xref: /openbmc/linux/drivers/usb/mon/mon_bin.c (revision 78700c0a)
1 /*
2  * The USB Monitor, inspired by Dave Harding's USBMon.
3  *
4  * This is a binary format reader.
5  *
6  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/export.h>
15 #include <linux/usb.h>
16 #include <linux/poll.h>
17 #include <linux/compat.h>
18 #include <linux/mm.h>
19 #include <linux/scatterlist.h>
20 #include <linux/slab.h>
21 #include <linux/time64.h>
22 
23 #include <asm/uaccess.h>
24 
25 #include "usb_mon.h"
26 
27 /*
28  * Defined by USB 2.0 clause 9.3, table 9.2.
29  */
30 #define SETUP_LEN  8
31 
32 /* ioctl macros */
33 #define MON_IOC_MAGIC 0x92
34 
35 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
36 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
37 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
38 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
39 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
40 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
41 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
42 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
43 /* #9 was MON_IOCT_SETAPI */
44 #define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
45 
46 #ifdef CONFIG_COMPAT
47 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
48 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
49 #define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
50 #endif
51 
52 /*
53  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
54  * But it's all right. Just use a simple way to make sure the chunk is never
55  * smaller than a page.
56  *
57  * N.B. An application does not know our chunk size.
58  *
59  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
60  * page-sized chunks for the time being.
61  */
62 #define CHUNK_SIZE   PAGE_SIZE
63 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
64 
65 /*
66  * The magic limit was calculated so that it allows the monitoring
67  * application to pick data once in two ticks. This way, another application,
68  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
69  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
70  * enormous overhead built into the bus protocol, so we need about 1000 KB.
71  *
72  * This is still too much for most cases, where we just snoop a few
73  * descriptor fetches for enumeration. So, the default is a "reasonable"
74  * amount for systems with HZ=250 and incomplete bus saturation.
75  *
76  * XXX What about multi-megabyte URBs which take minutes to transfer?
77  */
78 #define BUFF_MAX  CHUNK_ALIGN(1200*1024)
79 #define BUFF_DFL   CHUNK_ALIGN(300*1024)
80 #define BUFF_MIN     CHUNK_ALIGN(8*1024)
81 
82 /*
83  * The per-event API header (2 per URB).
84  *
85  * This structure is seen in userland as defined by the documentation.
86  */
87 struct mon_bin_hdr {
88 	u64 id;			/* URB ID - from submission to callback */
89 	unsigned char type;	/* Same as in text API; extensible. */
90 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
91 	unsigned char epnum;	/* Endpoint number and transfer direction */
92 	unsigned char devnum;	/* Device address */
93 	unsigned short busnum;	/* Bus number */
94 	char flag_setup;
95 	char flag_data;
96 	s64 ts_sec;		/* getnstimeofday64 */
97 	s32 ts_usec;		/* getnstimeofday64 */
98 	int status;
99 	unsigned int len_urb;	/* Length of data (submitted or actual) */
100 	unsigned int len_cap;	/* Delivered length */
101 	union {
102 		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
103 		struct iso_rec {
104 			int error_count;
105 			int numdesc;
106 		} iso;
107 	} s;
108 	int interval;
109 	int start_frame;
110 	unsigned int xfer_flags;
111 	unsigned int ndesc;	/* Actual number of ISO descriptors */
112 };
113 
114 /*
115  * ISO vector, packed into the head of data stream.
116  * This has to take 16 bytes to make sure that the end of buffer
117  * wrap is not happening in the middle of a descriptor.
118  */
119 struct mon_bin_isodesc {
120 	int          iso_status;
121 	unsigned int iso_off;
122 	unsigned int iso_len;
123 	u32 _pad;
124 };
125 
126 /* per file statistic */
127 struct mon_bin_stats {
128 	u32 queued;
129 	u32 dropped;
130 };
131 
132 struct mon_bin_get {
133 	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
134 	void __user *data;
135 	size_t alloc;		/* Length of data (can be zero) */
136 };
137 
138 struct mon_bin_mfetch {
139 	u32 __user *offvec;	/* Vector of events fetched */
140 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
141 	u32 nflush;		/* Number of events to flush */
142 };
143 
144 #ifdef CONFIG_COMPAT
145 struct mon_bin_get32 {
146 	u32 hdr32;
147 	u32 data32;
148 	u32 alloc32;
149 };
150 
151 struct mon_bin_mfetch32 {
152         u32 offvec32;
153         u32 nfetch32;
154         u32 nflush32;
155 };
156 #endif
157 
158 /* Having these two values same prevents wrapping of the mon_bin_hdr */
159 #define PKT_ALIGN   64
160 #define PKT_SIZE    64
161 
162 #define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
163 #define PKT_SZ_API1 64	/* API 1 size: extra fields */
164 
165 #define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
166 
167 /* max number of USB bus supported */
168 #define MON_BIN_MAX_MINOR 128
169 
170 /*
171  * The buffer: map of used pages.
172  */
173 struct mon_pgmap {
174 	struct page *pg;
175 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
176 };
177 
178 /*
179  * This gets associated with an open file struct.
180  */
181 struct mon_reader_bin {
182 	/* The buffer: one per open. */
183 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
184 	unsigned int b_size;		/* Current size of the buffer - bytes */
185 	unsigned int b_cnt;		/* Bytes used */
186 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
187 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
188 	struct mon_pgmap *b_vec;	/* The map array */
189 	wait_queue_head_t b_wait;	/* Wait for data here */
190 
191 	struct mutex fetch_lock;	/* Protect b_read, b_out */
192 	int mmap_active;
193 
194 	/* A list of these is needed for "bus 0". Some time later. */
195 	struct mon_reader r;
196 
197 	/* Stats */
198 	unsigned int cnt_lost;
199 };
200 
201 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
202     unsigned int offset)
203 {
204 	return (struct mon_bin_hdr *)
205 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
206 }
207 
208 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
209 
210 static unsigned char xfer_to_pipe[4] = {
211 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
212 };
213 
214 static struct class *mon_bin_class;
215 static dev_t mon_bin_dev0;
216 static struct cdev mon_bin_cdev;
217 
218 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
219     unsigned int offset, unsigned int size);
220 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
221 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
222 static void mon_free_buff(struct mon_pgmap *map, int npages);
223 
224 /*
225  * This is a "chunked memcpy". It does not manipulate any counters.
226  */
227 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
228     unsigned int off, const unsigned char *from, unsigned int length)
229 {
230 	unsigned int step_len;
231 	unsigned char *buf;
232 	unsigned int in_page;
233 
234 	while (length) {
235 		/*
236 		 * Determine step_len.
237 		 */
238 		step_len = length;
239 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
240 		if (in_page < step_len)
241 			step_len = in_page;
242 
243 		/*
244 		 * Copy data and advance pointers.
245 		 */
246 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
247 		memcpy(buf, from, step_len);
248 		if ((off += step_len) >= this->b_size) off = 0;
249 		from += step_len;
250 		length -= step_len;
251 	}
252 	return off;
253 }
254 
255 /*
256  * This is a little worse than the above because it's "chunked copy_to_user".
257  * The return value is an error code, not an offset.
258  */
259 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
260     char __user *to, int length)
261 {
262 	unsigned int step_len;
263 	unsigned char *buf;
264 	unsigned int in_page;
265 
266 	while (length) {
267 		/*
268 		 * Determine step_len.
269 		 */
270 		step_len = length;
271 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
272 		if (in_page < step_len)
273 			step_len = in_page;
274 
275 		/*
276 		 * Copy data and advance pointers.
277 		 */
278 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
279 		if (copy_to_user(to, buf, step_len))
280 			return -EINVAL;
281 		if ((off += step_len) >= this->b_size) off = 0;
282 		to += step_len;
283 		length -= step_len;
284 	}
285 	return 0;
286 }
287 
288 /*
289  * Allocate an (aligned) area in the buffer.
290  * This is called under b_lock.
291  * Returns ~0 on failure.
292  */
293 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
294     unsigned int size)
295 {
296 	unsigned int offset;
297 
298 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
299 	if (rp->b_cnt + size > rp->b_size)
300 		return ~0;
301 	offset = rp->b_in;
302 	rp->b_cnt += size;
303 	if ((rp->b_in += size) >= rp->b_size)
304 		rp->b_in -= rp->b_size;
305 	return offset;
306 }
307 
308 /*
309  * This is the same thing as mon_buff_area_alloc, only it does not allow
310  * buffers to wrap. This is needed by applications which pass references
311  * into mmap-ed buffers up their stacks (libpcap can do that).
312  *
313  * Currently, we always have the header stuck with the data, although
314  * it is not strictly speaking necessary.
315  *
316  * When a buffer would wrap, we place a filler packet to mark the space.
317  */
318 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
319     unsigned int size)
320 {
321 	unsigned int offset;
322 	unsigned int fill_size;
323 
324 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
325 	if (rp->b_cnt + size > rp->b_size)
326 		return ~0;
327 	if (rp->b_in + size > rp->b_size) {
328 		/*
329 		 * This would wrap. Find if we still have space after
330 		 * skipping to the end of the buffer. If we do, place
331 		 * a filler packet and allocate a new packet.
332 		 */
333 		fill_size = rp->b_size - rp->b_in;
334 		if (rp->b_cnt + size + fill_size > rp->b_size)
335 			return ~0;
336 		mon_buff_area_fill(rp, rp->b_in, fill_size);
337 
338 		offset = 0;
339 		rp->b_in = size;
340 		rp->b_cnt += size + fill_size;
341 	} else if (rp->b_in + size == rp->b_size) {
342 		offset = rp->b_in;
343 		rp->b_in = 0;
344 		rp->b_cnt += size;
345 	} else {
346 		offset = rp->b_in;
347 		rp->b_in += size;
348 		rp->b_cnt += size;
349 	}
350 	return offset;
351 }
352 
353 /*
354  * Return a few (kilo-)bytes to the head of the buffer.
355  * This is used if a data fetch fails.
356  */
357 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
358 {
359 
360 	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
361 	rp->b_cnt -= size;
362 	if (rp->b_in < size)
363 		rp->b_in += rp->b_size;
364 	rp->b_in -= size;
365 }
366 
367 /*
368  * This has to be called under both b_lock and fetch_lock, because
369  * it accesses both b_cnt and b_out.
370  */
371 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
372 {
373 
374 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
375 	rp->b_cnt -= size;
376 	if ((rp->b_out += size) >= rp->b_size)
377 		rp->b_out -= rp->b_size;
378 }
379 
380 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
381     unsigned int offset, unsigned int size)
382 {
383 	struct mon_bin_hdr *ep;
384 
385 	ep = MON_OFF2HDR(rp, offset);
386 	memset(ep, 0, PKT_SIZE);
387 	ep->type = '@';
388 	ep->len_cap = size - PKT_SIZE;
389 }
390 
391 static inline char mon_bin_get_setup(unsigned char *setupb,
392     const struct urb *urb, char ev_type)
393 {
394 
395 	if (urb->setup_packet == NULL)
396 		return 'Z';
397 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
398 	return 0;
399 }
400 
401 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
402     unsigned int offset, struct urb *urb, unsigned int length,
403     char *flag)
404 {
405 	int i;
406 	struct scatterlist *sg;
407 	unsigned int this_len;
408 
409 	*flag = 0;
410 	if (urb->num_sgs == 0) {
411 		if (urb->transfer_buffer == NULL) {
412 			*flag = 'Z';
413 			return length;
414 		}
415 		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
416 		length = 0;
417 
418 	} else {
419 		/* If IOMMU coalescing occurred, we cannot trust sg_page */
420 		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
421 			*flag = 'D';
422 			return length;
423 		}
424 
425 		/* Copy up to the first non-addressable segment */
426 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
427 			if (length == 0 || PageHighMem(sg_page(sg)))
428 				break;
429 			this_len = min_t(unsigned int, sg->length, length);
430 			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
431 					this_len);
432 			length -= this_len;
433 		}
434 		if (i == 0)
435 			*flag = 'D';
436 	}
437 
438 	return length;
439 }
440 
441 /*
442  * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
443  * be used to determine the length of the whole contiguous buffer.
444  */
445 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
446     struct urb *urb, unsigned int ndesc)
447 {
448 	struct usb_iso_packet_descriptor *fp;
449 	unsigned int length;
450 
451 	length = 0;
452 	fp = urb->iso_frame_desc;
453 	while (ndesc-- != 0) {
454 		if (fp->actual_length != 0) {
455 			if (fp->offset + fp->actual_length > length)
456 				length = fp->offset + fp->actual_length;
457 		}
458 		fp++;
459 	}
460 	return length;
461 }
462 
463 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
464     unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
465 {
466 	struct mon_bin_isodesc *dp;
467 	struct usb_iso_packet_descriptor *fp;
468 
469 	fp = urb->iso_frame_desc;
470 	while (ndesc-- != 0) {
471 		dp = (struct mon_bin_isodesc *)
472 		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
473 		dp->iso_status = fp->status;
474 		dp->iso_off = fp->offset;
475 		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
476 		dp->_pad = 0;
477 		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
478 			offset = 0;
479 		fp++;
480 	}
481 }
482 
483 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
484     char ev_type, int status)
485 {
486 	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
487 	struct timespec64 ts;
488 	unsigned long flags;
489 	unsigned int urb_length;
490 	unsigned int offset;
491 	unsigned int length;
492 	unsigned int delta;
493 	unsigned int ndesc, lendesc;
494 	unsigned char dir;
495 	struct mon_bin_hdr *ep;
496 	char data_tag = 0;
497 
498 	getnstimeofday64(&ts);
499 
500 	spin_lock_irqsave(&rp->b_lock, flags);
501 
502 	/*
503 	 * Find the maximum allowable length, then allocate space.
504 	 */
505 	urb_length = (ev_type == 'S') ?
506 	    urb->transfer_buffer_length : urb->actual_length;
507 	length = urb_length;
508 
509 	if (usb_endpoint_xfer_isoc(epd)) {
510 		if (urb->number_of_packets < 0) {
511 			ndesc = 0;
512 		} else if (urb->number_of_packets >= ISODESC_MAX) {
513 			ndesc = ISODESC_MAX;
514 		} else {
515 			ndesc = urb->number_of_packets;
516 		}
517 		if (ev_type == 'C' && usb_urb_dir_in(urb))
518 			length = mon_bin_collate_isodesc(rp, urb, ndesc);
519 	} else {
520 		ndesc = 0;
521 	}
522 	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
523 
524 	/* not an issue unless there's a subtle bug in a HCD somewhere */
525 	if (length >= urb->transfer_buffer_length)
526 		length = urb->transfer_buffer_length;
527 
528 	if (length >= rp->b_size/5)
529 		length = rp->b_size/5;
530 
531 	if (usb_urb_dir_in(urb)) {
532 		if (ev_type == 'S') {
533 			length = 0;
534 			data_tag = '<';
535 		}
536 		/* Cannot rely on endpoint number in case of control ep.0 */
537 		dir = USB_DIR_IN;
538 	} else {
539 		if (ev_type == 'C') {
540 			length = 0;
541 			data_tag = '>';
542 		}
543 		dir = 0;
544 	}
545 
546 	if (rp->mmap_active) {
547 		offset = mon_buff_area_alloc_contiguous(rp,
548 						 length + PKT_SIZE + lendesc);
549 	} else {
550 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
551 	}
552 	if (offset == ~0) {
553 		rp->cnt_lost++;
554 		spin_unlock_irqrestore(&rp->b_lock, flags);
555 		return;
556 	}
557 
558 	ep = MON_OFF2HDR(rp, offset);
559 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
560 
561 	/*
562 	 * Fill the allocated area.
563 	 */
564 	memset(ep, 0, PKT_SIZE);
565 	ep->type = ev_type;
566 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
567 	ep->epnum = dir | usb_endpoint_num(epd);
568 	ep->devnum = urb->dev->devnum;
569 	ep->busnum = urb->dev->bus->busnum;
570 	ep->id = (unsigned long) urb;
571 	ep->ts_sec = ts.tv_sec;
572 	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
573 	ep->status = status;
574 	ep->len_urb = urb_length;
575 	ep->len_cap = length + lendesc;
576 	ep->xfer_flags = urb->transfer_flags;
577 
578 	if (usb_endpoint_xfer_int(epd)) {
579 		ep->interval = urb->interval;
580 	} else if (usb_endpoint_xfer_isoc(epd)) {
581 		ep->interval = urb->interval;
582 		ep->start_frame = urb->start_frame;
583 		ep->s.iso.error_count = urb->error_count;
584 		ep->s.iso.numdesc = urb->number_of_packets;
585 	}
586 
587 	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
588 		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
589 	} else {
590 		ep->flag_setup = '-';
591 	}
592 
593 	if (ndesc != 0) {
594 		ep->ndesc = ndesc;
595 		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
596 		if ((offset += lendesc) >= rp->b_size)
597 			offset -= rp->b_size;
598 	}
599 
600 	if (length != 0) {
601 		length = mon_bin_get_data(rp, offset, urb, length,
602 				&ep->flag_data);
603 		if (length > 0) {
604 			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
605 			ep->len_cap -= length;
606 			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
607 			mon_buff_area_shrink(rp, delta);
608 		}
609 	} else {
610 		ep->flag_data = data_tag;
611 	}
612 
613 	spin_unlock_irqrestore(&rp->b_lock, flags);
614 
615 	wake_up(&rp->b_wait);
616 }
617 
618 static void mon_bin_submit(void *data, struct urb *urb)
619 {
620 	struct mon_reader_bin *rp = data;
621 	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
622 }
623 
624 static void mon_bin_complete(void *data, struct urb *urb, int status)
625 {
626 	struct mon_reader_bin *rp = data;
627 	mon_bin_event(rp, urb, 'C', status);
628 }
629 
630 static void mon_bin_error(void *data, struct urb *urb, int error)
631 {
632 	struct mon_reader_bin *rp = data;
633 	struct timespec64 ts;
634 	unsigned long flags;
635 	unsigned int offset;
636 	struct mon_bin_hdr *ep;
637 
638 	getnstimeofday64(&ts);
639 
640 	spin_lock_irqsave(&rp->b_lock, flags);
641 
642 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
643 	if (offset == ~0) {
644 		/* Not incrementing cnt_lost. Just because. */
645 		spin_unlock_irqrestore(&rp->b_lock, flags);
646 		return;
647 	}
648 
649 	ep = MON_OFF2HDR(rp, offset);
650 
651 	memset(ep, 0, PKT_SIZE);
652 	ep->type = 'E';
653 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
654 	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
655 	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
656 	ep->devnum = urb->dev->devnum;
657 	ep->busnum = urb->dev->bus->busnum;
658 	ep->id = (unsigned long) urb;
659 	ep->ts_sec = ts.tv_sec;
660 	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
661 	ep->status = error;
662 
663 	ep->flag_setup = '-';
664 	ep->flag_data = 'E';
665 
666 	spin_unlock_irqrestore(&rp->b_lock, flags);
667 
668 	wake_up(&rp->b_wait);
669 }
670 
671 static int mon_bin_open(struct inode *inode, struct file *file)
672 {
673 	struct mon_bus *mbus;
674 	struct mon_reader_bin *rp;
675 	size_t size;
676 	int rc;
677 
678 	mutex_lock(&mon_lock);
679 	mbus = mon_bus_lookup(iminor(inode));
680 	if (mbus == NULL) {
681 		mutex_unlock(&mon_lock);
682 		return -ENODEV;
683 	}
684 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
685 		printk(KERN_ERR TAG ": consistency error on open\n");
686 		mutex_unlock(&mon_lock);
687 		return -ENODEV;
688 	}
689 
690 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
691 	if (rp == NULL) {
692 		rc = -ENOMEM;
693 		goto err_alloc;
694 	}
695 	spin_lock_init(&rp->b_lock);
696 	init_waitqueue_head(&rp->b_wait);
697 	mutex_init(&rp->fetch_lock);
698 	rp->b_size = BUFF_DFL;
699 
700 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
701 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
702 		rc = -ENOMEM;
703 		goto err_allocvec;
704 	}
705 
706 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
707 		goto err_allocbuff;
708 
709 	rp->r.m_bus = mbus;
710 	rp->r.r_data = rp;
711 	rp->r.rnf_submit = mon_bin_submit;
712 	rp->r.rnf_error = mon_bin_error;
713 	rp->r.rnf_complete = mon_bin_complete;
714 
715 	mon_reader_add(mbus, &rp->r);
716 
717 	file->private_data = rp;
718 	mutex_unlock(&mon_lock);
719 	return 0;
720 
721 err_allocbuff:
722 	kfree(rp->b_vec);
723 err_allocvec:
724 	kfree(rp);
725 err_alloc:
726 	mutex_unlock(&mon_lock);
727 	return rc;
728 }
729 
730 /*
731  * Extract an event from buffer and copy it to user space.
732  * Wait if there is no event ready.
733  * Returns zero or error.
734  */
735 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
736     struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
737     void __user *data, unsigned int nbytes)
738 {
739 	unsigned long flags;
740 	struct mon_bin_hdr *ep;
741 	size_t step_len;
742 	unsigned int offset;
743 	int rc;
744 
745 	mutex_lock(&rp->fetch_lock);
746 
747 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
748 		mutex_unlock(&rp->fetch_lock);
749 		return rc;
750 	}
751 
752 	ep = MON_OFF2HDR(rp, rp->b_out);
753 
754 	if (copy_to_user(hdr, ep, hdrbytes)) {
755 		mutex_unlock(&rp->fetch_lock);
756 		return -EFAULT;
757 	}
758 
759 	step_len = min(ep->len_cap, nbytes);
760 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
761 
762 	if (copy_from_buf(rp, offset, data, step_len)) {
763 		mutex_unlock(&rp->fetch_lock);
764 		return -EFAULT;
765 	}
766 
767 	spin_lock_irqsave(&rp->b_lock, flags);
768 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
769 	spin_unlock_irqrestore(&rp->b_lock, flags);
770 	rp->b_read = 0;
771 
772 	mutex_unlock(&rp->fetch_lock);
773 	return 0;
774 }
775 
776 static int mon_bin_release(struct inode *inode, struct file *file)
777 {
778 	struct mon_reader_bin *rp = file->private_data;
779 	struct mon_bus* mbus = rp->r.m_bus;
780 
781 	mutex_lock(&mon_lock);
782 
783 	if (mbus->nreaders <= 0) {
784 		printk(KERN_ERR TAG ": consistency error on close\n");
785 		mutex_unlock(&mon_lock);
786 		return 0;
787 	}
788 	mon_reader_del(mbus, &rp->r);
789 
790 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
791 	kfree(rp->b_vec);
792 	kfree(rp);
793 
794 	mutex_unlock(&mon_lock);
795 	return 0;
796 }
797 
798 static ssize_t mon_bin_read(struct file *file, char __user *buf,
799     size_t nbytes, loff_t *ppos)
800 {
801 	struct mon_reader_bin *rp = file->private_data;
802 	unsigned int hdrbytes = PKT_SZ_API0;
803 	unsigned long flags;
804 	struct mon_bin_hdr *ep;
805 	unsigned int offset;
806 	size_t step_len;
807 	char *ptr;
808 	ssize_t done = 0;
809 	int rc;
810 
811 	mutex_lock(&rp->fetch_lock);
812 
813 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
814 		mutex_unlock(&rp->fetch_lock);
815 		return rc;
816 	}
817 
818 	ep = MON_OFF2HDR(rp, rp->b_out);
819 
820 	if (rp->b_read < hdrbytes) {
821 		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
822 		ptr = ((char *)ep) + rp->b_read;
823 		if (step_len && copy_to_user(buf, ptr, step_len)) {
824 			mutex_unlock(&rp->fetch_lock);
825 			return -EFAULT;
826 		}
827 		nbytes -= step_len;
828 		buf += step_len;
829 		rp->b_read += step_len;
830 		done += step_len;
831 	}
832 
833 	if (rp->b_read >= hdrbytes) {
834 		step_len = ep->len_cap;
835 		step_len -= rp->b_read - hdrbytes;
836 		if (step_len > nbytes)
837 			step_len = nbytes;
838 		offset = rp->b_out + PKT_SIZE;
839 		offset += rp->b_read - hdrbytes;
840 		if (offset >= rp->b_size)
841 			offset -= rp->b_size;
842 		if (copy_from_buf(rp, offset, buf, step_len)) {
843 			mutex_unlock(&rp->fetch_lock);
844 			return -EFAULT;
845 		}
846 		nbytes -= step_len;
847 		buf += step_len;
848 		rp->b_read += step_len;
849 		done += step_len;
850 	}
851 
852 	/*
853 	 * Check if whole packet was read, and if so, jump to the next one.
854 	 */
855 	if (rp->b_read >= hdrbytes + ep->len_cap) {
856 		spin_lock_irqsave(&rp->b_lock, flags);
857 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
858 		spin_unlock_irqrestore(&rp->b_lock, flags);
859 		rp->b_read = 0;
860 	}
861 
862 	mutex_unlock(&rp->fetch_lock);
863 	return done;
864 }
865 
866 /*
867  * Remove at most nevents from chunked buffer.
868  * Returns the number of removed events.
869  */
870 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
871 {
872 	unsigned long flags;
873 	struct mon_bin_hdr *ep;
874 	int i;
875 
876 	mutex_lock(&rp->fetch_lock);
877 	spin_lock_irqsave(&rp->b_lock, flags);
878 	for (i = 0; i < nevents; ++i) {
879 		if (MON_RING_EMPTY(rp))
880 			break;
881 
882 		ep = MON_OFF2HDR(rp, rp->b_out);
883 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
884 	}
885 	spin_unlock_irqrestore(&rp->b_lock, flags);
886 	rp->b_read = 0;
887 	mutex_unlock(&rp->fetch_lock);
888 	return i;
889 }
890 
891 /*
892  * Fetch at most max event offsets into the buffer and put them into vec.
893  * The events are usually freed later with mon_bin_flush.
894  * Return the effective number of events fetched.
895  */
896 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
897     u32 __user *vec, unsigned int max)
898 {
899 	unsigned int cur_out;
900 	unsigned int bytes, avail;
901 	unsigned int size;
902 	unsigned int nevents;
903 	struct mon_bin_hdr *ep;
904 	unsigned long flags;
905 	int rc;
906 
907 	mutex_lock(&rp->fetch_lock);
908 
909 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
910 		mutex_unlock(&rp->fetch_lock);
911 		return rc;
912 	}
913 
914 	spin_lock_irqsave(&rp->b_lock, flags);
915 	avail = rp->b_cnt;
916 	spin_unlock_irqrestore(&rp->b_lock, flags);
917 
918 	cur_out = rp->b_out;
919 	nevents = 0;
920 	bytes = 0;
921 	while (bytes < avail) {
922 		if (nevents >= max)
923 			break;
924 
925 		ep = MON_OFF2HDR(rp, cur_out);
926 		if (put_user(cur_out, &vec[nevents])) {
927 			mutex_unlock(&rp->fetch_lock);
928 			return -EFAULT;
929 		}
930 
931 		nevents++;
932 		size = ep->len_cap + PKT_SIZE;
933 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
934 		if ((cur_out += size) >= rp->b_size)
935 			cur_out -= rp->b_size;
936 		bytes += size;
937 	}
938 
939 	mutex_unlock(&rp->fetch_lock);
940 	return nevents;
941 }
942 
943 /*
944  * Count events. This is almost the same as the above mon_bin_fetch,
945  * only we do not store offsets into user vector, and we have no limit.
946  */
947 static int mon_bin_queued(struct mon_reader_bin *rp)
948 {
949 	unsigned int cur_out;
950 	unsigned int bytes, avail;
951 	unsigned int size;
952 	unsigned int nevents;
953 	struct mon_bin_hdr *ep;
954 	unsigned long flags;
955 
956 	mutex_lock(&rp->fetch_lock);
957 
958 	spin_lock_irqsave(&rp->b_lock, flags);
959 	avail = rp->b_cnt;
960 	spin_unlock_irqrestore(&rp->b_lock, flags);
961 
962 	cur_out = rp->b_out;
963 	nevents = 0;
964 	bytes = 0;
965 	while (bytes < avail) {
966 		ep = MON_OFF2HDR(rp, cur_out);
967 
968 		nevents++;
969 		size = ep->len_cap + PKT_SIZE;
970 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
971 		if ((cur_out += size) >= rp->b_size)
972 			cur_out -= rp->b_size;
973 		bytes += size;
974 	}
975 
976 	mutex_unlock(&rp->fetch_lock);
977 	return nevents;
978 }
979 
980 /*
981  */
982 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
983 {
984 	struct mon_reader_bin *rp = file->private_data;
985 	// struct mon_bus* mbus = rp->r.m_bus;
986 	int ret = 0;
987 	struct mon_bin_hdr *ep;
988 	unsigned long flags;
989 
990 	switch (cmd) {
991 
992 	case MON_IOCQ_URB_LEN:
993 		/*
994 		 * N.B. This only returns the size of data, without the header.
995 		 */
996 		spin_lock_irqsave(&rp->b_lock, flags);
997 		if (!MON_RING_EMPTY(rp)) {
998 			ep = MON_OFF2HDR(rp, rp->b_out);
999 			ret = ep->len_cap;
1000 		}
1001 		spin_unlock_irqrestore(&rp->b_lock, flags);
1002 		break;
1003 
1004 	case MON_IOCQ_RING_SIZE:
1005 		ret = rp->b_size;
1006 		break;
1007 
1008 	case MON_IOCT_RING_SIZE:
1009 		/*
1010 		 * Changing the buffer size will flush it's contents; the new
1011 		 * buffer is allocated before releasing the old one to be sure
1012 		 * the device will stay functional also in case of memory
1013 		 * pressure.
1014 		 */
1015 		{
1016 		int size;
1017 		struct mon_pgmap *vec;
1018 
1019 		if (arg < BUFF_MIN || arg > BUFF_MAX)
1020 			return -EINVAL;
1021 
1022 		size = CHUNK_ALIGN(arg);
1023 		vec = kzalloc(sizeof(struct mon_pgmap) * (size / CHUNK_SIZE), GFP_KERNEL);
1024 		if (vec == NULL) {
1025 			ret = -ENOMEM;
1026 			break;
1027 		}
1028 
1029 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1030 		if (ret < 0) {
1031 			kfree(vec);
1032 			break;
1033 		}
1034 
1035 		mutex_lock(&rp->fetch_lock);
1036 		spin_lock_irqsave(&rp->b_lock, flags);
1037 		mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1038 		kfree(rp->b_vec);
1039 		rp->b_vec  = vec;
1040 		rp->b_size = size;
1041 		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1042 		rp->cnt_lost = 0;
1043 		spin_unlock_irqrestore(&rp->b_lock, flags);
1044 		mutex_unlock(&rp->fetch_lock);
1045 		}
1046 		break;
1047 
1048 	case MON_IOCH_MFLUSH:
1049 		ret = mon_bin_flush(rp, arg);
1050 		break;
1051 
1052 	case MON_IOCX_GET:
1053 	case MON_IOCX_GETX:
1054 		{
1055 		struct mon_bin_get getb;
1056 
1057 		if (copy_from_user(&getb, (void __user *)arg,
1058 					    sizeof(struct mon_bin_get)))
1059 			return -EFAULT;
1060 
1061 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1062 			return -EINVAL;
1063 		ret = mon_bin_get_event(file, rp, getb.hdr,
1064 		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1065 		    getb.data, (unsigned int)getb.alloc);
1066 		}
1067 		break;
1068 
1069 	case MON_IOCX_MFETCH:
1070 		{
1071 		struct mon_bin_mfetch mfetch;
1072 		struct mon_bin_mfetch __user *uptr;
1073 
1074 		uptr = (struct mon_bin_mfetch __user *)arg;
1075 
1076 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1077 			return -EFAULT;
1078 
1079 		if (mfetch.nflush) {
1080 			ret = mon_bin_flush(rp, mfetch.nflush);
1081 			if (ret < 0)
1082 				return ret;
1083 			if (put_user(ret, &uptr->nflush))
1084 				return -EFAULT;
1085 		}
1086 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1087 		if (ret < 0)
1088 			return ret;
1089 		if (put_user(ret, &uptr->nfetch))
1090 			return -EFAULT;
1091 		ret = 0;
1092 		}
1093 		break;
1094 
1095 	case MON_IOCG_STATS: {
1096 		struct mon_bin_stats __user *sp;
1097 		unsigned int nevents;
1098 		unsigned int ndropped;
1099 
1100 		spin_lock_irqsave(&rp->b_lock, flags);
1101 		ndropped = rp->cnt_lost;
1102 		rp->cnt_lost = 0;
1103 		spin_unlock_irqrestore(&rp->b_lock, flags);
1104 		nevents = mon_bin_queued(rp);
1105 
1106 		sp = (struct mon_bin_stats __user *)arg;
1107 		if (put_user(ndropped, &sp->dropped))
1108 			return -EFAULT;
1109 		if (put_user(nevents, &sp->queued))
1110 			return -EFAULT;
1111 
1112 		}
1113 		break;
1114 
1115 	default:
1116 		return -ENOTTY;
1117 	}
1118 
1119 	return ret;
1120 }
1121 
1122 #ifdef CONFIG_COMPAT
1123 static long mon_bin_compat_ioctl(struct file *file,
1124     unsigned int cmd, unsigned long arg)
1125 {
1126 	struct mon_reader_bin *rp = file->private_data;
1127 	int ret;
1128 
1129 	switch (cmd) {
1130 
1131 	case MON_IOCX_GET32:
1132 	case MON_IOCX_GETX32:
1133 		{
1134 		struct mon_bin_get32 getb;
1135 
1136 		if (copy_from_user(&getb, (void __user *)arg,
1137 					    sizeof(struct mon_bin_get32)))
1138 			return -EFAULT;
1139 
1140 		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1141 		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1142 		    compat_ptr(getb.data32), getb.alloc32);
1143 		if (ret < 0)
1144 			return ret;
1145 		}
1146 		return 0;
1147 
1148 	case MON_IOCX_MFETCH32:
1149 		{
1150 		struct mon_bin_mfetch32 mfetch;
1151 		struct mon_bin_mfetch32 __user *uptr;
1152 
1153 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1154 
1155 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1156 			return -EFAULT;
1157 
1158 		if (mfetch.nflush32) {
1159 			ret = mon_bin_flush(rp, mfetch.nflush32);
1160 			if (ret < 0)
1161 				return ret;
1162 			if (put_user(ret, &uptr->nflush32))
1163 				return -EFAULT;
1164 		}
1165 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1166 		    mfetch.nfetch32);
1167 		if (ret < 0)
1168 			return ret;
1169 		if (put_user(ret, &uptr->nfetch32))
1170 			return -EFAULT;
1171 		}
1172 		return 0;
1173 
1174 	case MON_IOCG_STATS:
1175 		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1176 
1177 	case MON_IOCQ_URB_LEN:
1178 	case MON_IOCQ_RING_SIZE:
1179 	case MON_IOCT_RING_SIZE:
1180 	case MON_IOCH_MFLUSH:
1181 		return mon_bin_ioctl(file, cmd, arg);
1182 
1183 	default:
1184 		;
1185 	}
1186 	return -ENOTTY;
1187 }
1188 #endif /* CONFIG_COMPAT */
1189 
1190 static unsigned int
1191 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1192 {
1193 	struct mon_reader_bin *rp = file->private_data;
1194 	unsigned int mask = 0;
1195 	unsigned long flags;
1196 
1197 	if (file->f_mode & FMODE_READ)
1198 		poll_wait(file, &rp->b_wait, wait);
1199 
1200 	spin_lock_irqsave(&rp->b_lock, flags);
1201 	if (!MON_RING_EMPTY(rp))
1202 		mask |= POLLIN | POLLRDNORM;    /* readable */
1203 	spin_unlock_irqrestore(&rp->b_lock, flags);
1204 	return mask;
1205 }
1206 
1207 /*
1208  * open and close: just keep track of how many times the device is
1209  * mapped, to use the proper memory allocation function.
1210  */
1211 static void mon_bin_vma_open(struct vm_area_struct *vma)
1212 {
1213 	struct mon_reader_bin *rp = vma->vm_private_data;
1214 	rp->mmap_active++;
1215 }
1216 
1217 static void mon_bin_vma_close(struct vm_area_struct *vma)
1218 {
1219 	struct mon_reader_bin *rp = vma->vm_private_data;
1220 	rp->mmap_active--;
1221 }
1222 
1223 /*
1224  * Map ring pages to user space.
1225  */
1226 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1227 {
1228 	struct mon_reader_bin *rp = vma->vm_private_data;
1229 	unsigned long offset, chunk_idx;
1230 	struct page *pageptr;
1231 
1232 	offset = vmf->pgoff << PAGE_SHIFT;
1233 	if (offset >= rp->b_size)
1234 		return VM_FAULT_SIGBUS;
1235 	chunk_idx = offset / CHUNK_SIZE;
1236 	pageptr = rp->b_vec[chunk_idx].pg;
1237 	get_page(pageptr);
1238 	vmf->page = pageptr;
1239 	return 0;
1240 }
1241 
1242 static const struct vm_operations_struct mon_bin_vm_ops = {
1243 	.open =     mon_bin_vma_open,
1244 	.close =    mon_bin_vma_close,
1245 	.fault =    mon_bin_vma_fault,
1246 };
1247 
1248 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1249 {
1250 	/* don't do anything here: "fault" will set up page table entries */
1251 	vma->vm_ops = &mon_bin_vm_ops;
1252 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1253 	vma->vm_private_data = filp->private_data;
1254 	mon_bin_vma_open(vma);
1255 	return 0;
1256 }
1257 
1258 static const struct file_operations mon_fops_binary = {
1259 	.owner =	THIS_MODULE,
1260 	.open =		mon_bin_open,
1261 	.llseek =	no_llseek,
1262 	.read =		mon_bin_read,
1263 	/* .write =	mon_text_write, */
1264 	.poll =		mon_bin_poll,
1265 	.unlocked_ioctl = mon_bin_ioctl,
1266 #ifdef CONFIG_COMPAT
1267 	.compat_ioctl =	mon_bin_compat_ioctl,
1268 #endif
1269 	.release =	mon_bin_release,
1270 	.mmap =		mon_bin_mmap,
1271 };
1272 
1273 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1274 {
1275 	DECLARE_WAITQUEUE(waita, current);
1276 	unsigned long flags;
1277 
1278 	add_wait_queue(&rp->b_wait, &waita);
1279 	set_current_state(TASK_INTERRUPTIBLE);
1280 
1281 	spin_lock_irqsave(&rp->b_lock, flags);
1282 	while (MON_RING_EMPTY(rp)) {
1283 		spin_unlock_irqrestore(&rp->b_lock, flags);
1284 
1285 		if (file->f_flags & O_NONBLOCK) {
1286 			set_current_state(TASK_RUNNING);
1287 			remove_wait_queue(&rp->b_wait, &waita);
1288 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1289 		}
1290 		schedule();
1291 		if (signal_pending(current)) {
1292 			remove_wait_queue(&rp->b_wait, &waita);
1293 			return -EINTR;
1294 		}
1295 		set_current_state(TASK_INTERRUPTIBLE);
1296 
1297 		spin_lock_irqsave(&rp->b_lock, flags);
1298 	}
1299 	spin_unlock_irqrestore(&rp->b_lock, flags);
1300 
1301 	set_current_state(TASK_RUNNING);
1302 	remove_wait_queue(&rp->b_wait, &waita);
1303 	return 0;
1304 }
1305 
1306 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1307 {
1308 	int n;
1309 	unsigned long vaddr;
1310 
1311 	for (n = 0; n < npages; n++) {
1312 		vaddr = get_zeroed_page(GFP_KERNEL);
1313 		if (vaddr == 0) {
1314 			while (n-- != 0)
1315 				free_page((unsigned long) map[n].ptr);
1316 			return -ENOMEM;
1317 		}
1318 		map[n].ptr = (unsigned char *) vaddr;
1319 		map[n].pg = virt_to_page((void *) vaddr);
1320 	}
1321 	return 0;
1322 }
1323 
1324 static void mon_free_buff(struct mon_pgmap *map, int npages)
1325 {
1326 	int n;
1327 
1328 	for (n = 0; n < npages; n++)
1329 		free_page((unsigned long) map[n].ptr);
1330 }
1331 
1332 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1333 {
1334 	struct device *dev;
1335 	unsigned minor = ubus? ubus->busnum: 0;
1336 
1337 	if (minor >= MON_BIN_MAX_MINOR)
1338 		return 0;
1339 
1340 	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1341 			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1342 			    "usbmon%d", minor);
1343 	if (IS_ERR(dev))
1344 		return 0;
1345 
1346 	mbus->classdev = dev;
1347 	return 1;
1348 }
1349 
1350 void mon_bin_del(struct mon_bus *mbus)
1351 {
1352 	device_destroy(mon_bin_class, mbus->classdev->devt);
1353 }
1354 
1355 int __init mon_bin_init(void)
1356 {
1357 	int rc;
1358 
1359 	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1360 	if (IS_ERR(mon_bin_class)) {
1361 		rc = PTR_ERR(mon_bin_class);
1362 		goto err_class;
1363 	}
1364 
1365 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1366 	if (rc < 0)
1367 		goto err_dev;
1368 
1369 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1370 	mon_bin_cdev.owner = THIS_MODULE;
1371 
1372 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1373 	if (rc < 0)
1374 		goto err_add;
1375 
1376 	return 0;
1377 
1378 err_add:
1379 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1380 err_dev:
1381 	class_destroy(mon_bin_class);
1382 err_class:
1383 	return rc;
1384 }
1385 
1386 void mon_bin_exit(void)
1387 {
1388 	cdev_del(&mon_bin_cdev);
1389 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1390 	class_destroy(mon_bin_class);
1391 }
1392