1 /* 2 * The USB Monitor, inspired by Dave Harding's USBMon. 3 * 4 * This is a binary format reader. 5 * 6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) 7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com) 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/cdev.h> 14 #include <linux/usb.h> 15 #include <linux/poll.h> 16 #include <linux/compat.h> 17 #include <linux/mm.h> 18 #include <linux/scatterlist.h> 19 #include <linux/slab.h> 20 21 #include <asm/uaccess.h> 22 23 #include "usb_mon.h" 24 25 /* 26 * Defined by USB 2.0 clause 9.3, table 9.2. 27 */ 28 #define SETUP_LEN 8 29 30 /* ioctl macros */ 31 #define MON_IOC_MAGIC 0x92 32 33 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) 34 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ 35 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) 36 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) 37 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) 38 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) 39 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) 40 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) 41 /* #9 was MON_IOCT_SETAPI */ 42 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get) 43 44 #ifdef CONFIG_COMPAT 45 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) 46 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) 47 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32) 48 #endif 49 50 /* 51 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). 52 * But it's all right. Just use a simple way to make sure the chunk is never 53 * smaller than a page. 54 * 55 * N.B. An application does not know our chunk size. 56 * 57 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with 58 * page-sized chunks for the time being. 59 */ 60 #define CHUNK_SIZE PAGE_SIZE 61 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) 62 63 /* 64 * The magic limit was calculated so that it allows the monitoring 65 * application to pick data once in two ticks. This way, another application, 66 * which presumably drives the bus, gets to hog CPU, yet we collect our data. 67 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an 68 * enormous overhead built into the bus protocol, so we need about 1000 KB. 69 * 70 * This is still too much for most cases, where we just snoop a few 71 * descriptor fetches for enumeration. So, the default is a "reasonable" 72 * amount for systems with HZ=250 and incomplete bus saturation. 73 * 74 * XXX What about multi-megabyte URBs which take minutes to transfer? 75 */ 76 #define BUFF_MAX CHUNK_ALIGN(1200*1024) 77 #define BUFF_DFL CHUNK_ALIGN(300*1024) 78 #define BUFF_MIN CHUNK_ALIGN(8*1024) 79 80 /* 81 * The per-event API header (2 per URB). 82 * 83 * This structure is seen in userland as defined by the documentation. 84 */ 85 struct mon_bin_hdr { 86 u64 id; /* URB ID - from submission to callback */ 87 unsigned char type; /* Same as in text API; extensible. */ 88 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ 89 unsigned char epnum; /* Endpoint number and transfer direction */ 90 unsigned char devnum; /* Device address */ 91 unsigned short busnum; /* Bus number */ 92 char flag_setup; 93 char flag_data; 94 s64 ts_sec; /* gettimeofday */ 95 s32 ts_usec; /* gettimeofday */ 96 int status; 97 unsigned int len_urb; /* Length of data (submitted or actual) */ 98 unsigned int len_cap; /* Delivered length */ 99 union { 100 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ 101 struct iso_rec { 102 int error_count; 103 int numdesc; 104 } iso; 105 } s; 106 int interval; 107 int start_frame; 108 unsigned int xfer_flags; 109 unsigned int ndesc; /* Actual number of ISO descriptors */ 110 }; 111 112 /* 113 * ISO vector, packed into the head of data stream. 114 * This has to take 16 bytes to make sure that the end of buffer 115 * wrap is not happening in the middle of a descriptor. 116 */ 117 struct mon_bin_isodesc { 118 int iso_status; 119 unsigned int iso_off; 120 unsigned int iso_len; 121 u32 _pad; 122 }; 123 124 /* per file statistic */ 125 struct mon_bin_stats { 126 u32 queued; 127 u32 dropped; 128 }; 129 130 struct mon_bin_get { 131 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */ 132 void __user *data; 133 size_t alloc; /* Length of data (can be zero) */ 134 }; 135 136 struct mon_bin_mfetch { 137 u32 __user *offvec; /* Vector of events fetched */ 138 u32 nfetch; /* Number of events to fetch (out: fetched) */ 139 u32 nflush; /* Number of events to flush */ 140 }; 141 142 #ifdef CONFIG_COMPAT 143 struct mon_bin_get32 { 144 u32 hdr32; 145 u32 data32; 146 u32 alloc32; 147 }; 148 149 struct mon_bin_mfetch32 { 150 u32 offvec32; 151 u32 nfetch32; 152 u32 nflush32; 153 }; 154 #endif 155 156 /* Having these two values same prevents wrapping of the mon_bin_hdr */ 157 #define PKT_ALIGN 64 158 #define PKT_SIZE 64 159 160 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */ 161 #define PKT_SZ_API1 64 /* API 1 size: extra fields */ 162 163 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */ 164 165 /* max number of USB bus supported */ 166 #define MON_BIN_MAX_MINOR 128 167 168 /* 169 * The buffer: map of used pages. 170 */ 171 struct mon_pgmap { 172 struct page *pg; 173 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ 174 }; 175 176 /* 177 * This gets associated with an open file struct. 178 */ 179 struct mon_reader_bin { 180 /* The buffer: one per open. */ 181 spinlock_t b_lock; /* Protect b_cnt, b_in */ 182 unsigned int b_size; /* Current size of the buffer - bytes */ 183 unsigned int b_cnt; /* Bytes used */ 184 unsigned int b_in, b_out; /* Offsets into buffer - bytes */ 185 unsigned int b_read; /* Amount of read data in curr. pkt. */ 186 struct mon_pgmap *b_vec; /* The map array */ 187 wait_queue_head_t b_wait; /* Wait for data here */ 188 189 struct mutex fetch_lock; /* Protect b_read, b_out */ 190 int mmap_active; 191 192 /* A list of these is needed for "bus 0". Some time later. */ 193 struct mon_reader r; 194 195 /* Stats */ 196 unsigned int cnt_lost; 197 }; 198 199 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, 200 unsigned int offset) 201 { 202 return (struct mon_bin_hdr *) 203 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 204 } 205 206 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) 207 208 static unsigned char xfer_to_pipe[4] = { 209 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT 210 }; 211 212 static struct class *mon_bin_class; 213 static dev_t mon_bin_dev0; 214 static struct cdev mon_bin_cdev; 215 216 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 217 unsigned int offset, unsigned int size); 218 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); 219 static int mon_alloc_buff(struct mon_pgmap *map, int npages); 220 static void mon_free_buff(struct mon_pgmap *map, int npages); 221 222 /* 223 * This is a "chunked memcpy". It does not manipulate any counters. 224 */ 225 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, 226 unsigned int off, const unsigned char *from, unsigned int length) 227 { 228 unsigned int step_len; 229 unsigned char *buf; 230 unsigned int in_page; 231 232 while (length) { 233 /* 234 * Determine step_len. 235 */ 236 step_len = length; 237 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 238 if (in_page < step_len) 239 step_len = in_page; 240 241 /* 242 * Copy data and advance pointers. 243 */ 244 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 245 memcpy(buf, from, step_len); 246 if ((off += step_len) >= this->b_size) off = 0; 247 from += step_len; 248 length -= step_len; 249 } 250 return off; 251 } 252 253 /* 254 * This is a little worse than the above because it's "chunked copy_to_user". 255 * The return value is an error code, not an offset. 256 */ 257 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, 258 char __user *to, int length) 259 { 260 unsigned int step_len; 261 unsigned char *buf; 262 unsigned int in_page; 263 264 while (length) { 265 /* 266 * Determine step_len. 267 */ 268 step_len = length; 269 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 270 if (in_page < step_len) 271 step_len = in_page; 272 273 /* 274 * Copy data and advance pointers. 275 */ 276 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 277 if (copy_to_user(to, buf, step_len)) 278 return -EINVAL; 279 if ((off += step_len) >= this->b_size) off = 0; 280 to += step_len; 281 length -= step_len; 282 } 283 return 0; 284 } 285 286 /* 287 * Allocate an (aligned) area in the buffer. 288 * This is called under b_lock. 289 * Returns ~0 on failure. 290 */ 291 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, 292 unsigned int size) 293 { 294 unsigned int offset; 295 296 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 297 if (rp->b_cnt + size > rp->b_size) 298 return ~0; 299 offset = rp->b_in; 300 rp->b_cnt += size; 301 if ((rp->b_in += size) >= rp->b_size) 302 rp->b_in -= rp->b_size; 303 return offset; 304 } 305 306 /* 307 * This is the same thing as mon_buff_area_alloc, only it does not allow 308 * buffers to wrap. This is needed by applications which pass references 309 * into mmap-ed buffers up their stacks (libpcap can do that). 310 * 311 * Currently, we always have the header stuck with the data, although 312 * it is not strictly speaking necessary. 313 * 314 * When a buffer would wrap, we place a filler packet to mark the space. 315 */ 316 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, 317 unsigned int size) 318 { 319 unsigned int offset; 320 unsigned int fill_size; 321 322 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 323 if (rp->b_cnt + size > rp->b_size) 324 return ~0; 325 if (rp->b_in + size > rp->b_size) { 326 /* 327 * This would wrap. Find if we still have space after 328 * skipping to the end of the buffer. If we do, place 329 * a filler packet and allocate a new packet. 330 */ 331 fill_size = rp->b_size - rp->b_in; 332 if (rp->b_cnt + size + fill_size > rp->b_size) 333 return ~0; 334 mon_buff_area_fill(rp, rp->b_in, fill_size); 335 336 offset = 0; 337 rp->b_in = size; 338 rp->b_cnt += size + fill_size; 339 } else if (rp->b_in + size == rp->b_size) { 340 offset = rp->b_in; 341 rp->b_in = 0; 342 rp->b_cnt += size; 343 } else { 344 offset = rp->b_in; 345 rp->b_in += size; 346 rp->b_cnt += size; 347 } 348 return offset; 349 } 350 351 /* 352 * Return a few (kilo-)bytes to the head of the buffer. 353 * This is used if a data fetch fails. 354 */ 355 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) 356 { 357 358 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */ 359 rp->b_cnt -= size; 360 if (rp->b_in < size) 361 rp->b_in += rp->b_size; 362 rp->b_in -= size; 363 } 364 365 /* 366 * This has to be called under both b_lock and fetch_lock, because 367 * it accesses both b_cnt and b_out. 368 */ 369 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) 370 { 371 372 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 373 rp->b_cnt -= size; 374 if ((rp->b_out += size) >= rp->b_size) 375 rp->b_out -= rp->b_size; 376 } 377 378 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 379 unsigned int offset, unsigned int size) 380 { 381 struct mon_bin_hdr *ep; 382 383 ep = MON_OFF2HDR(rp, offset); 384 memset(ep, 0, PKT_SIZE); 385 ep->type = '@'; 386 ep->len_cap = size - PKT_SIZE; 387 } 388 389 static inline char mon_bin_get_setup(unsigned char *setupb, 390 const struct urb *urb, char ev_type) 391 { 392 393 if (urb->setup_packet == NULL) 394 return 'Z'; 395 memcpy(setupb, urb->setup_packet, SETUP_LEN); 396 return 0; 397 } 398 399 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp, 400 unsigned int offset, struct urb *urb, unsigned int length, 401 char *flag) 402 { 403 int i; 404 struct scatterlist *sg; 405 unsigned int this_len; 406 407 *flag = 0; 408 if (urb->num_sgs == 0) { 409 if (urb->transfer_buffer == NULL) { 410 *flag = 'Z'; 411 return length; 412 } 413 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); 414 length = 0; 415 416 } else { 417 /* If IOMMU coalescing occurred, we cannot trust sg_page */ 418 if (urb->transfer_flags & URB_DMA_SG_COMBINED) { 419 *flag = 'D'; 420 return length; 421 } 422 423 /* Copy up to the first non-addressable segment */ 424 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 425 if (length == 0 || PageHighMem(sg_page(sg))) 426 break; 427 this_len = min_t(unsigned int, sg->length, length); 428 offset = mon_copy_to_buff(rp, offset, sg_virt(sg), 429 this_len); 430 length -= this_len; 431 } 432 if (i == 0) 433 *flag = 'D'; 434 } 435 436 return length; 437 } 438 439 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp, 440 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc) 441 { 442 struct mon_bin_isodesc *dp; 443 struct usb_iso_packet_descriptor *fp; 444 445 fp = urb->iso_frame_desc; 446 while (ndesc-- != 0) { 447 dp = (struct mon_bin_isodesc *) 448 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 449 dp->iso_status = fp->status; 450 dp->iso_off = fp->offset; 451 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length; 452 dp->_pad = 0; 453 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size) 454 offset = 0; 455 fp++; 456 } 457 } 458 459 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, 460 char ev_type, int status) 461 { 462 const struct usb_endpoint_descriptor *epd = &urb->ep->desc; 463 struct timeval ts; 464 unsigned long flags; 465 unsigned int urb_length; 466 unsigned int offset; 467 unsigned int length; 468 unsigned int delta; 469 unsigned int ndesc, lendesc; 470 unsigned char dir; 471 struct mon_bin_hdr *ep; 472 char data_tag = 0; 473 474 do_gettimeofday(&ts); 475 476 spin_lock_irqsave(&rp->b_lock, flags); 477 478 /* 479 * Find the maximum allowable length, then allocate space. 480 */ 481 if (usb_endpoint_xfer_isoc(epd)) { 482 if (urb->number_of_packets < 0) { 483 ndesc = 0; 484 } else if (urb->number_of_packets >= ISODESC_MAX) { 485 ndesc = ISODESC_MAX; 486 } else { 487 ndesc = urb->number_of_packets; 488 } 489 } else { 490 ndesc = 0; 491 } 492 lendesc = ndesc*sizeof(struct mon_bin_isodesc); 493 494 urb_length = (ev_type == 'S') ? 495 urb->transfer_buffer_length : urb->actual_length; 496 length = urb_length; 497 498 if (length >= rp->b_size/5) 499 length = rp->b_size/5; 500 501 if (usb_urb_dir_in(urb)) { 502 if (ev_type == 'S') { 503 length = 0; 504 data_tag = '<'; 505 } 506 /* Cannot rely on endpoint number in case of control ep.0 */ 507 dir = USB_DIR_IN; 508 } else { 509 if (ev_type == 'C') { 510 length = 0; 511 data_tag = '>'; 512 } 513 dir = 0; 514 } 515 516 if (rp->mmap_active) { 517 offset = mon_buff_area_alloc_contiguous(rp, 518 length + PKT_SIZE + lendesc); 519 } else { 520 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc); 521 } 522 if (offset == ~0) { 523 rp->cnt_lost++; 524 spin_unlock_irqrestore(&rp->b_lock, flags); 525 return; 526 } 527 528 ep = MON_OFF2HDR(rp, offset); 529 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; 530 531 /* 532 * Fill the allocated area. 533 */ 534 memset(ep, 0, PKT_SIZE); 535 ep->type = ev_type; 536 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)]; 537 ep->epnum = dir | usb_endpoint_num(epd); 538 ep->devnum = urb->dev->devnum; 539 ep->busnum = urb->dev->bus->busnum; 540 ep->id = (unsigned long) urb; 541 ep->ts_sec = ts.tv_sec; 542 ep->ts_usec = ts.tv_usec; 543 ep->status = status; 544 ep->len_urb = urb_length; 545 ep->len_cap = length + lendesc; 546 ep->xfer_flags = urb->transfer_flags; 547 548 if (usb_endpoint_xfer_int(epd)) { 549 ep->interval = urb->interval; 550 } else if (usb_endpoint_xfer_isoc(epd)) { 551 ep->interval = urb->interval; 552 ep->start_frame = urb->start_frame; 553 ep->s.iso.error_count = urb->error_count; 554 ep->s.iso.numdesc = urb->number_of_packets; 555 } 556 557 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') { 558 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type); 559 } else { 560 ep->flag_setup = '-'; 561 } 562 563 if (ndesc != 0) { 564 ep->ndesc = ndesc; 565 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc); 566 if ((offset += lendesc) >= rp->b_size) 567 offset -= rp->b_size; 568 } 569 570 if (length != 0) { 571 length = mon_bin_get_data(rp, offset, urb, length, 572 &ep->flag_data); 573 if (length > 0) { 574 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 575 ep->len_cap -= length; 576 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 577 mon_buff_area_shrink(rp, delta); 578 } 579 } else { 580 ep->flag_data = data_tag; 581 } 582 583 spin_unlock_irqrestore(&rp->b_lock, flags); 584 585 wake_up(&rp->b_wait); 586 } 587 588 static void mon_bin_submit(void *data, struct urb *urb) 589 { 590 struct mon_reader_bin *rp = data; 591 mon_bin_event(rp, urb, 'S', -EINPROGRESS); 592 } 593 594 static void mon_bin_complete(void *data, struct urb *urb, int status) 595 { 596 struct mon_reader_bin *rp = data; 597 mon_bin_event(rp, urb, 'C', status); 598 } 599 600 static void mon_bin_error(void *data, struct urb *urb, int error) 601 { 602 struct mon_reader_bin *rp = data; 603 struct timeval ts; 604 unsigned long flags; 605 unsigned int offset; 606 struct mon_bin_hdr *ep; 607 608 do_gettimeofday(&ts); 609 610 spin_lock_irqsave(&rp->b_lock, flags); 611 612 offset = mon_buff_area_alloc(rp, PKT_SIZE); 613 if (offset == ~0) { 614 /* Not incrementing cnt_lost. Just because. */ 615 spin_unlock_irqrestore(&rp->b_lock, flags); 616 return; 617 } 618 619 ep = MON_OFF2HDR(rp, offset); 620 621 memset(ep, 0, PKT_SIZE); 622 ep->type = 'E'; 623 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)]; 624 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0; 625 ep->epnum |= usb_endpoint_num(&urb->ep->desc); 626 ep->devnum = urb->dev->devnum; 627 ep->busnum = urb->dev->bus->busnum; 628 ep->id = (unsigned long) urb; 629 ep->ts_sec = ts.tv_sec; 630 ep->ts_usec = ts.tv_usec; 631 ep->status = error; 632 633 ep->flag_setup = '-'; 634 ep->flag_data = 'E'; 635 636 spin_unlock_irqrestore(&rp->b_lock, flags); 637 638 wake_up(&rp->b_wait); 639 } 640 641 static int mon_bin_open(struct inode *inode, struct file *file) 642 { 643 struct mon_bus *mbus; 644 struct mon_reader_bin *rp; 645 size_t size; 646 int rc; 647 648 mutex_lock(&mon_lock); 649 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) { 650 mutex_unlock(&mon_lock); 651 return -ENODEV; 652 } 653 if (mbus != &mon_bus0 && mbus->u_bus == NULL) { 654 printk(KERN_ERR TAG ": consistency error on open\n"); 655 mutex_unlock(&mon_lock); 656 return -ENODEV; 657 } 658 659 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); 660 if (rp == NULL) { 661 rc = -ENOMEM; 662 goto err_alloc; 663 } 664 spin_lock_init(&rp->b_lock); 665 init_waitqueue_head(&rp->b_wait); 666 mutex_init(&rp->fetch_lock); 667 rp->b_size = BUFF_DFL; 668 669 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); 670 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { 671 rc = -ENOMEM; 672 goto err_allocvec; 673 } 674 675 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) 676 goto err_allocbuff; 677 678 rp->r.m_bus = mbus; 679 rp->r.r_data = rp; 680 rp->r.rnf_submit = mon_bin_submit; 681 rp->r.rnf_error = mon_bin_error; 682 rp->r.rnf_complete = mon_bin_complete; 683 684 mon_reader_add(mbus, &rp->r); 685 686 file->private_data = rp; 687 mutex_unlock(&mon_lock); 688 return 0; 689 690 err_allocbuff: 691 kfree(rp->b_vec); 692 err_allocvec: 693 kfree(rp); 694 err_alloc: 695 mutex_unlock(&mon_lock); 696 return rc; 697 } 698 699 /* 700 * Extract an event from buffer and copy it to user space. 701 * Wait if there is no event ready. 702 * Returns zero or error. 703 */ 704 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, 705 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes, 706 void __user *data, unsigned int nbytes) 707 { 708 unsigned long flags; 709 struct mon_bin_hdr *ep; 710 size_t step_len; 711 unsigned int offset; 712 int rc; 713 714 mutex_lock(&rp->fetch_lock); 715 716 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 717 mutex_unlock(&rp->fetch_lock); 718 return rc; 719 } 720 721 ep = MON_OFF2HDR(rp, rp->b_out); 722 723 if (copy_to_user(hdr, ep, hdrbytes)) { 724 mutex_unlock(&rp->fetch_lock); 725 return -EFAULT; 726 } 727 728 step_len = min(ep->len_cap, nbytes); 729 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; 730 731 if (copy_from_buf(rp, offset, data, step_len)) { 732 mutex_unlock(&rp->fetch_lock); 733 return -EFAULT; 734 } 735 736 spin_lock_irqsave(&rp->b_lock, flags); 737 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 738 spin_unlock_irqrestore(&rp->b_lock, flags); 739 rp->b_read = 0; 740 741 mutex_unlock(&rp->fetch_lock); 742 return 0; 743 } 744 745 static int mon_bin_release(struct inode *inode, struct file *file) 746 { 747 struct mon_reader_bin *rp = file->private_data; 748 struct mon_bus* mbus = rp->r.m_bus; 749 750 mutex_lock(&mon_lock); 751 752 if (mbus->nreaders <= 0) { 753 printk(KERN_ERR TAG ": consistency error on close\n"); 754 mutex_unlock(&mon_lock); 755 return 0; 756 } 757 mon_reader_del(mbus, &rp->r); 758 759 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 760 kfree(rp->b_vec); 761 kfree(rp); 762 763 mutex_unlock(&mon_lock); 764 return 0; 765 } 766 767 static ssize_t mon_bin_read(struct file *file, char __user *buf, 768 size_t nbytes, loff_t *ppos) 769 { 770 struct mon_reader_bin *rp = file->private_data; 771 unsigned int hdrbytes = PKT_SZ_API0; 772 unsigned long flags; 773 struct mon_bin_hdr *ep; 774 unsigned int offset; 775 size_t step_len; 776 char *ptr; 777 ssize_t done = 0; 778 int rc; 779 780 mutex_lock(&rp->fetch_lock); 781 782 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 783 mutex_unlock(&rp->fetch_lock); 784 return rc; 785 } 786 787 ep = MON_OFF2HDR(rp, rp->b_out); 788 789 if (rp->b_read < hdrbytes) { 790 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read)); 791 ptr = ((char *)ep) + rp->b_read; 792 if (step_len && copy_to_user(buf, ptr, step_len)) { 793 mutex_unlock(&rp->fetch_lock); 794 return -EFAULT; 795 } 796 nbytes -= step_len; 797 buf += step_len; 798 rp->b_read += step_len; 799 done += step_len; 800 } 801 802 if (rp->b_read >= hdrbytes) { 803 step_len = ep->len_cap; 804 step_len -= rp->b_read - hdrbytes; 805 if (step_len > nbytes) 806 step_len = nbytes; 807 offset = rp->b_out + PKT_SIZE; 808 offset += rp->b_read - hdrbytes; 809 if (offset >= rp->b_size) 810 offset -= rp->b_size; 811 if (copy_from_buf(rp, offset, buf, step_len)) { 812 mutex_unlock(&rp->fetch_lock); 813 return -EFAULT; 814 } 815 nbytes -= step_len; 816 buf += step_len; 817 rp->b_read += step_len; 818 done += step_len; 819 } 820 821 /* 822 * Check if whole packet was read, and if so, jump to the next one. 823 */ 824 if (rp->b_read >= hdrbytes + ep->len_cap) { 825 spin_lock_irqsave(&rp->b_lock, flags); 826 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 827 spin_unlock_irqrestore(&rp->b_lock, flags); 828 rp->b_read = 0; 829 } 830 831 mutex_unlock(&rp->fetch_lock); 832 return done; 833 } 834 835 /* 836 * Remove at most nevents from chunked buffer. 837 * Returns the number of removed events. 838 */ 839 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) 840 { 841 unsigned long flags; 842 struct mon_bin_hdr *ep; 843 int i; 844 845 mutex_lock(&rp->fetch_lock); 846 spin_lock_irqsave(&rp->b_lock, flags); 847 for (i = 0; i < nevents; ++i) { 848 if (MON_RING_EMPTY(rp)) 849 break; 850 851 ep = MON_OFF2HDR(rp, rp->b_out); 852 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 853 } 854 spin_unlock_irqrestore(&rp->b_lock, flags); 855 rp->b_read = 0; 856 mutex_unlock(&rp->fetch_lock); 857 return i; 858 } 859 860 /* 861 * Fetch at most max event offsets into the buffer and put them into vec. 862 * The events are usually freed later with mon_bin_flush. 863 * Return the effective number of events fetched. 864 */ 865 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, 866 u32 __user *vec, unsigned int max) 867 { 868 unsigned int cur_out; 869 unsigned int bytes, avail; 870 unsigned int size; 871 unsigned int nevents; 872 struct mon_bin_hdr *ep; 873 unsigned long flags; 874 int rc; 875 876 mutex_lock(&rp->fetch_lock); 877 878 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 879 mutex_unlock(&rp->fetch_lock); 880 return rc; 881 } 882 883 spin_lock_irqsave(&rp->b_lock, flags); 884 avail = rp->b_cnt; 885 spin_unlock_irqrestore(&rp->b_lock, flags); 886 887 cur_out = rp->b_out; 888 nevents = 0; 889 bytes = 0; 890 while (bytes < avail) { 891 if (nevents >= max) 892 break; 893 894 ep = MON_OFF2HDR(rp, cur_out); 895 if (put_user(cur_out, &vec[nevents])) { 896 mutex_unlock(&rp->fetch_lock); 897 return -EFAULT; 898 } 899 900 nevents++; 901 size = ep->len_cap + PKT_SIZE; 902 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 903 if ((cur_out += size) >= rp->b_size) 904 cur_out -= rp->b_size; 905 bytes += size; 906 } 907 908 mutex_unlock(&rp->fetch_lock); 909 return nevents; 910 } 911 912 /* 913 * Count events. This is almost the same as the above mon_bin_fetch, 914 * only we do not store offsets into user vector, and we have no limit. 915 */ 916 static int mon_bin_queued(struct mon_reader_bin *rp) 917 { 918 unsigned int cur_out; 919 unsigned int bytes, avail; 920 unsigned int size; 921 unsigned int nevents; 922 struct mon_bin_hdr *ep; 923 unsigned long flags; 924 925 mutex_lock(&rp->fetch_lock); 926 927 spin_lock_irqsave(&rp->b_lock, flags); 928 avail = rp->b_cnt; 929 spin_unlock_irqrestore(&rp->b_lock, flags); 930 931 cur_out = rp->b_out; 932 nevents = 0; 933 bytes = 0; 934 while (bytes < avail) { 935 ep = MON_OFF2HDR(rp, cur_out); 936 937 nevents++; 938 size = ep->len_cap + PKT_SIZE; 939 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 940 if ((cur_out += size) >= rp->b_size) 941 cur_out -= rp->b_size; 942 bytes += size; 943 } 944 945 mutex_unlock(&rp->fetch_lock); 946 return nevents; 947 } 948 949 /* 950 */ 951 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 952 { 953 struct mon_reader_bin *rp = file->private_data; 954 // struct mon_bus* mbus = rp->r.m_bus; 955 int ret = 0; 956 struct mon_bin_hdr *ep; 957 unsigned long flags; 958 959 switch (cmd) { 960 961 case MON_IOCQ_URB_LEN: 962 /* 963 * N.B. This only returns the size of data, without the header. 964 */ 965 spin_lock_irqsave(&rp->b_lock, flags); 966 if (!MON_RING_EMPTY(rp)) { 967 ep = MON_OFF2HDR(rp, rp->b_out); 968 ret = ep->len_cap; 969 } 970 spin_unlock_irqrestore(&rp->b_lock, flags); 971 break; 972 973 case MON_IOCQ_RING_SIZE: 974 ret = rp->b_size; 975 break; 976 977 case MON_IOCT_RING_SIZE: 978 /* 979 * Changing the buffer size will flush it's contents; the new 980 * buffer is allocated before releasing the old one to be sure 981 * the device will stay functional also in case of memory 982 * pressure. 983 */ 984 { 985 int size; 986 struct mon_pgmap *vec; 987 988 if (arg < BUFF_MIN || arg > BUFF_MAX) 989 return -EINVAL; 990 991 size = CHUNK_ALIGN(arg); 992 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE), 993 GFP_KERNEL)) == NULL) { 994 ret = -ENOMEM; 995 break; 996 } 997 998 ret = mon_alloc_buff(vec, size/CHUNK_SIZE); 999 if (ret < 0) { 1000 kfree(vec); 1001 break; 1002 } 1003 1004 mutex_lock(&rp->fetch_lock); 1005 spin_lock_irqsave(&rp->b_lock, flags); 1006 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 1007 kfree(rp->b_vec); 1008 rp->b_vec = vec; 1009 rp->b_size = size; 1010 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; 1011 rp->cnt_lost = 0; 1012 spin_unlock_irqrestore(&rp->b_lock, flags); 1013 mutex_unlock(&rp->fetch_lock); 1014 } 1015 break; 1016 1017 case MON_IOCH_MFLUSH: 1018 ret = mon_bin_flush(rp, arg); 1019 break; 1020 1021 case MON_IOCX_GET: 1022 case MON_IOCX_GETX: 1023 { 1024 struct mon_bin_get getb; 1025 1026 if (copy_from_user(&getb, (void __user *)arg, 1027 sizeof(struct mon_bin_get))) 1028 return -EFAULT; 1029 1030 if (getb.alloc > 0x10000000) /* Want to cast to u32 */ 1031 return -EINVAL; 1032 ret = mon_bin_get_event(file, rp, getb.hdr, 1033 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1, 1034 getb.data, (unsigned int)getb.alloc); 1035 } 1036 break; 1037 1038 case MON_IOCX_MFETCH: 1039 { 1040 struct mon_bin_mfetch mfetch; 1041 struct mon_bin_mfetch __user *uptr; 1042 1043 uptr = (struct mon_bin_mfetch __user *)arg; 1044 1045 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1046 return -EFAULT; 1047 1048 if (mfetch.nflush) { 1049 ret = mon_bin_flush(rp, mfetch.nflush); 1050 if (ret < 0) 1051 return ret; 1052 if (put_user(ret, &uptr->nflush)) 1053 return -EFAULT; 1054 } 1055 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); 1056 if (ret < 0) 1057 return ret; 1058 if (put_user(ret, &uptr->nfetch)) 1059 return -EFAULT; 1060 ret = 0; 1061 } 1062 break; 1063 1064 case MON_IOCG_STATS: { 1065 struct mon_bin_stats __user *sp; 1066 unsigned int nevents; 1067 unsigned int ndropped; 1068 1069 spin_lock_irqsave(&rp->b_lock, flags); 1070 ndropped = rp->cnt_lost; 1071 rp->cnt_lost = 0; 1072 spin_unlock_irqrestore(&rp->b_lock, flags); 1073 nevents = mon_bin_queued(rp); 1074 1075 sp = (struct mon_bin_stats __user *)arg; 1076 if (put_user(rp->cnt_lost, &sp->dropped)) 1077 return -EFAULT; 1078 if (put_user(nevents, &sp->queued)) 1079 return -EFAULT; 1080 1081 } 1082 break; 1083 1084 default: 1085 return -ENOTTY; 1086 } 1087 1088 return ret; 1089 } 1090 1091 #ifdef CONFIG_COMPAT 1092 static long mon_bin_compat_ioctl(struct file *file, 1093 unsigned int cmd, unsigned long arg) 1094 { 1095 struct mon_reader_bin *rp = file->private_data; 1096 int ret; 1097 1098 switch (cmd) { 1099 1100 case MON_IOCX_GET32: 1101 case MON_IOCX_GETX32: 1102 { 1103 struct mon_bin_get32 getb; 1104 1105 if (copy_from_user(&getb, (void __user *)arg, 1106 sizeof(struct mon_bin_get32))) 1107 return -EFAULT; 1108 1109 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32), 1110 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1, 1111 compat_ptr(getb.data32), getb.alloc32); 1112 if (ret < 0) 1113 return ret; 1114 } 1115 return 0; 1116 1117 case MON_IOCX_MFETCH32: 1118 { 1119 struct mon_bin_mfetch32 mfetch; 1120 struct mon_bin_mfetch32 __user *uptr; 1121 1122 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); 1123 1124 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1125 return -EFAULT; 1126 1127 if (mfetch.nflush32) { 1128 ret = mon_bin_flush(rp, mfetch.nflush32); 1129 if (ret < 0) 1130 return ret; 1131 if (put_user(ret, &uptr->nflush32)) 1132 return -EFAULT; 1133 } 1134 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), 1135 mfetch.nfetch32); 1136 if (ret < 0) 1137 return ret; 1138 if (put_user(ret, &uptr->nfetch32)) 1139 return -EFAULT; 1140 } 1141 return 0; 1142 1143 case MON_IOCG_STATS: 1144 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 1145 1146 case MON_IOCQ_URB_LEN: 1147 case MON_IOCQ_RING_SIZE: 1148 case MON_IOCT_RING_SIZE: 1149 case MON_IOCH_MFLUSH: 1150 return mon_bin_ioctl(file, cmd, arg); 1151 1152 default: 1153 ; 1154 } 1155 return -ENOTTY; 1156 } 1157 #endif /* CONFIG_COMPAT */ 1158 1159 static unsigned int 1160 mon_bin_poll(struct file *file, struct poll_table_struct *wait) 1161 { 1162 struct mon_reader_bin *rp = file->private_data; 1163 unsigned int mask = 0; 1164 unsigned long flags; 1165 1166 if (file->f_mode & FMODE_READ) 1167 poll_wait(file, &rp->b_wait, wait); 1168 1169 spin_lock_irqsave(&rp->b_lock, flags); 1170 if (!MON_RING_EMPTY(rp)) 1171 mask |= POLLIN | POLLRDNORM; /* readable */ 1172 spin_unlock_irqrestore(&rp->b_lock, flags); 1173 return mask; 1174 } 1175 1176 /* 1177 * open and close: just keep track of how many times the device is 1178 * mapped, to use the proper memory allocation function. 1179 */ 1180 static void mon_bin_vma_open(struct vm_area_struct *vma) 1181 { 1182 struct mon_reader_bin *rp = vma->vm_private_data; 1183 rp->mmap_active++; 1184 } 1185 1186 static void mon_bin_vma_close(struct vm_area_struct *vma) 1187 { 1188 struct mon_reader_bin *rp = vma->vm_private_data; 1189 rp->mmap_active--; 1190 } 1191 1192 /* 1193 * Map ring pages to user space. 1194 */ 1195 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1196 { 1197 struct mon_reader_bin *rp = vma->vm_private_data; 1198 unsigned long offset, chunk_idx; 1199 struct page *pageptr; 1200 1201 offset = vmf->pgoff << PAGE_SHIFT; 1202 if (offset >= rp->b_size) 1203 return VM_FAULT_SIGBUS; 1204 chunk_idx = offset / CHUNK_SIZE; 1205 pageptr = rp->b_vec[chunk_idx].pg; 1206 get_page(pageptr); 1207 vmf->page = pageptr; 1208 return 0; 1209 } 1210 1211 static const struct vm_operations_struct mon_bin_vm_ops = { 1212 .open = mon_bin_vma_open, 1213 .close = mon_bin_vma_close, 1214 .fault = mon_bin_vma_fault, 1215 }; 1216 1217 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) 1218 { 1219 /* don't do anything here: "fault" will set up page table entries */ 1220 vma->vm_ops = &mon_bin_vm_ops; 1221 vma->vm_flags |= VM_RESERVED; 1222 vma->vm_private_data = filp->private_data; 1223 mon_bin_vma_open(vma); 1224 return 0; 1225 } 1226 1227 static const struct file_operations mon_fops_binary = { 1228 .owner = THIS_MODULE, 1229 .open = mon_bin_open, 1230 .llseek = no_llseek, 1231 .read = mon_bin_read, 1232 /* .write = mon_text_write, */ 1233 .poll = mon_bin_poll, 1234 .unlocked_ioctl = mon_bin_ioctl, 1235 #ifdef CONFIG_COMPAT 1236 .compat_ioctl = mon_bin_compat_ioctl, 1237 #endif 1238 .release = mon_bin_release, 1239 .mmap = mon_bin_mmap, 1240 }; 1241 1242 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) 1243 { 1244 DECLARE_WAITQUEUE(waita, current); 1245 unsigned long flags; 1246 1247 add_wait_queue(&rp->b_wait, &waita); 1248 set_current_state(TASK_INTERRUPTIBLE); 1249 1250 spin_lock_irqsave(&rp->b_lock, flags); 1251 while (MON_RING_EMPTY(rp)) { 1252 spin_unlock_irqrestore(&rp->b_lock, flags); 1253 1254 if (file->f_flags & O_NONBLOCK) { 1255 set_current_state(TASK_RUNNING); 1256 remove_wait_queue(&rp->b_wait, &waita); 1257 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ 1258 } 1259 schedule(); 1260 if (signal_pending(current)) { 1261 remove_wait_queue(&rp->b_wait, &waita); 1262 return -EINTR; 1263 } 1264 set_current_state(TASK_INTERRUPTIBLE); 1265 1266 spin_lock_irqsave(&rp->b_lock, flags); 1267 } 1268 spin_unlock_irqrestore(&rp->b_lock, flags); 1269 1270 set_current_state(TASK_RUNNING); 1271 remove_wait_queue(&rp->b_wait, &waita); 1272 return 0; 1273 } 1274 1275 static int mon_alloc_buff(struct mon_pgmap *map, int npages) 1276 { 1277 int n; 1278 unsigned long vaddr; 1279 1280 for (n = 0; n < npages; n++) { 1281 vaddr = get_zeroed_page(GFP_KERNEL); 1282 if (vaddr == 0) { 1283 while (n-- != 0) 1284 free_page((unsigned long) map[n].ptr); 1285 return -ENOMEM; 1286 } 1287 map[n].ptr = (unsigned char *) vaddr; 1288 map[n].pg = virt_to_page((void *) vaddr); 1289 } 1290 return 0; 1291 } 1292 1293 static void mon_free_buff(struct mon_pgmap *map, int npages) 1294 { 1295 int n; 1296 1297 for (n = 0; n < npages; n++) 1298 free_page((unsigned long) map[n].ptr); 1299 } 1300 1301 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) 1302 { 1303 struct device *dev; 1304 unsigned minor = ubus? ubus->busnum: 0; 1305 1306 if (minor >= MON_BIN_MAX_MINOR) 1307 return 0; 1308 1309 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL, 1310 MKDEV(MAJOR(mon_bin_dev0), minor), NULL, 1311 "usbmon%d", minor); 1312 if (IS_ERR(dev)) 1313 return 0; 1314 1315 mbus->classdev = dev; 1316 return 1; 1317 } 1318 1319 void mon_bin_del(struct mon_bus *mbus) 1320 { 1321 device_destroy(mon_bin_class, mbus->classdev->devt); 1322 } 1323 1324 int __init mon_bin_init(void) 1325 { 1326 int rc; 1327 1328 mon_bin_class = class_create(THIS_MODULE, "usbmon"); 1329 if (IS_ERR(mon_bin_class)) { 1330 rc = PTR_ERR(mon_bin_class); 1331 goto err_class; 1332 } 1333 1334 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); 1335 if (rc < 0) 1336 goto err_dev; 1337 1338 cdev_init(&mon_bin_cdev, &mon_fops_binary); 1339 mon_bin_cdev.owner = THIS_MODULE; 1340 1341 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); 1342 if (rc < 0) 1343 goto err_add; 1344 1345 return 0; 1346 1347 err_add: 1348 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1349 err_dev: 1350 class_destroy(mon_bin_class); 1351 err_class: 1352 return rc; 1353 } 1354 1355 void mon_bin_exit(void) 1356 { 1357 cdev_del(&mon_bin_cdev); 1358 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1359 class_destroy(mon_bin_class); 1360 } 1361