xref: /openbmc/linux/drivers/usb/mon/mon_bin.c (revision 33d973ad)
1 /*
2  * The USB Monitor, inspired by Dave Harding's USBMon.
3  *
4  * This is a binary format reader.
5  *
6  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/smp_lock.h>
19 #include <linux/scatterlist.h>
20 #include <linux/slab.h>
21 
22 #include <asm/uaccess.h>
23 
24 #include "usb_mon.h"
25 
26 /*
27  * Defined by USB 2.0 clause 9.3, table 9.2.
28  */
29 #define SETUP_LEN  8
30 
31 /* ioctl macros */
32 #define MON_IOC_MAGIC 0x92
33 
34 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
35 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
36 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
37 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
38 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
39 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
40 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
41 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
42 /* #9 was MON_IOCT_SETAPI */
43 #define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
44 
45 #ifdef CONFIG_COMPAT
46 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
47 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
48 #define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
49 #endif
50 
51 /*
52  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
53  * But it's all right. Just use a simple way to make sure the chunk is never
54  * smaller than a page.
55  *
56  * N.B. An application does not know our chunk size.
57  *
58  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
59  * page-sized chunks for the time being.
60  */
61 #define CHUNK_SIZE   PAGE_SIZE
62 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
63 
64 /*
65  * The magic limit was calculated so that it allows the monitoring
66  * application to pick data once in two ticks. This way, another application,
67  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
68  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
69  * enormous overhead built into the bus protocol, so we need about 1000 KB.
70  *
71  * This is still too much for most cases, where we just snoop a few
72  * descriptor fetches for enumeration. So, the default is a "reasonable"
73  * amount for systems with HZ=250 and incomplete bus saturation.
74  *
75  * XXX What about multi-megabyte URBs which take minutes to transfer?
76  */
77 #define BUFF_MAX  CHUNK_ALIGN(1200*1024)
78 #define BUFF_DFL   CHUNK_ALIGN(300*1024)
79 #define BUFF_MIN     CHUNK_ALIGN(8*1024)
80 
81 /*
82  * The per-event API header (2 per URB).
83  *
84  * This structure is seen in userland as defined by the documentation.
85  */
86 struct mon_bin_hdr {
87 	u64 id;			/* URB ID - from submission to callback */
88 	unsigned char type;	/* Same as in text API; extensible. */
89 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
90 	unsigned char epnum;	/* Endpoint number and transfer direction */
91 	unsigned char devnum;	/* Device address */
92 	unsigned short busnum;	/* Bus number */
93 	char flag_setup;
94 	char flag_data;
95 	s64 ts_sec;		/* gettimeofday */
96 	s32 ts_usec;		/* gettimeofday */
97 	int status;
98 	unsigned int len_urb;	/* Length of data (submitted or actual) */
99 	unsigned int len_cap;	/* Delivered length */
100 	union {
101 		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
102 		struct iso_rec {
103 			int error_count;
104 			int numdesc;
105 		} iso;
106 	} s;
107 	int interval;
108 	int start_frame;
109 	unsigned int xfer_flags;
110 	unsigned int ndesc;	/* Actual number of ISO descriptors */
111 };
112 
113 /*
114  * ISO vector, packed into the head of data stream.
115  * This has to take 16 bytes to make sure that the end of buffer
116  * wrap is not happening in the middle of a descriptor.
117  */
118 struct mon_bin_isodesc {
119 	int          iso_status;
120 	unsigned int iso_off;
121 	unsigned int iso_len;
122 	u32 _pad;
123 };
124 
125 /* per file statistic */
126 struct mon_bin_stats {
127 	u32 queued;
128 	u32 dropped;
129 };
130 
131 struct mon_bin_get {
132 	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
133 	void __user *data;
134 	size_t alloc;		/* Length of data (can be zero) */
135 };
136 
137 struct mon_bin_mfetch {
138 	u32 __user *offvec;	/* Vector of events fetched */
139 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
140 	u32 nflush;		/* Number of events to flush */
141 };
142 
143 #ifdef CONFIG_COMPAT
144 struct mon_bin_get32 {
145 	u32 hdr32;
146 	u32 data32;
147 	u32 alloc32;
148 };
149 
150 struct mon_bin_mfetch32 {
151         u32 offvec32;
152         u32 nfetch32;
153         u32 nflush32;
154 };
155 #endif
156 
157 /* Having these two values same prevents wrapping of the mon_bin_hdr */
158 #define PKT_ALIGN   64
159 #define PKT_SIZE    64
160 
161 #define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
162 #define PKT_SZ_API1 64	/* API 1 size: extra fields */
163 
164 #define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
165 
166 /* max number of USB bus supported */
167 #define MON_BIN_MAX_MINOR 128
168 
169 /*
170  * The buffer: map of used pages.
171  */
172 struct mon_pgmap {
173 	struct page *pg;
174 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
175 };
176 
177 /*
178  * This gets associated with an open file struct.
179  */
180 struct mon_reader_bin {
181 	/* The buffer: one per open. */
182 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
183 	unsigned int b_size;		/* Current size of the buffer - bytes */
184 	unsigned int b_cnt;		/* Bytes used */
185 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
186 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
187 	struct mon_pgmap *b_vec;	/* The map array */
188 	wait_queue_head_t b_wait;	/* Wait for data here */
189 
190 	struct mutex fetch_lock;	/* Protect b_read, b_out */
191 	int mmap_active;
192 
193 	/* A list of these is needed for "bus 0". Some time later. */
194 	struct mon_reader r;
195 
196 	/* Stats */
197 	unsigned int cnt_lost;
198 };
199 
200 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
201     unsigned int offset)
202 {
203 	return (struct mon_bin_hdr *)
204 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
205 }
206 
207 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
208 
209 static unsigned char xfer_to_pipe[4] = {
210 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
211 };
212 
213 static struct class *mon_bin_class;
214 static dev_t mon_bin_dev0;
215 static struct cdev mon_bin_cdev;
216 
217 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
218     unsigned int offset, unsigned int size);
219 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
220 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
221 static void mon_free_buff(struct mon_pgmap *map, int npages);
222 
223 /*
224  * This is a "chunked memcpy". It does not manipulate any counters.
225  */
226 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
227     unsigned int off, const unsigned char *from, unsigned int length)
228 {
229 	unsigned int step_len;
230 	unsigned char *buf;
231 	unsigned int in_page;
232 
233 	while (length) {
234 		/*
235 		 * Determine step_len.
236 		 */
237 		step_len = length;
238 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
239 		if (in_page < step_len)
240 			step_len = in_page;
241 
242 		/*
243 		 * Copy data and advance pointers.
244 		 */
245 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
246 		memcpy(buf, from, step_len);
247 		if ((off += step_len) >= this->b_size) off = 0;
248 		from += step_len;
249 		length -= step_len;
250 	}
251 	return off;
252 }
253 
254 /*
255  * This is a little worse than the above because it's "chunked copy_to_user".
256  * The return value is an error code, not an offset.
257  */
258 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
259     char __user *to, int length)
260 {
261 	unsigned int step_len;
262 	unsigned char *buf;
263 	unsigned int in_page;
264 
265 	while (length) {
266 		/*
267 		 * Determine step_len.
268 		 */
269 		step_len = length;
270 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
271 		if (in_page < step_len)
272 			step_len = in_page;
273 
274 		/*
275 		 * Copy data and advance pointers.
276 		 */
277 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
278 		if (copy_to_user(to, buf, step_len))
279 			return -EINVAL;
280 		if ((off += step_len) >= this->b_size) off = 0;
281 		to += step_len;
282 		length -= step_len;
283 	}
284 	return 0;
285 }
286 
287 /*
288  * Allocate an (aligned) area in the buffer.
289  * This is called under b_lock.
290  * Returns ~0 on failure.
291  */
292 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
293     unsigned int size)
294 {
295 	unsigned int offset;
296 
297 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
298 	if (rp->b_cnt + size > rp->b_size)
299 		return ~0;
300 	offset = rp->b_in;
301 	rp->b_cnt += size;
302 	if ((rp->b_in += size) >= rp->b_size)
303 		rp->b_in -= rp->b_size;
304 	return offset;
305 }
306 
307 /*
308  * This is the same thing as mon_buff_area_alloc, only it does not allow
309  * buffers to wrap. This is needed by applications which pass references
310  * into mmap-ed buffers up their stacks (libpcap can do that).
311  *
312  * Currently, we always have the header stuck with the data, although
313  * it is not strictly speaking necessary.
314  *
315  * When a buffer would wrap, we place a filler packet to mark the space.
316  */
317 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
318     unsigned int size)
319 {
320 	unsigned int offset;
321 	unsigned int fill_size;
322 
323 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
324 	if (rp->b_cnt + size > rp->b_size)
325 		return ~0;
326 	if (rp->b_in + size > rp->b_size) {
327 		/*
328 		 * This would wrap. Find if we still have space after
329 		 * skipping to the end of the buffer. If we do, place
330 		 * a filler packet and allocate a new packet.
331 		 */
332 		fill_size = rp->b_size - rp->b_in;
333 		if (rp->b_cnt + size + fill_size > rp->b_size)
334 			return ~0;
335 		mon_buff_area_fill(rp, rp->b_in, fill_size);
336 
337 		offset = 0;
338 		rp->b_in = size;
339 		rp->b_cnt += size + fill_size;
340 	} else if (rp->b_in + size == rp->b_size) {
341 		offset = rp->b_in;
342 		rp->b_in = 0;
343 		rp->b_cnt += size;
344 	} else {
345 		offset = rp->b_in;
346 		rp->b_in += size;
347 		rp->b_cnt += size;
348 	}
349 	return offset;
350 }
351 
352 /*
353  * Return a few (kilo-)bytes to the head of the buffer.
354  * This is used if a data fetch fails.
355  */
356 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
357 {
358 
359 	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
360 	rp->b_cnt -= size;
361 	if (rp->b_in < size)
362 		rp->b_in += rp->b_size;
363 	rp->b_in -= size;
364 }
365 
366 /*
367  * This has to be called under both b_lock and fetch_lock, because
368  * it accesses both b_cnt and b_out.
369  */
370 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
371 {
372 
373 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
374 	rp->b_cnt -= size;
375 	if ((rp->b_out += size) >= rp->b_size)
376 		rp->b_out -= rp->b_size;
377 }
378 
379 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
380     unsigned int offset, unsigned int size)
381 {
382 	struct mon_bin_hdr *ep;
383 
384 	ep = MON_OFF2HDR(rp, offset);
385 	memset(ep, 0, PKT_SIZE);
386 	ep->type = '@';
387 	ep->len_cap = size - PKT_SIZE;
388 }
389 
390 static inline char mon_bin_get_setup(unsigned char *setupb,
391     const struct urb *urb, char ev_type)
392 {
393 
394 	if (urb->setup_packet == NULL)
395 		return 'Z';
396 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
397 	return 0;
398 }
399 
400 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
401     unsigned int offset, struct urb *urb, unsigned int length,
402     char *flag)
403 {
404 	int i;
405 	struct scatterlist *sg;
406 	unsigned int this_len;
407 
408 	*flag = 0;
409 	if (urb->num_sgs == 0) {
410 		if (urb->transfer_buffer == NULL) {
411 			*flag = 'Z';
412 			return length;
413 		}
414 		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
415 		length = 0;
416 
417 	} else {
418 		/* If IOMMU coalescing occurred, we cannot trust sg_page */
419 		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
420 			*flag = 'D';
421 			return length;
422 		}
423 
424 		/* Copy up to the first non-addressable segment */
425 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
426 			if (length == 0 || PageHighMem(sg_page(sg)))
427 				break;
428 			this_len = min_t(unsigned int, sg->length, length);
429 			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
430 					this_len);
431 			length -= this_len;
432 		}
433 		if (i == 0)
434 			*flag = 'D';
435 	}
436 
437 	return length;
438 }
439 
440 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
441     unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
442 {
443 	struct mon_bin_isodesc *dp;
444 	struct usb_iso_packet_descriptor *fp;
445 
446 	fp = urb->iso_frame_desc;
447 	while (ndesc-- != 0) {
448 		dp = (struct mon_bin_isodesc *)
449 		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
450 		dp->iso_status = fp->status;
451 		dp->iso_off = fp->offset;
452 		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
453 		dp->_pad = 0;
454 		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
455 			offset = 0;
456 		fp++;
457 	}
458 }
459 
460 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
461     char ev_type, int status)
462 {
463 	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
464 	struct timeval ts;
465 	unsigned long flags;
466 	unsigned int urb_length;
467 	unsigned int offset;
468 	unsigned int length;
469 	unsigned int delta;
470 	unsigned int ndesc, lendesc;
471 	unsigned char dir;
472 	struct mon_bin_hdr *ep;
473 	char data_tag = 0;
474 
475 	do_gettimeofday(&ts);
476 
477 	spin_lock_irqsave(&rp->b_lock, flags);
478 
479 	/*
480 	 * Find the maximum allowable length, then allocate space.
481 	 */
482 	if (usb_endpoint_xfer_isoc(epd)) {
483 		if (urb->number_of_packets < 0) {
484 			ndesc = 0;
485 		} else if (urb->number_of_packets >= ISODESC_MAX) {
486 			ndesc = ISODESC_MAX;
487 		} else {
488 			ndesc = urb->number_of_packets;
489 		}
490 	} else {
491 		ndesc = 0;
492 	}
493 	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
494 
495 	urb_length = (ev_type == 'S') ?
496 	    urb->transfer_buffer_length : urb->actual_length;
497 	length = urb_length;
498 
499 	if (length >= rp->b_size/5)
500 		length = rp->b_size/5;
501 
502 	if (usb_urb_dir_in(urb)) {
503 		if (ev_type == 'S') {
504 			length = 0;
505 			data_tag = '<';
506 		}
507 		/* Cannot rely on endpoint number in case of control ep.0 */
508 		dir = USB_DIR_IN;
509 	} else {
510 		if (ev_type == 'C') {
511 			length = 0;
512 			data_tag = '>';
513 		}
514 		dir = 0;
515 	}
516 
517 	if (rp->mmap_active) {
518 		offset = mon_buff_area_alloc_contiguous(rp,
519 						 length + PKT_SIZE + lendesc);
520 	} else {
521 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
522 	}
523 	if (offset == ~0) {
524 		rp->cnt_lost++;
525 		spin_unlock_irqrestore(&rp->b_lock, flags);
526 		return;
527 	}
528 
529 	ep = MON_OFF2HDR(rp, offset);
530 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
531 
532 	/*
533 	 * Fill the allocated area.
534 	 */
535 	memset(ep, 0, PKT_SIZE);
536 	ep->type = ev_type;
537 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
538 	ep->epnum = dir | usb_endpoint_num(epd);
539 	ep->devnum = urb->dev->devnum;
540 	ep->busnum = urb->dev->bus->busnum;
541 	ep->id = (unsigned long) urb;
542 	ep->ts_sec = ts.tv_sec;
543 	ep->ts_usec = ts.tv_usec;
544 	ep->status = status;
545 	ep->len_urb = urb_length;
546 	ep->len_cap = length + lendesc;
547 	ep->xfer_flags = urb->transfer_flags;
548 
549 	if (usb_endpoint_xfer_int(epd)) {
550 		ep->interval = urb->interval;
551 	} else if (usb_endpoint_xfer_isoc(epd)) {
552 		ep->interval = urb->interval;
553 		ep->start_frame = urb->start_frame;
554 		ep->s.iso.error_count = urb->error_count;
555 		ep->s.iso.numdesc = urb->number_of_packets;
556 	}
557 
558 	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
559 		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
560 	} else {
561 		ep->flag_setup = '-';
562 	}
563 
564 	if (ndesc != 0) {
565 		ep->ndesc = ndesc;
566 		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
567 		if ((offset += lendesc) >= rp->b_size)
568 			offset -= rp->b_size;
569 	}
570 
571 	if (length != 0) {
572 		length = mon_bin_get_data(rp, offset, urb, length,
573 				&ep->flag_data);
574 		if (length > 0) {
575 			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
576 			ep->len_cap -= length;
577 			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
578 			mon_buff_area_shrink(rp, delta);
579 		}
580 	} else {
581 		ep->flag_data = data_tag;
582 	}
583 
584 	spin_unlock_irqrestore(&rp->b_lock, flags);
585 
586 	wake_up(&rp->b_wait);
587 }
588 
589 static void mon_bin_submit(void *data, struct urb *urb)
590 {
591 	struct mon_reader_bin *rp = data;
592 	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
593 }
594 
595 static void mon_bin_complete(void *data, struct urb *urb, int status)
596 {
597 	struct mon_reader_bin *rp = data;
598 	mon_bin_event(rp, urb, 'C', status);
599 }
600 
601 static void mon_bin_error(void *data, struct urb *urb, int error)
602 {
603 	struct mon_reader_bin *rp = data;
604 	struct timeval ts;
605 	unsigned long flags;
606 	unsigned int offset;
607 	struct mon_bin_hdr *ep;
608 
609 	do_gettimeofday(&ts);
610 
611 	spin_lock_irqsave(&rp->b_lock, flags);
612 
613 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
614 	if (offset == ~0) {
615 		/* Not incrementing cnt_lost. Just because. */
616 		spin_unlock_irqrestore(&rp->b_lock, flags);
617 		return;
618 	}
619 
620 	ep = MON_OFF2HDR(rp, offset);
621 
622 	memset(ep, 0, PKT_SIZE);
623 	ep->type = 'E';
624 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
625 	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
626 	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
627 	ep->devnum = urb->dev->devnum;
628 	ep->busnum = urb->dev->bus->busnum;
629 	ep->id = (unsigned long) urb;
630 	ep->ts_sec = ts.tv_sec;
631 	ep->ts_usec = ts.tv_usec;
632 	ep->status = error;
633 
634 	ep->flag_setup = '-';
635 	ep->flag_data = 'E';
636 
637 	spin_unlock_irqrestore(&rp->b_lock, flags);
638 
639 	wake_up(&rp->b_wait);
640 }
641 
642 static int mon_bin_open(struct inode *inode, struct file *file)
643 {
644 	struct mon_bus *mbus;
645 	struct mon_reader_bin *rp;
646 	size_t size;
647 	int rc;
648 
649 	mutex_lock(&mon_lock);
650 	if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
651 		mutex_unlock(&mon_lock);
652 		return -ENODEV;
653 	}
654 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
655 		printk(KERN_ERR TAG ": consistency error on open\n");
656 		mutex_unlock(&mon_lock);
657 		return -ENODEV;
658 	}
659 
660 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
661 	if (rp == NULL) {
662 		rc = -ENOMEM;
663 		goto err_alloc;
664 	}
665 	spin_lock_init(&rp->b_lock);
666 	init_waitqueue_head(&rp->b_wait);
667 	mutex_init(&rp->fetch_lock);
668 	rp->b_size = BUFF_DFL;
669 
670 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
671 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
672 		rc = -ENOMEM;
673 		goto err_allocvec;
674 	}
675 
676 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
677 		goto err_allocbuff;
678 
679 	rp->r.m_bus = mbus;
680 	rp->r.r_data = rp;
681 	rp->r.rnf_submit = mon_bin_submit;
682 	rp->r.rnf_error = mon_bin_error;
683 	rp->r.rnf_complete = mon_bin_complete;
684 
685 	mon_reader_add(mbus, &rp->r);
686 
687 	file->private_data = rp;
688 	mutex_unlock(&mon_lock);
689 	return 0;
690 
691 err_allocbuff:
692 	kfree(rp->b_vec);
693 err_allocvec:
694 	kfree(rp);
695 err_alloc:
696 	mutex_unlock(&mon_lock);
697 	return rc;
698 }
699 
700 /*
701  * Extract an event from buffer and copy it to user space.
702  * Wait if there is no event ready.
703  * Returns zero or error.
704  */
705 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
706     struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
707     void __user *data, unsigned int nbytes)
708 {
709 	unsigned long flags;
710 	struct mon_bin_hdr *ep;
711 	size_t step_len;
712 	unsigned int offset;
713 	int rc;
714 
715 	mutex_lock(&rp->fetch_lock);
716 
717 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
718 		mutex_unlock(&rp->fetch_lock);
719 		return rc;
720 	}
721 
722 	ep = MON_OFF2HDR(rp, rp->b_out);
723 
724 	if (copy_to_user(hdr, ep, hdrbytes)) {
725 		mutex_unlock(&rp->fetch_lock);
726 		return -EFAULT;
727 	}
728 
729 	step_len = min(ep->len_cap, nbytes);
730 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
731 
732 	if (copy_from_buf(rp, offset, data, step_len)) {
733 		mutex_unlock(&rp->fetch_lock);
734 		return -EFAULT;
735 	}
736 
737 	spin_lock_irqsave(&rp->b_lock, flags);
738 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
739 	spin_unlock_irqrestore(&rp->b_lock, flags);
740 	rp->b_read = 0;
741 
742 	mutex_unlock(&rp->fetch_lock);
743 	return 0;
744 }
745 
746 static int mon_bin_release(struct inode *inode, struct file *file)
747 {
748 	struct mon_reader_bin *rp = file->private_data;
749 	struct mon_bus* mbus = rp->r.m_bus;
750 
751 	mutex_lock(&mon_lock);
752 
753 	if (mbus->nreaders <= 0) {
754 		printk(KERN_ERR TAG ": consistency error on close\n");
755 		mutex_unlock(&mon_lock);
756 		return 0;
757 	}
758 	mon_reader_del(mbus, &rp->r);
759 
760 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
761 	kfree(rp->b_vec);
762 	kfree(rp);
763 
764 	mutex_unlock(&mon_lock);
765 	return 0;
766 }
767 
768 static ssize_t mon_bin_read(struct file *file, char __user *buf,
769     size_t nbytes, loff_t *ppos)
770 {
771 	struct mon_reader_bin *rp = file->private_data;
772 	unsigned int hdrbytes = PKT_SZ_API0;
773 	unsigned long flags;
774 	struct mon_bin_hdr *ep;
775 	unsigned int offset;
776 	size_t step_len;
777 	char *ptr;
778 	ssize_t done = 0;
779 	int rc;
780 
781 	mutex_lock(&rp->fetch_lock);
782 
783 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
784 		mutex_unlock(&rp->fetch_lock);
785 		return rc;
786 	}
787 
788 	ep = MON_OFF2HDR(rp, rp->b_out);
789 
790 	if (rp->b_read < hdrbytes) {
791 		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
792 		ptr = ((char *)ep) + rp->b_read;
793 		if (step_len && copy_to_user(buf, ptr, step_len)) {
794 			mutex_unlock(&rp->fetch_lock);
795 			return -EFAULT;
796 		}
797 		nbytes -= step_len;
798 		buf += step_len;
799 		rp->b_read += step_len;
800 		done += step_len;
801 	}
802 
803 	if (rp->b_read >= hdrbytes) {
804 		step_len = ep->len_cap;
805 		step_len -= rp->b_read - hdrbytes;
806 		if (step_len > nbytes)
807 			step_len = nbytes;
808 		offset = rp->b_out + PKT_SIZE;
809 		offset += rp->b_read - hdrbytes;
810 		if (offset >= rp->b_size)
811 			offset -= rp->b_size;
812 		if (copy_from_buf(rp, offset, buf, step_len)) {
813 			mutex_unlock(&rp->fetch_lock);
814 			return -EFAULT;
815 		}
816 		nbytes -= step_len;
817 		buf += step_len;
818 		rp->b_read += step_len;
819 		done += step_len;
820 	}
821 
822 	/*
823 	 * Check if whole packet was read, and if so, jump to the next one.
824 	 */
825 	if (rp->b_read >= hdrbytes + ep->len_cap) {
826 		spin_lock_irqsave(&rp->b_lock, flags);
827 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
828 		spin_unlock_irqrestore(&rp->b_lock, flags);
829 		rp->b_read = 0;
830 	}
831 
832 	mutex_unlock(&rp->fetch_lock);
833 	return done;
834 }
835 
836 /*
837  * Remove at most nevents from chunked buffer.
838  * Returns the number of removed events.
839  */
840 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
841 {
842 	unsigned long flags;
843 	struct mon_bin_hdr *ep;
844 	int i;
845 
846 	mutex_lock(&rp->fetch_lock);
847 	spin_lock_irqsave(&rp->b_lock, flags);
848 	for (i = 0; i < nevents; ++i) {
849 		if (MON_RING_EMPTY(rp))
850 			break;
851 
852 		ep = MON_OFF2HDR(rp, rp->b_out);
853 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
854 	}
855 	spin_unlock_irqrestore(&rp->b_lock, flags);
856 	rp->b_read = 0;
857 	mutex_unlock(&rp->fetch_lock);
858 	return i;
859 }
860 
861 /*
862  * Fetch at most max event offsets into the buffer and put them into vec.
863  * The events are usually freed later with mon_bin_flush.
864  * Return the effective number of events fetched.
865  */
866 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
867     u32 __user *vec, unsigned int max)
868 {
869 	unsigned int cur_out;
870 	unsigned int bytes, avail;
871 	unsigned int size;
872 	unsigned int nevents;
873 	struct mon_bin_hdr *ep;
874 	unsigned long flags;
875 	int rc;
876 
877 	mutex_lock(&rp->fetch_lock);
878 
879 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
880 		mutex_unlock(&rp->fetch_lock);
881 		return rc;
882 	}
883 
884 	spin_lock_irqsave(&rp->b_lock, flags);
885 	avail = rp->b_cnt;
886 	spin_unlock_irqrestore(&rp->b_lock, flags);
887 
888 	cur_out = rp->b_out;
889 	nevents = 0;
890 	bytes = 0;
891 	while (bytes < avail) {
892 		if (nevents >= max)
893 			break;
894 
895 		ep = MON_OFF2HDR(rp, cur_out);
896 		if (put_user(cur_out, &vec[nevents])) {
897 			mutex_unlock(&rp->fetch_lock);
898 			return -EFAULT;
899 		}
900 
901 		nevents++;
902 		size = ep->len_cap + PKT_SIZE;
903 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
904 		if ((cur_out += size) >= rp->b_size)
905 			cur_out -= rp->b_size;
906 		bytes += size;
907 	}
908 
909 	mutex_unlock(&rp->fetch_lock);
910 	return nevents;
911 }
912 
913 /*
914  * Count events. This is almost the same as the above mon_bin_fetch,
915  * only we do not store offsets into user vector, and we have no limit.
916  */
917 static int mon_bin_queued(struct mon_reader_bin *rp)
918 {
919 	unsigned int cur_out;
920 	unsigned int bytes, avail;
921 	unsigned int size;
922 	unsigned int nevents;
923 	struct mon_bin_hdr *ep;
924 	unsigned long flags;
925 
926 	mutex_lock(&rp->fetch_lock);
927 
928 	spin_lock_irqsave(&rp->b_lock, flags);
929 	avail = rp->b_cnt;
930 	spin_unlock_irqrestore(&rp->b_lock, flags);
931 
932 	cur_out = rp->b_out;
933 	nevents = 0;
934 	bytes = 0;
935 	while (bytes < avail) {
936 		ep = MON_OFF2HDR(rp, cur_out);
937 
938 		nevents++;
939 		size = ep->len_cap + PKT_SIZE;
940 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
941 		if ((cur_out += size) >= rp->b_size)
942 			cur_out -= rp->b_size;
943 		bytes += size;
944 	}
945 
946 	mutex_unlock(&rp->fetch_lock);
947 	return nevents;
948 }
949 
950 /*
951  */
952 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
953 {
954 	struct mon_reader_bin *rp = file->private_data;
955 	// struct mon_bus* mbus = rp->r.m_bus;
956 	int ret = 0;
957 	struct mon_bin_hdr *ep;
958 	unsigned long flags;
959 
960 	switch (cmd) {
961 
962 	case MON_IOCQ_URB_LEN:
963 		/*
964 		 * N.B. This only returns the size of data, without the header.
965 		 */
966 		spin_lock_irqsave(&rp->b_lock, flags);
967 		if (!MON_RING_EMPTY(rp)) {
968 			ep = MON_OFF2HDR(rp, rp->b_out);
969 			ret = ep->len_cap;
970 		}
971 		spin_unlock_irqrestore(&rp->b_lock, flags);
972 		break;
973 
974 	case MON_IOCQ_RING_SIZE:
975 		ret = rp->b_size;
976 		break;
977 
978 	case MON_IOCT_RING_SIZE:
979 		/*
980 		 * Changing the buffer size will flush it's contents; the new
981 		 * buffer is allocated before releasing the old one to be sure
982 		 * the device will stay functional also in case of memory
983 		 * pressure.
984 		 */
985 		{
986 		int size;
987 		struct mon_pgmap *vec;
988 
989 		if (arg < BUFF_MIN || arg > BUFF_MAX)
990 			return -EINVAL;
991 
992 		size = CHUNK_ALIGN(arg);
993 		if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
994 		    GFP_KERNEL)) == NULL) {
995 			ret = -ENOMEM;
996 			break;
997 		}
998 
999 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1000 		if (ret < 0) {
1001 			kfree(vec);
1002 			break;
1003 		}
1004 
1005 		mutex_lock(&rp->fetch_lock);
1006 		spin_lock_irqsave(&rp->b_lock, flags);
1007 		mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1008 		kfree(rp->b_vec);
1009 		rp->b_vec  = vec;
1010 		rp->b_size = size;
1011 		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1012 		rp->cnt_lost = 0;
1013 		spin_unlock_irqrestore(&rp->b_lock, flags);
1014 		mutex_unlock(&rp->fetch_lock);
1015 		}
1016 		break;
1017 
1018 	case MON_IOCH_MFLUSH:
1019 		ret = mon_bin_flush(rp, arg);
1020 		break;
1021 
1022 	case MON_IOCX_GET:
1023 	case MON_IOCX_GETX:
1024 		{
1025 		struct mon_bin_get getb;
1026 
1027 		if (copy_from_user(&getb, (void __user *)arg,
1028 					    sizeof(struct mon_bin_get)))
1029 			return -EFAULT;
1030 
1031 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1032 			return -EINVAL;
1033 		ret = mon_bin_get_event(file, rp, getb.hdr,
1034 		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1035 		    getb.data, (unsigned int)getb.alloc);
1036 		}
1037 		break;
1038 
1039 	case MON_IOCX_MFETCH:
1040 		{
1041 		struct mon_bin_mfetch mfetch;
1042 		struct mon_bin_mfetch __user *uptr;
1043 
1044 		uptr = (struct mon_bin_mfetch __user *)arg;
1045 
1046 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1047 			return -EFAULT;
1048 
1049 		if (mfetch.nflush) {
1050 			ret = mon_bin_flush(rp, mfetch.nflush);
1051 			if (ret < 0)
1052 				return ret;
1053 			if (put_user(ret, &uptr->nflush))
1054 				return -EFAULT;
1055 		}
1056 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1057 		if (ret < 0)
1058 			return ret;
1059 		if (put_user(ret, &uptr->nfetch))
1060 			return -EFAULT;
1061 		ret = 0;
1062 		}
1063 		break;
1064 
1065 	case MON_IOCG_STATS: {
1066 		struct mon_bin_stats __user *sp;
1067 		unsigned int nevents;
1068 		unsigned int ndropped;
1069 
1070 		spin_lock_irqsave(&rp->b_lock, flags);
1071 		ndropped = rp->cnt_lost;
1072 		rp->cnt_lost = 0;
1073 		spin_unlock_irqrestore(&rp->b_lock, flags);
1074 		nevents = mon_bin_queued(rp);
1075 
1076 		sp = (struct mon_bin_stats __user *)arg;
1077 		if (put_user(rp->cnt_lost, &sp->dropped))
1078 			return -EFAULT;
1079 		if (put_user(nevents, &sp->queued))
1080 			return -EFAULT;
1081 
1082 		}
1083 		break;
1084 
1085 	default:
1086 		return -ENOTTY;
1087 	}
1088 
1089 	return ret;
1090 }
1091 
1092 #ifdef CONFIG_COMPAT
1093 static long mon_bin_compat_ioctl(struct file *file,
1094     unsigned int cmd, unsigned long arg)
1095 {
1096 	struct mon_reader_bin *rp = file->private_data;
1097 	int ret;
1098 
1099 	switch (cmd) {
1100 
1101 	case MON_IOCX_GET32:
1102 	case MON_IOCX_GETX32:
1103 		{
1104 		struct mon_bin_get32 getb;
1105 
1106 		if (copy_from_user(&getb, (void __user *)arg,
1107 					    sizeof(struct mon_bin_get32)))
1108 			return -EFAULT;
1109 
1110 		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1111 		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1112 		    compat_ptr(getb.data32), getb.alloc32);
1113 		if (ret < 0)
1114 			return ret;
1115 		}
1116 		return 0;
1117 
1118 	case MON_IOCX_MFETCH32:
1119 		{
1120 		struct mon_bin_mfetch32 mfetch;
1121 		struct mon_bin_mfetch32 __user *uptr;
1122 
1123 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1124 
1125 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1126 			return -EFAULT;
1127 
1128 		if (mfetch.nflush32) {
1129 			ret = mon_bin_flush(rp, mfetch.nflush32);
1130 			if (ret < 0)
1131 				return ret;
1132 			if (put_user(ret, &uptr->nflush32))
1133 				return -EFAULT;
1134 		}
1135 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1136 		    mfetch.nfetch32);
1137 		if (ret < 0)
1138 			return ret;
1139 		if (put_user(ret, &uptr->nfetch32))
1140 			return -EFAULT;
1141 		}
1142 		return 0;
1143 
1144 	case MON_IOCG_STATS:
1145 		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1146 
1147 	case MON_IOCQ_URB_LEN:
1148 	case MON_IOCQ_RING_SIZE:
1149 	case MON_IOCT_RING_SIZE:
1150 	case MON_IOCH_MFLUSH:
1151 		return mon_bin_ioctl(file, cmd, arg);
1152 
1153 	default:
1154 		;
1155 	}
1156 	return -ENOTTY;
1157 }
1158 #endif /* CONFIG_COMPAT */
1159 
1160 static unsigned int
1161 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1162 {
1163 	struct mon_reader_bin *rp = file->private_data;
1164 	unsigned int mask = 0;
1165 	unsigned long flags;
1166 
1167 	if (file->f_mode & FMODE_READ)
1168 		poll_wait(file, &rp->b_wait, wait);
1169 
1170 	spin_lock_irqsave(&rp->b_lock, flags);
1171 	if (!MON_RING_EMPTY(rp))
1172 		mask |= POLLIN | POLLRDNORM;    /* readable */
1173 	spin_unlock_irqrestore(&rp->b_lock, flags);
1174 	return mask;
1175 }
1176 
1177 /*
1178  * open and close: just keep track of how many times the device is
1179  * mapped, to use the proper memory allocation function.
1180  */
1181 static void mon_bin_vma_open(struct vm_area_struct *vma)
1182 {
1183 	struct mon_reader_bin *rp = vma->vm_private_data;
1184 	rp->mmap_active++;
1185 }
1186 
1187 static void mon_bin_vma_close(struct vm_area_struct *vma)
1188 {
1189 	struct mon_reader_bin *rp = vma->vm_private_data;
1190 	rp->mmap_active--;
1191 }
1192 
1193 /*
1194  * Map ring pages to user space.
1195  */
1196 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1197 {
1198 	struct mon_reader_bin *rp = vma->vm_private_data;
1199 	unsigned long offset, chunk_idx;
1200 	struct page *pageptr;
1201 
1202 	offset = vmf->pgoff << PAGE_SHIFT;
1203 	if (offset >= rp->b_size)
1204 		return VM_FAULT_SIGBUS;
1205 	chunk_idx = offset / CHUNK_SIZE;
1206 	pageptr = rp->b_vec[chunk_idx].pg;
1207 	get_page(pageptr);
1208 	vmf->page = pageptr;
1209 	return 0;
1210 }
1211 
1212 static const struct vm_operations_struct mon_bin_vm_ops = {
1213 	.open =     mon_bin_vma_open,
1214 	.close =    mon_bin_vma_close,
1215 	.fault =    mon_bin_vma_fault,
1216 };
1217 
1218 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1219 {
1220 	/* don't do anything here: "fault" will set up page table entries */
1221 	vma->vm_ops = &mon_bin_vm_ops;
1222 	vma->vm_flags |= VM_RESERVED;
1223 	vma->vm_private_data = filp->private_data;
1224 	mon_bin_vma_open(vma);
1225 	return 0;
1226 }
1227 
1228 static const struct file_operations mon_fops_binary = {
1229 	.owner =	THIS_MODULE,
1230 	.open =		mon_bin_open,
1231 	.llseek =	no_llseek,
1232 	.read =		mon_bin_read,
1233 	/* .write =	mon_text_write, */
1234 	.poll =		mon_bin_poll,
1235 	.unlocked_ioctl = mon_bin_ioctl,
1236 #ifdef CONFIG_COMPAT
1237 	.compat_ioctl =	mon_bin_compat_ioctl,
1238 #endif
1239 	.release =	mon_bin_release,
1240 	.mmap =		mon_bin_mmap,
1241 };
1242 
1243 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1244 {
1245 	DECLARE_WAITQUEUE(waita, current);
1246 	unsigned long flags;
1247 
1248 	add_wait_queue(&rp->b_wait, &waita);
1249 	set_current_state(TASK_INTERRUPTIBLE);
1250 
1251 	spin_lock_irqsave(&rp->b_lock, flags);
1252 	while (MON_RING_EMPTY(rp)) {
1253 		spin_unlock_irqrestore(&rp->b_lock, flags);
1254 
1255 		if (file->f_flags & O_NONBLOCK) {
1256 			set_current_state(TASK_RUNNING);
1257 			remove_wait_queue(&rp->b_wait, &waita);
1258 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1259 		}
1260 		schedule();
1261 		if (signal_pending(current)) {
1262 			remove_wait_queue(&rp->b_wait, &waita);
1263 			return -EINTR;
1264 		}
1265 		set_current_state(TASK_INTERRUPTIBLE);
1266 
1267 		spin_lock_irqsave(&rp->b_lock, flags);
1268 	}
1269 	spin_unlock_irqrestore(&rp->b_lock, flags);
1270 
1271 	set_current_state(TASK_RUNNING);
1272 	remove_wait_queue(&rp->b_wait, &waita);
1273 	return 0;
1274 }
1275 
1276 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1277 {
1278 	int n;
1279 	unsigned long vaddr;
1280 
1281 	for (n = 0; n < npages; n++) {
1282 		vaddr = get_zeroed_page(GFP_KERNEL);
1283 		if (vaddr == 0) {
1284 			while (n-- != 0)
1285 				free_page((unsigned long) map[n].ptr);
1286 			return -ENOMEM;
1287 		}
1288 		map[n].ptr = (unsigned char *) vaddr;
1289 		map[n].pg = virt_to_page((void *) vaddr);
1290 	}
1291 	return 0;
1292 }
1293 
1294 static void mon_free_buff(struct mon_pgmap *map, int npages)
1295 {
1296 	int n;
1297 
1298 	for (n = 0; n < npages; n++)
1299 		free_page((unsigned long) map[n].ptr);
1300 }
1301 
1302 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1303 {
1304 	struct device *dev;
1305 	unsigned minor = ubus? ubus->busnum: 0;
1306 
1307 	if (minor >= MON_BIN_MAX_MINOR)
1308 		return 0;
1309 
1310 	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1311 			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1312 			    "usbmon%d", minor);
1313 	if (IS_ERR(dev))
1314 		return 0;
1315 
1316 	mbus->classdev = dev;
1317 	return 1;
1318 }
1319 
1320 void mon_bin_del(struct mon_bus *mbus)
1321 {
1322 	device_destroy(mon_bin_class, mbus->classdev->devt);
1323 }
1324 
1325 int __init mon_bin_init(void)
1326 {
1327 	int rc;
1328 
1329 	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1330 	if (IS_ERR(mon_bin_class)) {
1331 		rc = PTR_ERR(mon_bin_class);
1332 		goto err_class;
1333 	}
1334 
1335 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1336 	if (rc < 0)
1337 		goto err_dev;
1338 
1339 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1340 	mon_bin_cdev.owner = THIS_MODULE;
1341 
1342 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1343 	if (rc < 0)
1344 		goto err_add;
1345 
1346 	return 0;
1347 
1348 err_add:
1349 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1350 err_dev:
1351 	class_destroy(mon_bin_class);
1352 err_class:
1353 	return rc;
1354 }
1355 
1356 void mon_bin_exit(void)
1357 {
1358 	cdev_del(&mon_bin_cdev);
1359 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1360 	class_destroy(mon_bin_class);
1361 }
1362