xref: /openbmc/linux/drivers/usb/mon/mon_bin.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * The USB Monitor, inspired by Dave Harding's USBMon.
3  *
4  * This is a binary format reader.
5  *
6  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/export.h>
15 #include <linux/usb.h>
16 #include <linux/poll.h>
17 #include <linux/compat.h>
18 #include <linux/mm.h>
19 #include <linux/scatterlist.h>
20 #include <linux/slab.h>
21 
22 #include <asm/uaccess.h>
23 
24 #include "usb_mon.h"
25 
26 /*
27  * Defined by USB 2.0 clause 9.3, table 9.2.
28  */
29 #define SETUP_LEN  8
30 
31 /* ioctl macros */
32 #define MON_IOC_MAGIC 0x92
33 
34 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
35 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
36 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
37 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
38 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
39 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
40 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
41 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
42 /* #9 was MON_IOCT_SETAPI */
43 #define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
44 
45 #ifdef CONFIG_COMPAT
46 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
47 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
48 #define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
49 #endif
50 
51 /*
52  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
53  * But it's all right. Just use a simple way to make sure the chunk is never
54  * smaller than a page.
55  *
56  * N.B. An application does not know our chunk size.
57  *
58  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
59  * page-sized chunks for the time being.
60  */
61 #define CHUNK_SIZE   PAGE_SIZE
62 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
63 
64 /*
65  * The magic limit was calculated so that it allows the monitoring
66  * application to pick data once in two ticks. This way, another application,
67  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
68  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
69  * enormous overhead built into the bus protocol, so we need about 1000 KB.
70  *
71  * This is still too much for most cases, where we just snoop a few
72  * descriptor fetches for enumeration. So, the default is a "reasonable"
73  * amount for systems with HZ=250 and incomplete bus saturation.
74  *
75  * XXX What about multi-megabyte URBs which take minutes to transfer?
76  */
77 #define BUFF_MAX  CHUNK_ALIGN(1200*1024)
78 #define BUFF_DFL   CHUNK_ALIGN(300*1024)
79 #define BUFF_MIN     CHUNK_ALIGN(8*1024)
80 
81 /*
82  * The per-event API header (2 per URB).
83  *
84  * This structure is seen in userland as defined by the documentation.
85  */
86 struct mon_bin_hdr {
87 	u64 id;			/* URB ID - from submission to callback */
88 	unsigned char type;	/* Same as in text API; extensible. */
89 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
90 	unsigned char epnum;	/* Endpoint number and transfer direction */
91 	unsigned char devnum;	/* Device address */
92 	unsigned short busnum;	/* Bus number */
93 	char flag_setup;
94 	char flag_data;
95 	s64 ts_sec;		/* gettimeofday */
96 	s32 ts_usec;		/* gettimeofday */
97 	int status;
98 	unsigned int len_urb;	/* Length of data (submitted or actual) */
99 	unsigned int len_cap;	/* Delivered length */
100 	union {
101 		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
102 		struct iso_rec {
103 			int error_count;
104 			int numdesc;
105 		} iso;
106 	} s;
107 	int interval;
108 	int start_frame;
109 	unsigned int xfer_flags;
110 	unsigned int ndesc;	/* Actual number of ISO descriptors */
111 };
112 
113 /*
114  * ISO vector, packed into the head of data stream.
115  * This has to take 16 bytes to make sure that the end of buffer
116  * wrap is not happening in the middle of a descriptor.
117  */
118 struct mon_bin_isodesc {
119 	int          iso_status;
120 	unsigned int iso_off;
121 	unsigned int iso_len;
122 	u32 _pad;
123 };
124 
125 /* per file statistic */
126 struct mon_bin_stats {
127 	u32 queued;
128 	u32 dropped;
129 };
130 
131 struct mon_bin_get {
132 	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
133 	void __user *data;
134 	size_t alloc;		/* Length of data (can be zero) */
135 };
136 
137 struct mon_bin_mfetch {
138 	u32 __user *offvec;	/* Vector of events fetched */
139 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
140 	u32 nflush;		/* Number of events to flush */
141 };
142 
143 #ifdef CONFIG_COMPAT
144 struct mon_bin_get32 {
145 	u32 hdr32;
146 	u32 data32;
147 	u32 alloc32;
148 };
149 
150 struct mon_bin_mfetch32 {
151         u32 offvec32;
152         u32 nfetch32;
153         u32 nflush32;
154 };
155 #endif
156 
157 /* Having these two values same prevents wrapping of the mon_bin_hdr */
158 #define PKT_ALIGN   64
159 #define PKT_SIZE    64
160 
161 #define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
162 #define PKT_SZ_API1 64	/* API 1 size: extra fields */
163 
164 #define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
165 
166 /* max number of USB bus supported */
167 #define MON_BIN_MAX_MINOR 128
168 
169 /*
170  * The buffer: map of used pages.
171  */
172 struct mon_pgmap {
173 	struct page *pg;
174 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
175 };
176 
177 /*
178  * This gets associated with an open file struct.
179  */
180 struct mon_reader_bin {
181 	/* The buffer: one per open. */
182 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
183 	unsigned int b_size;		/* Current size of the buffer - bytes */
184 	unsigned int b_cnt;		/* Bytes used */
185 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
186 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
187 	struct mon_pgmap *b_vec;	/* The map array */
188 	wait_queue_head_t b_wait;	/* Wait for data here */
189 
190 	struct mutex fetch_lock;	/* Protect b_read, b_out */
191 	int mmap_active;
192 
193 	/* A list of these is needed for "bus 0". Some time later. */
194 	struct mon_reader r;
195 
196 	/* Stats */
197 	unsigned int cnt_lost;
198 };
199 
200 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
201     unsigned int offset)
202 {
203 	return (struct mon_bin_hdr *)
204 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
205 }
206 
207 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
208 
209 static unsigned char xfer_to_pipe[4] = {
210 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
211 };
212 
213 static struct class *mon_bin_class;
214 static dev_t mon_bin_dev0;
215 static struct cdev mon_bin_cdev;
216 
217 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
218     unsigned int offset, unsigned int size);
219 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
220 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
221 static void mon_free_buff(struct mon_pgmap *map, int npages);
222 
223 /*
224  * This is a "chunked memcpy". It does not manipulate any counters.
225  */
226 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
227     unsigned int off, const unsigned char *from, unsigned int length)
228 {
229 	unsigned int step_len;
230 	unsigned char *buf;
231 	unsigned int in_page;
232 
233 	while (length) {
234 		/*
235 		 * Determine step_len.
236 		 */
237 		step_len = length;
238 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
239 		if (in_page < step_len)
240 			step_len = in_page;
241 
242 		/*
243 		 * Copy data and advance pointers.
244 		 */
245 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
246 		memcpy(buf, from, step_len);
247 		if ((off += step_len) >= this->b_size) off = 0;
248 		from += step_len;
249 		length -= step_len;
250 	}
251 	return off;
252 }
253 
254 /*
255  * This is a little worse than the above because it's "chunked copy_to_user".
256  * The return value is an error code, not an offset.
257  */
258 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
259     char __user *to, int length)
260 {
261 	unsigned int step_len;
262 	unsigned char *buf;
263 	unsigned int in_page;
264 
265 	while (length) {
266 		/*
267 		 * Determine step_len.
268 		 */
269 		step_len = length;
270 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
271 		if (in_page < step_len)
272 			step_len = in_page;
273 
274 		/*
275 		 * Copy data and advance pointers.
276 		 */
277 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
278 		if (copy_to_user(to, buf, step_len))
279 			return -EINVAL;
280 		if ((off += step_len) >= this->b_size) off = 0;
281 		to += step_len;
282 		length -= step_len;
283 	}
284 	return 0;
285 }
286 
287 /*
288  * Allocate an (aligned) area in the buffer.
289  * This is called under b_lock.
290  * Returns ~0 on failure.
291  */
292 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
293     unsigned int size)
294 {
295 	unsigned int offset;
296 
297 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
298 	if (rp->b_cnt + size > rp->b_size)
299 		return ~0;
300 	offset = rp->b_in;
301 	rp->b_cnt += size;
302 	if ((rp->b_in += size) >= rp->b_size)
303 		rp->b_in -= rp->b_size;
304 	return offset;
305 }
306 
307 /*
308  * This is the same thing as mon_buff_area_alloc, only it does not allow
309  * buffers to wrap. This is needed by applications which pass references
310  * into mmap-ed buffers up their stacks (libpcap can do that).
311  *
312  * Currently, we always have the header stuck with the data, although
313  * it is not strictly speaking necessary.
314  *
315  * When a buffer would wrap, we place a filler packet to mark the space.
316  */
317 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
318     unsigned int size)
319 {
320 	unsigned int offset;
321 	unsigned int fill_size;
322 
323 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
324 	if (rp->b_cnt + size > rp->b_size)
325 		return ~0;
326 	if (rp->b_in + size > rp->b_size) {
327 		/*
328 		 * This would wrap. Find if we still have space after
329 		 * skipping to the end of the buffer. If we do, place
330 		 * a filler packet and allocate a new packet.
331 		 */
332 		fill_size = rp->b_size - rp->b_in;
333 		if (rp->b_cnt + size + fill_size > rp->b_size)
334 			return ~0;
335 		mon_buff_area_fill(rp, rp->b_in, fill_size);
336 
337 		offset = 0;
338 		rp->b_in = size;
339 		rp->b_cnt += size + fill_size;
340 	} else if (rp->b_in + size == rp->b_size) {
341 		offset = rp->b_in;
342 		rp->b_in = 0;
343 		rp->b_cnt += size;
344 	} else {
345 		offset = rp->b_in;
346 		rp->b_in += size;
347 		rp->b_cnt += size;
348 	}
349 	return offset;
350 }
351 
352 /*
353  * Return a few (kilo-)bytes to the head of the buffer.
354  * This is used if a data fetch fails.
355  */
356 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
357 {
358 
359 	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
360 	rp->b_cnt -= size;
361 	if (rp->b_in < size)
362 		rp->b_in += rp->b_size;
363 	rp->b_in -= size;
364 }
365 
366 /*
367  * This has to be called under both b_lock and fetch_lock, because
368  * it accesses both b_cnt and b_out.
369  */
370 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
371 {
372 
373 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
374 	rp->b_cnt -= size;
375 	if ((rp->b_out += size) >= rp->b_size)
376 		rp->b_out -= rp->b_size;
377 }
378 
379 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
380     unsigned int offset, unsigned int size)
381 {
382 	struct mon_bin_hdr *ep;
383 
384 	ep = MON_OFF2HDR(rp, offset);
385 	memset(ep, 0, PKT_SIZE);
386 	ep->type = '@';
387 	ep->len_cap = size - PKT_SIZE;
388 }
389 
390 static inline char mon_bin_get_setup(unsigned char *setupb,
391     const struct urb *urb, char ev_type)
392 {
393 
394 	if (urb->setup_packet == NULL)
395 		return 'Z';
396 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
397 	return 0;
398 }
399 
400 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
401     unsigned int offset, struct urb *urb, unsigned int length,
402     char *flag)
403 {
404 	int i;
405 	struct scatterlist *sg;
406 	unsigned int this_len;
407 
408 	*flag = 0;
409 	if (urb->num_sgs == 0) {
410 		if (urb->transfer_buffer == NULL) {
411 			*flag = 'Z';
412 			return length;
413 		}
414 		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
415 		length = 0;
416 
417 	} else {
418 		/* If IOMMU coalescing occurred, we cannot trust sg_page */
419 		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
420 			*flag = 'D';
421 			return length;
422 		}
423 
424 		/* Copy up to the first non-addressable segment */
425 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
426 			if (length == 0 || PageHighMem(sg_page(sg)))
427 				break;
428 			this_len = min_t(unsigned int, sg->length, length);
429 			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
430 					this_len);
431 			length -= this_len;
432 		}
433 		if (i == 0)
434 			*flag = 'D';
435 	}
436 
437 	return length;
438 }
439 
440 /*
441  * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
442  * be used to determine the length of the whole contiguous buffer.
443  */
444 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
445     struct urb *urb, unsigned int ndesc)
446 {
447 	struct usb_iso_packet_descriptor *fp;
448 	unsigned int length;
449 
450 	length = 0;
451 	fp = urb->iso_frame_desc;
452 	while (ndesc-- != 0) {
453 		if (fp->actual_length != 0) {
454 			if (fp->offset + fp->actual_length > length)
455 				length = fp->offset + fp->actual_length;
456 		}
457 		fp++;
458 	}
459 	return length;
460 }
461 
462 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
463     unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
464 {
465 	struct mon_bin_isodesc *dp;
466 	struct usb_iso_packet_descriptor *fp;
467 
468 	fp = urb->iso_frame_desc;
469 	while (ndesc-- != 0) {
470 		dp = (struct mon_bin_isodesc *)
471 		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
472 		dp->iso_status = fp->status;
473 		dp->iso_off = fp->offset;
474 		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
475 		dp->_pad = 0;
476 		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
477 			offset = 0;
478 		fp++;
479 	}
480 }
481 
482 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
483     char ev_type, int status)
484 {
485 	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
486 	struct timeval ts;
487 	unsigned long flags;
488 	unsigned int urb_length;
489 	unsigned int offset;
490 	unsigned int length;
491 	unsigned int delta;
492 	unsigned int ndesc, lendesc;
493 	unsigned char dir;
494 	struct mon_bin_hdr *ep;
495 	char data_tag = 0;
496 
497 	do_gettimeofday(&ts);
498 
499 	spin_lock_irqsave(&rp->b_lock, flags);
500 
501 	/*
502 	 * Find the maximum allowable length, then allocate space.
503 	 */
504 	urb_length = (ev_type == 'S') ?
505 	    urb->transfer_buffer_length : urb->actual_length;
506 	length = urb_length;
507 
508 	if (usb_endpoint_xfer_isoc(epd)) {
509 		if (urb->number_of_packets < 0) {
510 			ndesc = 0;
511 		} else if (urb->number_of_packets >= ISODESC_MAX) {
512 			ndesc = ISODESC_MAX;
513 		} else {
514 			ndesc = urb->number_of_packets;
515 		}
516 		if (ev_type == 'C' && usb_urb_dir_in(urb))
517 			length = mon_bin_collate_isodesc(rp, urb, ndesc);
518 	} else {
519 		ndesc = 0;
520 	}
521 	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
522 
523 	/* not an issue unless there's a subtle bug in a HCD somewhere */
524 	if (length >= urb->transfer_buffer_length)
525 		length = urb->transfer_buffer_length;
526 
527 	if (length >= rp->b_size/5)
528 		length = rp->b_size/5;
529 
530 	if (usb_urb_dir_in(urb)) {
531 		if (ev_type == 'S') {
532 			length = 0;
533 			data_tag = '<';
534 		}
535 		/* Cannot rely on endpoint number in case of control ep.0 */
536 		dir = USB_DIR_IN;
537 	} else {
538 		if (ev_type == 'C') {
539 			length = 0;
540 			data_tag = '>';
541 		}
542 		dir = 0;
543 	}
544 
545 	if (rp->mmap_active) {
546 		offset = mon_buff_area_alloc_contiguous(rp,
547 						 length + PKT_SIZE + lendesc);
548 	} else {
549 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
550 	}
551 	if (offset == ~0) {
552 		rp->cnt_lost++;
553 		spin_unlock_irqrestore(&rp->b_lock, flags);
554 		return;
555 	}
556 
557 	ep = MON_OFF2HDR(rp, offset);
558 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
559 
560 	/*
561 	 * Fill the allocated area.
562 	 */
563 	memset(ep, 0, PKT_SIZE);
564 	ep->type = ev_type;
565 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
566 	ep->epnum = dir | usb_endpoint_num(epd);
567 	ep->devnum = urb->dev->devnum;
568 	ep->busnum = urb->dev->bus->busnum;
569 	ep->id = (unsigned long) urb;
570 	ep->ts_sec = ts.tv_sec;
571 	ep->ts_usec = ts.tv_usec;
572 	ep->status = status;
573 	ep->len_urb = urb_length;
574 	ep->len_cap = length + lendesc;
575 	ep->xfer_flags = urb->transfer_flags;
576 
577 	if (usb_endpoint_xfer_int(epd)) {
578 		ep->interval = urb->interval;
579 	} else if (usb_endpoint_xfer_isoc(epd)) {
580 		ep->interval = urb->interval;
581 		ep->start_frame = urb->start_frame;
582 		ep->s.iso.error_count = urb->error_count;
583 		ep->s.iso.numdesc = urb->number_of_packets;
584 	}
585 
586 	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
587 		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
588 	} else {
589 		ep->flag_setup = '-';
590 	}
591 
592 	if (ndesc != 0) {
593 		ep->ndesc = ndesc;
594 		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
595 		if ((offset += lendesc) >= rp->b_size)
596 			offset -= rp->b_size;
597 	}
598 
599 	if (length != 0) {
600 		length = mon_bin_get_data(rp, offset, urb, length,
601 				&ep->flag_data);
602 		if (length > 0) {
603 			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
604 			ep->len_cap -= length;
605 			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
606 			mon_buff_area_shrink(rp, delta);
607 		}
608 	} else {
609 		ep->flag_data = data_tag;
610 	}
611 
612 	spin_unlock_irqrestore(&rp->b_lock, flags);
613 
614 	wake_up(&rp->b_wait);
615 }
616 
617 static void mon_bin_submit(void *data, struct urb *urb)
618 {
619 	struct mon_reader_bin *rp = data;
620 	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
621 }
622 
623 static void mon_bin_complete(void *data, struct urb *urb, int status)
624 {
625 	struct mon_reader_bin *rp = data;
626 	mon_bin_event(rp, urb, 'C', status);
627 }
628 
629 static void mon_bin_error(void *data, struct urb *urb, int error)
630 {
631 	struct mon_reader_bin *rp = data;
632 	struct timeval ts;
633 	unsigned long flags;
634 	unsigned int offset;
635 	struct mon_bin_hdr *ep;
636 
637 	do_gettimeofday(&ts);
638 
639 	spin_lock_irqsave(&rp->b_lock, flags);
640 
641 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
642 	if (offset == ~0) {
643 		/* Not incrementing cnt_lost. Just because. */
644 		spin_unlock_irqrestore(&rp->b_lock, flags);
645 		return;
646 	}
647 
648 	ep = MON_OFF2HDR(rp, offset);
649 
650 	memset(ep, 0, PKT_SIZE);
651 	ep->type = 'E';
652 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
653 	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
654 	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
655 	ep->devnum = urb->dev->devnum;
656 	ep->busnum = urb->dev->bus->busnum;
657 	ep->id = (unsigned long) urb;
658 	ep->ts_sec = ts.tv_sec;
659 	ep->ts_usec = ts.tv_usec;
660 	ep->status = error;
661 
662 	ep->flag_setup = '-';
663 	ep->flag_data = 'E';
664 
665 	spin_unlock_irqrestore(&rp->b_lock, flags);
666 
667 	wake_up(&rp->b_wait);
668 }
669 
670 static int mon_bin_open(struct inode *inode, struct file *file)
671 {
672 	struct mon_bus *mbus;
673 	struct mon_reader_bin *rp;
674 	size_t size;
675 	int rc;
676 
677 	mutex_lock(&mon_lock);
678 	mbus = mon_bus_lookup(iminor(inode));
679 	if (mbus == NULL) {
680 		mutex_unlock(&mon_lock);
681 		return -ENODEV;
682 	}
683 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
684 		printk(KERN_ERR TAG ": consistency error on open\n");
685 		mutex_unlock(&mon_lock);
686 		return -ENODEV;
687 	}
688 
689 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
690 	if (rp == NULL) {
691 		rc = -ENOMEM;
692 		goto err_alloc;
693 	}
694 	spin_lock_init(&rp->b_lock);
695 	init_waitqueue_head(&rp->b_wait);
696 	mutex_init(&rp->fetch_lock);
697 	rp->b_size = BUFF_DFL;
698 
699 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
700 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
701 		rc = -ENOMEM;
702 		goto err_allocvec;
703 	}
704 
705 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
706 		goto err_allocbuff;
707 
708 	rp->r.m_bus = mbus;
709 	rp->r.r_data = rp;
710 	rp->r.rnf_submit = mon_bin_submit;
711 	rp->r.rnf_error = mon_bin_error;
712 	rp->r.rnf_complete = mon_bin_complete;
713 
714 	mon_reader_add(mbus, &rp->r);
715 
716 	file->private_data = rp;
717 	mutex_unlock(&mon_lock);
718 	return 0;
719 
720 err_allocbuff:
721 	kfree(rp->b_vec);
722 err_allocvec:
723 	kfree(rp);
724 err_alloc:
725 	mutex_unlock(&mon_lock);
726 	return rc;
727 }
728 
729 /*
730  * Extract an event from buffer and copy it to user space.
731  * Wait if there is no event ready.
732  * Returns zero or error.
733  */
734 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
735     struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
736     void __user *data, unsigned int nbytes)
737 {
738 	unsigned long flags;
739 	struct mon_bin_hdr *ep;
740 	size_t step_len;
741 	unsigned int offset;
742 	int rc;
743 
744 	mutex_lock(&rp->fetch_lock);
745 
746 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
747 		mutex_unlock(&rp->fetch_lock);
748 		return rc;
749 	}
750 
751 	ep = MON_OFF2HDR(rp, rp->b_out);
752 
753 	if (copy_to_user(hdr, ep, hdrbytes)) {
754 		mutex_unlock(&rp->fetch_lock);
755 		return -EFAULT;
756 	}
757 
758 	step_len = min(ep->len_cap, nbytes);
759 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
760 
761 	if (copy_from_buf(rp, offset, data, step_len)) {
762 		mutex_unlock(&rp->fetch_lock);
763 		return -EFAULT;
764 	}
765 
766 	spin_lock_irqsave(&rp->b_lock, flags);
767 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
768 	spin_unlock_irqrestore(&rp->b_lock, flags);
769 	rp->b_read = 0;
770 
771 	mutex_unlock(&rp->fetch_lock);
772 	return 0;
773 }
774 
775 static int mon_bin_release(struct inode *inode, struct file *file)
776 {
777 	struct mon_reader_bin *rp = file->private_data;
778 	struct mon_bus* mbus = rp->r.m_bus;
779 
780 	mutex_lock(&mon_lock);
781 
782 	if (mbus->nreaders <= 0) {
783 		printk(KERN_ERR TAG ": consistency error on close\n");
784 		mutex_unlock(&mon_lock);
785 		return 0;
786 	}
787 	mon_reader_del(mbus, &rp->r);
788 
789 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
790 	kfree(rp->b_vec);
791 	kfree(rp);
792 
793 	mutex_unlock(&mon_lock);
794 	return 0;
795 }
796 
797 static ssize_t mon_bin_read(struct file *file, char __user *buf,
798     size_t nbytes, loff_t *ppos)
799 {
800 	struct mon_reader_bin *rp = file->private_data;
801 	unsigned int hdrbytes = PKT_SZ_API0;
802 	unsigned long flags;
803 	struct mon_bin_hdr *ep;
804 	unsigned int offset;
805 	size_t step_len;
806 	char *ptr;
807 	ssize_t done = 0;
808 	int rc;
809 
810 	mutex_lock(&rp->fetch_lock);
811 
812 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
813 		mutex_unlock(&rp->fetch_lock);
814 		return rc;
815 	}
816 
817 	ep = MON_OFF2HDR(rp, rp->b_out);
818 
819 	if (rp->b_read < hdrbytes) {
820 		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
821 		ptr = ((char *)ep) + rp->b_read;
822 		if (step_len && copy_to_user(buf, ptr, step_len)) {
823 			mutex_unlock(&rp->fetch_lock);
824 			return -EFAULT;
825 		}
826 		nbytes -= step_len;
827 		buf += step_len;
828 		rp->b_read += step_len;
829 		done += step_len;
830 	}
831 
832 	if (rp->b_read >= hdrbytes) {
833 		step_len = ep->len_cap;
834 		step_len -= rp->b_read - hdrbytes;
835 		if (step_len > nbytes)
836 			step_len = nbytes;
837 		offset = rp->b_out + PKT_SIZE;
838 		offset += rp->b_read - hdrbytes;
839 		if (offset >= rp->b_size)
840 			offset -= rp->b_size;
841 		if (copy_from_buf(rp, offset, buf, step_len)) {
842 			mutex_unlock(&rp->fetch_lock);
843 			return -EFAULT;
844 		}
845 		nbytes -= step_len;
846 		buf += step_len;
847 		rp->b_read += step_len;
848 		done += step_len;
849 	}
850 
851 	/*
852 	 * Check if whole packet was read, and if so, jump to the next one.
853 	 */
854 	if (rp->b_read >= hdrbytes + ep->len_cap) {
855 		spin_lock_irqsave(&rp->b_lock, flags);
856 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
857 		spin_unlock_irqrestore(&rp->b_lock, flags);
858 		rp->b_read = 0;
859 	}
860 
861 	mutex_unlock(&rp->fetch_lock);
862 	return done;
863 }
864 
865 /*
866  * Remove at most nevents from chunked buffer.
867  * Returns the number of removed events.
868  */
869 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
870 {
871 	unsigned long flags;
872 	struct mon_bin_hdr *ep;
873 	int i;
874 
875 	mutex_lock(&rp->fetch_lock);
876 	spin_lock_irqsave(&rp->b_lock, flags);
877 	for (i = 0; i < nevents; ++i) {
878 		if (MON_RING_EMPTY(rp))
879 			break;
880 
881 		ep = MON_OFF2HDR(rp, rp->b_out);
882 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
883 	}
884 	spin_unlock_irqrestore(&rp->b_lock, flags);
885 	rp->b_read = 0;
886 	mutex_unlock(&rp->fetch_lock);
887 	return i;
888 }
889 
890 /*
891  * Fetch at most max event offsets into the buffer and put them into vec.
892  * The events are usually freed later with mon_bin_flush.
893  * Return the effective number of events fetched.
894  */
895 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
896     u32 __user *vec, unsigned int max)
897 {
898 	unsigned int cur_out;
899 	unsigned int bytes, avail;
900 	unsigned int size;
901 	unsigned int nevents;
902 	struct mon_bin_hdr *ep;
903 	unsigned long flags;
904 	int rc;
905 
906 	mutex_lock(&rp->fetch_lock);
907 
908 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
909 		mutex_unlock(&rp->fetch_lock);
910 		return rc;
911 	}
912 
913 	spin_lock_irqsave(&rp->b_lock, flags);
914 	avail = rp->b_cnt;
915 	spin_unlock_irqrestore(&rp->b_lock, flags);
916 
917 	cur_out = rp->b_out;
918 	nevents = 0;
919 	bytes = 0;
920 	while (bytes < avail) {
921 		if (nevents >= max)
922 			break;
923 
924 		ep = MON_OFF2HDR(rp, cur_out);
925 		if (put_user(cur_out, &vec[nevents])) {
926 			mutex_unlock(&rp->fetch_lock);
927 			return -EFAULT;
928 		}
929 
930 		nevents++;
931 		size = ep->len_cap + PKT_SIZE;
932 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
933 		if ((cur_out += size) >= rp->b_size)
934 			cur_out -= rp->b_size;
935 		bytes += size;
936 	}
937 
938 	mutex_unlock(&rp->fetch_lock);
939 	return nevents;
940 }
941 
942 /*
943  * Count events. This is almost the same as the above mon_bin_fetch,
944  * only we do not store offsets into user vector, and we have no limit.
945  */
946 static int mon_bin_queued(struct mon_reader_bin *rp)
947 {
948 	unsigned int cur_out;
949 	unsigned int bytes, avail;
950 	unsigned int size;
951 	unsigned int nevents;
952 	struct mon_bin_hdr *ep;
953 	unsigned long flags;
954 
955 	mutex_lock(&rp->fetch_lock);
956 
957 	spin_lock_irqsave(&rp->b_lock, flags);
958 	avail = rp->b_cnt;
959 	spin_unlock_irqrestore(&rp->b_lock, flags);
960 
961 	cur_out = rp->b_out;
962 	nevents = 0;
963 	bytes = 0;
964 	while (bytes < avail) {
965 		ep = MON_OFF2HDR(rp, cur_out);
966 
967 		nevents++;
968 		size = ep->len_cap + PKT_SIZE;
969 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
970 		if ((cur_out += size) >= rp->b_size)
971 			cur_out -= rp->b_size;
972 		bytes += size;
973 	}
974 
975 	mutex_unlock(&rp->fetch_lock);
976 	return nevents;
977 }
978 
979 /*
980  */
981 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
982 {
983 	struct mon_reader_bin *rp = file->private_data;
984 	// struct mon_bus* mbus = rp->r.m_bus;
985 	int ret = 0;
986 	struct mon_bin_hdr *ep;
987 	unsigned long flags;
988 
989 	switch (cmd) {
990 
991 	case MON_IOCQ_URB_LEN:
992 		/*
993 		 * N.B. This only returns the size of data, without the header.
994 		 */
995 		spin_lock_irqsave(&rp->b_lock, flags);
996 		if (!MON_RING_EMPTY(rp)) {
997 			ep = MON_OFF2HDR(rp, rp->b_out);
998 			ret = ep->len_cap;
999 		}
1000 		spin_unlock_irqrestore(&rp->b_lock, flags);
1001 		break;
1002 
1003 	case MON_IOCQ_RING_SIZE:
1004 		ret = rp->b_size;
1005 		break;
1006 
1007 	case MON_IOCT_RING_SIZE:
1008 		/*
1009 		 * Changing the buffer size will flush it's contents; the new
1010 		 * buffer is allocated before releasing the old one to be sure
1011 		 * the device will stay functional also in case of memory
1012 		 * pressure.
1013 		 */
1014 		{
1015 		int size;
1016 		struct mon_pgmap *vec;
1017 
1018 		if (arg < BUFF_MIN || arg > BUFF_MAX)
1019 			return -EINVAL;
1020 
1021 		size = CHUNK_ALIGN(arg);
1022 		vec = kzalloc(sizeof(struct mon_pgmap) * (size / CHUNK_SIZE), GFP_KERNEL);
1023 		if (vec == NULL) {
1024 			ret = -ENOMEM;
1025 			break;
1026 		}
1027 
1028 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1029 		if (ret < 0) {
1030 			kfree(vec);
1031 			break;
1032 		}
1033 
1034 		mutex_lock(&rp->fetch_lock);
1035 		spin_lock_irqsave(&rp->b_lock, flags);
1036 		mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1037 		kfree(rp->b_vec);
1038 		rp->b_vec  = vec;
1039 		rp->b_size = size;
1040 		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1041 		rp->cnt_lost = 0;
1042 		spin_unlock_irqrestore(&rp->b_lock, flags);
1043 		mutex_unlock(&rp->fetch_lock);
1044 		}
1045 		break;
1046 
1047 	case MON_IOCH_MFLUSH:
1048 		ret = mon_bin_flush(rp, arg);
1049 		break;
1050 
1051 	case MON_IOCX_GET:
1052 	case MON_IOCX_GETX:
1053 		{
1054 		struct mon_bin_get getb;
1055 
1056 		if (copy_from_user(&getb, (void __user *)arg,
1057 					    sizeof(struct mon_bin_get)))
1058 			return -EFAULT;
1059 
1060 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1061 			return -EINVAL;
1062 		ret = mon_bin_get_event(file, rp, getb.hdr,
1063 		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1064 		    getb.data, (unsigned int)getb.alloc);
1065 		}
1066 		break;
1067 
1068 	case MON_IOCX_MFETCH:
1069 		{
1070 		struct mon_bin_mfetch mfetch;
1071 		struct mon_bin_mfetch __user *uptr;
1072 
1073 		uptr = (struct mon_bin_mfetch __user *)arg;
1074 
1075 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1076 			return -EFAULT;
1077 
1078 		if (mfetch.nflush) {
1079 			ret = mon_bin_flush(rp, mfetch.nflush);
1080 			if (ret < 0)
1081 				return ret;
1082 			if (put_user(ret, &uptr->nflush))
1083 				return -EFAULT;
1084 		}
1085 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1086 		if (ret < 0)
1087 			return ret;
1088 		if (put_user(ret, &uptr->nfetch))
1089 			return -EFAULT;
1090 		ret = 0;
1091 		}
1092 		break;
1093 
1094 	case MON_IOCG_STATS: {
1095 		struct mon_bin_stats __user *sp;
1096 		unsigned int nevents;
1097 		unsigned int ndropped;
1098 
1099 		spin_lock_irqsave(&rp->b_lock, flags);
1100 		ndropped = rp->cnt_lost;
1101 		rp->cnt_lost = 0;
1102 		spin_unlock_irqrestore(&rp->b_lock, flags);
1103 		nevents = mon_bin_queued(rp);
1104 
1105 		sp = (struct mon_bin_stats __user *)arg;
1106 		if (put_user(ndropped, &sp->dropped))
1107 			return -EFAULT;
1108 		if (put_user(nevents, &sp->queued))
1109 			return -EFAULT;
1110 
1111 		}
1112 		break;
1113 
1114 	default:
1115 		return -ENOTTY;
1116 	}
1117 
1118 	return ret;
1119 }
1120 
1121 #ifdef CONFIG_COMPAT
1122 static long mon_bin_compat_ioctl(struct file *file,
1123     unsigned int cmd, unsigned long arg)
1124 {
1125 	struct mon_reader_bin *rp = file->private_data;
1126 	int ret;
1127 
1128 	switch (cmd) {
1129 
1130 	case MON_IOCX_GET32:
1131 	case MON_IOCX_GETX32:
1132 		{
1133 		struct mon_bin_get32 getb;
1134 
1135 		if (copy_from_user(&getb, (void __user *)arg,
1136 					    sizeof(struct mon_bin_get32)))
1137 			return -EFAULT;
1138 
1139 		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1140 		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1141 		    compat_ptr(getb.data32), getb.alloc32);
1142 		if (ret < 0)
1143 			return ret;
1144 		}
1145 		return 0;
1146 
1147 	case MON_IOCX_MFETCH32:
1148 		{
1149 		struct mon_bin_mfetch32 mfetch;
1150 		struct mon_bin_mfetch32 __user *uptr;
1151 
1152 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1153 
1154 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1155 			return -EFAULT;
1156 
1157 		if (mfetch.nflush32) {
1158 			ret = mon_bin_flush(rp, mfetch.nflush32);
1159 			if (ret < 0)
1160 				return ret;
1161 			if (put_user(ret, &uptr->nflush32))
1162 				return -EFAULT;
1163 		}
1164 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1165 		    mfetch.nfetch32);
1166 		if (ret < 0)
1167 			return ret;
1168 		if (put_user(ret, &uptr->nfetch32))
1169 			return -EFAULT;
1170 		}
1171 		return 0;
1172 
1173 	case MON_IOCG_STATS:
1174 		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1175 
1176 	case MON_IOCQ_URB_LEN:
1177 	case MON_IOCQ_RING_SIZE:
1178 	case MON_IOCT_RING_SIZE:
1179 	case MON_IOCH_MFLUSH:
1180 		return mon_bin_ioctl(file, cmd, arg);
1181 
1182 	default:
1183 		;
1184 	}
1185 	return -ENOTTY;
1186 }
1187 #endif /* CONFIG_COMPAT */
1188 
1189 static unsigned int
1190 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1191 {
1192 	struct mon_reader_bin *rp = file->private_data;
1193 	unsigned int mask = 0;
1194 	unsigned long flags;
1195 
1196 	if (file->f_mode & FMODE_READ)
1197 		poll_wait(file, &rp->b_wait, wait);
1198 
1199 	spin_lock_irqsave(&rp->b_lock, flags);
1200 	if (!MON_RING_EMPTY(rp))
1201 		mask |= POLLIN | POLLRDNORM;    /* readable */
1202 	spin_unlock_irqrestore(&rp->b_lock, flags);
1203 	return mask;
1204 }
1205 
1206 /*
1207  * open and close: just keep track of how many times the device is
1208  * mapped, to use the proper memory allocation function.
1209  */
1210 static void mon_bin_vma_open(struct vm_area_struct *vma)
1211 {
1212 	struct mon_reader_bin *rp = vma->vm_private_data;
1213 	rp->mmap_active++;
1214 }
1215 
1216 static void mon_bin_vma_close(struct vm_area_struct *vma)
1217 {
1218 	struct mon_reader_bin *rp = vma->vm_private_data;
1219 	rp->mmap_active--;
1220 }
1221 
1222 /*
1223  * Map ring pages to user space.
1224  */
1225 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1226 {
1227 	struct mon_reader_bin *rp = vma->vm_private_data;
1228 	unsigned long offset, chunk_idx;
1229 	struct page *pageptr;
1230 
1231 	offset = vmf->pgoff << PAGE_SHIFT;
1232 	if (offset >= rp->b_size)
1233 		return VM_FAULT_SIGBUS;
1234 	chunk_idx = offset / CHUNK_SIZE;
1235 	pageptr = rp->b_vec[chunk_idx].pg;
1236 	get_page(pageptr);
1237 	vmf->page = pageptr;
1238 	return 0;
1239 }
1240 
1241 static const struct vm_operations_struct mon_bin_vm_ops = {
1242 	.open =     mon_bin_vma_open,
1243 	.close =    mon_bin_vma_close,
1244 	.fault =    mon_bin_vma_fault,
1245 };
1246 
1247 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1248 {
1249 	/* don't do anything here: "fault" will set up page table entries */
1250 	vma->vm_ops = &mon_bin_vm_ops;
1251 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1252 	vma->vm_private_data = filp->private_data;
1253 	mon_bin_vma_open(vma);
1254 	return 0;
1255 }
1256 
1257 static const struct file_operations mon_fops_binary = {
1258 	.owner =	THIS_MODULE,
1259 	.open =		mon_bin_open,
1260 	.llseek =	no_llseek,
1261 	.read =		mon_bin_read,
1262 	/* .write =	mon_text_write, */
1263 	.poll =		mon_bin_poll,
1264 	.unlocked_ioctl = mon_bin_ioctl,
1265 #ifdef CONFIG_COMPAT
1266 	.compat_ioctl =	mon_bin_compat_ioctl,
1267 #endif
1268 	.release =	mon_bin_release,
1269 	.mmap =		mon_bin_mmap,
1270 };
1271 
1272 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1273 {
1274 	DECLARE_WAITQUEUE(waita, current);
1275 	unsigned long flags;
1276 
1277 	add_wait_queue(&rp->b_wait, &waita);
1278 	set_current_state(TASK_INTERRUPTIBLE);
1279 
1280 	spin_lock_irqsave(&rp->b_lock, flags);
1281 	while (MON_RING_EMPTY(rp)) {
1282 		spin_unlock_irqrestore(&rp->b_lock, flags);
1283 
1284 		if (file->f_flags & O_NONBLOCK) {
1285 			set_current_state(TASK_RUNNING);
1286 			remove_wait_queue(&rp->b_wait, &waita);
1287 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1288 		}
1289 		schedule();
1290 		if (signal_pending(current)) {
1291 			remove_wait_queue(&rp->b_wait, &waita);
1292 			return -EINTR;
1293 		}
1294 		set_current_state(TASK_INTERRUPTIBLE);
1295 
1296 		spin_lock_irqsave(&rp->b_lock, flags);
1297 	}
1298 	spin_unlock_irqrestore(&rp->b_lock, flags);
1299 
1300 	set_current_state(TASK_RUNNING);
1301 	remove_wait_queue(&rp->b_wait, &waita);
1302 	return 0;
1303 }
1304 
1305 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1306 {
1307 	int n;
1308 	unsigned long vaddr;
1309 
1310 	for (n = 0; n < npages; n++) {
1311 		vaddr = get_zeroed_page(GFP_KERNEL);
1312 		if (vaddr == 0) {
1313 			while (n-- != 0)
1314 				free_page((unsigned long) map[n].ptr);
1315 			return -ENOMEM;
1316 		}
1317 		map[n].ptr = (unsigned char *) vaddr;
1318 		map[n].pg = virt_to_page((void *) vaddr);
1319 	}
1320 	return 0;
1321 }
1322 
1323 static void mon_free_buff(struct mon_pgmap *map, int npages)
1324 {
1325 	int n;
1326 
1327 	for (n = 0; n < npages; n++)
1328 		free_page((unsigned long) map[n].ptr);
1329 }
1330 
1331 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1332 {
1333 	struct device *dev;
1334 	unsigned minor = ubus? ubus->busnum: 0;
1335 
1336 	if (minor >= MON_BIN_MAX_MINOR)
1337 		return 0;
1338 
1339 	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1340 			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1341 			    "usbmon%d", minor);
1342 	if (IS_ERR(dev))
1343 		return 0;
1344 
1345 	mbus->classdev = dev;
1346 	return 1;
1347 }
1348 
1349 void mon_bin_del(struct mon_bus *mbus)
1350 {
1351 	device_destroy(mon_bin_class, mbus->classdev->devt);
1352 }
1353 
1354 int __init mon_bin_init(void)
1355 {
1356 	int rc;
1357 
1358 	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1359 	if (IS_ERR(mon_bin_class)) {
1360 		rc = PTR_ERR(mon_bin_class);
1361 		goto err_class;
1362 	}
1363 
1364 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1365 	if (rc < 0)
1366 		goto err_dev;
1367 
1368 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1369 	mon_bin_cdev.owner = THIS_MODULE;
1370 
1371 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1372 	if (rc < 0)
1373 		goto err_add;
1374 
1375 	return 0;
1376 
1377 err_add:
1378 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1379 err_dev:
1380 	class_destroy(mon_bin_class);
1381 err_class:
1382 	return rc;
1383 }
1384 
1385 void mon_bin_exit(void)
1386 {
1387 	cdev_del(&mon_bin_cdev);
1388 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1389 	class_destroy(mon_bin_class);
1390 }
1391