xref: /openbmc/linux/drivers/usb/host/xhci.c (revision fc28ab18)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (ret) {
117 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 		return ret;
119 	}
120 	xhci->xhc_state |= XHCI_STATE_HALTED;
121 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		/* clear state flags. Including dying, halted or removing */
151 		xhci->xhc_state = 0;
152 
153 	return ret;
154 }
155 
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 	u32 command;
166 	u32 state;
167 	int ret, i;
168 
169 	state = readl(&xhci->op_regs->status);
170 
171 	if (state == ~(u32)0) {
172 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 		return -ENODEV;
174 	}
175 
176 	if ((state & STS_HALT) == 0) {
177 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 		return 0;
179 	}
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 	command = readl(&xhci->op_regs->command);
183 	command |= CMD_RESET;
184 	writel(command, &xhci->op_regs->command);
185 
186 	/* Existing Intel xHCI controllers require a delay of 1 mS,
187 	 * after setting the CMD_RESET bit, and before accessing any
188 	 * HC registers. This allows the HC to complete the
189 	 * reset operation and be ready for HC register access.
190 	 * Without this delay, the subsequent HC register access,
191 	 * may result in a system hang very rarely.
192 	 */
193 	if (xhci->quirks & XHCI_INTEL_HOST)
194 		udelay(1000);
195 
196 	ret = xhci_handshake(&xhci->op_regs->command,
197 			CMD_RESET, 0, 10 * 1000 * 1000);
198 	if (ret)
199 		return ret;
200 
201 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202 			 "Wait for controller to be ready for doorbell rings");
203 	/*
204 	 * xHCI cannot write to any doorbells or operational registers other
205 	 * than status until the "Controller Not Ready" flag is cleared.
206 	 */
207 	ret = xhci_handshake(&xhci->op_regs->status,
208 			STS_CNR, 0, 10 * 1000 * 1000);
209 
210 	for (i = 0; i < 2; ++i) {
211 		xhci->bus_state[i].port_c_suspend = 0;
212 		xhci->bus_state[i].suspended_ports = 0;
213 		xhci->bus_state[i].resuming_ports = 0;
214 	}
215 
216 	return ret;
217 }
218 
219 #ifdef CONFIG_PCI
220 static int xhci_free_msi(struct xhci_hcd *xhci)
221 {
222 	int i;
223 
224 	if (!xhci->msix_entries)
225 		return -EINVAL;
226 
227 	for (i = 0; i < xhci->msix_count; i++)
228 		if (xhci->msix_entries[i].vector)
229 			free_irq(xhci->msix_entries[i].vector,
230 					xhci_to_hcd(xhci));
231 	return 0;
232 }
233 
234 /*
235  * Set up MSI
236  */
237 static int xhci_setup_msi(struct xhci_hcd *xhci)
238 {
239 	int ret;
240 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
241 
242 	ret = pci_enable_msi(pdev);
243 	if (ret) {
244 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245 				"failed to allocate MSI entry");
246 		return ret;
247 	}
248 
249 	ret = request_irq(pdev->irq, xhci_msi_irq,
250 				0, "xhci_hcd", xhci_to_hcd(xhci));
251 	if (ret) {
252 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
253 				"disable MSI interrupt");
254 		pci_disable_msi(pdev);
255 	}
256 
257 	return ret;
258 }
259 
260 /*
261  * Free IRQs
262  * free all IRQs request
263  */
264 static void xhci_free_irq(struct xhci_hcd *xhci)
265 {
266 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
267 	int ret;
268 
269 	/* return if using legacy interrupt */
270 	if (xhci_to_hcd(xhci)->irq > 0)
271 		return;
272 
273 	ret = xhci_free_msi(xhci);
274 	if (!ret)
275 		return;
276 	if (pdev->irq > 0)
277 		free_irq(pdev->irq, xhci_to_hcd(xhci));
278 
279 	return;
280 }
281 
282 /*
283  * Set up MSI-X
284  */
285 static int xhci_setup_msix(struct xhci_hcd *xhci)
286 {
287 	int i, ret = 0;
288 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290 
291 	/*
292 	 * calculate number of msi-x vectors supported.
293 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
294 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
295 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
296 	 *   Add additional 1 vector to ensure always available interrupt.
297 	 */
298 	xhci->msix_count = min(num_online_cpus() + 1,
299 				HCS_MAX_INTRS(xhci->hcs_params1));
300 
301 	xhci->msix_entries =
302 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
303 				GFP_KERNEL);
304 	if (!xhci->msix_entries)
305 		return -ENOMEM;
306 
307 	for (i = 0; i < xhci->msix_count; i++) {
308 		xhci->msix_entries[i].entry = i;
309 		xhci->msix_entries[i].vector = 0;
310 	}
311 
312 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
313 	if (ret) {
314 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 				"Failed to enable MSI-X");
316 		goto free_entries;
317 	}
318 
319 	for (i = 0; i < xhci->msix_count; i++) {
320 		ret = request_irq(xhci->msix_entries[i].vector,
321 				xhci_msi_irq,
322 				0, "xhci_hcd", xhci_to_hcd(xhci));
323 		if (ret)
324 			goto disable_msix;
325 	}
326 
327 	hcd->msix_enabled = 1;
328 	return ret;
329 
330 disable_msix:
331 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
332 	xhci_free_irq(xhci);
333 	pci_disable_msix(pdev);
334 free_entries:
335 	kfree(xhci->msix_entries);
336 	xhci->msix_entries = NULL;
337 	return ret;
338 }
339 
340 /* Free any IRQs and disable MSI-X */
341 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
342 {
343 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
344 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
345 
346 	if (xhci->quirks & XHCI_PLAT)
347 		return;
348 
349 	xhci_free_irq(xhci);
350 
351 	if (xhci->msix_entries) {
352 		pci_disable_msix(pdev);
353 		kfree(xhci->msix_entries);
354 		xhci->msix_entries = NULL;
355 	} else {
356 		pci_disable_msi(pdev);
357 	}
358 
359 	hcd->msix_enabled = 0;
360 	return;
361 }
362 
363 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
364 {
365 	int i;
366 
367 	if (xhci->msix_entries) {
368 		for (i = 0; i < xhci->msix_count; i++)
369 			synchronize_irq(xhci->msix_entries[i].vector);
370 	}
371 }
372 
373 static int xhci_try_enable_msi(struct usb_hcd *hcd)
374 {
375 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
376 	struct pci_dev  *pdev;
377 	int ret;
378 
379 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
380 	if (xhci->quirks & XHCI_PLAT)
381 		return 0;
382 
383 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
384 	/*
385 	 * Some Fresco Logic host controllers advertise MSI, but fail to
386 	 * generate interrupts.  Don't even try to enable MSI.
387 	 */
388 	if (xhci->quirks & XHCI_BROKEN_MSI)
389 		goto legacy_irq;
390 
391 	/* unregister the legacy interrupt */
392 	if (hcd->irq)
393 		free_irq(hcd->irq, hcd);
394 	hcd->irq = 0;
395 
396 	ret = xhci_setup_msix(xhci);
397 	if (ret)
398 		/* fall back to msi*/
399 		ret = xhci_setup_msi(xhci);
400 
401 	if (!ret)
402 		/* hcd->irq is 0, we have MSI */
403 		return 0;
404 
405 	if (!pdev->irq) {
406 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
407 		return -EINVAL;
408 	}
409 
410  legacy_irq:
411 	if (!strlen(hcd->irq_descr))
412 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
413 			 hcd->driver->description, hcd->self.busnum);
414 
415 	/* fall back to legacy interrupt*/
416 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
417 			hcd->irq_descr, hcd);
418 	if (ret) {
419 		xhci_err(xhci, "request interrupt %d failed\n",
420 				pdev->irq);
421 		return ret;
422 	}
423 	hcd->irq = pdev->irq;
424 	return 0;
425 }
426 
427 #else
428 
429 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
430 {
431 	return 0;
432 }
433 
434 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
435 {
436 }
437 
438 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
439 {
440 }
441 
442 #endif
443 
444 static void compliance_mode_recovery(unsigned long arg)
445 {
446 	struct xhci_hcd *xhci;
447 	struct usb_hcd *hcd;
448 	u32 temp;
449 	int i;
450 
451 	xhci = (struct xhci_hcd *)arg;
452 
453 	for (i = 0; i < xhci->num_usb3_ports; i++) {
454 		temp = readl(xhci->usb3_ports[i]);
455 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
456 			/*
457 			 * Compliance Mode Detected. Letting USB Core
458 			 * handle the Warm Reset
459 			 */
460 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461 					"Compliance mode detected->port %d",
462 					i + 1);
463 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464 					"Attempting compliance mode recovery");
465 			hcd = xhci->shared_hcd;
466 
467 			if (hcd->state == HC_STATE_SUSPENDED)
468 				usb_hcd_resume_root_hub(hcd);
469 
470 			usb_hcd_poll_rh_status(hcd);
471 		}
472 	}
473 
474 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
475 		mod_timer(&xhci->comp_mode_recovery_timer,
476 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
477 }
478 
479 /*
480  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
481  * that causes ports behind that hardware to enter compliance mode sometimes.
482  * The quirk creates a timer that polls every 2 seconds the link state of
483  * each host controller's port and recovers it by issuing a Warm reset
484  * if Compliance mode is detected, otherwise the port will become "dead" (no
485  * device connections or disconnections will be detected anymore). Becasue no
486  * status event is generated when entering compliance mode (per xhci spec),
487  * this quirk is needed on systems that have the failing hardware installed.
488  */
489 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
490 {
491 	xhci->port_status_u0 = 0;
492 	setup_timer(&xhci->comp_mode_recovery_timer,
493 		    compliance_mode_recovery, (unsigned long)xhci);
494 	xhci->comp_mode_recovery_timer.expires = jiffies +
495 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
496 
497 	add_timer(&xhci->comp_mode_recovery_timer);
498 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499 			"Compliance mode recovery timer initialized");
500 }
501 
502 /*
503  * This function identifies the systems that have installed the SN65LVPE502CP
504  * USB3.0 re-driver and that need the Compliance Mode Quirk.
505  * Systems:
506  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
507  */
508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
509 {
510 	const char *dmi_product_name, *dmi_sys_vendor;
511 
512 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
513 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
514 	if (!dmi_product_name || !dmi_sys_vendor)
515 		return false;
516 
517 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
518 		return false;
519 
520 	if (strstr(dmi_product_name, "Z420") ||
521 			strstr(dmi_product_name, "Z620") ||
522 			strstr(dmi_product_name, "Z820") ||
523 			strstr(dmi_product_name, "Z1 Workstation"))
524 		return true;
525 
526 	return false;
527 }
528 
529 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
530 {
531 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
532 }
533 
534 
535 /*
536  * Initialize memory for HCD and xHC (one-time init).
537  *
538  * Program the PAGESIZE register, initialize the device context array, create
539  * device contexts (?), set up a command ring segment (or two?), create event
540  * ring (one for now).
541  */
542 int xhci_init(struct usb_hcd *hcd)
543 {
544 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
545 	int retval = 0;
546 
547 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
548 	spin_lock_init(&xhci->lock);
549 	if (xhci->hci_version == 0x95 && link_quirk) {
550 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
551 				"QUIRK: Not clearing Link TRB chain bits.");
552 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
553 	} else {
554 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
555 				"xHCI doesn't need link TRB QUIRK");
556 	}
557 	retval = xhci_mem_init(xhci, GFP_KERNEL);
558 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
559 
560 	/* Initializing Compliance Mode Recovery Data If Needed */
561 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
562 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
563 		compliance_mode_recovery_timer_init(xhci);
564 	}
565 
566 	return retval;
567 }
568 
569 /*-------------------------------------------------------------------------*/
570 
571 
572 static int xhci_run_finished(struct xhci_hcd *xhci)
573 {
574 	if (xhci_start(xhci)) {
575 		xhci_halt(xhci);
576 		return -ENODEV;
577 	}
578 	xhci->shared_hcd->state = HC_STATE_RUNNING;
579 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
580 
581 	if (xhci->quirks & XHCI_NEC_HOST)
582 		xhci_ring_cmd_db(xhci);
583 
584 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585 			"Finished xhci_run for USB3 roothub");
586 	return 0;
587 }
588 
589 /*
590  * Start the HC after it was halted.
591  *
592  * This function is called by the USB core when the HC driver is added.
593  * Its opposite is xhci_stop().
594  *
595  * xhci_init() must be called once before this function can be called.
596  * Reset the HC, enable device slot contexts, program DCBAAP, and
597  * set command ring pointer and event ring pointer.
598  *
599  * Setup MSI-X vectors and enable interrupts.
600  */
601 int xhci_run(struct usb_hcd *hcd)
602 {
603 	u32 temp;
604 	u64 temp_64;
605 	int ret;
606 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
607 
608 	/* Start the xHCI host controller running only after the USB 2.0 roothub
609 	 * is setup.
610 	 */
611 
612 	hcd->uses_new_polling = 1;
613 	if (!usb_hcd_is_primary_hcd(hcd))
614 		return xhci_run_finished(xhci);
615 
616 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
617 
618 	ret = xhci_try_enable_msi(hcd);
619 	if (ret)
620 		return ret;
621 
622 	xhci_dbg(xhci, "Command ring memory map follows:\n");
623 	xhci_debug_ring(xhci, xhci->cmd_ring);
624 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
625 	xhci_dbg_cmd_ptrs(xhci);
626 
627 	xhci_dbg(xhci, "ERST memory map follows:\n");
628 	xhci_dbg_erst(xhci, &xhci->erst);
629 	xhci_dbg(xhci, "Event ring:\n");
630 	xhci_debug_ring(xhci, xhci->event_ring);
631 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
632 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
633 	temp_64 &= ~ERST_PTR_MASK;
634 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
636 
637 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638 			"// Set the interrupt modulation register");
639 	temp = readl(&xhci->ir_set->irq_control);
640 	temp &= ~ER_IRQ_INTERVAL_MASK;
641 	/*
642 	 * the increment interval is 8 times as much as that defined
643 	 * in xHCI spec on MTK's controller
644 	 */
645 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
646 	writel(temp, &xhci->ir_set->irq_control);
647 
648 	/* Set the HCD state before we enable the irqs */
649 	temp = readl(&xhci->op_regs->command);
650 	temp |= (CMD_EIE);
651 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652 			"// Enable interrupts, cmd = 0x%x.", temp);
653 	writel(temp, &xhci->op_regs->command);
654 
655 	temp = readl(&xhci->ir_set->irq_pending);
656 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
657 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
658 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
659 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
660 	xhci_print_ir_set(xhci, 0);
661 
662 	if (xhci->quirks & XHCI_NEC_HOST) {
663 		struct xhci_command *command;
664 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
665 		if (!command)
666 			return -ENOMEM;
667 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
668 				TRB_TYPE(TRB_NEC_GET_FW));
669 	}
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"Finished xhci_run for USB2 roothub");
672 	return 0;
673 }
674 EXPORT_SYMBOL_GPL(xhci_run);
675 
676 /*
677  * Stop xHCI driver.
678  *
679  * This function is called by the USB core when the HC driver is removed.
680  * Its opposite is xhci_run().
681  *
682  * Disable device contexts, disable IRQs, and quiesce the HC.
683  * Reset the HC, finish any completed transactions, and cleanup memory.
684  */
685 void xhci_stop(struct usb_hcd *hcd)
686 {
687 	u32 temp;
688 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
689 
690 	mutex_lock(&xhci->mutex);
691 
692 	if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
693 		spin_lock_irq(&xhci->lock);
694 
695 		xhci->xhc_state |= XHCI_STATE_HALTED;
696 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
697 		xhci_halt(xhci);
698 		xhci_reset(xhci);
699 		spin_unlock_irq(&xhci->lock);
700 	}
701 
702 	if (!usb_hcd_is_primary_hcd(hcd)) {
703 		mutex_unlock(&xhci->mutex);
704 		return;
705 	}
706 
707 	xhci_cleanup_msix(xhci);
708 
709 	/* Deleting Compliance Mode Recovery Timer */
710 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
711 			(!(xhci_all_ports_seen_u0(xhci)))) {
712 		del_timer_sync(&xhci->comp_mode_recovery_timer);
713 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
714 				"%s: compliance mode recovery timer deleted",
715 				__func__);
716 	}
717 
718 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
719 		usb_amd_dev_put();
720 
721 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722 			"// Disabling event ring interrupts");
723 	temp = readl(&xhci->op_regs->status);
724 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
725 	temp = readl(&xhci->ir_set->irq_pending);
726 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
727 	xhci_print_ir_set(xhci, 0);
728 
729 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
730 	xhci_mem_cleanup(xhci);
731 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
732 			"xhci_stop completed - status = %x",
733 			readl(&xhci->op_regs->status));
734 	mutex_unlock(&xhci->mutex);
735 }
736 
737 /*
738  * Shutdown HC (not bus-specific)
739  *
740  * This is called when the machine is rebooting or halting.  We assume that the
741  * machine will be powered off, and the HC's internal state will be reset.
742  * Don't bother to free memory.
743  *
744  * This will only ever be called with the main usb_hcd (the USB3 roothub).
745  */
746 void xhci_shutdown(struct usb_hcd *hcd)
747 {
748 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
749 
750 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
751 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
752 
753 	spin_lock_irq(&xhci->lock);
754 	xhci_halt(xhci);
755 	/* Workaround for spurious wakeups at shutdown with HSW */
756 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
757 		xhci_reset(xhci);
758 	spin_unlock_irq(&xhci->lock);
759 
760 	xhci_cleanup_msix(xhci);
761 
762 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 			"xhci_shutdown completed - status = %x",
764 			readl(&xhci->op_regs->status));
765 
766 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
767 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
768 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
769 }
770 
771 #ifdef CONFIG_PM
772 static void xhci_save_registers(struct xhci_hcd *xhci)
773 {
774 	xhci->s3.command = readl(&xhci->op_regs->command);
775 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
776 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
777 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
778 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
779 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
780 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
781 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
782 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
783 }
784 
785 static void xhci_restore_registers(struct xhci_hcd *xhci)
786 {
787 	writel(xhci->s3.command, &xhci->op_regs->command);
788 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
789 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
790 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
791 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
792 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
793 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
794 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
795 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
796 }
797 
798 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
799 {
800 	u64	val_64;
801 
802 	/* step 2: initialize command ring buffer */
803 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
804 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
805 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
806 				      xhci->cmd_ring->dequeue) &
807 		 (u64) ~CMD_RING_RSVD_BITS) |
808 		xhci->cmd_ring->cycle_state;
809 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
810 			"// Setting command ring address to 0x%llx",
811 			(long unsigned long) val_64);
812 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
813 }
814 
815 /*
816  * The whole command ring must be cleared to zero when we suspend the host.
817  *
818  * The host doesn't save the command ring pointer in the suspend well, so we
819  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
820  * aligned, because of the reserved bits in the command ring dequeue pointer
821  * register.  Therefore, we can't just set the dequeue pointer back in the
822  * middle of the ring (TRBs are 16-byte aligned).
823  */
824 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
825 {
826 	struct xhci_ring *ring;
827 	struct xhci_segment *seg;
828 
829 	ring = xhci->cmd_ring;
830 	seg = ring->deq_seg;
831 	do {
832 		memset(seg->trbs, 0,
833 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
834 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
835 			cpu_to_le32(~TRB_CYCLE);
836 		seg = seg->next;
837 	} while (seg != ring->deq_seg);
838 
839 	/* Reset the software enqueue and dequeue pointers */
840 	ring->deq_seg = ring->first_seg;
841 	ring->dequeue = ring->first_seg->trbs;
842 	ring->enq_seg = ring->deq_seg;
843 	ring->enqueue = ring->dequeue;
844 
845 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
846 	/*
847 	 * Ring is now zeroed, so the HW should look for change of ownership
848 	 * when the cycle bit is set to 1.
849 	 */
850 	ring->cycle_state = 1;
851 
852 	/*
853 	 * Reset the hardware dequeue pointer.
854 	 * Yes, this will need to be re-written after resume, but we're paranoid
855 	 * and want to make sure the hardware doesn't access bogus memory
856 	 * because, say, the BIOS or an SMI started the host without changing
857 	 * the command ring pointers.
858 	 */
859 	xhci_set_cmd_ring_deq(xhci);
860 }
861 
862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
863 {
864 	int port_index;
865 	__le32 __iomem **port_array;
866 	unsigned long flags;
867 	u32 t1, t2;
868 
869 	spin_lock_irqsave(&xhci->lock, flags);
870 
871 	/* disble usb3 ports Wake bits*/
872 	port_index = xhci->num_usb3_ports;
873 	port_array = xhci->usb3_ports;
874 	while (port_index--) {
875 		t1 = readl(port_array[port_index]);
876 		t1 = xhci_port_state_to_neutral(t1);
877 		t2 = t1 & ~PORT_WAKE_BITS;
878 		if (t1 != t2)
879 			writel(t2, port_array[port_index]);
880 	}
881 
882 	/* disble usb2 ports Wake bits*/
883 	port_index = xhci->num_usb2_ports;
884 	port_array = xhci->usb2_ports;
885 	while (port_index--) {
886 		t1 = readl(port_array[port_index]);
887 		t1 = xhci_port_state_to_neutral(t1);
888 		t2 = t1 & ~PORT_WAKE_BITS;
889 		if (t1 != t2)
890 			writel(t2, port_array[port_index]);
891 	}
892 
893 	spin_unlock_irqrestore(&xhci->lock, flags);
894 }
895 
896 /*
897  * Stop HC (not bus-specific)
898  *
899  * This is called when the machine transition into S3/S4 mode.
900  *
901  */
902 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
903 {
904 	int			rc = 0;
905 	unsigned int		delay = XHCI_MAX_HALT_USEC;
906 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
907 	u32			command;
908 
909 	if (!hcd->state)
910 		return 0;
911 
912 	if (hcd->state != HC_STATE_SUSPENDED ||
913 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
914 		return -EINVAL;
915 
916 	/* Clear root port wake on bits if wakeup not allowed. */
917 	if (!do_wakeup)
918 		xhci_disable_port_wake_on_bits(xhci);
919 
920 	/* Don't poll the roothubs on bus suspend. */
921 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
922 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
923 	del_timer_sync(&hcd->rh_timer);
924 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
925 	del_timer_sync(&xhci->shared_hcd->rh_timer);
926 
927 	spin_lock_irq(&xhci->lock);
928 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
930 	/* step 1: stop endpoint */
931 	/* skipped assuming that port suspend has done */
932 
933 	/* step 2: clear Run/Stop bit */
934 	command = readl(&xhci->op_regs->command);
935 	command &= ~CMD_RUN;
936 	writel(command, &xhci->op_regs->command);
937 
938 	/* Some chips from Fresco Logic need an extraordinary delay */
939 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
940 
941 	if (xhci_handshake(&xhci->op_regs->status,
942 		      STS_HALT, STS_HALT, delay)) {
943 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
944 		spin_unlock_irq(&xhci->lock);
945 		return -ETIMEDOUT;
946 	}
947 	xhci_clear_command_ring(xhci);
948 
949 	/* step 3: save registers */
950 	xhci_save_registers(xhci);
951 
952 	/* step 4: set CSS flag */
953 	command = readl(&xhci->op_regs->command);
954 	command |= CMD_CSS;
955 	writel(command, &xhci->op_regs->command);
956 	if (xhci_handshake(&xhci->op_regs->status,
957 				STS_SAVE, 0, 10 * 1000)) {
958 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
959 		spin_unlock_irq(&xhci->lock);
960 		return -ETIMEDOUT;
961 	}
962 	spin_unlock_irq(&xhci->lock);
963 
964 	/*
965 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
966 	 * is about to be suspended.
967 	 */
968 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
969 			(!(xhci_all_ports_seen_u0(xhci)))) {
970 		del_timer_sync(&xhci->comp_mode_recovery_timer);
971 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
972 				"%s: compliance mode recovery timer deleted",
973 				__func__);
974 	}
975 
976 	/* step 5: remove core well power */
977 	/* synchronize irq when using MSI-X */
978 	xhci_msix_sync_irqs(xhci);
979 
980 	return rc;
981 }
982 EXPORT_SYMBOL_GPL(xhci_suspend);
983 
984 /*
985  * start xHC (not bus-specific)
986  *
987  * This is called when the machine transition from S3/S4 mode.
988  *
989  */
990 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
991 {
992 	u32			command, temp = 0, status;
993 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
994 	struct usb_hcd		*secondary_hcd;
995 	int			retval = 0;
996 	bool			comp_timer_running = false;
997 
998 	if (!hcd->state)
999 		return 0;
1000 
1001 	/* Wait a bit if either of the roothubs need to settle from the
1002 	 * transition into bus suspend.
1003 	 */
1004 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1005 			time_before(jiffies,
1006 				xhci->bus_state[1].next_statechange))
1007 		msleep(100);
1008 
1009 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1010 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1011 
1012 	spin_lock_irq(&xhci->lock);
1013 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1014 		hibernated = true;
1015 
1016 	if (!hibernated) {
1017 		/* step 1: restore register */
1018 		xhci_restore_registers(xhci);
1019 		/* step 2: initialize command ring buffer */
1020 		xhci_set_cmd_ring_deq(xhci);
1021 		/* step 3: restore state and start state*/
1022 		/* step 3: set CRS flag */
1023 		command = readl(&xhci->op_regs->command);
1024 		command |= CMD_CRS;
1025 		writel(command, &xhci->op_regs->command);
1026 		if (xhci_handshake(&xhci->op_regs->status,
1027 			      STS_RESTORE, 0, 10 * 1000)) {
1028 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1029 			spin_unlock_irq(&xhci->lock);
1030 			return -ETIMEDOUT;
1031 		}
1032 		temp = readl(&xhci->op_regs->status);
1033 	}
1034 
1035 	/* If restore operation fails, re-initialize the HC during resume */
1036 	if ((temp & STS_SRE) || hibernated) {
1037 
1038 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039 				!(xhci_all_ports_seen_u0(xhci))) {
1040 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1041 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042 				"Compliance Mode Recovery Timer deleted!");
1043 		}
1044 
1045 		/* Let the USB core know _both_ roothubs lost power. */
1046 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1047 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1048 
1049 		xhci_dbg(xhci, "Stop HCD\n");
1050 		xhci_halt(xhci);
1051 		xhci_reset(xhci);
1052 		spin_unlock_irq(&xhci->lock);
1053 		xhci_cleanup_msix(xhci);
1054 
1055 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1056 		temp = readl(&xhci->op_regs->status);
1057 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1058 		temp = readl(&xhci->ir_set->irq_pending);
1059 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1060 		xhci_print_ir_set(xhci, 0);
1061 
1062 		xhci_dbg(xhci, "cleaning up memory\n");
1063 		xhci_mem_cleanup(xhci);
1064 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1065 			    readl(&xhci->op_regs->status));
1066 
1067 		/* USB core calls the PCI reinit and start functions twice:
1068 		 * first with the primary HCD, and then with the secondary HCD.
1069 		 * If we don't do the same, the host will never be started.
1070 		 */
1071 		if (!usb_hcd_is_primary_hcd(hcd))
1072 			secondary_hcd = hcd;
1073 		else
1074 			secondary_hcd = xhci->shared_hcd;
1075 
1076 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077 		retval = xhci_init(hcd->primary_hcd);
1078 		if (retval)
1079 			return retval;
1080 		comp_timer_running = true;
1081 
1082 		xhci_dbg(xhci, "Start the primary HCD\n");
1083 		retval = xhci_run(hcd->primary_hcd);
1084 		if (!retval) {
1085 			xhci_dbg(xhci, "Start the secondary HCD\n");
1086 			retval = xhci_run(secondary_hcd);
1087 		}
1088 		hcd->state = HC_STATE_SUSPENDED;
1089 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090 		goto done;
1091 	}
1092 
1093 	/* step 4: set Run/Stop bit */
1094 	command = readl(&xhci->op_regs->command);
1095 	command |= CMD_RUN;
1096 	writel(command, &xhci->op_regs->command);
1097 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098 		  0, 250 * 1000);
1099 
1100 	/* step 5: walk topology and initialize portsc,
1101 	 * portpmsc and portli
1102 	 */
1103 	/* this is done in bus_resume */
1104 
1105 	/* step 6: restart each of the previously
1106 	 * Running endpoints by ringing their doorbells
1107 	 */
1108 
1109 	spin_unlock_irq(&xhci->lock);
1110 
1111  done:
1112 	if (retval == 0) {
1113 		/* Resume root hubs only when have pending events. */
1114 		status = readl(&xhci->op_regs->status);
1115 		if (status & STS_EINT) {
1116 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1117 			usb_hcd_resume_root_hub(hcd);
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1123 	 * be re-initialized Always after a system resume. Ports are subject
1124 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1125 	 * ports have entered previously to U0 before system's suspension.
1126 	 */
1127 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1128 		compliance_mode_recovery_timer_init(xhci);
1129 
1130 	/* Re-enable port polling. */
1131 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1132 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1133 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1134 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1135 	usb_hcd_poll_rh_status(hcd);
1136 
1137 	return retval;
1138 }
1139 EXPORT_SYMBOL_GPL(xhci_resume);
1140 #endif	/* CONFIG_PM */
1141 
1142 /*-------------------------------------------------------------------------*/
1143 
1144 /**
1145  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1146  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1147  * value to right shift 1 for the bitmask.
1148  *
1149  * Index  = (epnum * 2) + direction - 1,
1150  * where direction = 0 for OUT, 1 for IN.
1151  * For control endpoints, the IN index is used (OUT index is unused), so
1152  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1153  */
1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1155 {
1156 	unsigned int index;
1157 	if (usb_endpoint_xfer_control(desc))
1158 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1159 	else
1160 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1161 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1162 	return index;
1163 }
1164 
1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1166  * address from the XHCI endpoint index.
1167  */
1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1169 {
1170 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1171 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1172 	return direction | number;
1173 }
1174 
1175 /* Find the flag for this endpoint (for use in the control context).  Use the
1176  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1177  * bit 1, etc.
1178  */
1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1180 {
1181 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1182 }
1183 
1184 /* Find the flag for this endpoint (for use in the control context).  Use the
1185  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1186  * bit 1, etc.
1187  */
1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1189 {
1190 	return 1 << (ep_index + 1);
1191 }
1192 
1193 /* Compute the last valid endpoint context index.  Basically, this is the
1194  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1195  * we find the most significant bit set in the added contexts flags.
1196  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1197  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1198  */
1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1200 {
1201 	return fls(added_ctxs) - 1;
1202 }
1203 
1204 /* Returns 1 if the arguments are OK;
1205  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1206  */
1207 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1208 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1209 		const char *func) {
1210 	struct xhci_hcd	*xhci;
1211 	struct xhci_virt_device	*virt_dev;
1212 
1213 	if (!hcd || (check_ep && !ep) || !udev) {
1214 		pr_debug("xHCI %s called with invalid args\n", func);
1215 		return -EINVAL;
1216 	}
1217 	if (!udev->parent) {
1218 		pr_debug("xHCI %s called for root hub\n", func);
1219 		return 0;
1220 	}
1221 
1222 	xhci = hcd_to_xhci(hcd);
1223 	if (check_virt_dev) {
1224 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1226 					func);
1227 			return -EINVAL;
1228 		}
1229 
1230 		virt_dev = xhci->devs[udev->slot_id];
1231 		if (virt_dev->udev != udev) {
1232 			xhci_dbg(xhci, "xHCI %s called with udev and "
1233 					  "virt_dev does not match\n", func);
1234 			return -EINVAL;
1235 		}
1236 	}
1237 
1238 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1239 		return -ENODEV;
1240 
1241 	return 1;
1242 }
1243 
1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245 		struct usb_device *udev, struct xhci_command *command,
1246 		bool ctx_change, bool must_succeed);
1247 
1248 /*
1249  * Full speed devices may have a max packet size greater than 8 bytes, but the
1250  * USB core doesn't know that until it reads the first 8 bytes of the
1251  * descriptor.  If the usb_device's max packet size changes after that point,
1252  * we need to issue an evaluate context command and wait on it.
1253  */
1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255 		unsigned int ep_index, struct urb *urb)
1256 {
1257 	struct xhci_container_ctx *out_ctx;
1258 	struct xhci_input_control_ctx *ctrl_ctx;
1259 	struct xhci_ep_ctx *ep_ctx;
1260 	struct xhci_command *command;
1261 	int max_packet_size;
1262 	int hw_max_packet_size;
1263 	int ret = 0;
1264 
1265 	out_ctx = xhci->devs[slot_id]->out_ctx;
1266 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269 	if (hw_max_packet_size != max_packet_size) {
1270 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271 				"Max Packet Size for ep 0 changed.");
1272 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273 				"Max packet size in usb_device = %d",
1274 				max_packet_size);
1275 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276 				"Max packet size in xHCI HW = %d",
1277 				hw_max_packet_size);
1278 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1279 				"Issuing evaluate context command.");
1280 
1281 		/* Set up the input context flags for the command */
1282 		/* FIXME: This won't work if a non-default control endpoint
1283 		 * changes max packet sizes.
1284 		 */
1285 
1286 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1287 		if (!command)
1288 			return -ENOMEM;
1289 
1290 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1291 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1292 		if (!ctrl_ctx) {
1293 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1294 					__func__);
1295 			ret = -ENOMEM;
1296 			goto command_cleanup;
1297 		}
1298 		/* Set up the modified control endpoint 0 */
1299 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1300 				xhci->devs[slot_id]->out_ctx, ep_index);
1301 
1302 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1303 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1304 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1305 
1306 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1307 		ctrl_ctx->drop_flags = 0;
1308 
1309 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1310 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1311 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1312 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1313 
1314 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1315 				true, false);
1316 
1317 		/* Clean up the input context for later use by bandwidth
1318 		 * functions.
1319 		 */
1320 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1321 command_cleanup:
1322 		kfree(command->completion);
1323 		kfree(command);
1324 	}
1325 	return ret;
1326 }
1327 
1328 /*
1329  * non-error returns are a promise to giveback() the urb later
1330  * we drop ownership so next owner (or urb unlink) can get it
1331  */
1332 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1333 {
1334 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1335 	struct xhci_td *buffer;
1336 	unsigned long flags;
1337 	int ret = 0;
1338 	unsigned int slot_id, ep_index;
1339 	struct urb_priv	*urb_priv;
1340 	int size, i;
1341 
1342 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1343 					true, true, __func__) <= 0)
1344 		return -EINVAL;
1345 
1346 	slot_id = urb->dev->slot_id;
1347 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1348 
1349 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1350 		if (!in_interrupt())
1351 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1352 		ret = -ESHUTDOWN;
1353 		goto exit;
1354 	}
1355 
1356 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1357 		size = urb->number_of_packets;
1358 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1359 	    urb->transfer_buffer_length > 0 &&
1360 	    urb->transfer_flags & URB_ZERO_PACKET &&
1361 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1362 		size = 2;
1363 	else
1364 		size = 1;
1365 
1366 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1367 				  size * sizeof(struct xhci_td *), mem_flags);
1368 	if (!urb_priv)
1369 		return -ENOMEM;
1370 
1371 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1372 	if (!buffer) {
1373 		kfree(urb_priv);
1374 		return -ENOMEM;
1375 	}
1376 
1377 	for (i = 0; i < size; i++) {
1378 		urb_priv->td[i] = buffer;
1379 		buffer++;
1380 	}
1381 
1382 	urb_priv->length = size;
1383 	urb_priv->td_cnt = 0;
1384 	urb->hcpriv = urb_priv;
1385 
1386 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1387 		/* Check to see if the max packet size for the default control
1388 		 * endpoint changed during FS device enumeration
1389 		 */
1390 		if (urb->dev->speed == USB_SPEED_FULL) {
1391 			ret = xhci_check_maxpacket(xhci, slot_id,
1392 					ep_index, urb);
1393 			if (ret < 0) {
1394 				xhci_urb_free_priv(urb_priv);
1395 				urb->hcpriv = NULL;
1396 				return ret;
1397 			}
1398 		}
1399 
1400 		/* We have a spinlock and interrupts disabled, so we must pass
1401 		 * atomic context to this function, which may allocate memory.
1402 		 */
1403 		spin_lock_irqsave(&xhci->lock, flags);
1404 		if (xhci->xhc_state & XHCI_STATE_DYING)
1405 			goto dying;
1406 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1407 				slot_id, ep_index);
1408 		if (ret)
1409 			goto free_priv;
1410 		spin_unlock_irqrestore(&xhci->lock, flags);
1411 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1412 		spin_lock_irqsave(&xhci->lock, flags);
1413 		if (xhci->xhc_state & XHCI_STATE_DYING)
1414 			goto dying;
1415 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416 				EP_GETTING_STREAMS) {
1417 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418 					"is transitioning to using streams.\n");
1419 			ret = -EINVAL;
1420 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1421 				EP_GETTING_NO_STREAMS) {
1422 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1423 					"is transitioning to "
1424 					"not having streams.\n");
1425 			ret = -EINVAL;
1426 		} else {
1427 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1428 					slot_id, ep_index);
1429 		}
1430 		if (ret)
1431 			goto free_priv;
1432 		spin_unlock_irqrestore(&xhci->lock, flags);
1433 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1434 		spin_lock_irqsave(&xhci->lock, flags);
1435 		if (xhci->xhc_state & XHCI_STATE_DYING)
1436 			goto dying;
1437 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1438 				slot_id, ep_index);
1439 		if (ret)
1440 			goto free_priv;
1441 		spin_unlock_irqrestore(&xhci->lock, flags);
1442 	} else {
1443 		spin_lock_irqsave(&xhci->lock, flags);
1444 		if (xhci->xhc_state & XHCI_STATE_DYING)
1445 			goto dying;
1446 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1447 				slot_id, ep_index);
1448 		if (ret)
1449 			goto free_priv;
1450 		spin_unlock_irqrestore(&xhci->lock, flags);
1451 	}
1452 exit:
1453 	return ret;
1454 dying:
1455 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1456 			"non-responsive xHCI host.\n",
1457 			urb->ep->desc.bEndpointAddress, urb);
1458 	ret = -ESHUTDOWN;
1459 free_priv:
1460 	xhci_urb_free_priv(urb_priv);
1461 	urb->hcpriv = NULL;
1462 	spin_unlock_irqrestore(&xhci->lock, flags);
1463 	return ret;
1464 }
1465 
1466 /*
1467  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1468  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1469  * should pick up where it left off in the TD, unless a Set Transfer Ring
1470  * Dequeue Pointer is issued.
1471  *
1472  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1473  * the ring.  Since the ring is a contiguous structure, they can't be physically
1474  * removed.  Instead, there are two options:
1475  *
1476  *  1) If the HC is in the middle of processing the URB to be canceled, we
1477  *     simply move the ring's dequeue pointer past those TRBs using the Set
1478  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1479  *     when drivers timeout on the last submitted URB and attempt to cancel.
1480  *
1481  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1482  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1483  *     HC will need to invalidate the any TRBs it has cached after the stop
1484  *     endpoint command, as noted in the xHCI 0.95 errata.
1485  *
1486  *  3) The TD may have completed by the time the Stop Endpoint Command
1487  *     completes, so software needs to handle that case too.
1488  *
1489  * This function should protect against the TD enqueueing code ringing the
1490  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1491  * It also needs to account for multiple cancellations on happening at the same
1492  * time for the same endpoint.
1493  *
1494  * Note that this function can be called in any context, or so says
1495  * usb_hcd_unlink_urb()
1496  */
1497 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1498 {
1499 	unsigned long flags;
1500 	int ret, i;
1501 	u32 temp;
1502 	struct xhci_hcd *xhci;
1503 	struct urb_priv	*urb_priv;
1504 	struct xhci_td *td;
1505 	unsigned int ep_index;
1506 	struct xhci_ring *ep_ring;
1507 	struct xhci_virt_ep *ep;
1508 	struct xhci_command *command;
1509 
1510 	xhci = hcd_to_xhci(hcd);
1511 	spin_lock_irqsave(&xhci->lock, flags);
1512 	/* Make sure the URB hasn't completed or been unlinked already */
1513 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1514 	if (ret || !urb->hcpriv)
1515 		goto done;
1516 	temp = readl(&xhci->op_regs->status);
1517 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1518 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1519 				"HW died, freeing TD.");
1520 		urb_priv = urb->hcpriv;
1521 		for (i = urb_priv->td_cnt;
1522 		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1523 		     i++) {
1524 			td = urb_priv->td[i];
1525 			if (!list_empty(&td->td_list))
1526 				list_del_init(&td->td_list);
1527 			if (!list_empty(&td->cancelled_td_list))
1528 				list_del_init(&td->cancelled_td_list);
1529 		}
1530 
1531 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1532 		spin_unlock_irqrestore(&xhci->lock, flags);
1533 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1534 		xhci_urb_free_priv(urb_priv);
1535 		return ret;
1536 	}
1537 
1538 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1539 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1540 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1541 	if (!ep_ring) {
1542 		ret = -EINVAL;
1543 		goto done;
1544 	}
1545 
1546 	urb_priv = urb->hcpriv;
1547 	i = urb_priv->td_cnt;
1548 	if (i < urb_priv->length)
1549 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1550 				"Cancel URB %p, dev %s, ep 0x%x, "
1551 				"starting at offset 0x%llx",
1552 				urb, urb->dev->devpath,
1553 				urb->ep->desc.bEndpointAddress,
1554 				(unsigned long long) xhci_trb_virt_to_dma(
1555 					urb_priv->td[i]->start_seg,
1556 					urb_priv->td[i]->first_trb));
1557 
1558 	for (; i < urb_priv->length; i++) {
1559 		td = urb_priv->td[i];
1560 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1561 	}
1562 
1563 	/* Queue a stop endpoint command, but only if this is
1564 	 * the first cancellation to be handled.
1565 	 */
1566 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1567 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1568 		if (!command) {
1569 			ret = -ENOMEM;
1570 			goto done;
1571 		}
1572 		ep->ep_state |= EP_HALT_PENDING;
1573 		ep->stop_cmds_pending++;
1574 		ep->stop_cmd_timer.expires = jiffies +
1575 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1576 		add_timer(&ep->stop_cmd_timer);
1577 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1578 					 ep_index, 0);
1579 		xhci_ring_cmd_db(xhci);
1580 	}
1581 done:
1582 	spin_unlock_irqrestore(&xhci->lock, flags);
1583 	return ret;
1584 }
1585 
1586 /* Drop an endpoint from a new bandwidth configuration for this device.
1587  * Only one call to this function is allowed per endpoint before
1588  * check_bandwidth() or reset_bandwidth() must be called.
1589  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1590  * add the endpoint to the schedule with possibly new parameters denoted by a
1591  * different endpoint descriptor in usb_host_endpoint.
1592  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1593  * not allowed.
1594  *
1595  * The USB core will not allow URBs to be queued to an endpoint that is being
1596  * disabled, so there's no need for mutual exclusion to protect
1597  * the xhci->devs[slot_id] structure.
1598  */
1599 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1600 		struct usb_host_endpoint *ep)
1601 {
1602 	struct xhci_hcd *xhci;
1603 	struct xhci_container_ctx *in_ctx, *out_ctx;
1604 	struct xhci_input_control_ctx *ctrl_ctx;
1605 	unsigned int ep_index;
1606 	struct xhci_ep_ctx *ep_ctx;
1607 	u32 drop_flag;
1608 	u32 new_add_flags, new_drop_flags;
1609 	int ret;
1610 
1611 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1612 	if (ret <= 0)
1613 		return ret;
1614 	xhci = hcd_to_xhci(hcd);
1615 	if (xhci->xhc_state & XHCI_STATE_DYING)
1616 		return -ENODEV;
1617 
1618 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1619 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1620 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1621 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1622 				__func__, drop_flag);
1623 		return 0;
1624 	}
1625 
1626 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1627 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1628 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1629 	if (!ctrl_ctx) {
1630 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1631 				__func__);
1632 		return 0;
1633 	}
1634 
1635 	ep_index = xhci_get_endpoint_index(&ep->desc);
1636 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1637 	/* If the HC already knows the endpoint is disabled,
1638 	 * or the HCD has noted it is disabled, ignore this request
1639 	 */
1640 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1641 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1642 	    xhci_get_endpoint_flag(&ep->desc)) {
1643 		/* Do not warn when called after a usb_device_reset */
1644 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1645 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1646 				  __func__, ep);
1647 		return 0;
1648 	}
1649 
1650 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1651 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1652 
1653 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1654 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1655 
1656 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1657 
1658 	if (xhci->quirks & XHCI_MTK_HOST)
1659 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1660 
1661 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1662 			(unsigned int) ep->desc.bEndpointAddress,
1663 			udev->slot_id,
1664 			(unsigned int) new_drop_flags,
1665 			(unsigned int) new_add_flags);
1666 	return 0;
1667 }
1668 
1669 /* Add an endpoint to a new possible bandwidth configuration for this device.
1670  * Only one call to this function is allowed per endpoint before
1671  * check_bandwidth() or reset_bandwidth() must be called.
1672  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1673  * add the endpoint to the schedule with possibly new parameters denoted by a
1674  * different endpoint descriptor in usb_host_endpoint.
1675  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1676  * not allowed.
1677  *
1678  * The USB core will not allow URBs to be queued to an endpoint until the
1679  * configuration or alt setting is installed in the device, so there's no need
1680  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1681  */
1682 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1683 		struct usb_host_endpoint *ep)
1684 {
1685 	struct xhci_hcd *xhci;
1686 	struct xhci_container_ctx *in_ctx;
1687 	unsigned int ep_index;
1688 	struct xhci_input_control_ctx *ctrl_ctx;
1689 	u32 added_ctxs;
1690 	u32 new_add_flags, new_drop_flags;
1691 	struct xhci_virt_device *virt_dev;
1692 	int ret = 0;
1693 
1694 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1695 	if (ret <= 0) {
1696 		/* So we won't queue a reset ep command for a root hub */
1697 		ep->hcpriv = NULL;
1698 		return ret;
1699 	}
1700 	xhci = hcd_to_xhci(hcd);
1701 	if (xhci->xhc_state & XHCI_STATE_DYING)
1702 		return -ENODEV;
1703 
1704 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1705 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1706 		/* FIXME when we have to issue an evaluate endpoint command to
1707 		 * deal with ep0 max packet size changing once we get the
1708 		 * descriptors
1709 		 */
1710 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1711 				__func__, added_ctxs);
1712 		return 0;
1713 	}
1714 
1715 	virt_dev = xhci->devs[udev->slot_id];
1716 	in_ctx = virt_dev->in_ctx;
1717 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1718 	if (!ctrl_ctx) {
1719 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1720 				__func__);
1721 		return 0;
1722 	}
1723 
1724 	ep_index = xhci_get_endpoint_index(&ep->desc);
1725 	/* If this endpoint is already in use, and the upper layers are trying
1726 	 * to add it again without dropping it, reject the addition.
1727 	 */
1728 	if (virt_dev->eps[ep_index].ring &&
1729 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1730 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1731 				"without dropping it.\n",
1732 				(unsigned int) ep->desc.bEndpointAddress);
1733 		return -EINVAL;
1734 	}
1735 
1736 	/* If the HCD has already noted the endpoint is enabled,
1737 	 * ignore this request.
1738 	 */
1739 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1740 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1741 				__func__, ep);
1742 		return 0;
1743 	}
1744 
1745 	/*
1746 	 * Configuration and alternate setting changes must be done in
1747 	 * process context, not interrupt context (or so documenation
1748 	 * for usb_set_interface() and usb_set_configuration() claim).
1749 	 */
1750 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1751 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1752 				__func__, ep->desc.bEndpointAddress);
1753 		return -ENOMEM;
1754 	}
1755 
1756 	if (xhci->quirks & XHCI_MTK_HOST) {
1757 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1758 		if (ret < 0) {
1759 			xhci_free_or_cache_endpoint_ring(xhci,
1760 				virt_dev, ep_index);
1761 			return ret;
1762 		}
1763 	}
1764 
1765 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1766 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1767 
1768 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1769 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1770 	 * this re-adds a new state for the endpoint from the new endpoint
1771 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1772 	 * drop flags alone.
1773 	 */
1774 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1775 
1776 	/* Store the usb_device pointer for later use */
1777 	ep->hcpriv = udev;
1778 
1779 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1780 			(unsigned int) ep->desc.bEndpointAddress,
1781 			udev->slot_id,
1782 			(unsigned int) new_drop_flags,
1783 			(unsigned int) new_add_flags);
1784 	return 0;
1785 }
1786 
1787 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1788 {
1789 	struct xhci_input_control_ctx *ctrl_ctx;
1790 	struct xhci_ep_ctx *ep_ctx;
1791 	struct xhci_slot_ctx *slot_ctx;
1792 	int i;
1793 
1794 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1795 	if (!ctrl_ctx) {
1796 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1797 				__func__);
1798 		return;
1799 	}
1800 
1801 	/* When a device's add flag and drop flag are zero, any subsequent
1802 	 * configure endpoint command will leave that endpoint's state
1803 	 * untouched.  Make sure we don't leave any old state in the input
1804 	 * endpoint contexts.
1805 	 */
1806 	ctrl_ctx->drop_flags = 0;
1807 	ctrl_ctx->add_flags = 0;
1808 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1809 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1810 	/* Endpoint 0 is always valid */
1811 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1812 	for (i = 1; i < 31; ++i) {
1813 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1814 		ep_ctx->ep_info = 0;
1815 		ep_ctx->ep_info2 = 0;
1816 		ep_ctx->deq = 0;
1817 		ep_ctx->tx_info = 0;
1818 	}
1819 }
1820 
1821 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1822 		struct usb_device *udev, u32 *cmd_status)
1823 {
1824 	int ret;
1825 
1826 	switch (*cmd_status) {
1827 	case COMP_CMD_ABORT:
1828 	case COMP_CMD_STOP:
1829 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1830 		ret = -ETIME;
1831 		break;
1832 	case COMP_ENOMEM:
1833 		dev_warn(&udev->dev,
1834 			 "Not enough host controller resources for new device state.\n");
1835 		ret = -ENOMEM;
1836 		/* FIXME: can we allocate more resources for the HC? */
1837 		break;
1838 	case COMP_BW_ERR:
1839 	case COMP_2ND_BW_ERR:
1840 		dev_warn(&udev->dev,
1841 			 "Not enough bandwidth for new device state.\n");
1842 		ret = -ENOSPC;
1843 		/* FIXME: can we go back to the old state? */
1844 		break;
1845 	case COMP_TRB_ERR:
1846 		/* the HCD set up something wrong */
1847 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1848 				"add flag = 1, "
1849 				"and endpoint is not disabled.\n");
1850 		ret = -EINVAL;
1851 		break;
1852 	case COMP_DEV_ERR:
1853 		dev_warn(&udev->dev,
1854 			 "ERROR: Incompatible device for endpoint configure command.\n");
1855 		ret = -ENODEV;
1856 		break;
1857 	case COMP_SUCCESS:
1858 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1859 				"Successful Endpoint Configure command");
1860 		ret = 0;
1861 		break;
1862 	default:
1863 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1864 				*cmd_status);
1865 		ret = -EINVAL;
1866 		break;
1867 	}
1868 	return ret;
1869 }
1870 
1871 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1872 		struct usb_device *udev, u32 *cmd_status)
1873 {
1874 	int ret;
1875 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1876 
1877 	switch (*cmd_status) {
1878 	case COMP_CMD_ABORT:
1879 	case COMP_CMD_STOP:
1880 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1881 		ret = -ETIME;
1882 		break;
1883 	case COMP_EINVAL:
1884 		dev_warn(&udev->dev,
1885 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1886 		ret = -EINVAL;
1887 		break;
1888 	case COMP_EBADSLT:
1889 		dev_warn(&udev->dev,
1890 			"WARN: slot not enabled for evaluate context command.\n");
1891 		ret = -EINVAL;
1892 		break;
1893 	case COMP_CTX_STATE:
1894 		dev_warn(&udev->dev,
1895 			"WARN: invalid context state for evaluate context command.\n");
1896 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1897 		ret = -EINVAL;
1898 		break;
1899 	case COMP_DEV_ERR:
1900 		dev_warn(&udev->dev,
1901 			"ERROR: Incompatible device for evaluate context command.\n");
1902 		ret = -ENODEV;
1903 		break;
1904 	case COMP_MEL_ERR:
1905 		/* Max Exit Latency too large error */
1906 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1907 		ret = -EINVAL;
1908 		break;
1909 	case COMP_SUCCESS:
1910 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1911 				"Successful evaluate context command");
1912 		ret = 0;
1913 		break;
1914 	default:
1915 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1916 			*cmd_status);
1917 		ret = -EINVAL;
1918 		break;
1919 	}
1920 	return ret;
1921 }
1922 
1923 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1924 		struct xhci_input_control_ctx *ctrl_ctx)
1925 {
1926 	u32 valid_add_flags;
1927 	u32 valid_drop_flags;
1928 
1929 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1930 	 * (bit 1).  The default control endpoint is added during the Address
1931 	 * Device command and is never removed until the slot is disabled.
1932 	 */
1933 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1934 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1935 
1936 	/* Use hweight32 to count the number of ones in the add flags, or
1937 	 * number of endpoints added.  Don't count endpoints that are changed
1938 	 * (both added and dropped).
1939 	 */
1940 	return hweight32(valid_add_flags) -
1941 		hweight32(valid_add_flags & valid_drop_flags);
1942 }
1943 
1944 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1945 		struct xhci_input_control_ctx *ctrl_ctx)
1946 {
1947 	u32 valid_add_flags;
1948 	u32 valid_drop_flags;
1949 
1950 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1951 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1952 
1953 	return hweight32(valid_drop_flags) -
1954 		hweight32(valid_add_flags & valid_drop_flags);
1955 }
1956 
1957 /*
1958  * We need to reserve the new number of endpoints before the configure endpoint
1959  * command completes.  We can't subtract the dropped endpoints from the number
1960  * of active endpoints until the command completes because we can oversubscribe
1961  * the host in this case:
1962  *
1963  *  - the first configure endpoint command drops more endpoints than it adds
1964  *  - a second configure endpoint command that adds more endpoints is queued
1965  *  - the first configure endpoint command fails, so the config is unchanged
1966  *  - the second command may succeed, even though there isn't enough resources
1967  *
1968  * Must be called with xhci->lock held.
1969  */
1970 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1971 		struct xhci_input_control_ctx *ctrl_ctx)
1972 {
1973 	u32 added_eps;
1974 
1975 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1976 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1977 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1978 				"Not enough ep ctxs: "
1979 				"%u active, need to add %u, limit is %u.",
1980 				xhci->num_active_eps, added_eps,
1981 				xhci->limit_active_eps);
1982 		return -ENOMEM;
1983 	}
1984 	xhci->num_active_eps += added_eps;
1985 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1986 			"Adding %u ep ctxs, %u now active.", added_eps,
1987 			xhci->num_active_eps);
1988 	return 0;
1989 }
1990 
1991 /*
1992  * The configure endpoint was failed by the xHC for some other reason, so we
1993  * need to revert the resources that failed configuration would have used.
1994  *
1995  * Must be called with xhci->lock held.
1996  */
1997 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1998 		struct xhci_input_control_ctx *ctrl_ctx)
1999 {
2000 	u32 num_failed_eps;
2001 
2002 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2003 	xhci->num_active_eps -= num_failed_eps;
2004 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2005 			"Removing %u failed ep ctxs, %u now active.",
2006 			num_failed_eps,
2007 			xhci->num_active_eps);
2008 }
2009 
2010 /*
2011  * Now that the command has completed, clean up the active endpoint count by
2012  * subtracting out the endpoints that were dropped (but not changed).
2013  *
2014  * Must be called with xhci->lock held.
2015  */
2016 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2017 		struct xhci_input_control_ctx *ctrl_ctx)
2018 {
2019 	u32 num_dropped_eps;
2020 
2021 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2022 	xhci->num_active_eps -= num_dropped_eps;
2023 	if (num_dropped_eps)
2024 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2025 				"Removing %u dropped ep ctxs, %u now active.",
2026 				num_dropped_eps,
2027 				xhci->num_active_eps);
2028 }
2029 
2030 static unsigned int xhci_get_block_size(struct usb_device *udev)
2031 {
2032 	switch (udev->speed) {
2033 	case USB_SPEED_LOW:
2034 	case USB_SPEED_FULL:
2035 		return FS_BLOCK;
2036 	case USB_SPEED_HIGH:
2037 		return HS_BLOCK;
2038 	case USB_SPEED_SUPER:
2039 	case USB_SPEED_SUPER_PLUS:
2040 		return SS_BLOCK;
2041 	case USB_SPEED_UNKNOWN:
2042 	case USB_SPEED_WIRELESS:
2043 	default:
2044 		/* Should never happen */
2045 		return 1;
2046 	}
2047 }
2048 
2049 static unsigned int
2050 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2051 {
2052 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2053 		return LS_OVERHEAD;
2054 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2055 		return FS_OVERHEAD;
2056 	return HS_OVERHEAD;
2057 }
2058 
2059 /* If we are changing a LS/FS device under a HS hub,
2060  * make sure (if we are activating a new TT) that the HS bus has enough
2061  * bandwidth for this new TT.
2062  */
2063 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2064 		struct xhci_virt_device *virt_dev,
2065 		int old_active_eps)
2066 {
2067 	struct xhci_interval_bw_table *bw_table;
2068 	struct xhci_tt_bw_info *tt_info;
2069 
2070 	/* Find the bandwidth table for the root port this TT is attached to. */
2071 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2072 	tt_info = virt_dev->tt_info;
2073 	/* If this TT already had active endpoints, the bandwidth for this TT
2074 	 * has already been added.  Removing all periodic endpoints (and thus
2075 	 * making the TT enactive) will only decrease the bandwidth used.
2076 	 */
2077 	if (old_active_eps)
2078 		return 0;
2079 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2080 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2081 			return -ENOMEM;
2082 		return 0;
2083 	}
2084 	/* Not sure why we would have no new active endpoints...
2085 	 *
2086 	 * Maybe because of an Evaluate Context change for a hub update or a
2087 	 * control endpoint 0 max packet size change?
2088 	 * FIXME: skip the bandwidth calculation in that case.
2089 	 */
2090 	return 0;
2091 }
2092 
2093 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2094 		struct xhci_virt_device *virt_dev)
2095 {
2096 	unsigned int bw_reserved;
2097 
2098 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2099 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2100 		return -ENOMEM;
2101 
2102 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2103 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2104 		return -ENOMEM;
2105 
2106 	return 0;
2107 }
2108 
2109 /*
2110  * This algorithm is a very conservative estimate of the worst-case scheduling
2111  * scenario for any one interval.  The hardware dynamically schedules the
2112  * packets, so we can't tell which microframe could be the limiting factor in
2113  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2114  *
2115  * Obviously, we can't solve an NP complete problem to find the minimum worst
2116  * case scenario.  Instead, we come up with an estimate that is no less than
2117  * the worst case bandwidth used for any one microframe, but may be an
2118  * over-estimate.
2119  *
2120  * We walk the requirements for each endpoint by interval, starting with the
2121  * smallest interval, and place packets in the schedule where there is only one
2122  * possible way to schedule packets for that interval.  In order to simplify
2123  * this algorithm, we record the largest max packet size for each interval, and
2124  * assume all packets will be that size.
2125  *
2126  * For interval 0, we obviously must schedule all packets for each interval.
2127  * The bandwidth for interval 0 is just the amount of data to be transmitted
2128  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2129  * the number of packets).
2130  *
2131  * For interval 1, we have two possible microframes to schedule those packets
2132  * in.  For this algorithm, if we can schedule the same number of packets for
2133  * each possible scheduling opportunity (each microframe), we will do so.  The
2134  * remaining number of packets will be saved to be transmitted in the gaps in
2135  * the next interval's scheduling sequence.
2136  *
2137  * As we move those remaining packets to be scheduled with interval 2 packets,
2138  * we have to double the number of remaining packets to transmit.  This is
2139  * because the intervals are actually powers of 2, and we would be transmitting
2140  * the previous interval's packets twice in this interval.  We also have to be
2141  * sure that when we look at the largest max packet size for this interval, we
2142  * also look at the largest max packet size for the remaining packets and take
2143  * the greater of the two.
2144  *
2145  * The algorithm continues to evenly distribute packets in each scheduling
2146  * opportunity, and push the remaining packets out, until we get to the last
2147  * interval.  Then those packets and their associated overhead are just added
2148  * to the bandwidth used.
2149  */
2150 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2151 		struct xhci_virt_device *virt_dev,
2152 		int old_active_eps)
2153 {
2154 	unsigned int bw_reserved;
2155 	unsigned int max_bandwidth;
2156 	unsigned int bw_used;
2157 	unsigned int block_size;
2158 	struct xhci_interval_bw_table *bw_table;
2159 	unsigned int packet_size = 0;
2160 	unsigned int overhead = 0;
2161 	unsigned int packets_transmitted = 0;
2162 	unsigned int packets_remaining = 0;
2163 	unsigned int i;
2164 
2165 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2166 		return xhci_check_ss_bw(xhci, virt_dev);
2167 
2168 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2169 		max_bandwidth = HS_BW_LIMIT;
2170 		/* Convert percent of bus BW reserved to blocks reserved */
2171 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2172 	} else {
2173 		max_bandwidth = FS_BW_LIMIT;
2174 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2175 	}
2176 
2177 	bw_table = virt_dev->bw_table;
2178 	/* We need to translate the max packet size and max ESIT payloads into
2179 	 * the units the hardware uses.
2180 	 */
2181 	block_size = xhci_get_block_size(virt_dev->udev);
2182 
2183 	/* If we are manipulating a LS/FS device under a HS hub, double check
2184 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2185 	 */
2186 	if (virt_dev->tt_info) {
2187 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2188 				"Recalculating BW for rootport %u",
2189 				virt_dev->real_port);
2190 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2191 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2192 					"newly activated TT.\n");
2193 			return -ENOMEM;
2194 		}
2195 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2196 				"Recalculating BW for TT slot %u port %u",
2197 				virt_dev->tt_info->slot_id,
2198 				virt_dev->tt_info->ttport);
2199 	} else {
2200 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2201 				"Recalculating BW for rootport %u",
2202 				virt_dev->real_port);
2203 	}
2204 
2205 	/* Add in how much bandwidth will be used for interval zero, or the
2206 	 * rounded max ESIT payload + number of packets * largest overhead.
2207 	 */
2208 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2209 		bw_table->interval_bw[0].num_packets *
2210 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2211 
2212 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2213 		unsigned int bw_added;
2214 		unsigned int largest_mps;
2215 		unsigned int interval_overhead;
2216 
2217 		/*
2218 		 * How many packets could we transmit in this interval?
2219 		 * If packets didn't fit in the previous interval, we will need
2220 		 * to transmit that many packets twice within this interval.
2221 		 */
2222 		packets_remaining = 2 * packets_remaining +
2223 			bw_table->interval_bw[i].num_packets;
2224 
2225 		/* Find the largest max packet size of this or the previous
2226 		 * interval.
2227 		 */
2228 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2229 			largest_mps = 0;
2230 		else {
2231 			struct xhci_virt_ep *virt_ep;
2232 			struct list_head *ep_entry;
2233 
2234 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2235 			virt_ep = list_entry(ep_entry,
2236 					struct xhci_virt_ep, bw_endpoint_list);
2237 			/* Convert to blocks, rounding up */
2238 			largest_mps = DIV_ROUND_UP(
2239 					virt_ep->bw_info.max_packet_size,
2240 					block_size);
2241 		}
2242 		if (largest_mps > packet_size)
2243 			packet_size = largest_mps;
2244 
2245 		/* Use the larger overhead of this or the previous interval. */
2246 		interval_overhead = xhci_get_largest_overhead(
2247 				&bw_table->interval_bw[i]);
2248 		if (interval_overhead > overhead)
2249 			overhead = interval_overhead;
2250 
2251 		/* How many packets can we evenly distribute across
2252 		 * (1 << (i + 1)) possible scheduling opportunities?
2253 		 */
2254 		packets_transmitted = packets_remaining >> (i + 1);
2255 
2256 		/* Add in the bandwidth used for those scheduled packets */
2257 		bw_added = packets_transmitted * (overhead + packet_size);
2258 
2259 		/* How many packets do we have remaining to transmit? */
2260 		packets_remaining = packets_remaining % (1 << (i + 1));
2261 
2262 		/* What largest max packet size should those packets have? */
2263 		/* If we've transmitted all packets, don't carry over the
2264 		 * largest packet size.
2265 		 */
2266 		if (packets_remaining == 0) {
2267 			packet_size = 0;
2268 			overhead = 0;
2269 		} else if (packets_transmitted > 0) {
2270 			/* Otherwise if we do have remaining packets, and we've
2271 			 * scheduled some packets in this interval, take the
2272 			 * largest max packet size from endpoints with this
2273 			 * interval.
2274 			 */
2275 			packet_size = largest_mps;
2276 			overhead = interval_overhead;
2277 		}
2278 		/* Otherwise carry over packet_size and overhead from the last
2279 		 * time we had a remainder.
2280 		 */
2281 		bw_used += bw_added;
2282 		if (bw_used > max_bandwidth) {
2283 			xhci_warn(xhci, "Not enough bandwidth. "
2284 					"Proposed: %u, Max: %u\n",
2285 				bw_used, max_bandwidth);
2286 			return -ENOMEM;
2287 		}
2288 	}
2289 	/*
2290 	 * Ok, we know we have some packets left over after even-handedly
2291 	 * scheduling interval 15.  We don't know which microframes they will
2292 	 * fit into, so we over-schedule and say they will be scheduled every
2293 	 * microframe.
2294 	 */
2295 	if (packets_remaining > 0)
2296 		bw_used += overhead + packet_size;
2297 
2298 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2299 		unsigned int port_index = virt_dev->real_port - 1;
2300 
2301 		/* OK, we're manipulating a HS device attached to a
2302 		 * root port bandwidth domain.  Include the number of active TTs
2303 		 * in the bandwidth used.
2304 		 */
2305 		bw_used += TT_HS_OVERHEAD *
2306 			xhci->rh_bw[port_index].num_active_tts;
2307 	}
2308 
2309 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2310 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2311 		"Available: %u " "percent",
2312 		bw_used, max_bandwidth, bw_reserved,
2313 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2314 		max_bandwidth);
2315 
2316 	bw_used += bw_reserved;
2317 	if (bw_used > max_bandwidth) {
2318 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2319 				bw_used, max_bandwidth);
2320 		return -ENOMEM;
2321 	}
2322 
2323 	bw_table->bw_used = bw_used;
2324 	return 0;
2325 }
2326 
2327 static bool xhci_is_async_ep(unsigned int ep_type)
2328 {
2329 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2330 					ep_type != ISOC_IN_EP &&
2331 					ep_type != INT_IN_EP);
2332 }
2333 
2334 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2335 {
2336 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2337 }
2338 
2339 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2340 {
2341 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2342 
2343 	if (ep_bw->ep_interval == 0)
2344 		return SS_OVERHEAD_BURST +
2345 			(ep_bw->mult * ep_bw->num_packets *
2346 					(SS_OVERHEAD + mps));
2347 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2348 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2349 				1 << ep_bw->ep_interval);
2350 
2351 }
2352 
2353 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2354 		struct xhci_bw_info *ep_bw,
2355 		struct xhci_interval_bw_table *bw_table,
2356 		struct usb_device *udev,
2357 		struct xhci_virt_ep *virt_ep,
2358 		struct xhci_tt_bw_info *tt_info)
2359 {
2360 	struct xhci_interval_bw	*interval_bw;
2361 	int normalized_interval;
2362 
2363 	if (xhci_is_async_ep(ep_bw->type))
2364 		return;
2365 
2366 	if (udev->speed >= USB_SPEED_SUPER) {
2367 		if (xhci_is_sync_in_ep(ep_bw->type))
2368 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2369 				xhci_get_ss_bw_consumed(ep_bw);
2370 		else
2371 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2372 				xhci_get_ss_bw_consumed(ep_bw);
2373 		return;
2374 	}
2375 
2376 	/* SuperSpeed endpoints never get added to intervals in the table, so
2377 	 * this check is only valid for HS/FS/LS devices.
2378 	 */
2379 	if (list_empty(&virt_ep->bw_endpoint_list))
2380 		return;
2381 	/* For LS/FS devices, we need to translate the interval expressed in
2382 	 * microframes to frames.
2383 	 */
2384 	if (udev->speed == USB_SPEED_HIGH)
2385 		normalized_interval = ep_bw->ep_interval;
2386 	else
2387 		normalized_interval = ep_bw->ep_interval - 3;
2388 
2389 	if (normalized_interval == 0)
2390 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2391 	interval_bw = &bw_table->interval_bw[normalized_interval];
2392 	interval_bw->num_packets -= ep_bw->num_packets;
2393 	switch (udev->speed) {
2394 	case USB_SPEED_LOW:
2395 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2396 		break;
2397 	case USB_SPEED_FULL:
2398 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2399 		break;
2400 	case USB_SPEED_HIGH:
2401 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2402 		break;
2403 	case USB_SPEED_SUPER:
2404 	case USB_SPEED_SUPER_PLUS:
2405 	case USB_SPEED_UNKNOWN:
2406 	case USB_SPEED_WIRELESS:
2407 		/* Should never happen because only LS/FS/HS endpoints will get
2408 		 * added to the endpoint list.
2409 		 */
2410 		return;
2411 	}
2412 	if (tt_info)
2413 		tt_info->active_eps -= 1;
2414 	list_del_init(&virt_ep->bw_endpoint_list);
2415 }
2416 
2417 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2418 		struct xhci_bw_info *ep_bw,
2419 		struct xhci_interval_bw_table *bw_table,
2420 		struct usb_device *udev,
2421 		struct xhci_virt_ep *virt_ep,
2422 		struct xhci_tt_bw_info *tt_info)
2423 {
2424 	struct xhci_interval_bw	*interval_bw;
2425 	struct xhci_virt_ep *smaller_ep;
2426 	int normalized_interval;
2427 
2428 	if (xhci_is_async_ep(ep_bw->type))
2429 		return;
2430 
2431 	if (udev->speed == USB_SPEED_SUPER) {
2432 		if (xhci_is_sync_in_ep(ep_bw->type))
2433 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2434 				xhci_get_ss_bw_consumed(ep_bw);
2435 		else
2436 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2437 				xhci_get_ss_bw_consumed(ep_bw);
2438 		return;
2439 	}
2440 
2441 	/* For LS/FS devices, we need to translate the interval expressed in
2442 	 * microframes to frames.
2443 	 */
2444 	if (udev->speed == USB_SPEED_HIGH)
2445 		normalized_interval = ep_bw->ep_interval;
2446 	else
2447 		normalized_interval = ep_bw->ep_interval - 3;
2448 
2449 	if (normalized_interval == 0)
2450 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2451 	interval_bw = &bw_table->interval_bw[normalized_interval];
2452 	interval_bw->num_packets += ep_bw->num_packets;
2453 	switch (udev->speed) {
2454 	case USB_SPEED_LOW:
2455 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2456 		break;
2457 	case USB_SPEED_FULL:
2458 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2459 		break;
2460 	case USB_SPEED_HIGH:
2461 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2462 		break;
2463 	case USB_SPEED_SUPER:
2464 	case USB_SPEED_SUPER_PLUS:
2465 	case USB_SPEED_UNKNOWN:
2466 	case USB_SPEED_WIRELESS:
2467 		/* Should never happen because only LS/FS/HS endpoints will get
2468 		 * added to the endpoint list.
2469 		 */
2470 		return;
2471 	}
2472 
2473 	if (tt_info)
2474 		tt_info->active_eps += 1;
2475 	/* Insert the endpoint into the list, largest max packet size first. */
2476 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2477 			bw_endpoint_list) {
2478 		if (ep_bw->max_packet_size >=
2479 				smaller_ep->bw_info.max_packet_size) {
2480 			/* Add the new ep before the smaller endpoint */
2481 			list_add_tail(&virt_ep->bw_endpoint_list,
2482 					&smaller_ep->bw_endpoint_list);
2483 			return;
2484 		}
2485 	}
2486 	/* Add the new endpoint at the end of the list. */
2487 	list_add_tail(&virt_ep->bw_endpoint_list,
2488 			&interval_bw->endpoints);
2489 }
2490 
2491 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2492 		struct xhci_virt_device *virt_dev,
2493 		int old_active_eps)
2494 {
2495 	struct xhci_root_port_bw_info *rh_bw_info;
2496 	if (!virt_dev->tt_info)
2497 		return;
2498 
2499 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2500 	if (old_active_eps == 0 &&
2501 				virt_dev->tt_info->active_eps != 0) {
2502 		rh_bw_info->num_active_tts += 1;
2503 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2504 	} else if (old_active_eps != 0 &&
2505 				virt_dev->tt_info->active_eps == 0) {
2506 		rh_bw_info->num_active_tts -= 1;
2507 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2508 	}
2509 }
2510 
2511 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2512 		struct xhci_virt_device *virt_dev,
2513 		struct xhci_container_ctx *in_ctx)
2514 {
2515 	struct xhci_bw_info ep_bw_info[31];
2516 	int i;
2517 	struct xhci_input_control_ctx *ctrl_ctx;
2518 	int old_active_eps = 0;
2519 
2520 	if (virt_dev->tt_info)
2521 		old_active_eps = virt_dev->tt_info->active_eps;
2522 
2523 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2524 	if (!ctrl_ctx) {
2525 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2526 				__func__);
2527 		return -ENOMEM;
2528 	}
2529 
2530 	for (i = 0; i < 31; i++) {
2531 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2532 			continue;
2533 
2534 		/* Make a copy of the BW info in case we need to revert this */
2535 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2536 				sizeof(ep_bw_info[i]));
2537 		/* Drop the endpoint from the interval table if the endpoint is
2538 		 * being dropped or changed.
2539 		 */
2540 		if (EP_IS_DROPPED(ctrl_ctx, i))
2541 			xhci_drop_ep_from_interval_table(xhci,
2542 					&virt_dev->eps[i].bw_info,
2543 					virt_dev->bw_table,
2544 					virt_dev->udev,
2545 					&virt_dev->eps[i],
2546 					virt_dev->tt_info);
2547 	}
2548 	/* Overwrite the information stored in the endpoints' bw_info */
2549 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2550 	for (i = 0; i < 31; i++) {
2551 		/* Add any changed or added endpoints to the interval table */
2552 		if (EP_IS_ADDED(ctrl_ctx, i))
2553 			xhci_add_ep_to_interval_table(xhci,
2554 					&virt_dev->eps[i].bw_info,
2555 					virt_dev->bw_table,
2556 					virt_dev->udev,
2557 					&virt_dev->eps[i],
2558 					virt_dev->tt_info);
2559 	}
2560 
2561 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2562 		/* Ok, this fits in the bandwidth we have.
2563 		 * Update the number of active TTs.
2564 		 */
2565 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2566 		return 0;
2567 	}
2568 
2569 	/* We don't have enough bandwidth for this, revert the stored info. */
2570 	for (i = 0; i < 31; i++) {
2571 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2572 			continue;
2573 
2574 		/* Drop the new copies of any added or changed endpoints from
2575 		 * the interval table.
2576 		 */
2577 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2578 			xhci_drop_ep_from_interval_table(xhci,
2579 					&virt_dev->eps[i].bw_info,
2580 					virt_dev->bw_table,
2581 					virt_dev->udev,
2582 					&virt_dev->eps[i],
2583 					virt_dev->tt_info);
2584 		}
2585 		/* Revert the endpoint back to its old information */
2586 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2587 				sizeof(ep_bw_info[i]));
2588 		/* Add any changed or dropped endpoints back into the table */
2589 		if (EP_IS_DROPPED(ctrl_ctx, i))
2590 			xhci_add_ep_to_interval_table(xhci,
2591 					&virt_dev->eps[i].bw_info,
2592 					virt_dev->bw_table,
2593 					virt_dev->udev,
2594 					&virt_dev->eps[i],
2595 					virt_dev->tt_info);
2596 	}
2597 	return -ENOMEM;
2598 }
2599 
2600 
2601 /* Issue a configure endpoint command or evaluate context command
2602  * and wait for it to finish.
2603  */
2604 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2605 		struct usb_device *udev,
2606 		struct xhci_command *command,
2607 		bool ctx_change, bool must_succeed)
2608 {
2609 	int ret;
2610 	unsigned long flags;
2611 	struct xhci_input_control_ctx *ctrl_ctx;
2612 	struct xhci_virt_device *virt_dev;
2613 
2614 	if (!command)
2615 		return -EINVAL;
2616 
2617 	spin_lock_irqsave(&xhci->lock, flags);
2618 	virt_dev = xhci->devs[udev->slot_id];
2619 
2620 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2621 	if (!ctrl_ctx) {
2622 		spin_unlock_irqrestore(&xhci->lock, flags);
2623 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2624 				__func__);
2625 		return -ENOMEM;
2626 	}
2627 
2628 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2629 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2630 		spin_unlock_irqrestore(&xhci->lock, flags);
2631 		xhci_warn(xhci, "Not enough host resources, "
2632 				"active endpoint contexts = %u\n",
2633 				xhci->num_active_eps);
2634 		return -ENOMEM;
2635 	}
2636 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2637 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2638 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2639 			xhci_free_host_resources(xhci, ctrl_ctx);
2640 		spin_unlock_irqrestore(&xhci->lock, flags);
2641 		xhci_warn(xhci, "Not enough bandwidth\n");
2642 		return -ENOMEM;
2643 	}
2644 
2645 	if (!ctx_change)
2646 		ret = xhci_queue_configure_endpoint(xhci, command,
2647 				command->in_ctx->dma,
2648 				udev->slot_id, must_succeed);
2649 	else
2650 		ret = xhci_queue_evaluate_context(xhci, command,
2651 				command->in_ctx->dma,
2652 				udev->slot_id, must_succeed);
2653 	if (ret < 0) {
2654 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2655 			xhci_free_host_resources(xhci, ctrl_ctx);
2656 		spin_unlock_irqrestore(&xhci->lock, flags);
2657 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2658 				"FIXME allocate a new ring segment");
2659 		return -ENOMEM;
2660 	}
2661 	xhci_ring_cmd_db(xhci);
2662 	spin_unlock_irqrestore(&xhci->lock, flags);
2663 
2664 	/* Wait for the configure endpoint command to complete */
2665 	wait_for_completion(command->completion);
2666 
2667 	if (!ctx_change)
2668 		ret = xhci_configure_endpoint_result(xhci, udev,
2669 						     &command->status);
2670 	else
2671 		ret = xhci_evaluate_context_result(xhci, udev,
2672 						   &command->status);
2673 
2674 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2675 		spin_lock_irqsave(&xhci->lock, flags);
2676 		/* If the command failed, remove the reserved resources.
2677 		 * Otherwise, clean up the estimate to include dropped eps.
2678 		 */
2679 		if (ret)
2680 			xhci_free_host_resources(xhci, ctrl_ctx);
2681 		else
2682 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2683 		spin_unlock_irqrestore(&xhci->lock, flags);
2684 	}
2685 	return ret;
2686 }
2687 
2688 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2689 	struct xhci_virt_device *vdev, int i)
2690 {
2691 	struct xhci_virt_ep *ep = &vdev->eps[i];
2692 
2693 	if (ep->ep_state & EP_HAS_STREAMS) {
2694 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2695 				xhci_get_endpoint_address(i));
2696 		xhci_free_stream_info(xhci, ep->stream_info);
2697 		ep->stream_info = NULL;
2698 		ep->ep_state &= ~EP_HAS_STREAMS;
2699 	}
2700 }
2701 
2702 /* Called after one or more calls to xhci_add_endpoint() or
2703  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2704  * to call xhci_reset_bandwidth().
2705  *
2706  * Since we are in the middle of changing either configuration or
2707  * installing a new alt setting, the USB core won't allow URBs to be
2708  * enqueued for any endpoint on the old config or interface.  Nothing
2709  * else should be touching the xhci->devs[slot_id] structure, so we
2710  * don't need to take the xhci->lock for manipulating that.
2711  */
2712 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2713 {
2714 	int i;
2715 	int ret = 0;
2716 	struct xhci_hcd *xhci;
2717 	struct xhci_virt_device	*virt_dev;
2718 	struct xhci_input_control_ctx *ctrl_ctx;
2719 	struct xhci_slot_ctx *slot_ctx;
2720 	struct xhci_command *command;
2721 
2722 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2723 	if (ret <= 0)
2724 		return ret;
2725 	xhci = hcd_to_xhci(hcd);
2726 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2727 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2728 		return -ENODEV;
2729 
2730 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2731 	virt_dev = xhci->devs[udev->slot_id];
2732 
2733 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2734 	if (!command)
2735 		return -ENOMEM;
2736 
2737 	command->in_ctx = virt_dev->in_ctx;
2738 
2739 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2740 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2741 	if (!ctrl_ctx) {
2742 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2743 				__func__);
2744 		ret = -ENOMEM;
2745 		goto command_cleanup;
2746 	}
2747 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2748 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2749 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2750 
2751 	/* Don't issue the command if there's no endpoints to update. */
2752 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2753 	    ctrl_ctx->drop_flags == 0) {
2754 		ret = 0;
2755 		goto command_cleanup;
2756 	}
2757 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2758 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2759 	for (i = 31; i >= 1; i--) {
2760 		__le32 le32 = cpu_to_le32(BIT(i));
2761 
2762 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2763 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2764 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2765 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2766 			break;
2767 		}
2768 	}
2769 	xhci_dbg(xhci, "New Input Control Context:\n");
2770 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2771 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2772 
2773 	ret = xhci_configure_endpoint(xhci, udev, command,
2774 			false, false);
2775 	if (ret)
2776 		/* Callee should call reset_bandwidth() */
2777 		goto command_cleanup;
2778 
2779 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2780 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2781 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2782 
2783 	/* Free any rings that were dropped, but not changed. */
2784 	for (i = 1; i < 31; ++i) {
2785 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2786 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2787 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2788 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2789 		}
2790 	}
2791 	xhci_zero_in_ctx(xhci, virt_dev);
2792 	/*
2793 	 * Install any rings for completely new endpoints or changed endpoints,
2794 	 * and free or cache any old rings from changed endpoints.
2795 	 */
2796 	for (i = 1; i < 31; ++i) {
2797 		if (!virt_dev->eps[i].new_ring)
2798 			continue;
2799 		/* Only cache or free the old ring if it exists.
2800 		 * It may not if this is the first add of an endpoint.
2801 		 */
2802 		if (virt_dev->eps[i].ring) {
2803 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2804 		}
2805 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2806 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2807 		virt_dev->eps[i].new_ring = NULL;
2808 	}
2809 command_cleanup:
2810 	kfree(command->completion);
2811 	kfree(command);
2812 
2813 	return ret;
2814 }
2815 
2816 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2817 {
2818 	struct xhci_hcd *xhci;
2819 	struct xhci_virt_device	*virt_dev;
2820 	int i, ret;
2821 
2822 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2823 	if (ret <= 0)
2824 		return;
2825 	xhci = hcd_to_xhci(hcd);
2826 
2827 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2828 	virt_dev = xhci->devs[udev->slot_id];
2829 	/* Free any rings allocated for added endpoints */
2830 	for (i = 0; i < 31; ++i) {
2831 		if (virt_dev->eps[i].new_ring) {
2832 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2833 			virt_dev->eps[i].new_ring = NULL;
2834 		}
2835 	}
2836 	xhci_zero_in_ctx(xhci, virt_dev);
2837 }
2838 
2839 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2840 		struct xhci_container_ctx *in_ctx,
2841 		struct xhci_container_ctx *out_ctx,
2842 		struct xhci_input_control_ctx *ctrl_ctx,
2843 		u32 add_flags, u32 drop_flags)
2844 {
2845 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2846 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2847 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2848 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2849 
2850 	xhci_dbg(xhci, "Input Context:\n");
2851 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2852 }
2853 
2854 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2855 		unsigned int slot_id, unsigned int ep_index,
2856 		struct xhci_dequeue_state *deq_state)
2857 {
2858 	struct xhci_input_control_ctx *ctrl_ctx;
2859 	struct xhci_container_ctx *in_ctx;
2860 	struct xhci_ep_ctx *ep_ctx;
2861 	u32 added_ctxs;
2862 	dma_addr_t addr;
2863 
2864 	in_ctx = xhci->devs[slot_id]->in_ctx;
2865 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2866 	if (!ctrl_ctx) {
2867 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2868 				__func__);
2869 		return;
2870 	}
2871 
2872 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2873 			xhci->devs[slot_id]->out_ctx, ep_index);
2874 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2875 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2876 			deq_state->new_deq_ptr);
2877 	if (addr == 0) {
2878 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2879 				"reset ep command\n");
2880 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2881 				deq_state->new_deq_seg,
2882 				deq_state->new_deq_ptr);
2883 		return;
2884 	}
2885 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2886 
2887 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2888 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2889 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2890 			added_ctxs, added_ctxs);
2891 }
2892 
2893 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2894 			unsigned int ep_index, struct xhci_td *td)
2895 {
2896 	struct xhci_dequeue_state deq_state;
2897 	struct xhci_virt_ep *ep;
2898 	struct usb_device *udev = td->urb->dev;
2899 
2900 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2901 			"Cleaning up stalled endpoint ring");
2902 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2903 	/* We need to move the HW's dequeue pointer past this TD,
2904 	 * or it will attempt to resend it on the next doorbell ring.
2905 	 */
2906 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2907 			ep_index, ep->stopped_stream, td, &deq_state);
2908 
2909 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2910 		return;
2911 
2912 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2913 	 * issue a configure endpoint command later.
2914 	 */
2915 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2916 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2917 				"Queueing new dequeue state");
2918 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2919 				ep_index, ep->stopped_stream, &deq_state);
2920 	} else {
2921 		/* Better hope no one uses the input context between now and the
2922 		 * reset endpoint completion!
2923 		 * XXX: No idea how this hardware will react when stream rings
2924 		 * are enabled.
2925 		 */
2926 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2927 				"Setting up input context for "
2928 				"configure endpoint command");
2929 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2930 				ep_index, &deq_state);
2931 	}
2932 }
2933 
2934 /* Called when clearing halted device. The core should have sent the control
2935  * message to clear the device halt condition. The host side of the halt should
2936  * already be cleared with a reset endpoint command issued when the STALL tx
2937  * event was received.
2938  *
2939  * Context: in_interrupt
2940  */
2941 
2942 void xhci_endpoint_reset(struct usb_hcd *hcd,
2943 		struct usb_host_endpoint *ep)
2944 {
2945 	struct xhci_hcd *xhci;
2946 
2947 	xhci = hcd_to_xhci(hcd);
2948 
2949 	/*
2950 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2951 	 * The Reset Endpoint Command may only be issued to endpoints in the
2952 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2953 	 * Number of an endpoint that isn't in the Halted state, then software
2954 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2955 	 * for the target endpoint. that is in the Stopped state.
2956 	 */
2957 
2958 	/* For now just print debug to follow the situation */
2959 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2960 		 ep->desc.bEndpointAddress);
2961 }
2962 
2963 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2964 		struct usb_device *udev, struct usb_host_endpoint *ep,
2965 		unsigned int slot_id)
2966 {
2967 	int ret;
2968 	unsigned int ep_index;
2969 	unsigned int ep_state;
2970 
2971 	if (!ep)
2972 		return -EINVAL;
2973 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2974 	if (ret <= 0)
2975 		return -EINVAL;
2976 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2977 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2978 				" descriptor for ep 0x%x does not support streams\n",
2979 				ep->desc.bEndpointAddress);
2980 		return -EINVAL;
2981 	}
2982 
2983 	ep_index = xhci_get_endpoint_index(&ep->desc);
2984 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2985 	if (ep_state & EP_HAS_STREAMS ||
2986 			ep_state & EP_GETTING_STREAMS) {
2987 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2988 				"already has streams set up.\n",
2989 				ep->desc.bEndpointAddress);
2990 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2991 				"dynamic stream context array reallocation.\n");
2992 		return -EINVAL;
2993 	}
2994 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2995 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2996 				"endpoint 0x%x; URBs are pending.\n",
2997 				ep->desc.bEndpointAddress);
2998 		return -EINVAL;
2999 	}
3000 	return 0;
3001 }
3002 
3003 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3004 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3005 {
3006 	unsigned int max_streams;
3007 
3008 	/* The stream context array size must be a power of two */
3009 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3010 	/*
3011 	 * Find out how many primary stream array entries the host controller
3012 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3013 	 * level page entries), but that's an optional feature for xHCI host
3014 	 * controllers. xHCs must support at least 4 stream IDs.
3015 	 */
3016 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3017 	if (*num_stream_ctxs > max_streams) {
3018 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3019 				max_streams);
3020 		*num_stream_ctxs = max_streams;
3021 		*num_streams = max_streams;
3022 	}
3023 }
3024 
3025 /* Returns an error code if one of the endpoint already has streams.
3026  * This does not change any data structures, it only checks and gathers
3027  * information.
3028  */
3029 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3030 		struct usb_device *udev,
3031 		struct usb_host_endpoint **eps, unsigned int num_eps,
3032 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3033 {
3034 	unsigned int max_streams;
3035 	unsigned int endpoint_flag;
3036 	int i;
3037 	int ret;
3038 
3039 	for (i = 0; i < num_eps; i++) {
3040 		ret = xhci_check_streams_endpoint(xhci, udev,
3041 				eps[i], udev->slot_id);
3042 		if (ret < 0)
3043 			return ret;
3044 
3045 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3046 		if (max_streams < (*num_streams - 1)) {
3047 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3048 					eps[i]->desc.bEndpointAddress,
3049 					max_streams);
3050 			*num_streams = max_streams+1;
3051 		}
3052 
3053 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3054 		if (*changed_ep_bitmask & endpoint_flag)
3055 			return -EINVAL;
3056 		*changed_ep_bitmask |= endpoint_flag;
3057 	}
3058 	return 0;
3059 }
3060 
3061 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3062 		struct usb_device *udev,
3063 		struct usb_host_endpoint **eps, unsigned int num_eps)
3064 {
3065 	u32 changed_ep_bitmask = 0;
3066 	unsigned int slot_id;
3067 	unsigned int ep_index;
3068 	unsigned int ep_state;
3069 	int i;
3070 
3071 	slot_id = udev->slot_id;
3072 	if (!xhci->devs[slot_id])
3073 		return 0;
3074 
3075 	for (i = 0; i < num_eps; i++) {
3076 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3077 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3078 		/* Are streams already being freed for the endpoint? */
3079 		if (ep_state & EP_GETTING_NO_STREAMS) {
3080 			xhci_warn(xhci, "WARN Can't disable streams for "
3081 					"endpoint 0x%x, "
3082 					"streams are being disabled already\n",
3083 					eps[i]->desc.bEndpointAddress);
3084 			return 0;
3085 		}
3086 		/* Are there actually any streams to free? */
3087 		if (!(ep_state & EP_HAS_STREAMS) &&
3088 				!(ep_state & EP_GETTING_STREAMS)) {
3089 			xhci_warn(xhci, "WARN Can't disable streams for "
3090 					"endpoint 0x%x, "
3091 					"streams are already disabled!\n",
3092 					eps[i]->desc.bEndpointAddress);
3093 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3094 					"with non-streams endpoint\n");
3095 			return 0;
3096 		}
3097 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3098 	}
3099 	return changed_ep_bitmask;
3100 }
3101 
3102 /*
3103  * The USB device drivers use this function (through the HCD interface in USB
3104  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3105  * coordinate mass storage command queueing across multiple endpoints (basically
3106  * a stream ID == a task ID).
3107  *
3108  * Setting up streams involves allocating the same size stream context array
3109  * for each endpoint and issuing a configure endpoint command for all endpoints.
3110  *
3111  * Don't allow the call to succeed if one endpoint only supports one stream
3112  * (which means it doesn't support streams at all).
3113  *
3114  * Drivers may get less stream IDs than they asked for, if the host controller
3115  * hardware or endpoints claim they can't support the number of requested
3116  * stream IDs.
3117  */
3118 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3119 		struct usb_host_endpoint **eps, unsigned int num_eps,
3120 		unsigned int num_streams, gfp_t mem_flags)
3121 {
3122 	int i, ret;
3123 	struct xhci_hcd *xhci;
3124 	struct xhci_virt_device *vdev;
3125 	struct xhci_command *config_cmd;
3126 	struct xhci_input_control_ctx *ctrl_ctx;
3127 	unsigned int ep_index;
3128 	unsigned int num_stream_ctxs;
3129 	unsigned int max_packet;
3130 	unsigned long flags;
3131 	u32 changed_ep_bitmask = 0;
3132 
3133 	if (!eps)
3134 		return -EINVAL;
3135 
3136 	/* Add one to the number of streams requested to account for
3137 	 * stream 0 that is reserved for xHCI usage.
3138 	 */
3139 	num_streams += 1;
3140 	xhci = hcd_to_xhci(hcd);
3141 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3142 			num_streams);
3143 
3144 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3145 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3146 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3147 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3148 		return -ENOSYS;
3149 	}
3150 
3151 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3152 	if (!config_cmd) {
3153 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3154 		return -ENOMEM;
3155 	}
3156 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3157 	if (!ctrl_ctx) {
3158 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3159 				__func__);
3160 		xhci_free_command(xhci, config_cmd);
3161 		return -ENOMEM;
3162 	}
3163 
3164 	/* Check to make sure all endpoints are not already configured for
3165 	 * streams.  While we're at it, find the maximum number of streams that
3166 	 * all the endpoints will support and check for duplicate endpoints.
3167 	 */
3168 	spin_lock_irqsave(&xhci->lock, flags);
3169 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3170 			num_eps, &num_streams, &changed_ep_bitmask);
3171 	if (ret < 0) {
3172 		xhci_free_command(xhci, config_cmd);
3173 		spin_unlock_irqrestore(&xhci->lock, flags);
3174 		return ret;
3175 	}
3176 	if (num_streams <= 1) {
3177 		xhci_warn(xhci, "WARN: endpoints can't handle "
3178 				"more than one stream.\n");
3179 		xhci_free_command(xhci, config_cmd);
3180 		spin_unlock_irqrestore(&xhci->lock, flags);
3181 		return -EINVAL;
3182 	}
3183 	vdev = xhci->devs[udev->slot_id];
3184 	/* Mark each endpoint as being in transition, so
3185 	 * xhci_urb_enqueue() will reject all URBs.
3186 	 */
3187 	for (i = 0; i < num_eps; i++) {
3188 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3189 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3190 	}
3191 	spin_unlock_irqrestore(&xhci->lock, flags);
3192 
3193 	/* Setup internal data structures and allocate HW data structures for
3194 	 * streams (but don't install the HW structures in the input context
3195 	 * until we're sure all memory allocation succeeded).
3196 	 */
3197 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3198 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3199 			num_stream_ctxs, num_streams);
3200 
3201 	for (i = 0; i < num_eps; i++) {
3202 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3203 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3204 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3205 				num_stream_ctxs,
3206 				num_streams,
3207 				max_packet, mem_flags);
3208 		if (!vdev->eps[ep_index].stream_info)
3209 			goto cleanup;
3210 		/* Set maxPstreams in endpoint context and update deq ptr to
3211 		 * point to stream context array. FIXME
3212 		 */
3213 	}
3214 
3215 	/* Set up the input context for a configure endpoint command. */
3216 	for (i = 0; i < num_eps; i++) {
3217 		struct xhci_ep_ctx *ep_ctx;
3218 
3219 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3220 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3221 
3222 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3223 				vdev->out_ctx, ep_index);
3224 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3225 				vdev->eps[ep_index].stream_info);
3226 	}
3227 	/* Tell the HW to drop its old copy of the endpoint context info
3228 	 * and add the updated copy from the input context.
3229 	 */
3230 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3231 			vdev->out_ctx, ctrl_ctx,
3232 			changed_ep_bitmask, changed_ep_bitmask);
3233 
3234 	/* Issue and wait for the configure endpoint command */
3235 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3236 			false, false);
3237 
3238 	/* xHC rejected the configure endpoint command for some reason, so we
3239 	 * leave the old ring intact and free our internal streams data
3240 	 * structure.
3241 	 */
3242 	if (ret < 0)
3243 		goto cleanup;
3244 
3245 	spin_lock_irqsave(&xhci->lock, flags);
3246 	for (i = 0; i < num_eps; i++) {
3247 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3248 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3249 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3250 			 udev->slot_id, ep_index);
3251 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3252 	}
3253 	xhci_free_command(xhci, config_cmd);
3254 	spin_unlock_irqrestore(&xhci->lock, flags);
3255 
3256 	/* Subtract 1 for stream 0, which drivers can't use */
3257 	return num_streams - 1;
3258 
3259 cleanup:
3260 	/* If it didn't work, free the streams! */
3261 	for (i = 0; i < num_eps; i++) {
3262 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3263 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3264 		vdev->eps[ep_index].stream_info = NULL;
3265 		/* FIXME Unset maxPstreams in endpoint context and
3266 		 * update deq ptr to point to normal string ring.
3267 		 */
3268 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3269 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3270 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3271 	}
3272 	xhci_free_command(xhci, config_cmd);
3273 	return -ENOMEM;
3274 }
3275 
3276 /* Transition the endpoint from using streams to being a "normal" endpoint
3277  * without streams.
3278  *
3279  * Modify the endpoint context state, submit a configure endpoint command,
3280  * and free all endpoint rings for streams if that completes successfully.
3281  */
3282 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3283 		struct usb_host_endpoint **eps, unsigned int num_eps,
3284 		gfp_t mem_flags)
3285 {
3286 	int i, ret;
3287 	struct xhci_hcd *xhci;
3288 	struct xhci_virt_device *vdev;
3289 	struct xhci_command *command;
3290 	struct xhci_input_control_ctx *ctrl_ctx;
3291 	unsigned int ep_index;
3292 	unsigned long flags;
3293 	u32 changed_ep_bitmask;
3294 
3295 	xhci = hcd_to_xhci(hcd);
3296 	vdev = xhci->devs[udev->slot_id];
3297 
3298 	/* Set up a configure endpoint command to remove the streams rings */
3299 	spin_lock_irqsave(&xhci->lock, flags);
3300 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3301 			udev, eps, num_eps);
3302 	if (changed_ep_bitmask == 0) {
3303 		spin_unlock_irqrestore(&xhci->lock, flags);
3304 		return -EINVAL;
3305 	}
3306 
3307 	/* Use the xhci_command structure from the first endpoint.  We may have
3308 	 * allocated too many, but the driver may call xhci_free_streams() for
3309 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3310 	 */
3311 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3312 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3313 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3314 	if (!ctrl_ctx) {
3315 		spin_unlock_irqrestore(&xhci->lock, flags);
3316 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3317 				__func__);
3318 		return -EINVAL;
3319 	}
3320 
3321 	for (i = 0; i < num_eps; i++) {
3322 		struct xhci_ep_ctx *ep_ctx;
3323 
3324 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3325 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3326 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3327 			EP_GETTING_NO_STREAMS;
3328 
3329 		xhci_endpoint_copy(xhci, command->in_ctx,
3330 				vdev->out_ctx, ep_index);
3331 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3332 				&vdev->eps[ep_index]);
3333 	}
3334 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3335 			vdev->out_ctx, ctrl_ctx,
3336 			changed_ep_bitmask, changed_ep_bitmask);
3337 	spin_unlock_irqrestore(&xhci->lock, flags);
3338 
3339 	/* Issue and wait for the configure endpoint command,
3340 	 * which must succeed.
3341 	 */
3342 	ret = xhci_configure_endpoint(xhci, udev, command,
3343 			false, true);
3344 
3345 	/* xHC rejected the configure endpoint command for some reason, so we
3346 	 * leave the streams rings intact.
3347 	 */
3348 	if (ret < 0)
3349 		return ret;
3350 
3351 	spin_lock_irqsave(&xhci->lock, flags);
3352 	for (i = 0; i < num_eps; i++) {
3353 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3354 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3355 		vdev->eps[ep_index].stream_info = NULL;
3356 		/* FIXME Unset maxPstreams in endpoint context and
3357 		 * update deq ptr to point to normal string ring.
3358 		 */
3359 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3360 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3361 	}
3362 	spin_unlock_irqrestore(&xhci->lock, flags);
3363 
3364 	return 0;
3365 }
3366 
3367 /*
3368  * Deletes endpoint resources for endpoints that were active before a Reset
3369  * Device command, or a Disable Slot command.  The Reset Device command leaves
3370  * the control endpoint intact, whereas the Disable Slot command deletes it.
3371  *
3372  * Must be called with xhci->lock held.
3373  */
3374 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3375 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3376 {
3377 	int i;
3378 	unsigned int num_dropped_eps = 0;
3379 	unsigned int drop_flags = 0;
3380 
3381 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3382 		if (virt_dev->eps[i].ring) {
3383 			drop_flags |= 1 << i;
3384 			num_dropped_eps++;
3385 		}
3386 	}
3387 	xhci->num_active_eps -= num_dropped_eps;
3388 	if (num_dropped_eps)
3389 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3390 				"Dropped %u ep ctxs, flags = 0x%x, "
3391 				"%u now active.",
3392 				num_dropped_eps, drop_flags,
3393 				xhci->num_active_eps);
3394 }
3395 
3396 /*
3397  * This submits a Reset Device Command, which will set the device state to 0,
3398  * set the device address to 0, and disable all the endpoints except the default
3399  * control endpoint.  The USB core should come back and call
3400  * xhci_address_device(), and then re-set up the configuration.  If this is
3401  * called because of a usb_reset_and_verify_device(), then the old alternate
3402  * settings will be re-installed through the normal bandwidth allocation
3403  * functions.
3404  *
3405  * Wait for the Reset Device command to finish.  Remove all structures
3406  * associated with the endpoints that were disabled.  Clear the input device
3407  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3408  *
3409  * If the virt_dev to be reset does not exist or does not match the udev,
3410  * it means the device is lost, possibly due to the xHC restore error and
3411  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3412  * re-allocate the device.
3413  */
3414 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3415 {
3416 	int ret, i;
3417 	unsigned long flags;
3418 	struct xhci_hcd *xhci;
3419 	unsigned int slot_id;
3420 	struct xhci_virt_device *virt_dev;
3421 	struct xhci_command *reset_device_cmd;
3422 	int last_freed_endpoint;
3423 	struct xhci_slot_ctx *slot_ctx;
3424 	int old_active_eps = 0;
3425 
3426 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3427 	if (ret <= 0)
3428 		return ret;
3429 	xhci = hcd_to_xhci(hcd);
3430 	slot_id = udev->slot_id;
3431 	virt_dev = xhci->devs[slot_id];
3432 	if (!virt_dev) {
3433 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3434 				"not exist. Re-allocate the device\n", slot_id);
3435 		ret = xhci_alloc_dev(hcd, udev);
3436 		if (ret == 1)
3437 			return 0;
3438 		else
3439 			return -EINVAL;
3440 	}
3441 
3442 	if (virt_dev->tt_info)
3443 		old_active_eps = virt_dev->tt_info->active_eps;
3444 
3445 	if (virt_dev->udev != udev) {
3446 		/* If the virt_dev and the udev does not match, this virt_dev
3447 		 * may belong to another udev.
3448 		 * Re-allocate the device.
3449 		 */
3450 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3451 				"not match the udev. Re-allocate the device\n",
3452 				slot_id);
3453 		ret = xhci_alloc_dev(hcd, udev);
3454 		if (ret == 1)
3455 			return 0;
3456 		else
3457 			return -EINVAL;
3458 	}
3459 
3460 	/* If device is not setup, there is no point in resetting it */
3461 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3462 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3463 						SLOT_STATE_DISABLED)
3464 		return 0;
3465 
3466 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3467 	/* Allocate the command structure that holds the struct completion.
3468 	 * Assume we're in process context, since the normal device reset
3469 	 * process has to wait for the device anyway.  Storage devices are
3470 	 * reset as part of error handling, so use GFP_NOIO instead of
3471 	 * GFP_KERNEL.
3472 	 */
3473 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3474 	if (!reset_device_cmd) {
3475 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3476 		return -ENOMEM;
3477 	}
3478 
3479 	/* Attempt to submit the Reset Device command to the command ring */
3480 	spin_lock_irqsave(&xhci->lock, flags);
3481 
3482 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3483 	if (ret) {
3484 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3485 		spin_unlock_irqrestore(&xhci->lock, flags);
3486 		goto command_cleanup;
3487 	}
3488 	xhci_ring_cmd_db(xhci);
3489 	spin_unlock_irqrestore(&xhci->lock, flags);
3490 
3491 	/* Wait for the Reset Device command to finish */
3492 	wait_for_completion(reset_device_cmd->completion);
3493 
3494 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3495 	 * unless we tried to reset a slot ID that wasn't enabled,
3496 	 * or the device wasn't in the addressed or configured state.
3497 	 */
3498 	ret = reset_device_cmd->status;
3499 	switch (ret) {
3500 	case COMP_CMD_ABORT:
3501 	case COMP_CMD_STOP:
3502 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3503 		ret = -ETIME;
3504 		goto command_cleanup;
3505 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3506 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3507 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3508 				slot_id,
3509 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3510 		xhci_dbg(xhci, "Not freeing device rings.\n");
3511 		/* Don't treat this as an error.  May change my mind later. */
3512 		ret = 0;
3513 		goto command_cleanup;
3514 	case COMP_SUCCESS:
3515 		xhci_dbg(xhci, "Successful reset device command.\n");
3516 		break;
3517 	default:
3518 		if (xhci_is_vendor_info_code(xhci, ret))
3519 			break;
3520 		xhci_warn(xhci, "Unknown completion code %u for "
3521 				"reset device command.\n", ret);
3522 		ret = -EINVAL;
3523 		goto command_cleanup;
3524 	}
3525 
3526 	/* Free up host controller endpoint resources */
3527 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3528 		spin_lock_irqsave(&xhci->lock, flags);
3529 		/* Don't delete the default control endpoint resources */
3530 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3531 		spin_unlock_irqrestore(&xhci->lock, flags);
3532 	}
3533 
3534 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3535 	last_freed_endpoint = 1;
3536 	for (i = 1; i < 31; ++i) {
3537 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3538 
3539 		if (ep->ep_state & EP_HAS_STREAMS) {
3540 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3541 					xhci_get_endpoint_address(i));
3542 			xhci_free_stream_info(xhci, ep->stream_info);
3543 			ep->stream_info = NULL;
3544 			ep->ep_state &= ~EP_HAS_STREAMS;
3545 		}
3546 
3547 		if (ep->ring) {
3548 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3549 			last_freed_endpoint = i;
3550 		}
3551 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3552 			xhci_drop_ep_from_interval_table(xhci,
3553 					&virt_dev->eps[i].bw_info,
3554 					virt_dev->bw_table,
3555 					udev,
3556 					&virt_dev->eps[i],
3557 					virt_dev->tt_info);
3558 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3559 	}
3560 	/* If necessary, update the number of active TTs on this root port */
3561 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3562 
3563 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3564 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3565 	ret = 0;
3566 
3567 command_cleanup:
3568 	xhci_free_command(xhci, reset_device_cmd);
3569 	return ret;
3570 }
3571 
3572 /*
3573  * At this point, the struct usb_device is about to go away, the device has
3574  * disconnected, and all traffic has been stopped and the endpoints have been
3575  * disabled.  Free any HC data structures associated with that device.
3576  */
3577 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3578 {
3579 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3580 	struct xhci_virt_device *virt_dev;
3581 	unsigned long flags;
3582 	u32 state;
3583 	int i, ret;
3584 	struct xhci_command *command;
3585 
3586 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3587 	if (!command)
3588 		return;
3589 
3590 #ifndef CONFIG_USB_DEFAULT_PERSIST
3591 	/*
3592 	 * We called pm_runtime_get_noresume when the device was attached.
3593 	 * Decrement the counter here to allow controller to runtime suspend
3594 	 * if no devices remain.
3595 	 */
3596 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3597 		pm_runtime_put_noidle(hcd->self.controller);
3598 #endif
3599 
3600 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3601 	/* If the host is halted due to driver unload, we still need to free the
3602 	 * device.
3603 	 */
3604 	if (ret <= 0 && ret != -ENODEV) {
3605 		kfree(command);
3606 		return;
3607 	}
3608 
3609 	virt_dev = xhci->devs[udev->slot_id];
3610 
3611 	/* Stop any wayward timer functions (which may grab the lock) */
3612 	for (i = 0; i < 31; ++i) {
3613 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3614 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3615 	}
3616 
3617 	spin_lock_irqsave(&xhci->lock, flags);
3618 	/* Don't disable the slot if the host controller is dead. */
3619 	state = readl(&xhci->op_regs->status);
3620 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3621 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3622 		xhci_free_virt_device(xhci, udev->slot_id);
3623 		spin_unlock_irqrestore(&xhci->lock, flags);
3624 		kfree(command);
3625 		return;
3626 	}
3627 
3628 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3629 				    udev->slot_id)) {
3630 		spin_unlock_irqrestore(&xhci->lock, flags);
3631 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3632 		return;
3633 	}
3634 	xhci_ring_cmd_db(xhci);
3635 	spin_unlock_irqrestore(&xhci->lock, flags);
3636 
3637 	/*
3638 	 * Event command completion handler will free any data structures
3639 	 * associated with the slot.  XXX Can free sleep?
3640 	 */
3641 }
3642 
3643 /*
3644  * Checks if we have enough host controller resources for the default control
3645  * endpoint.
3646  *
3647  * Must be called with xhci->lock held.
3648  */
3649 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3650 {
3651 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3652 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3653 				"Not enough ep ctxs: "
3654 				"%u active, need to add 1, limit is %u.",
3655 				xhci->num_active_eps, xhci->limit_active_eps);
3656 		return -ENOMEM;
3657 	}
3658 	xhci->num_active_eps += 1;
3659 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3660 			"Adding 1 ep ctx, %u now active.",
3661 			xhci->num_active_eps);
3662 	return 0;
3663 }
3664 
3665 
3666 /*
3667  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3668  * timed out, or allocating memory failed.  Returns 1 on success.
3669  */
3670 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3671 {
3672 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3673 	unsigned long flags;
3674 	int ret, slot_id;
3675 	struct xhci_command *command;
3676 
3677 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3678 	if (!command)
3679 		return 0;
3680 
3681 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3682 	mutex_lock(&xhci->mutex);
3683 	spin_lock_irqsave(&xhci->lock, flags);
3684 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3685 	if (ret) {
3686 		spin_unlock_irqrestore(&xhci->lock, flags);
3687 		mutex_unlock(&xhci->mutex);
3688 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3689 		xhci_free_command(xhci, command);
3690 		return 0;
3691 	}
3692 	xhci_ring_cmd_db(xhci);
3693 	spin_unlock_irqrestore(&xhci->lock, flags);
3694 
3695 	wait_for_completion(command->completion);
3696 	slot_id = command->slot_id;
3697 	mutex_unlock(&xhci->mutex);
3698 
3699 	if (!slot_id || command->status != COMP_SUCCESS) {
3700 		xhci_err(xhci, "Error while assigning device slot ID\n");
3701 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3702 				HCS_MAX_SLOTS(
3703 					readl(&xhci->cap_regs->hcs_params1)));
3704 		xhci_free_command(xhci, command);
3705 		return 0;
3706 	}
3707 
3708 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3709 		spin_lock_irqsave(&xhci->lock, flags);
3710 		ret = xhci_reserve_host_control_ep_resources(xhci);
3711 		if (ret) {
3712 			spin_unlock_irqrestore(&xhci->lock, flags);
3713 			xhci_warn(xhci, "Not enough host resources, "
3714 					"active endpoint contexts = %u\n",
3715 					xhci->num_active_eps);
3716 			goto disable_slot;
3717 		}
3718 		spin_unlock_irqrestore(&xhci->lock, flags);
3719 	}
3720 	/* Use GFP_NOIO, since this function can be called from
3721 	 * xhci_discover_or_reset_device(), which may be called as part of
3722 	 * mass storage driver error handling.
3723 	 */
3724 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3725 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3726 		goto disable_slot;
3727 	}
3728 	udev->slot_id = slot_id;
3729 
3730 #ifndef CONFIG_USB_DEFAULT_PERSIST
3731 	/*
3732 	 * If resetting upon resume, we can't put the controller into runtime
3733 	 * suspend if there is a device attached.
3734 	 */
3735 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3736 		pm_runtime_get_noresume(hcd->self.controller);
3737 #endif
3738 
3739 
3740 	xhci_free_command(xhci, command);
3741 	/* Is this a LS or FS device under a HS hub? */
3742 	/* Hub or peripherial? */
3743 	return 1;
3744 
3745 disable_slot:
3746 	/* Disable slot, if we can do it without mem alloc */
3747 	spin_lock_irqsave(&xhci->lock, flags);
3748 	kfree(command->completion);
3749 	command->completion = NULL;
3750 	command->status = 0;
3751 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3752 				     udev->slot_id))
3753 		xhci_ring_cmd_db(xhci);
3754 	spin_unlock_irqrestore(&xhci->lock, flags);
3755 	return 0;
3756 }
3757 
3758 /*
3759  * Issue an Address Device command and optionally send a corresponding
3760  * SetAddress request to the device.
3761  */
3762 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3763 			     enum xhci_setup_dev setup)
3764 {
3765 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3766 	unsigned long flags;
3767 	struct xhci_virt_device *virt_dev;
3768 	int ret = 0;
3769 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3770 	struct xhci_slot_ctx *slot_ctx;
3771 	struct xhci_input_control_ctx *ctrl_ctx;
3772 	u64 temp_64;
3773 	struct xhci_command *command = NULL;
3774 
3775 	mutex_lock(&xhci->mutex);
3776 
3777 	if (xhci->xhc_state) {	/* dying, removing or halted */
3778 		ret = -ESHUTDOWN;
3779 		goto out;
3780 	}
3781 
3782 	if (!udev->slot_id) {
3783 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3784 				"Bad Slot ID %d", udev->slot_id);
3785 		ret = -EINVAL;
3786 		goto out;
3787 	}
3788 
3789 	virt_dev = xhci->devs[udev->slot_id];
3790 
3791 	if (WARN_ON(!virt_dev)) {
3792 		/*
3793 		 * In plug/unplug torture test with an NEC controller,
3794 		 * a zero-dereference was observed once due to virt_dev = 0.
3795 		 * Print useful debug rather than crash if it is observed again!
3796 		 */
3797 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3798 			udev->slot_id);
3799 		ret = -EINVAL;
3800 		goto out;
3801 	}
3802 
3803 	if (setup == SETUP_CONTEXT_ONLY) {
3804 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3805 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3806 		    SLOT_STATE_DEFAULT) {
3807 			xhci_dbg(xhci, "Slot already in default state\n");
3808 			goto out;
3809 		}
3810 	}
3811 
3812 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3813 	if (!command) {
3814 		ret = -ENOMEM;
3815 		goto out;
3816 	}
3817 
3818 	command->in_ctx = virt_dev->in_ctx;
3819 
3820 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3821 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3822 	if (!ctrl_ctx) {
3823 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3824 				__func__);
3825 		ret = -EINVAL;
3826 		goto out;
3827 	}
3828 	/*
3829 	 * If this is the first Set Address since device plug-in or
3830 	 * virt_device realloaction after a resume with an xHCI power loss,
3831 	 * then set up the slot context.
3832 	 */
3833 	if (!slot_ctx->dev_info)
3834 		xhci_setup_addressable_virt_dev(xhci, udev);
3835 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3836 	else
3837 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3838 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3839 	ctrl_ctx->drop_flags = 0;
3840 
3841 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3842 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3843 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3844 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3845 
3846 	spin_lock_irqsave(&xhci->lock, flags);
3847 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3848 					udev->slot_id, setup);
3849 	if (ret) {
3850 		spin_unlock_irqrestore(&xhci->lock, flags);
3851 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3852 				"FIXME: allocate a command ring segment");
3853 		goto out;
3854 	}
3855 	xhci_ring_cmd_db(xhci);
3856 	spin_unlock_irqrestore(&xhci->lock, flags);
3857 
3858 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3859 	wait_for_completion(command->completion);
3860 
3861 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3862 	 * the SetAddress() "recovery interval" required by USB and aborting the
3863 	 * command on a timeout.
3864 	 */
3865 	switch (command->status) {
3866 	case COMP_CMD_ABORT:
3867 	case COMP_CMD_STOP:
3868 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3869 		ret = -ETIME;
3870 		break;
3871 	case COMP_CTX_STATE:
3872 	case COMP_EBADSLT:
3873 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3874 			 act, udev->slot_id);
3875 		ret = -EINVAL;
3876 		break;
3877 	case COMP_TX_ERR:
3878 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3879 		ret = -EPROTO;
3880 		break;
3881 	case COMP_DEV_ERR:
3882 		dev_warn(&udev->dev,
3883 			 "ERROR: Incompatible device for setup %s command\n", act);
3884 		ret = -ENODEV;
3885 		break;
3886 	case COMP_SUCCESS:
3887 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3888 			       "Successful setup %s command", act);
3889 		break;
3890 	default:
3891 		xhci_err(xhci,
3892 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3893 			 act, command->status);
3894 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3895 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3896 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3897 		ret = -EINVAL;
3898 		break;
3899 	}
3900 	if (ret)
3901 		goto out;
3902 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3903 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3904 			"Op regs DCBAA ptr = %#016llx", temp_64);
3905 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3906 		"Slot ID %d dcbaa entry @%p = %#016llx",
3907 		udev->slot_id,
3908 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3909 		(unsigned long long)
3910 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3911 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3912 			"Output Context DMA address = %#08llx",
3913 			(unsigned long long)virt_dev->out_ctx->dma);
3914 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3915 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3916 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3917 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3918 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3919 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3920 	/*
3921 	 * USB core uses address 1 for the roothubs, so we add one to the
3922 	 * address given back to us by the HC.
3923 	 */
3924 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3925 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3926 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3927 	/* Zero the input context control for later use */
3928 	ctrl_ctx->add_flags = 0;
3929 	ctrl_ctx->drop_flags = 0;
3930 
3931 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3932 		       "Internal device address = %d",
3933 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3934 out:
3935 	mutex_unlock(&xhci->mutex);
3936 	if (command) {
3937 		kfree(command->completion);
3938 		kfree(command);
3939 	}
3940 	return ret;
3941 }
3942 
3943 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3944 {
3945 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3946 }
3947 
3948 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3949 {
3950 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3951 }
3952 
3953 /*
3954  * Transfer the port index into real index in the HW port status
3955  * registers. Caculate offset between the port's PORTSC register
3956  * and port status base. Divide the number of per port register
3957  * to get the real index. The raw port number bases 1.
3958  */
3959 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3960 {
3961 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3962 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3963 	__le32 __iomem *addr;
3964 	int raw_port;
3965 
3966 	if (hcd->speed < HCD_USB3)
3967 		addr = xhci->usb2_ports[port1 - 1];
3968 	else
3969 		addr = xhci->usb3_ports[port1 - 1];
3970 
3971 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3972 	return raw_port;
3973 }
3974 
3975 /*
3976  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3977  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3978  */
3979 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3980 			struct usb_device *udev, u16 max_exit_latency)
3981 {
3982 	struct xhci_virt_device *virt_dev;
3983 	struct xhci_command *command;
3984 	struct xhci_input_control_ctx *ctrl_ctx;
3985 	struct xhci_slot_ctx *slot_ctx;
3986 	unsigned long flags;
3987 	int ret;
3988 
3989 	spin_lock_irqsave(&xhci->lock, flags);
3990 
3991 	virt_dev = xhci->devs[udev->slot_id];
3992 
3993 	/*
3994 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3995 	 * xHC was re-initialized. Exit latency will be set later after
3996 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3997 	 */
3998 
3999 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4000 		spin_unlock_irqrestore(&xhci->lock, flags);
4001 		return 0;
4002 	}
4003 
4004 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4005 	command = xhci->lpm_command;
4006 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4007 	if (!ctrl_ctx) {
4008 		spin_unlock_irqrestore(&xhci->lock, flags);
4009 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4010 				__func__);
4011 		return -ENOMEM;
4012 	}
4013 
4014 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4015 	spin_unlock_irqrestore(&xhci->lock, flags);
4016 
4017 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4018 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4019 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4020 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4021 	slot_ctx->dev_state = 0;
4022 
4023 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4024 			"Set up evaluate context for LPM MEL change.");
4025 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4026 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4027 
4028 	/* Issue and wait for the evaluate context command. */
4029 	ret = xhci_configure_endpoint(xhci, udev, command,
4030 			true, true);
4031 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4032 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4033 
4034 	if (!ret) {
4035 		spin_lock_irqsave(&xhci->lock, flags);
4036 		virt_dev->current_mel = max_exit_latency;
4037 		spin_unlock_irqrestore(&xhci->lock, flags);
4038 	}
4039 	return ret;
4040 }
4041 
4042 #ifdef CONFIG_PM
4043 
4044 /* BESL to HIRD Encoding array for USB2 LPM */
4045 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4046 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4047 
4048 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4049 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4050 					struct usb_device *udev)
4051 {
4052 	int u2del, besl, besl_host;
4053 	int besl_device = 0;
4054 	u32 field;
4055 
4056 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4057 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4058 
4059 	if (field & USB_BESL_SUPPORT) {
4060 		for (besl_host = 0; besl_host < 16; besl_host++) {
4061 			if (xhci_besl_encoding[besl_host] >= u2del)
4062 				break;
4063 		}
4064 		/* Use baseline BESL value as default */
4065 		if (field & USB_BESL_BASELINE_VALID)
4066 			besl_device = USB_GET_BESL_BASELINE(field);
4067 		else if (field & USB_BESL_DEEP_VALID)
4068 			besl_device = USB_GET_BESL_DEEP(field);
4069 	} else {
4070 		if (u2del <= 50)
4071 			besl_host = 0;
4072 		else
4073 			besl_host = (u2del - 51) / 75 + 1;
4074 	}
4075 
4076 	besl = besl_host + besl_device;
4077 	if (besl > 15)
4078 		besl = 15;
4079 
4080 	return besl;
4081 }
4082 
4083 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4084 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4085 {
4086 	u32 field;
4087 	int l1;
4088 	int besld = 0;
4089 	int hirdm = 0;
4090 
4091 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4092 
4093 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4094 	l1 = udev->l1_params.timeout / 256;
4095 
4096 	/* device has preferred BESLD */
4097 	if (field & USB_BESL_DEEP_VALID) {
4098 		besld = USB_GET_BESL_DEEP(field);
4099 		hirdm = 1;
4100 	}
4101 
4102 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4103 }
4104 
4105 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4106 			struct usb_device *udev, int enable)
4107 {
4108 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4109 	__le32 __iomem	**port_array;
4110 	__le32 __iomem	*pm_addr, *hlpm_addr;
4111 	u32		pm_val, hlpm_val, field;
4112 	unsigned int	port_num;
4113 	unsigned long	flags;
4114 	int		hird, exit_latency;
4115 	int		ret;
4116 
4117 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4118 			!udev->lpm_capable)
4119 		return -EPERM;
4120 
4121 	if (!udev->parent || udev->parent->parent ||
4122 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4123 		return -EPERM;
4124 
4125 	if (udev->usb2_hw_lpm_capable != 1)
4126 		return -EPERM;
4127 
4128 	spin_lock_irqsave(&xhci->lock, flags);
4129 
4130 	port_array = xhci->usb2_ports;
4131 	port_num = udev->portnum - 1;
4132 	pm_addr = port_array[port_num] + PORTPMSC;
4133 	pm_val = readl(pm_addr);
4134 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4135 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4136 
4137 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4138 			enable ? "enable" : "disable", port_num + 1);
4139 
4140 	if (enable) {
4141 		/* Host supports BESL timeout instead of HIRD */
4142 		if (udev->usb2_hw_lpm_besl_capable) {
4143 			/* if device doesn't have a preferred BESL value use a
4144 			 * default one which works with mixed HIRD and BESL
4145 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4146 			 */
4147 			if ((field & USB_BESL_SUPPORT) &&
4148 			    (field & USB_BESL_BASELINE_VALID))
4149 				hird = USB_GET_BESL_BASELINE(field);
4150 			else
4151 				hird = udev->l1_params.besl;
4152 
4153 			exit_latency = xhci_besl_encoding[hird];
4154 			spin_unlock_irqrestore(&xhci->lock, flags);
4155 
4156 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4157 			 * input context for link powermanagement evaluate
4158 			 * context commands. It is protected by hcd->bandwidth
4159 			 * mutex and is shared by all devices. We need to set
4160 			 * the max ext latency in USB 2 BESL LPM as well, so
4161 			 * use the same mutex and xhci_change_max_exit_latency()
4162 			 */
4163 			mutex_lock(hcd->bandwidth_mutex);
4164 			ret = xhci_change_max_exit_latency(xhci, udev,
4165 							   exit_latency);
4166 			mutex_unlock(hcd->bandwidth_mutex);
4167 
4168 			if (ret < 0)
4169 				return ret;
4170 			spin_lock_irqsave(&xhci->lock, flags);
4171 
4172 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4173 			writel(hlpm_val, hlpm_addr);
4174 			/* flush write */
4175 			readl(hlpm_addr);
4176 		} else {
4177 			hird = xhci_calculate_hird_besl(xhci, udev);
4178 		}
4179 
4180 		pm_val &= ~PORT_HIRD_MASK;
4181 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4182 		writel(pm_val, pm_addr);
4183 		pm_val = readl(pm_addr);
4184 		pm_val |= PORT_HLE;
4185 		writel(pm_val, pm_addr);
4186 		/* flush write */
4187 		readl(pm_addr);
4188 	} else {
4189 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4190 		writel(pm_val, pm_addr);
4191 		/* flush write */
4192 		readl(pm_addr);
4193 		if (udev->usb2_hw_lpm_besl_capable) {
4194 			spin_unlock_irqrestore(&xhci->lock, flags);
4195 			mutex_lock(hcd->bandwidth_mutex);
4196 			xhci_change_max_exit_latency(xhci, udev, 0);
4197 			mutex_unlock(hcd->bandwidth_mutex);
4198 			return 0;
4199 		}
4200 	}
4201 
4202 	spin_unlock_irqrestore(&xhci->lock, flags);
4203 	return 0;
4204 }
4205 
4206 /* check if a usb2 port supports a given extened capability protocol
4207  * only USB2 ports extended protocol capability values are cached.
4208  * Return 1 if capability is supported
4209  */
4210 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4211 					   unsigned capability)
4212 {
4213 	u32 port_offset, port_count;
4214 	int i;
4215 
4216 	for (i = 0; i < xhci->num_ext_caps; i++) {
4217 		if (xhci->ext_caps[i] & capability) {
4218 			/* port offsets starts at 1 */
4219 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4220 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4221 			if (port >= port_offset &&
4222 			    port < port_offset + port_count)
4223 				return 1;
4224 		}
4225 	}
4226 	return 0;
4227 }
4228 
4229 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4230 {
4231 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4232 	int		portnum = udev->portnum - 1;
4233 
4234 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4235 			!udev->lpm_capable)
4236 		return 0;
4237 
4238 	/* we only support lpm for non-hub device connected to root hub yet */
4239 	if (!udev->parent || udev->parent->parent ||
4240 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4241 		return 0;
4242 
4243 	if (xhci->hw_lpm_support == 1 &&
4244 			xhci_check_usb2_port_capability(
4245 				xhci, portnum, XHCI_HLC)) {
4246 		udev->usb2_hw_lpm_capable = 1;
4247 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4248 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4249 		if (xhci_check_usb2_port_capability(xhci, portnum,
4250 					XHCI_BLC))
4251 			udev->usb2_hw_lpm_besl_capable = 1;
4252 	}
4253 
4254 	return 0;
4255 }
4256 
4257 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4258 
4259 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4260 static unsigned long long xhci_service_interval_to_ns(
4261 		struct usb_endpoint_descriptor *desc)
4262 {
4263 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4264 }
4265 
4266 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4267 		enum usb3_link_state state)
4268 {
4269 	unsigned long long sel;
4270 	unsigned long long pel;
4271 	unsigned int max_sel_pel;
4272 	char *state_name;
4273 
4274 	switch (state) {
4275 	case USB3_LPM_U1:
4276 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4277 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4278 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4279 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4280 		state_name = "U1";
4281 		break;
4282 	case USB3_LPM_U2:
4283 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4284 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4285 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4286 		state_name = "U2";
4287 		break;
4288 	default:
4289 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4290 				__func__);
4291 		return USB3_LPM_DISABLED;
4292 	}
4293 
4294 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4295 		return USB3_LPM_DEVICE_INITIATED;
4296 
4297 	if (sel > max_sel_pel)
4298 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4299 				"due to long SEL %llu ms\n",
4300 				state_name, sel);
4301 	else
4302 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4303 				"due to long PEL %llu ms\n",
4304 				state_name, pel);
4305 	return USB3_LPM_DISABLED;
4306 }
4307 
4308 /* The U1 timeout should be the maximum of the following values:
4309  *  - For control endpoints, U1 system exit latency (SEL) * 3
4310  *  - For bulk endpoints, U1 SEL * 5
4311  *  - For interrupt endpoints:
4312  *    - Notification EPs, U1 SEL * 3
4313  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4314  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4315  */
4316 static unsigned long long xhci_calculate_intel_u1_timeout(
4317 		struct usb_device *udev,
4318 		struct usb_endpoint_descriptor *desc)
4319 {
4320 	unsigned long long timeout_ns;
4321 	int ep_type;
4322 	int intr_type;
4323 
4324 	ep_type = usb_endpoint_type(desc);
4325 	switch (ep_type) {
4326 	case USB_ENDPOINT_XFER_CONTROL:
4327 		timeout_ns = udev->u1_params.sel * 3;
4328 		break;
4329 	case USB_ENDPOINT_XFER_BULK:
4330 		timeout_ns = udev->u1_params.sel * 5;
4331 		break;
4332 	case USB_ENDPOINT_XFER_INT:
4333 		intr_type = usb_endpoint_interrupt_type(desc);
4334 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4335 			timeout_ns = udev->u1_params.sel * 3;
4336 			break;
4337 		}
4338 		/* Otherwise the calculation is the same as isoc eps */
4339 	case USB_ENDPOINT_XFER_ISOC:
4340 		timeout_ns = xhci_service_interval_to_ns(desc);
4341 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4342 		if (timeout_ns < udev->u1_params.sel * 2)
4343 			timeout_ns = udev->u1_params.sel * 2;
4344 		break;
4345 	default:
4346 		return 0;
4347 	}
4348 
4349 	return timeout_ns;
4350 }
4351 
4352 /* Returns the hub-encoded U1 timeout value. */
4353 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4354 		struct usb_device *udev,
4355 		struct usb_endpoint_descriptor *desc)
4356 {
4357 	unsigned long long timeout_ns;
4358 
4359 	if (xhci->quirks & XHCI_INTEL_HOST)
4360 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4361 	else
4362 		timeout_ns = udev->u1_params.sel;
4363 
4364 	/* The U1 timeout is encoded in 1us intervals.
4365 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4366 	 */
4367 	if (timeout_ns == USB3_LPM_DISABLED)
4368 		timeout_ns = 1;
4369 	else
4370 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4371 
4372 	/* If the necessary timeout value is bigger than what we can set in the
4373 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4374 	 */
4375 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4376 		return timeout_ns;
4377 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4378 			"due to long timeout %llu ms\n", timeout_ns);
4379 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4380 }
4381 
4382 /* The U2 timeout should be the maximum of:
4383  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4384  *  - largest bInterval of any active periodic endpoint (to avoid going
4385  *    into lower power link states between intervals).
4386  *  - the U2 Exit Latency of the device
4387  */
4388 static unsigned long long xhci_calculate_intel_u2_timeout(
4389 		struct usb_device *udev,
4390 		struct usb_endpoint_descriptor *desc)
4391 {
4392 	unsigned long long timeout_ns;
4393 	unsigned long long u2_del_ns;
4394 
4395 	timeout_ns = 10 * 1000 * 1000;
4396 
4397 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4398 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4399 		timeout_ns = xhci_service_interval_to_ns(desc);
4400 
4401 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4402 	if (u2_del_ns > timeout_ns)
4403 		timeout_ns = u2_del_ns;
4404 
4405 	return timeout_ns;
4406 }
4407 
4408 /* Returns the hub-encoded U2 timeout value. */
4409 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4410 		struct usb_device *udev,
4411 		struct usb_endpoint_descriptor *desc)
4412 {
4413 	unsigned long long timeout_ns;
4414 
4415 	if (xhci->quirks & XHCI_INTEL_HOST)
4416 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4417 	else
4418 		timeout_ns = udev->u2_params.sel;
4419 
4420 	/* The U2 timeout is encoded in 256us intervals */
4421 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4422 	/* If the necessary timeout value is bigger than what we can set in the
4423 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4424 	 */
4425 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4426 		return timeout_ns;
4427 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4428 			"due to long timeout %llu ms\n", timeout_ns);
4429 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4430 }
4431 
4432 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4433 		struct usb_device *udev,
4434 		struct usb_endpoint_descriptor *desc,
4435 		enum usb3_link_state state,
4436 		u16 *timeout)
4437 {
4438 	if (state == USB3_LPM_U1)
4439 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4440 	else if (state == USB3_LPM_U2)
4441 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4442 
4443 	return USB3_LPM_DISABLED;
4444 }
4445 
4446 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4447 		struct usb_device *udev,
4448 		struct usb_endpoint_descriptor *desc,
4449 		enum usb3_link_state state,
4450 		u16 *timeout)
4451 {
4452 	u16 alt_timeout;
4453 
4454 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4455 		desc, state, timeout);
4456 
4457 	/* If we found we can't enable hub-initiated LPM, or
4458 	 * the U1 or U2 exit latency was too high to allow
4459 	 * device-initiated LPM as well, just stop searching.
4460 	 */
4461 	if (alt_timeout == USB3_LPM_DISABLED ||
4462 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4463 		*timeout = alt_timeout;
4464 		return -E2BIG;
4465 	}
4466 	if (alt_timeout > *timeout)
4467 		*timeout = alt_timeout;
4468 	return 0;
4469 }
4470 
4471 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4472 		struct usb_device *udev,
4473 		struct usb_host_interface *alt,
4474 		enum usb3_link_state state,
4475 		u16 *timeout)
4476 {
4477 	int j;
4478 
4479 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4480 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4481 					&alt->endpoint[j].desc, state, timeout))
4482 			return -E2BIG;
4483 		continue;
4484 	}
4485 	return 0;
4486 }
4487 
4488 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4489 		enum usb3_link_state state)
4490 {
4491 	struct usb_device *parent;
4492 	unsigned int num_hubs;
4493 
4494 	if (state == USB3_LPM_U2)
4495 		return 0;
4496 
4497 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4498 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4499 			parent = parent->parent)
4500 		num_hubs++;
4501 
4502 	if (num_hubs < 2)
4503 		return 0;
4504 
4505 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4506 			" below second-tier hub.\n");
4507 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4508 			"to decrease power consumption.\n");
4509 	return -E2BIG;
4510 }
4511 
4512 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4513 		struct usb_device *udev,
4514 		enum usb3_link_state state)
4515 {
4516 	if (xhci->quirks & XHCI_INTEL_HOST)
4517 		return xhci_check_intel_tier_policy(udev, state);
4518 	else
4519 		return 0;
4520 }
4521 
4522 /* Returns the U1 or U2 timeout that should be enabled.
4523  * If the tier check or timeout setting functions return with a non-zero exit
4524  * code, that means the timeout value has been finalized and we shouldn't look
4525  * at any more endpoints.
4526  */
4527 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4528 			struct usb_device *udev, enum usb3_link_state state)
4529 {
4530 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4531 	struct usb_host_config *config;
4532 	char *state_name;
4533 	int i;
4534 	u16 timeout = USB3_LPM_DISABLED;
4535 
4536 	if (state == USB3_LPM_U1)
4537 		state_name = "U1";
4538 	else if (state == USB3_LPM_U2)
4539 		state_name = "U2";
4540 	else {
4541 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4542 				state);
4543 		return timeout;
4544 	}
4545 
4546 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4547 		return timeout;
4548 
4549 	/* Gather some information about the currently installed configuration
4550 	 * and alternate interface settings.
4551 	 */
4552 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4553 			state, &timeout))
4554 		return timeout;
4555 
4556 	config = udev->actconfig;
4557 	if (!config)
4558 		return timeout;
4559 
4560 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4561 		struct usb_driver *driver;
4562 		struct usb_interface *intf = config->interface[i];
4563 
4564 		if (!intf)
4565 			continue;
4566 
4567 		/* Check if any currently bound drivers want hub-initiated LPM
4568 		 * disabled.
4569 		 */
4570 		if (intf->dev.driver) {
4571 			driver = to_usb_driver(intf->dev.driver);
4572 			if (driver && driver->disable_hub_initiated_lpm) {
4573 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4574 						"at request of driver %s\n",
4575 						state_name, driver->name);
4576 				return xhci_get_timeout_no_hub_lpm(udev, state);
4577 			}
4578 		}
4579 
4580 		/* Not sure how this could happen... */
4581 		if (!intf->cur_altsetting)
4582 			continue;
4583 
4584 		if (xhci_update_timeout_for_interface(xhci, udev,
4585 					intf->cur_altsetting,
4586 					state, &timeout))
4587 			return timeout;
4588 	}
4589 	return timeout;
4590 }
4591 
4592 static int calculate_max_exit_latency(struct usb_device *udev,
4593 		enum usb3_link_state state_changed,
4594 		u16 hub_encoded_timeout)
4595 {
4596 	unsigned long long u1_mel_us = 0;
4597 	unsigned long long u2_mel_us = 0;
4598 	unsigned long long mel_us = 0;
4599 	bool disabling_u1;
4600 	bool disabling_u2;
4601 	bool enabling_u1;
4602 	bool enabling_u2;
4603 
4604 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4605 			hub_encoded_timeout == USB3_LPM_DISABLED);
4606 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4607 			hub_encoded_timeout == USB3_LPM_DISABLED);
4608 
4609 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4610 			hub_encoded_timeout != USB3_LPM_DISABLED);
4611 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4612 			hub_encoded_timeout != USB3_LPM_DISABLED);
4613 
4614 	/* If U1 was already enabled and we're not disabling it,
4615 	 * or we're going to enable U1, account for the U1 max exit latency.
4616 	 */
4617 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4618 			enabling_u1)
4619 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4620 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4621 			enabling_u2)
4622 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4623 
4624 	if (u1_mel_us > u2_mel_us)
4625 		mel_us = u1_mel_us;
4626 	else
4627 		mel_us = u2_mel_us;
4628 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4629 	if (mel_us > MAX_EXIT) {
4630 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4631 				"is too big.\n", mel_us);
4632 		return -E2BIG;
4633 	}
4634 	return mel_us;
4635 }
4636 
4637 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4638 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4639 			struct usb_device *udev, enum usb3_link_state state)
4640 {
4641 	struct xhci_hcd	*xhci;
4642 	u16 hub_encoded_timeout;
4643 	int mel;
4644 	int ret;
4645 
4646 	xhci = hcd_to_xhci(hcd);
4647 	/* The LPM timeout values are pretty host-controller specific, so don't
4648 	 * enable hub-initiated timeouts unless the vendor has provided
4649 	 * information about their timeout algorithm.
4650 	 */
4651 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4652 			!xhci->devs[udev->slot_id])
4653 		return USB3_LPM_DISABLED;
4654 
4655 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4656 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4657 	if (mel < 0) {
4658 		/* Max Exit Latency is too big, disable LPM. */
4659 		hub_encoded_timeout = USB3_LPM_DISABLED;
4660 		mel = 0;
4661 	}
4662 
4663 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4664 	if (ret)
4665 		return ret;
4666 	return hub_encoded_timeout;
4667 }
4668 
4669 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4670 			struct usb_device *udev, enum usb3_link_state state)
4671 {
4672 	struct xhci_hcd	*xhci;
4673 	u16 mel;
4674 
4675 	xhci = hcd_to_xhci(hcd);
4676 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4677 			!xhci->devs[udev->slot_id])
4678 		return 0;
4679 
4680 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4681 	return xhci_change_max_exit_latency(xhci, udev, mel);
4682 }
4683 #else /* CONFIG_PM */
4684 
4685 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4686 				struct usb_device *udev, int enable)
4687 {
4688 	return 0;
4689 }
4690 
4691 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4692 {
4693 	return 0;
4694 }
4695 
4696 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4697 			struct usb_device *udev, enum usb3_link_state state)
4698 {
4699 	return USB3_LPM_DISABLED;
4700 }
4701 
4702 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4703 			struct usb_device *udev, enum usb3_link_state state)
4704 {
4705 	return 0;
4706 }
4707 #endif	/* CONFIG_PM */
4708 
4709 /*-------------------------------------------------------------------------*/
4710 
4711 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4712  * internal data structures for the device.
4713  */
4714 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4715 			struct usb_tt *tt, gfp_t mem_flags)
4716 {
4717 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4718 	struct xhci_virt_device *vdev;
4719 	struct xhci_command *config_cmd;
4720 	struct xhci_input_control_ctx *ctrl_ctx;
4721 	struct xhci_slot_ctx *slot_ctx;
4722 	unsigned long flags;
4723 	unsigned think_time;
4724 	int ret;
4725 
4726 	/* Ignore root hubs */
4727 	if (!hdev->parent)
4728 		return 0;
4729 
4730 	vdev = xhci->devs[hdev->slot_id];
4731 	if (!vdev) {
4732 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4733 		return -EINVAL;
4734 	}
4735 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4736 	if (!config_cmd) {
4737 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4738 		return -ENOMEM;
4739 	}
4740 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4741 	if (!ctrl_ctx) {
4742 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4743 				__func__);
4744 		xhci_free_command(xhci, config_cmd);
4745 		return -ENOMEM;
4746 	}
4747 
4748 	spin_lock_irqsave(&xhci->lock, flags);
4749 	if (hdev->speed == USB_SPEED_HIGH &&
4750 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4751 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4752 		xhci_free_command(xhci, config_cmd);
4753 		spin_unlock_irqrestore(&xhci->lock, flags);
4754 		return -ENOMEM;
4755 	}
4756 
4757 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4758 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4759 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4760 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4761 	/*
4762 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4763 	 * but it may be already set to 1 when setup an xHCI virtual
4764 	 * device, so clear it anyway.
4765 	 */
4766 	if (tt->multi)
4767 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4768 	else if (hdev->speed == USB_SPEED_FULL)
4769 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4770 
4771 	if (xhci->hci_version > 0x95) {
4772 		xhci_dbg(xhci, "xHCI version %x needs hub "
4773 				"TT think time and number of ports\n",
4774 				(unsigned int) xhci->hci_version);
4775 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4776 		/* Set TT think time - convert from ns to FS bit times.
4777 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4778 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4779 		 *
4780 		 * xHCI 1.0: this field shall be 0 if the device is not a
4781 		 * High-spped hub.
4782 		 */
4783 		think_time = tt->think_time;
4784 		if (think_time != 0)
4785 			think_time = (think_time / 666) - 1;
4786 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4787 			slot_ctx->tt_info |=
4788 				cpu_to_le32(TT_THINK_TIME(think_time));
4789 	} else {
4790 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4791 				"TT think time or number of ports\n",
4792 				(unsigned int) xhci->hci_version);
4793 	}
4794 	slot_ctx->dev_state = 0;
4795 	spin_unlock_irqrestore(&xhci->lock, flags);
4796 
4797 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4798 			(xhci->hci_version > 0x95) ?
4799 			"configure endpoint" : "evaluate context");
4800 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4801 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4802 
4803 	/* Issue and wait for the configure endpoint or
4804 	 * evaluate context command.
4805 	 */
4806 	if (xhci->hci_version > 0x95)
4807 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4808 				false, false);
4809 	else
4810 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4811 				true, false);
4812 
4813 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4814 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4815 
4816 	xhci_free_command(xhci, config_cmd);
4817 	return ret;
4818 }
4819 
4820 int xhci_get_frame(struct usb_hcd *hcd)
4821 {
4822 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4823 	/* EHCI mods by the periodic size.  Why? */
4824 	return readl(&xhci->run_regs->microframe_index) >> 3;
4825 }
4826 
4827 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4828 {
4829 	struct xhci_hcd		*xhci;
4830 	struct device		*dev = hcd->self.controller;
4831 	int			retval;
4832 
4833 	/* Accept arbitrarily long scatter-gather lists */
4834 	hcd->self.sg_tablesize = ~0;
4835 
4836 	/* support to build packet from discontinuous buffers */
4837 	hcd->self.no_sg_constraint = 1;
4838 
4839 	/* XHCI controllers don't stop the ep queue on short packets :| */
4840 	hcd->self.no_stop_on_short = 1;
4841 
4842 	xhci = hcd_to_xhci(hcd);
4843 
4844 	if (usb_hcd_is_primary_hcd(hcd)) {
4845 		xhci->main_hcd = hcd;
4846 		/* Mark the first roothub as being USB 2.0.
4847 		 * The xHCI driver will register the USB 3.0 roothub.
4848 		 */
4849 		hcd->speed = HCD_USB2;
4850 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4851 		/*
4852 		 * USB 2.0 roothub under xHCI has an integrated TT,
4853 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4854 		 * companion controller.
4855 		 */
4856 		hcd->has_tt = 1;
4857 	} else {
4858 		if (xhci->sbrn == 0x31) {
4859 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4860 			hcd->speed = HCD_USB31;
4861 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4862 		}
4863 		/* xHCI private pointer was set in xhci_pci_probe for the second
4864 		 * registered roothub.
4865 		 */
4866 		return 0;
4867 	}
4868 
4869 	mutex_init(&xhci->mutex);
4870 	xhci->cap_regs = hcd->regs;
4871 	xhci->op_regs = hcd->regs +
4872 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4873 	xhci->run_regs = hcd->regs +
4874 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4875 	/* Cache read-only capability registers */
4876 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4877 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4878 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4879 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4880 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4881 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4882 	if (xhci->hci_version > 0x100)
4883 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4884 	xhci_print_registers(xhci);
4885 
4886 	xhci->quirks |= quirks;
4887 
4888 	get_quirks(dev, xhci);
4889 
4890 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4891 	 * success event after a short transfer. This quirk will ignore such
4892 	 * spurious event.
4893 	 */
4894 	if (xhci->hci_version > 0x96)
4895 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4896 
4897 	/* Make sure the HC is halted. */
4898 	retval = xhci_halt(xhci);
4899 	if (retval)
4900 		return retval;
4901 
4902 	xhci_dbg(xhci, "Resetting HCD\n");
4903 	/* Reset the internal HC memory state and registers. */
4904 	retval = xhci_reset(xhci);
4905 	if (retval)
4906 		return retval;
4907 	xhci_dbg(xhci, "Reset complete\n");
4908 
4909 	/*
4910 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4911 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4912 	 * address memory pointers actually. So, this driver clears the AC64
4913 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4914 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4915 	 */
4916 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4917 		xhci->hcc_params &= ~BIT(0);
4918 
4919 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4920 	 * if xHC supports 64-bit addressing */
4921 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4922 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4923 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4924 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4925 	} else {
4926 		/*
4927 		 * This is to avoid error in cases where a 32-bit USB
4928 		 * controller is used on a 64-bit capable system.
4929 		 */
4930 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4931 		if (retval)
4932 			return retval;
4933 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4934 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4935 	}
4936 
4937 	xhci_dbg(xhci, "Calling HCD init\n");
4938 	/* Initialize HCD and host controller data structures. */
4939 	retval = xhci_init(hcd);
4940 	if (retval)
4941 		return retval;
4942 	xhci_dbg(xhci, "Called HCD init\n");
4943 
4944 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4945 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4946 
4947 	return 0;
4948 }
4949 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4950 
4951 static const struct hc_driver xhci_hc_driver = {
4952 	.description =		"xhci-hcd",
4953 	.product_desc =		"xHCI Host Controller",
4954 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4955 
4956 	/*
4957 	 * generic hardware linkage
4958 	 */
4959 	.irq =			xhci_irq,
4960 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4961 
4962 	/*
4963 	 * basic lifecycle operations
4964 	 */
4965 	.reset =		NULL, /* set in xhci_init_driver() */
4966 	.start =		xhci_run,
4967 	.stop =			xhci_stop,
4968 	.shutdown =		xhci_shutdown,
4969 
4970 	/*
4971 	 * managing i/o requests and associated device resources
4972 	 */
4973 	.urb_enqueue =		xhci_urb_enqueue,
4974 	.urb_dequeue =		xhci_urb_dequeue,
4975 	.alloc_dev =		xhci_alloc_dev,
4976 	.free_dev =		xhci_free_dev,
4977 	.alloc_streams =	xhci_alloc_streams,
4978 	.free_streams =		xhci_free_streams,
4979 	.add_endpoint =		xhci_add_endpoint,
4980 	.drop_endpoint =	xhci_drop_endpoint,
4981 	.endpoint_reset =	xhci_endpoint_reset,
4982 	.check_bandwidth =	xhci_check_bandwidth,
4983 	.reset_bandwidth =	xhci_reset_bandwidth,
4984 	.address_device =	xhci_address_device,
4985 	.enable_device =	xhci_enable_device,
4986 	.update_hub_device =	xhci_update_hub_device,
4987 	.reset_device =		xhci_discover_or_reset_device,
4988 
4989 	/*
4990 	 * scheduling support
4991 	 */
4992 	.get_frame_number =	xhci_get_frame,
4993 
4994 	/*
4995 	 * root hub support
4996 	 */
4997 	.hub_control =		xhci_hub_control,
4998 	.hub_status_data =	xhci_hub_status_data,
4999 	.bus_suspend =		xhci_bus_suspend,
5000 	.bus_resume =		xhci_bus_resume,
5001 
5002 	/*
5003 	 * call back when device connected and addressed
5004 	 */
5005 	.update_device =        xhci_update_device,
5006 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5007 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5008 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5009 	.find_raw_port_number =	xhci_find_raw_port_number,
5010 };
5011 
5012 void xhci_init_driver(struct hc_driver *drv,
5013 		      const struct xhci_driver_overrides *over)
5014 {
5015 	BUG_ON(!over);
5016 
5017 	/* Copy the generic table to drv then apply the overrides */
5018 	*drv = xhci_hc_driver;
5019 
5020 	if (over) {
5021 		drv->hcd_priv_size += over->extra_priv_size;
5022 		if (over->reset)
5023 			drv->reset = over->reset;
5024 		if (over->start)
5025 			drv->start = over->start;
5026 	}
5027 }
5028 EXPORT_SYMBOL_GPL(xhci_init_driver);
5029 
5030 MODULE_DESCRIPTION(DRIVER_DESC);
5031 MODULE_AUTHOR(DRIVER_AUTHOR);
5032 MODULE_LICENSE("GPL");
5033 
5034 static int __init xhci_hcd_init(void)
5035 {
5036 	/*
5037 	 * Check the compiler generated sizes of structures that must be laid
5038 	 * out in specific ways for hardware access.
5039 	 */
5040 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5041 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5042 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5043 	/* xhci_device_control has eight fields, and also
5044 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5045 	 */
5046 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5047 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5048 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5049 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5050 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5051 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5052 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5053 
5054 	if (usb_disabled())
5055 		return -ENODEV;
5056 
5057 	return 0;
5058 }
5059 
5060 /*
5061  * If an init function is provided, an exit function must also be provided
5062  * to allow module unload.
5063  */
5064 static void __exit xhci_hcd_fini(void) { }
5065 
5066 module_init(xhci_hcd_init);
5067 module_exit(xhci_hcd_fini);
5068