is a binary format reader. 5 * 6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) 7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com) 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/cdev.h> 14 #include <linux/export.h> 15 #include <linux/usb.h> 16 #include <linux/poll.h> 17 #include <linux/compat.h> 18 #include <linux/mm.h> 19 #include <linux/scatterlist.h> 20 #include <linux/slab.h> 21 #include <linux/time64.h> 22 23 #include <asm/uaccess.h> 24 25 #include "usb_mon.h" 26 27 /* 28 * Defined by USB 2.0 clause 9.3, table 9.2. 29 */ 30 #define SETUP_LEN 8 31 32 /* ioctl macros */ 33 #define MON_IOC_MAGIC 0x92 34 35 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) 36 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ 37 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) 38 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) 39 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) 40 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) 41 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) 42 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) 43 /* #9 was MON_IOCT_SETAPI */ 44 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get) 45 46 #ifdef CONFIG_COMPAT 47 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) 48 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) 49 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32) 50 #endif 51 52 /* 53 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). 54 * But it's all right. Just use a simple way to make sure the chunk is never 55 * smaller than a page. 56 * 57 * N.B. An application does not know our chunk size. 58 * 59 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with 60 * page-sized chunks for the time being. 61 */ 62 #define CHUNK_SIZE PAGE_SIZE 63 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) 64 65 /* 66 * The magic limit was calculated so that it allows the monitoring 67 * application to pick data once in two ticks. This way, another application, 68 * which presumably drives the bus, gets to hog CPU, yet we collect our data. 69 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an 70 * enormous overhead built into the bus protocol, so we need about 1000 KB. 71 * 72 * This is still too much for most cases, where we just snoop a few 73 * descriptor fetches for enumeration. So, the default is a "reasonable" 74 * amount for systems with HZ=250 and incomplete bus saturation. 75 * 76 * XXX What about multi-megabyte URBs which take minutes to transfer? 77 */ 78 #define BUFF_MAX CHUNK_ALIGN(1200*1024) 79 #define BUFF_DFL CHUNK_ALIGN(300*1024) 80 #define BUFF_MIN CHUNK_ALIGN(8*1024) 81 82 /* 83 * The per-event API header (2 per URB). 84 * 85 * This structure is seen in userland as defined by the documentation. 86 */ 87 struct mon_bin_hdr { 88 u64 id; /* URB ID - from submission to callback */ 89 unsigned char type; /* Same as in text API; extensible. */ 90 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ 91 unsigned char epnum; /* Endpoint number and transfer direction */ 92 unsigned char devnum; /* Device address */ 93 unsigned short busnum; /* Bus number */ 94 char flag_setup; 95 char flag_data; 96 s64 ts_sec; /* getnstimeofday64 */ 97 s32 ts_usec; /* getnstimeofday64 */ 98 int status; 99 unsigned int len_urb; /* Length of data (submitted or actual) */ 100 unsigned int len_cap; /* Delivered length */ 101 union { 102 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ 103 struct iso_rec { 104 int error_count; 105 int numdesc; 106 } iso; 107 } s; 108 int interval; 109 int start_frame; 110 unsigned int xfer_flags; 111 unsigned int ndesc; /* Actual number of ISO descriptors */ 112 }; 113 114 /* 115 * ISO vector, packed into the head of data stream. 116 * This has to take 16 bytes to make sure that the end of buffer 117 * wrap is not happening in the middle of a descriptor. 118 */ 119 struct mon_bin_isodesc { 120 int iso_status; 121 unsigned int iso_off; 122 unsigned int iso_len; 123 u32 _pad; 124 }; 125 126 /* per file statistic */ 127 struct mon_bin_stats { 128 u32 queued; 129 u32 dropped; 130 }; 131 132 struct mon_bin_get { 133 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */ 134 void __user *data; 135 size_t alloc; /* Length of data (can be zero) */ 136 }; 137 138 struct mon_bin_mfetch { 139 u32 __user *offvec; /* Vector of events fetched */ 140 u32 nfetch; /* Number of events to fetch (out: fetched) */ 141 u32 nflush; /* Number of events to flush */ 142 }; 143 144 #ifdef CONFIG_COMPAT 145 struct mon_bin_get32 { 146 u32 hdr32; 147 u32 data32; 148 u32 alloc32; 149 }; 150 151 struct mon_bin_mfetch32 { 152 u32 offvec32; 153 u32 nfetch32; 154 u32 nflush32; 155 }; 156 #endif 157 158 /* Having these two values same prevents wrapping of the mon_bin_hdr */ 159 #define PKT_ALIGN 64 160 #define PKT_SIZE 64 161 162 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */ 163 #define PKT_SZ_API1 64 /* API 1 size: extra fields */ 164 165 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */ 166 167 /* max number of USB bus supported */ 168 #define MON_BIN_MAX_MINOR 128 169 170 /* 171 * The buffer: map of used pages. 172 */ 173 struct mon_pgmap { 174 struct page *pg; 175 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ 176 }; 177 178 /* 179 * This gets associated with an open file struct. 180 */ 181 struct mon_reader_bin { 182 /* The buffer: one per open. */ 183 spinlock_t b_lock; /* Protect b_cnt, b_in */ 184 unsigned int b_size; /* Current size of the buffer - bytes */ 185 unsigned int b_cnt; /* Bytes used */ 186 unsigned int b_in, b_out; /* Offsets into buffer - bytes */ 187 unsigned int b_read; /* Amount of read data in curr. pkt. */ 188 struct mon_pgmap *b_vec; /* The map array */ 189 wait_queue_head_t b_wait; /* Wait for data here */ 190 191 struct mutex fetch_lock; /* Protect b_read, b_out */ 192 int mmap_active; 193 194 /* A list of these is needed for "bus 0". Some time later. */ 195 struct mon_reader r; 196 197 /* Stats */ 198 unsigned int cnt_lost; 199 }; 200 201 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, 202 unsigned int offset) 203 { 204 return (struct mon_bin_hdr *) 205 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 206 } 207 208 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) 209 210 static unsigned char xfer_to_pipe[4] = { 211 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT 212 }; 213 214 static struct class *mon_bin_class; 215 static dev_t mon_bin_dev0; 216 static struct cdev mon_bin_cdev; 217 218 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 219 unsigned int offset, unsigned int size); 220 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); 221 static int mon_alloc_buff(struct mon_pgmap *map, int npages); 222 static void mon_free_buff(struct mon_pgmap *map, int npages); 223 224 /* 225 * This is a "chunked memcpy". It does not manipulate any counters. 226 */ 227 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, 228 unsigned int off, const unsigned char *from, unsigned int length) 229 { 230 unsigned int step_len; 231 unsigned char *buf; 232 unsigned int in_page; 233 234 while (length) { 235 /* 236 * Determine step_len. 237 */ 238 step_len = length; 239 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 240 if (in_page < step_len) 241 step_len = in_page; 242 243 /* 244 * Copy data and advance pointers. 245 */ 246 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 247 memcpy(buf, from, step_len); 248 if ((off += step_len) >= this->b_size) off = 0; 249 from += step_len; 250 length -= step_len; 251 } 252 return off; 253 } 254 255 /* 256 * This is a little worse than the above because it's "chunked copy_to_user". 257 * The return value is an error code, not an offset. 258 */ 259 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, 260 char __user *to, int length) 261 { 262 unsigned int step_len; 263 unsigned char *buf; 264 unsigned int in_page; 265 266 while (length) { 267 /* 268 * Determine step_len. 269 */ 270 step_len = length; 271 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 272 if (in_page < step_len) 273 step_len = in_page; 274 275 /* 276 * Copy data and advance pointers. 277 */ 278 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 279 if (copy_to_user(to, buf, step_len)) 280 return -EINVAL; 281 if ((off += step_len) >= this->b_size) off = 0; 282 to += step_len; 283 length -= step_len; 284 } 285 return 0; 286 } 287 288 /* 289 * Allocate an (aligned) area in the buffer. 290 * This is called under b_lock. 291 * Returns ~0 on failure. 292 */ 293 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, 294 unsigned int size) 295 { 296 unsigned int offset; 297 298 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 299 if (rp->b_cnt + size > rp->b_size) 300 return ~0; 301 offset = rp->b_in; 302 rp->b_cnt += size; 303 if ((rp->b_in += size) >= rp->b_size) 304 rp->b_in -= rp->b_size; 305 return offset; 306 } 307 308 /* 309 * This is the same thing as mon_buff_area_alloc, only it does not allow 310 * buffers to wrap. This is needed by applications which pass references 311 * into mmap-ed buffers up their stacks (libpcap can do that). 312 * 313 * Currently, we always have the header stuck with the data, although 314 * it is not strictly speaking necessary. 315 * 316 * When a buffer would wrap, we place a filler packet to mark the space. 317 */ 318 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, 319 unsigned int size) 320 { 321 unsigned int offset; 322 unsigned int fill_size; 323 324 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 325 if (rp->b_cnt + size > rp->b_size) 326 return ~0; 327 if (rp->b_in + size > rp->b_size) { 328 /* 329 * This would wrap. Find if we still have space after 330 * skipping to the end of the buffer. If we do, place 331 * a filler packet and allocate a new packet. 332 */ 333 fill_size = rp->b_size - rp->b_in; 334 if (rp->b_cnt + size + fill_size > rp->b_size) 335 return ~0; 336 mon_buff_area_fill(rp, rp->b_in, fill_size); 337 338 offset = 0; 339 rp->b_in = size; 340 rp->b_cnt += size + fill_size; 341 } else if (rp->b_in + size == rp->b_size) { 342 offset = rp->b_in; 343 rp->b_in = 0; 344 rp->b_cnt += size; 345 } else { 346 offset = rp->b_in; 347 rp->b_in += size; 348 rp->b_cnt += size; 349 } 350 return offset; 351 } 352 353 /* 354 * Return a few (kilo-)bytes to the head of the buffer. 355 * This is used if a data fetch fails. 356 */ 357 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) 358 { 359 360 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */ 361 rp->b_cnt -= size; 362 if (rp->b_in < size) 363 rp->b_in += rp->b_size; 364 rp->b_in -= size; 365 } 366 367 /* 368 * This has to be called under both b_lock and fetch_lock, because 369 * it accesses both b_cnt and b_out. 370 */ 371 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) 372 { 373 374 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 375 rp->b_cnt -= size; 376 if ((rp->b_out += size) >= rp->b_size) 377 rp->b_out -= rp->b_size; 378 } 379 380 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 381 unsigned int offset, unsigned int size) 382 { 383 struct mon_bin_hdr *ep; 384 385 ep = MON_OFF2HDR(rp, offset); 386 memset(ep, 0, PKT_SIZE); 387 ep->type = '@'; 388 ep->len_cap = size - PKT_SIZE; 389 } 390 391 static inline char mon_bin_get_setup(unsigned char *setupb, 392 const struct urb *urb, char ev_type) 393 { 394 395 if (urb->setup_packet == NULL) 396 return 'Z'; 397 memcpy(setupb, urb->setup_packet, SETUP_LEN); 398 return 0; 399 } 400 401 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp, 402 unsigned int offset, struct urb *urb, unsigned int length, 403 char *flag) 404 { 405 int i; 406 struct scatterlist *sg; 407 unsigned int this_len; 408 409 *flag = 0; 410 if (urb->num_sgs == 0) { 411 if (urb->transfer_buffer == NULL) { 412 *flag = 'Z'; 413 return length; 414 } 415 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); 416 length = 0; 417 418 } else { 419 /* If IOMMU coalescing occurred, we cannot trust sg_page */ 420 if (urb->transfer_flags & URB_DMA_SG_COMBINED) { 421 *flag = 'D'; 422 return length; 423 } 424 425 /* Copy up to the first non-addressable segment */ 426 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 427 if (length == 0 || PageHighMem(sg_page(sg))) 428 break; 429 this_len = min_t(unsigned int, sg->length, length); 430 offset = mon_copy_to_buff(rp, offset, sg_virt(sg), 431 this_len); 432 length -= this_len; 433 } 434 if (i == 0) 435 *flag = 'D'; 436 } 437 438 return length; 439 } 440 441 /* 442 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot 443 * be used to determine the length of the whole contiguous buffer. 444 */ 445 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp, 446 struct urb *urb, unsigned int ndesc) 447 { 448 struct usb_iso_packet_descriptor *fp; 449 unsigned int length; 450 451 length = 0; 452 fp = urb->iso_frame_desc; 453 while (ndesc-- != 0) { 454 if (fp->actual_length != 0) { 455 if (fp->offset + fp->actual_length > length) 456 length = fp->offset + fp->actual_length; 457 } 458 fp++; 459 } 460 return length; 461 } 462 463 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp, 464 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc) 465 { 466 struct mon_bin_isodesc *dp; 467 struct usb_iso_packet_descriptor *fp; 468 469 fp = urb->iso_frame_desc; 470 while (ndesc-- != 0) { 471 dp = (struct mon_bin_isodesc *) 472 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 473 dp->iso_status = fp->status; 474 dp->iso_off = fp->offset; 475 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length; 476 dp->_pad = 0; 477 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size) 478 offset = 0; 479 fp++; 480 } 481 } 482 483 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, 484 char ev_type, int status) 485 { 486 const struct usb_endpoint_descriptor *epd = &urb->ep->desc; 487 struct timespec64 ts; 488 unsigned long flags; 489 unsigned int urb_length; 490 unsigned int offset; 491 unsigned int length; 492 unsigned int delta; 493 unsigned int ndesc, lendesc; 494 unsigned char dir; 495 struct mon_bin_hdr *ep; 496 char data_tag = 0; 497 498 getnstimeofday64(&ts); 499 500 spin_lock_irqsave(&rp->b_lock, flags); 501 502 /* 503 * Find the maximum allowable length, then allocate space. 504 */ 505 urb_length = (ev_type == 'S') ? 506 urb->transfer_buffer_length : urb->actual_length; 507 length = urb_length; 508 509 if (usb_endpoint_xfer_isoc(epd)) { 510 if (urb->number_of_packets < 0) { 511 ndesc = 0; 512 } else if (urb->number_of_packets >= ISODESC_MAX) { 513 ndesc = ISODESC_MAX; 514 } else { 515 ndesc = urb->number_of_packets; 516 } 517 if (ev_type == 'C' && usb_urb_dir_in(urb)) 518 length = mon_bin_collate_isodesc(rp, urb, ndesc); 519 } else { 520 ndesc = 0; 521 } 522 lendesc = ndesc*sizeof(struct mon_bin_isodesc); 523 524 /* not an issue unless there's a subtle bug in a HCD somewhere */ 525 if (length >= urb->transfer_buffer_length) 526 length = urb->transfer_buffer_length; 527 528 if (length >= rp->b_size/5) 529 length = rp->b_size/5; 530 531 if (usb_urb_dir_in(urb)) { 532 if (ev_type == 'S') { 533 length = 0; 534 data_tag = '<'; 535 } 536 /* Cannot rely on endpoint number in case of control ep.0 */ 537 dir = USB_DIR_IN; 538 } else { 539 if (ev_type == 'C') { 540 length = 0; 541 data_tag = '>'; 542 } 543 dir = 0; 544 } 545 546 if (rp->mmap_active) { 547 offset = mon_buff_area_alloc_contiguous(rp, 548 length + PKT_SIZE + lendesc); 549 } else { 550 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc); 551 } 552 if (offset == ~0) { 553 rp->cnt_lost++; 554 spin_unlock_irqrestore(&rp->b_lock, flags); 555 return; 556 } 557 558 ep = MON_OFF2HDR(rp, offset); 559 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; 560 561 /* 562 * Fill the allocated area. 563 */ 564 memset(ep, 0, PKT_SIZE); 565 ep->type = ev_type; 566 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)]; 567 ep->epnum = dir | usb_endpoint_num(epd); 568 ep->devnum = urb->dev->devnum; 569 ep->busnum = urb->dev->bus->busnum; 570 ep->id = (unsigned long) urb; 571 ep->ts_sec = ts.tv_sec; 572 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC; 573 ep->status = status; 574 ep->len_urb = urb_length; 575 ep->len_cap = length + lendesc; 576 ep->xfer_flags = urb->transfer_flags; 577 578 if (usb_endpoint_xfer_int(epd)) { 579 ep->interval = urb->interval; 580 } else if (usb_endpoint_xfer_isoc(epd)) { 581 ep->interval = urb->interval; 582 ep->start_frame = urb->start_frame; 583 ep->s.iso.error_count = urb->error_count; 584 ep->s.iso.numdesc = urb->number_of_packets; 585 } 586 587 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') { 588 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type); 589 } else { 590 ep->flag_setup = '-'; 591 } 592 593 if (ndesc != 0) { 594 ep->ndesc = ndesc; 595 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc); 596 if ((offset += lendesc) >= rp->b_size) 597 offset -= rp->b_size; 598 } 599 600 if (length != 0) { 601 length = mon_bin_get_data(rp, offset, urb, length, 602 &ep->flag_data); 603 if (length > 0) { 604 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 605 ep->len_cap -= length; 606 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 607 mon_buff_area_shrink(rp, delta); 608 } 609 } else { 610 ep->flag_data = data_tag; 611 } 612 613 spin_unlock_irqrestore(&rp->b_lock, flags); 614 615 wake_up(&rp->b_wait); 616 } 617 618 static void mon_bin_submit(void *data, struct urb *urb) 619 { 620 struct mon_reader_bin *rp = data; 621 mon_bin_event(rp, urb, 'S', -EINPROGRESS); 622 } 623 624 static void mon_bin_complete(void *data, struct urb *urb, int status) 625 { 626 struct mon_reader_bin *rp = data; 627 mon_bin_event(rp, urb, 'C', status); 628 } 629 630 static void mon_bin_error(void *data, struct urb *urb, int error) 631 { 632 struct mon_reader_bin *rp = data; 633 struct timespec64 ts; 634 unsigned long flags; 635 unsigned int offset; 636 struct mon_bin_hdr *ep; 637 638 getnstimeofday64(&ts); 639 640 spin_lock_irqsave(&rp->b_lock, flags); 641 642 offset = mon_buff_area_alloc(rp, PKT_SIZE); 643 if (offset == ~0) { 644 /* Not incrementing cnt_lost. Just because. */ 645 spin_unlock_irqrestore(&rp->b_lock, flags); 646 return; 647 } 648 649 ep = MON_OFF2HDR(rp, offset); 650 651 memset(ep, 0, PKT_SIZE); 652 ep->type = 'E'; 653 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)]; 654 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0; 655 ep->epnum |= usb_endpoint_num(&urb->ep->desc); 656 ep->devnum = urb->dev->devnum; 657 ep->busnum = urb->dev->bus->busnum; 658 ep->id = (unsigned long) urb; 659 ep->ts_sec = ts.tv_sec; 660 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC; 661 ep->status = error; 662 663 ep->flag_setup = '-'; 664 ep->flag_data = 'E'; 665 666 spin_unlock_irqrestore(&rp->b_lock, flags); 667 668 wake_up(&rp->b_wait); 669 } 670 671 static int mon_bin_open(struct inode *inode, struct file *file) 672 { 673 struct mon_bus *mbus; 674 struct mon_reader_bin *rp; 675 size_t size; 676 int rc; 677 678 mutex_lock(&mon_lock); 679 mbus = mon_bus_lookup(iminor(inode)); 680 if (mbus == NULL) { 681 mutex_unlock(&mon_lock); 682 return -ENODEV; 683 } 684 if (mbus != &mon_bus0 && mbus->u_bus == NULL) { 685 printk(KERN_ERR TAG ": consistency error on open\n"); 686 mutex_unlock(&mon_lock); 687 return -ENODEV; 688 } 689 690 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); 691 if (rp == NULL) { 692 rc = -ENOMEM; 693 goto err_alloc; 694 } 695 spin_lock_init(&rp->b_lock); 696 init_waitqueue_head(&rp->b_wait); 697 mutex_init(&rp->fetch_lock); 698 rp->b_size = BUFF_DFL; 699 700 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); 701 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { 702 rc = -ENOMEM; 703 goto err_allocvec; 704 } 705 706 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) 707 goto err_allocbuff; 708 709 rp->r.m_bus = mbus; 710 rp->r.r_data = rp; 711 rp->r.rnf_submit = mon_bin_submit; 712 rp->r.rnf_error = mon_bin_error; 713 rp->r.rnf_complete = mon_bin_complete; 714 715 mon_reader_add(mbus, &rp->r); 716 717 file->private_data = rp; 718 mutex_unlock(&mon_lock); 719 return 0; 720 721 err_allocbuff: 722 kfree(rp->b_vec); 723 err_allocvec: 724 kfree(rp); 725 err_alloc: 726 mutex_unlock(&mon_lock); 727 return rc; 728 } 729 730 /* 731 * Extract an event from buffer and copy it to user space. 732 * Wait if there is no event ready. 733 * Returns zero or error. 734 */ 735 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, 736 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes, 737 void __user *data, unsigned int nbytes) 738 { 739 unsigned long flags; 740 struct mon_bin_hdr *ep; 741 size_t step_len; 742 unsigned int offset; 743 int rc; 744 745 mutex_lock(&rp->fetch_lock); 746 747 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 748 mutex_unlock(&rp->fetch_lock); 749 return rc; 750 } 751 752 ep = MON_OFF2HDR(rp, rp->b_out); 753 754 if (copy_to_user(hdr, ep, hdrbytes)) { 755 mutex_unlock(&rp->fetch_lock); 756 return -EFAULT; 757 } 758 759 step_len = min(ep->len_cap, nbytes); 760 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; 761 762 if (copy_from_buf(rp, offset, data, step_len)) { 763 mutex_unlock(&rp->fetch_lock); 764 return -EFAULT; 765 } 766 767 spin_lock_irqsave(&rp->b_lock, flags); 768 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 769 spin_unlock_irqrestore(&rp->b_lock, flags); 770 rp->b_read = 0; 771 772 mutex_unlock(&rp->fetch_lock); 773 return 0; 774 } 775 776 static int mon_bin_release(struct inode *inode, struct file *file) 777 { 778 struct mon_reader_bin *rp = file->private_data; 779 struct mon_bus* mbus = rp->r.m_bus; 780 781 mutex_lock(&mon_lock); 782 783 if (mbus->nreaders <= 0) { 784 printk(KERN_ERR TAG ": consistency error on close\n"); 785 mutex_unlock(&mon_lock); 786 return 0; 787 } 788 mon_reader_del(mbus, &rp->r); 789 790 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 791 kfree(rp->b_vec); 792 kfree(rp); 793 794 mutex_unlock(&mon_lock); 795 return 0; 796 } 797 798 static ssize_t mon_bin_read(struct file *file, char __user *buf, 799 size_t nbytes, loff_t *ppos) 800 { 801 struct mon_reader_bin *rp = file->private_data; 802 unsigned int hdrbytes = PKT_SZ_API0; 803 unsigned long flags; 804 struct mon_bin_hdr *ep; 805 unsigned int offset; 806 size_t step_len; 807 char *ptr; 808 ssize_t done = 0; 809 int rc; 810 811 mutex_lock(&rp->fetch_lock); 812 813 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 814 mutex_unlock(&rp->fetch_lock); 815 return rc; 816 } 817 818 ep = MON_OFF2HDR(rp, rp->b_out); 819 820 if (rp->b_read < hdrbytes) { 821 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read)); 822 ptr = ((char *)ep) + rp->b_read; 823 if (step_len && copy_to_user(buf, ptr, step_len)) { 824 mutex_unlock(&rp->fetch_lock); 825 return -EFAULT; 826 } 827 nbytes -= step_len; 828 buf += step_len; 829 rp->b_read += step_len; 830 done += step_len; 831 } 832 833 if (rp->b_read >= hdrbytes) { 834 step_len = ep->len_cap; 835 step_len -= rp->b_read - hdrbytes; 836 if (step_len > nbytes) 837 step_len = nbytes; 838 offset = rp->b_out + PKT_SIZE; 839 offset += rp->b_read - hdrbytes; 840 if (offset >= rp->b_size) 841 offset -= rp->b_size; 842 if (copy_from_buf(rp, offset, buf, step_len)) { 843 mutex_unlock(&rp->fetch_lock); 844 return -EFAULT; 845 } 846 nbytes -= step_len; 847 buf += step_len; 848 rp->b_read += step_len; 849 done += step_len; 850 } 851 852 /* 853 * Check if whole packet was read, and if so, jump to the next one. 854 */ 855 if (rp->b_read >= hdrbytes + ep->len_cap) { 856 spin_lock_irqsave(&rp->b_lock, flags); 857 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 858 spin_unlock_irqrestore(&rp->b_lock, flags); 859 rp->b_read = 0; 860 } 861 862 mutex_unlock(&rp->fetch_lock); 863 return done; 864 } 865 866 /* 867 * Remove at most nevents from chunked buffer. 868 * Returns the number of removed events. 869 */ 870 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) 871 { 872 unsigned long flags; 873 struct mon_bin_hdr *ep; 874 int i; 875 876 mutex_lock(&rp->fetch_lock); 877 spin_lock_irqsave(&rp->b_lock, flags); 878 for (i = 0; i < nevents; ++i) { 879 if (MON_RING_EMPTY(rp)) 880 break; 881 882 ep = MON_OFF2HDR(rp, rp->b_out); 883 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 884 } 885 spin_unlock_irqrestore(&rp->b_lock, flags); 886 rp->b_read = 0; 887 mutex_unlock(&rp->fetch_lock); 888 return i; 889 } 890 891 /* 892 * Fetch at most max event offsets into the buffer and put them into vec. 893 * The events are usually freed later with mon_bin_flush. 894 * Return the effective number of events fetched. 895 */ 896 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, 897 u32 __user *vec, unsigned int max) 898 { 899 unsigned int cur_out; 900 unsigned int bytes, avail; 901 unsigned int size; 902 unsigned int nevents; 903 struct mon_bin_hdr *ep; 904 unsigned long flags; 905 int rc; 906 907 mutex_lock(&rp->fetch_lock); 908 909 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 910 mutex_unlock(&rp->fetch_lock); 911 return rc; 912 } 913 914 spin_lock_irqsave(&rp->b_lock, flags); 915 avail = rp->b_cnt; 916 spin_unlock_irqrestore(&rp->b_lock, flags); 917 918 cur_out = rp->b_out; 919 nevents = 0; 920 bytes = 0; 921 while (bytes < avail) { 922 if (nevents >= max) 923 break; 924 925 ep = MON_OFF2HDR(rp, cur_out); 926 if (put_user(cur_out, &vec[nevents])) { 927 mutex_unlock(&rp->fetch_lock); 928 return -EFAULT; 929 } 930 931 nevents++; 932 size = ep->len_cap + PKT_SIZE; 933 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 934 if ((cur_out += size) >= rp->b_size) 935 cur_out -= rp->b_size; 936 bytes += size; 937 } 938 939 mutex_unlock(&rp->fetch_lock); 940 return nevents; 941 } 942 943 /* 944 * Count events. This is almost the same as the above mon_bin_fetch, 945 * only we do not store offsets into user vector, and we have no limit. 946 */ 947 static int mon_bin_queued(struct mon_reader_bin *rp) 948 { 949 unsigned int cur_out; 950 unsigned int bytes, avail; 951 unsigned int size; 952 unsigned int nevents; 953 struct mon_bin_hdr *ep; 954 unsigned long flags; 955 956 mutex_lock(&rp->fetch_lock); 957 958 spin_lock_irqsave(&rp->b_lock, flags); 959 avail = rp->b_cnt; 960 spin_unlock_irqrestore(&rp->b_lock, flags); 961 962 cur_out = rp->b_out; 963 nevents = 0; 964 bytes = 0; 965 while (bytes < avail) { 966 ep = MON_OFF2HDR(rp, cur_out); 967 968 nevents++; 969 size = ep->len_cap + PKT_SIZE; 970 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 971 if ((cur_out += size) >= rp->b_size) 972 cur_out -= rp->b_size; 973 bytes += size; 974 } 975 976 mutex_unlock(&rp->fetch_lock); 977 return nevents; 978 } 979 980 /* 981 */ 982 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 983 { 984 struct mon_reader_bin *rp = file->private_data; 985 // struct mon_bus* mbus = rp->r.m_bus; 986 int ret = 0; 987 struct mon_bin_hdr *ep; 988 unsigned long flags; 989 990 switch (cmd) { 991 992 case MON_IOCQ_URB_LEN: 993 /* 994 * N.B. This only returns the size of data, without the header. 995 */ 996 spin_lock_irqsave(&rp->b_lock, flags); 997 if (!MON_RING_EMPTY(rp)) { 998 ep = MON_OFF2HDR(rp, rp->b_out); 999 ret = ep->len_cap; 1000 } 1001 spin_unlock_irqrestore(&rp->b_lock, flags); 1002 break; 1003 1004 case MON_IOCQ_RING_SIZE: 1005 ret = rp->b_size; 1006 break; 1007 1008 case MON_IOCT_RING_SIZE: 1009 /* 1010 * Changing the buffer size will flush it's contents; the new 1011 * buffer is allocated before releasing the old one to be sure 1012 * the device will stay functional also in case of memory 1013 * pressure. 1014 */ 1015 { 1016 int size; 1017 struct mon_pgmap *vec; 1018 1019 if (arg < BUFF_MIN || arg > BUFF_MAX) 1020 return -EINVAL; 1021 1022 size = CHUNK_ALIGN(arg); 1023 vec = kzalloc(sizeof(struct mon_pgmap) * (size / CHUNK_SIZE), GFP_KERNEL); 1024 if (vec == NULL) { 1025 ret = -ENOMEM; 1026 break; 1027 } 1028 1029 ret = mon_alloc_buff(vec, size/CHUNK_SIZE); 1030 if (ret < 0) { 1031 kfree(vec); 1032 break; 1033 } 1034 1035 mutex_lock(&rp->fetch_lock); 1036 spin_lock_irqsave(&rp->b_lock, flags); 1037 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 1038 kfree(rp->b_vec); 1039 rp->b_vec = vec; 1040 rp->b_size = size; 1041 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; 1042 rp->cnt_lost = 0; 1043 spin_unlock_irqrestore(&rp->b_lock, flags); 1044 mutex_unlock(&rp->fetch_lock); 1045 } 1046 break; 1047 1048 case MON_IOCH_MFLUSH: 1049 ret = mon_bin_flush(rp, arg); 1050 break; 1051 1052 case MON_IOCX_GET: 1053 case MON_IOCX_GETX: 1054 { 1055 struct mon_bin_get getb; 1056 1057 if (copy_from_user(&getb, (void __user *)arg, 1058 sizeof(struct mon_bin_get))) 1059 return -EFAULT; 1060 1061 if (getb.alloc > 0x10000000) /* Want to cast to u32 */ 1062 return -EINVAL; 1063 ret = mon_bin_get_event(file, rp, getb.hdr, 1064 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1, 1065 getb.data, (unsigned int)getb.alloc); 1066 } 1067 break; 1068 1069 case MON_IOCX_MFETCH: 1070 { 1071 struct mon_bin_mfetch mfetch; 1072 struct mon_bin_mfetch __user *uptr; 1073 1074 uptr = (struct mon_bin_mfetch __user *)arg; 1075 1076 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1077 return -EFAULT; 1078 1079 if (mfetch.nflush) { 1080 ret = mon_bin_flush(rp, mfetch.nflush); 1081 if (ret < 0) 1082 return ret; 1083 if (put_user(ret, &uptr->nflush)) 1084 return -EFAULT; 1085 } 1086 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); 1087 if (ret < 0) 1088 return ret; 1089 if (put_user(ret, &uptr->nfetch)) 1090 return -EFAULT; 1091 ret = 0; 1092 } 1093 break; 1094 1095 case MON_IOCG_STATS: { 1096 struct mon_bin_stats __user *sp; 1097 unsigned int nevents; 1098 unsigned int ndropped; 1099 1100 spin_lock_irqsave(&rp->b_lock, flags); 1101 ndropped = rp->cnt_lost; 1102 rp->cnt_lost = 0; 1103 spin_unlock_irqrestore(&rp->b_lock, flags); 1104 nevents = mon_bin_queued(rp); 1105 1106 sp = (struct mon_bin_stats __user *)arg; 1107 if (put_user(ndropped, &sp->dropped)) 1108 return -EFAULT; 1109 if (put_user(nevents, &sp->queued)) 1110 return -EFAULT; 1111 1112 } 1113 break; 1114 1115 default: 1116 return -ENOTTY; 1117 } 1118 1119 return ret; 1120 } 1121 1122 #ifdef CONFIG_COMPAT 1123 static long mon_bin_compat_ioctl(struct file *file, 1124 unsigned int cmd, unsigned long arg) 1125 { 1126 struct mon_reader_bin *rp = file->private_data; 1127 int ret; 1128 1129 switch (cmd) { 1130 1131 case MON_IOCX_GET32: 1132 case MON_IOCX_GETX32: 1133 { 1134 struct mon_bin_get32 getb; 1135 1136 if (copy_from_user(&getb, (void __user *)arg, 1137 sizeof(struct mon_bin_get32))) 1138 return -EFAULT; 1139 1140 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32), 1141 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1, 1142 compat_ptr(getb.data32), getb.alloc32); 1143 if (ret < 0) 1144 return ret; 1145 } 1146 return 0; 1147 1148 case MON_IOCX_MFETCH32: 1149 { 1150 struct mon_bin_mfetch32 mfetch; 1151 struct mon_bin_mfetch32 __user *uptr; 1152 1153 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); 1154 1155 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1156 return -EFAULT; 1157 1158 if (mfetch.nflush32) { 1159 ret = mon_bin_flush(rp, mfetch.nflush32); 1160 if (ret < 0) 1161 return ret; 1162 if (put_user(ret, &uptr->nflush32)) 1163 return -EFAULT; 1164 } 1165 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), 1166 mfetch.nfetch32); 1167 if (ret < 0) 1168 return ret; 1169 if (put_user(ret, &uptr->nfetch32)) 1170 return -EFAULT; 1171 } 1172 return 0; 1173 1174 case MON_IOCG_STATS: 1175 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 1176 1177 case MON_IOCQ_URB_LEN: 1178 case MON_IOCQ_RING_SIZE: 1179 case MON_IOCT_RING_SIZE: 1180 case MON_IOCH_MFLUSH: 1181 return mon_bin_ioctl(file, cmd, arg); 1182 1183 default: 1184 ; 1185 } 1186 return -ENOTTY; 1187 } 1188 #endif /* CONFIG_COMPAT */ 1189 1190 static unsigned int 1191 mon_bin_poll(struct file *file, struct poll_table_struct *wait) 1192 { 1193 struct mon_reader_bin *rp = file->private_data; 1194 unsigned int mask = 0; 1195 unsigned long flags; 1196 1197 if (file->f_mode & FMODE_READ) 1198 poll_wait(file, &rp->b_wait, wait); 1199 1200 spin_lock_irqsave(&rp->b_lock, flags); 1201 if (!MON_RING_EMPTY(rp)) 1202 mask |= POLLIN | POLLRDNORM; /* readable */ 1203 spin_unlock_irqrestore(&rp->b_lock, flags); 1204 return mask; 1205 } 1206 1207 /* 1208 * open and close: just keep track of how many times the device is 1209 * mapped, to use the proper memory allocation function. 1210 */ 1211 static void mon_bin_vma_open(struct vm_area_struct *vma) 1212 { 1213 struct mon_reader_bin *rp = vma->vm_private_data; 1214 rp->mmap_active++; 1215 } 1216 1217 static void mon_bin_vma_close(struct vm_area_struct *vma) 1218 { 1219 struct mon_reader_bin *rp = vma->vm_private_data; 1220 rp->mmap_active--; 1221 } 1222 1223 /* 1224 * Map ring pages to user space. 1225 */ 1226 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1227 { 1228 struct mon_reader_bin *rp = vma->vm_private_data; 1229 unsigned long offset, chunk_idx; 1230 struct page *pageptr; 1231 1232 offset = vmf->pgoff << PAGE_SHIFT; 1233 if (offset >= rp->b_size) 1234 return VM_FAULT_SIGBUS; 1235 chunk_idx = offset / CHUNK_SIZE; 1236 pageptr = rp->b_vec[chunk_idx].pg; 1237 get_page(pageptr); 1238 vmf->page = pageptr; 1239 return 0; 1240 } 1241 1242 static const struct vm_operations_struct mon_bin_vm_ops = { 1243 .open = mon_bin_vma_open, 1244 .close = mon_bin_vma_close, 1245 .fault = mon_bin_vma_fault, 1246 }; 1247 1248 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) 1249 { 1250 /* don't do anything here: "fault" will set up page table entries */ 1251 vma->vm_ops = &mon_bin_vm_ops; 1252 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 1253 vma->vm_private_data = filp->private_data; 1254 mon_bin_vma_open(vma); 1255 return 0; 1256 } 1257 1258 static const struct file_operations mon_fops_binary = { 1259 .owner = THIS_MODULE, 1260 .open = mon_bin_open, 1261 .llseek = no_llseek, 1262 .read = mon_bin_read, 1263 /* .write = mon_text_write, */ 1264 .poll = mon_bin_poll, 1265 .unlocked_ioctl = mon_bin_ioctl, 1266 #ifdef CONFIG_COMPAT 1267 .compat_ioctl = mon_bin_compat_ioctl, 1268 #endif 1269 .release = mon_bin_release, 1270 .mmap = mon_bin_mmap, 1271 }; 1272 1273 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) 1274 { 1275 DECLARE_WAITQUEUE(waita, current); 1276 unsigned long flags; 1277 1278 add_wait_queue(&rp->b_wait, &waita); 1279 set_current_state(TASK_INTERRUPTIBLE); 1280 1281 spin_lock_irqsave(&rp->b_lock, flags); 1282 while (MON_RING_EMPTY(rp)) { 1283 spin_unlock_irqrestore(&rp->b_lock, flags); 1284 1285 if (file->f_flags & O_NONBLOCK) { 1286 set_current_state(TASK_RUNNING); 1287 remove_wait_queue(&rp->b_wait, &waita); 1288 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ 1289 } 1290 schedule(); 1291 if (signal_pending(current)) { 1292 remove_wait_queue(&rp->b_wait, &waita); 1293 return -EINTR; 1294 } 1295 set_current_state(TASK_INTERRUPTIBLE); 1296 1297 spin_lock_irqsave(&rp->b_lock, flags); 1298 } 1299 spin_unlock_irqrestore(&rp->b_lock, flags); 1300 1301 set_current_state(TASK_RUNNING); 1302 remove_wait_queue(&rp->b_wait, &waita); 1303 return 0; 1304 } 1305 1306 static int mon_alloc_buff(struct mon_pgmap *map, int npages) 1307 { 1308 int n; 1309 unsigned long vaddr; 1310 1311 for (n = 0; n < npages; n++) { 1312 vaddr = get_zeroed_page(GFP_KERNEL); 1313 if (vaddr == 0) { 1314 while (n-- != 0) 1315 free_page((unsigned long) map[n].ptr); 1316 return -ENOMEM; 1317 } 1318 map[n].ptr = (unsigned char *) vaddr; 1319 map[n].pg = virt_to_page((void *) vaddr); 1320 } 1321 return 0; 1322 } 1323 1324 static void mon_free_buff(struct mon_pgmap *map, int npages) 1325 { 1326 int n; 1327 1328 for (n = 0; n < npages; n++) 1329 free_page((unsigned long) map[n].ptr); 1330 } 1331 1332 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) 1333 { 1334 struct device *dev; 1335 unsigned minor = ubus? ubus->busnum: 0; 1336 1337 if (minor >= MON_BIN_MAX_MINOR) 1338 return 0; 1339 1340 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL, 1341 MKDEV(MAJOR(mon_bin_dev0), minor), NULL, 1342 "usbmon%d", minor); 1343 if (IS_ERR(dev)) 1344 return 0; 1345 1346 mbus->classdev = dev; 1347 return 1; 1348 } 1349 1350 void mon_bin_del(struct mon_bus *mbus) 1351 { 1352 device_destroy(mon_bin_class, mbus->classdev->devt); 1353 } 1354 1355 int __init mon_bin_init(void) 1356 { 1357 int rc; 1358 1359 mon_bin_class = class_create(THIS_MODULE, "usbmon"); 1360 if (IS_ERR(mon_bin_class)) { 1361 rc = PTR_ERR(mon_bin_class); 1362 goto err_class; 1363 } 1364 1365 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); 1366 if (rc < 0) 1367 goto err_dev; 1368 1369 cdev_init(&mon_bin_cdev, &mon_fops_binary); 1370 mon_bin_cdev.owner = THIS_MODULE; 1371 1372 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); 1373 if (rc < 0) 1374 goto err_add; 1375 1376 return 0; 1377 1378 err_add: 1379 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1380 err_dev: 1381 class_destroy(mon_bin_class); 1382 err_class: 1383 return rc; 1384 } 1385 1386 void mon_bin_exit(void) 1387 { 1388 cdev_del(&mon_bin_cdev); 1389 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1390 class_destroy(mon_bin_class); 1391 } 1392