1 /* 2 * adutux - driver for ADU devices from Ontrak Control Systems 3 * This is an experimental driver. Use at your own risk. 4 * This driver is not supported by Ontrak Control Systems. 5 * 6 * Copyright (c) 2003 John Homppi (SCO, leave this notice here) 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of 11 * the License, or (at your option) any later version. 12 * 13 * derived from the Lego USB Tower driver 0.56: 14 * Copyright (c) 2003 David Glance <davidgsf@sourceforge.net> 15 * 2001 Juergen Stuber <stuber@loria.fr> 16 * that was derived from USB Skeleton driver - 0.5 17 * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com) 18 * 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/init.h> 24 #include <linux/slab.h> 25 #include <linux/module.h> 26 #include <linux/usb.h> 27 #include <linux/mutex.h> 28 #include <asm/uaccess.h> 29 30 #ifdef CONFIG_USB_DEBUG 31 static int debug = 5; 32 #else 33 static int debug = 1; 34 #endif 35 36 /* Use our own dbg macro */ 37 #undef dbg 38 #define dbg(lvl, format, arg...) \ 39 do { \ 40 if (debug >= lvl) \ 41 printk(KERN_DEBUG __FILE__ " : " format " \n", ## arg); \ 42 } while (0) 43 44 45 /* Version Information */ 46 #define DRIVER_VERSION "v0.0.13" 47 #define DRIVER_AUTHOR "John Homppi" 48 #define DRIVER_DESC "adutux (see www.ontrak.net)" 49 50 /* Module parameters */ 51 module_param(debug, int, S_IRUGO | S_IWUSR); 52 MODULE_PARM_DESC(debug, "Debug enabled or not"); 53 54 /* Define these values to match your device */ 55 #define ADU_VENDOR_ID 0x0a07 56 #define ADU_PRODUCT_ID 0x0064 57 58 /* table of devices that work with this driver */ 59 static struct usb_device_id device_table [] = { 60 { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) }, /* ADU100 */ 61 { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) }, /* ADU120 */ 62 { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) }, /* ADU130 */ 63 { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) }, /* ADU200 */ 64 { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) }, /* ADU208 */ 65 { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) }, /* ADU218 */ 66 { }/* Terminating entry */ 67 }; 68 69 MODULE_DEVICE_TABLE(usb, device_table); 70 71 #ifdef CONFIG_USB_DYNAMIC_MINORS 72 #define ADU_MINOR_BASE 0 73 #else 74 #define ADU_MINOR_BASE 67 75 #endif 76 77 /* we can have up to this number of device plugged in at once */ 78 #define MAX_DEVICES 16 79 80 #define COMMAND_TIMEOUT (2*HZ) /* 60 second timeout for a command */ 81 82 /* 83 * The locking scheme is a vanilla 3-lock: 84 * adu_device.buflock: A spinlock, covers what IRQs touch. 85 * adutux_mutex: A Static lock to cover open_count. It would also cover 86 * any globals, but we don't have them in 2.6. 87 * adu_device.mtx: A mutex to hold across sleepers like copy_from_user. 88 * It covers all of adu_device, except the open_count 89 * and what .buflock covers. 90 */ 91 92 /* Structure to hold all of our device specific stuff */ 93 struct adu_device { 94 struct mutex mtx; 95 struct usb_device* udev; /* save off the usb device pointer */ 96 struct usb_interface* interface; 97 unsigned int minor; /* the starting minor number for this device */ 98 char serial_number[8]; 99 100 int open_count; /* number of times this port has been opened */ 101 102 char* read_buffer_primary; 103 int read_buffer_length; 104 char* read_buffer_secondary; 105 int secondary_head; 106 int secondary_tail; 107 spinlock_t buflock; 108 109 wait_queue_head_t read_wait; 110 wait_queue_head_t write_wait; 111 112 char* interrupt_in_buffer; 113 struct usb_endpoint_descriptor* interrupt_in_endpoint; 114 struct urb* interrupt_in_urb; 115 int read_urb_finished; 116 117 char* interrupt_out_buffer; 118 struct usb_endpoint_descriptor* interrupt_out_endpoint; 119 struct urb* interrupt_out_urb; 120 int out_urb_finished; 121 }; 122 123 static DEFINE_MUTEX(adutux_mutex); 124 125 static struct usb_driver adu_driver; 126 127 static void adu_debug_data(int level, const char *function, int size, 128 const unsigned char *data) 129 { 130 int i; 131 132 if (debug < level) 133 return; 134 135 printk(KERN_DEBUG __FILE__": %s - length = %d, data = ", 136 function, size); 137 for (i = 0; i < size; ++i) 138 printk("%.2x ", data[i]); 139 printk("\n"); 140 } 141 142 /** 143 * adu_abort_transfers 144 * aborts transfers and frees associated data structures 145 */ 146 static void adu_abort_transfers(struct adu_device *dev) 147 { 148 unsigned long flags; 149 150 dbg(2," %s : enter", __func__); 151 152 if (dev->udev == NULL) { 153 dbg(1," %s : udev is null", __func__); 154 goto exit; 155 } 156 157 /* shutdown transfer */ 158 159 /* XXX Anchor these instead */ 160 spin_lock_irqsave(&dev->buflock, flags); 161 if (!dev->read_urb_finished) { 162 spin_unlock_irqrestore(&dev->buflock, flags); 163 usb_kill_urb(dev->interrupt_in_urb); 164 } else 165 spin_unlock_irqrestore(&dev->buflock, flags); 166 167 spin_lock_irqsave(&dev->buflock, flags); 168 if (!dev->out_urb_finished) { 169 spin_unlock_irqrestore(&dev->buflock, flags); 170 usb_kill_urb(dev->interrupt_out_urb); 171 } else 172 spin_unlock_irqrestore(&dev->buflock, flags); 173 174 exit: 175 dbg(2," %s : leave", __func__); 176 } 177 178 static void adu_delete(struct adu_device *dev) 179 { 180 dbg(2, "%s enter", __func__); 181 182 /* free data structures */ 183 usb_free_urb(dev->interrupt_in_urb); 184 usb_free_urb(dev->interrupt_out_urb); 185 kfree(dev->read_buffer_primary); 186 kfree(dev->read_buffer_secondary); 187 kfree(dev->interrupt_in_buffer); 188 kfree(dev->interrupt_out_buffer); 189 kfree(dev); 190 191 dbg(2, "%s : leave", __func__); 192 } 193 194 static void adu_interrupt_in_callback(struct urb *urb) 195 { 196 struct adu_device *dev = urb->context; 197 int status = urb->status; 198 199 dbg(4," %s : enter, status %d", __func__, status); 200 adu_debug_data(5, __func__, urb->actual_length, 201 urb->transfer_buffer); 202 203 spin_lock(&dev->buflock); 204 205 if (status != 0) { 206 if ((status != -ENOENT) && (status != -ECONNRESET) && 207 (status != -ESHUTDOWN)) { 208 dbg(1," %s : nonzero status received: %d", 209 __func__, status); 210 } 211 goto exit; 212 } 213 214 if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) { 215 if (dev->read_buffer_length < 216 (4 * le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize)) - 217 (urb->actual_length)) { 218 memcpy (dev->read_buffer_primary + 219 dev->read_buffer_length, 220 dev->interrupt_in_buffer, urb->actual_length); 221 222 dev->read_buffer_length += urb->actual_length; 223 dbg(2," %s reading %d ", __func__, 224 urb->actual_length); 225 } else { 226 dbg(1," %s : read_buffer overflow", __func__); 227 } 228 } 229 230 exit: 231 dev->read_urb_finished = 1; 232 spin_unlock(&dev->buflock); 233 /* always wake up so we recover from errors */ 234 wake_up_interruptible(&dev->read_wait); 235 adu_debug_data(5, __func__, urb->actual_length, 236 urb->transfer_buffer); 237 dbg(4," %s : leave, status %d", __func__, status); 238 } 239 240 static void adu_interrupt_out_callback(struct urb *urb) 241 { 242 struct adu_device *dev = urb->context; 243 int status = urb->status; 244 245 dbg(4," %s : enter, status %d", __func__, status); 246 adu_debug_data(5,__func__, urb->actual_length, urb->transfer_buffer); 247 248 if (status != 0) { 249 if ((status != -ENOENT) && 250 (status != -ECONNRESET)) { 251 dbg(1, " %s :nonzero status received: %d", 252 __func__, status); 253 } 254 goto exit; 255 } 256 257 spin_lock(&dev->buflock); 258 dev->out_urb_finished = 1; 259 wake_up(&dev->write_wait); 260 spin_unlock(&dev->buflock); 261 exit: 262 263 adu_debug_data(5, __func__, urb->actual_length, 264 urb->transfer_buffer); 265 dbg(4," %s : leave, status %d", __func__, status); 266 } 267 268 static int adu_open(struct inode *inode, struct file *file) 269 { 270 struct adu_device *dev = NULL; 271 struct usb_interface *interface; 272 int subminor; 273 int retval; 274 275 dbg(2,"%s : enter", __func__); 276 277 subminor = iminor(inode); 278 279 if ((retval = mutex_lock_interruptible(&adutux_mutex))) { 280 dbg(2, "%s : mutex lock failed", __func__); 281 goto exit_no_lock; 282 } 283 284 interface = usb_find_interface(&adu_driver, subminor); 285 if (!interface) { 286 printk(KERN_ERR "adutux: %s - error, can't find device for " 287 "minor %d\n", __func__, subminor); 288 retval = -ENODEV; 289 goto exit_no_device; 290 } 291 292 dev = usb_get_intfdata(interface); 293 if (!dev || !dev->udev) { 294 retval = -ENODEV; 295 goto exit_no_device; 296 } 297 298 /* check that nobody else is using the device */ 299 if (dev->open_count) { 300 retval = -EBUSY; 301 goto exit_no_device; 302 } 303 304 ++dev->open_count; 305 dbg(2,"%s : open count %d", __func__, dev->open_count); 306 307 /* save device in the file's private structure */ 308 file->private_data = dev; 309 310 /* initialize in direction */ 311 dev->read_buffer_length = 0; 312 313 /* fixup first read by having urb waiting for it */ 314 usb_fill_int_urb(dev->interrupt_in_urb,dev->udev, 315 usb_rcvintpipe(dev->udev, 316 dev->interrupt_in_endpoint->bEndpointAddress), 317 dev->interrupt_in_buffer, 318 le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize), 319 adu_interrupt_in_callback, dev, 320 dev->interrupt_in_endpoint->bInterval); 321 dev->read_urb_finished = 0; 322 if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL)) 323 dev->read_urb_finished = 1; 324 /* we ignore failure */ 325 /* end of fixup for first read */ 326 327 /* initialize out direction */ 328 dev->out_urb_finished = 1; 329 330 retval = 0; 331 332 exit_no_device: 333 mutex_unlock(&adutux_mutex); 334 exit_no_lock: 335 dbg(2,"%s : leave, return value %d ", __func__, retval); 336 return retval; 337 } 338 339 static void adu_release_internal(struct adu_device *dev) 340 { 341 dbg(2," %s : enter", __func__); 342 343 /* decrement our usage count for the device */ 344 --dev->open_count; 345 dbg(2," %s : open count %d", __func__, dev->open_count); 346 if (dev->open_count <= 0) { 347 adu_abort_transfers(dev); 348 dev->open_count = 0; 349 } 350 351 dbg(2," %s : leave", __func__); 352 } 353 354 static int adu_release(struct inode *inode, struct file *file) 355 { 356 struct adu_device *dev; 357 int retval = 0; 358 359 dbg(2," %s : enter", __func__); 360 361 if (file == NULL) { 362 dbg(1," %s : file is NULL", __func__); 363 retval = -ENODEV; 364 goto exit; 365 } 366 367 dev = file->private_data; 368 if (dev == NULL) { 369 dbg(1," %s : object is NULL", __func__); 370 retval = -ENODEV; 371 goto exit; 372 } 373 374 mutex_lock(&adutux_mutex); /* not interruptible */ 375 376 if (dev->open_count <= 0) { 377 dbg(1," %s : device not opened", __func__); 378 retval = -ENODEV; 379 goto exit; 380 } 381 382 adu_release_internal(dev); 383 if (dev->udev == NULL) { 384 /* the device was unplugged before the file was released */ 385 if (!dev->open_count) /* ... and we're the last user */ 386 adu_delete(dev); 387 } 388 389 exit: 390 mutex_unlock(&adutux_mutex); 391 dbg(2," %s : leave, return value %d", __func__, retval); 392 return retval; 393 } 394 395 static ssize_t adu_read(struct file *file, __user char *buffer, size_t count, 396 loff_t *ppos) 397 { 398 struct adu_device *dev; 399 size_t bytes_read = 0; 400 size_t bytes_to_read = count; 401 int i; 402 int retval = 0; 403 int timeout = 0; 404 int should_submit = 0; 405 unsigned long flags; 406 DECLARE_WAITQUEUE(wait, current); 407 408 dbg(2," %s : enter, count = %Zd, file=%p", __func__, count, file); 409 410 dev = file->private_data; 411 dbg(2," %s : dev=%p", __func__, dev); 412 413 if (mutex_lock_interruptible(&dev->mtx)) 414 return -ERESTARTSYS; 415 416 /* verify that the device wasn't unplugged */ 417 if (dev->udev == NULL) { 418 retval = -ENODEV; 419 printk(KERN_ERR "adutux: No device or device unplugged %d\n", 420 retval); 421 goto exit; 422 } 423 424 /* verify that some data was requested */ 425 if (count == 0) { 426 dbg(1," %s : read request of 0 bytes", __func__); 427 goto exit; 428 } 429 430 timeout = COMMAND_TIMEOUT; 431 dbg(2," %s : about to start looping", __func__); 432 while (bytes_to_read) { 433 int data_in_secondary = dev->secondary_tail - dev->secondary_head; 434 dbg(2," %s : while, data_in_secondary=%d, status=%d", 435 __func__, data_in_secondary, 436 dev->interrupt_in_urb->status); 437 438 if (data_in_secondary) { 439 /* drain secondary buffer */ 440 int amount = bytes_to_read < data_in_secondary ? bytes_to_read : data_in_secondary; 441 i = copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount); 442 if (i < 0) { 443 retval = -EFAULT; 444 goto exit; 445 } 446 dev->secondary_head += (amount - i); 447 bytes_read += (amount - i); 448 bytes_to_read -= (amount - i); 449 if (i) { 450 retval = bytes_read ? bytes_read : -EFAULT; 451 goto exit; 452 } 453 } else { 454 /* we check the primary buffer */ 455 spin_lock_irqsave (&dev->buflock, flags); 456 if (dev->read_buffer_length) { 457 /* we secure access to the primary */ 458 char *tmp; 459 dbg(2," %s : swap, read_buffer_length = %d", 460 __func__, dev->read_buffer_length); 461 tmp = dev->read_buffer_secondary; 462 dev->read_buffer_secondary = dev->read_buffer_primary; 463 dev->read_buffer_primary = tmp; 464 dev->secondary_head = 0; 465 dev->secondary_tail = dev->read_buffer_length; 466 dev->read_buffer_length = 0; 467 spin_unlock_irqrestore(&dev->buflock, flags); 468 /* we have a free buffer so use it */ 469 should_submit = 1; 470 } else { 471 /* even the primary was empty - we may need to do IO */ 472 if (!dev->read_urb_finished) { 473 /* somebody is doing IO */ 474 spin_unlock_irqrestore(&dev->buflock, flags); 475 dbg(2," %s : submitted already", __func__); 476 } else { 477 /* we must initiate input */ 478 dbg(2," %s : initiate input", __func__); 479 dev->read_urb_finished = 0; 480 spin_unlock_irqrestore(&dev->buflock, flags); 481 482 usb_fill_int_urb(dev->interrupt_in_urb,dev->udev, 483 usb_rcvintpipe(dev->udev, 484 dev->interrupt_in_endpoint->bEndpointAddress), 485 dev->interrupt_in_buffer, 486 le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize), 487 adu_interrupt_in_callback, 488 dev, 489 dev->interrupt_in_endpoint->bInterval); 490 retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL); 491 if (retval) { 492 dev->read_urb_finished = 1; 493 if (retval == -ENOMEM) { 494 retval = bytes_read ? bytes_read : -ENOMEM; 495 } 496 dbg(2," %s : submit failed", __func__); 497 goto exit; 498 } 499 } 500 501 /* we wait for I/O to complete */ 502 set_current_state(TASK_INTERRUPTIBLE); 503 add_wait_queue(&dev->read_wait, &wait); 504 spin_lock_irqsave(&dev->buflock, flags); 505 if (!dev->read_urb_finished) { 506 spin_unlock_irqrestore(&dev->buflock, flags); 507 timeout = schedule_timeout(COMMAND_TIMEOUT); 508 } else { 509 spin_unlock_irqrestore(&dev->buflock, flags); 510 set_current_state(TASK_RUNNING); 511 } 512 remove_wait_queue(&dev->read_wait, &wait); 513 514 if (timeout <= 0) { 515 dbg(2," %s : timeout", __func__); 516 retval = bytes_read ? bytes_read : -ETIMEDOUT; 517 goto exit; 518 } 519 520 if (signal_pending(current)) { 521 dbg(2," %s : signal pending", __func__); 522 retval = bytes_read ? bytes_read : -EINTR; 523 goto exit; 524 } 525 } 526 } 527 } 528 529 retval = bytes_read; 530 /* if the primary buffer is empty then use it */ 531 spin_lock_irqsave(&dev->buflock, flags); 532 if (should_submit && dev->read_urb_finished) { 533 dev->read_urb_finished = 0; 534 spin_unlock_irqrestore(&dev->buflock, flags); 535 usb_fill_int_urb(dev->interrupt_in_urb,dev->udev, 536 usb_rcvintpipe(dev->udev, 537 dev->interrupt_in_endpoint->bEndpointAddress), 538 dev->interrupt_in_buffer, 539 le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize), 540 adu_interrupt_in_callback, 541 dev, 542 dev->interrupt_in_endpoint->bInterval); 543 if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL) != 0) 544 dev->read_urb_finished = 1; 545 /* we ignore failure */ 546 } else { 547 spin_unlock_irqrestore(&dev->buflock, flags); 548 } 549 550 exit: 551 /* unlock the device */ 552 mutex_unlock(&dev->mtx); 553 554 dbg(2," %s : leave, return value %d", __func__, retval); 555 return retval; 556 } 557 558 static ssize_t adu_write(struct file *file, const __user char *buffer, 559 size_t count, loff_t *ppos) 560 { 561 DECLARE_WAITQUEUE(waita, current); 562 struct adu_device *dev; 563 size_t bytes_written = 0; 564 size_t bytes_to_write; 565 size_t buffer_size; 566 unsigned long flags; 567 int retval; 568 569 dbg(2," %s : enter, count = %Zd", __func__, count); 570 571 dev = file->private_data; 572 573 retval = mutex_lock_interruptible(&dev->mtx); 574 if (retval) 575 goto exit_nolock; 576 577 /* verify that the device wasn't unplugged */ 578 if (dev->udev == NULL) { 579 retval = -ENODEV; 580 printk(KERN_ERR "adutux: No device or device unplugged %d\n", 581 retval); 582 goto exit; 583 } 584 585 /* verify that we actually have some data to write */ 586 if (count == 0) { 587 dbg(1," %s : write request of 0 bytes", __func__); 588 goto exit; 589 } 590 591 while (count > 0) { 592 add_wait_queue(&dev->write_wait, &waita); 593 set_current_state(TASK_INTERRUPTIBLE); 594 spin_lock_irqsave(&dev->buflock, flags); 595 if (!dev->out_urb_finished) { 596 spin_unlock_irqrestore(&dev->buflock, flags); 597 598 mutex_unlock(&dev->mtx); 599 if (signal_pending(current)) { 600 dbg(1," %s : interrupted", __func__); 601 set_current_state(TASK_RUNNING); 602 retval = -EINTR; 603 goto exit_onqueue; 604 } 605 if (schedule_timeout(COMMAND_TIMEOUT) == 0) { 606 dbg(1, "%s - command timed out.", __func__); 607 retval = -ETIMEDOUT; 608 goto exit_onqueue; 609 } 610 remove_wait_queue(&dev->write_wait, &waita); 611 retval = mutex_lock_interruptible(&dev->mtx); 612 if (retval) { 613 retval = bytes_written ? bytes_written : retval; 614 goto exit_nolock; 615 } 616 617 dbg(4," %s : in progress, count = %Zd", __func__, count); 618 } else { 619 spin_unlock_irqrestore(&dev->buflock, flags); 620 set_current_state(TASK_RUNNING); 621 remove_wait_queue(&dev->write_wait, &waita); 622 dbg(4," %s : sending, count = %Zd", __func__, count); 623 624 /* write the data into interrupt_out_buffer from userspace */ 625 buffer_size = le16_to_cpu(dev->interrupt_out_endpoint->wMaxPacketSize); 626 bytes_to_write = count > buffer_size ? buffer_size : count; 627 dbg(4," %s : buffer_size = %Zd, count = %Zd, bytes_to_write = %Zd", 628 __func__, buffer_size, count, bytes_to_write); 629 630 if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) { 631 retval = -EFAULT; 632 goto exit; 633 } 634 635 /* send off the urb */ 636 usb_fill_int_urb( 637 dev->interrupt_out_urb, 638 dev->udev, 639 usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress), 640 dev->interrupt_out_buffer, 641 bytes_to_write, 642 adu_interrupt_out_callback, 643 dev, 644 dev->interrupt_out_endpoint->bInterval); 645 dev->interrupt_out_urb->actual_length = bytes_to_write; 646 dev->out_urb_finished = 0; 647 retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL); 648 if (retval < 0) { 649 dev->out_urb_finished = 1; 650 dev_err(&dev->udev->dev, "Couldn't submit " 651 "interrupt_out_urb %d\n", retval); 652 goto exit; 653 } 654 655 buffer += bytes_to_write; 656 count -= bytes_to_write; 657 658 bytes_written += bytes_to_write; 659 } 660 } 661 mutex_unlock(&dev->mtx); 662 return bytes_written; 663 664 exit: 665 mutex_unlock(&dev->mtx); 666 exit_nolock: 667 dbg(2," %s : leave, return value %d", __func__, retval); 668 return retval; 669 670 exit_onqueue: 671 remove_wait_queue(&dev->write_wait, &waita); 672 return retval; 673 } 674 675 /* file operations needed when we register this driver */ 676 static const struct file_operations adu_fops = { 677 .owner = THIS_MODULE, 678 .read = adu_read, 679 .write = adu_write, 680 .open = adu_open, 681 .release = adu_release, 682 }; 683 684 /* 685 * usb class driver info in order to get a minor number from the usb core, 686 * and to have the device registered with devfs and the driver core 687 */ 688 static struct usb_class_driver adu_class = { 689 .name = "usb/adutux%d", 690 .fops = &adu_fops, 691 .minor_base = ADU_MINOR_BASE, 692 }; 693 694 /** 695 * adu_probe 696 * 697 * Called by the usb core when a new device is connected that it thinks 698 * this driver might be interested in. 699 */ 700 static int adu_probe(struct usb_interface *interface, 701 const struct usb_device_id *id) 702 { 703 struct usb_device *udev = interface_to_usbdev(interface); 704 struct adu_device *dev = NULL; 705 struct usb_host_interface *iface_desc; 706 struct usb_endpoint_descriptor *endpoint; 707 int retval = -ENODEV; 708 int in_end_size; 709 int out_end_size; 710 int i; 711 712 dbg(2," %s : enter", __func__); 713 714 if (udev == NULL) { 715 dev_err(&interface->dev, "udev is NULL.\n"); 716 goto exit; 717 } 718 719 /* allocate memory for our device state and intialize it */ 720 dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL); 721 if (dev == NULL) { 722 dev_err(&interface->dev, "Out of memory\n"); 723 retval = -ENOMEM; 724 goto exit; 725 } 726 727 mutex_init(&dev->mtx); 728 spin_lock_init(&dev->buflock); 729 dev->udev = udev; 730 init_waitqueue_head(&dev->read_wait); 731 init_waitqueue_head(&dev->write_wait); 732 733 iface_desc = &interface->altsetting[0]; 734 735 /* set up the endpoint information */ 736 for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { 737 endpoint = &iface_desc->endpoint[i].desc; 738 739 if (usb_endpoint_is_int_in(endpoint)) 740 dev->interrupt_in_endpoint = endpoint; 741 742 if (usb_endpoint_is_int_out(endpoint)) 743 dev->interrupt_out_endpoint = endpoint; 744 } 745 if (dev->interrupt_in_endpoint == NULL) { 746 dev_err(&interface->dev, "interrupt in endpoint not found\n"); 747 goto error; 748 } 749 if (dev->interrupt_out_endpoint == NULL) { 750 dev_err(&interface->dev, "interrupt out endpoint not found\n"); 751 goto error; 752 } 753 754 in_end_size = le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize); 755 out_end_size = le16_to_cpu(dev->interrupt_out_endpoint->wMaxPacketSize); 756 757 dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL); 758 if (!dev->read_buffer_primary) { 759 dev_err(&interface->dev, "Couldn't allocate read_buffer_primary\n"); 760 retval = -ENOMEM; 761 goto error; 762 } 763 764 /* debug code prime the buffer */ 765 memset(dev->read_buffer_primary, 'a', in_end_size); 766 memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size); 767 memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size); 768 memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size); 769 770 dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL); 771 if (!dev->read_buffer_secondary) { 772 dev_err(&interface->dev, "Couldn't allocate read_buffer_secondary\n"); 773 retval = -ENOMEM; 774 goto error; 775 } 776 777 /* debug code prime the buffer */ 778 memset(dev->read_buffer_secondary, 'e', in_end_size); 779 memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size); 780 memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size); 781 memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size); 782 783 dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL); 784 if (!dev->interrupt_in_buffer) { 785 dev_err(&interface->dev, "Couldn't allocate interrupt_in_buffer\n"); 786 goto error; 787 } 788 789 /* debug code prime the buffer */ 790 memset(dev->interrupt_in_buffer, 'i', in_end_size); 791 792 dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL); 793 if (!dev->interrupt_in_urb) { 794 dev_err(&interface->dev, "Couldn't allocate interrupt_in_urb\n"); 795 goto error; 796 } 797 dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL); 798 if (!dev->interrupt_out_buffer) { 799 dev_err(&interface->dev, "Couldn't allocate interrupt_out_buffer\n"); 800 goto error; 801 } 802 dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL); 803 if (!dev->interrupt_out_urb) { 804 dev_err(&interface->dev, "Couldn't allocate interrupt_out_urb\n"); 805 goto error; 806 } 807 808 if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number, 809 sizeof(dev->serial_number))) { 810 dev_err(&interface->dev, "Could not retrieve serial number\n"); 811 goto error; 812 } 813 dbg(2," %s : serial_number=%s", __func__, dev->serial_number); 814 815 /* we can register the device now, as it is ready */ 816 usb_set_intfdata(interface, dev); 817 818 retval = usb_register_dev(interface, &adu_class); 819 820 if (retval) { 821 /* something prevented us from registering this driver */ 822 dev_err(&interface->dev, "Not able to get a minor for this device.\n"); 823 usb_set_intfdata(interface, NULL); 824 goto error; 825 } 826 827 dev->minor = interface->minor; 828 829 /* let the user know what node this device is now attached to */ 830 dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d\n", 831 udev->descriptor.idProduct, dev->serial_number, 832 (dev->minor - ADU_MINOR_BASE)); 833 exit: 834 dbg(2," %s : leave, return value %p (dev)", __func__, dev); 835 836 return retval; 837 838 error: 839 adu_delete(dev); 840 return retval; 841 } 842 843 /** 844 * adu_disconnect 845 * 846 * Called by the usb core when the device is removed from the system. 847 */ 848 static void adu_disconnect(struct usb_interface *interface) 849 { 850 struct adu_device *dev; 851 int minor; 852 853 dbg(2," %s : enter", __func__); 854 855 dev = usb_get_intfdata(interface); 856 857 mutex_lock(&dev->mtx); /* not interruptible */ 858 dev->udev = NULL; /* poison */ 859 minor = dev->minor; 860 usb_deregister_dev(interface, &adu_class); 861 mutex_unlock(&dev->mtx); 862 863 mutex_lock(&adutux_mutex); 864 usb_set_intfdata(interface, NULL); 865 866 /* if the device is not opened, then we clean up right now */ 867 dbg(2," %s : open count %d", __func__, dev->open_count); 868 if (!dev->open_count) 869 adu_delete(dev); 870 871 mutex_unlock(&adutux_mutex); 872 873 dev_info(&interface->dev, "ADU device adutux%d now disconnected\n", 874 (minor - ADU_MINOR_BASE)); 875 876 dbg(2," %s : leave", __func__); 877 } 878 879 /* usb specific object needed to register this driver with the usb subsystem */ 880 static struct usb_driver adu_driver = { 881 .name = "adutux", 882 .probe = adu_probe, 883 .disconnect = adu_disconnect, 884 .id_table = device_table, 885 }; 886 887 static int __init adu_init(void) 888 { 889 int result; 890 891 dbg(2," %s : enter", __func__); 892 893 /* register this driver with the USB subsystem */ 894 result = usb_register(&adu_driver); 895 if (result < 0) { 896 printk(KERN_ERR "usb_register failed for the "__FILE__ 897 " driver. Error number %d\n", result); 898 goto exit; 899 } 900 901 printk(KERN_INFO "adutux " DRIVER_DESC " " DRIVER_VERSION "\n"); 902 printk(KERN_INFO "adutux is an experimental driver. " 903 "Use at your own risk\n"); 904 905 exit: 906 dbg(2," %s : leave, return value %d", __func__, result); 907 908 return result; 909 } 910 911 static void __exit adu_exit(void) 912 { 913 dbg(2," %s : enter", __func__); 914 /* deregister this driver with the USB subsystem */ 915 usb_deregister(&adu_driver); 916 dbg(2," %s : leave", __func__); 917 } 918 919 module_init(adu_init); 920 module_exit(adu_exit); 921 922 MODULE_AUTHOR(DRIVER_AUTHOR); 923 MODULE_DESCRIPTION(DRIVER_DESC); 924 MODULE_LICENSE("GPL"); 925