xref: /openbmc/linux/drivers/usb/mon/mon_bin.c (revision 471c604d)
1 /*
2  * The USB Monitor, inspired by Dave Harding's USBMon.
3  *
4  * This is a binary format reader.
5  *
6  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/smp_lock.h>
19 
20 #include <asm/uaccess.h>
21 
22 #include "usb_mon.h"
23 
24 /*
25  * Defined by USB 2.0 clause 9.3, table 9.2.
26  */
27 #define SETUP_LEN  8
28 
29 /* ioctl macros */
30 #define MON_IOC_MAGIC 0x92
31 
32 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
33 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
34 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
35 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
36 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
37 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
38 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
39 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
40 /* #9 was MON_IOCT_SETAPI */
41 #define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
42 
43 #ifdef CONFIG_COMPAT
44 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
45 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
46 #define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
47 #endif
48 
49 /*
50  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
51  * But it's all right. Just use a simple way to make sure the chunk is never
52  * smaller than a page.
53  *
54  * N.B. An application does not know our chunk size.
55  *
56  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
57  * page-sized chunks for the time being.
58  */
59 #define CHUNK_SIZE   PAGE_SIZE
60 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
61 
62 /*
63  * The magic limit was calculated so that it allows the monitoring
64  * application to pick data once in two ticks. This way, another application,
65  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
66  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
67  * enormous overhead built into the bus protocol, so we need about 1000 KB.
68  *
69  * This is still too much for most cases, where we just snoop a few
70  * descriptor fetches for enumeration. So, the default is a "reasonable"
71  * amount for systems with HZ=250 and incomplete bus saturation.
72  *
73  * XXX What about multi-megabyte URBs which take minutes to transfer?
74  */
75 #define BUFF_MAX  CHUNK_ALIGN(1200*1024)
76 #define BUFF_DFL   CHUNK_ALIGN(300*1024)
77 #define BUFF_MIN     CHUNK_ALIGN(8*1024)
78 
79 /*
80  * The per-event API header (2 per URB).
81  *
82  * This structure is seen in userland as defined by the documentation.
83  */
84 struct mon_bin_hdr {
85 	u64 id;			/* URB ID - from submission to callback */
86 	unsigned char type;	/* Same as in text API; extensible. */
87 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
88 	unsigned char epnum;	/* Endpoint number and transfer direction */
89 	unsigned char devnum;	/* Device address */
90 	unsigned short busnum;	/* Bus number */
91 	char flag_setup;
92 	char flag_data;
93 	s64 ts_sec;		/* gettimeofday */
94 	s32 ts_usec;		/* gettimeofday */
95 	int status;
96 	unsigned int len_urb;	/* Length of data (submitted or actual) */
97 	unsigned int len_cap;	/* Delivered length */
98 	union {
99 		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
100 		struct iso_rec {
101 			int error_count;
102 			int numdesc;
103 		} iso;
104 	} s;
105 	int interval;
106 	int start_frame;
107 	unsigned int xfer_flags;
108 	unsigned int ndesc;	/* Actual number of ISO descriptors */
109 };
110 
111 /*
112  * ISO vector, packed into the head of data stream.
113  * This has to take 16 bytes to make sure that the end of buffer
114  * wrap is not happening in the middle of a descriptor.
115  */
116 struct mon_bin_isodesc {
117 	int          iso_status;
118 	unsigned int iso_off;
119 	unsigned int iso_len;
120 	u32 _pad;
121 };
122 
123 /* per file statistic */
124 struct mon_bin_stats {
125 	u32 queued;
126 	u32 dropped;
127 };
128 
129 struct mon_bin_get {
130 	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
131 	void __user *data;
132 	size_t alloc;		/* Length of data (can be zero) */
133 };
134 
135 struct mon_bin_mfetch {
136 	u32 __user *offvec;	/* Vector of events fetched */
137 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
138 	u32 nflush;		/* Number of events to flush */
139 };
140 
141 #ifdef CONFIG_COMPAT
142 struct mon_bin_get32 {
143 	u32 hdr32;
144 	u32 data32;
145 	u32 alloc32;
146 };
147 
148 struct mon_bin_mfetch32 {
149         u32 offvec32;
150         u32 nfetch32;
151         u32 nflush32;
152 };
153 #endif
154 
155 /* Having these two values same prevents wrapping of the mon_bin_hdr */
156 #define PKT_ALIGN   64
157 #define PKT_SIZE    64
158 
159 #define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
160 #define PKT_SZ_API1 64	/* API 1 size: extra fields */
161 
162 #define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
163 
164 /* max number of USB bus supported */
165 #define MON_BIN_MAX_MINOR 128
166 
167 /*
168  * The buffer: map of used pages.
169  */
170 struct mon_pgmap {
171 	struct page *pg;
172 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
173 };
174 
175 /*
176  * This gets associated with an open file struct.
177  */
178 struct mon_reader_bin {
179 	/* The buffer: one per open. */
180 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
181 	unsigned int b_size;		/* Current size of the buffer - bytes */
182 	unsigned int b_cnt;		/* Bytes used */
183 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
184 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
185 	struct mon_pgmap *b_vec;	/* The map array */
186 	wait_queue_head_t b_wait;	/* Wait for data here */
187 
188 	struct mutex fetch_lock;	/* Protect b_read, b_out */
189 	int mmap_active;
190 
191 	/* A list of these is needed for "bus 0". Some time later. */
192 	struct mon_reader r;
193 
194 	/* Stats */
195 	unsigned int cnt_lost;
196 };
197 
198 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
199     unsigned int offset)
200 {
201 	return (struct mon_bin_hdr *)
202 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
203 }
204 
205 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
206 
207 static unsigned char xfer_to_pipe[4] = {
208 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
209 };
210 
211 static struct class *mon_bin_class;
212 static dev_t mon_bin_dev0;
213 static struct cdev mon_bin_cdev;
214 
215 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
216     unsigned int offset, unsigned int size);
217 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
218 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
219 static void mon_free_buff(struct mon_pgmap *map, int npages);
220 
221 /*
222  * This is a "chunked memcpy". It does not manipulate any counters.
223  * But it returns the new offset for repeated application.
224  */
225 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
226     unsigned int off, const unsigned char *from, unsigned int length)
227 {
228 	unsigned int step_len;
229 	unsigned char *buf;
230 	unsigned int in_page;
231 
232 	while (length) {
233 		/*
234 		 * Determine step_len.
235 		 */
236 		step_len = length;
237 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
238 		if (in_page < step_len)
239 			step_len = in_page;
240 
241 		/*
242 		 * Copy data and advance pointers.
243 		 */
244 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
245 		memcpy(buf, from, step_len);
246 		if ((off += step_len) >= this->b_size) off = 0;
247 		from += step_len;
248 		length -= step_len;
249 	}
250 	return off;
251 }
252 
253 /*
254  * This is a little worse than the above because it's "chunked copy_to_user".
255  * The return value is an error code, not an offset.
256  */
257 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
258     char __user *to, int length)
259 {
260 	unsigned int step_len;
261 	unsigned char *buf;
262 	unsigned int in_page;
263 
264 	while (length) {
265 		/*
266 		 * Determine step_len.
267 		 */
268 		step_len = length;
269 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
270 		if (in_page < step_len)
271 			step_len = in_page;
272 
273 		/*
274 		 * Copy data and advance pointers.
275 		 */
276 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
277 		if (copy_to_user(to, buf, step_len))
278 			return -EINVAL;
279 		if ((off += step_len) >= this->b_size) off = 0;
280 		to += step_len;
281 		length -= step_len;
282 	}
283 	return 0;
284 }
285 
286 /*
287  * Allocate an (aligned) area in the buffer.
288  * This is called under b_lock.
289  * Returns ~0 on failure.
290  */
291 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
292     unsigned int size)
293 {
294 	unsigned int offset;
295 
296 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
297 	if (rp->b_cnt + size > rp->b_size)
298 		return ~0;
299 	offset = rp->b_in;
300 	rp->b_cnt += size;
301 	if ((rp->b_in += size) >= rp->b_size)
302 		rp->b_in -= rp->b_size;
303 	return offset;
304 }
305 
306 /*
307  * This is the same thing as mon_buff_area_alloc, only it does not allow
308  * buffers to wrap. This is needed by applications which pass references
309  * into mmap-ed buffers up their stacks (libpcap can do that).
310  *
311  * Currently, we always have the header stuck with the data, although
312  * it is not strictly speaking necessary.
313  *
314  * When a buffer would wrap, we place a filler packet to mark the space.
315  */
316 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
317     unsigned int size)
318 {
319 	unsigned int offset;
320 	unsigned int fill_size;
321 
322 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
323 	if (rp->b_cnt + size > rp->b_size)
324 		return ~0;
325 	if (rp->b_in + size > rp->b_size) {
326 		/*
327 		 * This would wrap. Find if we still have space after
328 		 * skipping to the end of the buffer. If we do, place
329 		 * a filler packet and allocate a new packet.
330 		 */
331 		fill_size = rp->b_size - rp->b_in;
332 		if (rp->b_cnt + size + fill_size > rp->b_size)
333 			return ~0;
334 		mon_buff_area_fill(rp, rp->b_in, fill_size);
335 
336 		offset = 0;
337 		rp->b_in = size;
338 		rp->b_cnt += size + fill_size;
339 	} else if (rp->b_in + size == rp->b_size) {
340 		offset = rp->b_in;
341 		rp->b_in = 0;
342 		rp->b_cnt += size;
343 	} else {
344 		offset = rp->b_in;
345 		rp->b_in += size;
346 		rp->b_cnt += size;
347 	}
348 	return offset;
349 }
350 
351 /*
352  * Return a few (kilo-)bytes to the head of the buffer.
353  * This is used if a DMA fetch fails.
354  */
355 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
356 {
357 
358 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
359 	rp->b_cnt -= size;
360 	if (rp->b_in < size)
361 		rp->b_in += rp->b_size;
362 	rp->b_in -= size;
363 }
364 
365 /*
366  * This has to be called under both b_lock and fetch_lock, because
367  * it accesses both b_cnt and b_out.
368  */
369 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
370 {
371 
372 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
373 	rp->b_cnt -= size;
374 	if ((rp->b_out += size) >= rp->b_size)
375 		rp->b_out -= rp->b_size;
376 }
377 
378 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
379     unsigned int offset, unsigned int size)
380 {
381 	struct mon_bin_hdr *ep;
382 
383 	ep = MON_OFF2HDR(rp, offset);
384 	memset(ep, 0, PKT_SIZE);
385 	ep->type = '@';
386 	ep->len_cap = size - PKT_SIZE;
387 }
388 
389 static inline char mon_bin_get_setup(unsigned char *setupb,
390     const struct urb *urb, char ev_type)
391 {
392 
393 	if (urb->setup_packet == NULL)
394 		return 'Z';
395 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
396 	return 0;
397 }
398 
399 static char mon_bin_get_data(const struct mon_reader_bin *rp,
400     unsigned int offset, struct urb *urb, unsigned int length)
401 {
402 
403 	if (urb->dev->bus->uses_dma &&
404 	    (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
405 		mon_dmapeek_vec(rp, offset, urb->transfer_dma, length);
406 		return 0;
407 	}
408 
409 	if (urb->transfer_buffer == NULL)
410 		return 'Z';
411 
412 	mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
413 	return 0;
414 }
415 
416 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
417     unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
418 {
419 	struct mon_bin_isodesc *dp;
420 	struct usb_iso_packet_descriptor *fp;
421 
422 	fp = urb->iso_frame_desc;
423 	while (ndesc-- != 0) {
424 		dp = (struct mon_bin_isodesc *)
425 		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
426 		dp->iso_status = fp->status;
427 		dp->iso_off = fp->offset;
428 		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
429 		dp->_pad = 0;
430 		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
431 			offset = 0;
432 		fp++;
433 	}
434 }
435 
436 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
437     char ev_type, int status)
438 {
439 	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
440 	unsigned long flags;
441 	struct timeval ts;
442 	unsigned int urb_length;
443 	unsigned int offset;
444 	unsigned int length;
445 	unsigned int ndesc, lendesc;
446 	unsigned char dir;
447 	struct mon_bin_hdr *ep;
448 	char data_tag = 0;
449 
450 	do_gettimeofday(&ts);
451 
452 	spin_lock_irqsave(&rp->b_lock, flags);
453 
454 	/*
455 	 * Find the maximum allowable length, then allocate space.
456 	 */
457 	if (usb_endpoint_xfer_isoc(epd)) {
458 		if (urb->number_of_packets < 0) {
459 			ndesc = 0;
460 		} else if (urb->number_of_packets >= ISODESC_MAX) {
461 			ndesc = ISODESC_MAX;
462 		} else {
463 			ndesc = urb->number_of_packets;
464 		}
465 	} else {
466 		ndesc = 0;
467 	}
468 	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
469 
470 	urb_length = (ev_type == 'S') ?
471 	    urb->transfer_buffer_length : urb->actual_length;
472 	length = urb_length;
473 
474 	if (length >= rp->b_size/5)
475 		length = rp->b_size/5;
476 
477 	if (usb_urb_dir_in(urb)) {
478 		if (ev_type == 'S') {
479 			length = 0;
480 			data_tag = '<';
481 		}
482 		/* Cannot rely on endpoint number in case of control ep.0 */
483 		dir = USB_DIR_IN;
484 	} else {
485 		if (ev_type == 'C') {
486 			length = 0;
487 			data_tag = '>';
488 		}
489 		dir = 0;
490 	}
491 
492 	if (rp->mmap_active) {
493 		offset = mon_buff_area_alloc_contiguous(rp,
494 						 length + PKT_SIZE + lendesc);
495 	} else {
496 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
497 	}
498 	if (offset == ~0) {
499 		rp->cnt_lost++;
500 		spin_unlock_irqrestore(&rp->b_lock, flags);
501 		return;
502 	}
503 
504 	ep = MON_OFF2HDR(rp, offset);
505 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
506 
507 	/*
508 	 * Fill the allocated area.
509 	 */
510 	memset(ep, 0, PKT_SIZE);
511 	ep->type = ev_type;
512 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
513 	ep->epnum = dir | usb_endpoint_num(epd);
514 	ep->devnum = urb->dev->devnum;
515 	ep->busnum = urb->dev->bus->busnum;
516 	ep->id = (unsigned long) urb;
517 	ep->ts_sec = ts.tv_sec;
518 	ep->ts_usec = ts.tv_usec;
519 	ep->status = status;
520 	ep->len_urb = urb_length;
521 	ep->len_cap = length + lendesc;
522 	ep->xfer_flags = urb->transfer_flags;
523 
524 	if (usb_endpoint_xfer_int(epd)) {
525 		ep->interval = urb->interval;
526 	} else if (usb_endpoint_xfer_isoc(epd)) {
527 		ep->interval = urb->interval;
528 		ep->start_frame = urb->start_frame;
529 		ep->s.iso.error_count = urb->error_count;
530 		ep->s.iso.numdesc = urb->number_of_packets;
531 	}
532 
533 	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
534 		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
535 	} else {
536 		ep->flag_setup = '-';
537 	}
538 
539 	if (ndesc != 0) {
540 		ep->ndesc = ndesc;
541 		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
542 		if ((offset += lendesc) >= rp->b_size)
543 			offset -= rp->b_size;
544 	}
545 
546 	if (length != 0) {
547 		ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
548 		if (ep->flag_data != 0) {	/* Yes, it's 0x00, not '0' */
549 			ep->len_cap = 0;
550 			mon_buff_area_shrink(rp, length);
551 		}
552 	} else {
553 		ep->flag_data = data_tag;
554 	}
555 
556 	spin_unlock_irqrestore(&rp->b_lock, flags);
557 
558 	wake_up(&rp->b_wait);
559 }
560 
561 static void mon_bin_submit(void *data, struct urb *urb)
562 {
563 	struct mon_reader_bin *rp = data;
564 	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
565 }
566 
567 static void mon_bin_complete(void *data, struct urb *urb, int status)
568 {
569 	struct mon_reader_bin *rp = data;
570 	mon_bin_event(rp, urb, 'C', status);
571 }
572 
573 static void mon_bin_error(void *data, struct urb *urb, int error)
574 {
575 	struct mon_reader_bin *rp = data;
576 	unsigned long flags;
577 	unsigned int offset;
578 	struct mon_bin_hdr *ep;
579 
580 	spin_lock_irqsave(&rp->b_lock, flags);
581 
582 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
583 	if (offset == ~0) {
584 		/* Not incrementing cnt_lost. Just because. */
585 		spin_unlock_irqrestore(&rp->b_lock, flags);
586 		return;
587 	}
588 
589 	ep = MON_OFF2HDR(rp, offset);
590 
591 	memset(ep, 0, PKT_SIZE);
592 	ep->type = 'E';
593 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
594 	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
595 	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
596 	ep->devnum = urb->dev->devnum;
597 	ep->busnum = urb->dev->bus->busnum;
598 	ep->id = (unsigned long) urb;
599 	ep->status = error;
600 
601 	ep->flag_setup = '-';
602 	ep->flag_data = 'E';
603 
604 	spin_unlock_irqrestore(&rp->b_lock, flags);
605 
606 	wake_up(&rp->b_wait);
607 }
608 
609 static int mon_bin_open(struct inode *inode, struct file *file)
610 {
611 	struct mon_bus *mbus;
612 	struct mon_reader_bin *rp;
613 	size_t size;
614 	int rc;
615 
616 	lock_kernel();
617 	mutex_lock(&mon_lock);
618 	if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
619 		mutex_unlock(&mon_lock);
620 		unlock_kernel();
621 		return -ENODEV;
622 	}
623 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
624 		printk(KERN_ERR TAG ": consistency error on open\n");
625 		mutex_unlock(&mon_lock);
626 		unlock_kernel();
627 		return -ENODEV;
628 	}
629 
630 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
631 	if (rp == NULL) {
632 		rc = -ENOMEM;
633 		goto err_alloc;
634 	}
635 	spin_lock_init(&rp->b_lock);
636 	init_waitqueue_head(&rp->b_wait);
637 	mutex_init(&rp->fetch_lock);
638 
639 	rp->b_size = BUFF_DFL;
640 
641 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
642 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
643 		rc = -ENOMEM;
644 		goto err_allocvec;
645 	}
646 
647 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
648 		goto err_allocbuff;
649 
650 	rp->r.m_bus = mbus;
651 	rp->r.r_data = rp;
652 	rp->r.rnf_submit = mon_bin_submit;
653 	rp->r.rnf_error = mon_bin_error;
654 	rp->r.rnf_complete = mon_bin_complete;
655 
656 	mon_reader_add(mbus, &rp->r);
657 
658 	file->private_data = rp;
659 	mutex_unlock(&mon_lock);
660 	unlock_kernel();
661 	return 0;
662 
663 err_allocbuff:
664 	kfree(rp->b_vec);
665 err_allocvec:
666 	kfree(rp);
667 err_alloc:
668 	mutex_unlock(&mon_lock);
669 	unlock_kernel();
670 	return rc;
671 }
672 
673 /*
674  * Extract an event from buffer and copy it to user space.
675  * Wait if there is no event ready.
676  * Returns zero or error.
677  */
678 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
679     struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
680     void __user *data, unsigned int nbytes)
681 {
682 	unsigned long flags;
683 	struct mon_bin_hdr *ep;
684 	size_t step_len;
685 	unsigned int offset;
686 	int rc;
687 
688 	mutex_lock(&rp->fetch_lock);
689 
690 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
691 		mutex_unlock(&rp->fetch_lock);
692 		return rc;
693 	}
694 
695 	ep = MON_OFF2HDR(rp, rp->b_out);
696 
697 	if (copy_to_user(hdr, ep, hdrbytes)) {
698 		mutex_unlock(&rp->fetch_lock);
699 		return -EFAULT;
700 	}
701 
702 	step_len = min(ep->len_cap, nbytes);
703 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
704 
705 	if (copy_from_buf(rp, offset, data, step_len)) {
706 		mutex_unlock(&rp->fetch_lock);
707 		return -EFAULT;
708 	}
709 
710 	spin_lock_irqsave(&rp->b_lock, flags);
711 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
712 	spin_unlock_irqrestore(&rp->b_lock, flags);
713 	rp->b_read = 0;
714 
715 	mutex_unlock(&rp->fetch_lock);
716 	return 0;
717 }
718 
719 static int mon_bin_release(struct inode *inode, struct file *file)
720 {
721 	struct mon_reader_bin *rp = file->private_data;
722 	struct mon_bus* mbus = rp->r.m_bus;
723 
724 	mutex_lock(&mon_lock);
725 
726 	if (mbus->nreaders <= 0) {
727 		printk(KERN_ERR TAG ": consistency error on close\n");
728 		mutex_unlock(&mon_lock);
729 		return 0;
730 	}
731 	mon_reader_del(mbus, &rp->r);
732 
733 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
734 	kfree(rp->b_vec);
735 	kfree(rp);
736 
737 	mutex_unlock(&mon_lock);
738 	return 0;
739 }
740 
741 static ssize_t mon_bin_read(struct file *file, char __user *buf,
742     size_t nbytes, loff_t *ppos)
743 {
744 	struct mon_reader_bin *rp = file->private_data;
745 	unsigned int hdrbytes = PKT_SZ_API0;
746 	unsigned long flags;
747 	struct mon_bin_hdr *ep;
748 	unsigned int offset;
749 	size_t step_len;
750 	char *ptr;
751 	ssize_t done = 0;
752 	int rc;
753 
754 	mutex_lock(&rp->fetch_lock);
755 
756 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
757 		mutex_unlock(&rp->fetch_lock);
758 		return rc;
759 	}
760 
761 	ep = MON_OFF2HDR(rp, rp->b_out);
762 
763 	if (rp->b_read < hdrbytes) {
764 		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
765 		ptr = ((char *)ep) + rp->b_read;
766 		if (step_len && copy_to_user(buf, ptr, step_len)) {
767 			mutex_unlock(&rp->fetch_lock);
768 			return -EFAULT;
769 		}
770 		nbytes -= step_len;
771 		buf += step_len;
772 		rp->b_read += step_len;
773 		done += step_len;
774 	}
775 
776 	if (rp->b_read >= hdrbytes) {
777 		step_len = ep->len_cap;
778 		step_len -= rp->b_read - hdrbytes;
779 		if (step_len > nbytes)
780 			step_len = nbytes;
781 		offset = rp->b_out + PKT_SIZE;
782 		offset += rp->b_read - hdrbytes;
783 		if (offset >= rp->b_size)
784 			offset -= rp->b_size;
785 		if (copy_from_buf(rp, offset, buf, step_len)) {
786 			mutex_unlock(&rp->fetch_lock);
787 			return -EFAULT;
788 		}
789 		nbytes -= step_len;
790 		buf += step_len;
791 		rp->b_read += step_len;
792 		done += step_len;
793 	}
794 
795 	/*
796 	 * Check if whole packet was read, and if so, jump to the next one.
797 	 */
798 	if (rp->b_read >= hdrbytes + ep->len_cap) {
799 		spin_lock_irqsave(&rp->b_lock, flags);
800 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
801 		spin_unlock_irqrestore(&rp->b_lock, flags);
802 		rp->b_read = 0;
803 	}
804 
805 	mutex_unlock(&rp->fetch_lock);
806 	return done;
807 }
808 
809 /*
810  * Remove at most nevents from chunked buffer.
811  * Returns the number of removed events.
812  */
813 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
814 {
815 	unsigned long flags;
816 	struct mon_bin_hdr *ep;
817 	int i;
818 
819 	mutex_lock(&rp->fetch_lock);
820 	spin_lock_irqsave(&rp->b_lock, flags);
821 	for (i = 0; i < nevents; ++i) {
822 		if (MON_RING_EMPTY(rp))
823 			break;
824 
825 		ep = MON_OFF2HDR(rp, rp->b_out);
826 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
827 	}
828 	spin_unlock_irqrestore(&rp->b_lock, flags);
829 	rp->b_read = 0;
830 	mutex_unlock(&rp->fetch_lock);
831 	return i;
832 }
833 
834 /*
835  * Fetch at most max event offsets into the buffer and put them into vec.
836  * The events are usually freed later with mon_bin_flush.
837  * Return the effective number of events fetched.
838  */
839 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
840     u32 __user *vec, unsigned int max)
841 {
842 	unsigned int cur_out;
843 	unsigned int bytes, avail;
844 	unsigned int size;
845 	unsigned int nevents;
846 	struct mon_bin_hdr *ep;
847 	unsigned long flags;
848 	int rc;
849 
850 	mutex_lock(&rp->fetch_lock);
851 
852 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
853 		mutex_unlock(&rp->fetch_lock);
854 		return rc;
855 	}
856 
857 	spin_lock_irqsave(&rp->b_lock, flags);
858 	avail = rp->b_cnt;
859 	spin_unlock_irqrestore(&rp->b_lock, flags);
860 
861 	cur_out = rp->b_out;
862 	nevents = 0;
863 	bytes = 0;
864 	while (bytes < avail) {
865 		if (nevents >= max)
866 			break;
867 
868 		ep = MON_OFF2HDR(rp, cur_out);
869 		if (put_user(cur_out, &vec[nevents])) {
870 			mutex_unlock(&rp->fetch_lock);
871 			return -EFAULT;
872 		}
873 
874 		nevents++;
875 		size = ep->len_cap + PKT_SIZE;
876 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
877 		if ((cur_out += size) >= rp->b_size)
878 			cur_out -= rp->b_size;
879 		bytes += size;
880 	}
881 
882 	mutex_unlock(&rp->fetch_lock);
883 	return nevents;
884 }
885 
886 /*
887  * Count events. This is almost the same as the above mon_bin_fetch,
888  * only we do not store offsets into user vector, and we have no limit.
889  */
890 static int mon_bin_queued(struct mon_reader_bin *rp)
891 {
892 	unsigned int cur_out;
893 	unsigned int bytes, avail;
894 	unsigned int size;
895 	unsigned int nevents;
896 	struct mon_bin_hdr *ep;
897 	unsigned long flags;
898 
899 	mutex_lock(&rp->fetch_lock);
900 
901 	spin_lock_irqsave(&rp->b_lock, flags);
902 	avail = rp->b_cnt;
903 	spin_unlock_irqrestore(&rp->b_lock, flags);
904 
905 	cur_out = rp->b_out;
906 	nevents = 0;
907 	bytes = 0;
908 	while (bytes < avail) {
909 		ep = MON_OFF2HDR(rp, cur_out);
910 
911 		nevents++;
912 		size = ep->len_cap + PKT_SIZE;
913 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
914 		if ((cur_out += size) >= rp->b_size)
915 			cur_out -= rp->b_size;
916 		bytes += size;
917 	}
918 
919 	mutex_unlock(&rp->fetch_lock);
920 	return nevents;
921 }
922 
923 /*
924  */
925 static int mon_bin_ioctl(struct inode *inode, struct file *file,
926     unsigned int cmd, unsigned long arg)
927 {
928 	struct mon_reader_bin *rp = file->private_data;
929 	// struct mon_bus* mbus = rp->r.m_bus;
930 	int ret = 0;
931 	struct mon_bin_hdr *ep;
932 	unsigned long flags;
933 
934 	switch (cmd) {
935 
936 	case MON_IOCQ_URB_LEN:
937 		/*
938 		 * N.B. This only returns the size of data, without the header.
939 		 */
940 		spin_lock_irqsave(&rp->b_lock, flags);
941 		if (!MON_RING_EMPTY(rp)) {
942 			ep = MON_OFF2HDR(rp, rp->b_out);
943 			ret = ep->len_cap;
944 		}
945 		spin_unlock_irqrestore(&rp->b_lock, flags);
946 		break;
947 
948 	case MON_IOCQ_RING_SIZE:
949 		ret = rp->b_size;
950 		break;
951 
952 	case MON_IOCT_RING_SIZE:
953 		/*
954 		 * Changing the buffer size will flush it's contents; the new
955 		 * buffer is allocated before releasing the old one to be sure
956 		 * the device will stay functional also in case of memory
957 		 * pressure.
958 		 */
959 		{
960 		int size;
961 		struct mon_pgmap *vec;
962 
963 		if (arg < BUFF_MIN || arg > BUFF_MAX)
964 			return -EINVAL;
965 
966 		size = CHUNK_ALIGN(arg);
967 		if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
968 		    GFP_KERNEL)) == NULL) {
969 			ret = -ENOMEM;
970 			break;
971 		}
972 
973 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
974 		if (ret < 0) {
975 			kfree(vec);
976 			break;
977 		}
978 
979 		mutex_lock(&rp->fetch_lock);
980 		spin_lock_irqsave(&rp->b_lock, flags);
981 		mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
982 		kfree(rp->b_vec);
983 		rp->b_vec  = vec;
984 		rp->b_size = size;
985 		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
986 		rp->cnt_lost = 0;
987 		spin_unlock_irqrestore(&rp->b_lock, flags);
988 		mutex_unlock(&rp->fetch_lock);
989 		}
990 		break;
991 
992 	case MON_IOCH_MFLUSH:
993 		ret = mon_bin_flush(rp, arg);
994 		break;
995 
996 	case MON_IOCX_GET:
997 	case MON_IOCX_GETX:
998 		{
999 		struct mon_bin_get getb;
1000 
1001 		if (copy_from_user(&getb, (void __user *)arg,
1002 					    sizeof(struct mon_bin_get)))
1003 			return -EFAULT;
1004 
1005 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1006 			return -EINVAL;
1007 		ret = mon_bin_get_event(file, rp, getb.hdr,
1008 		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1009 		    getb.data, (unsigned int)getb.alloc);
1010 		}
1011 		break;
1012 
1013 	case MON_IOCX_MFETCH:
1014 		{
1015 		struct mon_bin_mfetch mfetch;
1016 		struct mon_bin_mfetch __user *uptr;
1017 
1018 		uptr = (struct mon_bin_mfetch __user *)arg;
1019 
1020 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1021 			return -EFAULT;
1022 
1023 		if (mfetch.nflush) {
1024 			ret = mon_bin_flush(rp, mfetch.nflush);
1025 			if (ret < 0)
1026 				return ret;
1027 			if (put_user(ret, &uptr->nflush))
1028 				return -EFAULT;
1029 		}
1030 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1031 		if (ret < 0)
1032 			return ret;
1033 		if (put_user(ret, &uptr->nfetch))
1034 			return -EFAULT;
1035 		ret = 0;
1036 		}
1037 		break;
1038 
1039 	case MON_IOCG_STATS: {
1040 		struct mon_bin_stats __user *sp;
1041 		unsigned int nevents;
1042 		unsigned int ndropped;
1043 
1044 		spin_lock_irqsave(&rp->b_lock, flags);
1045 		ndropped = rp->cnt_lost;
1046 		rp->cnt_lost = 0;
1047 		spin_unlock_irqrestore(&rp->b_lock, flags);
1048 		nevents = mon_bin_queued(rp);
1049 
1050 		sp = (struct mon_bin_stats __user *)arg;
1051 		if (put_user(rp->cnt_lost, &sp->dropped))
1052 			return -EFAULT;
1053 		if (put_user(nevents, &sp->queued))
1054 			return -EFAULT;
1055 
1056 		}
1057 		break;
1058 
1059 	default:
1060 		return -ENOTTY;
1061 	}
1062 
1063 	return ret;
1064 }
1065 
1066 #ifdef CONFIG_COMPAT
1067 static long mon_bin_compat_ioctl(struct file *file,
1068     unsigned int cmd, unsigned long arg)
1069 {
1070 	struct mon_reader_bin *rp = file->private_data;
1071 	int ret;
1072 
1073 	switch (cmd) {
1074 
1075 	case MON_IOCX_GET32:
1076 	case MON_IOCX_GETX32:
1077 		{
1078 		struct mon_bin_get32 getb;
1079 
1080 		if (copy_from_user(&getb, (void __user *)arg,
1081 					    sizeof(struct mon_bin_get32)))
1082 			return -EFAULT;
1083 
1084 		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1085 		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1086 		    compat_ptr(getb.data32), getb.alloc32);
1087 		if (ret < 0)
1088 			return ret;
1089 		}
1090 		return 0;
1091 
1092 	case MON_IOCX_MFETCH32:
1093 		{
1094 		struct mon_bin_mfetch32 mfetch;
1095 		struct mon_bin_mfetch32 __user *uptr;
1096 
1097 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1098 
1099 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1100 			return -EFAULT;
1101 
1102 		if (mfetch.nflush32) {
1103 			ret = mon_bin_flush(rp, mfetch.nflush32);
1104 			if (ret < 0)
1105 				return ret;
1106 			if (put_user(ret, &uptr->nflush32))
1107 				return -EFAULT;
1108 		}
1109 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1110 		    mfetch.nfetch32);
1111 		if (ret < 0)
1112 			return ret;
1113 		if (put_user(ret, &uptr->nfetch32))
1114 			return -EFAULT;
1115 		}
1116 		return 0;
1117 
1118 	case MON_IOCG_STATS:
1119 		return mon_bin_ioctl(NULL, file, cmd,
1120 					    (unsigned long) compat_ptr(arg));
1121 
1122 	case MON_IOCQ_URB_LEN:
1123 	case MON_IOCQ_RING_SIZE:
1124 	case MON_IOCT_RING_SIZE:
1125 	case MON_IOCH_MFLUSH:
1126 		return mon_bin_ioctl(NULL, file, cmd, arg);
1127 
1128 	default:
1129 		;
1130 	}
1131 	return -ENOTTY;
1132 }
1133 #endif /* CONFIG_COMPAT */
1134 
1135 static unsigned int
1136 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1137 {
1138 	struct mon_reader_bin *rp = file->private_data;
1139 	unsigned int mask = 0;
1140 	unsigned long flags;
1141 
1142 	if (file->f_mode & FMODE_READ)
1143 		poll_wait(file, &rp->b_wait, wait);
1144 
1145 	spin_lock_irqsave(&rp->b_lock, flags);
1146 	if (!MON_RING_EMPTY(rp))
1147 		mask |= POLLIN | POLLRDNORM;    /* readable */
1148 	spin_unlock_irqrestore(&rp->b_lock, flags);
1149 	return mask;
1150 }
1151 
1152 /*
1153  * open and close: just keep track of how many times the device is
1154  * mapped, to use the proper memory allocation function.
1155  */
1156 static void mon_bin_vma_open(struct vm_area_struct *vma)
1157 {
1158 	struct mon_reader_bin *rp = vma->vm_private_data;
1159 	rp->mmap_active++;
1160 }
1161 
1162 static void mon_bin_vma_close(struct vm_area_struct *vma)
1163 {
1164 	struct mon_reader_bin *rp = vma->vm_private_data;
1165 	rp->mmap_active--;
1166 }
1167 
1168 /*
1169  * Map ring pages to user space.
1170  */
1171 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1172 {
1173 	struct mon_reader_bin *rp = vma->vm_private_data;
1174 	unsigned long offset, chunk_idx;
1175 	struct page *pageptr;
1176 
1177 	offset = vmf->pgoff << PAGE_SHIFT;
1178 	if (offset >= rp->b_size)
1179 		return VM_FAULT_SIGBUS;
1180 	chunk_idx = offset / CHUNK_SIZE;
1181 	pageptr = rp->b_vec[chunk_idx].pg;
1182 	get_page(pageptr);
1183 	vmf->page = pageptr;
1184 	return 0;
1185 }
1186 
1187 static struct vm_operations_struct mon_bin_vm_ops = {
1188 	.open =     mon_bin_vma_open,
1189 	.close =    mon_bin_vma_close,
1190 	.fault =    mon_bin_vma_fault,
1191 };
1192 
1193 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1194 {
1195 	/* don't do anything here: "fault" will set up page table entries */
1196 	vma->vm_ops = &mon_bin_vm_ops;
1197 	vma->vm_flags |= VM_RESERVED;
1198 	vma->vm_private_data = filp->private_data;
1199 	mon_bin_vma_open(vma);
1200 	return 0;
1201 }
1202 
1203 static const struct file_operations mon_fops_binary = {
1204 	.owner =	THIS_MODULE,
1205 	.open =		mon_bin_open,
1206 	.llseek =	no_llseek,
1207 	.read =		mon_bin_read,
1208 	/* .write =	mon_text_write, */
1209 	.poll =		mon_bin_poll,
1210 	.ioctl =	mon_bin_ioctl,
1211 #ifdef CONFIG_COMPAT
1212 	.compat_ioctl =	mon_bin_compat_ioctl,
1213 #endif
1214 	.release =	mon_bin_release,
1215 	.mmap =		mon_bin_mmap,
1216 };
1217 
1218 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1219 {
1220 	DECLARE_WAITQUEUE(waita, current);
1221 	unsigned long flags;
1222 
1223 	add_wait_queue(&rp->b_wait, &waita);
1224 	set_current_state(TASK_INTERRUPTIBLE);
1225 
1226 	spin_lock_irqsave(&rp->b_lock, flags);
1227 	while (MON_RING_EMPTY(rp)) {
1228 		spin_unlock_irqrestore(&rp->b_lock, flags);
1229 
1230 		if (file->f_flags & O_NONBLOCK) {
1231 			set_current_state(TASK_RUNNING);
1232 			remove_wait_queue(&rp->b_wait, &waita);
1233 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1234 		}
1235 		schedule();
1236 		if (signal_pending(current)) {
1237 			remove_wait_queue(&rp->b_wait, &waita);
1238 			return -EINTR;
1239 		}
1240 		set_current_state(TASK_INTERRUPTIBLE);
1241 
1242 		spin_lock_irqsave(&rp->b_lock, flags);
1243 	}
1244 	spin_unlock_irqrestore(&rp->b_lock, flags);
1245 
1246 	set_current_state(TASK_RUNNING);
1247 	remove_wait_queue(&rp->b_wait, &waita);
1248 	return 0;
1249 }
1250 
1251 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1252 {
1253 	int n;
1254 	unsigned long vaddr;
1255 
1256 	for (n = 0; n < npages; n++) {
1257 		vaddr = get_zeroed_page(GFP_KERNEL);
1258 		if (vaddr == 0) {
1259 			while (n-- != 0)
1260 				free_page((unsigned long) map[n].ptr);
1261 			return -ENOMEM;
1262 		}
1263 		map[n].ptr = (unsigned char *) vaddr;
1264 		map[n].pg = virt_to_page(vaddr);
1265 	}
1266 	return 0;
1267 }
1268 
1269 static void mon_free_buff(struct mon_pgmap *map, int npages)
1270 {
1271 	int n;
1272 
1273 	for (n = 0; n < npages; n++)
1274 		free_page((unsigned long) map[n].ptr);
1275 }
1276 
1277 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1278 {
1279 	struct device *dev;
1280 	unsigned minor = ubus? ubus->busnum: 0;
1281 
1282 	if (minor >= MON_BIN_MAX_MINOR)
1283 		return 0;
1284 
1285 	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1286 			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1287 			    "usbmon%d", minor);
1288 	if (IS_ERR(dev))
1289 		return 0;
1290 
1291 	mbus->classdev = dev;
1292 	return 1;
1293 }
1294 
1295 void mon_bin_del(struct mon_bus *mbus)
1296 {
1297 	device_destroy(mon_bin_class, mbus->classdev->devt);
1298 }
1299 
1300 int __init mon_bin_init(void)
1301 {
1302 	int rc;
1303 
1304 	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1305 	if (IS_ERR(mon_bin_class)) {
1306 		rc = PTR_ERR(mon_bin_class);
1307 		goto err_class;
1308 	}
1309 
1310 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1311 	if (rc < 0)
1312 		goto err_dev;
1313 
1314 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1315 	mon_bin_cdev.owner = THIS_MODULE;
1316 
1317 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1318 	if (rc < 0)
1319 		goto err_add;
1320 
1321 	return 0;
1322 
1323 err_add:
1324 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1325 err_dev:
1326 	class_destroy(mon_bin_class);
1327 err_class:
1328 	return rc;
1329 }
1330 
1331 void mon_bin_exit(void)
1332 {
1333 	cdev_del(&mon_bin_cdev);
1334 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1335 	class_destroy(mon_bin_class);
1336 }
1337