xref: /openbmc/linux/drivers/usb/mon/mon_bin.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * The USB Monitor, inspired by Dave Harding's USBMon.
3  *
4  * This is a binary format reader.
5  *
6  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/scatterlist.h>
19 #include <linux/slab.h>
20 
21 #include <asm/uaccess.h>
22 
23 #include "usb_mon.h"
24 
25 /*
26  * Defined by USB 2.0 clause 9.3, table 9.2.
27  */
28 #define SETUP_LEN  8
29 
30 /* ioctl macros */
31 #define MON_IOC_MAGIC 0x92
32 
33 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
34 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
35 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
36 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
37 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
38 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
39 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
40 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
41 /* #9 was MON_IOCT_SETAPI */
42 #define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
43 
44 #ifdef CONFIG_COMPAT
45 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
46 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
47 #define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
48 #endif
49 
50 /*
51  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
52  * But it's all right. Just use a simple way to make sure the chunk is never
53  * smaller than a page.
54  *
55  * N.B. An application does not know our chunk size.
56  *
57  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
58  * page-sized chunks for the time being.
59  */
60 #define CHUNK_SIZE   PAGE_SIZE
61 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
62 
63 /*
64  * The magic limit was calculated so that it allows the monitoring
65  * application to pick data once in two ticks. This way, another application,
66  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
67  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
68  * enormous overhead built into the bus protocol, so we need about 1000 KB.
69  *
70  * This is still too much for most cases, where we just snoop a few
71  * descriptor fetches for enumeration. So, the default is a "reasonable"
72  * amount for systems with HZ=250 and incomplete bus saturation.
73  *
74  * XXX What about multi-megabyte URBs which take minutes to transfer?
75  */
76 #define BUFF_MAX  CHUNK_ALIGN(1200*1024)
77 #define BUFF_DFL   CHUNK_ALIGN(300*1024)
78 #define BUFF_MIN     CHUNK_ALIGN(8*1024)
79 
80 /*
81  * The per-event API header (2 per URB).
82  *
83  * This structure is seen in userland as defined by the documentation.
84  */
85 struct mon_bin_hdr {
86 	u64 id;			/* URB ID - from submission to callback */
87 	unsigned char type;	/* Same as in text API; extensible. */
88 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
89 	unsigned char epnum;	/* Endpoint number and transfer direction */
90 	unsigned char devnum;	/* Device address */
91 	unsigned short busnum;	/* Bus number */
92 	char flag_setup;
93 	char flag_data;
94 	s64 ts_sec;		/* gettimeofday */
95 	s32 ts_usec;		/* gettimeofday */
96 	int status;
97 	unsigned int len_urb;	/* Length of data (submitted or actual) */
98 	unsigned int len_cap;	/* Delivered length */
99 	union {
100 		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
101 		struct iso_rec {
102 			int error_count;
103 			int numdesc;
104 		} iso;
105 	} s;
106 	int interval;
107 	int start_frame;
108 	unsigned int xfer_flags;
109 	unsigned int ndesc;	/* Actual number of ISO descriptors */
110 };
111 
112 /*
113  * ISO vector, packed into the head of data stream.
114  * This has to take 16 bytes to make sure that the end of buffer
115  * wrap is not happening in the middle of a descriptor.
116  */
117 struct mon_bin_isodesc {
118 	int          iso_status;
119 	unsigned int iso_off;
120 	unsigned int iso_len;
121 	u32 _pad;
122 };
123 
124 /* per file statistic */
125 struct mon_bin_stats {
126 	u32 queued;
127 	u32 dropped;
128 };
129 
130 struct mon_bin_get {
131 	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
132 	void __user *data;
133 	size_t alloc;		/* Length of data (can be zero) */
134 };
135 
136 struct mon_bin_mfetch {
137 	u32 __user *offvec;	/* Vector of events fetched */
138 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
139 	u32 nflush;		/* Number of events to flush */
140 };
141 
142 #ifdef CONFIG_COMPAT
143 struct mon_bin_get32 {
144 	u32 hdr32;
145 	u32 data32;
146 	u32 alloc32;
147 };
148 
149 struct mon_bin_mfetch32 {
150         u32 offvec32;
151         u32 nfetch32;
152         u32 nflush32;
153 };
154 #endif
155 
156 /* Having these two values same prevents wrapping of the mon_bin_hdr */
157 #define PKT_ALIGN   64
158 #define PKT_SIZE    64
159 
160 #define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
161 #define PKT_SZ_API1 64	/* API 1 size: extra fields */
162 
163 #define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
164 
165 /* max number of USB bus supported */
166 #define MON_BIN_MAX_MINOR 128
167 
168 /*
169  * The buffer: map of used pages.
170  */
171 struct mon_pgmap {
172 	struct page *pg;
173 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
174 };
175 
176 /*
177  * This gets associated with an open file struct.
178  */
179 struct mon_reader_bin {
180 	/* The buffer: one per open. */
181 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
182 	unsigned int b_size;		/* Current size of the buffer - bytes */
183 	unsigned int b_cnt;		/* Bytes used */
184 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
185 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
186 	struct mon_pgmap *b_vec;	/* The map array */
187 	wait_queue_head_t b_wait;	/* Wait for data here */
188 
189 	struct mutex fetch_lock;	/* Protect b_read, b_out */
190 	int mmap_active;
191 
192 	/* A list of these is needed for "bus 0". Some time later. */
193 	struct mon_reader r;
194 
195 	/* Stats */
196 	unsigned int cnt_lost;
197 };
198 
199 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
200     unsigned int offset)
201 {
202 	return (struct mon_bin_hdr *)
203 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
204 }
205 
206 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
207 
208 static unsigned char xfer_to_pipe[4] = {
209 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
210 };
211 
212 static struct class *mon_bin_class;
213 static dev_t mon_bin_dev0;
214 static struct cdev mon_bin_cdev;
215 
216 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
217     unsigned int offset, unsigned int size);
218 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
219 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
220 static void mon_free_buff(struct mon_pgmap *map, int npages);
221 
222 /*
223  * This is a "chunked memcpy". It does not manipulate any counters.
224  */
225 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
226     unsigned int off, const unsigned char *from, unsigned int length)
227 {
228 	unsigned int step_len;
229 	unsigned char *buf;
230 	unsigned int in_page;
231 
232 	while (length) {
233 		/*
234 		 * Determine step_len.
235 		 */
236 		step_len = length;
237 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
238 		if (in_page < step_len)
239 			step_len = in_page;
240 
241 		/*
242 		 * Copy data and advance pointers.
243 		 */
244 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
245 		memcpy(buf, from, step_len);
246 		if ((off += step_len) >= this->b_size) off = 0;
247 		from += step_len;
248 		length -= step_len;
249 	}
250 	return off;
251 }
252 
253 /*
254  * This is a little worse than the above because it's "chunked copy_to_user".
255  * The return value is an error code, not an offset.
256  */
257 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
258     char __user *to, int length)
259 {
260 	unsigned int step_len;
261 	unsigned char *buf;
262 	unsigned int in_page;
263 
264 	while (length) {
265 		/*
266 		 * Determine step_len.
267 		 */
268 		step_len = length;
269 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
270 		if (in_page < step_len)
271 			step_len = in_page;
272 
273 		/*
274 		 * Copy data and advance pointers.
275 		 */
276 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
277 		if (copy_to_user(to, buf, step_len))
278 			return -EINVAL;
279 		if ((off += step_len) >= this->b_size) off = 0;
280 		to += step_len;
281 		length -= step_len;
282 	}
283 	return 0;
284 }
285 
286 /*
287  * Allocate an (aligned) area in the buffer.
288  * This is called under b_lock.
289  * Returns ~0 on failure.
290  */
291 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
292     unsigned int size)
293 {
294 	unsigned int offset;
295 
296 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
297 	if (rp->b_cnt + size > rp->b_size)
298 		return ~0;
299 	offset = rp->b_in;
300 	rp->b_cnt += size;
301 	if ((rp->b_in += size) >= rp->b_size)
302 		rp->b_in -= rp->b_size;
303 	return offset;
304 }
305 
306 /*
307  * This is the same thing as mon_buff_area_alloc, only it does not allow
308  * buffers to wrap. This is needed by applications which pass references
309  * into mmap-ed buffers up their stacks (libpcap can do that).
310  *
311  * Currently, we always have the header stuck with the data, although
312  * it is not strictly speaking necessary.
313  *
314  * When a buffer would wrap, we place a filler packet to mark the space.
315  */
316 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
317     unsigned int size)
318 {
319 	unsigned int offset;
320 	unsigned int fill_size;
321 
322 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
323 	if (rp->b_cnt + size > rp->b_size)
324 		return ~0;
325 	if (rp->b_in + size > rp->b_size) {
326 		/*
327 		 * This would wrap. Find if we still have space after
328 		 * skipping to the end of the buffer. If we do, place
329 		 * a filler packet and allocate a new packet.
330 		 */
331 		fill_size = rp->b_size - rp->b_in;
332 		if (rp->b_cnt + size + fill_size > rp->b_size)
333 			return ~0;
334 		mon_buff_area_fill(rp, rp->b_in, fill_size);
335 
336 		offset = 0;
337 		rp->b_in = size;
338 		rp->b_cnt += size + fill_size;
339 	} else if (rp->b_in + size == rp->b_size) {
340 		offset = rp->b_in;
341 		rp->b_in = 0;
342 		rp->b_cnt += size;
343 	} else {
344 		offset = rp->b_in;
345 		rp->b_in += size;
346 		rp->b_cnt += size;
347 	}
348 	return offset;
349 }
350 
351 /*
352  * Return a few (kilo-)bytes to the head of the buffer.
353  * This is used if a data fetch fails.
354  */
355 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
356 {
357 
358 	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
359 	rp->b_cnt -= size;
360 	if (rp->b_in < size)
361 		rp->b_in += rp->b_size;
362 	rp->b_in -= size;
363 }
364 
365 /*
366  * This has to be called under both b_lock and fetch_lock, because
367  * it accesses both b_cnt and b_out.
368  */
369 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
370 {
371 
372 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
373 	rp->b_cnt -= size;
374 	if ((rp->b_out += size) >= rp->b_size)
375 		rp->b_out -= rp->b_size;
376 }
377 
378 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
379     unsigned int offset, unsigned int size)
380 {
381 	struct mon_bin_hdr *ep;
382 
383 	ep = MON_OFF2HDR(rp, offset);
384 	memset(ep, 0, PKT_SIZE);
385 	ep->type = '@';
386 	ep->len_cap = size - PKT_SIZE;
387 }
388 
389 static inline char mon_bin_get_setup(unsigned char *setupb,
390     const struct urb *urb, char ev_type)
391 {
392 
393 	if (urb->setup_packet == NULL)
394 		return 'Z';
395 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
396 	return 0;
397 }
398 
399 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
400     unsigned int offset, struct urb *urb, unsigned int length,
401     char *flag)
402 {
403 	int i;
404 	struct scatterlist *sg;
405 	unsigned int this_len;
406 
407 	*flag = 0;
408 	if (urb->num_sgs == 0) {
409 		if (urb->transfer_buffer == NULL) {
410 			*flag = 'Z';
411 			return length;
412 		}
413 		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
414 		length = 0;
415 
416 	} else {
417 		/* If IOMMU coalescing occurred, we cannot trust sg_page */
418 		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
419 			*flag = 'D';
420 			return length;
421 		}
422 
423 		/* Copy up to the first non-addressable segment */
424 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
425 			if (length == 0 || PageHighMem(sg_page(sg)))
426 				break;
427 			this_len = min_t(unsigned int, sg->length, length);
428 			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
429 					this_len);
430 			length -= this_len;
431 		}
432 		if (i == 0)
433 			*flag = 'D';
434 	}
435 
436 	return length;
437 }
438 
439 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
440     unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
441 {
442 	struct mon_bin_isodesc *dp;
443 	struct usb_iso_packet_descriptor *fp;
444 
445 	fp = urb->iso_frame_desc;
446 	while (ndesc-- != 0) {
447 		dp = (struct mon_bin_isodesc *)
448 		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
449 		dp->iso_status = fp->status;
450 		dp->iso_off = fp->offset;
451 		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
452 		dp->_pad = 0;
453 		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
454 			offset = 0;
455 		fp++;
456 	}
457 }
458 
459 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
460     char ev_type, int status)
461 {
462 	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
463 	struct timeval ts;
464 	unsigned long flags;
465 	unsigned int urb_length;
466 	unsigned int offset;
467 	unsigned int length;
468 	unsigned int delta;
469 	unsigned int ndesc, lendesc;
470 	unsigned char dir;
471 	struct mon_bin_hdr *ep;
472 	char data_tag = 0;
473 
474 	do_gettimeofday(&ts);
475 
476 	spin_lock_irqsave(&rp->b_lock, flags);
477 
478 	/*
479 	 * Find the maximum allowable length, then allocate space.
480 	 */
481 	if (usb_endpoint_xfer_isoc(epd)) {
482 		if (urb->number_of_packets < 0) {
483 			ndesc = 0;
484 		} else if (urb->number_of_packets >= ISODESC_MAX) {
485 			ndesc = ISODESC_MAX;
486 		} else {
487 			ndesc = urb->number_of_packets;
488 		}
489 	} else {
490 		ndesc = 0;
491 	}
492 	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
493 
494 	urb_length = (ev_type == 'S') ?
495 	    urb->transfer_buffer_length : urb->actual_length;
496 	length = urb_length;
497 
498 	if (length >= rp->b_size/5)
499 		length = rp->b_size/5;
500 
501 	if (usb_urb_dir_in(urb)) {
502 		if (ev_type == 'S') {
503 			length = 0;
504 			data_tag = '<';
505 		}
506 		/* Cannot rely on endpoint number in case of control ep.0 */
507 		dir = USB_DIR_IN;
508 	} else {
509 		if (ev_type == 'C') {
510 			length = 0;
511 			data_tag = '>';
512 		}
513 		dir = 0;
514 	}
515 
516 	if (rp->mmap_active) {
517 		offset = mon_buff_area_alloc_contiguous(rp,
518 						 length + PKT_SIZE + lendesc);
519 	} else {
520 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
521 	}
522 	if (offset == ~0) {
523 		rp->cnt_lost++;
524 		spin_unlock_irqrestore(&rp->b_lock, flags);
525 		return;
526 	}
527 
528 	ep = MON_OFF2HDR(rp, offset);
529 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
530 
531 	/*
532 	 * Fill the allocated area.
533 	 */
534 	memset(ep, 0, PKT_SIZE);
535 	ep->type = ev_type;
536 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
537 	ep->epnum = dir | usb_endpoint_num(epd);
538 	ep->devnum = urb->dev->devnum;
539 	ep->busnum = urb->dev->bus->busnum;
540 	ep->id = (unsigned long) urb;
541 	ep->ts_sec = ts.tv_sec;
542 	ep->ts_usec = ts.tv_usec;
543 	ep->status = status;
544 	ep->len_urb = urb_length;
545 	ep->len_cap = length + lendesc;
546 	ep->xfer_flags = urb->transfer_flags;
547 
548 	if (usb_endpoint_xfer_int(epd)) {
549 		ep->interval = urb->interval;
550 	} else if (usb_endpoint_xfer_isoc(epd)) {
551 		ep->interval = urb->interval;
552 		ep->start_frame = urb->start_frame;
553 		ep->s.iso.error_count = urb->error_count;
554 		ep->s.iso.numdesc = urb->number_of_packets;
555 	}
556 
557 	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
558 		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
559 	} else {
560 		ep->flag_setup = '-';
561 	}
562 
563 	if (ndesc != 0) {
564 		ep->ndesc = ndesc;
565 		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
566 		if ((offset += lendesc) >= rp->b_size)
567 			offset -= rp->b_size;
568 	}
569 
570 	if (length != 0) {
571 		length = mon_bin_get_data(rp, offset, urb, length,
572 				&ep->flag_data);
573 		if (length > 0) {
574 			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
575 			ep->len_cap -= length;
576 			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
577 			mon_buff_area_shrink(rp, delta);
578 		}
579 	} else {
580 		ep->flag_data = data_tag;
581 	}
582 
583 	spin_unlock_irqrestore(&rp->b_lock, flags);
584 
585 	wake_up(&rp->b_wait);
586 }
587 
588 static void mon_bin_submit(void *data, struct urb *urb)
589 {
590 	struct mon_reader_bin *rp = data;
591 	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
592 }
593 
594 static void mon_bin_complete(void *data, struct urb *urb, int status)
595 {
596 	struct mon_reader_bin *rp = data;
597 	mon_bin_event(rp, urb, 'C', status);
598 }
599 
600 static void mon_bin_error(void *data, struct urb *urb, int error)
601 {
602 	struct mon_reader_bin *rp = data;
603 	struct timeval ts;
604 	unsigned long flags;
605 	unsigned int offset;
606 	struct mon_bin_hdr *ep;
607 
608 	do_gettimeofday(&ts);
609 
610 	spin_lock_irqsave(&rp->b_lock, flags);
611 
612 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
613 	if (offset == ~0) {
614 		/* Not incrementing cnt_lost. Just because. */
615 		spin_unlock_irqrestore(&rp->b_lock, flags);
616 		return;
617 	}
618 
619 	ep = MON_OFF2HDR(rp, offset);
620 
621 	memset(ep, 0, PKT_SIZE);
622 	ep->type = 'E';
623 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
624 	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
625 	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
626 	ep->devnum = urb->dev->devnum;
627 	ep->busnum = urb->dev->bus->busnum;
628 	ep->id = (unsigned long) urb;
629 	ep->ts_sec = ts.tv_sec;
630 	ep->ts_usec = ts.tv_usec;
631 	ep->status = error;
632 
633 	ep->flag_setup = '-';
634 	ep->flag_data = 'E';
635 
636 	spin_unlock_irqrestore(&rp->b_lock, flags);
637 
638 	wake_up(&rp->b_wait);
639 }
640 
641 static int mon_bin_open(struct inode *inode, struct file *file)
642 {
643 	struct mon_bus *mbus;
644 	struct mon_reader_bin *rp;
645 	size_t size;
646 	int rc;
647 
648 	mutex_lock(&mon_lock);
649 	if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
650 		mutex_unlock(&mon_lock);
651 		return -ENODEV;
652 	}
653 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
654 		printk(KERN_ERR TAG ": consistency error on open\n");
655 		mutex_unlock(&mon_lock);
656 		return -ENODEV;
657 	}
658 
659 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
660 	if (rp == NULL) {
661 		rc = -ENOMEM;
662 		goto err_alloc;
663 	}
664 	spin_lock_init(&rp->b_lock);
665 	init_waitqueue_head(&rp->b_wait);
666 	mutex_init(&rp->fetch_lock);
667 	rp->b_size = BUFF_DFL;
668 
669 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
670 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
671 		rc = -ENOMEM;
672 		goto err_allocvec;
673 	}
674 
675 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
676 		goto err_allocbuff;
677 
678 	rp->r.m_bus = mbus;
679 	rp->r.r_data = rp;
680 	rp->r.rnf_submit = mon_bin_submit;
681 	rp->r.rnf_error = mon_bin_error;
682 	rp->r.rnf_complete = mon_bin_complete;
683 
684 	mon_reader_add(mbus, &rp->r);
685 
686 	file->private_data = rp;
687 	mutex_unlock(&mon_lock);
688 	return 0;
689 
690 err_allocbuff:
691 	kfree(rp->b_vec);
692 err_allocvec:
693 	kfree(rp);
694 err_alloc:
695 	mutex_unlock(&mon_lock);
696 	return rc;
697 }
698 
699 /*
700  * Extract an event from buffer and copy it to user space.
701  * Wait if there is no event ready.
702  * Returns zero or error.
703  */
704 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
705     struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
706     void __user *data, unsigned int nbytes)
707 {
708 	unsigned long flags;
709 	struct mon_bin_hdr *ep;
710 	size_t step_len;
711 	unsigned int offset;
712 	int rc;
713 
714 	mutex_lock(&rp->fetch_lock);
715 
716 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
717 		mutex_unlock(&rp->fetch_lock);
718 		return rc;
719 	}
720 
721 	ep = MON_OFF2HDR(rp, rp->b_out);
722 
723 	if (copy_to_user(hdr, ep, hdrbytes)) {
724 		mutex_unlock(&rp->fetch_lock);
725 		return -EFAULT;
726 	}
727 
728 	step_len = min(ep->len_cap, nbytes);
729 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
730 
731 	if (copy_from_buf(rp, offset, data, step_len)) {
732 		mutex_unlock(&rp->fetch_lock);
733 		return -EFAULT;
734 	}
735 
736 	spin_lock_irqsave(&rp->b_lock, flags);
737 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
738 	spin_unlock_irqrestore(&rp->b_lock, flags);
739 	rp->b_read = 0;
740 
741 	mutex_unlock(&rp->fetch_lock);
742 	return 0;
743 }
744 
745 static int mon_bin_release(struct inode *inode, struct file *file)
746 {
747 	struct mon_reader_bin *rp = file->private_data;
748 	struct mon_bus* mbus = rp->r.m_bus;
749 
750 	mutex_lock(&mon_lock);
751 
752 	if (mbus->nreaders <= 0) {
753 		printk(KERN_ERR TAG ": consistency error on close\n");
754 		mutex_unlock(&mon_lock);
755 		return 0;
756 	}
757 	mon_reader_del(mbus, &rp->r);
758 
759 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
760 	kfree(rp->b_vec);
761 	kfree(rp);
762 
763 	mutex_unlock(&mon_lock);
764 	return 0;
765 }
766 
767 static ssize_t mon_bin_read(struct file *file, char __user *buf,
768     size_t nbytes, loff_t *ppos)
769 {
770 	struct mon_reader_bin *rp = file->private_data;
771 	unsigned int hdrbytes = PKT_SZ_API0;
772 	unsigned long flags;
773 	struct mon_bin_hdr *ep;
774 	unsigned int offset;
775 	size_t step_len;
776 	char *ptr;
777 	ssize_t done = 0;
778 	int rc;
779 
780 	mutex_lock(&rp->fetch_lock);
781 
782 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
783 		mutex_unlock(&rp->fetch_lock);
784 		return rc;
785 	}
786 
787 	ep = MON_OFF2HDR(rp, rp->b_out);
788 
789 	if (rp->b_read < hdrbytes) {
790 		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
791 		ptr = ((char *)ep) + rp->b_read;
792 		if (step_len && copy_to_user(buf, ptr, step_len)) {
793 			mutex_unlock(&rp->fetch_lock);
794 			return -EFAULT;
795 		}
796 		nbytes -= step_len;
797 		buf += step_len;
798 		rp->b_read += step_len;
799 		done += step_len;
800 	}
801 
802 	if (rp->b_read >= hdrbytes) {
803 		step_len = ep->len_cap;
804 		step_len -= rp->b_read - hdrbytes;
805 		if (step_len > nbytes)
806 			step_len = nbytes;
807 		offset = rp->b_out + PKT_SIZE;
808 		offset += rp->b_read - hdrbytes;
809 		if (offset >= rp->b_size)
810 			offset -= rp->b_size;
811 		if (copy_from_buf(rp, offset, buf, step_len)) {
812 			mutex_unlock(&rp->fetch_lock);
813 			return -EFAULT;
814 		}
815 		nbytes -= step_len;
816 		buf += step_len;
817 		rp->b_read += step_len;
818 		done += step_len;
819 	}
820 
821 	/*
822 	 * Check if whole packet was read, and if so, jump to the next one.
823 	 */
824 	if (rp->b_read >= hdrbytes + ep->len_cap) {
825 		spin_lock_irqsave(&rp->b_lock, flags);
826 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
827 		spin_unlock_irqrestore(&rp->b_lock, flags);
828 		rp->b_read = 0;
829 	}
830 
831 	mutex_unlock(&rp->fetch_lock);
832 	return done;
833 }
834 
835 /*
836  * Remove at most nevents from chunked buffer.
837  * Returns the number of removed events.
838  */
839 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
840 {
841 	unsigned long flags;
842 	struct mon_bin_hdr *ep;
843 	int i;
844 
845 	mutex_lock(&rp->fetch_lock);
846 	spin_lock_irqsave(&rp->b_lock, flags);
847 	for (i = 0; i < nevents; ++i) {
848 		if (MON_RING_EMPTY(rp))
849 			break;
850 
851 		ep = MON_OFF2HDR(rp, rp->b_out);
852 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
853 	}
854 	spin_unlock_irqrestore(&rp->b_lock, flags);
855 	rp->b_read = 0;
856 	mutex_unlock(&rp->fetch_lock);
857 	return i;
858 }
859 
860 /*
861  * Fetch at most max event offsets into the buffer and put them into vec.
862  * The events are usually freed later with mon_bin_flush.
863  * Return the effective number of events fetched.
864  */
865 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
866     u32 __user *vec, unsigned int max)
867 {
868 	unsigned int cur_out;
869 	unsigned int bytes, avail;
870 	unsigned int size;
871 	unsigned int nevents;
872 	struct mon_bin_hdr *ep;
873 	unsigned long flags;
874 	int rc;
875 
876 	mutex_lock(&rp->fetch_lock);
877 
878 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
879 		mutex_unlock(&rp->fetch_lock);
880 		return rc;
881 	}
882 
883 	spin_lock_irqsave(&rp->b_lock, flags);
884 	avail = rp->b_cnt;
885 	spin_unlock_irqrestore(&rp->b_lock, flags);
886 
887 	cur_out = rp->b_out;
888 	nevents = 0;
889 	bytes = 0;
890 	while (bytes < avail) {
891 		if (nevents >= max)
892 			break;
893 
894 		ep = MON_OFF2HDR(rp, cur_out);
895 		if (put_user(cur_out, &vec[nevents])) {
896 			mutex_unlock(&rp->fetch_lock);
897 			return -EFAULT;
898 		}
899 
900 		nevents++;
901 		size = ep->len_cap + PKT_SIZE;
902 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
903 		if ((cur_out += size) >= rp->b_size)
904 			cur_out -= rp->b_size;
905 		bytes += size;
906 	}
907 
908 	mutex_unlock(&rp->fetch_lock);
909 	return nevents;
910 }
911 
912 /*
913  * Count events. This is almost the same as the above mon_bin_fetch,
914  * only we do not store offsets into user vector, and we have no limit.
915  */
916 static int mon_bin_queued(struct mon_reader_bin *rp)
917 {
918 	unsigned int cur_out;
919 	unsigned int bytes, avail;
920 	unsigned int size;
921 	unsigned int nevents;
922 	struct mon_bin_hdr *ep;
923 	unsigned long flags;
924 
925 	mutex_lock(&rp->fetch_lock);
926 
927 	spin_lock_irqsave(&rp->b_lock, flags);
928 	avail = rp->b_cnt;
929 	spin_unlock_irqrestore(&rp->b_lock, flags);
930 
931 	cur_out = rp->b_out;
932 	nevents = 0;
933 	bytes = 0;
934 	while (bytes < avail) {
935 		ep = MON_OFF2HDR(rp, cur_out);
936 
937 		nevents++;
938 		size = ep->len_cap + PKT_SIZE;
939 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
940 		if ((cur_out += size) >= rp->b_size)
941 			cur_out -= rp->b_size;
942 		bytes += size;
943 	}
944 
945 	mutex_unlock(&rp->fetch_lock);
946 	return nevents;
947 }
948 
949 /*
950  */
951 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
952 {
953 	struct mon_reader_bin *rp = file->private_data;
954 	// struct mon_bus* mbus = rp->r.m_bus;
955 	int ret = 0;
956 	struct mon_bin_hdr *ep;
957 	unsigned long flags;
958 
959 	switch (cmd) {
960 
961 	case MON_IOCQ_URB_LEN:
962 		/*
963 		 * N.B. This only returns the size of data, without the header.
964 		 */
965 		spin_lock_irqsave(&rp->b_lock, flags);
966 		if (!MON_RING_EMPTY(rp)) {
967 			ep = MON_OFF2HDR(rp, rp->b_out);
968 			ret = ep->len_cap;
969 		}
970 		spin_unlock_irqrestore(&rp->b_lock, flags);
971 		break;
972 
973 	case MON_IOCQ_RING_SIZE:
974 		ret = rp->b_size;
975 		break;
976 
977 	case MON_IOCT_RING_SIZE:
978 		/*
979 		 * Changing the buffer size will flush it's contents; the new
980 		 * buffer is allocated before releasing the old one to be sure
981 		 * the device will stay functional also in case of memory
982 		 * pressure.
983 		 */
984 		{
985 		int size;
986 		struct mon_pgmap *vec;
987 
988 		if (arg < BUFF_MIN || arg > BUFF_MAX)
989 			return -EINVAL;
990 
991 		size = CHUNK_ALIGN(arg);
992 		if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
993 		    GFP_KERNEL)) == NULL) {
994 			ret = -ENOMEM;
995 			break;
996 		}
997 
998 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
999 		if (ret < 0) {
1000 			kfree(vec);
1001 			break;
1002 		}
1003 
1004 		mutex_lock(&rp->fetch_lock);
1005 		spin_lock_irqsave(&rp->b_lock, flags);
1006 		mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1007 		kfree(rp->b_vec);
1008 		rp->b_vec  = vec;
1009 		rp->b_size = size;
1010 		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1011 		rp->cnt_lost = 0;
1012 		spin_unlock_irqrestore(&rp->b_lock, flags);
1013 		mutex_unlock(&rp->fetch_lock);
1014 		}
1015 		break;
1016 
1017 	case MON_IOCH_MFLUSH:
1018 		ret = mon_bin_flush(rp, arg);
1019 		break;
1020 
1021 	case MON_IOCX_GET:
1022 	case MON_IOCX_GETX:
1023 		{
1024 		struct mon_bin_get getb;
1025 
1026 		if (copy_from_user(&getb, (void __user *)arg,
1027 					    sizeof(struct mon_bin_get)))
1028 			return -EFAULT;
1029 
1030 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1031 			return -EINVAL;
1032 		ret = mon_bin_get_event(file, rp, getb.hdr,
1033 		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1034 		    getb.data, (unsigned int)getb.alloc);
1035 		}
1036 		break;
1037 
1038 	case MON_IOCX_MFETCH:
1039 		{
1040 		struct mon_bin_mfetch mfetch;
1041 		struct mon_bin_mfetch __user *uptr;
1042 
1043 		uptr = (struct mon_bin_mfetch __user *)arg;
1044 
1045 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1046 			return -EFAULT;
1047 
1048 		if (mfetch.nflush) {
1049 			ret = mon_bin_flush(rp, mfetch.nflush);
1050 			if (ret < 0)
1051 				return ret;
1052 			if (put_user(ret, &uptr->nflush))
1053 				return -EFAULT;
1054 		}
1055 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1056 		if (ret < 0)
1057 			return ret;
1058 		if (put_user(ret, &uptr->nfetch))
1059 			return -EFAULT;
1060 		ret = 0;
1061 		}
1062 		break;
1063 
1064 	case MON_IOCG_STATS: {
1065 		struct mon_bin_stats __user *sp;
1066 		unsigned int nevents;
1067 		unsigned int ndropped;
1068 
1069 		spin_lock_irqsave(&rp->b_lock, flags);
1070 		ndropped = rp->cnt_lost;
1071 		rp->cnt_lost = 0;
1072 		spin_unlock_irqrestore(&rp->b_lock, flags);
1073 		nevents = mon_bin_queued(rp);
1074 
1075 		sp = (struct mon_bin_stats __user *)arg;
1076 		if (put_user(rp->cnt_lost, &sp->dropped))
1077 			return -EFAULT;
1078 		if (put_user(nevents, &sp->queued))
1079 			return -EFAULT;
1080 
1081 		}
1082 		break;
1083 
1084 	default:
1085 		return -ENOTTY;
1086 	}
1087 
1088 	return ret;
1089 }
1090 
1091 #ifdef CONFIG_COMPAT
1092 static long mon_bin_compat_ioctl(struct file *file,
1093     unsigned int cmd, unsigned long arg)
1094 {
1095 	struct mon_reader_bin *rp = file->private_data;
1096 	int ret;
1097 
1098 	switch (cmd) {
1099 
1100 	case MON_IOCX_GET32:
1101 	case MON_IOCX_GETX32:
1102 		{
1103 		struct mon_bin_get32 getb;
1104 
1105 		if (copy_from_user(&getb, (void __user *)arg,
1106 					    sizeof(struct mon_bin_get32)))
1107 			return -EFAULT;
1108 
1109 		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1110 		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1111 		    compat_ptr(getb.data32), getb.alloc32);
1112 		if (ret < 0)
1113 			return ret;
1114 		}
1115 		return 0;
1116 
1117 	case MON_IOCX_MFETCH32:
1118 		{
1119 		struct mon_bin_mfetch32 mfetch;
1120 		struct mon_bin_mfetch32 __user *uptr;
1121 
1122 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1123 
1124 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1125 			return -EFAULT;
1126 
1127 		if (mfetch.nflush32) {
1128 			ret = mon_bin_flush(rp, mfetch.nflush32);
1129 			if (ret < 0)
1130 				return ret;
1131 			if (put_user(ret, &uptr->nflush32))
1132 				return -EFAULT;
1133 		}
1134 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1135 		    mfetch.nfetch32);
1136 		if (ret < 0)
1137 			return ret;
1138 		if (put_user(ret, &uptr->nfetch32))
1139 			return -EFAULT;
1140 		}
1141 		return 0;
1142 
1143 	case MON_IOCG_STATS:
1144 		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1145 
1146 	case MON_IOCQ_URB_LEN:
1147 	case MON_IOCQ_RING_SIZE:
1148 	case MON_IOCT_RING_SIZE:
1149 	case MON_IOCH_MFLUSH:
1150 		return mon_bin_ioctl(file, cmd, arg);
1151 
1152 	default:
1153 		;
1154 	}
1155 	return -ENOTTY;
1156 }
1157 #endif /* CONFIG_COMPAT */
1158 
1159 static unsigned int
1160 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1161 {
1162 	struct mon_reader_bin *rp = file->private_data;
1163 	unsigned int mask = 0;
1164 	unsigned long flags;
1165 
1166 	if (file->f_mode & FMODE_READ)
1167 		poll_wait(file, &rp->b_wait, wait);
1168 
1169 	spin_lock_irqsave(&rp->b_lock, flags);
1170 	if (!MON_RING_EMPTY(rp))
1171 		mask |= POLLIN | POLLRDNORM;    /* readable */
1172 	spin_unlock_irqrestore(&rp->b_lock, flags);
1173 	return mask;
1174 }
1175 
1176 /*
1177  * open and close: just keep track of how many times the device is
1178  * mapped, to use the proper memory allocation function.
1179  */
1180 static void mon_bin_vma_open(struct vm_area_struct *vma)
1181 {
1182 	struct mon_reader_bin *rp = vma->vm_private_data;
1183 	rp->mmap_active++;
1184 }
1185 
1186 static void mon_bin_vma_close(struct vm_area_struct *vma)
1187 {
1188 	struct mon_reader_bin *rp = vma->vm_private_data;
1189 	rp->mmap_active--;
1190 }
1191 
1192 /*
1193  * Map ring pages to user space.
1194  */
1195 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1196 {
1197 	struct mon_reader_bin *rp = vma->vm_private_data;
1198 	unsigned long offset, chunk_idx;
1199 	struct page *pageptr;
1200 
1201 	offset = vmf->pgoff << PAGE_SHIFT;
1202 	if (offset >= rp->b_size)
1203 		return VM_FAULT_SIGBUS;
1204 	chunk_idx = offset / CHUNK_SIZE;
1205 	pageptr = rp->b_vec[chunk_idx].pg;
1206 	get_page(pageptr);
1207 	vmf->page = pageptr;
1208 	return 0;
1209 }
1210 
1211 static const struct vm_operations_struct mon_bin_vm_ops = {
1212 	.open =     mon_bin_vma_open,
1213 	.close =    mon_bin_vma_close,
1214 	.fault =    mon_bin_vma_fault,
1215 };
1216 
1217 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1218 {
1219 	/* don't do anything here: "fault" will set up page table entries */
1220 	vma->vm_ops = &mon_bin_vm_ops;
1221 	vma->vm_flags |= VM_RESERVED;
1222 	vma->vm_private_data = filp->private_data;
1223 	mon_bin_vma_open(vma);
1224 	return 0;
1225 }
1226 
1227 static const struct file_operations mon_fops_binary = {
1228 	.owner =	THIS_MODULE,
1229 	.open =		mon_bin_open,
1230 	.llseek =	no_llseek,
1231 	.read =		mon_bin_read,
1232 	/* .write =	mon_text_write, */
1233 	.poll =		mon_bin_poll,
1234 	.unlocked_ioctl = mon_bin_ioctl,
1235 #ifdef CONFIG_COMPAT
1236 	.compat_ioctl =	mon_bin_compat_ioctl,
1237 #endif
1238 	.release =	mon_bin_release,
1239 	.mmap =		mon_bin_mmap,
1240 };
1241 
1242 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1243 {
1244 	DECLARE_WAITQUEUE(waita, current);
1245 	unsigned long flags;
1246 
1247 	add_wait_queue(&rp->b_wait, &waita);
1248 	set_current_state(TASK_INTERRUPTIBLE);
1249 
1250 	spin_lock_irqsave(&rp->b_lock, flags);
1251 	while (MON_RING_EMPTY(rp)) {
1252 		spin_unlock_irqrestore(&rp->b_lock, flags);
1253 
1254 		if (file->f_flags & O_NONBLOCK) {
1255 			set_current_state(TASK_RUNNING);
1256 			remove_wait_queue(&rp->b_wait, &waita);
1257 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1258 		}
1259 		schedule();
1260 		if (signal_pending(current)) {
1261 			remove_wait_queue(&rp->b_wait, &waita);
1262 			return -EINTR;
1263 		}
1264 		set_current_state(TASK_INTERRUPTIBLE);
1265 
1266 		spin_lock_irqsave(&rp->b_lock, flags);
1267 	}
1268 	spin_unlock_irqrestore(&rp->b_lock, flags);
1269 
1270 	set_current_state(TASK_RUNNING);
1271 	remove_wait_queue(&rp->b_wait, &waita);
1272 	return 0;
1273 }
1274 
1275 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1276 {
1277 	int n;
1278 	unsigned long vaddr;
1279 
1280 	for (n = 0; n < npages; n++) {
1281 		vaddr = get_zeroed_page(GFP_KERNEL);
1282 		if (vaddr == 0) {
1283 			while (n-- != 0)
1284 				free_page((unsigned long) map[n].ptr);
1285 			return -ENOMEM;
1286 		}
1287 		map[n].ptr = (unsigned char *) vaddr;
1288 		map[n].pg = virt_to_page((void *) vaddr);
1289 	}
1290 	return 0;
1291 }
1292 
1293 static void mon_free_buff(struct mon_pgmap *map, int npages)
1294 {
1295 	int n;
1296 
1297 	for (n = 0; n < npages; n++)
1298 		free_page((unsigned long) map[n].ptr);
1299 }
1300 
1301 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1302 {
1303 	struct device *dev;
1304 	unsigned minor = ubus? ubus->busnum: 0;
1305 
1306 	if (minor >= MON_BIN_MAX_MINOR)
1307 		return 0;
1308 
1309 	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1310 			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1311 			    "usbmon%d", minor);
1312 	if (IS_ERR(dev))
1313 		return 0;
1314 
1315 	mbus->classdev = dev;
1316 	return 1;
1317 }
1318 
1319 void mon_bin_del(struct mon_bus *mbus)
1320 {
1321 	device_destroy(mon_bin_class, mbus->classdev->devt);
1322 }
1323 
1324 int __init mon_bin_init(void)
1325 {
1326 	int rc;
1327 
1328 	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1329 	if (IS_ERR(mon_bin_class)) {
1330 		rc = PTR_ERR(mon_bin_class);
1331 		goto err_class;
1332 	}
1333 
1334 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1335 	if (rc < 0)
1336 		goto err_dev;
1337 
1338 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1339 	mon_bin_cdev.owner = THIS_MODULE;
1340 
1341 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1342 	if (rc < 0)
1343 		goto err_add;
1344 
1345 	return 0;
1346 
1347 err_add:
1348 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1349 err_dev:
1350 	class_destroy(mon_bin_class);
1351 err_class:
1352 	return rc;
1353 }
1354 
1355 void mon_bin_exit(void)
1356 {
1357 	cdev_del(&mon_bin_cdev);
1358 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1359 	class_destroy(mon_bin_class);
1360 }
1361