xref: /openbmc/linux/drivers/usb/misc/adutux.c (revision 4f3db074)
1 /*
2  * adutux - driver for ADU devices from Ontrak Control Systems
3  * This is an experimental driver. Use at your own risk.
4  * This driver is not supported by Ontrak Control Systems.
5  *
6  * Copyright (c) 2003 John Homppi (SCO, leave this notice here)
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * derived from the Lego USB Tower driver 0.56:
14  * Copyright (c) 2003 David Glance <davidgsf@sourceforge.net>
15  *               2001 Juergen Stuber <stuber@loria.fr>
16  * that was derived from USB Skeleton driver - 0.5
17  * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com)
18  *
19  */
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
26 #include <linux/module.h>
27 #include <linux/usb.h>
28 #include <linux/mutex.h>
29 #include <linux/uaccess.h>
30 
31 /* Version Information */
32 #define DRIVER_VERSION "v0.0.13"
33 #define DRIVER_AUTHOR "John Homppi"
34 #define DRIVER_DESC "adutux (see www.ontrak.net)"
35 
36 /* Define these values to match your device */
37 #define ADU_VENDOR_ID 0x0a07
38 #define ADU_PRODUCT_ID 0x0064
39 
40 /* table of devices that work with this driver */
41 static const struct usb_device_id device_table[] = {
42 	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) },		/* ADU100 */
43 	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) },	/* ADU120 */
44 	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) },	/* ADU130 */
45 	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) },	/* ADU200 */
46 	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) },	/* ADU208 */
47 	{ USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) },	/* ADU218 */
48 	{ } /* Terminating entry */
49 };
50 
51 MODULE_DEVICE_TABLE(usb, device_table);
52 
53 #ifdef CONFIG_USB_DYNAMIC_MINORS
54 #define ADU_MINOR_BASE	0
55 #else
56 #define ADU_MINOR_BASE	67
57 #endif
58 
59 /* we can have up to this number of device plugged in at once */
60 #define MAX_DEVICES	16
61 
62 #define COMMAND_TIMEOUT	(2*HZ)	/* 60 second timeout for a command */
63 
64 /*
65  * The locking scheme is a vanilla 3-lock:
66  *   adu_device.buflock: A spinlock, covers what IRQs touch.
67  *   adutux_mutex:       A Static lock to cover open_count. It would also cover
68  *                       any globals, but we don't have them in 2.6.
69  *   adu_device.mtx:     A mutex to hold across sleepers like copy_from_user.
70  *                       It covers all of adu_device, except the open_count
71  *                       and what .buflock covers.
72  */
73 
74 /* Structure to hold all of our device specific stuff */
75 struct adu_device {
76 	struct mutex		mtx;
77 	struct usb_device *udev; /* save off the usb device pointer */
78 	struct usb_interface *interface;
79 	unsigned int		minor; /* the starting minor number for this device */
80 	char			serial_number[8];
81 
82 	int			open_count; /* number of times this port has been opened */
83 
84 	char		*read_buffer_primary;
85 	int			read_buffer_length;
86 	char		*read_buffer_secondary;
87 	int			secondary_head;
88 	int			secondary_tail;
89 	spinlock_t		buflock;
90 
91 	wait_queue_head_t	read_wait;
92 	wait_queue_head_t	write_wait;
93 
94 	char		*interrupt_in_buffer;
95 	struct usb_endpoint_descriptor *interrupt_in_endpoint;
96 	struct urb	*interrupt_in_urb;
97 	int			read_urb_finished;
98 
99 	char		*interrupt_out_buffer;
100 	struct usb_endpoint_descriptor *interrupt_out_endpoint;
101 	struct urb	*interrupt_out_urb;
102 	int			out_urb_finished;
103 };
104 
105 static DEFINE_MUTEX(adutux_mutex);
106 
107 static struct usb_driver adu_driver;
108 
109 static inline void adu_debug_data(struct device *dev, const char *function,
110 				  int size, const unsigned char *data)
111 {
112 	dev_dbg(dev, "%s - length = %d, data = %*ph\n",
113 		function, size, size, data);
114 }
115 
116 /**
117  * adu_abort_transfers
118  *      aborts transfers and frees associated data structures
119  */
120 static void adu_abort_transfers(struct adu_device *dev)
121 {
122 	unsigned long flags;
123 
124 	if (dev->udev == NULL)
125 		return;
126 
127 	/* shutdown transfer */
128 
129 	/* XXX Anchor these instead */
130 	spin_lock_irqsave(&dev->buflock, flags);
131 	if (!dev->read_urb_finished) {
132 		spin_unlock_irqrestore(&dev->buflock, flags);
133 		usb_kill_urb(dev->interrupt_in_urb);
134 	} else
135 		spin_unlock_irqrestore(&dev->buflock, flags);
136 
137 	spin_lock_irqsave(&dev->buflock, flags);
138 	if (!dev->out_urb_finished) {
139 		spin_unlock_irqrestore(&dev->buflock, flags);
140 		usb_kill_urb(dev->interrupt_out_urb);
141 	} else
142 		spin_unlock_irqrestore(&dev->buflock, flags);
143 }
144 
145 static void adu_delete(struct adu_device *dev)
146 {
147 	/* free data structures */
148 	usb_free_urb(dev->interrupt_in_urb);
149 	usb_free_urb(dev->interrupt_out_urb);
150 	kfree(dev->read_buffer_primary);
151 	kfree(dev->read_buffer_secondary);
152 	kfree(dev->interrupt_in_buffer);
153 	kfree(dev->interrupt_out_buffer);
154 	kfree(dev);
155 }
156 
157 static void adu_interrupt_in_callback(struct urb *urb)
158 {
159 	struct adu_device *dev = urb->context;
160 	int status = urb->status;
161 
162 	adu_debug_data(&dev->udev->dev, __func__,
163 		       urb->actual_length, urb->transfer_buffer);
164 
165 	spin_lock(&dev->buflock);
166 
167 	if (status != 0) {
168 		if ((status != -ENOENT) && (status != -ECONNRESET) &&
169 			(status != -ESHUTDOWN)) {
170 			dev_dbg(&dev->udev->dev,
171 				"%s : nonzero status received: %d\n",
172 				__func__, status);
173 		}
174 		goto exit;
175 	}
176 
177 	if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) {
178 		if (dev->read_buffer_length <
179 		    (4 * usb_endpoint_maxp(dev->interrupt_in_endpoint)) -
180 		     (urb->actual_length)) {
181 			memcpy (dev->read_buffer_primary +
182 				dev->read_buffer_length,
183 				dev->interrupt_in_buffer, urb->actual_length);
184 
185 			dev->read_buffer_length += urb->actual_length;
186 			dev_dbg(&dev->udev->dev,"%s reading  %d\n", __func__,
187 				urb->actual_length);
188 		} else {
189 			dev_dbg(&dev->udev->dev,"%s : read_buffer overflow\n",
190 				__func__);
191 		}
192 	}
193 
194 exit:
195 	dev->read_urb_finished = 1;
196 	spin_unlock(&dev->buflock);
197 	/* always wake up so we recover from errors */
198 	wake_up_interruptible(&dev->read_wait);
199 }
200 
201 static void adu_interrupt_out_callback(struct urb *urb)
202 {
203 	struct adu_device *dev = urb->context;
204 	int status = urb->status;
205 
206 	adu_debug_data(&dev->udev->dev, __func__,
207 		       urb->actual_length, urb->transfer_buffer);
208 
209 	if (status != 0) {
210 		if ((status != -ENOENT) &&
211 		    (status != -ECONNRESET)) {
212 			dev_dbg(&dev->udev->dev,
213 				"%s :nonzero status received: %d\n", __func__,
214 				status);
215 		}
216 		return;
217 	}
218 
219 	spin_lock(&dev->buflock);
220 	dev->out_urb_finished = 1;
221 	wake_up(&dev->write_wait);
222 	spin_unlock(&dev->buflock);
223 }
224 
225 static int adu_open(struct inode *inode, struct file *file)
226 {
227 	struct adu_device *dev = NULL;
228 	struct usb_interface *interface;
229 	int subminor;
230 	int retval;
231 
232 	subminor = iminor(inode);
233 
234 	retval = mutex_lock_interruptible(&adutux_mutex);
235 	if (retval)
236 		goto exit_no_lock;
237 
238 	interface = usb_find_interface(&adu_driver, subminor);
239 	if (!interface) {
240 		pr_err("%s - error, can't find device for minor %d\n",
241 		       __func__, subminor);
242 		retval = -ENODEV;
243 		goto exit_no_device;
244 	}
245 
246 	dev = usb_get_intfdata(interface);
247 	if (!dev || !dev->udev) {
248 		retval = -ENODEV;
249 		goto exit_no_device;
250 	}
251 
252 	/* check that nobody else is using the device */
253 	if (dev->open_count) {
254 		retval = -EBUSY;
255 		goto exit_no_device;
256 	}
257 
258 	++dev->open_count;
259 	dev_dbg(&dev->udev->dev, "%s: open count %d\n", __func__,
260 		dev->open_count);
261 
262 	/* save device in the file's private structure */
263 	file->private_data = dev;
264 
265 	/* initialize in direction */
266 	dev->read_buffer_length = 0;
267 
268 	/* fixup first read by having urb waiting for it */
269 	usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
270 			 usb_rcvintpipe(dev->udev,
271 					dev->interrupt_in_endpoint->bEndpointAddress),
272 			 dev->interrupt_in_buffer,
273 			 usb_endpoint_maxp(dev->interrupt_in_endpoint),
274 			 adu_interrupt_in_callback, dev,
275 			 dev->interrupt_in_endpoint->bInterval);
276 	dev->read_urb_finished = 0;
277 	if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL))
278 		dev->read_urb_finished = 1;
279 	/* we ignore failure */
280 	/* end of fixup for first read */
281 
282 	/* initialize out direction */
283 	dev->out_urb_finished = 1;
284 
285 	retval = 0;
286 
287 exit_no_device:
288 	mutex_unlock(&adutux_mutex);
289 exit_no_lock:
290 	return retval;
291 }
292 
293 static void adu_release_internal(struct adu_device *dev)
294 {
295 	/* decrement our usage count for the device */
296 	--dev->open_count;
297 	dev_dbg(&dev->udev->dev, "%s : open count %d\n", __func__,
298 		dev->open_count);
299 	if (dev->open_count <= 0) {
300 		adu_abort_transfers(dev);
301 		dev->open_count = 0;
302 	}
303 }
304 
305 static int adu_release(struct inode *inode, struct file *file)
306 {
307 	struct adu_device *dev;
308 	int retval = 0;
309 
310 	if (file == NULL) {
311 		retval = -ENODEV;
312 		goto exit;
313 	}
314 
315 	dev = file->private_data;
316 	if (dev == NULL) {
317 		retval = -ENODEV;
318 		goto exit;
319 	}
320 
321 	mutex_lock(&adutux_mutex); /* not interruptible */
322 
323 	if (dev->open_count <= 0) {
324 		dev_dbg(&dev->udev->dev, "%s : device not opened\n", __func__);
325 		retval = -ENODEV;
326 		goto unlock;
327 	}
328 
329 	adu_release_internal(dev);
330 	if (dev->udev == NULL) {
331 		/* the device was unplugged before the file was released */
332 		if (!dev->open_count)	/* ... and we're the last user */
333 			adu_delete(dev);
334 	}
335 unlock:
336 	mutex_unlock(&adutux_mutex);
337 exit:
338 	return retval;
339 }
340 
341 static ssize_t adu_read(struct file *file, __user char *buffer, size_t count,
342 			loff_t *ppos)
343 {
344 	struct adu_device *dev;
345 	size_t bytes_read = 0;
346 	size_t bytes_to_read = count;
347 	int i;
348 	int retval = 0;
349 	int timeout = 0;
350 	int should_submit = 0;
351 	unsigned long flags;
352 	DECLARE_WAITQUEUE(wait, current);
353 
354 	dev = file->private_data;
355 	if (mutex_lock_interruptible(&dev->mtx))
356 		return -ERESTARTSYS;
357 
358 	/* verify that the device wasn't unplugged */
359 	if (dev->udev == NULL) {
360 		retval = -ENODEV;
361 		pr_err("No device or device unplugged %d\n", retval);
362 		goto exit;
363 	}
364 
365 	/* verify that some data was requested */
366 	if (count == 0) {
367 		dev_dbg(&dev->udev->dev, "%s : read request of 0 bytes\n",
368 			__func__);
369 		goto exit;
370 	}
371 
372 	timeout = COMMAND_TIMEOUT;
373 	dev_dbg(&dev->udev->dev, "%s : about to start looping\n", __func__);
374 	while (bytes_to_read) {
375 		int data_in_secondary = dev->secondary_tail - dev->secondary_head;
376 		dev_dbg(&dev->udev->dev,
377 			"%s : while, data_in_secondary=%d, status=%d\n",
378 			__func__, data_in_secondary,
379 			dev->interrupt_in_urb->status);
380 
381 		if (data_in_secondary) {
382 			/* drain secondary buffer */
383 			int amount = bytes_to_read < data_in_secondary ? bytes_to_read : data_in_secondary;
384 			i = copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount);
385 			if (i) {
386 				retval = -EFAULT;
387 				goto exit;
388 			}
389 			dev->secondary_head += (amount - i);
390 			bytes_read += (amount - i);
391 			bytes_to_read -= (amount - i);
392 			if (i) {
393 				retval = bytes_read ? bytes_read : -EFAULT;
394 				goto exit;
395 			}
396 		} else {
397 			/* we check the primary buffer */
398 			spin_lock_irqsave (&dev->buflock, flags);
399 			if (dev->read_buffer_length) {
400 				/* we secure access to the primary */
401 				char *tmp;
402 				dev_dbg(&dev->udev->dev,
403 					"%s : swap, read_buffer_length = %d\n",
404 					__func__, dev->read_buffer_length);
405 				tmp = dev->read_buffer_secondary;
406 				dev->read_buffer_secondary = dev->read_buffer_primary;
407 				dev->read_buffer_primary = tmp;
408 				dev->secondary_head = 0;
409 				dev->secondary_tail = dev->read_buffer_length;
410 				dev->read_buffer_length = 0;
411 				spin_unlock_irqrestore(&dev->buflock, flags);
412 				/* we have a free buffer so use it */
413 				should_submit = 1;
414 			} else {
415 				/* even the primary was empty - we may need to do IO */
416 				if (!dev->read_urb_finished) {
417 					/* somebody is doing IO */
418 					spin_unlock_irqrestore(&dev->buflock, flags);
419 					dev_dbg(&dev->udev->dev,
420 						"%s : submitted already\n",
421 						__func__);
422 				} else {
423 					/* we must initiate input */
424 					dev_dbg(&dev->udev->dev,
425 						"%s : initiate input\n",
426 						__func__);
427 					dev->read_urb_finished = 0;
428 					spin_unlock_irqrestore(&dev->buflock, flags);
429 
430 					usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
431 							usb_rcvintpipe(dev->udev,
432 								dev->interrupt_in_endpoint->bEndpointAddress),
433 							 dev->interrupt_in_buffer,
434 							 usb_endpoint_maxp(dev->interrupt_in_endpoint),
435 							 adu_interrupt_in_callback,
436 							 dev,
437 							 dev->interrupt_in_endpoint->bInterval);
438 					retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL);
439 					if (retval) {
440 						dev->read_urb_finished = 1;
441 						if (retval == -ENOMEM) {
442 							retval = bytes_read ? bytes_read : -ENOMEM;
443 						}
444 						dev_dbg(&dev->udev->dev,
445 							"%s : submit failed\n",
446 							__func__);
447 						goto exit;
448 					}
449 				}
450 
451 				/* we wait for I/O to complete */
452 				set_current_state(TASK_INTERRUPTIBLE);
453 				add_wait_queue(&dev->read_wait, &wait);
454 				spin_lock_irqsave(&dev->buflock, flags);
455 				if (!dev->read_urb_finished) {
456 					spin_unlock_irqrestore(&dev->buflock, flags);
457 					timeout = schedule_timeout(COMMAND_TIMEOUT);
458 				} else {
459 					spin_unlock_irqrestore(&dev->buflock, flags);
460 					set_current_state(TASK_RUNNING);
461 				}
462 				remove_wait_queue(&dev->read_wait, &wait);
463 
464 				if (timeout <= 0) {
465 					dev_dbg(&dev->udev->dev,
466 						"%s : timeout\n", __func__);
467 					retval = bytes_read ? bytes_read : -ETIMEDOUT;
468 					goto exit;
469 				}
470 
471 				if (signal_pending(current)) {
472 					dev_dbg(&dev->udev->dev,
473 						"%s : signal pending\n",
474 						__func__);
475 					retval = bytes_read ? bytes_read : -EINTR;
476 					goto exit;
477 				}
478 			}
479 		}
480 	}
481 
482 	retval = bytes_read;
483 	/* if the primary buffer is empty then use it */
484 	spin_lock_irqsave(&dev->buflock, flags);
485 	if (should_submit && dev->read_urb_finished) {
486 		dev->read_urb_finished = 0;
487 		spin_unlock_irqrestore(&dev->buflock, flags);
488 		usb_fill_int_urb(dev->interrupt_in_urb, dev->udev,
489 				 usb_rcvintpipe(dev->udev,
490 					dev->interrupt_in_endpoint->bEndpointAddress),
491 				dev->interrupt_in_buffer,
492 				usb_endpoint_maxp(dev->interrupt_in_endpoint),
493 				adu_interrupt_in_callback,
494 				dev,
495 				dev->interrupt_in_endpoint->bInterval);
496 		if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL) != 0)
497 			dev->read_urb_finished = 1;
498 		/* we ignore failure */
499 	} else {
500 		spin_unlock_irqrestore(&dev->buflock, flags);
501 	}
502 
503 exit:
504 	/* unlock the device */
505 	mutex_unlock(&dev->mtx);
506 
507 	return retval;
508 }
509 
510 static ssize_t adu_write(struct file *file, const __user char *buffer,
511 			 size_t count, loff_t *ppos)
512 {
513 	DECLARE_WAITQUEUE(waita, current);
514 	struct adu_device *dev;
515 	size_t bytes_written = 0;
516 	size_t bytes_to_write;
517 	size_t buffer_size;
518 	unsigned long flags;
519 	int retval;
520 
521 	dev = file->private_data;
522 
523 	retval = mutex_lock_interruptible(&dev->mtx);
524 	if (retval)
525 		goto exit_nolock;
526 
527 	/* verify that the device wasn't unplugged */
528 	if (dev->udev == NULL) {
529 		retval = -ENODEV;
530 		pr_err("No device or device unplugged %d\n", retval);
531 		goto exit;
532 	}
533 
534 	/* verify that we actually have some data to write */
535 	if (count == 0) {
536 		dev_dbg(&dev->udev->dev, "%s : write request of 0 bytes\n",
537 			__func__);
538 		goto exit;
539 	}
540 
541 	while (count > 0) {
542 		add_wait_queue(&dev->write_wait, &waita);
543 		set_current_state(TASK_INTERRUPTIBLE);
544 		spin_lock_irqsave(&dev->buflock, flags);
545 		if (!dev->out_urb_finished) {
546 			spin_unlock_irqrestore(&dev->buflock, flags);
547 
548 			mutex_unlock(&dev->mtx);
549 			if (signal_pending(current)) {
550 				dev_dbg(&dev->udev->dev, "%s : interrupted\n",
551 					__func__);
552 				set_current_state(TASK_RUNNING);
553 				retval = -EINTR;
554 				goto exit_onqueue;
555 			}
556 			if (schedule_timeout(COMMAND_TIMEOUT) == 0) {
557 				dev_dbg(&dev->udev->dev,
558 					"%s - command timed out.\n", __func__);
559 				retval = -ETIMEDOUT;
560 				goto exit_onqueue;
561 			}
562 			remove_wait_queue(&dev->write_wait, &waita);
563 			retval = mutex_lock_interruptible(&dev->mtx);
564 			if (retval) {
565 				retval = bytes_written ? bytes_written : retval;
566 				goto exit_nolock;
567 			}
568 
569 			dev_dbg(&dev->udev->dev,
570 				"%s : in progress, count = %Zd\n",
571 				__func__, count);
572 		} else {
573 			spin_unlock_irqrestore(&dev->buflock, flags);
574 			set_current_state(TASK_RUNNING);
575 			remove_wait_queue(&dev->write_wait, &waita);
576 			dev_dbg(&dev->udev->dev, "%s : sending, count = %Zd\n",
577 				__func__, count);
578 
579 			/* write the data into interrupt_out_buffer from userspace */
580 			buffer_size = usb_endpoint_maxp(dev->interrupt_out_endpoint);
581 			bytes_to_write = count > buffer_size ? buffer_size : count;
582 			dev_dbg(&dev->udev->dev,
583 				"%s : buffer_size = %Zd, count = %Zd, bytes_to_write = %Zd\n",
584 				__func__, buffer_size, count, bytes_to_write);
585 
586 			if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) {
587 				retval = -EFAULT;
588 				goto exit;
589 			}
590 
591 			/* send off the urb */
592 			usb_fill_int_urb(
593 				dev->interrupt_out_urb,
594 				dev->udev,
595 				usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress),
596 				dev->interrupt_out_buffer,
597 				bytes_to_write,
598 				adu_interrupt_out_callback,
599 				dev,
600 				dev->interrupt_out_endpoint->bInterval);
601 			dev->interrupt_out_urb->actual_length = bytes_to_write;
602 			dev->out_urb_finished = 0;
603 			retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL);
604 			if (retval < 0) {
605 				dev->out_urb_finished = 1;
606 				dev_err(&dev->udev->dev, "Couldn't submit "
607 					"interrupt_out_urb %d\n", retval);
608 				goto exit;
609 			}
610 
611 			buffer += bytes_to_write;
612 			count -= bytes_to_write;
613 
614 			bytes_written += bytes_to_write;
615 		}
616 	}
617 	mutex_unlock(&dev->mtx);
618 	return bytes_written;
619 
620 exit:
621 	mutex_unlock(&dev->mtx);
622 exit_nolock:
623 	return retval;
624 
625 exit_onqueue:
626 	remove_wait_queue(&dev->write_wait, &waita);
627 	return retval;
628 }
629 
630 /* file operations needed when we register this driver */
631 static const struct file_operations adu_fops = {
632 	.owner = THIS_MODULE,
633 	.read  = adu_read,
634 	.write = adu_write,
635 	.open = adu_open,
636 	.release = adu_release,
637 	.llseek = noop_llseek,
638 };
639 
640 /*
641  * usb class driver info in order to get a minor number from the usb core,
642  * and to have the device registered with devfs and the driver core
643  */
644 static struct usb_class_driver adu_class = {
645 	.name = "usb/adutux%d",
646 	.fops = &adu_fops,
647 	.minor_base = ADU_MINOR_BASE,
648 };
649 
650 /**
651  * adu_probe
652  *
653  * Called by the usb core when a new device is connected that it thinks
654  * this driver might be interested in.
655  */
656 static int adu_probe(struct usb_interface *interface,
657 		     const struct usb_device_id *id)
658 {
659 	struct usb_device *udev = interface_to_usbdev(interface);
660 	struct adu_device *dev = NULL;
661 	struct usb_host_interface *iface_desc;
662 	struct usb_endpoint_descriptor *endpoint;
663 	int retval = -ENODEV;
664 	int in_end_size;
665 	int out_end_size;
666 	int i;
667 
668 	if (udev == NULL) {
669 		dev_err(&interface->dev, "udev is NULL.\n");
670 		goto exit;
671 	}
672 
673 	/* allocate memory for our device state and initialize it */
674 	dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL);
675 	if (dev == NULL) {
676 		dev_err(&interface->dev, "Out of memory\n");
677 		retval = -ENOMEM;
678 		goto exit;
679 	}
680 
681 	mutex_init(&dev->mtx);
682 	spin_lock_init(&dev->buflock);
683 	dev->udev = udev;
684 	init_waitqueue_head(&dev->read_wait);
685 	init_waitqueue_head(&dev->write_wait);
686 
687 	iface_desc = &interface->altsetting[0];
688 
689 	/* set up the endpoint information */
690 	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
691 		endpoint = &iface_desc->endpoint[i].desc;
692 
693 		if (usb_endpoint_is_int_in(endpoint))
694 			dev->interrupt_in_endpoint = endpoint;
695 
696 		if (usb_endpoint_is_int_out(endpoint))
697 			dev->interrupt_out_endpoint = endpoint;
698 	}
699 	if (dev->interrupt_in_endpoint == NULL) {
700 		dev_err(&interface->dev, "interrupt in endpoint not found\n");
701 		goto error;
702 	}
703 	if (dev->interrupt_out_endpoint == NULL) {
704 		dev_err(&interface->dev, "interrupt out endpoint not found\n");
705 		goto error;
706 	}
707 
708 	in_end_size = usb_endpoint_maxp(dev->interrupt_in_endpoint);
709 	out_end_size = usb_endpoint_maxp(dev->interrupt_out_endpoint);
710 
711 	dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL);
712 	if (!dev->read_buffer_primary) {
713 		dev_err(&interface->dev, "Couldn't allocate read_buffer_primary\n");
714 		retval = -ENOMEM;
715 		goto error;
716 	}
717 
718 	/* debug code prime the buffer */
719 	memset(dev->read_buffer_primary, 'a', in_end_size);
720 	memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size);
721 	memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size);
722 	memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size);
723 
724 	dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL);
725 	if (!dev->read_buffer_secondary) {
726 		dev_err(&interface->dev, "Couldn't allocate read_buffer_secondary\n");
727 		retval = -ENOMEM;
728 		goto error;
729 	}
730 
731 	/* debug code prime the buffer */
732 	memset(dev->read_buffer_secondary, 'e', in_end_size);
733 	memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size);
734 	memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size);
735 	memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size);
736 
737 	dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL);
738 	if (!dev->interrupt_in_buffer) {
739 		dev_err(&interface->dev, "Couldn't allocate interrupt_in_buffer\n");
740 		goto error;
741 	}
742 
743 	/* debug code prime the buffer */
744 	memset(dev->interrupt_in_buffer, 'i', in_end_size);
745 
746 	dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL);
747 	if (!dev->interrupt_in_urb) {
748 		dev_err(&interface->dev, "Couldn't allocate interrupt_in_urb\n");
749 		goto error;
750 	}
751 	dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL);
752 	if (!dev->interrupt_out_buffer) {
753 		dev_err(&interface->dev, "Couldn't allocate interrupt_out_buffer\n");
754 		goto error;
755 	}
756 	dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL);
757 	if (!dev->interrupt_out_urb) {
758 		dev_err(&interface->dev, "Couldn't allocate interrupt_out_urb\n");
759 		goto error;
760 	}
761 
762 	if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number,
763 			sizeof(dev->serial_number))) {
764 		dev_err(&interface->dev, "Could not retrieve serial number\n");
765 		goto error;
766 	}
767 	dev_dbg(&interface->dev,"serial_number=%s", dev->serial_number);
768 
769 	/* we can register the device now, as it is ready */
770 	usb_set_intfdata(interface, dev);
771 
772 	retval = usb_register_dev(interface, &adu_class);
773 
774 	if (retval) {
775 		/* something prevented us from registering this driver */
776 		dev_err(&interface->dev, "Not able to get a minor for this device.\n");
777 		usb_set_intfdata(interface, NULL);
778 		goto error;
779 	}
780 
781 	dev->minor = interface->minor;
782 
783 	/* let the user know what node this device is now attached to */
784 	dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d\n",
785 		 le16_to_cpu(udev->descriptor.idProduct), dev->serial_number,
786 		 (dev->minor - ADU_MINOR_BASE));
787 exit:
788 	return retval;
789 
790 error:
791 	adu_delete(dev);
792 	return retval;
793 }
794 
795 /**
796  * adu_disconnect
797  *
798  * Called by the usb core when the device is removed from the system.
799  */
800 static void adu_disconnect(struct usb_interface *interface)
801 {
802 	struct adu_device *dev;
803 	int minor;
804 
805 	dev = usb_get_intfdata(interface);
806 
807 	mutex_lock(&dev->mtx);	/* not interruptible */
808 	dev->udev = NULL;	/* poison */
809 	minor = dev->minor;
810 	usb_deregister_dev(interface, &adu_class);
811 	mutex_unlock(&dev->mtx);
812 
813 	mutex_lock(&adutux_mutex);
814 	usb_set_intfdata(interface, NULL);
815 
816 	/* if the device is not opened, then we clean up right now */
817 	if (!dev->open_count)
818 		adu_delete(dev);
819 
820 	mutex_unlock(&adutux_mutex);
821 }
822 
823 /* usb specific object needed to register this driver with the usb subsystem */
824 static struct usb_driver adu_driver = {
825 	.name = "adutux",
826 	.probe = adu_probe,
827 	.disconnect = adu_disconnect,
828 	.id_table = device_table,
829 };
830 
831 module_usb_driver(adu_driver);
832 
833 MODULE_AUTHOR(DRIVER_AUTHOR);
834 MODULE_DESCRIPTION(DRIVER_DESC);
835 MODULE_LICENSE("GPL");
836