1 /* 2 * The USB Monitor, inspired by Dave Harding's USBMon. 3 * 4 * This is a binary format reader. 5 * 6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) 7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com) 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/cdev.h> 14 #include <linux/export.h> 15 #include <linux/usb.h> 16 #include <linux/poll.h> 17 #include <linux/compat.h> 18 #include <linux/mm.h> 19 #include <linux/scatterlist.h> 20 #include <linux/slab.h> 21 22 #include <asm/uaccess.h> 23 24 #include "usb_mon.h" 25 26 /* 27 * Defined by USB 2.0 clause 9.3, table 9.2. 28 */ 29 #define SETUP_LEN 8 30 31 /* ioctl macros */ 32 #define MON_IOC_MAGIC 0x92 33 34 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) 35 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ 36 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) 37 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) 38 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) 39 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) 40 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) 41 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) 42 /* #9 was MON_IOCT_SETAPI */ 43 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get) 44 45 #ifdef CONFIG_COMPAT 46 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) 47 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) 48 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32) 49 #endif 50 51 /* 52 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). 53 * But it's all right. Just use a simple way to make sure the chunk is never 54 * smaller than a page. 55 * 56 * N.B. An application does not know our chunk size. 57 * 58 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with 59 * page-sized chunks for the time being. 60 */ 61 #define CHUNK_SIZE PAGE_SIZE 62 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) 63 64 /* 65 * The magic limit was calculated so that it allows the monitoring 66 * application to pick data once in two ticks. This way, another application, 67 * which presumably drives the bus, gets to hog CPU, yet we collect our data. 68 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an 69 * enormous overhead built into the bus protocol, so we need about 1000 KB. 70 * 71 * This is still too much for most cases, where we just snoop a few 72 * descriptor fetches for enumeration. So, the default is a "reasonable" 73 * amount for systems with HZ=250 and incomplete bus saturation. 74 * 75 * XXX What about multi-megabyte URBs which take minutes to transfer? 76 */ 77 #define BUFF_MAX CHUNK_ALIGN(1200*1024) 78 #define BUFF_DFL CHUNK_ALIGN(300*1024) 79 #define BUFF_MIN CHUNK_ALIGN(8*1024) 80 81 /* 82 * The per-event API header (2 per URB). 83 * 84 * This structure is seen in userland as defined by the documentation. 85 */ 86 struct mon_bin_hdr { 87 u64 id; /* URB ID - from submission to callback */ 88 unsigned char type; /* Same as in text API; extensible. */ 89 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ 90 unsigned char epnum; /* Endpoint number and transfer direction */ 91 unsigned char devnum; /* Device address */ 92 unsigned short busnum; /* Bus number */ 93 char flag_setup; 94 char flag_data; 95 s64 ts_sec; /* gettimeofday */ 96 s32 ts_usec; /* gettimeofday */ 97 int status; 98 unsigned int len_urb; /* Length of data (submitted or actual) */ 99 unsigned int len_cap; /* Delivered length */ 100 union { 101 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ 102 struct iso_rec { 103 int error_count; 104 int numdesc; 105 } iso; 106 } s; 107 int interval; 108 int start_frame; 109 unsigned int xfer_flags; 110 unsigned int ndesc; /* Actual number of ISO descriptors */ 111 }; 112 113 /* 114 * ISO vector, packed into the head of data stream. 115 * This has to take 16 bytes to make sure that the end of buffer 116 * wrap is not happening in the middle of a descriptor. 117 */ 118 struct mon_bin_isodesc { 119 int iso_status; 120 unsigned int iso_off; 121 unsigned int iso_len; 122 u32 _pad; 123 }; 124 125 /* per file statistic */ 126 struct mon_bin_stats { 127 u32 queued; 128 u32 dropped; 129 }; 130 131 struct mon_bin_get { 132 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */ 133 void __user *data; 134 size_t alloc; /* Length of data (can be zero) */ 135 }; 136 137 struct mon_bin_mfetch { 138 u32 __user *offvec; /* Vector of events fetched */ 139 u32 nfetch; /* Number of events to fetch (out: fetched) */ 140 u32 nflush; /* Number of events to flush */ 141 }; 142 143 #ifdef CONFIG_COMPAT 144 struct mon_bin_get32 { 145 u32 hdr32; 146 u32 data32; 147 u32 alloc32; 148 }; 149 150 struct mon_bin_mfetch32 { 151 u32 offvec32; 152 u32 nfetch32; 153 u32 nflush32; 154 }; 155 #endif 156 157 /* Having these two values same prevents wrapping of the mon_bin_hdr */ 158 #define PKT_ALIGN 64 159 #define PKT_SIZE 64 160 161 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */ 162 #define PKT_SZ_API1 64 /* API 1 size: extra fields */ 163 164 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */ 165 166 /* max number of USB bus supported */ 167 #define MON_BIN_MAX_MINOR 128 168 169 /* 170 * The buffer: map of used pages. 171 */ 172 struct mon_pgmap { 173 struct page *pg; 174 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ 175 }; 176 177 /* 178 * This gets associated with an open file struct. 179 */ 180 struct mon_reader_bin { 181 /* The buffer: one per open. */ 182 spinlock_t b_lock; /* Protect b_cnt, b_in */ 183 unsigned int b_size; /* Current size of the buffer - bytes */ 184 unsigned int b_cnt; /* Bytes used */ 185 unsigned int b_in, b_out; /* Offsets into buffer - bytes */ 186 unsigned int b_read; /* Amount of read data in curr. pkt. */ 187 struct mon_pgmap *b_vec; /* The map array */ 188 wait_queue_head_t b_wait; /* Wait for data here */ 189 190 struct mutex fetch_lock; /* Protect b_read, b_out */ 191 int mmap_active; 192 193 /* A list of these is needed for "bus 0". Some time later. */ 194 struct mon_reader r; 195 196 /* Stats */ 197 unsigned int cnt_lost; 198 }; 199 200 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, 201 unsigned int offset) 202 { 203 return (struct mon_bin_hdr *) 204 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 205 } 206 207 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) 208 209 static unsigned char xfer_to_pipe[4] = { 210 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT 211 }; 212 213 static struct class *mon_bin_class; 214 static dev_t mon_bin_dev0; 215 static struct cdev mon_bin_cdev; 216 217 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 218 unsigned int offset, unsigned int size); 219 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); 220 static int mon_alloc_buff(struct mon_pgmap *map, int npages); 221 static void mon_free_buff(struct mon_pgmap *map, int npages); 222 223 /* 224 * This is a "chunked memcpy". It does not manipulate any counters. 225 */ 226 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, 227 unsigned int off, const unsigned char *from, unsigned int length) 228 { 229 unsigned int step_len; 230 unsigned char *buf; 231 unsigned int in_page; 232 233 while (length) { 234 /* 235 * Determine step_len. 236 */ 237 step_len = length; 238 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 239 if (in_page < step_len) 240 step_len = in_page; 241 242 /* 243 * Copy data and advance pointers. 244 */ 245 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 246 memcpy(buf, from, step_len); 247 if ((off += step_len) >= this->b_size) off = 0; 248 from += step_len; 249 length -= step_len; 250 } 251 return off; 252 } 253 254 /* 255 * This is a little worse than the above because it's "chunked copy_to_user". 256 * The return value is an error code, not an offset. 257 */ 258 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, 259 char __user *to, int length) 260 { 261 unsigned int step_len; 262 unsigned char *buf; 263 unsigned int in_page; 264 265 while (length) { 266 /* 267 * Determine step_len. 268 */ 269 step_len = length; 270 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 271 if (in_page < step_len) 272 step_len = in_page; 273 274 /* 275 * Copy data and advance pointers. 276 */ 277 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 278 if (copy_to_user(to, buf, step_len)) 279 return -EINVAL; 280 if ((off += step_len) >= this->b_size) off = 0; 281 to += step_len; 282 length -= step_len; 283 } 284 return 0; 285 } 286 287 /* 288 * Allocate an (aligned) area in the buffer. 289 * This is called under b_lock. 290 * Returns ~0 on failure. 291 */ 292 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, 293 unsigned int size) 294 { 295 unsigned int offset; 296 297 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 298 if (rp->b_cnt + size > rp->b_size) 299 return ~0; 300 offset = rp->b_in; 301 rp->b_cnt += size; 302 if ((rp->b_in += size) >= rp->b_size) 303 rp->b_in -= rp->b_size; 304 return offset; 305 } 306 307 /* 308 * This is the same thing as mon_buff_area_alloc, only it does not allow 309 * buffers to wrap. This is needed by applications which pass references 310 * into mmap-ed buffers up their stacks (libpcap can do that). 311 * 312 * Currently, we always have the header stuck with the data, although 313 * it is not strictly speaking necessary. 314 * 315 * When a buffer would wrap, we place a filler packet to mark the space. 316 */ 317 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, 318 unsigned int size) 319 { 320 unsigned int offset; 321 unsigned int fill_size; 322 323 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 324 if (rp->b_cnt + size > rp->b_size) 325 return ~0; 326 if (rp->b_in + size > rp->b_size) { 327 /* 328 * This would wrap. Find if we still have space after 329 * skipping to the end of the buffer. If we do, place 330 * a filler packet and allocate a new packet. 331 */ 332 fill_size = rp->b_size - rp->b_in; 333 if (rp->b_cnt + size + fill_size > rp->b_size) 334 return ~0; 335 mon_buff_area_fill(rp, rp->b_in, fill_size); 336 337 offset = 0; 338 rp->b_in = size; 339 rp->b_cnt += size + fill_size; 340 } else if (rp->b_in + size == rp->b_size) { 341 offset = rp->b_in; 342 rp->b_in = 0; 343 rp->b_cnt += size; 344 } else { 345 offset = rp->b_in; 346 rp->b_in += size; 347 rp->b_cnt += size; 348 } 349 return offset; 350 } 351 352 /* 353 * Return a few (kilo-)bytes to the head of the buffer. 354 * This is used if a data fetch fails. 355 */ 356 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) 357 { 358 359 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */ 360 rp->b_cnt -= size; 361 if (rp->b_in < size) 362 rp->b_in += rp->b_size; 363 rp->b_in -= size; 364 } 365 366 /* 367 * This has to be called under both b_lock and fetch_lock, because 368 * it accesses both b_cnt and b_out. 369 */ 370 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) 371 { 372 373 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 374 rp->b_cnt -= size; 375 if ((rp->b_out += size) >= rp->b_size) 376 rp->b_out -= rp->b_size; 377 } 378 379 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 380 unsigned int offset, unsigned int size) 381 { 382 struct mon_bin_hdr *ep; 383 384 ep = MON_OFF2HDR(rp, offset); 385 memset(ep, 0, PKT_SIZE); 386 ep->type = '@'; 387 ep->len_cap = size - PKT_SIZE; 388 } 389 390 static inline char mon_bin_get_setup(unsigned char *setupb, 391 const struct urb *urb, char ev_type) 392 { 393 394 if (urb->setup_packet == NULL) 395 return 'Z'; 396 memcpy(setupb, urb->setup_packet, SETUP_LEN); 397 return 0; 398 } 399 400 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp, 401 unsigned int offset, struct urb *urb, unsigned int length, 402 char *flag) 403 { 404 int i; 405 struct scatterlist *sg; 406 unsigned int this_len; 407 408 *flag = 0; 409 if (urb->num_sgs == 0) { 410 if (urb->transfer_buffer == NULL) { 411 *flag = 'Z'; 412 return length; 413 } 414 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); 415 length = 0; 416 417 } else { 418 /* If IOMMU coalescing occurred, we cannot trust sg_page */ 419 if (urb->transfer_flags & URB_DMA_SG_COMBINED) { 420 *flag = 'D'; 421 return length; 422 } 423 424 /* Copy up to the first non-addressable segment */ 425 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 426 if (length == 0 || PageHighMem(sg_page(sg))) 427 break; 428 this_len = min_t(unsigned int, sg->length, length); 429 offset = mon_copy_to_buff(rp, offset, sg_virt(sg), 430 this_len); 431 length -= this_len; 432 } 433 if (i == 0) 434 *flag = 'D'; 435 } 436 437 return length; 438 } 439 440 /* 441 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot 442 * be used to determine the length of the whole contiguous buffer. 443 */ 444 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp, 445 struct urb *urb, unsigned int ndesc) 446 { 447 struct usb_iso_packet_descriptor *fp; 448 unsigned int length; 449 450 length = 0; 451 fp = urb->iso_frame_desc; 452 while (ndesc-- != 0) { 453 if (fp->actual_length != 0) { 454 if (fp->offset + fp->actual_length > length) 455 length = fp->offset + fp->actual_length; 456 } 457 fp++; 458 } 459 return length; 460 } 461 462 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp, 463 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc) 464 { 465 struct mon_bin_isodesc *dp; 466 struct usb_iso_packet_descriptor *fp; 467 468 fp = urb->iso_frame_desc; 469 while (ndesc-- != 0) { 470 dp = (struct mon_bin_isodesc *) 471 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 472 dp->iso_status = fp->status; 473 dp->iso_off = fp->offset; 474 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length; 475 dp->_pad = 0; 476 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size) 477 offset = 0; 478 fp++; 479 } 480 } 481 482 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, 483 char ev_type, int status) 484 { 485 const struct usb_endpoint_descriptor *epd = &urb->ep->desc; 486 struct timeval ts; 487 unsigned long flags; 488 unsigned int urb_length; 489 unsigned int offset; 490 unsigned int length; 491 unsigned int delta; 492 unsigned int ndesc, lendesc; 493 unsigned char dir; 494 struct mon_bin_hdr *ep; 495 char data_tag = 0; 496 497 do_gettimeofday(&ts); 498 499 spin_lock_irqsave(&rp->b_lock, flags); 500 501 /* 502 * Find the maximum allowable length, then allocate space. 503 */ 504 urb_length = (ev_type == 'S') ? 505 urb->transfer_buffer_length : urb->actual_length; 506 length = urb_length; 507 508 if (usb_endpoint_xfer_isoc(epd)) { 509 if (urb->number_of_packets < 0) { 510 ndesc = 0; 511 } else if (urb->number_of_packets >= ISODESC_MAX) { 512 ndesc = ISODESC_MAX; 513 } else { 514 ndesc = urb->number_of_packets; 515 } 516 if (ev_type == 'C' && usb_urb_dir_in(urb)) 517 length = mon_bin_collate_isodesc(rp, urb, ndesc); 518 } else { 519 ndesc = 0; 520 } 521 lendesc = ndesc*sizeof(struct mon_bin_isodesc); 522 523 /* not an issue unless there's a subtle bug in a HCD somewhere */ 524 if (length >= urb->transfer_buffer_length) 525 length = urb->transfer_buffer_length; 526 527 if (length >= rp->b_size/5) 528 length = rp->b_size/5; 529 530 if (usb_urb_dir_in(urb)) { 531 if (ev_type == 'S') { 532 length = 0; 533 data_tag = '<'; 534 } 535 /* Cannot rely on endpoint number in case of control ep.0 */ 536 dir = USB_DIR_IN; 537 } else { 538 if (ev_type == 'C') { 539 length = 0; 540 data_tag = '>'; 541 } 542 dir = 0; 543 } 544 545 if (rp->mmap_active) { 546 offset = mon_buff_area_alloc_contiguous(rp, 547 length + PKT_SIZE + lendesc); 548 } else { 549 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc); 550 } 551 if (offset == ~0) { 552 rp->cnt_lost++; 553 spin_unlock_irqrestore(&rp->b_lock, flags); 554 return; 555 } 556 557 ep = MON_OFF2HDR(rp, offset); 558 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; 559 560 /* 561 * Fill the allocated area. 562 */ 563 memset(ep, 0, PKT_SIZE); 564 ep->type = ev_type; 565 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)]; 566 ep->epnum = dir | usb_endpoint_num(epd); 567 ep->devnum = urb->dev->devnum; 568 ep->busnum = urb->dev->bus->busnum; 569 ep->id = (unsigned long) urb; 570 ep->ts_sec = ts.tv_sec; 571 ep->ts_usec = ts.tv_usec; 572 ep->status = status; 573 ep->len_urb = urb_length; 574 ep->len_cap = length + lendesc; 575 ep->xfer_flags = urb->transfer_flags; 576 577 if (usb_endpoint_xfer_int(epd)) { 578 ep->interval = urb->interval; 579 } else if (usb_endpoint_xfer_isoc(epd)) { 580 ep->interval = urb->interval; 581 ep->start_frame = urb->start_frame; 582 ep->s.iso.error_count = urb->error_count; 583 ep->s.iso.numdesc = urb->number_of_packets; 584 } 585 586 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') { 587 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type); 588 } else { 589 ep->flag_setup = '-'; 590 } 591 592 if (ndesc != 0) { 593 ep->ndesc = ndesc; 594 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc); 595 if ((offset += lendesc) >= rp->b_size) 596 offset -= rp->b_size; 597 } 598 599 if (length != 0) { 600 length = mon_bin_get_data(rp, offset, urb, length, 601 &ep->flag_data); 602 if (length > 0) { 603 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 604 ep->len_cap -= length; 605 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 606 mon_buff_area_shrink(rp, delta); 607 } 608 } else { 609 ep->flag_data = data_tag; 610 } 611 612 spin_unlock_irqrestore(&rp->b_lock, flags); 613 614 wake_up(&rp->b_wait); 615 } 616 617 static void mon_bin_submit(void *data, struct urb *urb) 618 { 619 struct mon_reader_bin *rp = data; 620 mon_bin_event(rp, urb, 'S', -EINPROGRESS); 621 } 622 623 static void mon_bin_complete(void *data, struct urb *urb, int status) 624 { 625 struct mon_reader_bin *rp = data; 626 mon_bin_event(rp, urb, 'C', status); 627 } 628 629 static void mon_bin_error(void *data, struct urb *urb, int error) 630 { 631 struct mon_reader_bin *rp = data; 632 struct timeval ts; 633 unsigned long flags; 634 unsigned int offset; 635 struct mon_bin_hdr *ep; 636 637 do_gettimeofday(&ts); 638 639 spin_lock_irqsave(&rp->b_lock, flags); 640 641 offset = mon_buff_area_alloc(rp, PKT_SIZE); 642 if (offset == ~0) { 643 /* Not incrementing cnt_lost. Just because. */ 644 spin_unlock_irqrestore(&rp->b_lock, flags); 645 return; 646 } 647 648 ep = MON_OFF2HDR(rp, offset); 649 650 memset(ep, 0, PKT_SIZE); 651 ep->type = 'E'; 652 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)]; 653 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0; 654 ep->epnum |= usb_endpoint_num(&urb->ep->desc); 655 ep->devnum = urb->dev->devnum; 656 ep->busnum = urb->dev->bus->busnum; 657 ep->id = (unsigned long) urb; 658 ep->ts_sec = ts.tv_sec; 659 ep->ts_usec = ts.tv_usec; 660 ep->status = error; 661 662 ep->flag_setup = '-'; 663 ep->flag_data = 'E'; 664 665 spin_unlock_irqrestore(&rp->b_lock, flags); 666 667 wake_up(&rp->b_wait); 668 } 669 670 static int mon_bin_open(struct inode *inode, struct file *file) 671 { 672 struct mon_bus *mbus; 673 struct mon_reader_bin *rp; 674 size_t size; 675 int rc; 676 677 mutex_lock(&mon_lock); 678 mbus = mon_bus_lookup(iminor(inode)); 679 if (mbus == NULL) { 680 mutex_unlock(&mon_lock); 681 return -ENODEV; 682 } 683 if (mbus != &mon_bus0 && mbus->u_bus == NULL) { 684 printk(KERN_ERR TAG ": consistency error on open\n"); 685 mutex_unlock(&mon_lock); 686 return -ENODEV; 687 } 688 689 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); 690 if (rp == NULL) { 691 rc = -ENOMEM; 692 goto err_alloc; 693 } 694 spin_lock_init(&rp->b_lock); 695 init_waitqueue_head(&rp->b_wait); 696 mutex_init(&rp->fetch_lock); 697 rp->b_size = BUFF_DFL; 698 699 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); 700 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { 701 rc = -ENOMEM; 702 goto err_allocvec; 703 } 704 705 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) 706 goto err_allocbuff; 707 708 rp->r.m_bus = mbus; 709 rp->r.r_data = rp; 710 rp->r.rnf_submit = mon_bin_submit; 711 rp->r.rnf_error = mon_bin_error; 712 rp->r.rnf_complete = mon_bin_complete; 713 714 mon_reader_add(mbus, &rp->r); 715 716 file->private_data = rp; 717 mutex_unlock(&mon_lock); 718 return 0; 719 720 err_allocbuff: 721 kfree(rp->b_vec); 722 err_allocvec: 723 kfree(rp); 724 err_alloc: 725 mutex_unlock(&mon_lock); 726 return rc; 727 } 728 729 /* 730 * Extract an event from buffer and copy it to user space. 731 * Wait if there is no event ready. 732 * Returns zero or error. 733 */ 734 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, 735 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes, 736 void __user *data, unsigned int nbytes) 737 { 738 unsigned long flags; 739 struct mon_bin_hdr *ep; 740 size_t step_len; 741 unsigned int offset; 742 int rc; 743 744 mutex_lock(&rp->fetch_lock); 745 746 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 747 mutex_unlock(&rp->fetch_lock); 748 return rc; 749 } 750 751 ep = MON_OFF2HDR(rp, rp->b_out); 752 753 if (copy_to_user(hdr, ep, hdrbytes)) { 754 mutex_unlock(&rp->fetch_lock); 755 return -EFAULT; 756 } 757 758 step_len = min(ep->len_cap, nbytes); 759 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; 760 761 if (copy_from_buf(rp, offset, data, step_len)) { 762 mutex_unlock(&rp->fetch_lock); 763 return -EFAULT; 764 } 765 766 spin_lock_irqsave(&rp->b_lock, flags); 767 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 768 spin_unlock_irqrestore(&rp->b_lock, flags); 769 rp->b_read = 0; 770 771 mutex_unlock(&rp->fetch_lock); 772 return 0; 773 } 774 775 static int mon_bin_release(struct inode *inode, struct file *file) 776 { 777 struct mon_reader_bin *rp = file->private_data; 778 struct mon_bus* mbus = rp->r.m_bus; 779 780 mutex_lock(&mon_lock); 781 782 if (mbus->nreaders <= 0) { 783 printk(KERN_ERR TAG ": consistency error on close\n"); 784 mutex_unlock(&mon_lock); 785 return 0; 786 } 787 mon_reader_del(mbus, &rp->r); 788 789 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 790 kfree(rp->b_vec); 791 kfree(rp); 792 793 mutex_unlock(&mon_lock); 794 return 0; 795 } 796 797 static ssize_t mon_bin_read(struct file *file, char __user *buf, 798 size_t nbytes, loff_t *ppos) 799 { 800 struct mon_reader_bin *rp = file->private_data; 801 unsigned int hdrbytes = PKT_SZ_API0; 802 unsigned long flags; 803 struct mon_bin_hdr *ep; 804 unsigned int offset; 805 size_t step_len; 806 char *ptr; 807 ssize_t done = 0; 808 int rc; 809 810 mutex_lock(&rp->fetch_lock); 811 812 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 813 mutex_unlock(&rp->fetch_lock); 814 return rc; 815 } 816 817 ep = MON_OFF2HDR(rp, rp->b_out); 818 819 if (rp->b_read < hdrbytes) { 820 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read)); 821 ptr = ((char *)ep) + rp->b_read; 822 if (step_len && copy_to_user(buf, ptr, step_len)) { 823 mutex_unlock(&rp->fetch_lock); 824 return -EFAULT; 825 } 826 nbytes -= step_len; 827 buf += step_len; 828 rp->b_read += step_len; 829 done += step_len; 830 } 831 832 if (rp->b_read >= hdrbytes) { 833 step_len = ep->len_cap; 834 step_len -= rp->b_read - hdrbytes; 835 if (step_len > nbytes) 836 step_len = nbytes; 837 offset = rp->b_out + PKT_SIZE; 838 offset += rp->b_read - hdrbytes; 839 if (offset >= rp->b_size) 840 offset -= rp->b_size; 841 if (copy_from_buf(rp, offset, buf, step_len)) { 842 mutex_unlock(&rp->fetch_lock); 843 return -EFAULT; 844 } 845 nbytes -= step_len; 846 buf += step_len; 847 rp->b_read += step_len; 848 done += step_len; 849 } 850 851 /* 852 * Check if whole packet was read, and if so, jump to the next one. 853 */ 854 if (rp->b_read >= hdrbytes + ep->len_cap) { 855 spin_lock_irqsave(&rp->b_lock, flags); 856 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 857 spin_unlock_irqrestore(&rp->b_lock, flags); 858 rp->b_read = 0; 859 } 860 861 mutex_unlock(&rp->fetch_lock); 862 return done; 863 } 864 865 /* 866 * Remove at most nevents from chunked buffer. 867 * Returns the number of removed events. 868 */ 869 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) 870 { 871 unsigned long flags; 872 struct mon_bin_hdr *ep; 873 int i; 874 875 mutex_lock(&rp->fetch_lock); 876 spin_lock_irqsave(&rp->b_lock, flags); 877 for (i = 0; i < nevents; ++i) { 878 if (MON_RING_EMPTY(rp)) 879 break; 880 881 ep = MON_OFF2HDR(rp, rp->b_out); 882 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 883 } 884 spin_unlock_irqrestore(&rp->b_lock, flags); 885 rp->b_read = 0; 886 mutex_unlock(&rp->fetch_lock); 887 return i; 888 } 889 890 /* 891 * Fetch at most max event offsets into the buffer and put them into vec. 892 * The events are usually freed later with mon_bin_flush. 893 * Return the effective number of events fetched. 894 */ 895 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, 896 u32 __user *vec, unsigned int max) 897 { 898 unsigned int cur_out; 899 unsigned int bytes, avail; 900 unsigned int size; 901 unsigned int nevents; 902 struct mon_bin_hdr *ep; 903 unsigned long flags; 904 int rc; 905 906 mutex_lock(&rp->fetch_lock); 907 908 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 909 mutex_unlock(&rp->fetch_lock); 910 return rc; 911 } 912 913 spin_lock_irqsave(&rp->b_lock, flags); 914 avail = rp->b_cnt; 915 spin_unlock_irqrestore(&rp->b_lock, flags); 916 917 cur_out = rp->b_out; 918 nevents = 0; 919 bytes = 0; 920 while (bytes < avail) { 921 if (nevents >= max) 922 break; 923 924 ep = MON_OFF2HDR(rp, cur_out); 925 if (put_user(cur_out, &vec[nevents])) { 926 mutex_unlock(&rp->fetch_lock); 927 return -EFAULT; 928 } 929 930 nevents++; 931 size = ep->len_cap + PKT_SIZE; 932 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 933 if ((cur_out += size) >= rp->b_size) 934 cur_out -= rp->b_size; 935 bytes += size; 936 } 937 938 mutex_unlock(&rp->fetch_lock); 939 return nevents; 940 } 941 942 /* 943 * Count events. This is almost the same as the above mon_bin_fetch, 944 * only we do not store offsets into user vector, and we have no limit. 945 */ 946 static int mon_bin_queued(struct mon_reader_bin *rp) 947 { 948 unsigned int cur_out; 949 unsigned int bytes, avail; 950 unsigned int size; 951 unsigned int nevents; 952 struct mon_bin_hdr *ep; 953 unsigned long flags; 954 955 mutex_lock(&rp->fetch_lock); 956 957 spin_lock_irqsave(&rp->b_lock, flags); 958 avail = rp->b_cnt; 959 spin_unlock_irqrestore(&rp->b_lock, flags); 960 961 cur_out = rp->b_out; 962 nevents = 0; 963 bytes = 0; 964 while (bytes < avail) { 965 ep = MON_OFF2HDR(rp, cur_out); 966 967 nevents++; 968 size = ep->len_cap + PKT_SIZE; 969 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 970 if ((cur_out += size) >= rp->b_size) 971 cur_out -= rp->b_size; 972 bytes += size; 973 } 974 975 mutex_unlock(&rp->fetch_lock); 976 return nevents; 977 } 978 979 /* 980 */ 981 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 982 { 983 struct mon_reader_bin *rp = file->private_data; 984 // struct mon_bus* mbus = rp->r.m_bus; 985 int ret = 0; 986 struct mon_bin_hdr *ep; 987 unsigned long flags; 988 989 switch (cmd) { 990 991 case MON_IOCQ_URB_LEN: 992 /* 993 * N.B. This only returns the size of data, without the header. 994 */ 995 spin_lock_irqsave(&rp->b_lock, flags); 996 if (!MON_RING_EMPTY(rp)) { 997 ep = MON_OFF2HDR(rp, rp->b_out); 998 ret = ep->len_cap; 999 } 1000 spin_unlock_irqrestore(&rp->b_lock, flags); 1001 break; 1002 1003 case MON_IOCQ_RING_SIZE: 1004 ret = rp->b_size; 1005 break; 1006 1007 case MON_IOCT_RING_SIZE: 1008 /* 1009 * Changing the buffer size will flush it's contents; the new 1010 * buffer is allocated before releasing the old one to be sure 1011 * the device will stay functional also in case of memory 1012 * pressure. 1013 */ 1014 { 1015 int size; 1016 struct mon_pgmap *vec; 1017 1018 if (arg < BUFF_MIN || arg > BUFF_MAX) 1019 return -EINVAL; 1020 1021 size = CHUNK_ALIGN(arg); 1022 vec = kzalloc(sizeof(struct mon_pgmap) * (size / CHUNK_SIZE), GFP_KERNEL); 1023 if (vec == NULL) { 1024 ret = -ENOMEM; 1025 break; 1026 } 1027 1028 ret = mon_alloc_buff(vec, size/CHUNK_SIZE); 1029 if (ret < 0) { 1030 kfree(vec); 1031 break; 1032 } 1033 1034 mutex_lock(&rp->fetch_lock); 1035 spin_lock_irqsave(&rp->b_lock, flags); 1036 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 1037 kfree(rp->b_vec); 1038 rp->b_vec = vec; 1039 rp->b_size = size; 1040 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; 1041 rp->cnt_lost = 0; 1042 spin_unlock_irqrestore(&rp->b_lock, flags); 1043 mutex_unlock(&rp->fetch_lock); 1044 } 1045 break; 1046 1047 case MON_IOCH_MFLUSH: 1048 ret = mon_bin_flush(rp, arg); 1049 break; 1050 1051 case MON_IOCX_GET: 1052 case MON_IOCX_GETX: 1053 { 1054 struct mon_bin_get getb; 1055 1056 if (copy_from_user(&getb, (void __user *)arg, 1057 sizeof(struct mon_bin_get))) 1058 return -EFAULT; 1059 1060 if (getb.alloc > 0x10000000) /* Want to cast to u32 */ 1061 return -EINVAL; 1062 ret = mon_bin_get_event(file, rp, getb.hdr, 1063 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1, 1064 getb.data, (unsigned int)getb.alloc); 1065 } 1066 break; 1067 1068 case MON_IOCX_MFETCH: 1069 { 1070 struct mon_bin_mfetch mfetch; 1071 struct mon_bin_mfetch __user *uptr; 1072 1073 uptr = (struct mon_bin_mfetch __user *)arg; 1074 1075 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1076 return -EFAULT; 1077 1078 if (mfetch.nflush) { 1079 ret = mon_bin_flush(rp, mfetch.nflush); 1080 if (ret < 0) 1081 return ret; 1082 if (put_user(ret, &uptr->nflush)) 1083 return -EFAULT; 1084 } 1085 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); 1086 if (ret < 0) 1087 return ret; 1088 if (put_user(ret, &uptr->nfetch)) 1089 return -EFAULT; 1090 ret = 0; 1091 } 1092 break; 1093 1094 case MON_IOCG_STATS: { 1095 struct mon_bin_stats __user *sp; 1096 unsigned int nevents; 1097 unsigned int ndropped; 1098 1099 spin_lock_irqsave(&rp->b_lock, flags); 1100 ndropped = rp->cnt_lost; 1101 rp->cnt_lost = 0; 1102 spin_unlock_irqrestore(&rp->b_lock, flags); 1103 nevents = mon_bin_queued(rp); 1104 1105 sp = (struct mon_bin_stats __user *)arg; 1106 if (put_user(ndropped, &sp->dropped)) 1107 return -EFAULT; 1108 if (put_user(nevents, &sp->queued)) 1109 return -EFAULT; 1110 1111 } 1112 break; 1113 1114 default: 1115 return -ENOTTY; 1116 } 1117 1118 return ret; 1119 } 1120 1121 #ifdef CONFIG_COMPAT 1122 static long mon_bin_compat_ioctl(struct file *file, 1123 unsigned int cmd, unsigned long arg) 1124 { 1125 struct mon_reader_bin *rp = file->private_data; 1126 int ret; 1127 1128 switch (cmd) { 1129 1130 case MON_IOCX_GET32: 1131 case MON_IOCX_GETX32: 1132 { 1133 struct mon_bin_get32 getb; 1134 1135 if (copy_from_user(&getb, (void __user *)arg, 1136 sizeof(struct mon_bin_get32))) 1137 return -EFAULT; 1138 1139 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32), 1140 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1, 1141 compat_ptr(getb.data32), getb.alloc32); 1142 if (ret < 0) 1143 return ret; 1144 } 1145 return 0; 1146 1147 case MON_IOCX_MFETCH32: 1148 { 1149 struct mon_bin_mfetch32 mfetch; 1150 struct mon_bin_mfetch32 __user *uptr; 1151 1152 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); 1153 1154 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1155 return -EFAULT; 1156 1157 if (mfetch.nflush32) { 1158 ret = mon_bin_flush(rp, mfetch.nflush32); 1159 if (ret < 0) 1160 return ret; 1161 if (put_user(ret, &uptr->nflush32)) 1162 return -EFAULT; 1163 } 1164 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), 1165 mfetch.nfetch32); 1166 if (ret < 0) 1167 return ret; 1168 if (put_user(ret, &uptr->nfetch32)) 1169 return -EFAULT; 1170 } 1171 return 0; 1172 1173 case MON_IOCG_STATS: 1174 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 1175 1176 case MON_IOCQ_URB_LEN: 1177 case MON_IOCQ_RING_SIZE: 1178 case MON_IOCT_RING_SIZE: 1179 case MON_IOCH_MFLUSH: 1180 return mon_bin_ioctl(file, cmd, arg); 1181 1182 default: 1183 ; 1184 } 1185 return -ENOTTY; 1186 } 1187 #endif /* CONFIG_COMPAT */ 1188 1189 static unsigned int 1190 mon_bin_poll(struct file *file, struct poll_table_struct *wait) 1191 { 1192 struct mon_reader_bin *rp = file->private_data; 1193 unsigned int mask = 0; 1194 unsigned long flags; 1195 1196 if (file->f_mode & FMODE_READ) 1197 poll_wait(file, &rp->b_wait, wait); 1198 1199 spin_lock_irqsave(&rp->b_lock, flags); 1200 if (!MON_RING_EMPTY(rp)) 1201 mask |= POLLIN | POLLRDNORM; /* readable */ 1202 spin_unlock_irqrestore(&rp->b_lock, flags); 1203 return mask; 1204 } 1205 1206 /* 1207 * open and close: just keep track of how many times the device is 1208 * mapped, to use the proper memory allocation function. 1209 */ 1210 static void mon_bin_vma_open(struct vm_area_struct *vma) 1211 { 1212 struct mon_reader_bin *rp = vma->vm_private_data; 1213 rp->mmap_active++; 1214 } 1215 1216 static void mon_bin_vma_close(struct vm_area_struct *vma) 1217 { 1218 struct mon_reader_bin *rp = vma->vm_private_data; 1219 rp->mmap_active--; 1220 } 1221 1222 /* 1223 * Map ring pages to user space. 1224 */ 1225 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1226 { 1227 struct mon_reader_bin *rp = vma->vm_private_data; 1228 unsigned long offset, chunk_idx; 1229 struct page *pageptr; 1230 1231 offset = vmf->pgoff << PAGE_SHIFT; 1232 if (offset >= rp->b_size) 1233 return VM_FAULT_SIGBUS; 1234 chunk_idx = offset / CHUNK_SIZE; 1235 pageptr = rp->b_vec[chunk_idx].pg; 1236 get_page(pageptr); 1237 vmf->page = pageptr; 1238 return 0; 1239 } 1240 1241 static const struct vm_operations_struct mon_bin_vm_ops = { 1242 .open = mon_bin_vma_open, 1243 .close = mon_bin_vma_close, 1244 .fault = mon_bin_vma_fault, 1245 }; 1246 1247 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) 1248 { 1249 /* don't do anything here: "fault" will set up page table entries */ 1250 vma->vm_ops = &mon_bin_vm_ops; 1251 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 1252 vma->vm_private_data = filp->private_data; 1253 mon_bin_vma_open(vma); 1254 return 0; 1255 } 1256 1257 static const struct file_operations mon_fops_binary = { 1258 .owner = THIS_MODULE, 1259 .open = mon_bin_open, 1260 .llseek = no_llseek, 1261 .read = mon_bin_read, 1262 /* .write = mon_text_write, */ 1263 .poll = mon_bin_poll, 1264 .unlocked_ioctl = mon_bin_ioctl, 1265 #ifdef CONFIG_COMPAT 1266 .compat_ioctl = mon_bin_compat_ioctl, 1267 #endif 1268 .release = mon_bin_release, 1269 .mmap = mon_bin_mmap, 1270 }; 1271 1272 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) 1273 { 1274 DECLARE_WAITQUEUE(waita, current); 1275 unsigned long flags; 1276 1277 add_wait_queue(&rp->b_wait, &waita); 1278 set_current_state(TASK_INTERRUPTIBLE); 1279 1280 spin_lock_irqsave(&rp->b_lock, flags); 1281 while (MON_RING_EMPTY(rp)) { 1282 spin_unlock_irqrestore(&rp->b_lock, flags); 1283 1284 if (file->f_flags & O_NONBLOCK) { 1285 set_current_state(TASK_RUNNING); 1286 remove_wait_queue(&rp->b_wait, &waita); 1287 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ 1288 } 1289 schedule(); 1290 if (signal_pending(current)) { 1291 remove_wait_queue(&rp->b_wait, &waita); 1292 return -EINTR; 1293 } 1294 set_current_state(TASK_INTERRUPTIBLE); 1295 1296 spin_lock_irqsave(&rp->b_lock, flags); 1297 } 1298 spin_unlock_irqrestore(&rp->b_lock, flags); 1299 1300 set_current_state(TASK_RUNNING); 1301 remove_wait_queue(&rp->b_wait, &waita); 1302 return 0; 1303 } 1304 1305 static int mon_alloc_buff(struct mon_pgmap *map, int npages) 1306 { 1307 int n; 1308 unsigned long vaddr; 1309 1310 for (n = 0; n < npages; n++) { 1311 vaddr = get_zeroed_page(GFP_KERNEL); 1312 if (vaddr == 0) { 1313 while (n-- != 0) 1314 free_page((unsigned long) map[n].ptr); 1315 return -ENOMEM; 1316 } 1317 map[n].ptr = (unsigned char *) vaddr; 1318 map[n].pg = virt_to_page((void *) vaddr); 1319 } 1320 return 0; 1321 } 1322 1323 static void mon_free_buff(struct mon_pgmap *map, int npages) 1324 { 1325 int n; 1326 1327 for (n = 0; n < npages; n++) 1328 free_page((unsigned long) map[n].ptr); 1329 } 1330 1331 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) 1332 { 1333 struct device *dev; 1334 unsigned minor = ubus? ubus->busnum: 0; 1335 1336 if (minor >= MON_BIN_MAX_MINOR) 1337 return 0; 1338 1339 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL, 1340 MKDEV(MAJOR(mon_bin_dev0), minor), NULL, 1341 "usbmon%d", minor); 1342 if (IS_ERR(dev)) 1343 return 0; 1344 1345 mbus->classdev = dev; 1346 return 1; 1347 } 1348 1349 void mon_bin_del(struct mon_bus *mbus) 1350 { 1351 device_destroy(mon_bin_class, mbus->classdev->devt); 1352 } 1353 1354 int __init mon_bin_init(void) 1355 { 1356 int rc; 1357 1358 mon_bin_class = class_create(THIS_MODULE, "usbmon"); 1359 if (IS_ERR(mon_bin_class)) { 1360 rc = PTR_ERR(mon_bin_class); 1361 goto err_class; 1362 } 1363 1364 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); 1365 if (rc < 0) 1366 goto err_dev; 1367 1368 cdev_init(&mon_bin_cdev, &mon_fops_binary); 1369 mon_bin_cdev.owner = THIS_MODULE; 1370 1371 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); 1372 if (rc < 0) 1373 goto err_add; 1374 1375 return 0; 1376 1377 err_add: 1378 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1379 err_dev: 1380 class_destroy(mon_bin_class); 1381 err_class: 1382 return rc; 1383 } 1384 1385 void mon_bin_exit(void) 1386 { 1387 cdev_del(&mon_bin_cdev); 1388 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1389 class_destroy(mon_bin_class); 1390 } 1391