1 /* 2 * The USB Monitor, inspired by Dave Harding's USBMon. 3 * 4 * This is a binary format reader. 5 * 6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) 7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com) 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/cdev.h> 14 #include <linux/usb.h> 15 #include <linux/poll.h> 16 #include <linux/compat.h> 17 #include <linux/mm.h> 18 #include <linux/scatterlist.h> 19 #include <linux/slab.h> 20 21 #include <asm/uaccess.h> 22 23 #include "usb_mon.h" 24 25 /* 26 * Defined by USB 2.0 clause 9.3, table 9.2. 27 */ 28 #define SETUP_LEN 8 29 30 /* ioctl macros */ 31 #define MON_IOC_MAGIC 0x92 32 33 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) 34 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ 35 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) 36 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) 37 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) 38 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) 39 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) 40 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) 41 /* #9 was MON_IOCT_SETAPI */ 42 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get) 43 44 #ifdef CONFIG_COMPAT 45 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) 46 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) 47 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32) 48 #endif 49 50 /* 51 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). 52 * But it's all right. Just use a simple way to make sure the chunk is never 53 * smaller than a page. 54 * 55 * N.B. An application does not know our chunk size. 56 * 57 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with 58 * page-sized chunks for the time being. 59 */ 60 #define CHUNK_SIZE PAGE_SIZE 61 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) 62 63 /* 64 * The magic limit was calculated so that it allows the monitoring 65 * application to pick data once in two ticks. This way, another application, 66 * which presumably drives the bus, gets to hog CPU, yet we collect our data. 67 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an 68 * enormous overhead built into the bus protocol, so we need about 1000 KB. 69 * 70 * This is still too much for most cases, where we just snoop a few 71 * descriptor fetches for enumeration. So, the default is a "reasonable" 72 * amount for systems with HZ=250 and incomplete bus saturation. 73 * 74 * XXX What about multi-megabyte URBs which take minutes to transfer? 75 */ 76 #define BUFF_MAX CHUNK_ALIGN(1200*1024) 77 #define BUFF_DFL CHUNK_ALIGN(300*1024) 78 #define BUFF_MIN CHUNK_ALIGN(8*1024) 79 80 /* 81 * The per-event API header (2 per URB). 82 * 83 * This structure is seen in userland as defined by the documentation. 84 */ 85 struct mon_bin_hdr { 86 u64 id; /* URB ID - from submission to callback */ 87 unsigned char type; /* Same as in text API; extensible. */ 88 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ 89 unsigned char epnum; /* Endpoint number and transfer direction */ 90 unsigned char devnum; /* Device address */ 91 unsigned short busnum; /* Bus number */ 92 char flag_setup; 93 char flag_data; 94 s64 ts_sec; /* gettimeofday */ 95 s32 ts_usec; /* gettimeofday */ 96 int status; 97 unsigned int len_urb; /* Length of data (submitted or actual) */ 98 unsigned int len_cap; /* Delivered length */ 99 union { 100 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ 101 struct iso_rec { 102 int error_count; 103 int numdesc; 104 } iso; 105 } s; 106 int interval; 107 int start_frame; 108 unsigned int xfer_flags; 109 unsigned int ndesc; /* Actual number of ISO descriptors */ 110 }; 111 112 /* 113 * ISO vector, packed into the head of data stream. 114 * This has to take 16 bytes to make sure that the end of buffer 115 * wrap is not happening in the middle of a descriptor. 116 */ 117 struct mon_bin_isodesc { 118 int iso_status; 119 unsigned int iso_off; 120 unsigned int iso_len; 121 u32 _pad; 122 }; 123 124 /* per file statistic */ 125 struct mon_bin_stats { 126 u32 queued; 127 u32 dropped; 128 }; 129 130 struct mon_bin_get { 131 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */ 132 void __user *data; 133 size_t alloc; /* Length of data (can be zero) */ 134 }; 135 136 struct mon_bin_mfetch { 137 u32 __user *offvec; /* Vector of events fetched */ 138 u32 nfetch; /* Number of events to fetch (out: fetched) */ 139 u32 nflush; /* Number of events to flush */ 140 }; 141 142 #ifdef CONFIG_COMPAT 143 struct mon_bin_get32 { 144 u32 hdr32; 145 u32 data32; 146 u32 alloc32; 147 }; 148 149 struct mon_bin_mfetch32 { 150 u32 offvec32; 151 u32 nfetch32; 152 u32 nflush32; 153 }; 154 #endif 155 156 /* Having these two values same prevents wrapping of the mon_bin_hdr */ 157 #define PKT_ALIGN 64 158 #define PKT_SIZE 64 159 160 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */ 161 #define PKT_SZ_API1 64 /* API 1 size: extra fields */ 162 163 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */ 164 165 /* max number of USB bus supported */ 166 #define MON_BIN_MAX_MINOR 128 167 168 /* 169 * The buffer: map of used pages. 170 */ 171 struct mon_pgmap { 172 struct page *pg; 173 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ 174 }; 175 176 /* 177 * This gets associated with an open file struct. 178 */ 179 struct mon_reader_bin { 180 /* The buffer: one per open. */ 181 spinlock_t b_lock; /* Protect b_cnt, b_in */ 182 unsigned int b_size; /* Current size of the buffer - bytes */ 183 unsigned int b_cnt; /* Bytes used */ 184 unsigned int b_in, b_out; /* Offsets into buffer - bytes */ 185 unsigned int b_read; /* Amount of read data in curr. pkt. */ 186 struct mon_pgmap *b_vec; /* The map array */ 187 wait_queue_head_t b_wait; /* Wait for data here */ 188 189 struct mutex fetch_lock; /* Protect b_read, b_out */ 190 int mmap_active; 191 192 /* A list of these is needed for "bus 0". Some time later. */ 193 struct mon_reader r; 194 195 /* Stats */ 196 unsigned int cnt_lost; 197 }; 198 199 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, 200 unsigned int offset) 201 { 202 return (struct mon_bin_hdr *) 203 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 204 } 205 206 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) 207 208 static unsigned char xfer_to_pipe[4] = { 209 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT 210 }; 211 212 static struct class *mon_bin_class; 213 static dev_t mon_bin_dev0; 214 static struct cdev mon_bin_cdev; 215 216 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 217 unsigned int offset, unsigned int size); 218 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); 219 static int mon_alloc_buff(struct mon_pgmap *map, int npages); 220 static void mon_free_buff(struct mon_pgmap *map, int npages); 221 222 /* 223 * This is a "chunked memcpy". It does not manipulate any counters. 224 */ 225 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, 226 unsigned int off, const unsigned char *from, unsigned int length) 227 { 228 unsigned int step_len; 229 unsigned char *buf; 230 unsigned int in_page; 231 232 while (length) { 233 /* 234 * Determine step_len. 235 */ 236 step_len = length; 237 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 238 if (in_page < step_len) 239 step_len = in_page; 240 241 /* 242 * Copy data and advance pointers. 243 */ 244 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 245 memcpy(buf, from, step_len); 246 if ((off += step_len) >= this->b_size) off = 0; 247 from += step_len; 248 length -= step_len; 249 } 250 return off; 251 } 252 253 /* 254 * This is a little worse than the above because it's "chunked copy_to_user". 255 * The return value is an error code, not an offset. 256 */ 257 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, 258 char __user *to, int length) 259 { 260 unsigned int step_len; 261 unsigned char *buf; 262 unsigned int in_page; 263 264 while (length) { 265 /* 266 * Determine step_len. 267 */ 268 step_len = length; 269 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 270 if (in_page < step_len) 271 step_len = in_page; 272 273 /* 274 * Copy data and advance pointers. 275 */ 276 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 277 if (copy_to_user(to, buf, step_len)) 278 return -EINVAL; 279 if ((off += step_len) >= this->b_size) off = 0; 280 to += step_len; 281 length -= step_len; 282 } 283 return 0; 284 } 285 286 /* 287 * Allocate an (aligned) area in the buffer. 288 * This is called under b_lock. 289 * Returns ~0 on failure. 290 */ 291 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, 292 unsigned int size) 293 { 294 unsigned int offset; 295 296 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 297 if (rp->b_cnt + size > rp->b_size) 298 return ~0; 299 offset = rp->b_in; 300 rp->b_cnt += size; 301 if ((rp->b_in += size) >= rp->b_size) 302 rp->b_in -= rp->b_size; 303 return offset; 304 } 305 306 /* 307 * This is the same thing as mon_buff_area_alloc, only it does not allow 308 * buffers to wrap. This is needed by applications which pass references 309 * into mmap-ed buffers up their stacks (libpcap can do that). 310 * 311 * Currently, we always have the header stuck with the data, although 312 * it is not strictly speaking necessary. 313 * 314 * When a buffer would wrap, we place a filler packet to mark the space. 315 */ 316 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, 317 unsigned int size) 318 { 319 unsigned int offset; 320 unsigned int fill_size; 321 322 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 323 if (rp->b_cnt + size > rp->b_size) 324 return ~0; 325 if (rp->b_in + size > rp->b_size) { 326 /* 327 * This would wrap. Find if we still have space after 328 * skipping to the end of the buffer. If we do, place 329 * a filler packet and allocate a new packet. 330 */ 331 fill_size = rp->b_size - rp->b_in; 332 if (rp->b_cnt + size + fill_size > rp->b_size) 333 return ~0; 334 mon_buff_area_fill(rp, rp->b_in, fill_size); 335 336 offset = 0; 337 rp->b_in = size; 338 rp->b_cnt += size + fill_size; 339 } else if (rp->b_in + size == rp->b_size) { 340 offset = rp->b_in; 341 rp->b_in = 0; 342 rp->b_cnt += size; 343 } else { 344 offset = rp->b_in; 345 rp->b_in += size; 346 rp->b_cnt += size; 347 } 348 return offset; 349 } 350 351 /* 352 * Return a few (kilo-)bytes to the head of the buffer. 353 * This is used if a data fetch fails. 354 */ 355 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) 356 { 357 358 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */ 359 rp->b_cnt -= size; 360 if (rp->b_in < size) 361 rp->b_in += rp->b_size; 362 rp->b_in -= size; 363 } 364 365 /* 366 * This has to be called under both b_lock and fetch_lock, because 367 * it accesses both b_cnt and b_out. 368 */ 369 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) 370 { 371 372 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 373 rp->b_cnt -= size; 374 if ((rp->b_out += size) >= rp->b_size) 375 rp->b_out -= rp->b_size; 376 } 377 378 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 379 unsigned int offset, unsigned int size) 380 { 381 struct mon_bin_hdr *ep; 382 383 ep = MON_OFF2HDR(rp, offset); 384 memset(ep, 0, PKT_SIZE); 385 ep->type = '@'; 386 ep->len_cap = size - PKT_SIZE; 387 } 388 389 static inline char mon_bin_get_setup(unsigned char *setupb, 390 const struct urb *urb, char ev_type) 391 { 392 393 if (urb->setup_packet == NULL) 394 return 'Z'; 395 memcpy(setupb, urb->setup_packet, SETUP_LEN); 396 return 0; 397 } 398 399 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp, 400 unsigned int offset, struct urb *urb, unsigned int length, 401 char *flag) 402 { 403 int i; 404 struct scatterlist *sg; 405 unsigned int this_len; 406 407 *flag = 0; 408 if (urb->num_sgs == 0) { 409 if (urb->transfer_buffer == NULL) { 410 *flag = 'Z'; 411 return length; 412 } 413 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); 414 length = 0; 415 416 } else { 417 /* If IOMMU coalescing occurred, we cannot trust sg_page */ 418 if (urb->transfer_flags & URB_DMA_SG_COMBINED) { 419 *flag = 'D'; 420 return length; 421 } 422 423 /* Copy up to the first non-addressable segment */ 424 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 425 if (length == 0 || PageHighMem(sg_page(sg))) 426 break; 427 this_len = min_t(unsigned int, sg->length, length); 428 offset = mon_copy_to_buff(rp, offset, sg_virt(sg), 429 this_len); 430 length -= this_len; 431 } 432 if (i == 0) 433 *flag = 'D'; 434 } 435 436 return length; 437 } 438 439 /* 440 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot 441 * be used to determine the length of the whole contiguous buffer. 442 */ 443 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp, 444 struct urb *urb, unsigned int ndesc) 445 { 446 struct usb_iso_packet_descriptor *fp; 447 unsigned int length; 448 449 length = 0; 450 fp = urb->iso_frame_desc; 451 while (ndesc-- != 0) { 452 if (fp->actual_length != 0) { 453 if (fp->offset + fp->actual_length > length) 454 length = fp->offset + fp->actual_length; 455 } 456 fp++; 457 } 458 return length; 459 } 460 461 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp, 462 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc) 463 { 464 struct mon_bin_isodesc *dp; 465 struct usb_iso_packet_descriptor *fp; 466 467 fp = urb->iso_frame_desc; 468 while (ndesc-- != 0) { 469 dp = (struct mon_bin_isodesc *) 470 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 471 dp->iso_status = fp->status; 472 dp->iso_off = fp->offset; 473 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length; 474 dp->_pad = 0; 475 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size) 476 offset = 0; 477 fp++; 478 } 479 } 480 481 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, 482 char ev_type, int status) 483 { 484 const struct usb_endpoint_descriptor *epd = &urb->ep->desc; 485 struct timeval ts; 486 unsigned long flags; 487 unsigned int urb_length; 488 unsigned int offset; 489 unsigned int length; 490 unsigned int delta; 491 unsigned int ndesc, lendesc; 492 unsigned char dir; 493 struct mon_bin_hdr *ep; 494 char data_tag = 0; 495 496 do_gettimeofday(&ts); 497 498 spin_lock_irqsave(&rp->b_lock, flags); 499 500 /* 501 * Find the maximum allowable length, then allocate space. 502 */ 503 urb_length = (ev_type == 'S') ? 504 urb->transfer_buffer_length : urb->actual_length; 505 length = urb_length; 506 507 if (usb_endpoint_xfer_isoc(epd)) { 508 if (urb->number_of_packets < 0) { 509 ndesc = 0; 510 } else if (urb->number_of_packets >= ISODESC_MAX) { 511 ndesc = ISODESC_MAX; 512 } else { 513 ndesc = urb->number_of_packets; 514 } 515 if (ev_type == 'C' && usb_urb_dir_in(urb)) 516 length = mon_bin_collate_isodesc(rp, urb, ndesc); 517 } else { 518 ndesc = 0; 519 } 520 lendesc = ndesc*sizeof(struct mon_bin_isodesc); 521 522 /* not an issue unless there's a subtle bug in a HCD somewhere */ 523 if (length >= urb->transfer_buffer_length) 524 length = urb->transfer_buffer_length; 525 526 if (length >= rp->b_size/5) 527 length = rp->b_size/5; 528 529 if (usb_urb_dir_in(urb)) { 530 if (ev_type == 'S') { 531 length = 0; 532 data_tag = '<'; 533 } 534 /* Cannot rely on endpoint number in case of control ep.0 */ 535 dir = USB_DIR_IN; 536 } else { 537 if (ev_type == 'C') { 538 length = 0; 539 data_tag = '>'; 540 } 541 dir = 0; 542 } 543 544 if (rp->mmap_active) { 545 offset = mon_buff_area_alloc_contiguous(rp, 546 length + PKT_SIZE + lendesc); 547 } else { 548 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc); 549 } 550 if (offset == ~0) { 551 rp->cnt_lost++; 552 spin_unlock_irqrestore(&rp->b_lock, flags); 553 return; 554 } 555 556 ep = MON_OFF2HDR(rp, offset); 557 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; 558 559 /* 560 * Fill the allocated area. 561 */ 562 memset(ep, 0, PKT_SIZE); 563 ep->type = ev_type; 564 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)]; 565 ep->epnum = dir | usb_endpoint_num(epd); 566 ep->devnum = urb->dev->devnum; 567 ep->busnum = urb->dev->bus->busnum; 568 ep->id = (unsigned long) urb; 569 ep->ts_sec = ts.tv_sec; 570 ep->ts_usec = ts.tv_usec; 571 ep->status = status; 572 ep->len_urb = urb_length; 573 ep->len_cap = length + lendesc; 574 ep->xfer_flags = urb->transfer_flags; 575 576 if (usb_endpoint_xfer_int(epd)) { 577 ep->interval = urb->interval; 578 } else if (usb_endpoint_xfer_isoc(epd)) { 579 ep->interval = urb->interval; 580 ep->start_frame = urb->start_frame; 581 ep->s.iso.error_count = urb->error_count; 582 ep->s.iso.numdesc = urb->number_of_packets; 583 } 584 585 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') { 586 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type); 587 } else { 588 ep->flag_setup = '-'; 589 } 590 591 if (ndesc != 0) { 592 ep->ndesc = ndesc; 593 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc); 594 if ((offset += lendesc) >= rp->b_size) 595 offset -= rp->b_size; 596 } 597 598 if (length != 0) { 599 length = mon_bin_get_data(rp, offset, urb, length, 600 &ep->flag_data); 601 if (length > 0) { 602 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 603 ep->len_cap -= length; 604 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 605 mon_buff_area_shrink(rp, delta); 606 } 607 } else { 608 ep->flag_data = data_tag; 609 } 610 611 spin_unlock_irqrestore(&rp->b_lock, flags); 612 613 wake_up(&rp->b_wait); 614 } 615 616 static void mon_bin_submit(void *data, struct urb *urb) 617 { 618 struct mon_reader_bin *rp = data; 619 mon_bin_event(rp, urb, 'S', -EINPROGRESS); 620 } 621 622 static void mon_bin_complete(void *data, struct urb *urb, int status) 623 { 624 struct mon_reader_bin *rp = data; 625 mon_bin_event(rp, urb, 'C', status); 626 } 627 628 static void mon_bin_error(void *data, struct urb *urb, int error) 629 { 630 struct mon_reader_bin *rp = data; 631 struct timeval ts; 632 unsigned long flags; 633 unsigned int offset; 634 struct mon_bin_hdr *ep; 635 636 do_gettimeofday(&ts); 637 638 spin_lock_irqsave(&rp->b_lock, flags); 639 640 offset = mon_buff_area_alloc(rp, PKT_SIZE); 641 if (offset == ~0) { 642 /* Not incrementing cnt_lost. Just because. */ 643 spin_unlock_irqrestore(&rp->b_lock, flags); 644 return; 645 } 646 647 ep = MON_OFF2HDR(rp, offset); 648 649 memset(ep, 0, PKT_SIZE); 650 ep->type = 'E'; 651 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)]; 652 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0; 653 ep->epnum |= usb_endpoint_num(&urb->ep->desc); 654 ep->devnum = urb->dev->devnum; 655 ep->busnum = urb->dev->bus->busnum; 656 ep->id = (unsigned long) urb; 657 ep->ts_sec = ts.tv_sec; 658 ep->ts_usec = ts.tv_usec; 659 ep->status = error; 660 661 ep->flag_setup = '-'; 662 ep->flag_data = 'E'; 663 664 spin_unlock_irqrestore(&rp->b_lock, flags); 665 666 wake_up(&rp->b_wait); 667 } 668 669 static int mon_bin_open(struct inode *inode, struct file *file) 670 { 671 struct mon_bus *mbus; 672 struct mon_reader_bin *rp; 673 size_t size; 674 int rc; 675 676 mutex_lock(&mon_lock); 677 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) { 678 mutex_unlock(&mon_lock); 679 return -ENODEV; 680 } 681 if (mbus != &mon_bus0 && mbus->u_bus == NULL) { 682 printk(KERN_ERR TAG ": consistency error on open\n"); 683 mutex_unlock(&mon_lock); 684 return -ENODEV; 685 } 686 687 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); 688 if (rp == NULL) { 689 rc = -ENOMEM; 690 goto err_alloc; 691 } 692 spin_lock_init(&rp->b_lock); 693 init_waitqueue_head(&rp->b_wait); 694 mutex_init(&rp->fetch_lock); 695 rp->b_size = BUFF_DFL; 696 697 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); 698 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { 699 rc = -ENOMEM; 700 goto err_allocvec; 701 } 702 703 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) 704 goto err_allocbuff; 705 706 rp->r.m_bus = mbus; 707 rp->r.r_data = rp; 708 rp->r.rnf_submit = mon_bin_submit; 709 rp->r.rnf_error = mon_bin_error; 710 rp->r.rnf_complete = mon_bin_complete; 711 712 mon_reader_add(mbus, &rp->r); 713 714 file->private_data = rp; 715 mutex_unlock(&mon_lock); 716 return 0; 717 718 err_allocbuff: 719 kfree(rp->b_vec); 720 err_allocvec: 721 kfree(rp); 722 err_alloc: 723 mutex_unlock(&mon_lock); 724 return rc; 725 } 726 727 /* 728 * Extract an event from buffer and copy it to user space. 729 * Wait if there is no event ready. 730 * Returns zero or error. 731 */ 732 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, 733 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes, 734 void __user *data, unsigned int nbytes) 735 { 736 unsigned long flags; 737 struct mon_bin_hdr *ep; 738 size_t step_len; 739 unsigned int offset; 740 int rc; 741 742 mutex_lock(&rp->fetch_lock); 743 744 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 745 mutex_unlock(&rp->fetch_lock); 746 return rc; 747 } 748 749 ep = MON_OFF2HDR(rp, rp->b_out); 750 751 if (copy_to_user(hdr, ep, hdrbytes)) { 752 mutex_unlock(&rp->fetch_lock); 753 return -EFAULT; 754 } 755 756 step_len = min(ep->len_cap, nbytes); 757 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; 758 759 if (copy_from_buf(rp, offset, data, step_len)) { 760 mutex_unlock(&rp->fetch_lock); 761 return -EFAULT; 762 } 763 764 spin_lock_irqsave(&rp->b_lock, flags); 765 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 766 spin_unlock_irqrestore(&rp->b_lock, flags); 767 rp->b_read = 0; 768 769 mutex_unlock(&rp->fetch_lock); 770 return 0; 771 } 772 773 static int mon_bin_release(struct inode *inode, struct file *file) 774 { 775 struct mon_reader_bin *rp = file->private_data; 776 struct mon_bus* mbus = rp->r.m_bus; 777 778 mutex_lock(&mon_lock); 779 780 if (mbus->nreaders <= 0) { 781 printk(KERN_ERR TAG ": consistency error on close\n"); 782 mutex_unlock(&mon_lock); 783 return 0; 784 } 785 mon_reader_del(mbus, &rp->r); 786 787 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 788 kfree(rp->b_vec); 789 kfree(rp); 790 791 mutex_unlock(&mon_lock); 792 return 0; 793 } 794 795 static ssize_t mon_bin_read(struct file *file, char __user *buf, 796 size_t nbytes, loff_t *ppos) 797 { 798 struct mon_reader_bin *rp = file->private_data; 799 unsigned int hdrbytes = PKT_SZ_API0; 800 unsigned long flags; 801 struct mon_bin_hdr *ep; 802 unsigned int offset; 803 size_t step_len; 804 char *ptr; 805 ssize_t done = 0; 806 int rc; 807 808 mutex_lock(&rp->fetch_lock); 809 810 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 811 mutex_unlock(&rp->fetch_lock); 812 return rc; 813 } 814 815 ep = MON_OFF2HDR(rp, rp->b_out); 816 817 if (rp->b_read < hdrbytes) { 818 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read)); 819 ptr = ((char *)ep) + rp->b_read; 820 if (step_len && copy_to_user(buf, ptr, step_len)) { 821 mutex_unlock(&rp->fetch_lock); 822 return -EFAULT; 823 } 824 nbytes -= step_len; 825 buf += step_len; 826 rp->b_read += step_len; 827 done += step_len; 828 } 829 830 if (rp->b_read >= hdrbytes) { 831 step_len = ep->len_cap; 832 step_len -= rp->b_read - hdrbytes; 833 if (step_len > nbytes) 834 step_len = nbytes; 835 offset = rp->b_out + PKT_SIZE; 836 offset += rp->b_read - hdrbytes; 837 if (offset >= rp->b_size) 838 offset -= rp->b_size; 839 if (copy_from_buf(rp, offset, buf, step_len)) { 840 mutex_unlock(&rp->fetch_lock); 841 return -EFAULT; 842 } 843 nbytes -= step_len; 844 buf += step_len; 845 rp->b_read += step_len; 846 done += step_len; 847 } 848 849 /* 850 * Check if whole packet was read, and if so, jump to the next one. 851 */ 852 if (rp->b_read >= hdrbytes + ep->len_cap) { 853 spin_lock_irqsave(&rp->b_lock, flags); 854 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 855 spin_unlock_irqrestore(&rp->b_lock, flags); 856 rp->b_read = 0; 857 } 858 859 mutex_unlock(&rp->fetch_lock); 860 return done; 861 } 862 863 /* 864 * Remove at most nevents from chunked buffer. 865 * Returns the number of removed events. 866 */ 867 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) 868 { 869 unsigned long flags; 870 struct mon_bin_hdr *ep; 871 int i; 872 873 mutex_lock(&rp->fetch_lock); 874 spin_lock_irqsave(&rp->b_lock, flags); 875 for (i = 0; i < nevents; ++i) { 876 if (MON_RING_EMPTY(rp)) 877 break; 878 879 ep = MON_OFF2HDR(rp, rp->b_out); 880 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 881 } 882 spin_unlock_irqrestore(&rp->b_lock, flags); 883 rp->b_read = 0; 884 mutex_unlock(&rp->fetch_lock); 885 return i; 886 } 887 888 /* 889 * Fetch at most max event offsets into the buffer and put them into vec. 890 * The events are usually freed later with mon_bin_flush. 891 * Return the effective number of events fetched. 892 */ 893 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, 894 u32 __user *vec, unsigned int max) 895 { 896 unsigned int cur_out; 897 unsigned int bytes, avail; 898 unsigned int size; 899 unsigned int nevents; 900 struct mon_bin_hdr *ep; 901 unsigned long flags; 902 int rc; 903 904 mutex_lock(&rp->fetch_lock); 905 906 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 907 mutex_unlock(&rp->fetch_lock); 908 return rc; 909 } 910 911 spin_lock_irqsave(&rp->b_lock, flags); 912 avail = rp->b_cnt; 913 spin_unlock_irqrestore(&rp->b_lock, flags); 914 915 cur_out = rp->b_out; 916 nevents = 0; 917 bytes = 0; 918 while (bytes < avail) { 919 if (nevents >= max) 920 break; 921 922 ep = MON_OFF2HDR(rp, cur_out); 923 if (put_user(cur_out, &vec[nevents])) { 924 mutex_unlock(&rp->fetch_lock); 925 return -EFAULT; 926 } 927 928 nevents++; 929 size = ep->len_cap + PKT_SIZE; 930 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 931 if ((cur_out += size) >= rp->b_size) 932 cur_out -= rp->b_size; 933 bytes += size; 934 } 935 936 mutex_unlock(&rp->fetch_lock); 937 return nevents; 938 } 939 940 /* 941 * Count events. This is almost the same as the above mon_bin_fetch, 942 * only we do not store offsets into user vector, and we have no limit. 943 */ 944 static int mon_bin_queued(struct mon_reader_bin *rp) 945 { 946 unsigned int cur_out; 947 unsigned int bytes, avail; 948 unsigned int size; 949 unsigned int nevents; 950 struct mon_bin_hdr *ep; 951 unsigned long flags; 952 953 mutex_lock(&rp->fetch_lock); 954 955 spin_lock_irqsave(&rp->b_lock, flags); 956 avail = rp->b_cnt; 957 spin_unlock_irqrestore(&rp->b_lock, flags); 958 959 cur_out = rp->b_out; 960 nevents = 0; 961 bytes = 0; 962 while (bytes < avail) { 963 ep = MON_OFF2HDR(rp, cur_out); 964 965 nevents++; 966 size = ep->len_cap + PKT_SIZE; 967 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 968 if ((cur_out += size) >= rp->b_size) 969 cur_out -= rp->b_size; 970 bytes += size; 971 } 972 973 mutex_unlock(&rp->fetch_lock); 974 return nevents; 975 } 976 977 /* 978 */ 979 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 980 { 981 struct mon_reader_bin *rp = file->private_data; 982 // struct mon_bus* mbus = rp->r.m_bus; 983 int ret = 0; 984 struct mon_bin_hdr *ep; 985 unsigned long flags; 986 987 switch (cmd) { 988 989 case MON_IOCQ_URB_LEN: 990 /* 991 * N.B. This only returns the size of data, without the header. 992 */ 993 spin_lock_irqsave(&rp->b_lock, flags); 994 if (!MON_RING_EMPTY(rp)) { 995 ep = MON_OFF2HDR(rp, rp->b_out); 996 ret = ep->len_cap; 997 } 998 spin_unlock_irqrestore(&rp->b_lock, flags); 999 break; 1000 1001 case MON_IOCQ_RING_SIZE: 1002 ret = rp->b_size; 1003 break; 1004 1005 case MON_IOCT_RING_SIZE: 1006 /* 1007 * Changing the buffer size will flush it's contents; the new 1008 * buffer is allocated before releasing the old one to be sure 1009 * the device will stay functional also in case of memory 1010 * pressure. 1011 */ 1012 { 1013 int size; 1014 struct mon_pgmap *vec; 1015 1016 if (arg < BUFF_MIN || arg > BUFF_MAX) 1017 return -EINVAL; 1018 1019 size = CHUNK_ALIGN(arg); 1020 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE), 1021 GFP_KERNEL)) == NULL) { 1022 ret = -ENOMEM; 1023 break; 1024 } 1025 1026 ret = mon_alloc_buff(vec, size/CHUNK_SIZE); 1027 if (ret < 0) { 1028 kfree(vec); 1029 break; 1030 } 1031 1032 mutex_lock(&rp->fetch_lock); 1033 spin_lock_irqsave(&rp->b_lock, flags); 1034 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 1035 kfree(rp->b_vec); 1036 rp->b_vec = vec; 1037 rp->b_size = size; 1038 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; 1039 rp->cnt_lost = 0; 1040 spin_unlock_irqrestore(&rp->b_lock, flags); 1041 mutex_unlock(&rp->fetch_lock); 1042 } 1043 break; 1044 1045 case MON_IOCH_MFLUSH: 1046 ret = mon_bin_flush(rp, arg); 1047 break; 1048 1049 case MON_IOCX_GET: 1050 case MON_IOCX_GETX: 1051 { 1052 struct mon_bin_get getb; 1053 1054 if (copy_from_user(&getb, (void __user *)arg, 1055 sizeof(struct mon_bin_get))) 1056 return -EFAULT; 1057 1058 if (getb.alloc > 0x10000000) /* Want to cast to u32 */ 1059 return -EINVAL; 1060 ret = mon_bin_get_event(file, rp, getb.hdr, 1061 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1, 1062 getb.data, (unsigned int)getb.alloc); 1063 } 1064 break; 1065 1066 case MON_IOCX_MFETCH: 1067 { 1068 struct mon_bin_mfetch mfetch; 1069 struct mon_bin_mfetch __user *uptr; 1070 1071 uptr = (struct mon_bin_mfetch __user *)arg; 1072 1073 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1074 return -EFAULT; 1075 1076 if (mfetch.nflush) { 1077 ret = mon_bin_flush(rp, mfetch.nflush); 1078 if (ret < 0) 1079 return ret; 1080 if (put_user(ret, &uptr->nflush)) 1081 return -EFAULT; 1082 } 1083 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); 1084 if (ret < 0) 1085 return ret; 1086 if (put_user(ret, &uptr->nfetch)) 1087 return -EFAULT; 1088 ret = 0; 1089 } 1090 break; 1091 1092 case MON_IOCG_STATS: { 1093 struct mon_bin_stats __user *sp; 1094 unsigned int nevents; 1095 unsigned int ndropped; 1096 1097 spin_lock_irqsave(&rp->b_lock, flags); 1098 ndropped = rp->cnt_lost; 1099 rp->cnt_lost = 0; 1100 spin_unlock_irqrestore(&rp->b_lock, flags); 1101 nevents = mon_bin_queued(rp); 1102 1103 sp = (struct mon_bin_stats __user *)arg; 1104 if (put_user(rp->cnt_lost, &sp->dropped)) 1105 return -EFAULT; 1106 if (put_user(nevents, &sp->queued)) 1107 return -EFAULT; 1108 1109 } 1110 break; 1111 1112 default: 1113 return -ENOTTY; 1114 } 1115 1116 return ret; 1117 } 1118 1119 #ifdef CONFIG_COMPAT 1120 static long mon_bin_compat_ioctl(struct file *file, 1121 unsigned int cmd, unsigned long arg) 1122 { 1123 struct mon_reader_bin *rp = file->private_data; 1124 int ret; 1125 1126 switch (cmd) { 1127 1128 case MON_IOCX_GET32: 1129 case MON_IOCX_GETX32: 1130 { 1131 struct mon_bin_get32 getb; 1132 1133 if (copy_from_user(&getb, (void __user *)arg, 1134 sizeof(struct mon_bin_get32))) 1135 return -EFAULT; 1136 1137 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32), 1138 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1, 1139 compat_ptr(getb.data32), getb.alloc32); 1140 if (ret < 0) 1141 return ret; 1142 } 1143 return 0; 1144 1145 case MON_IOCX_MFETCH32: 1146 { 1147 struct mon_bin_mfetch32 mfetch; 1148 struct mon_bin_mfetch32 __user *uptr; 1149 1150 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); 1151 1152 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1153 return -EFAULT; 1154 1155 if (mfetch.nflush32) { 1156 ret = mon_bin_flush(rp, mfetch.nflush32); 1157 if (ret < 0) 1158 return ret; 1159 if (put_user(ret, &uptr->nflush32)) 1160 return -EFAULT; 1161 } 1162 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), 1163 mfetch.nfetch32); 1164 if (ret < 0) 1165 return ret; 1166 if (put_user(ret, &uptr->nfetch32)) 1167 return -EFAULT; 1168 } 1169 return 0; 1170 1171 case MON_IOCG_STATS: 1172 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 1173 1174 case MON_IOCQ_URB_LEN: 1175 case MON_IOCQ_RING_SIZE: 1176 case MON_IOCT_RING_SIZE: 1177 case MON_IOCH_MFLUSH: 1178 return mon_bin_ioctl(file, cmd, arg); 1179 1180 default: 1181 ; 1182 } 1183 return -ENOTTY; 1184 } 1185 #endif /* CONFIG_COMPAT */ 1186 1187 static unsigned int 1188 mon_bin_poll(struct file *file, struct poll_table_struct *wait) 1189 { 1190 struct mon_reader_bin *rp = file->private_data; 1191 unsigned int mask = 0; 1192 unsigned long flags; 1193 1194 if (file->f_mode & FMODE_READ) 1195 poll_wait(file, &rp->b_wait, wait); 1196 1197 spin_lock_irqsave(&rp->b_lock, flags); 1198 if (!MON_RING_EMPTY(rp)) 1199 mask |= POLLIN | POLLRDNORM; /* readable */ 1200 spin_unlock_irqrestore(&rp->b_lock, flags); 1201 return mask; 1202 } 1203 1204 /* 1205 * open and close: just keep track of how many times the device is 1206 * mapped, to use the proper memory allocation function. 1207 */ 1208 static void mon_bin_vma_open(struct vm_area_struct *vma) 1209 { 1210 struct mon_reader_bin *rp = vma->vm_private_data; 1211 rp->mmap_active++; 1212 } 1213 1214 static void mon_bin_vma_close(struct vm_area_struct *vma) 1215 { 1216 struct mon_reader_bin *rp = vma->vm_private_data; 1217 rp->mmap_active--; 1218 } 1219 1220 /* 1221 * Map ring pages to user space. 1222 */ 1223 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1224 { 1225 struct mon_reader_bin *rp = vma->vm_private_data; 1226 unsigned long offset, chunk_idx; 1227 struct page *pageptr; 1228 1229 offset = vmf->pgoff << PAGE_SHIFT; 1230 if (offset >= rp->b_size) 1231 return VM_FAULT_SIGBUS; 1232 chunk_idx = offset / CHUNK_SIZE; 1233 pageptr = rp->b_vec[chunk_idx].pg; 1234 get_page(pageptr); 1235 vmf->page = pageptr; 1236 return 0; 1237 } 1238 1239 static const struct vm_operations_struct mon_bin_vm_ops = { 1240 .open = mon_bin_vma_open, 1241 .close = mon_bin_vma_close, 1242 .fault = mon_bin_vma_fault, 1243 }; 1244 1245 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) 1246 { 1247 /* don't do anything here: "fault" will set up page table entries */ 1248 vma->vm_ops = &mon_bin_vm_ops; 1249 vma->vm_flags |= VM_RESERVED; 1250 vma->vm_private_data = filp->private_data; 1251 mon_bin_vma_open(vma); 1252 return 0; 1253 } 1254 1255 static const struct file_operations mon_fops_binary = { 1256 .owner = THIS_MODULE, 1257 .open = mon_bin_open, 1258 .llseek = no_llseek, 1259 .read = mon_bin_read, 1260 /* .write = mon_text_write, */ 1261 .poll = mon_bin_poll, 1262 .unlocked_ioctl = mon_bin_ioctl, 1263 #ifdef CONFIG_COMPAT 1264 .compat_ioctl = mon_bin_compat_ioctl, 1265 #endif 1266 .release = mon_bin_release, 1267 .mmap = mon_bin_mmap, 1268 }; 1269 1270 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) 1271 { 1272 DECLARE_WAITQUEUE(waita, current); 1273 unsigned long flags; 1274 1275 add_wait_queue(&rp->b_wait, &waita); 1276 set_current_state(TASK_INTERRUPTIBLE); 1277 1278 spin_lock_irqsave(&rp->b_lock, flags); 1279 while (MON_RING_EMPTY(rp)) { 1280 spin_unlock_irqrestore(&rp->b_lock, flags); 1281 1282 if (file->f_flags & O_NONBLOCK) { 1283 set_current_state(TASK_RUNNING); 1284 remove_wait_queue(&rp->b_wait, &waita); 1285 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ 1286 } 1287 schedule(); 1288 if (signal_pending(current)) { 1289 remove_wait_queue(&rp->b_wait, &waita); 1290 return -EINTR; 1291 } 1292 set_current_state(TASK_INTERRUPTIBLE); 1293 1294 spin_lock_irqsave(&rp->b_lock, flags); 1295 } 1296 spin_unlock_irqrestore(&rp->b_lock, flags); 1297 1298 set_current_state(TASK_RUNNING); 1299 remove_wait_queue(&rp->b_wait, &waita); 1300 return 0; 1301 } 1302 1303 static int mon_alloc_buff(struct mon_pgmap *map, int npages) 1304 { 1305 int n; 1306 unsigned long vaddr; 1307 1308 for (n = 0; n < npages; n++) { 1309 vaddr = get_zeroed_page(GFP_KERNEL); 1310 if (vaddr == 0) { 1311 while (n-- != 0) 1312 free_page((unsigned long) map[n].ptr); 1313 return -ENOMEM; 1314 } 1315 map[n].ptr = (unsigned char *) vaddr; 1316 map[n].pg = virt_to_page((void *) vaddr); 1317 } 1318 return 0; 1319 } 1320 1321 static void mon_free_buff(struct mon_pgmap *map, int npages) 1322 { 1323 int n; 1324 1325 for (n = 0; n < npages; n++) 1326 free_page((unsigned long) map[n].ptr); 1327 } 1328 1329 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) 1330 { 1331 struct device *dev; 1332 unsigned minor = ubus? ubus->busnum: 0; 1333 1334 if (minor >= MON_BIN_MAX_MINOR) 1335 return 0; 1336 1337 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL, 1338 MKDEV(MAJOR(mon_bin_dev0), minor), NULL, 1339 "usbmon%d", minor); 1340 if (IS_ERR(dev)) 1341 return 0; 1342 1343 mbus->classdev = dev; 1344 return 1; 1345 } 1346 1347 void mon_bin_del(struct mon_bus *mbus) 1348 { 1349 device_destroy(mon_bin_class, mbus->classdev->devt); 1350 } 1351 1352 int __init mon_bin_init(void) 1353 { 1354 int rc; 1355 1356 mon_bin_class = class_create(THIS_MODULE, "usbmon"); 1357 if (IS_ERR(mon_bin_class)) { 1358 rc = PTR_ERR(mon_bin_class); 1359 goto err_class; 1360 } 1361 1362 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); 1363 if (rc < 0) 1364 goto err_dev; 1365 1366 cdev_init(&mon_bin_cdev, &mon_fops_binary); 1367 mon_bin_cdev.owner = THIS_MODULE; 1368 1369 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); 1370 if (rc < 0) 1371 goto err_add; 1372 1373 return 0; 1374 1375 err_add: 1376 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1377 err_dev: 1378 class_destroy(mon_bin_class); 1379 err_class: 1380 return rc; 1381 } 1382 1383 void mon_bin_exit(void) 1384 { 1385 cdev_del(&mon_bin_cdev); 1386 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1387 class_destroy(mon_bin_class); 1388 } 1389