xref: /openbmc/linux/drivers/usb/mon/mon_bin.c (revision 657c45b3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The USB Monitor, inspired by Dave Harding's USBMon.
4  *
5  * This is a binary format reader.
6  *
7  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
8  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/sched/signal.h>
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/cdev.h>
16 #include <linux/export.h>
17 #include <linux/usb.h>
18 #include <linux/poll.h>
19 #include <linux/compat.h>
20 #include <linux/mm.h>
21 #include <linux/scatterlist.h>
22 #include <linux/slab.h>
23 #include <linux/time64.h>
24 
25 #include <linux/uaccess.h>
26 
27 #include "usb_mon.h"
28 
29 /*
30  * Defined by USB 2.0 clause 9.3, table 9.2.
31  */
32 #define SETUP_LEN  8
33 
34 /* ioctl macros */
35 #define MON_IOC_MAGIC 0x92
36 
37 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
38 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
39 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
40 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
41 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
42 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
43 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
44 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
45 /* #9 was MON_IOCT_SETAPI */
46 #define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
47 
48 #ifdef CONFIG_COMPAT
49 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
50 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
51 #define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
52 #endif
53 
54 /*
55  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
56  * But it's all right. Just use a simple way to make sure the chunk is never
57  * smaller than a page.
58  *
59  * N.B. An application does not know our chunk size.
60  *
61  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
62  * page-sized chunks for the time being.
63  */
64 #define CHUNK_SIZE   PAGE_SIZE
65 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
66 
67 /*
68  * The magic limit was calculated so that it allows the monitoring
69  * application to pick data once in two ticks. This way, another application,
70  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
71  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
72  * enormous overhead built into the bus protocol, so we need about 1000 KB.
73  *
74  * This is still too much for most cases, where we just snoop a few
75  * descriptor fetches for enumeration. So, the default is a "reasonable"
76  * amount for systems with HZ=250 and incomplete bus saturation.
77  *
78  * XXX What about multi-megabyte URBs which take minutes to transfer?
79  */
80 #define BUFF_MAX  CHUNK_ALIGN(1200*1024)
81 #define BUFF_DFL   CHUNK_ALIGN(300*1024)
82 #define BUFF_MIN     CHUNK_ALIGN(8*1024)
83 
84 /*
85  * The per-event API header (2 per URB).
86  *
87  * This structure is seen in userland as defined by the documentation.
88  */
89 struct mon_bin_hdr {
90 	u64 id;			/* URB ID - from submission to callback */
91 	unsigned char type;	/* Same as in text API; extensible. */
92 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
93 	unsigned char epnum;	/* Endpoint number and transfer direction */
94 	unsigned char devnum;	/* Device address */
95 	unsigned short busnum;	/* Bus number */
96 	char flag_setup;
97 	char flag_data;
98 	s64 ts_sec;		/* ktime_get_real_ts64 */
99 	s32 ts_usec;		/* ktime_get_real_ts64 */
100 	int status;
101 	unsigned int len_urb;	/* Length of data (submitted or actual) */
102 	unsigned int len_cap;	/* Delivered length */
103 	union {
104 		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
105 		struct iso_rec {
106 			int error_count;
107 			int numdesc;
108 		} iso;
109 	} s;
110 	int interval;
111 	int start_frame;
112 	unsigned int xfer_flags;
113 	unsigned int ndesc;	/* Actual number of ISO descriptors */
114 };
115 
116 /*
117  * ISO vector, packed into the head of data stream.
118  * This has to take 16 bytes to make sure that the end of buffer
119  * wrap is not happening in the middle of a descriptor.
120  */
121 struct mon_bin_isodesc {
122 	int          iso_status;
123 	unsigned int iso_off;
124 	unsigned int iso_len;
125 	u32 _pad;
126 };
127 
128 /* per file statistic */
129 struct mon_bin_stats {
130 	u32 queued;
131 	u32 dropped;
132 };
133 
134 struct mon_bin_get {
135 	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
136 	void __user *data;
137 	size_t alloc;		/* Length of data (can be zero) */
138 };
139 
140 struct mon_bin_mfetch {
141 	u32 __user *offvec;	/* Vector of events fetched */
142 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
143 	u32 nflush;		/* Number of events to flush */
144 };
145 
146 #ifdef CONFIG_COMPAT
147 struct mon_bin_get32 {
148 	u32 hdr32;
149 	u32 data32;
150 	u32 alloc32;
151 };
152 
153 struct mon_bin_mfetch32 {
154         u32 offvec32;
155         u32 nfetch32;
156         u32 nflush32;
157 };
158 #endif
159 
160 /* Having these two values same prevents wrapping of the mon_bin_hdr */
161 #define PKT_ALIGN   64
162 #define PKT_SIZE    64
163 
164 #define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
165 #define PKT_SZ_API1 64	/* API 1 size: extra fields */
166 
167 #define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
168 
169 /* max number of USB bus supported */
170 #define MON_BIN_MAX_MINOR 128
171 
172 /*
173  * The buffer: map of used pages.
174  */
175 struct mon_pgmap {
176 	struct page *pg;
177 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
178 };
179 
180 /*
181  * This gets associated with an open file struct.
182  */
183 struct mon_reader_bin {
184 	/* The buffer: one per open. */
185 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
186 	unsigned int b_size;		/* Current size of the buffer - bytes */
187 	unsigned int b_cnt;		/* Bytes used */
188 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
189 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
190 	struct mon_pgmap *b_vec;	/* The map array */
191 	wait_queue_head_t b_wait;	/* Wait for data here */
192 
193 	struct mutex fetch_lock;	/* Protect b_read, b_out */
194 	int mmap_active;
195 
196 	/* A list of these is needed for "bus 0". Some time later. */
197 	struct mon_reader r;
198 
199 	/* Stats */
200 	unsigned int cnt_lost;
201 };
202 
203 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
204     unsigned int offset)
205 {
206 	return (struct mon_bin_hdr *)
207 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
208 }
209 
210 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
211 
212 static unsigned char xfer_to_pipe[4] = {
213 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
214 };
215 
216 static const struct class mon_bin_class = {
217 	.name = "usbmon",
218 };
219 
220 static dev_t mon_bin_dev0;
221 static struct cdev mon_bin_cdev;
222 
223 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
224     unsigned int offset, unsigned int size);
225 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
226 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
227 static void mon_free_buff(struct mon_pgmap *map, int npages);
228 
229 /*
230  * This is a "chunked memcpy". It does not manipulate any counters.
231  */
232 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
233     unsigned int off, const unsigned char *from, unsigned int length)
234 {
235 	unsigned int step_len;
236 	unsigned char *buf;
237 	unsigned int in_page;
238 
239 	while (length) {
240 		/*
241 		 * Determine step_len.
242 		 */
243 		step_len = length;
244 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
245 		if (in_page < step_len)
246 			step_len = in_page;
247 
248 		/*
249 		 * Copy data and advance pointers.
250 		 */
251 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
252 		memcpy(buf, from, step_len);
253 		if ((off += step_len) >= this->b_size) off = 0;
254 		from += step_len;
255 		length -= step_len;
256 	}
257 	return off;
258 }
259 
260 /*
261  * This is a little worse than the above because it's "chunked copy_to_user".
262  * The return value is an error code, not an offset.
263  */
264 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
265     char __user *to, int length)
266 {
267 	unsigned int step_len;
268 	unsigned char *buf;
269 	unsigned int in_page;
270 
271 	while (length) {
272 		/*
273 		 * Determine step_len.
274 		 */
275 		step_len = length;
276 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
277 		if (in_page < step_len)
278 			step_len = in_page;
279 
280 		/*
281 		 * Copy data and advance pointers.
282 		 */
283 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
284 		if (copy_to_user(to, buf, step_len))
285 			return -EINVAL;
286 		if ((off += step_len) >= this->b_size) off = 0;
287 		to += step_len;
288 		length -= step_len;
289 	}
290 	return 0;
291 }
292 
293 /*
294  * Allocate an (aligned) area in the buffer.
295  * This is called under b_lock.
296  * Returns ~0 on failure.
297  */
298 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
299     unsigned int size)
300 {
301 	unsigned int offset;
302 
303 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
304 	if (rp->b_cnt + size > rp->b_size)
305 		return ~0;
306 	offset = rp->b_in;
307 	rp->b_cnt += size;
308 	if ((rp->b_in += size) >= rp->b_size)
309 		rp->b_in -= rp->b_size;
310 	return offset;
311 }
312 
313 /*
314  * This is the same thing as mon_buff_area_alloc, only it does not allow
315  * buffers to wrap. This is needed by applications which pass references
316  * into mmap-ed buffers up their stacks (libpcap can do that).
317  *
318  * Currently, we always have the header stuck with the data, although
319  * it is not strictly speaking necessary.
320  *
321  * When a buffer would wrap, we place a filler packet to mark the space.
322  */
323 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
324     unsigned int size)
325 {
326 	unsigned int offset;
327 	unsigned int fill_size;
328 
329 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
330 	if (rp->b_cnt + size > rp->b_size)
331 		return ~0;
332 	if (rp->b_in + size > rp->b_size) {
333 		/*
334 		 * This would wrap. Find if we still have space after
335 		 * skipping to the end of the buffer. If we do, place
336 		 * a filler packet and allocate a new packet.
337 		 */
338 		fill_size = rp->b_size - rp->b_in;
339 		if (rp->b_cnt + size + fill_size > rp->b_size)
340 			return ~0;
341 		mon_buff_area_fill(rp, rp->b_in, fill_size);
342 
343 		offset = 0;
344 		rp->b_in = size;
345 		rp->b_cnt += size + fill_size;
346 	} else if (rp->b_in + size == rp->b_size) {
347 		offset = rp->b_in;
348 		rp->b_in = 0;
349 		rp->b_cnt += size;
350 	} else {
351 		offset = rp->b_in;
352 		rp->b_in += size;
353 		rp->b_cnt += size;
354 	}
355 	return offset;
356 }
357 
358 /*
359  * Return a few (kilo-)bytes to the head of the buffer.
360  * This is used if a data fetch fails.
361  */
362 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
363 {
364 
365 	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
366 	rp->b_cnt -= size;
367 	if (rp->b_in < size)
368 		rp->b_in += rp->b_size;
369 	rp->b_in -= size;
370 }
371 
372 /*
373  * This has to be called under both b_lock and fetch_lock, because
374  * it accesses both b_cnt and b_out.
375  */
376 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
377 {
378 
379 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
380 	rp->b_cnt -= size;
381 	if ((rp->b_out += size) >= rp->b_size)
382 		rp->b_out -= rp->b_size;
383 }
384 
385 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
386     unsigned int offset, unsigned int size)
387 {
388 	struct mon_bin_hdr *ep;
389 
390 	ep = MON_OFF2HDR(rp, offset);
391 	memset(ep, 0, PKT_SIZE);
392 	ep->type = '@';
393 	ep->len_cap = size - PKT_SIZE;
394 }
395 
396 static inline char mon_bin_get_setup(unsigned char *setupb,
397     const struct urb *urb, char ev_type)
398 {
399 
400 	if (urb->setup_packet == NULL)
401 		return 'Z';
402 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
403 	return 0;
404 }
405 
406 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
407     unsigned int offset, struct urb *urb, unsigned int length,
408     char *flag)
409 {
410 	int i;
411 	struct scatterlist *sg;
412 	unsigned int this_len;
413 
414 	*flag = 0;
415 	if (urb->num_sgs == 0) {
416 		if (urb->transfer_buffer == NULL) {
417 			*flag = 'Z';
418 			return length;
419 		}
420 		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
421 		length = 0;
422 
423 	} else {
424 		/* If IOMMU coalescing occurred, we cannot trust sg_page */
425 		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
426 			*flag = 'D';
427 			return length;
428 		}
429 
430 		/* Copy up to the first non-addressable segment */
431 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
432 			if (length == 0 || PageHighMem(sg_page(sg)))
433 				break;
434 			this_len = min_t(unsigned int, sg->length, length);
435 			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
436 					this_len);
437 			length -= this_len;
438 		}
439 		if (i == 0)
440 			*flag = 'D';
441 	}
442 
443 	return length;
444 }
445 
446 /*
447  * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
448  * be used to determine the length of the whole contiguous buffer.
449  */
450 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
451     struct urb *urb, unsigned int ndesc)
452 {
453 	struct usb_iso_packet_descriptor *fp;
454 	unsigned int length;
455 
456 	length = 0;
457 	fp = urb->iso_frame_desc;
458 	while (ndesc-- != 0) {
459 		if (fp->actual_length != 0) {
460 			if (fp->offset + fp->actual_length > length)
461 				length = fp->offset + fp->actual_length;
462 		}
463 		fp++;
464 	}
465 	return length;
466 }
467 
468 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
469     unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
470 {
471 	struct mon_bin_isodesc *dp;
472 	struct usb_iso_packet_descriptor *fp;
473 
474 	fp = urb->iso_frame_desc;
475 	while (ndesc-- != 0) {
476 		dp = (struct mon_bin_isodesc *)
477 		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
478 		dp->iso_status = fp->status;
479 		dp->iso_off = fp->offset;
480 		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
481 		dp->_pad = 0;
482 		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
483 			offset = 0;
484 		fp++;
485 	}
486 }
487 
488 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
489     char ev_type, int status)
490 {
491 	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
492 	struct timespec64 ts;
493 	unsigned long flags;
494 	unsigned int urb_length;
495 	unsigned int offset;
496 	unsigned int length;
497 	unsigned int delta;
498 	unsigned int ndesc, lendesc;
499 	unsigned char dir;
500 	struct mon_bin_hdr *ep;
501 	char data_tag = 0;
502 
503 	ktime_get_real_ts64(&ts);
504 
505 	spin_lock_irqsave(&rp->b_lock, flags);
506 
507 	/*
508 	 * Find the maximum allowable length, then allocate space.
509 	 */
510 	urb_length = (ev_type == 'S') ?
511 	    urb->transfer_buffer_length : urb->actual_length;
512 	length = urb_length;
513 
514 	if (usb_endpoint_xfer_isoc(epd)) {
515 		if (urb->number_of_packets < 0) {
516 			ndesc = 0;
517 		} else if (urb->number_of_packets >= ISODESC_MAX) {
518 			ndesc = ISODESC_MAX;
519 		} else {
520 			ndesc = urb->number_of_packets;
521 		}
522 		if (ev_type == 'C' && usb_urb_dir_in(urb))
523 			length = mon_bin_collate_isodesc(rp, urb, ndesc);
524 	} else {
525 		ndesc = 0;
526 	}
527 	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
528 
529 	/* not an issue unless there's a subtle bug in a HCD somewhere */
530 	if (length >= urb->transfer_buffer_length)
531 		length = urb->transfer_buffer_length;
532 
533 	if (length >= rp->b_size/5)
534 		length = rp->b_size/5;
535 
536 	if (usb_urb_dir_in(urb)) {
537 		if (ev_type == 'S') {
538 			length = 0;
539 			data_tag = '<';
540 		}
541 		/* Cannot rely on endpoint number in case of control ep.0 */
542 		dir = USB_DIR_IN;
543 	} else {
544 		if (ev_type == 'C') {
545 			length = 0;
546 			data_tag = '>';
547 		}
548 		dir = 0;
549 	}
550 
551 	if (rp->mmap_active) {
552 		offset = mon_buff_area_alloc_contiguous(rp,
553 						 length + PKT_SIZE + lendesc);
554 	} else {
555 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
556 	}
557 	if (offset == ~0) {
558 		rp->cnt_lost++;
559 		spin_unlock_irqrestore(&rp->b_lock, flags);
560 		return;
561 	}
562 
563 	ep = MON_OFF2HDR(rp, offset);
564 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
565 
566 	/*
567 	 * Fill the allocated area.
568 	 */
569 	memset(ep, 0, PKT_SIZE);
570 	ep->type = ev_type;
571 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
572 	ep->epnum = dir | usb_endpoint_num(epd);
573 	ep->devnum = urb->dev->devnum;
574 	ep->busnum = urb->dev->bus->busnum;
575 	ep->id = (unsigned long) urb;
576 	ep->ts_sec = ts.tv_sec;
577 	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
578 	ep->status = status;
579 	ep->len_urb = urb_length;
580 	ep->len_cap = length + lendesc;
581 	ep->xfer_flags = urb->transfer_flags;
582 
583 	if (usb_endpoint_xfer_int(epd)) {
584 		ep->interval = urb->interval;
585 	} else if (usb_endpoint_xfer_isoc(epd)) {
586 		ep->interval = urb->interval;
587 		ep->start_frame = urb->start_frame;
588 		ep->s.iso.error_count = urb->error_count;
589 		ep->s.iso.numdesc = urb->number_of_packets;
590 	}
591 
592 	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
593 		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
594 	} else {
595 		ep->flag_setup = '-';
596 	}
597 
598 	if (ndesc != 0) {
599 		ep->ndesc = ndesc;
600 		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
601 		if ((offset += lendesc) >= rp->b_size)
602 			offset -= rp->b_size;
603 	}
604 
605 	if (length != 0) {
606 		length = mon_bin_get_data(rp, offset, urb, length,
607 				&ep->flag_data);
608 		if (length > 0) {
609 			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
610 			ep->len_cap -= length;
611 			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
612 			mon_buff_area_shrink(rp, delta);
613 		}
614 	} else {
615 		ep->flag_data = data_tag;
616 	}
617 
618 	spin_unlock_irqrestore(&rp->b_lock, flags);
619 
620 	wake_up(&rp->b_wait);
621 }
622 
623 static void mon_bin_submit(void *data, struct urb *urb)
624 {
625 	struct mon_reader_bin *rp = data;
626 	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
627 }
628 
629 static void mon_bin_complete(void *data, struct urb *urb, int status)
630 {
631 	struct mon_reader_bin *rp = data;
632 	mon_bin_event(rp, urb, 'C', status);
633 }
634 
635 static void mon_bin_error(void *data, struct urb *urb, int error)
636 {
637 	struct mon_reader_bin *rp = data;
638 	struct timespec64 ts;
639 	unsigned long flags;
640 	unsigned int offset;
641 	struct mon_bin_hdr *ep;
642 
643 	ktime_get_real_ts64(&ts);
644 
645 	spin_lock_irqsave(&rp->b_lock, flags);
646 
647 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
648 	if (offset == ~0) {
649 		/* Not incrementing cnt_lost. Just because. */
650 		spin_unlock_irqrestore(&rp->b_lock, flags);
651 		return;
652 	}
653 
654 	ep = MON_OFF2HDR(rp, offset);
655 
656 	memset(ep, 0, PKT_SIZE);
657 	ep->type = 'E';
658 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
659 	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
660 	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
661 	ep->devnum = urb->dev->devnum;
662 	ep->busnum = urb->dev->bus->busnum;
663 	ep->id = (unsigned long) urb;
664 	ep->ts_sec = ts.tv_sec;
665 	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
666 	ep->status = error;
667 
668 	ep->flag_setup = '-';
669 	ep->flag_data = 'E';
670 
671 	spin_unlock_irqrestore(&rp->b_lock, flags);
672 
673 	wake_up(&rp->b_wait);
674 }
675 
676 static int mon_bin_open(struct inode *inode, struct file *file)
677 {
678 	struct mon_bus *mbus;
679 	struct mon_reader_bin *rp;
680 	size_t size;
681 	int rc;
682 
683 	mutex_lock(&mon_lock);
684 	mbus = mon_bus_lookup(iminor(inode));
685 	if (mbus == NULL) {
686 		mutex_unlock(&mon_lock);
687 		return -ENODEV;
688 	}
689 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
690 		printk(KERN_ERR TAG ": consistency error on open\n");
691 		mutex_unlock(&mon_lock);
692 		return -ENODEV;
693 	}
694 
695 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
696 	if (rp == NULL) {
697 		rc = -ENOMEM;
698 		goto err_alloc;
699 	}
700 	spin_lock_init(&rp->b_lock);
701 	init_waitqueue_head(&rp->b_wait);
702 	mutex_init(&rp->fetch_lock);
703 	rp->b_size = BUFF_DFL;
704 
705 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
706 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
707 		rc = -ENOMEM;
708 		goto err_allocvec;
709 	}
710 
711 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
712 		goto err_allocbuff;
713 
714 	rp->r.m_bus = mbus;
715 	rp->r.r_data = rp;
716 	rp->r.rnf_submit = mon_bin_submit;
717 	rp->r.rnf_error = mon_bin_error;
718 	rp->r.rnf_complete = mon_bin_complete;
719 
720 	mon_reader_add(mbus, &rp->r);
721 
722 	file->private_data = rp;
723 	mutex_unlock(&mon_lock);
724 	return 0;
725 
726 err_allocbuff:
727 	kfree(rp->b_vec);
728 err_allocvec:
729 	kfree(rp);
730 err_alloc:
731 	mutex_unlock(&mon_lock);
732 	return rc;
733 }
734 
735 /*
736  * Extract an event from buffer and copy it to user space.
737  * Wait if there is no event ready.
738  * Returns zero or error.
739  */
740 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
741     struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
742     void __user *data, unsigned int nbytes)
743 {
744 	unsigned long flags;
745 	struct mon_bin_hdr *ep;
746 	size_t step_len;
747 	unsigned int offset;
748 	int rc;
749 
750 	mutex_lock(&rp->fetch_lock);
751 
752 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
753 		mutex_unlock(&rp->fetch_lock);
754 		return rc;
755 	}
756 
757 	ep = MON_OFF2HDR(rp, rp->b_out);
758 
759 	if (copy_to_user(hdr, ep, hdrbytes)) {
760 		mutex_unlock(&rp->fetch_lock);
761 		return -EFAULT;
762 	}
763 
764 	step_len = min(ep->len_cap, nbytes);
765 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
766 
767 	if (copy_from_buf(rp, offset, data, step_len)) {
768 		mutex_unlock(&rp->fetch_lock);
769 		return -EFAULT;
770 	}
771 
772 	spin_lock_irqsave(&rp->b_lock, flags);
773 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
774 	spin_unlock_irqrestore(&rp->b_lock, flags);
775 	rp->b_read = 0;
776 
777 	mutex_unlock(&rp->fetch_lock);
778 	return 0;
779 }
780 
781 static int mon_bin_release(struct inode *inode, struct file *file)
782 {
783 	struct mon_reader_bin *rp = file->private_data;
784 	struct mon_bus* mbus = rp->r.m_bus;
785 
786 	mutex_lock(&mon_lock);
787 
788 	if (mbus->nreaders <= 0) {
789 		printk(KERN_ERR TAG ": consistency error on close\n");
790 		mutex_unlock(&mon_lock);
791 		return 0;
792 	}
793 	mon_reader_del(mbus, &rp->r);
794 
795 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
796 	kfree(rp->b_vec);
797 	kfree(rp);
798 
799 	mutex_unlock(&mon_lock);
800 	return 0;
801 }
802 
803 static ssize_t mon_bin_read(struct file *file, char __user *buf,
804     size_t nbytes, loff_t *ppos)
805 {
806 	struct mon_reader_bin *rp = file->private_data;
807 	unsigned int hdrbytes = PKT_SZ_API0;
808 	unsigned long flags;
809 	struct mon_bin_hdr *ep;
810 	unsigned int offset;
811 	size_t step_len;
812 	char *ptr;
813 	ssize_t done = 0;
814 	int rc;
815 
816 	mutex_lock(&rp->fetch_lock);
817 
818 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
819 		mutex_unlock(&rp->fetch_lock);
820 		return rc;
821 	}
822 
823 	ep = MON_OFF2HDR(rp, rp->b_out);
824 
825 	if (rp->b_read < hdrbytes) {
826 		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
827 		ptr = ((char *)ep) + rp->b_read;
828 		if (step_len && copy_to_user(buf, ptr, step_len)) {
829 			mutex_unlock(&rp->fetch_lock);
830 			return -EFAULT;
831 		}
832 		nbytes -= step_len;
833 		buf += step_len;
834 		rp->b_read += step_len;
835 		done += step_len;
836 	}
837 
838 	if (rp->b_read >= hdrbytes) {
839 		step_len = ep->len_cap;
840 		step_len -= rp->b_read - hdrbytes;
841 		if (step_len > nbytes)
842 			step_len = nbytes;
843 		offset = rp->b_out + PKT_SIZE;
844 		offset += rp->b_read - hdrbytes;
845 		if (offset >= rp->b_size)
846 			offset -= rp->b_size;
847 		if (copy_from_buf(rp, offset, buf, step_len)) {
848 			mutex_unlock(&rp->fetch_lock);
849 			return -EFAULT;
850 		}
851 		nbytes -= step_len;
852 		buf += step_len;
853 		rp->b_read += step_len;
854 		done += step_len;
855 	}
856 
857 	/*
858 	 * Check if whole packet was read, and if so, jump to the next one.
859 	 */
860 	if (rp->b_read >= hdrbytes + ep->len_cap) {
861 		spin_lock_irqsave(&rp->b_lock, flags);
862 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
863 		spin_unlock_irqrestore(&rp->b_lock, flags);
864 		rp->b_read = 0;
865 	}
866 
867 	mutex_unlock(&rp->fetch_lock);
868 	return done;
869 }
870 
871 /*
872  * Remove at most nevents from chunked buffer.
873  * Returns the number of removed events.
874  */
875 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
876 {
877 	unsigned long flags;
878 	struct mon_bin_hdr *ep;
879 	int i;
880 
881 	mutex_lock(&rp->fetch_lock);
882 	spin_lock_irqsave(&rp->b_lock, flags);
883 	for (i = 0; i < nevents; ++i) {
884 		if (MON_RING_EMPTY(rp))
885 			break;
886 
887 		ep = MON_OFF2HDR(rp, rp->b_out);
888 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
889 	}
890 	spin_unlock_irqrestore(&rp->b_lock, flags);
891 	rp->b_read = 0;
892 	mutex_unlock(&rp->fetch_lock);
893 	return i;
894 }
895 
896 /*
897  * Fetch at most max event offsets into the buffer and put them into vec.
898  * The events are usually freed later with mon_bin_flush.
899  * Return the effective number of events fetched.
900  */
901 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
902     u32 __user *vec, unsigned int max)
903 {
904 	unsigned int cur_out;
905 	unsigned int bytes, avail;
906 	unsigned int size;
907 	unsigned int nevents;
908 	struct mon_bin_hdr *ep;
909 	unsigned long flags;
910 	int rc;
911 
912 	mutex_lock(&rp->fetch_lock);
913 
914 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
915 		mutex_unlock(&rp->fetch_lock);
916 		return rc;
917 	}
918 
919 	spin_lock_irqsave(&rp->b_lock, flags);
920 	avail = rp->b_cnt;
921 	spin_unlock_irqrestore(&rp->b_lock, flags);
922 
923 	cur_out = rp->b_out;
924 	nevents = 0;
925 	bytes = 0;
926 	while (bytes < avail) {
927 		if (nevents >= max)
928 			break;
929 
930 		ep = MON_OFF2HDR(rp, cur_out);
931 		if (put_user(cur_out, &vec[nevents])) {
932 			mutex_unlock(&rp->fetch_lock);
933 			return -EFAULT;
934 		}
935 
936 		nevents++;
937 		size = ep->len_cap + PKT_SIZE;
938 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
939 		if ((cur_out += size) >= rp->b_size)
940 			cur_out -= rp->b_size;
941 		bytes += size;
942 	}
943 
944 	mutex_unlock(&rp->fetch_lock);
945 	return nevents;
946 }
947 
948 /*
949  * Count events. This is almost the same as the above mon_bin_fetch,
950  * only we do not store offsets into user vector, and we have no limit.
951  */
952 static int mon_bin_queued(struct mon_reader_bin *rp)
953 {
954 	unsigned int cur_out;
955 	unsigned int bytes, avail;
956 	unsigned int size;
957 	unsigned int nevents;
958 	struct mon_bin_hdr *ep;
959 	unsigned long flags;
960 
961 	mutex_lock(&rp->fetch_lock);
962 
963 	spin_lock_irqsave(&rp->b_lock, flags);
964 	avail = rp->b_cnt;
965 	spin_unlock_irqrestore(&rp->b_lock, flags);
966 
967 	cur_out = rp->b_out;
968 	nevents = 0;
969 	bytes = 0;
970 	while (bytes < avail) {
971 		ep = MON_OFF2HDR(rp, cur_out);
972 
973 		nevents++;
974 		size = ep->len_cap + PKT_SIZE;
975 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
976 		if ((cur_out += size) >= rp->b_size)
977 			cur_out -= rp->b_size;
978 		bytes += size;
979 	}
980 
981 	mutex_unlock(&rp->fetch_lock);
982 	return nevents;
983 }
984 
985 /*
986  */
987 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
988 {
989 	struct mon_reader_bin *rp = file->private_data;
990 	// struct mon_bus* mbus = rp->r.m_bus;
991 	int ret = 0;
992 	struct mon_bin_hdr *ep;
993 	unsigned long flags;
994 
995 	switch (cmd) {
996 
997 	case MON_IOCQ_URB_LEN:
998 		/*
999 		 * N.B. This only returns the size of data, without the header.
1000 		 */
1001 		spin_lock_irqsave(&rp->b_lock, flags);
1002 		if (!MON_RING_EMPTY(rp)) {
1003 			ep = MON_OFF2HDR(rp, rp->b_out);
1004 			ret = ep->len_cap;
1005 		}
1006 		spin_unlock_irqrestore(&rp->b_lock, flags);
1007 		break;
1008 
1009 	case MON_IOCQ_RING_SIZE:
1010 		mutex_lock(&rp->fetch_lock);
1011 		ret = rp->b_size;
1012 		mutex_unlock(&rp->fetch_lock);
1013 		break;
1014 
1015 	case MON_IOCT_RING_SIZE:
1016 		/*
1017 		 * Changing the buffer size will flush it's contents; the new
1018 		 * buffer is allocated before releasing the old one to be sure
1019 		 * the device will stay functional also in case of memory
1020 		 * pressure.
1021 		 */
1022 		{
1023 		int size;
1024 		struct mon_pgmap *vec;
1025 
1026 		if (arg < BUFF_MIN || arg > BUFF_MAX)
1027 			return -EINVAL;
1028 
1029 		size = CHUNK_ALIGN(arg);
1030 		vec = kcalloc(size / CHUNK_SIZE, sizeof(struct mon_pgmap),
1031 			      GFP_KERNEL);
1032 		if (vec == NULL) {
1033 			ret = -ENOMEM;
1034 			break;
1035 		}
1036 
1037 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1038 		if (ret < 0) {
1039 			kfree(vec);
1040 			break;
1041 		}
1042 
1043 		mutex_lock(&rp->fetch_lock);
1044 		spin_lock_irqsave(&rp->b_lock, flags);
1045 		if (rp->mmap_active) {
1046 			mon_free_buff(vec, size/CHUNK_SIZE);
1047 			kfree(vec);
1048 			ret = -EBUSY;
1049 		} else {
1050 			mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1051 			kfree(rp->b_vec);
1052 			rp->b_vec  = vec;
1053 			rp->b_size = size;
1054 			rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1055 			rp->cnt_lost = 0;
1056 		}
1057 		spin_unlock_irqrestore(&rp->b_lock, flags);
1058 		mutex_unlock(&rp->fetch_lock);
1059 		}
1060 		break;
1061 
1062 	case MON_IOCH_MFLUSH:
1063 		ret = mon_bin_flush(rp, arg);
1064 		break;
1065 
1066 	case MON_IOCX_GET:
1067 	case MON_IOCX_GETX:
1068 		{
1069 		struct mon_bin_get getb;
1070 
1071 		if (copy_from_user(&getb, (void __user *)arg,
1072 					    sizeof(struct mon_bin_get)))
1073 			return -EFAULT;
1074 
1075 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1076 			return -EINVAL;
1077 		ret = mon_bin_get_event(file, rp, getb.hdr,
1078 		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1079 		    getb.data, (unsigned int)getb.alloc);
1080 		}
1081 		break;
1082 
1083 	case MON_IOCX_MFETCH:
1084 		{
1085 		struct mon_bin_mfetch mfetch;
1086 		struct mon_bin_mfetch __user *uptr;
1087 
1088 		uptr = (struct mon_bin_mfetch __user *)arg;
1089 
1090 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1091 			return -EFAULT;
1092 
1093 		if (mfetch.nflush) {
1094 			ret = mon_bin_flush(rp, mfetch.nflush);
1095 			if (ret < 0)
1096 				return ret;
1097 			if (put_user(ret, &uptr->nflush))
1098 				return -EFAULT;
1099 		}
1100 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1101 		if (ret < 0)
1102 			return ret;
1103 		if (put_user(ret, &uptr->nfetch))
1104 			return -EFAULT;
1105 		ret = 0;
1106 		}
1107 		break;
1108 
1109 	case MON_IOCG_STATS: {
1110 		struct mon_bin_stats __user *sp;
1111 		unsigned int nevents;
1112 		unsigned int ndropped;
1113 
1114 		spin_lock_irqsave(&rp->b_lock, flags);
1115 		ndropped = rp->cnt_lost;
1116 		rp->cnt_lost = 0;
1117 		spin_unlock_irqrestore(&rp->b_lock, flags);
1118 		nevents = mon_bin_queued(rp);
1119 
1120 		sp = (struct mon_bin_stats __user *)arg;
1121 		if (put_user(ndropped, &sp->dropped))
1122 			return -EFAULT;
1123 		if (put_user(nevents, &sp->queued))
1124 			return -EFAULT;
1125 
1126 		}
1127 		break;
1128 
1129 	default:
1130 		return -ENOTTY;
1131 	}
1132 
1133 	return ret;
1134 }
1135 
1136 #ifdef CONFIG_COMPAT
1137 static long mon_bin_compat_ioctl(struct file *file,
1138     unsigned int cmd, unsigned long arg)
1139 {
1140 	struct mon_reader_bin *rp = file->private_data;
1141 	int ret;
1142 
1143 	switch (cmd) {
1144 
1145 	case MON_IOCX_GET32:
1146 	case MON_IOCX_GETX32:
1147 		{
1148 		struct mon_bin_get32 getb;
1149 
1150 		if (copy_from_user(&getb, (void __user *)arg,
1151 					    sizeof(struct mon_bin_get32)))
1152 			return -EFAULT;
1153 
1154 		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1155 		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1156 		    compat_ptr(getb.data32), getb.alloc32);
1157 		if (ret < 0)
1158 			return ret;
1159 		}
1160 		return 0;
1161 
1162 	case MON_IOCX_MFETCH32:
1163 		{
1164 		struct mon_bin_mfetch32 mfetch;
1165 		struct mon_bin_mfetch32 __user *uptr;
1166 
1167 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1168 
1169 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1170 			return -EFAULT;
1171 
1172 		if (mfetch.nflush32) {
1173 			ret = mon_bin_flush(rp, mfetch.nflush32);
1174 			if (ret < 0)
1175 				return ret;
1176 			if (put_user(ret, &uptr->nflush32))
1177 				return -EFAULT;
1178 		}
1179 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1180 		    mfetch.nfetch32);
1181 		if (ret < 0)
1182 			return ret;
1183 		if (put_user(ret, &uptr->nfetch32))
1184 			return -EFAULT;
1185 		}
1186 		return 0;
1187 
1188 	case MON_IOCG_STATS:
1189 		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1190 
1191 	case MON_IOCQ_URB_LEN:
1192 	case MON_IOCQ_RING_SIZE:
1193 	case MON_IOCT_RING_SIZE:
1194 	case MON_IOCH_MFLUSH:
1195 		return mon_bin_ioctl(file, cmd, arg);
1196 
1197 	default:
1198 		;
1199 	}
1200 	return -ENOTTY;
1201 }
1202 #endif /* CONFIG_COMPAT */
1203 
1204 static __poll_t
1205 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1206 {
1207 	struct mon_reader_bin *rp = file->private_data;
1208 	__poll_t mask = 0;
1209 	unsigned long flags;
1210 
1211 	if (file->f_mode & FMODE_READ)
1212 		poll_wait(file, &rp->b_wait, wait);
1213 
1214 	spin_lock_irqsave(&rp->b_lock, flags);
1215 	if (!MON_RING_EMPTY(rp))
1216 		mask |= EPOLLIN | EPOLLRDNORM;    /* readable */
1217 	spin_unlock_irqrestore(&rp->b_lock, flags);
1218 	return mask;
1219 }
1220 
1221 /*
1222  * open and close: just keep track of how many times the device is
1223  * mapped, to use the proper memory allocation function.
1224  */
1225 static void mon_bin_vma_open(struct vm_area_struct *vma)
1226 {
1227 	struct mon_reader_bin *rp = vma->vm_private_data;
1228 	unsigned long flags;
1229 
1230 	spin_lock_irqsave(&rp->b_lock, flags);
1231 	rp->mmap_active++;
1232 	spin_unlock_irqrestore(&rp->b_lock, flags);
1233 }
1234 
1235 static void mon_bin_vma_close(struct vm_area_struct *vma)
1236 {
1237 	unsigned long flags;
1238 
1239 	struct mon_reader_bin *rp = vma->vm_private_data;
1240 	spin_lock_irqsave(&rp->b_lock, flags);
1241 	rp->mmap_active--;
1242 	spin_unlock_irqrestore(&rp->b_lock, flags);
1243 }
1244 
1245 /*
1246  * Map ring pages to user space.
1247  */
1248 static vm_fault_t mon_bin_vma_fault(struct vm_fault *vmf)
1249 {
1250 	struct mon_reader_bin *rp = vmf->vma->vm_private_data;
1251 	unsigned long offset, chunk_idx;
1252 	struct page *pageptr;
1253 
1254 	offset = vmf->pgoff << PAGE_SHIFT;
1255 	if (offset >= rp->b_size)
1256 		return VM_FAULT_SIGBUS;
1257 	chunk_idx = offset / CHUNK_SIZE;
1258 	pageptr = rp->b_vec[chunk_idx].pg;
1259 	get_page(pageptr);
1260 	vmf->page = pageptr;
1261 	return 0;
1262 }
1263 
1264 static const struct vm_operations_struct mon_bin_vm_ops = {
1265 	.open =     mon_bin_vma_open,
1266 	.close =    mon_bin_vma_close,
1267 	.fault =    mon_bin_vma_fault,
1268 };
1269 
1270 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1271 {
1272 	/* don't do anything here: "fault" will set up page table entries */
1273 	vma->vm_ops = &mon_bin_vm_ops;
1274 
1275 	if (vma->vm_flags & VM_WRITE)
1276 		return -EPERM;
1277 
1278 	vm_flags_mod(vma, VM_DONTEXPAND | VM_DONTDUMP, VM_MAYWRITE);
1279 	vma->vm_private_data = filp->private_data;
1280 	mon_bin_vma_open(vma);
1281 	return 0;
1282 }
1283 
1284 static const struct file_operations mon_fops_binary = {
1285 	.owner =	THIS_MODULE,
1286 	.open =		mon_bin_open,
1287 	.llseek =	no_llseek,
1288 	.read =		mon_bin_read,
1289 	/* .write =	mon_text_write, */
1290 	.poll =		mon_bin_poll,
1291 	.unlocked_ioctl = mon_bin_ioctl,
1292 #ifdef CONFIG_COMPAT
1293 	.compat_ioctl =	mon_bin_compat_ioctl,
1294 #endif
1295 	.release =	mon_bin_release,
1296 	.mmap =		mon_bin_mmap,
1297 };
1298 
1299 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1300 {
1301 	DECLARE_WAITQUEUE(waita, current);
1302 	unsigned long flags;
1303 
1304 	add_wait_queue(&rp->b_wait, &waita);
1305 	set_current_state(TASK_INTERRUPTIBLE);
1306 
1307 	spin_lock_irqsave(&rp->b_lock, flags);
1308 	while (MON_RING_EMPTY(rp)) {
1309 		spin_unlock_irqrestore(&rp->b_lock, flags);
1310 
1311 		if (file->f_flags & O_NONBLOCK) {
1312 			set_current_state(TASK_RUNNING);
1313 			remove_wait_queue(&rp->b_wait, &waita);
1314 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1315 		}
1316 		schedule();
1317 		if (signal_pending(current)) {
1318 			remove_wait_queue(&rp->b_wait, &waita);
1319 			return -EINTR;
1320 		}
1321 		set_current_state(TASK_INTERRUPTIBLE);
1322 
1323 		spin_lock_irqsave(&rp->b_lock, flags);
1324 	}
1325 	spin_unlock_irqrestore(&rp->b_lock, flags);
1326 
1327 	set_current_state(TASK_RUNNING);
1328 	remove_wait_queue(&rp->b_wait, &waita);
1329 	return 0;
1330 }
1331 
1332 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1333 {
1334 	int n;
1335 	unsigned long vaddr;
1336 
1337 	for (n = 0; n < npages; n++) {
1338 		vaddr = get_zeroed_page(GFP_KERNEL);
1339 		if (vaddr == 0) {
1340 			while (n-- != 0)
1341 				free_page((unsigned long) map[n].ptr);
1342 			return -ENOMEM;
1343 		}
1344 		map[n].ptr = (unsigned char *) vaddr;
1345 		map[n].pg = virt_to_page((void *) vaddr);
1346 	}
1347 	return 0;
1348 }
1349 
1350 static void mon_free_buff(struct mon_pgmap *map, int npages)
1351 {
1352 	int n;
1353 
1354 	for (n = 0; n < npages; n++)
1355 		free_page((unsigned long) map[n].ptr);
1356 }
1357 
1358 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1359 {
1360 	struct device *dev;
1361 	unsigned minor = ubus? ubus->busnum: 0;
1362 
1363 	if (minor >= MON_BIN_MAX_MINOR)
1364 		return 0;
1365 
1366 	dev = device_create(&mon_bin_class, ubus ? ubus->controller : NULL,
1367 			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1368 			    "usbmon%d", minor);
1369 	if (IS_ERR(dev))
1370 		return 0;
1371 
1372 	mbus->classdev = dev;
1373 	return 1;
1374 }
1375 
1376 void mon_bin_del(struct mon_bus *mbus)
1377 {
1378 	device_destroy(&mon_bin_class, mbus->classdev->devt);
1379 }
1380 
1381 int __init mon_bin_init(void)
1382 {
1383 	int rc;
1384 
1385 	rc = class_register(&mon_bin_class);
1386 	if (rc)
1387 		goto err_class;
1388 
1389 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1390 	if (rc < 0)
1391 		goto err_dev;
1392 
1393 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1394 	mon_bin_cdev.owner = THIS_MODULE;
1395 
1396 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1397 	if (rc < 0)
1398 		goto err_add;
1399 
1400 	return 0;
1401 
1402 err_add:
1403 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1404 err_dev:
1405 	class_unregister(&mon_bin_class);
1406 err_class:
1407 	return rc;
1408 }
1409 
1410 void mon_bin_exit(void)
1411 {
1412 	cdev_del(&mon_bin_cdev);
1413 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1414 	class_unregister(&mon_bin_class);
1415 }
1416