xref: /openbmc/linux/drivers/usb/mon/mon_bin.c (revision 95e9fd10)
1 /*
2  * The USB Monitor, inspired by Dave Harding's USBMon.
3  *
4  * This is a binary format reader.
5  *
6  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/export.h>
15 #include <linux/usb.h>
16 #include <linux/poll.h>
17 #include <linux/compat.h>
18 #include <linux/mm.h>
19 #include <linux/scatterlist.h>
20 #include <linux/slab.h>
21 
22 #include <asm/uaccess.h>
23 
24 #include "usb_mon.h"
25 
26 /*
27  * Defined by USB 2.0 clause 9.3, table 9.2.
28  */
29 #define SETUP_LEN  8
30 
31 /* ioctl macros */
32 #define MON_IOC_MAGIC 0x92
33 
34 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
35 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
36 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
37 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
38 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
39 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
40 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
41 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
42 /* #9 was MON_IOCT_SETAPI */
43 #define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
44 
45 #ifdef CONFIG_COMPAT
46 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
47 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
48 #define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
49 #endif
50 
51 /*
52  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
53  * But it's all right. Just use a simple way to make sure the chunk is never
54  * smaller than a page.
55  *
56  * N.B. An application does not know our chunk size.
57  *
58  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
59  * page-sized chunks for the time being.
60  */
61 #define CHUNK_SIZE   PAGE_SIZE
62 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
63 
64 /*
65  * The magic limit was calculated so that it allows the monitoring
66  * application to pick data once in two ticks. This way, another application,
67  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
68  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
69  * enormous overhead built into the bus protocol, so we need about 1000 KB.
70  *
71  * This is still too much for most cases, where we just snoop a few
72  * descriptor fetches for enumeration. So, the default is a "reasonable"
73  * amount for systems with HZ=250 and incomplete bus saturation.
74  *
75  * XXX What about multi-megabyte URBs which take minutes to transfer?
76  */
77 #define BUFF_MAX  CHUNK_ALIGN(1200*1024)
78 #define BUFF_DFL   CHUNK_ALIGN(300*1024)
79 #define BUFF_MIN     CHUNK_ALIGN(8*1024)
80 
81 /*
82  * The per-event API header (2 per URB).
83  *
84  * This structure is seen in userland as defined by the documentation.
85  */
86 struct mon_bin_hdr {
87 	u64 id;			/* URB ID - from submission to callback */
88 	unsigned char type;	/* Same as in text API; extensible. */
89 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
90 	unsigned char epnum;	/* Endpoint number and transfer direction */
91 	unsigned char devnum;	/* Device address */
92 	unsigned short busnum;	/* Bus number */
93 	char flag_setup;
94 	char flag_data;
95 	s64 ts_sec;		/* gettimeofday */
96 	s32 ts_usec;		/* gettimeofday */
97 	int status;
98 	unsigned int len_urb;	/* Length of data (submitted or actual) */
99 	unsigned int len_cap;	/* Delivered length */
100 	union {
101 		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
102 		struct iso_rec {
103 			int error_count;
104 			int numdesc;
105 		} iso;
106 	} s;
107 	int interval;
108 	int start_frame;
109 	unsigned int xfer_flags;
110 	unsigned int ndesc;	/* Actual number of ISO descriptors */
111 };
112 
113 /*
114  * ISO vector, packed into the head of data stream.
115  * This has to take 16 bytes to make sure that the end of buffer
116  * wrap is not happening in the middle of a descriptor.
117  */
118 struct mon_bin_isodesc {
119 	int          iso_status;
120 	unsigned int iso_off;
121 	unsigned int iso_len;
122 	u32 _pad;
123 };
124 
125 /* per file statistic */
126 struct mon_bin_stats {
127 	u32 queued;
128 	u32 dropped;
129 };
130 
131 struct mon_bin_get {
132 	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
133 	void __user *data;
134 	size_t alloc;		/* Length of data (can be zero) */
135 };
136 
137 struct mon_bin_mfetch {
138 	u32 __user *offvec;	/* Vector of events fetched */
139 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
140 	u32 nflush;		/* Number of events to flush */
141 };
142 
143 #ifdef CONFIG_COMPAT
144 struct mon_bin_get32 {
145 	u32 hdr32;
146 	u32 data32;
147 	u32 alloc32;
148 };
149 
150 struct mon_bin_mfetch32 {
151         u32 offvec32;
152         u32 nfetch32;
153         u32 nflush32;
154 };
155 #endif
156 
157 /* Having these two values same prevents wrapping of the mon_bin_hdr */
158 #define PKT_ALIGN   64
159 #define PKT_SIZE    64
160 
161 #define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
162 #define PKT_SZ_API1 64	/* API 1 size: extra fields */
163 
164 #define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
165 
166 /* max number of USB bus supported */
167 #define MON_BIN_MAX_MINOR 128
168 
169 /*
170  * The buffer: map of used pages.
171  */
172 struct mon_pgmap {
173 	struct page *pg;
174 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
175 };
176 
177 /*
178  * This gets associated with an open file struct.
179  */
180 struct mon_reader_bin {
181 	/* The buffer: one per open. */
182 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
183 	unsigned int b_size;		/* Current size of the buffer - bytes */
184 	unsigned int b_cnt;		/* Bytes used */
185 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
186 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
187 	struct mon_pgmap *b_vec;	/* The map array */
188 	wait_queue_head_t b_wait;	/* Wait for data here */
189 
190 	struct mutex fetch_lock;	/* Protect b_read, b_out */
191 	int mmap_active;
192 
193 	/* A list of these is needed for "bus 0". Some time later. */
194 	struct mon_reader r;
195 
196 	/* Stats */
197 	unsigned int cnt_lost;
198 };
199 
200 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
201     unsigned int offset)
202 {
203 	return (struct mon_bin_hdr *)
204 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
205 }
206 
207 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
208 
209 static unsigned char xfer_to_pipe[4] = {
210 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
211 };
212 
213 static struct class *mon_bin_class;
214 static dev_t mon_bin_dev0;
215 static struct cdev mon_bin_cdev;
216 
217 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
218     unsigned int offset, unsigned int size);
219 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
220 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
221 static void mon_free_buff(struct mon_pgmap *map, int npages);
222 
223 /*
224  * This is a "chunked memcpy". It does not manipulate any counters.
225  */
226 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
227     unsigned int off, const unsigned char *from, unsigned int length)
228 {
229 	unsigned int step_len;
230 	unsigned char *buf;
231 	unsigned int in_page;
232 
233 	while (length) {
234 		/*
235 		 * Determine step_len.
236 		 */
237 		step_len = length;
238 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
239 		if (in_page < step_len)
240 			step_len = in_page;
241 
242 		/*
243 		 * Copy data and advance pointers.
244 		 */
245 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
246 		memcpy(buf, from, step_len);
247 		if ((off += step_len) >= this->b_size) off = 0;
248 		from += step_len;
249 		length -= step_len;
250 	}
251 	return off;
252 }
253 
254 /*
255  * This is a little worse than the above because it's "chunked copy_to_user".
256  * The return value is an error code, not an offset.
257  */
258 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
259     char __user *to, int length)
260 {
261 	unsigned int step_len;
262 	unsigned char *buf;
263 	unsigned int in_page;
264 
265 	while (length) {
266 		/*
267 		 * Determine step_len.
268 		 */
269 		step_len = length;
270 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
271 		if (in_page < step_len)
272 			step_len = in_page;
273 
274 		/*
275 		 * Copy data and advance pointers.
276 		 */
277 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
278 		if (copy_to_user(to, buf, step_len))
279 			return -EINVAL;
280 		if ((off += step_len) >= this->b_size) off = 0;
281 		to += step_len;
282 		length -= step_len;
283 	}
284 	return 0;
285 }
286 
287 /*
288  * Allocate an (aligned) area in the buffer.
289  * This is called under b_lock.
290  * Returns ~0 on failure.
291  */
292 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
293     unsigned int size)
294 {
295 	unsigned int offset;
296 
297 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
298 	if (rp->b_cnt + size > rp->b_size)
299 		return ~0;
300 	offset = rp->b_in;
301 	rp->b_cnt += size;
302 	if ((rp->b_in += size) >= rp->b_size)
303 		rp->b_in -= rp->b_size;
304 	return offset;
305 }
306 
307 /*
308  * This is the same thing as mon_buff_area_alloc, only it does not allow
309  * buffers to wrap. This is needed by applications which pass references
310  * into mmap-ed buffers up their stacks (libpcap can do that).
311  *
312  * Currently, we always have the header stuck with the data, although
313  * it is not strictly speaking necessary.
314  *
315  * When a buffer would wrap, we place a filler packet to mark the space.
316  */
317 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
318     unsigned int size)
319 {
320 	unsigned int offset;
321 	unsigned int fill_size;
322 
323 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
324 	if (rp->b_cnt + size > rp->b_size)
325 		return ~0;
326 	if (rp->b_in + size > rp->b_size) {
327 		/*
328 		 * This would wrap. Find if we still have space after
329 		 * skipping to the end of the buffer. If we do, place
330 		 * a filler packet and allocate a new packet.
331 		 */
332 		fill_size = rp->b_size - rp->b_in;
333 		if (rp->b_cnt + size + fill_size > rp->b_size)
334 			return ~0;
335 		mon_buff_area_fill(rp, rp->b_in, fill_size);
336 
337 		offset = 0;
338 		rp->b_in = size;
339 		rp->b_cnt += size + fill_size;
340 	} else if (rp->b_in + size == rp->b_size) {
341 		offset = rp->b_in;
342 		rp->b_in = 0;
343 		rp->b_cnt += size;
344 	} else {
345 		offset = rp->b_in;
346 		rp->b_in += size;
347 		rp->b_cnt += size;
348 	}
349 	return offset;
350 }
351 
352 /*
353  * Return a few (kilo-)bytes to the head of the buffer.
354  * This is used if a data fetch fails.
355  */
356 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
357 {
358 
359 	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
360 	rp->b_cnt -= size;
361 	if (rp->b_in < size)
362 		rp->b_in += rp->b_size;
363 	rp->b_in -= size;
364 }
365 
366 /*
367  * This has to be called under both b_lock and fetch_lock, because
368  * it accesses both b_cnt and b_out.
369  */
370 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
371 {
372 
373 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
374 	rp->b_cnt -= size;
375 	if ((rp->b_out += size) >= rp->b_size)
376 		rp->b_out -= rp->b_size;
377 }
378 
379 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
380     unsigned int offset, unsigned int size)
381 {
382 	struct mon_bin_hdr *ep;
383 
384 	ep = MON_OFF2HDR(rp, offset);
385 	memset(ep, 0, PKT_SIZE);
386 	ep->type = '@';
387 	ep->len_cap = size - PKT_SIZE;
388 }
389 
390 static inline char mon_bin_get_setup(unsigned char *setupb,
391     const struct urb *urb, char ev_type)
392 {
393 
394 	if (urb->setup_packet == NULL)
395 		return 'Z';
396 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
397 	return 0;
398 }
399 
400 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
401     unsigned int offset, struct urb *urb, unsigned int length,
402     char *flag)
403 {
404 	int i;
405 	struct scatterlist *sg;
406 	unsigned int this_len;
407 
408 	*flag = 0;
409 	if (urb->num_sgs == 0) {
410 		if (urb->transfer_buffer == NULL) {
411 			*flag = 'Z';
412 			return length;
413 		}
414 		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
415 		length = 0;
416 
417 	} else {
418 		/* If IOMMU coalescing occurred, we cannot trust sg_page */
419 		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
420 			*flag = 'D';
421 			return length;
422 		}
423 
424 		/* Copy up to the first non-addressable segment */
425 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
426 			if (length == 0 || PageHighMem(sg_page(sg)))
427 				break;
428 			this_len = min_t(unsigned int, sg->length, length);
429 			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
430 					this_len);
431 			length -= this_len;
432 		}
433 		if (i == 0)
434 			*flag = 'D';
435 	}
436 
437 	return length;
438 }
439 
440 /*
441  * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
442  * be used to determine the length of the whole contiguous buffer.
443  */
444 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
445     struct urb *urb, unsigned int ndesc)
446 {
447 	struct usb_iso_packet_descriptor *fp;
448 	unsigned int length;
449 
450 	length = 0;
451 	fp = urb->iso_frame_desc;
452 	while (ndesc-- != 0) {
453 		if (fp->actual_length != 0) {
454 			if (fp->offset + fp->actual_length > length)
455 				length = fp->offset + fp->actual_length;
456 		}
457 		fp++;
458 	}
459 	return length;
460 }
461 
462 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
463     unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
464 {
465 	struct mon_bin_isodesc *dp;
466 	struct usb_iso_packet_descriptor *fp;
467 
468 	fp = urb->iso_frame_desc;
469 	while (ndesc-- != 0) {
470 		dp = (struct mon_bin_isodesc *)
471 		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
472 		dp->iso_status = fp->status;
473 		dp->iso_off = fp->offset;
474 		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
475 		dp->_pad = 0;
476 		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
477 			offset = 0;
478 		fp++;
479 	}
480 }
481 
482 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
483     char ev_type, int status)
484 {
485 	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
486 	struct timeval ts;
487 	unsigned long flags;
488 	unsigned int urb_length;
489 	unsigned int offset;
490 	unsigned int length;
491 	unsigned int delta;
492 	unsigned int ndesc, lendesc;
493 	unsigned char dir;
494 	struct mon_bin_hdr *ep;
495 	char data_tag = 0;
496 
497 	do_gettimeofday(&ts);
498 
499 	spin_lock_irqsave(&rp->b_lock, flags);
500 
501 	/*
502 	 * Find the maximum allowable length, then allocate space.
503 	 */
504 	urb_length = (ev_type == 'S') ?
505 	    urb->transfer_buffer_length : urb->actual_length;
506 	length = urb_length;
507 
508 	if (usb_endpoint_xfer_isoc(epd)) {
509 		if (urb->number_of_packets < 0) {
510 			ndesc = 0;
511 		} else if (urb->number_of_packets >= ISODESC_MAX) {
512 			ndesc = ISODESC_MAX;
513 		} else {
514 			ndesc = urb->number_of_packets;
515 		}
516 		if (ev_type == 'C' && usb_urb_dir_in(urb))
517 			length = mon_bin_collate_isodesc(rp, urb, ndesc);
518 	} else {
519 		ndesc = 0;
520 	}
521 	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
522 
523 	/* not an issue unless there's a subtle bug in a HCD somewhere */
524 	if (length >= urb->transfer_buffer_length)
525 		length = urb->transfer_buffer_length;
526 
527 	if (length >= rp->b_size/5)
528 		length = rp->b_size/5;
529 
530 	if (usb_urb_dir_in(urb)) {
531 		if (ev_type == 'S') {
532 			length = 0;
533 			data_tag = '<';
534 		}
535 		/* Cannot rely on endpoint number in case of control ep.0 */
536 		dir = USB_DIR_IN;
537 	} else {
538 		if (ev_type == 'C') {
539 			length = 0;
540 			data_tag = '>';
541 		}
542 		dir = 0;
543 	}
544 
545 	if (rp->mmap_active) {
546 		offset = mon_buff_area_alloc_contiguous(rp,
547 						 length + PKT_SIZE + lendesc);
548 	} else {
549 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
550 	}
551 	if (offset == ~0) {
552 		rp->cnt_lost++;
553 		spin_unlock_irqrestore(&rp->b_lock, flags);
554 		return;
555 	}
556 
557 	ep = MON_OFF2HDR(rp, offset);
558 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
559 
560 	/*
561 	 * Fill the allocated area.
562 	 */
563 	memset(ep, 0, PKT_SIZE);
564 	ep->type = ev_type;
565 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
566 	ep->epnum = dir | usb_endpoint_num(epd);
567 	ep->devnum = urb->dev->devnum;
568 	ep->busnum = urb->dev->bus->busnum;
569 	ep->id = (unsigned long) urb;
570 	ep->ts_sec = ts.tv_sec;
571 	ep->ts_usec = ts.tv_usec;
572 	ep->status = status;
573 	ep->len_urb = urb_length;
574 	ep->len_cap = length + lendesc;
575 	ep->xfer_flags = urb->transfer_flags;
576 
577 	if (usb_endpoint_xfer_int(epd)) {
578 		ep->interval = urb->interval;
579 	} else if (usb_endpoint_xfer_isoc(epd)) {
580 		ep->interval = urb->interval;
581 		ep->start_frame = urb->start_frame;
582 		ep->s.iso.error_count = urb->error_count;
583 		ep->s.iso.numdesc = urb->number_of_packets;
584 	}
585 
586 	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
587 		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
588 	} else {
589 		ep->flag_setup = '-';
590 	}
591 
592 	if (ndesc != 0) {
593 		ep->ndesc = ndesc;
594 		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
595 		if ((offset += lendesc) >= rp->b_size)
596 			offset -= rp->b_size;
597 	}
598 
599 	if (length != 0) {
600 		length = mon_bin_get_data(rp, offset, urb, length,
601 				&ep->flag_data);
602 		if (length > 0) {
603 			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
604 			ep->len_cap -= length;
605 			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
606 			mon_buff_area_shrink(rp, delta);
607 		}
608 	} else {
609 		ep->flag_data = data_tag;
610 	}
611 
612 	spin_unlock_irqrestore(&rp->b_lock, flags);
613 
614 	wake_up(&rp->b_wait);
615 }
616 
617 static void mon_bin_submit(void *data, struct urb *urb)
618 {
619 	struct mon_reader_bin *rp = data;
620 	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
621 }
622 
623 static void mon_bin_complete(void *data, struct urb *urb, int status)
624 {
625 	struct mon_reader_bin *rp = data;
626 	mon_bin_event(rp, urb, 'C', status);
627 }
628 
629 static void mon_bin_error(void *data, struct urb *urb, int error)
630 {
631 	struct mon_reader_bin *rp = data;
632 	struct timeval ts;
633 	unsigned long flags;
634 	unsigned int offset;
635 	struct mon_bin_hdr *ep;
636 
637 	do_gettimeofday(&ts);
638 
639 	spin_lock_irqsave(&rp->b_lock, flags);
640 
641 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
642 	if (offset == ~0) {
643 		/* Not incrementing cnt_lost. Just because. */
644 		spin_unlock_irqrestore(&rp->b_lock, flags);
645 		return;
646 	}
647 
648 	ep = MON_OFF2HDR(rp, offset);
649 
650 	memset(ep, 0, PKT_SIZE);
651 	ep->type = 'E';
652 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
653 	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
654 	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
655 	ep->devnum = urb->dev->devnum;
656 	ep->busnum = urb->dev->bus->busnum;
657 	ep->id = (unsigned long) urb;
658 	ep->ts_sec = ts.tv_sec;
659 	ep->ts_usec = ts.tv_usec;
660 	ep->status = error;
661 
662 	ep->flag_setup = '-';
663 	ep->flag_data = 'E';
664 
665 	spin_unlock_irqrestore(&rp->b_lock, flags);
666 
667 	wake_up(&rp->b_wait);
668 }
669 
670 static int mon_bin_open(struct inode *inode, struct file *file)
671 {
672 	struct mon_bus *mbus;
673 	struct mon_reader_bin *rp;
674 	size_t size;
675 	int rc;
676 
677 	mutex_lock(&mon_lock);
678 	if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
679 		mutex_unlock(&mon_lock);
680 		return -ENODEV;
681 	}
682 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
683 		printk(KERN_ERR TAG ": consistency error on open\n");
684 		mutex_unlock(&mon_lock);
685 		return -ENODEV;
686 	}
687 
688 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
689 	if (rp == NULL) {
690 		rc = -ENOMEM;
691 		goto err_alloc;
692 	}
693 	spin_lock_init(&rp->b_lock);
694 	init_waitqueue_head(&rp->b_wait);
695 	mutex_init(&rp->fetch_lock);
696 	rp->b_size = BUFF_DFL;
697 
698 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
699 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
700 		rc = -ENOMEM;
701 		goto err_allocvec;
702 	}
703 
704 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
705 		goto err_allocbuff;
706 
707 	rp->r.m_bus = mbus;
708 	rp->r.r_data = rp;
709 	rp->r.rnf_submit = mon_bin_submit;
710 	rp->r.rnf_error = mon_bin_error;
711 	rp->r.rnf_complete = mon_bin_complete;
712 
713 	mon_reader_add(mbus, &rp->r);
714 
715 	file->private_data = rp;
716 	mutex_unlock(&mon_lock);
717 	return 0;
718 
719 err_allocbuff:
720 	kfree(rp->b_vec);
721 err_allocvec:
722 	kfree(rp);
723 err_alloc:
724 	mutex_unlock(&mon_lock);
725 	return rc;
726 }
727 
728 /*
729  * Extract an event from buffer and copy it to user space.
730  * Wait if there is no event ready.
731  * Returns zero or error.
732  */
733 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
734     struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
735     void __user *data, unsigned int nbytes)
736 {
737 	unsigned long flags;
738 	struct mon_bin_hdr *ep;
739 	size_t step_len;
740 	unsigned int offset;
741 	int rc;
742 
743 	mutex_lock(&rp->fetch_lock);
744 
745 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
746 		mutex_unlock(&rp->fetch_lock);
747 		return rc;
748 	}
749 
750 	ep = MON_OFF2HDR(rp, rp->b_out);
751 
752 	if (copy_to_user(hdr, ep, hdrbytes)) {
753 		mutex_unlock(&rp->fetch_lock);
754 		return -EFAULT;
755 	}
756 
757 	step_len = min(ep->len_cap, nbytes);
758 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
759 
760 	if (copy_from_buf(rp, offset, data, step_len)) {
761 		mutex_unlock(&rp->fetch_lock);
762 		return -EFAULT;
763 	}
764 
765 	spin_lock_irqsave(&rp->b_lock, flags);
766 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
767 	spin_unlock_irqrestore(&rp->b_lock, flags);
768 	rp->b_read = 0;
769 
770 	mutex_unlock(&rp->fetch_lock);
771 	return 0;
772 }
773 
774 static int mon_bin_release(struct inode *inode, struct file *file)
775 {
776 	struct mon_reader_bin *rp = file->private_data;
777 	struct mon_bus* mbus = rp->r.m_bus;
778 
779 	mutex_lock(&mon_lock);
780 
781 	if (mbus->nreaders <= 0) {
782 		printk(KERN_ERR TAG ": consistency error on close\n");
783 		mutex_unlock(&mon_lock);
784 		return 0;
785 	}
786 	mon_reader_del(mbus, &rp->r);
787 
788 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
789 	kfree(rp->b_vec);
790 	kfree(rp);
791 
792 	mutex_unlock(&mon_lock);
793 	return 0;
794 }
795 
796 static ssize_t mon_bin_read(struct file *file, char __user *buf,
797     size_t nbytes, loff_t *ppos)
798 {
799 	struct mon_reader_bin *rp = file->private_data;
800 	unsigned int hdrbytes = PKT_SZ_API0;
801 	unsigned long flags;
802 	struct mon_bin_hdr *ep;
803 	unsigned int offset;
804 	size_t step_len;
805 	char *ptr;
806 	ssize_t done = 0;
807 	int rc;
808 
809 	mutex_lock(&rp->fetch_lock);
810 
811 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
812 		mutex_unlock(&rp->fetch_lock);
813 		return rc;
814 	}
815 
816 	ep = MON_OFF2HDR(rp, rp->b_out);
817 
818 	if (rp->b_read < hdrbytes) {
819 		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
820 		ptr = ((char *)ep) + rp->b_read;
821 		if (step_len && copy_to_user(buf, ptr, step_len)) {
822 			mutex_unlock(&rp->fetch_lock);
823 			return -EFAULT;
824 		}
825 		nbytes -= step_len;
826 		buf += step_len;
827 		rp->b_read += step_len;
828 		done += step_len;
829 	}
830 
831 	if (rp->b_read >= hdrbytes) {
832 		step_len = ep->len_cap;
833 		step_len -= rp->b_read - hdrbytes;
834 		if (step_len > nbytes)
835 			step_len = nbytes;
836 		offset = rp->b_out + PKT_SIZE;
837 		offset += rp->b_read - hdrbytes;
838 		if (offset >= rp->b_size)
839 			offset -= rp->b_size;
840 		if (copy_from_buf(rp, offset, buf, step_len)) {
841 			mutex_unlock(&rp->fetch_lock);
842 			return -EFAULT;
843 		}
844 		nbytes -= step_len;
845 		buf += step_len;
846 		rp->b_read += step_len;
847 		done += step_len;
848 	}
849 
850 	/*
851 	 * Check if whole packet was read, and if so, jump to the next one.
852 	 */
853 	if (rp->b_read >= hdrbytes + ep->len_cap) {
854 		spin_lock_irqsave(&rp->b_lock, flags);
855 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
856 		spin_unlock_irqrestore(&rp->b_lock, flags);
857 		rp->b_read = 0;
858 	}
859 
860 	mutex_unlock(&rp->fetch_lock);
861 	return done;
862 }
863 
864 /*
865  * Remove at most nevents from chunked buffer.
866  * Returns the number of removed events.
867  */
868 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
869 {
870 	unsigned long flags;
871 	struct mon_bin_hdr *ep;
872 	int i;
873 
874 	mutex_lock(&rp->fetch_lock);
875 	spin_lock_irqsave(&rp->b_lock, flags);
876 	for (i = 0; i < nevents; ++i) {
877 		if (MON_RING_EMPTY(rp))
878 			break;
879 
880 		ep = MON_OFF2HDR(rp, rp->b_out);
881 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
882 	}
883 	spin_unlock_irqrestore(&rp->b_lock, flags);
884 	rp->b_read = 0;
885 	mutex_unlock(&rp->fetch_lock);
886 	return i;
887 }
888 
889 /*
890  * Fetch at most max event offsets into the buffer and put them into vec.
891  * The events are usually freed later with mon_bin_flush.
892  * Return the effective number of events fetched.
893  */
894 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
895     u32 __user *vec, unsigned int max)
896 {
897 	unsigned int cur_out;
898 	unsigned int bytes, avail;
899 	unsigned int size;
900 	unsigned int nevents;
901 	struct mon_bin_hdr *ep;
902 	unsigned long flags;
903 	int rc;
904 
905 	mutex_lock(&rp->fetch_lock);
906 
907 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
908 		mutex_unlock(&rp->fetch_lock);
909 		return rc;
910 	}
911 
912 	spin_lock_irqsave(&rp->b_lock, flags);
913 	avail = rp->b_cnt;
914 	spin_unlock_irqrestore(&rp->b_lock, flags);
915 
916 	cur_out = rp->b_out;
917 	nevents = 0;
918 	bytes = 0;
919 	while (bytes < avail) {
920 		if (nevents >= max)
921 			break;
922 
923 		ep = MON_OFF2HDR(rp, cur_out);
924 		if (put_user(cur_out, &vec[nevents])) {
925 			mutex_unlock(&rp->fetch_lock);
926 			return -EFAULT;
927 		}
928 
929 		nevents++;
930 		size = ep->len_cap + PKT_SIZE;
931 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
932 		if ((cur_out += size) >= rp->b_size)
933 			cur_out -= rp->b_size;
934 		bytes += size;
935 	}
936 
937 	mutex_unlock(&rp->fetch_lock);
938 	return nevents;
939 }
940 
941 /*
942  * Count events. This is almost the same as the above mon_bin_fetch,
943  * only we do not store offsets into user vector, and we have no limit.
944  */
945 static int mon_bin_queued(struct mon_reader_bin *rp)
946 {
947 	unsigned int cur_out;
948 	unsigned int bytes, avail;
949 	unsigned int size;
950 	unsigned int nevents;
951 	struct mon_bin_hdr *ep;
952 	unsigned long flags;
953 
954 	mutex_lock(&rp->fetch_lock);
955 
956 	spin_lock_irqsave(&rp->b_lock, flags);
957 	avail = rp->b_cnt;
958 	spin_unlock_irqrestore(&rp->b_lock, flags);
959 
960 	cur_out = rp->b_out;
961 	nevents = 0;
962 	bytes = 0;
963 	while (bytes < avail) {
964 		ep = MON_OFF2HDR(rp, cur_out);
965 
966 		nevents++;
967 		size = ep->len_cap + PKT_SIZE;
968 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
969 		if ((cur_out += size) >= rp->b_size)
970 			cur_out -= rp->b_size;
971 		bytes += size;
972 	}
973 
974 	mutex_unlock(&rp->fetch_lock);
975 	return nevents;
976 }
977 
978 /*
979  */
980 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
981 {
982 	struct mon_reader_bin *rp = file->private_data;
983 	// struct mon_bus* mbus = rp->r.m_bus;
984 	int ret = 0;
985 	struct mon_bin_hdr *ep;
986 	unsigned long flags;
987 
988 	switch (cmd) {
989 
990 	case MON_IOCQ_URB_LEN:
991 		/*
992 		 * N.B. This only returns the size of data, without the header.
993 		 */
994 		spin_lock_irqsave(&rp->b_lock, flags);
995 		if (!MON_RING_EMPTY(rp)) {
996 			ep = MON_OFF2HDR(rp, rp->b_out);
997 			ret = ep->len_cap;
998 		}
999 		spin_unlock_irqrestore(&rp->b_lock, flags);
1000 		break;
1001 
1002 	case MON_IOCQ_RING_SIZE:
1003 		ret = rp->b_size;
1004 		break;
1005 
1006 	case MON_IOCT_RING_SIZE:
1007 		/*
1008 		 * Changing the buffer size will flush it's contents; the new
1009 		 * buffer is allocated before releasing the old one to be sure
1010 		 * the device will stay functional also in case of memory
1011 		 * pressure.
1012 		 */
1013 		{
1014 		int size;
1015 		struct mon_pgmap *vec;
1016 
1017 		if (arg < BUFF_MIN || arg > BUFF_MAX)
1018 			return -EINVAL;
1019 
1020 		size = CHUNK_ALIGN(arg);
1021 		if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
1022 		    GFP_KERNEL)) == NULL) {
1023 			ret = -ENOMEM;
1024 			break;
1025 		}
1026 
1027 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1028 		if (ret < 0) {
1029 			kfree(vec);
1030 			break;
1031 		}
1032 
1033 		mutex_lock(&rp->fetch_lock);
1034 		spin_lock_irqsave(&rp->b_lock, flags);
1035 		mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1036 		kfree(rp->b_vec);
1037 		rp->b_vec  = vec;
1038 		rp->b_size = size;
1039 		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1040 		rp->cnt_lost = 0;
1041 		spin_unlock_irqrestore(&rp->b_lock, flags);
1042 		mutex_unlock(&rp->fetch_lock);
1043 		}
1044 		break;
1045 
1046 	case MON_IOCH_MFLUSH:
1047 		ret = mon_bin_flush(rp, arg);
1048 		break;
1049 
1050 	case MON_IOCX_GET:
1051 	case MON_IOCX_GETX:
1052 		{
1053 		struct mon_bin_get getb;
1054 
1055 		if (copy_from_user(&getb, (void __user *)arg,
1056 					    sizeof(struct mon_bin_get)))
1057 			return -EFAULT;
1058 
1059 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1060 			return -EINVAL;
1061 		ret = mon_bin_get_event(file, rp, getb.hdr,
1062 		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1063 		    getb.data, (unsigned int)getb.alloc);
1064 		}
1065 		break;
1066 
1067 	case MON_IOCX_MFETCH:
1068 		{
1069 		struct mon_bin_mfetch mfetch;
1070 		struct mon_bin_mfetch __user *uptr;
1071 
1072 		uptr = (struct mon_bin_mfetch __user *)arg;
1073 
1074 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1075 			return -EFAULT;
1076 
1077 		if (mfetch.nflush) {
1078 			ret = mon_bin_flush(rp, mfetch.nflush);
1079 			if (ret < 0)
1080 				return ret;
1081 			if (put_user(ret, &uptr->nflush))
1082 				return -EFAULT;
1083 		}
1084 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1085 		if (ret < 0)
1086 			return ret;
1087 		if (put_user(ret, &uptr->nfetch))
1088 			return -EFAULT;
1089 		ret = 0;
1090 		}
1091 		break;
1092 
1093 	case MON_IOCG_STATS: {
1094 		struct mon_bin_stats __user *sp;
1095 		unsigned int nevents;
1096 		unsigned int ndropped;
1097 
1098 		spin_lock_irqsave(&rp->b_lock, flags);
1099 		ndropped = rp->cnt_lost;
1100 		rp->cnt_lost = 0;
1101 		spin_unlock_irqrestore(&rp->b_lock, flags);
1102 		nevents = mon_bin_queued(rp);
1103 
1104 		sp = (struct mon_bin_stats __user *)arg;
1105 		if (put_user(ndropped, &sp->dropped))
1106 			return -EFAULT;
1107 		if (put_user(nevents, &sp->queued))
1108 			return -EFAULT;
1109 
1110 		}
1111 		break;
1112 
1113 	default:
1114 		return -ENOTTY;
1115 	}
1116 
1117 	return ret;
1118 }
1119 
1120 #ifdef CONFIG_COMPAT
1121 static long mon_bin_compat_ioctl(struct file *file,
1122     unsigned int cmd, unsigned long arg)
1123 {
1124 	struct mon_reader_bin *rp = file->private_data;
1125 	int ret;
1126 
1127 	switch (cmd) {
1128 
1129 	case MON_IOCX_GET32:
1130 	case MON_IOCX_GETX32:
1131 		{
1132 		struct mon_bin_get32 getb;
1133 
1134 		if (copy_from_user(&getb, (void __user *)arg,
1135 					    sizeof(struct mon_bin_get32)))
1136 			return -EFAULT;
1137 
1138 		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1139 		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1140 		    compat_ptr(getb.data32), getb.alloc32);
1141 		if (ret < 0)
1142 			return ret;
1143 		}
1144 		return 0;
1145 
1146 	case MON_IOCX_MFETCH32:
1147 		{
1148 		struct mon_bin_mfetch32 mfetch;
1149 		struct mon_bin_mfetch32 __user *uptr;
1150 
1151 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1152 
1153 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1154 			return -EFAULT;
1155 
1156 		if (mfetch.nflush32) {
1157 			ret = mon_bin_flush(rp, mfetch.nflush32);
1158 			if (ret < 0)
1159 				return ret;
1160 			if (put_user(ret, &uptr->nflush32))
1161 				return -EFAULT;
1162 		}
1163 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1164 		    mfetch.nfetch32);
1165 		if (ret < 0)
1166 			return ret;
1167 		if (put_user(ret, &uptr->nfetch32))
1168 			return -EFAULT;
1169 		}
1170 		return 0;
1171 
1172 	case MON_IOCG_STATS:
1173 		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1174 
1175 	case MON_IOCQ_URB_LEN:
1176 	case MON_IOCQ_RING_SIZE:
1177 	case MON_IOCT_RING_SIZE:
1178 	case MON_IOCH_MFLUSH:
1179 		return mon_bin_ioctl(file, cmd, arg);
1180 
1181 	default:
1182 		;
1183 	}
1184 	return -ENOTTY;
1185 }
1186 #endif /* CONFIG_COMPAT */
1187 
1188 static unsigned int
1189 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1190 {
1191 	struct mon_reader_bin *rp = file->private_data;
1192 	unsigned int mask = 0;
1193 	unsigned long flags;
1194 
1195 	if (file->f_mode & FMODE_READ)
1196 		poll_wait(file, &rp->b_wait, wait);
1197 
1198 	spin_lock_irqsave(&rp->b_lock, flags);
1199 	if (!MON_RING_EMPTY(rp))
1200 		mask |= POLLIN | POLLRDNORM;    /* readable */
1201 	spin_unlock_irqrestore(&rp->b_lock, flags);
1202 	return mask;
1203 }
1204 
1205 /*
1206  * open and close: just keep track of how many times the device is
1207  * mapped, to use the proper memory allocation function.
1208  */
1209 static void mon_bin_vma_open(struct vm_area_struct *vma)
1210 {
1211 	struct mon_reader_bin *rp = vma->vm_private_data;
1212 	rp->mmap_active++;
1213 }
1214 
1215 static void mon_bin_vma_close(struct vm_area_struct *vma)
1216 {
1217 	struct mon_reader_bin *rp = vma->vm_private_data;
1218 	rp->mmap_active--;
1219 }
1220 
1221 /*
1222  * Map ring pages to user space.
1223  */
1224 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1225 {
1226 	struct mon_reader_bin *rp = vma->vm_private_data;
1227 	unsigned long offset, chunk_idx;
1228 	struct page *pageptr;
1229 
1230 	offset = vmf->pgoff << PAGE_SHIFT;
1231 	if (offset >= rp->b_size)
1232 		return VM_FAULT_SIGBUS;
1233 	chunk_idx = offset / CHUNK_SIZE;
1234 	pageptr = rp->b_vec[chunk_idx].pg;
1235 	get_page(pageptr);
1236 	vmf->page = pageptr;
1237 	return 0;
1238 }
1239 
1240 static const struct vm_operations_struct mon_bin_vm_ops = {
1241 	.open =     mon_bin_vma_open,
1242 	.close =    mon_bin_vma_close,
1243 	.fault =    mon_bin_vma_fault,
1244 };
1245 
1246 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1247 {
1248 	/* don't do anything here: "fault" will set up page table entries */
1249 	vma->vm_ops = &mon_bin_vm_ops;
1250 	vma->vm_flags |= VM_RESERVED;
1251 	vma->vm_private_data = filp->private_data;
1252 	mon_bin_vma_open(vma);
1253 	return 0;
1254 }
1255 
1256 static const struct file_operations mon_fops_binary = {
1257 	.owner =	THIS_MODULE,
1258 	.open =		mon_bin_open,
1259 	.llseek =	no_llseek,
1260 	.read =		mon_bin_read,
1261 	/* .write =	mon_text_write, */
1262 	.poll =		mon_bin_poll,
1263 	.unlocked_ioctl = mon_bin_ioctl,
1264 #ifdef CONFIG_COMPAT
1265 	.compat_ioctl =	mon_bin_compat_ioctl,
1266 #endif
1267 	.release =	mon_bin_release,
1268 	.mmap =		mon_bin_mmap,
1269 };
1270 
1271 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1272 {
1273 	DECLARE_WAITQUEUE(waita, current);
1274 	unsigned long flags;
1275 
1276 	add_wait_queue(&rp->b_wait, &waita);
1277 	set_current_state(TASK_INTERRUPTIBLE);
1278 
1279 	spin_lock_irqsave(&rp->b_lock, flags);
1280 	while (MON_RING_EMPTY(rp)) {
1281 		spin_unlock_irqrestore(&rp->b_lock, flags);
1282 
1283 		if (file->f_flags & O_NONBLOCK) {
1284 			set_current_state(TASK_RUNNING);
1285 			remove_wait_queue(&rp->b_wait, &waita);
1286 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1287 		}
1288 		schedule();
1289 		if (signal_pending(current)) {
1290 			remove_wait_queue(&rp->b_wait, &waita);
1291 			return -EINTR;
1292 		}
1293 		set_current_state(TASK_INTERRUPTIBLE);
1294 
1295 		spin_lock_irqsave(&rp->b_lock, flags);
1296 	}
1297 	spin_unlock_irqrestore(&rp->b_lock, flags);
1298 
1299 	set_current_state(TASK_RUNNING);
1300 	remove_wait_queue(&rp->b_wait, &waita);
1301 	return 0;
1302 }
1303 
1304 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1305 {
1306 	int n;
1307 	unsigned long vaddr;
1308 
1309 	for (n = 0; n < npages; n++) {
1310 		vaddr = get_zeroed_page(GFP_KERNEL);
1311 		if (vaddr == 0) {
1312 			while (n-- != 0)
1313 				free_page((unsigned long) map[n].ptr);
1314 			return -ENOMEM;
1315 		}
1316 		map[n].ptr = (unsigned char *) vaddr;
1317 		map[n].pg = virt_to_page((void *) vaddr);
1318 	}
1319 	return 0;
1320 }
1321 
1322 static void mon_free_buff(struct mon_pgmap *map, int npages)
1323 {
1324 	int n;
1325 
1326 	for (n = 0; n < npages; n++)
1327 		free_page((unsigned long) map[n].ptr);
1328 }
1329 
1330 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1331 {
1332 	struct device *dev;
1333 	unsigned minor = ubus? ubus->busnum: 0;
1334 
1335 	if (minor >= MON_BIN_MAX_MINOR)
1336 		return 0;
1337 
1338 	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1339 			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1340 			    "usbmon%d", minor);
1341 	if (IS_ERR(dev))
1342 		return 0;
1343 
1344 	mbus->classdev = dev;
1345 	return 1;
1346 }
1347 
1348 void mon_bin_del(struct mon_bus *mbus)
1349 {
1350 	device_destroy(mon_bin_class, mbus->classdev->devt);
1351 }
1352 
1353 int __init mon_bin_init(void)
1354 {
1355 	int rc;
1356 
1357 	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1358 	if (IS_ERR(mon_bin_class)) {
1359 		rc = PTR_ERR(mon_bin_class);
1360 		goto err_class;
1361 	}
1362 
1363 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1364 	if (rc < 0)
1365 		goto err_dev;
1366 
1367 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1368 	mon_bin_cdev.owner = THIS_MODULE;
1369 
1370 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1371 	if (rc < 0)
1372 		goto err_add;
1373 
1374 	return 0;
1375 
1376 err_add:
1377 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1378 err_dev:
1379 	class_destroy(mon_bin_class);
1380 err_class:
1381 	return rc;
1382 }
1383 
1384 void mon_bin_exit(void)
1385 {
1386 	cdev_del(&mon_bin_cdev);
1387 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1388 	class_destroy(mon_bin_class);
1389 }
1390