1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (ret) { 117 xhci_warn(xhci, "Host halt failed, %d\n", ret); 118 return ret; 119 } 120 xhci->xhc_state |= XHCI_STATE_HALTED; 121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 static int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 171 if (state == ~(u32)0) { 172 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 173 return -ENODEV; 174 } 175 176 if ((state & STS_HALT) == 0) { 177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 178 return 0; 179 } 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 182 command = readl(&xhci->op_regs->command); 183 command |= CMD_RESET; 184 writel(command, &xhci->op_regs->command); 185 186 /* Existing Intel xHCI controllers require a delay of 1 mS, 187 * after setting the CMD_RESET bit, and before accessing any 188 * HC registers. This allows the HC to complete the 189 * reset operation and be ready for HC register access. 190 * Without this delay, the subsequent HC register access, 191 * may result in a system hang very rarely. 192 */ 193 if (xhci->quirks & XHCI_INTEL_HOST) 194 udelay(1000); 195 196 ret = xhci_handshake(&xhci->op_regs->command, 197 CMD_RESET, 0, 10 * 1000 * 1000); 198 if (ret) 199 return ret; 200 201 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 202 "Wait for controller to be ready for doorbell rings"); 203 /* 204 * xHCI cannot write to any doorbells or operational registers other 205 * than status until the "Controller Not Ready" flag is cleared. 206 */ 207 ret = xhci_handshake(&xhci->op_regs->status, 208 STS_CNR, 0, 10 * 1000 * 1000); 209 210 for (i = 0; i < 2; ++i) { 211 xhci->bus_state[i].port_c_suspend = 0; 212 xhci->bus_state[i].suspended_ports = 0; 213 xhci->bus_state[i].resuming_ports = 0; 214 } 215 216 return ret; 217 } 218 219 #ifdef CONFIG_PCI 220 static int xhci_free_msi(struct xhci_hcd *xhci) 221 { 222 int i; 223 224 if (!xhci->msix_entries) 225 return -EINVAL; 226 227 for (i = 0; i < xhci->msix_count; i++) 228 if (xhci->msix_entries[i].vector) 229 free_irq(xhci->msix_entries[i].vector, 230 xhci_to_hcd(xhci)); 231 return 0; 232 } 233 234 /* 235 * Set up MSI 236 */ 237 static int xhci_setup_msi(struct xhci_hcd *xhci) 238 { 239 int ret; 240 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 241 242 ret = pci_enable_msi(pdev); 243 if (ret) { 244 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 245 "failed to allocate MSI entry"); 246 return ret; 247 } 248 249 ret = request_irq(pdev->irq, xhci_msi_irq, 250 0, "xhci_hcd", xhci_to_hcd(xhci)); 251 if (ret) { 252 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 253 "disable MSI interrupt"); 254 pci_disable_msi(pdev); 255 } 256 257 return ret; 258 } 259 260 /* 261 * Free IRQs 262 * free all IRQs request 263 */ 264 static void xhci_free_irq(struct xhci_hcd *xhci) 265 { 266 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 267 int ret; 268 269 /* return if using legacy interrupt */ 270 if (xhci_to_hcd(xhci)->irq > 0) 271 return; 272 273 ret = xhci_free_msi(xhci); 274 if (!ret) 275 return; 276 if (pdev->irq > 0) 277 free_irq(pdev->irq, xhci_to_hcd(xhci)); 278 279 return; 280 } 281 282 /* 283 * Set up MSI-X 284 */ 285 static int xhci_setup_msix(struct xhci_hcd *xhci) 286 { 287 int i, ret = 0; 288 struct usb_hcd *hcd = xhci_to_hcd(xhci); 289 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 290 291 /* 292 * calculate number of msi-x vectors supported. 293 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 294 * with max number of interrupters based on the xhci HCSPARAMS1. 295 * - num_online_cpus: maximum msi-x vectors per CPUs core. 296 * Add additional 1 vector to ensure always available interrupt. 297 */ 298 xhci->msix_count = min(num_online_cpus() + 1, 299 HCS_MAX_INTRS(xhci->hcs_params1)); 300 301 xhci->msix_entries = 302 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 303 GFP_KERNEL); 304 if (!xhci->msix_entries) 305 return -ENOMEM; 306 307 for (i = 0; i < xhci->msix_count; i++) { 308 xhci->msix_entries[i].entry = i; 309 xhci->msix_entries[i].vector = 0; 310 } 311 312 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 313 if (ret) { 314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 315 "Failed to enable MSI-X"); 316 goto free_entries; 317 } 318 319 for (i = 0; i < xhci->msix_count; i++) { 320 ret = request_irq(xhci->msix_entries[i].vector, 321 xhci_msi_irq, 322 0, "xhci_hcd", xhci_to_hcd(xhci)); 323 if (ret) 324 goto disable_msix; 325 } 326 327 hcd->msix_enabled = 1; 328 return ret; 329 330 disable_msix: 331 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 332 xhci_free_irq(xhci); 333 pci_disable_msix(pdev); 334 free_entries: 335 kfree(xhci->msix_entries); 336 xhci->msix_entries = NULL; 337 return ret; 338 } 339 340 /* Free any IRQs and disable MSI-X */ 341 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 342 { 343 struct usb_hcd *hcd = xhci_to_hcd(xhci); 344 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 345 346 if (xhci->quirks & XHCI_PLAT) 347 return; 348 349 xhci_free_irq(xhci); 350 351 if (xhci->msix_entries) { 352 pci_disable_msix(pdev); 353 kfree(xhci->msix_entries); 354 xhci->msix_entries = NULL; 355 } else { 356 pci_disable_msi(pdev); 357 } 358 359 hcd->msix_enabled = 0; 360 return; 361 } 362 363 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 364 { 365 int i; 366 367 if (xhci->msix_entries) { 368 for (i = 0; i < xhci->msix_count; i++) 369 synchronize_irq(xhci->msix_entries[i].vector); 370 } 371 } 372 373 static int xhci_try_enable_msi(struct usb_hcd *hcd) 374 { 375 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 376 struct pci_dev *pdev; 377 int ret; 378 379 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 380 if (xhci->quirks & XHCI_PLAT) 381 return 0; 382 383 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 384 /* 385 * Some Fresco Logic host controllers advertise MSI, but fail to 386 * generate interrupts. Don't even try to enable MSI. 387 */ 388 if (xhci->quirks & XHCI_BROKEN_MSI) 389 goto legacy_irq; 390 391 /* unregister the legacy interrupt */ 392 if (hcd->irq) 393 free_irq(hcd->irq, hcd); 394 hcd->irq = 0; 395 396 ret = xhci_setup_msix(xhci); 397 if (ret) 398 /* fall back to msi*/ 399 ret = xhci_setup_msi(xhci); 400 401 if (!ret) 402 /* hcd->irq is 0, we have MSI */ 403 return 0; 404 405 if (!pdev->irq) { 406 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 407 return -EINVAL; 408 } 409 410 legacy_irq: 411 if (!strlen(hcd->irq_descr)) 412 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 413 hcd->driver->description, hcd->self.busnum); 414 415 /* fall back to legacy interrupt*/ 416 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 417 hcd->irq_descr, hcd); 418 if (ret) { 419 xhci_err(xhci, "request interrupt %d failed\n", 420 pdev->irq); 421 return ret; 422 } 423 hcd->irq = pdev->irq; 424 return 0; 425 } 426 427 #else 428 429 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 430 { 431 return 0; 432 } 433 434 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 435 { 436 } 437 438 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 439 { 440 } 441 442 #endif 443 444 static void compliance_mode_recovery(unsigned long arg) 445 { 446 struct xhci_hcd *xhci; 447 struct usb_hcd *hcd; 448 u32 temp; 449 int i; 450 451 xhci = (struct xhci_hcd *)arg; 452 453 for (i = 0; i < xhci->num_usb3_ports; i++) { 454 temp = readl(xhci->usb3_ports[i]); 455 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 456 /* 457 * Compliance Mode Detected. Letting USB Core 458 * handle the Warm Reset 459 */ 460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 461 "Compliance mode detected->port %d", 462 i + 1); 463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 464 "Attempting compliance mode recovery"); 465 hcd = xhci->shared_hcd; 466 467 if (hcd->state == HC_STATE_SUSPENDED) 468 usb_hcd_resume_root_hub(hcd); 469 470 usb_hcd_poll_rh_status(hcd); 471 } 472 } 473 474 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 475 mod_timer(&xhci->comp_mode_recovery_timer, 476 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 477 } 478 479 /* 480 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 481 * that causes ports behind that hardware to enter compliance mode sometimes. 482 * The quirk creates a timer that polls every 2 seconds the link state of 483 * each host controller's port and recovers it by issuing a Warm reset 484 * if Compliance mode is detected, otherwise the port will become "dead" (no 485 * device connections or disconnections will be detected anymore). Becasue no 486 * status event is generated when entering compliance mode (per xhci spec), 487 * this quirk is needed on systems that have the failing hardware installed. 488 */ 489 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 490 { 491 xhci->port_status_u0 = 0; 492 setup_timer(&xhci->comp_mode_recovery_timer, 493 compliance_mode_recovery, (unsigned long)xhci); 494 xhci->comp_mode_recovery_timer.expires = jiffies + 495 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 496 497 add_timer(&xhci->comp_mode_recovery_timer); 498 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 499 "Compliance mode recovery timer initialized"); 500 } 501 502 /* 503 * This function identifies the systems that have installed the SN65LVPE502CP 504 * USB3.0 re-driver and that need the Compliance Mode Quirk. 505 * Systems: 506 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 507 */ 508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 509 { 510 const char *dmi_product_name, *dmi_sys_vendor; 511 512 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 513 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 514 if (!dmi_product_name || !dmi_sys_vendor) 515 return false; 516 517 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 518 return false; 519 520 if (strstr(dmi_product_name, "Z420") || 521 strstr(dmi_product_name, "Z620") || 522 strstr(dmi_product_name, "Z820") || 523 strstr(dmi_product_name, "Z1 Workstation")) 524 return true; 525 526 return false; 527 } 528 529 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 530 { 531 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 532 } 533 534 535 /* 536 * Initialize memory for HCD and xHC (one-time init). 537 * 538 * Program the PAGESIZE register, initialize the device context array, create 539 * device contexts (?), set up a command ring segment (or two?), create event 540 * ring (one for now). 541 */ 542 int xhci_init(struct usb_hcd *hcd) 543 { 544 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 545 int retval = 0; 546 547 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 548 spin_lock_init(&xhci->lock); 549 if (xhci->hci_version == 0x95 && link_quirk) { 550 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 551 "QUIRK: Not clearing Link TRB chain bits."); 552 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 553 } else { 554 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 555 "xHCI doesn't need link TRB QUIRK"); 556 } 557 retval = xhci_mem_init(xhci, GFP_KERNEL); 558 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 559 560 /* Initializing Compliance Mode Recovery Data If Needed */ 561 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 562 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 563 compliance_mode_recovery_timer_init(xhci); 564 } 565 566 return retval; 567 } 568 569 /*-------------------------------------------------------------------------*/ 570 571 572 static int xhci_run_finished(struct xhci_hcd *xhci) 573 { 574 if (xhci_start(xhci)) { 575 xhci_halt(xhci); 576 return -ENODEV; 577 } 578 xhci->shared_hcd->state = HC_STATE_RUNNING; 579 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 580 581 if (xhci->quirks & XHCI_NEC_HOST) 582 xhci_ring_cmd_db(xhci); 583 584 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 585 "Finished xhci_run for USB3 roothub"); 586 return 0; 587 } 588 589 /* 590 * Start the HC after it was halted. 591 * 592 * This function is called by the USB core when the HC driver is added. 593 * Its opposite is xhci_stop(). 594 * 595 * xhci_init() must be called once before this function can be called. 596 * Reset the HC, enable device slot contexts, program DCBAAP, and 597 * set command ring pointer and event ring pointer. 598 * 599 * Setup MSI-X vectors and enable interrupts. 600 */ 601 int xhci_run(struct usb_hcd *hcd) 602 { 603 u32 temp; 604 u64 temp_64; 605 int ret; 606 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 607 608 /* Start the xHCI host controller running only after the USB 2.0 roothub 609 * is setup. 610 */ 611 612 hcd->uses_new_polling = 1; 613 if (!usb_hcd_is_primary_hcd(hcd)) 614 return xhci_run_finished(xhci); 615 616 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 617 618 ret = xhci_try_enable_msi(hcd); 619 if (ret) 620 return ret; 621 622 xhci_dbg(xhci, "Command ring memory map follows:\n"); 623 xhci_debug_ring(xhci, xhci->cmd_ring); 624 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 625 xhci_dbg_cmd_ptrs(xhci); 626 627 xhci_dbg(xhci, "ERST memory map follows:\n"); 628 xhci_dbg_erst(xhci, &xhci->erst); 629 xhci_dbg(xhci, "Event ring:\n"); 630 xhci_debug_ring(xhci, xhci->event_ring); 631 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 632 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 633 temp_64 &= ~ERST_PTR_MASK; 634 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 635 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 636 637 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 638 "// Set the interrupt modulation register"); 639 temp = readl(&xhci->ir_set->irq_control); 640 temp &= ~ER_IRQ_INTERVAL_MASK; 641 /* 642 * the increment interval is 8 times as much as that defined 643 * in xHCI spec on MTK's controller 644 */ 645 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 646 writel(temp, &xhci->ir_set->irq_control); 647 648 /* Set the HCD state before we enable the irqs */ 649 temp = readl(&xhci->op_regs->command); 650 temp |= (CMD_EIE); 651 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 652 "// Enable interrupts, cmd = 0x%x.", temp); 653 writel(temp, &xhci->op_regs->command); 654 655 temp = readl(&xhci->ir_set->irq_pending); 656 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 657 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 658 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 659 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 660 xhci_print_ir_set(xhci, 0); 661 662 if (xhci->quirks & XHCI_NEC_HOST) { 663 struct xhci_command *command; 664 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 665 if (!command) 666 return -ENOMEM; 667 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 668 TRB_TYPE(TRB_NEC_GET_FW)); 669 } 670 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 671 "Finished xhci_run for USB2 roothub"); 672 return 0; 673 } 674 EXPORT_SYMBOL_GPL(xhci_run); 675 676 /* 677 * Stop xHCI driver. 678 * 679 * This function is called by the USB core when the HC driver is removed. 680 * Its opposite is xhci_run(). 681 * 682 * Disable device contexts, disable IRQs, and quiesce the HC. 683 * Reset the HC, finish any completed transactions, and cleanup memory. 684 */ 685 void xhci_stop(struct usb_hcd *hcd) 686 { 687 u32 temp; 688 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 689 690 mutex_lock(&xhci->mutex); 691 692 if (!(xhci->xhc_state & XHCI_STATE_HALTED)) { 693 spin_lock_irq(&xhci->lock); 694 695 xhci->xhc_state |= XHCI_STATE_HALTED; 696 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 697 xhci_halt(xhci); 698 xhci_reset(xhci); 699 spin_unlock_irq(&xhci->lock); 700 } 701 702 if (!usb_hcd_is_primary_hcd(hcd)) { 703 mutex_unlock(&xhci->mutex); 704 return; 705 } 706 707 xhci_cleanup_msix(xhci); 708 709 /* Deleting Compliance Mode Recovery Timer */ 710 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 711 (!(xhci_all_ports_seen_u0(xhci)))) { 712 del_timer_sync(&xhci->comp_mode_recovery_timer); 713 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 714 "%s: compliance mode recovery timer deleted", 715 __func__); 716 } 717 718 if (xhci->quirks & XHCI_AMD_PLL_FIX) 719 usb_amd_dev_put(); 720 721 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 722 "// Disabling event ring interrupts"); 723 temp = readl(&xhci->op_regs->status); 724 writel(temp & ~STS_EINT, &xhci->op_regs->status); 725 temp = readl(&xhci->ir_set->irq_pending); 726 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 727 xhci_print_ir_set(xhci, 0); 728 729 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 730 xhci_mem_cleanup(xhci); 731 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 732 "xhci_stop completed - status = %x", 733 readl(&xhci->op_regs->status)); 734 mutex_unlock(&xhci->mutex); 735 } 736 737 /* 738 * Shutdown HC (not bus-specific) 739 * 740 * This is called when the machine is rebooting or halting. We assume that the 741 * machine will be powered off, and the HC's internal state will be reset. 742 * Don't bother to free memory. 743 * 744 * This will only ever be called with the main usb_hcd (the USB3 roothub). 745 */ 746 void xhci_shutdown(struct usb_hcd *hcd) 747 { 748 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 749 750 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 751 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 752 753 spin_lock_irq(&xhci->lock); 754 xhci_halt(xhci); 755 /* Workaround for spurious wakeups at shutdown with HSW */ 756 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 757 xhci_reset(xhci); 758 spin_unlock_irq(&xhci->lock); 759 760 xhci_cleanup_msix(xhci); 761 762 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 763 "xhci_shutdown completed - status = %x", 764 readl(&xhci->op_regs->status)); 765 766 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 767 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 768 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 769 } 770 771 #ifdef CONFIG_PM 772 static void xhci_save_registers(struct xhci_hcd *xhci) 773 { 774 xhci->s3.command = readl(&xhci->op_regs->command); 775 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 776 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 777 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 778 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 779 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 780 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 781 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 782 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 783 } 784 785 static void xhci_restore_registers(struct xhci_hcd *xhci) 786 { 787 writel(xhci->s3.command, &xhci->op_regs->command); 788 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 789 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 790 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 791 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 792 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 793 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 794 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 795 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 796 } 797 798 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 799 { 800 u64 val_64; 801 802 /* step 2: initialize command ring buffer */ 803 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 804 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 805 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 806 xhci->cmd_ring->dequeue) & 807 (u64) ~CMD_RING_RSVD_BITS) | 808 xhci->cmd_ring->cycle_state; 809 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 810 "// Setting command ring address to 0x%llx", 811 (long unsigned long) val_64); 812 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 813 } 814 815 /* 816 * The whole command ring must be cleared to zero when we suspend the host. 817 * 818 * The host doesn't save the command ring pointer in the suspend well, so we 819 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 820 * aligned, because of the reserved bits in the command ring dequeue pointer 821 * register. Therefore, we can't just set the dequeue pointer back in the 822 * middle of the ring (TRBs are 16-byte aligned). 823 */ 824 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 825 { 826 struct xhci_ring *ring; 827 struct xhci_segment *seg; 828 829 ring = xhci->cmd_ring; 830 seg = ring->deq_seg; 831 do { 832 memset(seg->trbs, 0, 833 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 834 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 835 cpu_to_le32(~TRB_CYCLE); 836 seg = seg->next; 837 } while (seg != ring->deq_seg); 838 839 /* Reset the software enqueue and dequeue pointers */ 840 ring->deq_seg = ring->first_seg; 841 ring->dequeue = ring->first_seg->trbs; 842 ring->enq_seg = ring->deq_seg; 843 ring->enqueue = ring->dequeue; 844 845 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 846 /* 847 * Ring is now zeroed, so the HW should look for change of ownership 848 * when the cycle bit is set to 1. 849 */ 850 ring->cycle_state = 1; 851 852 /* 853 * Reset the hardware dequeue pointer. 854 * Yes, this will need to be re-written after resume, but we're paranoid 855 * and want to make sure the hardware doesn't access bogus memory 856 * because, say, the BIOS or an SMI started the host without changing 857 * the command ring pointers. 858 */ 859 xhci_set_cmd_ring_deq(xhci); 860 } 861 862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 863 { 864 int port_index; 865 __le32 __iomem **port_array; 866 unsigned long flags; 867 u32 t1, t2; 868 869 spin_lock_irqsave(&xhci->lock, flags); 870 871 /* disble usb3 ports Wake bits*/ 872 port_index = xhci->num_usb3_ports; 873 port_array = xhci->usb3_ports; 874 while (port_index--) { 875 t1 = readl(port_array[port_index]); 876 t1 = xhci_port_state_to_neutral(t1); 877 t2 = t1 & ~PORT_WAKE_BITS; 878 if (t1 != t2) 879 writel(t2, port_array[port_index]); 880 } 881 882 /* disble usb2 ports Wake bits*/ 883 port_index = xhci->num_usb2_ports; 884 port_array = xhci->usb2_ports; 885 while (port_index--) { 886 t1 = readl(port_array[port_index]); 887 t1 = xhci_port_state_to_neutral(t1); 888 t2 = t1 & ~PORT_WAKE_BITS; 889 if (t1 != t2) 890 writel(t2, port_array[port_index]); 891 } 892 893 spin_unlock_irqrestore(&xhci->lock, flags); 894 } 895 896 /* 897 * Stop HC (not bus-specific) 898 * 899 * This is called when the machine transition into S3/S4 mode. 900 * 901 */ 902 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 903 { 904 int rc = 0; 905 unsigned int delay = XHCI_MAX_HALT_USEC; 906 struct usb_hcd *hcd = xhci_to_hcd(xhci); 907 u32 command; 908 909 if (!hcd->state) 910 return 0; 911 912 if (hcd->state != HC_STATE_SUSPENDED || 913 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 914 return -EINVAL; 915 916 /* Clear root port wake on bits if wakeup not allowed. */ 917 if (!do_wakeup) 918 xhci_disable_port_wake_on_bits(xhci); 919 920 /* Don't poll the roothubs on bus suspend. */ 921 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 922 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 923 del_timer_sync(&hcd->rh_timer); 924 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 925 del_timer_sync(&xhci->shared_hcd->rh_timer); 926 927 spin_lock_irq(&xhci->lock); 928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 929 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 930 /* step 1: stop endpoint */ 931 /* skipped assuming that port suspend has done */ 932 933 /* step 2: clear Run/Stop bit */ 934 command = readl(&xhci->op_regs->command); 935 command &= ~CMD_RUN; 936 writel(command, &xhci->op_regs->command); 937 938 /* Some chips from Fresco Logic need an extraordinary delay */ 939 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 940 941 if (xhci_handshake(&xhci->op_regs->status, 942 STS_HALT, STS_HALT, delay)) { 943 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 944 spin_unlock_irq(&xhci->lock); 945 return -ETIMEDOUT; 946 } 947 xhci_clear_command_ring(xhci); 948 949 /* step 3: save registers */ 950 xhci_save_registers(xhci); 951 952 /* step 4: set CSS flag */ 953 command = readl(&xhci->op_regs->command); 954 command |= CMD_CSS; 955 writel(command, &xhci->op_regs->command); 956 if (xhci_handshake(&xhci->op_regs->status, 957 STS_SAVE, 0, 10 * 1000)) { 958 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 959 spin_unlock_irq(&xhci->lock); 960 return -ETIMEDOUT; 961 } 962 spin_unlock_irq(&xhci->lock); 963 964 /* 965 * Deleting Compliance Mode Recovery Timer because the xHCI Host 966 * is about to be suspended. 967 */ 968 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 969 (!(xhci_all_ports_seen_u0(xhci)))) { 970 del_timer_sync(&xhci->comp_mode_recovery_timer); 971 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 972 "%s: compliance mode recovery timer deleted", 973 __func__); 974 } 975 976 /* step 5: remove core well power */ 977 /* synchronize irq when using MSI-X */ 978 xhci_msix_sync_irqs(xhci); 979 980 return rc; 981 } 982 EXPORT_SYMBOL_GPL(xhci_suspend); 983 984 /* 985 * start xHC (not bus-specific) 986 * 987 * This is called when the machine transition from S3/S4 mode. 988 * 989 */ 990 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 991 { 992 u32 command, temp = 0, status; 993 struct usb_hcd *hcd = xhci_to_hcd(xhci); 994 struct usb_hcd *secondary_hcd; 995 int retval = 0; 996 bool comp_timer_running = false; 997 998 if (!hcd->state) 999 return 0; 1000 1001 /* Wait a bit if either of the roothubs need to settle from the 1002 * transition into bus suspend. 1003 */ 1004 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1005 time_before(jiffies, 1006 xhci->bus_state[1].next_statechange)) 1007 msleep(100); 1008 1009 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1010 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1011 1012 spin_lock_irq(&xhci->lock); 1013 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1014 hibernated = true; 1015 1016 if (!hibernated) { 1017 /* step 1: restore register */ 1018 xhci_restore_registers(xhci); 1019 /* step 2: initialize command ring buffer */ 1020 xhci_set_cmd_ring_deq(xhci); 1021 /* step 3: restore state and start state*/ 1022 /* step 3: set CRS flag */ 1023 command = readl(&xhci->op_regs->command); 1024 command |= CMD_CRS; 1025 writel(command, &xhci->op_regs->command); 1026 if (xhci_handshake(&xhci->op_regs->status, 1027 STS_RESTORE, 0, 10 * 1000)) { 1028 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1029 spin_unlock_irq(&xhci->lock); 1030 return -ETIMEDOUT; 1031 } 1032 temp = readl(&xhci->op_regs->status); 1033 } 1034 1035 /* If restore operation fails, re-initialize the HC during resume */ 1036 if ((temp & STS_SRE) || hibernated) { 1037 1038 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1039 !(xhci_all_ports_seen_u0(xhci))) { 1040 del_timer_sync(&xhci->comp_mode_recovery_timer); 1041 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1042 "Compliance Mode Recovery Timer deleted!"); 1043 } 1044 1045 /* Let the USB core know _both_ roothubs lost power. */ 1046 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1047 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1048 1049 xhci_dbg(xhci, "Stop HCD\n"); 1050 xhci_halt(xhci); 1051 xhci_reset(xhci); 1052 spin_unlock_irq(&xhci->lock); 1053 xhci_cleanup_msix(xhci); 1054 1055 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1056 temp = readl(&xhci->op_regs->status); 1057 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1058 temp = readl(&xhci->ir_set->irq_pending); 1059 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1060 xhci_print_ir_set(xhci, 0); 1061 1062 xhci_dbg(xhci, "cleaning up memory\n"); 1063 xhci_mem_cleanup(xhci); 1064 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1065 readl(&xhci->op_regs->status)); 1066 1067 /* USB core calls the PCI reinit and start functions twice: 1068 * first with the primary HCD, and then with the secondary HCD. 1069 * If we don't do the same, the host will never be started. 1070 */ 1071 if (!usb_hcd_is_primary_hcd(hcd)) 1072 secondary_hcd = hcd; 1073 else 1074 secondary_hcd = xhci->shared_hcd; 1075 1076 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1077 retval = xhci_init(hcd->primary_hcd); 1078 if (retval) 1079 return retval; 1080 comp_timer_running = true; 1081 1082 xhci_dbg(xhci, "Start the primary HCD\n"); 1083 retval = xhci_run(hcd->primary_hcd); 1084 if (!retval) { 1085 xhci_dbg(xhci, "Start the secondary HCD\n"); 1086 retval = xhci_run(secondary_hcd); 1087 } 1088 hcd->state = HC_STATE_SUSPENDED; 1089 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1090 goto done; 1091 } 1092 1093 /* step 4: set Run/Stop bit */ 1094 command = readl(&xhci->op_regs->command); 1095 command |= CMD_RUN; 1096 writel(command, &xhci->op_regs->command); 1097 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1098 0, 250 * 1000); 1099 1100 /* step 5: walk topology and initialize portsc, 1101 * portpmsc and portli 1102 */ 1103 /* this is done in bus_resume */ 1104 1105 /* step 6: restart each of the previously 1106 * Running endpoints by ringing their doorbells 1107 */ 1108 1109 spin_unlock_irq(&xhci->lock); 1110 1111 done: 1112 if (retval == 0) { 1113 /* Resume root hubs only when have pending events. */ 1114 status = readl(&xhci->op_regs->status); 1115 if (status & STS_EINT) { 1116 usb_hcd_resume_root_hub(xhci->shared_hcd); 1117 usb_hcd_resume_root_hub(hcd); 1118 } 1119 } 1120 1121 /* 1122 * If system is subject to the Quirk, Compliance Mode Timer needs to 1123 * be re-initialized Always after a system resume. Ports are subject 1124 * to suffer the Compliance Mode issue again. It doesn't matter if 1125 * ports have entered previously to U0 before system's suspension. 1126 */ 1127 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1128 compliance_mode_recovery_timer_init(xhci); 1129 1130 /* Re-enable port polling. */ 1131 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1132 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1133 usb_hcd_poll_rh_status(xhci->shared_hcd); 1134 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1135 usb_hcd_poll_rh_status(hcd); 1136 1137 return retval; 1138 } 1139 EXPORT_SYMBOL_GPL(xhci_resume); 1140 #endif /* CONFIG_PM */ 1141 1142 /*-------------------------------------------------------------------------*/ 1143 1144 /** 1145 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1146 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1147 * value to right shift 1 for the bitmask. 1148 * 1149 * Index = (epnum * 2) + direction - 1, 1150 * where direction = 0 for OUT, 1 for IN. 1151 * For control endpoints, the IN index is used (OUT index is unused), so 1152 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1153 */ 1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1155 { 1156 unsigned int index; 1157 if (usb_endpoint_xfer_control(desc)) 1158 index = (unsigned int) (usb_endpoint_num(desc)*2); 1159 else 1160 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1161 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1162 return index; 1163 } 1164 1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1166 * address from the XHCI endpoint index. 1167 */ 1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1169 { 1170 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1171 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1172 return direction | number; 1173 } 1174 1175 /* Find the flag for this endpoint (for use in the control context). Use the 1176 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1177 * bit 1, etc. 1178 */ 1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1180 { 1181 return 1 << (xhci_get_endpoint_index(desc) + 1); 1182 } 1183 1184 /* Find the flag for this endpoint (for use in the control context). Use the 1185 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1186 * bit 1, etc. 1187 */ 1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1189 { 1190 return 1 << (ep_index + 1); 1191 } 1192 1193 /* Compute the last valid endpoint context index. Basically, this is the 1194 * endpoint index plus one. For slot contexts with more than valid endpoint, 1195 * we find the most significant bit set in the added contexts flags. 1196 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1197 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1198 */ 1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1200 { 1201 return fls(added_ctxs) - 1; 1202 } 1203 1204 /* Returns 1 if the arguments are OK; 1205 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1206 */ 1207 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1208 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1209 const char *func) { 1210 struct xhci_hcd *xhci; 1211 struct xhci_virt_device *virt_dev; 1212 1213 if (!hcd || (check_ep && !ep) || !udev) { 1214 pr_debug("xHCI %s called with invalid args\n", func); 1215 return -EINVAL; 1216 } 1217 if (!udev->parent) { 1218 pr_debug("xHCI %s called for root hub\n", func); 1219 return 0; 1220 } 1221 1222 xhci = hcd_to_xhci(hcd); 1223 if (check_virt_dev) { 1224 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1225 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1226 func); 1227 return -EINVAL; 1228 } 1229 1230 virt_dev = xhci->devs[udev->slot_id]; 1231 if (virt_dev->udev != udev) { 1232 xhci_dbg(xhci, "xHCI %s called with udev and " 1233 "virt_dev does not match\n", func); 1234 return -EINVAL; 1235 } 1236 } 1237 1238 if (xhci->xhc_state & XHCI_STATE_HALTED) 1239 return -ENODEV; 1240 1241 return 1; 1242 } 1243 1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1245 struct usb_device *udev, struct xhci_command *command, 1246 bool ctx_change, bool must_succeed); 1247 1248 /* 1249 * Full speed devices may have a max packet size greater than 8 bytes, but the 1250 * USB core doesn't know that until it reads the first 8 bytes of the 1251 * descriptor. If the usb_device's max packet size changes after that point, 1252 * we need to issue an evaluate context command and wait on it. 1253 */ 1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1255 unsigned int ep_index, struct urb *urb) 1256 { 1257 struct xhci_container_ctx *out_ctx; 1258 struct xhci_input_control_ctx *ctrl_ctx; 1259 struct xhci_ep_ctx *ep_ctx; 1260 struct xhci_command *command; 1261 int max_packet_size; 1262 int hw_max_packet_size; 1263 int ret = 0; 1264 1265 out_ctx = xhci->devs[slot_id]->out_ctx; 1266 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1267 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1268 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1269 if (hw_max_packet_size != max_packet_size) { 1270 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1271 "Max Packet Size for ep 0 changed."); 1272 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1273 "Max packet size in usb_device = %d", 1274 max_packet_size); 1275 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1276 "Max packet size in xHCI HW = %d", 1277 hw_max_packet_size); 1278 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1279 "Issuing evaluate context command."); 1280 1281 /* Set up the input context flags for the command */ 1282 /* FIXME: This won't work if a non-default control endpoint 1283 * changes max packet sizes. 1284 */ 1285 1286 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1287 if (!command) 1288 return -ENOMEM; 1289 1290 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1291 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1292 if (!ctrl_ctx) { 1293 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1294 __func__); 1295 ret = -ENOMEM; 1296 goto command_cleanup; 1297 } 1298 /* Set up the modified control endpoint 0 */ 1299 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1300 xhci->devs[slot_id]->out_ctx, ep_index); 1301 1302 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1303 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1304 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1305 1306 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1307 ctrl_ctx->drop_flags = 0; 1308 1309 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1310 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1311 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1312 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1313 1314 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1315 true, false); 1316 1317 /* Clean up the input context for later use by bandwidth 1318 * functions. 1319 */ 1320 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1321 command_cleanup: 1322 kfree(command->completion); 1323 kfree(command); 1324 } 1325 return ret; 1326 } 1327 1328 /* 1329 * non-error returns are a promise to giveback() the urb later 1330 * we drop ownership so next owner (or urb unlink) can get it 1331 */ 1332 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1333 { 1334 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1335 struct xhci_td *buffer; 1336 unsigned long flags; 1337 int ret = 0; 1338 unsigned int slot_id, ep_index; 1339 struct urb_priv *urb_priv; 1340 int size, i; 1341 1342 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1343 true, true, __func__) <= 0) 1344 return -EINVAL; 1345 1346 slot_id = urb->dev->slot_id; 1347 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1348 1349 if (!HCD_HW_ACCESSIBLE(hcd)) { 1350 if (!in_interrupt()) 1351 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1352 ret = -ESHUTDOWN; 1353 goto exit; 1354 } 1355 1356 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1357 size = urb->number_of_packets; 1358 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1359 urb->transfer_buffer_length > 0 && 1360 urb->transfer_flags & URB_ZERO_PACKET && 1361 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1362 size = 2; 1363 else 1364 size = 1; 1365 1366 urb_priv = kzalloc(sizeof(struct urb_priv) + 1367 size * sizeof(struct xhci_td *), mem_flags); 1368 if (!urb_priv) 1369 return -ENOMEM; 1370 1371 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1372 if (!buffer) { 1373 kfree(urb_priv); 1374 return -ENOMEM; 1375 } 1376 1377 for (i = 0; i < size; i++) { 1378 urb_priv->td[i] = buffer; 1379 buffer++; 1380 } 1381 1382 urb_priv->length = size; 1383 urb_priv->td_cnt = 0; 1384 urb->hcpriv = urb_priv; 1385 1386 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1387 /* Check to see if the max packet size for the default control 1388 * endpoint changed during FS device enumeration 1389 */ 1390 if (urb->dev->speed == USB_SPEED_FULL) { 1391 ret = xhci_check_maxpacket(xhci, slot_id, 1392 ep_index, urb); 1393 if (ret < 0) { 1394 xhci_urb_free_priv(urb_priv); 1395 urb->hcpriv = NULL; 1396 return ret; 1397 } 1398 } 1399 1400 /* We have a spinlock and interrupts disabled, so we must pass 1401 * atomic context to this function, which may allocate memory. 1402 */ 1403 spin_lock_irqsave(&xhci->lock, flags); 1404 if (xhci->xhc_state & XHCI_STATE_DYING) 1405 goto dying; 1406 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1407 slot_id, ep_index); 1408 if (ret) 1409 goto free_priv; 1410 spin_unlock_irqrestore(&xhci->lock, flags); 1411 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1412 spin_lock_irqsave(&xhci->lock, flags); 1413 if (xhci->xhc_state & XHCI_STATE_DYING) 1414 goto dying; 1415 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1416 EP_GETTING_STREAMS) { 1417 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1418 "is transitioning to using streams.\n"); 1419 ret = -EINVAL; 1420 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1421 EP_GETTING_NO_STREAMS) { 1422 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1423 "is transitioning to " 1424 "not having streams.\n"); 1425 ret = -EINVAL; 1426 } else { 1427 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1428 slot_id, ep_index); 1429 } 1430 if (ret) 1431 goto free_priv; 1432 spin_unlock_irqrestore(&xhci->lock, flags); 1433 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1434 spin_lock_irqsave(&xhci->lock, flags); 1435 if (xhci->xhc_state & XHCI_STATE_DYING) 1436 goto dying; 1437 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1438 slot_id, ep_index); 1439 if (ret) 1440 goto free_priv; 1441 spin_unlock_irqrestore(&xhci->lock, flags); 1442 } else { 1443 spin_lock_irqsave(&xhci->lock, flags); 1444 if (xhci->xhc_state & XHCI_STATE_DYING) 1445 goto dying; 1446 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1447 slot_id, ep_index); 1448 if (ret) 1449 goto free_priv; 1450 spin_unlock_irqrestore(&xhci->lock, flags); 1451 } 1452 exit: 1453 return ret; 1454 dying: 1455 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1456 "non-responsive xHCI host.\n", 1457 urb->ep->desc.bEndpointAddress, urb); 1458 ret = -ESHUTDOWN; 1459 free_priv: 1460 xhci_urb_free_priv(urb_priv); 1461 urb->hcpriv = NULL; 1462 spin_unlock_irqrestore(&xhci->lock, flags); 1463 return ret; 1464 } 1465 1466 /* 1467 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1468 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1469 * should pick up where it left off in the TD, unless a Set Transfer Ring 1470 * Dequeue Pointer is issued. 1471 * 1472 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1473 * the ring. Since the ring is a contiguous structure, they can't be physically 1474 * removed. Instead, there are two options: 1475 * 1476 * 1) If the HC is in the middle of processing the URB to be canceled, we 1477 * simply move the ring's dequeue pointer past those TRBs using the Set 1478 * Transfer Ring Dequeue Pointer command. This will be the common case, 1479 * when drivers timeout on the last submitted URB and attempt to cancel. 1480 * 1481 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1482 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1483 * HC will need to invalidate the any TRBs it has cached after the stop 1484 * endpoint command, as noted in the xHCI 0.95 errata. 1485 * 1486 * 3) The TD may have completed by the time the Stop Endpoint Command 1487 * completes, so software needs to handle that case too. 1488 * 1489 * This function should protect against the TD enqueueing code ringing the 1490 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1491 * It also needs to account for multiple cancellations on happening at the same 1492 * time for the same endpoint. 1493 * 1494 * Note that this function can be called in any context, or so says 1495 * usb_hcd_unlink_urb() 1496 */ 1497 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1498 { 1499 unsigned long flags; 1500 int ret, i; 1501 u32 temp; 1502 struct xhci_hcd *xhci; 1503 struct urb_priv *urb_priv; 1504 struct xhci_td *td; 1505 unsigned int ep_index; 1506 struct xhci_ring *ep_ring; 1507 struct xhci_virt_ep *ep; 1508 struct xhci_command *command; 1509 1510 xhci = hcd_to_xhci(hcd); 1511 spin_lock_irqsave(&xhci->lock, flags); 1512 /* Make sure the URB hasn't completed or been unlinked already */ 1513 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1514 if (ret || !urb->hcpriv) 1515 goto done; 1516 temp = readl(&xhci->op_regs->status); 1517 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1518 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1519 "HW died, freeing TD."); 1520 urb_priv = urb->hcpriv; 1521 for (i = urb_priv->td_cnt; 1522 i < urb_priv->length && xhci->devs[urb->dev->slot_id]; 1523 i++) { 1524 td = urb_priv->td[i]; 1525 if (!list_empty(&td->td_list)) 1526 list_del_init(&td->td_list); 1527 if (!list_empty(&td->cancelled_td_list)) 1528 list_del_init(&td->cancelled_td_list); 1529 } 1530 1531 usb_hcd_unlink_urb_from_ep(hcd, urb); 1532 spin_unlock_irqrestore(&xhci->lock, flags); 1533 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1534 xhci_urb_free_priv(urb_priv); 1535 return ret; 1536 } 1537 1538 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1539 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1540 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1541 if (!ep_ring) { 1542 ret = -EINVAL; 1543 goto done; 1544 } 1545 1546 urb_priv = urb->hcpriv; 1547 i = urb_priv->td_cnt; 1548 if (i < urb_priv->length) 1549 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1550 "Cancel URB %p, dev %s, ep 0x%x, " 1551 "starting at offset 0x%llx", 1552 urb, urb->dev->devpath, 1553 urb->ep->desc.bEndpointAddress, 1554 (unsigned long long) xhci_trb_virt_to_dma( 1555 urb_priv->td[i]->start_seg, 1556 urb_priv->td[i]->first_trb)); 1557 1558 for (; i < urb_priv->length; i++) { 1559 td = urb_priv->td[i]; 1560 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1561 } 1562 1563 /* Queue a stop endpoint command, but only if this is 1564 * the first cancellation to be handled. 1565 */ 1566 if (!(ep->ep_state & EP_HALT_PENDING)) { 1567 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1568 if (!command) { 1569 ret = -ENOMEM; 1570 goto done; 1571 } 1572 ep->ep_state |= EP_HALT_PENDING; 1573 ep->stop_cmds_pending++; 1574 ep->stop_cmd_timer.expires = jiffies + 1575 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1576 add_timer(&ep->stop_cmd_timer); 1577 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1578 ep_index, 0); 1579 xhci_ring_cmd_db(xhci); 1580 } 1581 done: 1582 spin_unlock_irqrestore(&xhci->lock, flags); 1583 return ret; 1584 } 1585 1586 /* Drop an endpoint from a new bandwidth configuration for this device. 1587 * Only one call to this function is allowed per endpoint before 1588 * check_bandwidth() or reset_bandwidth() must be called. 1589 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1590 * add the endpoint to the schedule with possibly new parameters denoted by a 1591 * different endpoint descriptor in usb_host_endpoint. 1592 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1593 * not allowed. 1594 * 1595 * The USB core will not allow URBs to be queued to an endpoint that is being 1596 * disabled, so there's no need for mutual exclusion to protect 1597 * the xhci->devs[slot_id] structure. 1598 */ 1599 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1600 struct usb_host_endpoint *ep) 1601 { 1602 struct xhci_hcd *xhci; 1603 struct xhci_container_ctx *in_ctx, *out_ctx; 1604 struct xhci_input_control_ctx *ctrl_ctx; 1605 unsigned int ep_index; 1606 struct xhci_ep_ctx *ep_ctx; 1607 u32 drop_flag; 1608 u32 new_add_flags, new_drop_flags; 1609 int ret; 1610 1611 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1612 if (ret <= 0) 1613 return ret; 1614 xhci = hcd_to_xhci(hcd); 1615 if (xhci->xhc_state & XHCI_STATE_DYING) 1616 return -ENODEV; 1617 1618 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1619 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1620 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1621 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1622 __func__, drop_flag); 1623 return 0; 1624 } 1625 1626 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1627 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1628 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1629 if (!ctrl_ctx) { 1630 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1631 __func__); 1632 return 0; 1633 } 1634 1635 ep_index = xhci_get_endpoint_index(&ep->desc); 1636 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1637 /* If the HC already knows the endpoint is disabled, 1638 * or the HCD has noted it is disabled, ignore this request 1639 */ 1640 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1641 le32_to_cpu(ctrl_ctx->drop_flags) & 1642 xhci_get_endpoint_flag(&ep->desc)) { 1643 /* Do not warn when called after a usb_device_reset */ 1644 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1645 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1646 __func__, ep); 1647 return 0; 1648 } 1649 1650 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1651 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1652 1653 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1654 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1655 1656 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1657 1658 if (xhci->quirks & XHCI_MTK_HOST) 1659 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1660 1661 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1662 (unsigned int) ep->desc.bEndpointAddress, 1663 udev->slot_id, 1664 (unsigned int) new_drop_flags, 1665 (unsigned int) new_add_flags); 1666 return 0; 1667 } 1668 1669 /* Add an endpoint to a new possible bandwidth configuration for this device. 1670 * Only one call to this function is allowed per endpoint before 1671 * check_bandwidth() or reset_bandwidth() must be called. 1672 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1673 * add the endpoint to the schedule with possibly new parameters denoted by a 1674 * different endpoint descriptor in usb_host_endpoint. 1675 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1676 * not allowed. 1677 * 1678 * The USB core will not allow URBs to be queued to an endpoint until the 1679 * configuration or alt setting is installed in the device, so there's no need 1680 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1681 */ 1682 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1683 struct usb_host_endpoint *ep) 1684 { 1685 struct xhci_hcd *xhci; 1686 struct xhci_container_ctx *in_ctx; 1687 unsigned int ep_index; 1688 struct xhci_input_control_ctx *ctrl_ctx; 1689 u32 added_ctxs; 1690 u32 new_add_flags, new_drop_flags; 1691 struct xhci_virt_device *virt_dev; 1692 int ret = 0; 1693 1694 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1695 if (ret <= 0) { 1696 /* So we won't queue a reset ep command for a root hub */ 1697 ep->hcpriv = NULL; 1698 return ret; 1699 } 1700 xhci = hcd_to_xhci(hcd); 1701 if (xhci->xhc_state & XHCI_STATE_DYING) 1702 return -ENODEV; 1703 1704 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1705 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1706 /* FIXME when we have to issue an evaluate endpoint command to 1707 * deal with ep0 max packet size changing once we get the 1708 * descriptors 1709 */ 1710 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1711 __func__, added_ctxs); 1712 return 0; 1713 } 1714 1715 virt_dev = xhci->devs[udev->slot_id]; 1716 in_ctx = virt_dev->in_ctx; 1717 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1718 if (!ctrl_ctx) { 1719 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1720 __func__); 1721 return 0; 1722 } 1723 1724 ep_index = xhci_get_endpoint_index(&ep->desc); 1725 /* If this endpoint is already in use, and the upper layers are trying 1726 * to add it again without dropping it, reject the addition. 1727 */ 1728 if (virt_dev->eps[ep_index].ring && 1729 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1730 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1731 "without dropping it.\n", 1732 (unsigned int) ep->desc.bEndpointAddress); 1733 return -EINVAL; 1734 } 1735 1736 /* If the HCD has already noted the endpoint is enabled, 1737 * ignore this request. 1738 */ 1739 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1740 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1741 __func__, ep); 1742 return 0; 1743 } 1744 1745 /* 1746 * Configuration and alternate setting changes must be done in 1747 * process context, not interrupt context (or so documenation 1748 * for usb_set_interface() and usb_set_configuration() claim). 1749 */ 1750 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1751 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1752 __func__, ep->desc.bEndpointAddress); 1753 return -ENOMEM; 1754 } 1755 1756 if (xhci->quirks & XHCI_MTK_HOST) { 1757 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1758 if (ret < 0) { 1759 xhci_free_or_cache_endpoint_ring(xhci, 1760 virt_dev, ep_index); 1761 return ret; 1762 } 1763 } 1764 1765 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1766 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1767 1768 /* If xhci_endpoint_disable() was called for this endpoint, but the 1769 * xHC hasn't been notified yet through the check_bandwidth() call, 1770 * this re-adds a new state for the endpoint from the new endpoint 1771 * descriptors. We must drop and re-add this endpoint, so we leave the 1772 * drop flags alone. 1773 */ 1774 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1775 1776 /* Store the usb_device pointer for later use */ 1777 ep->hcpriv = udev; 1778 1779 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1780 (unsigned int) ep->desc.bEndpointAddress, 1781 udev->slot_id, 1782 (unsigned int) new_drop_flags, 1783 (unsigned int) new_add_flags); 1784 return 0; 1785 } 1786 1787 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1788 { 1789 struct xhci_input_control_ctx *ctrl_ctx; 1790 struct xhci_ep_ctx *ep_ctx; 1791 struct xhci_slot_ctx *slot_ctx; 1792 int i; 1793 1794 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1795 if (!ctrl_ctx) { 1796 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1797 __func__); 1798 return; 1799 } 1800 1801 /* When a device's add flag and drop flag are zero, any subsequent 1802 * configure endpoint command will leave that endpoint's state 1803 * untouched. Make sure we don't leave any old state in the input 1804 * endpoint contexts. 1805 */ 1806 ctrl_ctx->drop_flags = 0; 1807 ctrl_ctx->add_flags = 0; 1808 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1809 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1810 /* Endpoint 0 is always valid */ 1811 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1812 for (i = 1; i < 31; ++i) { 1813 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1814 ep_ctx->ep_info = 0; 1815 ep_ctx->ep_info2 = 0; 1816 ep_ctx->deq = 0; 1817 ep_ctx->tx_info = 0; 1818 } 1819 } 1820 1821 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1822 struct usb_device *udev, u32 *cmd_status) 1823 { 1824 int ret; 1825 1826 switch (*cmd_status) { 1827 case COMP_CMD_ABORT: 1828 case COMP_CMD_STOP: 1829 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1830 ret = -ETIME; 1831 break; 1832 case COMP_ENOMEM: 1833 dev_warn(&udev->dev, 1834 "Not enough host controller resources for new device state.\n"); 1835 ret = -ENOMEM; 1836 /* FIXME: can we allocate more resources for the HC? */ 1837 break; 1838 case COMP_BW_ERR: 1839 case COMP_2ND_BW_ERR: 1840 dev_warn(&udev->dev, 1841 "Not enough bandwidth for new device state.\n"); 1842 ret = -ENOSPC; 1843 /* FIXME: can we go back to the old state? */ 1844 break; 1845 case COMP_TRB_ERR: 1846 /* the HCD set up something wrong */ 1847 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1848 "add flag = 1, " 1849 "and endpoint is not disabled.\n"); 1850 ret = -EINVAL; 1851 break; 1852 case COMP_DEV_ERR: 1853 dev_warn(&udev->dev, 1854 "ERROR: Incompatible device for endpoint configure command.\n"); 1855 ret = -ENODEV; 1856 break; 1857 case COMP_SUCCESS: 1858 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1859 "Successful Endpoint Configure command"); 1860 ret = 0; 1861 break; 1862 default: 1863 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1864 *cmd_status); 1865 ret = -EINVAL; 1866 break; 1867 } 1868 return ret; 1869 } 1870 1871 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1872 struct usb_device *udev, u32 *cmd_status) 1873 { 1874 int ret; 1875 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1876 1877 switch (*cmd_status) { 1878 case COMP_CMD_ABORT: 1879 case COMP_CMD_STOP: 1880 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1881 ret = -ETIME; 1882 break; 1883 case COMP_EINVAL: 1884 dev_warn(&udev->dev, 1885 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1886 ret = -EINVAL; 1887 break; 1888 case COMP_EBADSLT: 1889 dev_warn(&udev->dev, 1890 "WARN: slot not enabled for evaluate context command.\n"); 1891 ret = -EINVAL; 1892 break; 1893 case COMP_CTX_STATE: 1894 dev_warn(&udev->dev, 1895 "WARN: invalid context state for evaluate context command.\n"); 1896 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1897 ret = -EINVAL; 1898 break; 1899 case COMP_DEV_ERR: 1900 dev_warn(&udev->dev, 1901 "ERROR: Incompatible device for evaluate context command.\n"); 1902 ret = -ENODEV; 1903 break; 1904 case COMP_MEL_ERR: 1905 /* Max Exit Latency too large error */ 1906 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1907 ret = -EINVAL; 1908 break; 1909 case COMP_SUCCESS: 1910 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1911 "Successful evaluate context command"); 1912 ret = 0; 1913 break; 1914 default: 1915 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1916 *cmd_status); 1917 ret = -EINVAL; 1918 break; 1919 } 1920 return ret; 1921 } 1922 1923 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1924 struct xhci_input_control_ctx *ctrl_ctx) 1925 { 1926 u32 valid_add_flags; 1927 u32 valid_drop_flags; 1928 1929 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1930 * (bit 1). The default control endpoint is added during the Address 1931 * Device command and is never removed until the slot is disabled. 1932 */ 1933 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1934 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1935 1936 /* Use hweight32 to count the number of ones in the add flags, or 1937 * number of endpoints added. Don't count endpoints that are changed 1938 * (both added and dropped). 1939 */ 1940 return hweight32(valid_add_flags) - 1941 hweight32(valid_add_flags & valid_drop_flags); 1942 } 1943 1944 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1945 struct xhci_input_control_ctx *ctrl_ctx) 1946 { 1947 u32 valid_add_flags; 1948 u32 valid_drop_flags; 1949 1950 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1951 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1952 1953 return hweight32(valid_drop_flags) - 1954 hweight32(valid_add_flags & valid_drop_flags); 1955 } 1956 1957 /* 1958 * We need to reserve the new number of endpoints before the configure endpoint 1959 * command completes. We can't subtract the dropped endpoints from the number 1960 * of active endpoints until the command completes because we can oversubscribe 1961 * the host in this case: 1962 * 1963 * - the first configure endpoint command drops more endpoints than it adds 1964 * - a second configure endpoint command that adds more endpoints is queued 1965 * - the first configure endpoint command fails, so the config is unchanged 1966 * - the second command may succeed, even though there isn't enough resources 1967 * 1968 * Must be called with xhci->lock held. 1969 */ 1970 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1971 struct xhci_input_control_ctx *ctrl_ctx) 1972 { 1973 u32 added_eps; 1974 1975 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1976 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1977 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1978 "Not enough ep ctxs: " 1979 "%u active, need to add %u, limit is %u.", 1980 xhci->num_active_eps, added_eps, 1981 xhci->limit_active_eps); 1982 return -ENOMEM; 1983 } 1984 xhci->num_active_eps += added_eps; 1985 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1986 "Adding %u ep ctxs, %u now active.", added_eps, 1987 xhci->num_active_eps); 1988 return 0; 1989 } 1990 1991 /* 1992 * The configure endpoint was failed by the xHC for some other reason, so we 1993 * need to revert the resources that failed configuration would have used. 1994 * 1995 * Must be called with xhci->lock held. 1996 */ 1997 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1998 struct xhci_input_control_ctx *ctrl_ctx) 1999 { 2000 u32 num_failed_eps; 2001 2002 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2003 xhci->num_active_eps -= num_failed_eps; 2004 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2005 "Removing %u failed ep ctxs, %u now active.", 2006 num_failed_eps, 2007 xhci->num_active_eps); 2008 } 2009 2010 /* 2011 * Now that the command has completed, clean up the active endpoint count by 2012 * subtracting out the endpoints that were dropped (but not changed). 2013 * 2014 * Must be called with xhci->lock held. 2015 */ 2016 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2017 struct xhci_input_control_ctx *ctrl_ctx) 2018 { 2019 u32 num_dropped_eps; 2020 2021 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2022 xhci->num_active_eps -= num_dropped_eps; 2023 if (num_dropped_eps) 2024 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2025 "Removing %u dropped ep ctxs, %u now active.", 2026 num_dropped_eps, 2027 xhci->num_active_eps); 2028 } 2029 2030 static unsigned int xhci_get_block_size(struct usb_device *udev) 2031 { 2032 switch (udev->speed) { 2033 case USB_SPEED_LOW: 2034 case USB_SPEED_FULL: 2035 return FS_BLOCK; 2036 case USB_SPEED_HIGH: 2037 return HS_BLOCK; 2038 case USB_SPEED_SUPER: 2039 case USB_SPEED_SUPER_PLUS: 2040 return SS_BLOCK; 2041 case USB_SPEED_UNKNOWN: 2042 case USB_SPEED_WIRELESS: 2043 default: 2044 /* Should never happen */ 2045 return 1; 2046 } 2047 } 2048 2049 static unsigned int 2050 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2051 { 2052 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2053 return LS_OVERHEAD; 2054 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2055 return FS_OVERHEAD; 2056 return HS_OVERHEAD; 2057 } 2058 2059 /* If we are changing a LS/FS device under a HS hub, 2060 * make sure (if we are activating a new TT) that the HS bus has enough 2061 * bandwidth for this new TT. 2062 */ 2063 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2064 struct xhci_virt_device *virt_dev, 2065 int old_active_eps) 2066 { 2067 struct xhci_interval_bw_table *bw_table; 2068 struct xhci_tt_bw_info *tt_info; 2069 2070 /* Find the bandwidth table for the root port this TT is attached to. */ 2071 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2072 tt_info = virt_dev->tt_info; 2073 /* If this TT already had active endpoints, the bandwidth for this TT 2074 * has already been added. Removing all periodic endpoints (and thus 2075 * making the TT enactive) will only decrease the bandwidth used. 2076 */ 2077 if (old_active_eps) 2078 return 0; 2079 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2080 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2081 return -ENOMEM; 2082 return 0; 2083 } 2084 /* Not sure why we would have no new active endpoints... 2085 * 2086 * Maybe because of an Evaluate Context change for a hub update or a 2087 * control endpoint 0 max packet size change? 2088 * FIXME: skip the bandwidth calculation in that case. 2089 */ 2090 return 0; 2091 } 2092 2093 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2094 struct xhci_virt_device *virt_dev) 2095 { 2096 unsigned int bw_reserved; 2097 2098 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2099 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2100 return -ENOMEM; 2101 2102 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2103 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2104 return -ENOMEM; 2105 2106 return 0; 2107 } 2108 2109 /* 2110 * This algorithm is a very conservative estimate of the worst-case scheduling 2111 * scenario for any one interval. The hardware dynamically schedules the 2112 * packets, so we can't tell which microframe could be the limiting factor in 2113 * the bandwidth scheduling. This only takes into account periodic endpoints. 2114 * 2115 * Obviously, we can't solve an NP complete problem to find the minimum worst 2116 * case scenario. Instead, we come up with an estimate that is no less than 2117 * the worst case bandwidth used for any one microframe, but may be an 2118 * over-estimate. 2119 * 2120 * We walk the requirements for each endpoint by interval, starting with the 2121 * smallest interval, and place packets in the schedule where there is only one 2122 * possible way to schedule packets for that interval. In order to simplify 2123 * this algorithm, we record the largest max packet size for each interval, and 2124 * assume all packets will be that size. 2125 * 2126 * For interval 0, we obviously must schedule all packets for each interval. 2127 * The bandwidth for interval 0 is just the amount of data to be transmitted 2128 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2129 * the number of packets). 2130 * 2131 * For interval 1, we have two possible microframes to schedule those packets 2132 * in. For this algorithm, if we can schedule the same number of packets for 2133 * each possible scheduling opportunity (each microframe), we will do so. The 2134 * remaining number of packets will be saved to be transmitted in the gaps in 2135 * the next interval's scheduling sequence. 2136 * 2137 * As we move those remaining packets to be scheduled with interval 2 packets, 2138 * we have to double the number of remaining packets to transmit. This is 2139 * because the intervals are actually powers of 2, and we would be transmitting 2140 * the previous interval's packets twice in this interval. We also have to be 2141 * sure that when we look at the largest max packet size for this interval, we 2142 * also look at the largest max packet size for the remaining packets and take 2143 * the greater of the two. 2144 * 2145 * The algorithm continues to evenly distribute packets in each scheduling 2146 * opportunity, and push the remaining packets out, until we get to the last 2147 * interval. Then those packets and their associated overhead are just added 2148 * to the bandwidth used. 2149 */ 2150 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2151 struct xhci_virt_device *virt_dev, 2152 int old_active_eps) 2153 { 2154 unsigned int bw_reserved; 2155 unsigned int max_bandwidth; 2156 unsigned int bw_used; 2157 unsigned int block_size; 2158 struct xhci_interval_bw_table *bw_table; 2159 unsigned int packet_size = 0; 2160 unsigned int overhead = 0; 2161 unsigned int packets_transmitted = 0; 2162 unsigned int packets_remaining = 0; 2163 unsigned int i; 2164 2165 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2166 return xhci_check_ss_bw(xhci, virt_dev); 2167 2168 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2169 max_bandwidth = HS_BW_LIMIT; 2170 /* Convert percent of bus BW reserved to blocks reserved */ 2171 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2172 } else { 2173 max_bandwidth = FS_BW_LIMIT; 2174 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2175 } 2176 2177 bw_table = virt_dev->bw_table; 2178 /* We need to translate the max packet size and max ESIT payloads into 2179 * the units the hardware uses. 2180 */ 2181 block_size = xhci_get_block_size(virt_dev->udev); 2182 2183 /* If we are manipulating a LS/FS device under a HS hub, double check 2184 * that the HS bus has enough bandwidth if we are activing a new TT. 2185 */ 2186 if (virt_dev->tt_info) { 2187 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2188 "Recalculating BW for rootport %u", 2189 virt_dev->real_port); 2190 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2191 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2192 "newly activated TT.\n"); 2193 return -ENOMEM; 2194 } 2195 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2196 "Recalculating BW for TT slot %u port %u", 2197 virt_dev->tt_info->slot_id, 2198 virt_dev->tt_info->ttport); 2199 } else { 2200 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2201 "Recalculating BW for rootport %u", 2202 virt_dev->real_port); 2203 } 2204 2205 /* Add in how much bandwidth will be used for interval zero, or the 2206 * rounded max ESIT payload + number of packets * largest overhead. 2207 */ 2208 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2209 bw_table->interval_bw[0].num_packets * 2210 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2211 2212 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2213 unsigned int bw_added; 2214 unsigned int largest_mps; 2215 unsigned int interval_overhead; 2216 2217 /* 2218 * How many packets could we transmit in this interval? 2219 * If packets didn't fit in the previous interval, we will need 2220 * to transmit that many packets twice within this interval. 2221 */ 2222 packets_remaining = 2 * packets_remaining + 2223 bw_table->interval_bw[i].num_packets; 2224 2225 /* Find the largest max packet size of this or the previous 2226 * interval. 2227 */ 2228 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2229 largest_mps = 0; 2230 else { 2231 struct xhci_virt_ep *virt_ep; 2232 struct list_head *ep_entry; 2233 2234 ep_entry = bw_table->interval_bw[i].endpoints.next; 2235 virt_ep = list_entry(ep_entry, 2236 struct xhci_virt_ep, bw_endpoint_list); 2237 /* Convert to blocks, rounding up */ 2238 largest_mps = DIV_ROUND_UP( 2239 virt_ep->bw_info.max_packet_size, 2240 block_size); 2241 } 2242 if (largest_mps > packet_size) 2243 packet_size = largest_mps; 2244 2245 /* Use the larger overhead of this or the previous interval. */ 2246 interval_overhead = xhci_get_largest_overhead( 2247 &bw_table->interval_bw[i]); 2248 if (interval_overhead > overhead) 2249 overhead = interval_overhead; 2250 2251 /* How many packets can we evenly distribute across 2252 * (1 << (i + 1)) possible scheduling opportunities? 2253 */ 2254 packets_transmitted = packets_remaining >> (i + 1); 2255 2256 /* Add in the bandwidth used for those scheduled packets */ 2257 bw_added = packets_transmitted * (overhead + packet_size); 2258 2259 /* How many packets do we have remaining to transmit? */ 2260 packets_remaining = packets_remaining % (1 << (i + 1)); 2261 2262 /* What largest max packet size should those packets have? */ 2263 /* If we've transmitted all packets, don't carry over the 2264 * largest packet size. 2265 */ 2266 if (packets_remaining == 0) { 2267 packet_size = 0; 2268 overhead = 0; 2269 } else if (packets_transmitted > 0) { 2270 /* Otherwise if we do have remaining packets, and we've 2271 * scheduled some packets in this interval, take the 2272 * largest max packet size from endpoints with this 2273 * interval. 2274 */ 2275 packet_size = largest_mps; 2276 overhead = interval_overhead; 2277 } 2278 /* Otherwise carry over packet_size and overhead from the last 2279 * time we had a remainder. 2280 */ 2281 bw_used += bw_added; 2282 if (bw_used > max_bandwidth) { 2283 xhci_warn(xhci, "Not enough bandwidth. " 2284 "Proposed: %u, Max: %u\n", 2285 bw_used, max_bandwidth); 2286 return -ENOMEM; 2287 } 2288 } 2289 /* 2290 * Ok, we know we have some packets left over after even-handedly 2291 * scheduling interval 15. We don't know which microframes they will 2292 * fit into, so we over-schedule and say they will be scheduled every 2293 * microframe. 2294 */ 2295 if (packets_remaining > 0) 2296 bw_used += overhead + packet_size; 2297 2298 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2299 unsigned int port_index = virt_dev->real_port - 1; 2300 2301 /* OK, we're manipulating a HS device attached to a 2302 * root port bandwidth domain. Include the number of active TTs 2303 * in the bandwidth used. 2304 */ 2305 bw_used += TT_HS_OVERHEAD * 2306 xhci->rh_bw[port_index].num_active_tts; 2307 } 2308 2309 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2310 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2311 "Available: %u " "percent", 2312 bw_used, max_bandwidth, bw_reserved, 2313 (max_bandwidth - bw_used - bw_reserved) * 100 / 2314 max_bandwidth); 2315 2316 bw_used += bw_reserved; 2317 if (bw_used > max_bandwidth) { 2318 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2319 bw_used, max_bandwidth); 2320 return -ENOMEM; 2321 } 2322 2323 bw_table->bw_used = bw_used; 2324 return 0; 2325 } 2326 2327 static bool xhci_is_async_ep(unsigned int ep_type) 2328 { 2329 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2330 ep_type != ISOC_IN_EP && 2331 ep_type != INT_IN_EP); 2332 } 2333 2334 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2335 { 2336 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2337 } 2338 2339 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2340 { 2341 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2342 2343 if (ep_bw->ep_interval == 0) 2344 return SS_OVERHEAD_BURST + 2345 (ep_bw->mult * ep_bw->num_packets * 2346 (SS_OVERHEAD + mps)); 2347 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2348 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2349 1 << ep_bw->ep_interval); 2350 2351 } 2352 2353 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2354 struct xhci_bw_info *ep_bw, 2355 struct xhci_interval_bw_table *bw_table, 2356 struct usb_device *udev, 2357 struct xhci_virt_ep *virt_ep, 2358 struct xhci_tt_bw_info *tt_info) 2359 { 2360 struct xhci_interval_bw *interval_bw; 2361 int normalized_interval; 2362 2363 if (xhci_is_async_ep(ep_bw->type)) 2364 return; 2365 2366 if (udev->speed >= USB_SPEED_SUPER) { 2367 if (xhci_is_sync_in_ep(ep_bw->type)) 2368 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2369 xhci_get_ss_bw_consumed(ep_bw); 2370 else 2371 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2372 xhci_get_ss_bw_consumed(ep_bw); 2373 return; 2374 } 2375 2376 /* SuperSpeed endpoints never get added to intervals in the table, so 2377 * this check is only valid for HS/FS/LS devices. 2378 */ 2379 if (list_empty(&virt_ep->bw_endpoint_list)) 2380 return; 2381 /* For LS/FS devices, we need to translate the interval expressed in 2382 * microframes to frames. 2383 */ 2384 if (udev->speed == USB_SPEED_HIGH) 2385 normalized_interval = ep_bw->ep_interval; 2386 else 2387 normalized_interval = ep_bw->ep_interval - 3; 2388 2389 if (normalized_interval == 0) 2390 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2391 interval_bw = &bw_table->interval_bw[normalized_interval]; 2392 interval_bw->num_packets -= ep_bw->num_packets; 2393 switch (udev->speed) { 2394 case USB_SPEED_LOW: 2395 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2396 break; 2397 case USB_SPEED_FULL: 2398 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2399 break; 2400 case USB_SPEED_HIGH: 2401 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2402 break; 2403 case USB_SPEED_SUPER: 2404 case USB_SPEED_SUPER_PLUS: 2405 case USB_SPEED_UNKNOWN: 2406 case USB_SPEED_WIRELESS: 2407 /* Should never happen because only LS/FS/HS endpoints will get 2408 * added to the endpoint list. 2409 */ 2410 return; 2411 } 2412 if (tt_info) 2413 tt_info->active_eps -= 1; 2414 list_del_init(&virt_ep->bw_endpoint_list); 2415 } 2416 2417 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2418 struct xhci_bw_info *ep_bw, 2419 struct xhci_interval_bw_table *bw_table, 2420 struct usb_device *udev, 2421 struct xhci_virt_ep *virt_ep, 2422 struct xhci_tt_bw_info *tt_info) 2423 { 2424 struct xhci_interval_bw *interval_bw; 2425 struct xhci_virt_ep *smaller_ep; 2426 int normalized_interval; 2427 2428 if (xhci_is_async_ep(ep_bw->type)) 2429 return; 2430 2431 if (udev->speed == USB_SPEED_SUPER) { 2432 if (xhci_is_sync_in_ep(ep_bw->type)) 2433 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2434 xhci_get_ss_bw_consumed(ep_bw); 2435 else 2436 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2437 xhci_get_ss_bw_consumed(ep_bw); 2438 return; 2439 } 2440 2441 /* For LS/FS devices, we need to translate the interval expressed in 2442 * microframes to frames. 2443 */ 2444 if (udev->speed == USB_SPEED_HIGH) 2445 normalized_interval = ep_bw->ep_interval; 2446 else 2447 normalized_interval = ep_bw->ep_interval - 3; 2448 2449 if (normalized_interval == 0) 2450 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2451 interval_bw = &bw_table->interval_bw[normalized_interval]; 2452 interval_bw->num_packets += ep_bw->num_packets; 2453 switch (udev->speed) { 2454 case USB_SPEED_LOW: 2455 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2456 break; 2457 case USB_SPEED_FULL: 2458 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2459 break; 2460 case USB_SPEED_HIGH: 2461 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2462 break; 2463 case USB_SPEED_SUPER: 2464 case USB_SPEED_SUPER_PLUS: 2465 case USB_SPEED_UNKNOWN: 2466 case USB_SPEED_WIRELESS: 2467 /* Should never happen because only LS/FS/HS endpoints will get 2468 * added to the endpoint list. 2469 */ 2470 return; 2471 } 2472 2473 if (tt_info) 2474 tt_info->active_eps += 1; 2475 /* Insert the endpoint into the list, largest max packet size first. */ 2476 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2477 bw_endpoint_list) { 2478 if (ep_bw->max_packet_size >= 2479 smaller_ep->bw_info.max_packet_size) { 2480 /* Add the new ep before the smaller endpoint */ 2481 list_add_tail(&virt_ep->bw_endpoint_list, 2482 &smaller_ep->bw_endpoint_list); 2483 return; 2484 } 2485 } 2486 /* Add the new endpoint at the end of the list. */ 2487 list_add_tail(&virt_ep->bw_endpoint_list, 2488 &interval_bw->endpoints); 2489 } 2490 2491 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2492 struct xhci_virt_device *virt_dev, 2493 int old_active_eps) 2494 { 2495 struct xhci_root_port_bw_info *rh_bw_info; 2496 if (!virt_dev->tt_info) 2497 return; 2498 2499 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2500 if (old_active_eps == 0 && 2501 virt_dev->tt_info->active_eps != 0) { 2502 rh_bw_info->num_active_tts += 1; 2503 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2504 } else if (old_active_eps != 0 && 2505 virt_dev->tt_info->active_eps == 0) { 2506 rh_bw_info->num_active_tts -= 1; 2507 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2508 } 2509 } 2510 2511 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2512 struct xhci_virt_device *virt_dev, 2513 struct xhci_container_ctx *in_ctx) 2514 { 2515 struct xhci_bw_info ep_bw_info[31]; 2516 int i; 2517 struct xhci_input_control_ctx *ctrl_ctx; 2518 int old_active_eps = 0; 2519 2520 if (virt_dev->tt_info) 2521 old_active_eps = virt_dev->tt_info->active_eps; 2522 2523 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2524 if (!ctrl_ctx) { 2525 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2526 __func__); 2527 return -ENOMEM; 2528 } 2529 2530 for (i = 0; i < 31; i++) { 2531 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2532 continue; 2533 2534 /* Make a copy of the BW info in case we need to revert this */ 2535 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2536 sizeof(ep_bw_info[i])); 2537 /* Drop the endpoint from the interval table if the endpoint is 2538 * being dropped or changed. 2539 */ 2540 if (EP_IS_DROPPED(ctrl_ctx, i)) 2541 xhci_drop_ep_from_interval_table(xhci, 2542 &virt_dev->eps[i].bw_info, 2543 virt_dev->bw_table, 2544 virt_dev->udev, 2545 &virt_dev->eps[i], 2546 virt_dev->tt_info); 2547 } 2548 /* Overwrite the information stored in the endpoints' bw_info */ 2549 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2550 for (i = 0; i < 31; i++) { 2551 /* Add any changed or added endpoints to the interval table */ 2552 if (EP_IS_ADDED(ctrl_ctx, i)) 2553 xhci_add_ep_to_interval_table(xhci, 2554 &virt_dev->eps[i].bw_info, 2555 virt_dev->bw_table, 2556 virt_dev->udev, 2557 &virt_dev->eps[i], 2558 virt_dev->tt_info); 2559 } 2560 2561 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2562 /* Ok, this fits in the bandwidth we have. 2563 * Update the number of active TTs. 2564 */ 2565 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2566 return 0; 2567 } 2568 2569 /* We don't have enough bandwidth for this, revert the stored info. */ 2570 for (i = 0; i < 31; i++) { 2571 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2572 continue; 2573 2574 /* Drop the new copies of any added or changed endpoints from 2575 * the interval table. 2576 */ 2577 if (EP_IS_ADDED(ctrl_ctx, i)) { 2578 xhci_drop_ep_from_interval_table(xhci, 2579 &virt_dev->eps[i].bw_info, 2580 virt_dev->bw_table, 2581 virt_dev->udev, 2582 &virt_dev->eps[i], 2583 virt_dev->tt_info); 2584 } 2585 /* Revert the endpoint back to its old information */ 2586 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2587 sizeof(ep_bw_info[i])); 2588 /* Add any changed or dropped endpoints back into the table */ 2589 if (EP_IS_DROPPED(ctrl_ctx, i)) 2590 xhci_add_ep_to_interval_table(xhci, 2591 &virt_dev->eps[i].bw_info, 2592 virt_dev->bw_table, 2593 virt_dev->udev, 2594 &virt_dev->eps[i], 2595 virt_dev->tt_info); 2596 } 2597 return -ENOMEM; 2598 } 2599 2600 2601 /* Issue a configure endpoint command or evaluate context command 2602 * and wait for it to finish. 2603 */ 2604 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2605 struct usb_device *udev, 2606 struct xhci_command *command, 2607 bool ctx_change, bool must_succeed) 2608 { 2609 int ret; 2610 unsigned long flags; 2611 struct xhci_input_control_ctx *ctrl_ctx; 2612 struct xhci_virt_device *virt_dev; 2613 2614 if (!command) 2615 return -EINVAL; 2616 2617 spin_lock_irqsave(&xhci->lock, flags); 2618 virt_dev = xhci->devs[udev->slot_id]; 2619 2620 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2621 if (!ctrl_ctx) { 2622 spin_unlock_irqrestore(&xhci->lock, flags); 2623 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2624 __func__); 2625 return -ENOMEM; 2626 } 2627 2628 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2629 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2630 spin_unlock_irqrestore(&xhci->lock, flags); 2631 xhci_warn(xhci, "Not enough host resources, " 2632 "active endpoint contexts = %u\n", 2633 xhci->num_active_eps); 2634 return -ENOMEM; 2635 } 2636 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2637 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2638 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2639 xhci_free_host_resources(xhci, ctrl_ctx); 2640 spin_unlock_irqrestore(&xhci->lock, flags); 2641 xhci_warn(xhci, "Not enough bandwidth\n"); 2642 return -ENOMEM; 2643 } 2644 2645 if (!ctx_change) 2646 ret = xhci_queue_configure_endpoint(xhci, command, 2647 command->in_ctx->dma, 2648 udev->slot_id, must_succeed); 2649 else 2650 ret = xhci_queue_evaluate_context(xhci, command, 2651 command->in_ctx->dma, 2652 udev->slot_id, must_succeed); 2653 if (ret < 0) { 2654 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2655 xhci_free_host_resources(xhci, ctrl_ctx); 2656 spin_unlock_irqrestore(&xhci->lock, flags); 2657 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2658 "FIXME allocate a new ring segment"); 2659 return -ENOMEM; 2660 } 2661 xhci_ring_cmd_db(xhci); 2662 spin_unlock_irqrestore(&xhci->lock, flags); 2663 2664 /* Wait for the configure endpoint command to complete */ 2665 wait_for_completion(command->completion); 2666 2667 if (!ctx_change) 2668 ret = xhci_configure_endpoint_result(xhci, udev, 2669 &command->status); 2670 else 2671 ret = xhci_evaluate_context_result(xhci, udev, 2672 &command->status); 2673 2674 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2675 spin_lock_irqsave(&xhci->lock, flags); 2676 /* If the command failed, remove the reserved resources. 2677 * Otherwise, clean up the estimate to include dropped eps. 2678 */ 2679 if (ret) 2680 xhci_free_host_resources(xhci, ctrl_ctx); 2681 else 2682 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2683 spin_unlock_irqrestore(&xhci->lock, flags); 2684 } 2685 return ret; 2686 } 2687 2688 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2689 struct xhci_virt_device *vdev, int i) 2690 { 2691 struct xhci_virt_ep *ep = &vdev->eps[i]; 2692 2693 if (ep->ep_state & EP_HAS_STREAMS) { 2694 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2695 xhci_get_endpoint_address(i)); 2696 xhci_free_stream_info(xhci, ep->stream_info); 2697 ep->stream_info = NULL; 2698 ep->ep_state &= ~EP_HAS_STREAMS; 2699 } 2700 } 2701 2702 /* Called after one or more calls to xhci_add_endpoint() or 2703 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2704 * to call xhci_reset_bandwidth(). 2705 * 2706 * Since we are in the middle of changing either configuration or 2707 * installing a new alt setting, the USB core won't allow URBs to be 2708 * enqueued for any endpoint on the old config or interface. Nothing 2709 * else should be touching the xhci->devs[slot_id] structure, so we 2710 * don't need to take the xhci->lock for manipulating that. 2711 */ 2712 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2713 { 2714 int i; 2715 int ret = 0; 2716 struct xhci_hcd *xhci; 2717 struct xhci_virt_device *virt_dev; 2718 struct xhci_input_control_ctx *ctrl_ctx; 2719 struct xhci_slot_ctx *slot_ctx; 2720 struct xhci_command *command; 2721 2722 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2723 if (ret <= 0) 2724 return ret; 2725 xhci = hcd_to_xhci(hcd); 2726 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2727 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2728 return -ENODEV; 2729 2730 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2731 virt_dev = xhci->devs[udev->slot_id]; 2732 2733 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2734 if (!command) 2735 return -ENOMEM; 2736 2737 command->in_ctx = virt_dev->in_ctx; 2738 2739 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2740 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2741 if (!ctrl_ctx) { 2742 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2743 __func__); 2744 ret = -ENOMEM; 2745 goto command_cleanup; 2746 } 2747 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2748 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2749 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2750 2751 /* Don't issue the command if there's no endpoints to update. */ 2752 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2753 ctrl_ctx->drop_flags == 0) { 2754 ret = 0; 2755 goto command_cleanup; 2756 } 2757 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2758 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2759 for (i = 31; i >= 1; i--) { 2760 __le32 le32 = cpu_to_le32(BIT(i)); 2761 2762 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2763 || (ctrl_ctx->add_flags & le32) || i == 1) { 2764 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2765 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2766 break; 2767 } 2768 } 2769 xhci_dbg(xhci, "New Input Control Context:\n"); 2770 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2771 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2772 2773 ret = xhci_configure_endpoint(xhci, udev, command, 2774 false, false); 2775 if (ret) 2776 /* Callee should call reset_bandwidth() */ 2777 goto command_cleanup; 2778 2779 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2780 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2781 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2782 2783 /* Free any rings that were dropped, but not changed. */ 2784 for (i = 1; i < 31; ++i) { 2785 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2786 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2787 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2788 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2789 } 2790 } 2791 xhci_zero_in_ctx(xhci, virt_dev); 2792 /* 2793 * Install any rings for completely new endpoints or changed endpoints, 2794 * and free or cache any old rings from changed endpoints. 2795 */ 2796 for (i = 1; i < 31; ++i) { 2797 if (!virt_dev->eps[i].new_ring) 2798 continue; 2799 /* Only cache or free the old ring if it exists. 2800 * It may not if this is the first add of an endpoint. 2801 */ 2802 if (virt_dev->eps[i].ring) { 2803 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2804 } 2805 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2806 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2807 virt_dev->eps[i].new_ring = NULL; 2808 } 2809 command_cleanup: 2810 kfree(command->completion); 2811 kfree(command); 2812 2813 return ret; 2814 } 2815 2816 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2817 { 2818 struct xhci_hcd *xhci; 2819 struct xhci_virt_device *virt_dev; 2820 int i, ret; 2821 2822 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2823 if (ret <= 0) 2824 return; 2825 xhci = hcd_to_xhci(hcd); 2826 2827 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2828 virt_dev = xhci->devs[udev->slot_id]; 2829 /* Free any rings allocated for added endpoints */ 2830 for (i = 0; i < 31; ++i) { 2831 if (virt_dev->eps[i].new_ring) { 2832 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2833 virt_dev->eps[i].new_ring = NULL; 2834 } 2835 } 2836 xhci_zero_in_ctx(xhci, virt_dev); 2837 } 2838 2839 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2840 struct xhci_container_ctx *in_ctx, 2841 struct xhci_container_ctx *out_ctx, 2842 struct xhci_input_control_ctx *ctrl_ctx, 2843 u32 add_flags, u32 drop_flags) 2844 { 2845 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2846 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2847 xhci_slot_copy(xhci, in_ctx, out_ctx); 2848 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2849 2850 xhci_dbg(xhci, "Input Context:\n"); 2851 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2852 } 2853 2854 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2855 unsigned int slot_id, unsigned int ep_index, 2856 struct xhci_dequeue_state *deq_state) 2857 { 2858 struct xhci_input_control_ctx *ctrl_ctx; 2859 struct xhci_container_ctx *in_ctx; 2860 struct xhci_ep_ctx *ep_ctx; 2861 u32 added_ctxs; 2862 dma_addr_t addr; 2863 2864 in_ctx = xhci->devs[slot_id]->in_ctx; 2865 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2866 if (!ctrl_ctx) { 2867 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2868 __func__); 2869 return; 2870 } 2871 2872 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2873 xhci->devs[slot_id]->out_ctx, ep_index); 2874 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2875 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2876 deq_state->new_deq_ptr); 2877 if (addr == 0) { 2878 xhci_warn(xhci, "WARN Cannot submit config ep after " 2879 "reset ep command\n"); 2880 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2881 deq_state->new_deq_seg, 2882 deq_state->new_deq_ptr); 2883 return; 2884 } 2885 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2886 2887 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2888 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2889 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2890 added_ctxs, added_ctxs); 2891 } 2892 2893 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2894 unsigned int ep_index, struct xhci_td *td) 2895 { 2896 struct xhci_dequeue_state deq_state; 2897 struct xhci_virt_ep *ep; 2898 struct usb_device *udev = td->urb->dev; 2899 2900 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2901 "Cleaning up stalled endpoint ring"); 2902 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2903 /* We need to move the HW's dequeue pointer past this TD, 2904 * or it will attempt to resend it on the next doorbell ring. 2905 */ 2906 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2907 ep_index, ep->stopped_stream, td, &deq_state); 2908 2909 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2910 return; 2911 2912 /* HW with the reset endpoint quirk will use the saved dequeue state to 2913 * issue a configure endpoint command later. 2914 */ 2915 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2916 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2917 "Queueing new dequeue state"); 2918 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2919 ep_index, ep->stopped_stream, &deq_state); 2920 } else { 2921 /* Better hope no one uses the input context between now and the 2922 * reset endpoint completion! 2923 * XXX: No idea how this hardware will react when stream rings 2924 * are enabled. 2925 */ 2926 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2927 "Setting up input context for " 2928 "configure endpoint command"); 2929 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2930 ep_index, &deq_state); 2931 } 2932 } 2933 2934 /* Called when clearing halted device. The core should have sent the control 2935 * message to clear the device halt condition. The host side of the halt should 2936 * already be cleared with a reset endpoint command issued when the STALL tx 2937 * event was received. 2938 * 2939 * Context: in_interrupt 2940 */ 2941 2942 void xhci_endpoint_reset(struct usb_hcd *hcd, 2943 struct usb_host_endpoint *ep) 2944 { 2945 struct xhci_hcd *xhci; 2946 2947 xhci = hcd_to_xhci(hcd); 2948 2949 /* 2950 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2951 * The Reset Endpoint Command may only be issued to endpoints in the 2952 * Halted state. If software wishes reset the Data Toggle or Sequence 2953 * Number of an endpoint that isn't in the Halted state, then software 2954 * may issue a Configure Endpoint Command with the Drop and Add bits set 2955 * for the target endpoint. that is in the Stopped state. 2956 */ 2957 2958 /* For now just print debug to follow the situation */ 2959 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2960 ep->desc.bEndpointAddress); 2961 } 2962 2963 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2964 struct usb_device *udev, struct usb_host_endpoint *ep, 2965 unsigned int slot_id) 2966 { 2967 int ret; 2968 unsigned int ep_index; 2969 unsigned int ep_state; 2970 2971 if (!ep) 2972 return -EINVAL; 2973 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2974 if (ret <= 0) 2975 return -EINVAL; 2976 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2977 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2978 " descriptor for ep 0x%x does not support streams\n", 2979 ep->desc.bEndpointAddress); 2980 return -EINVAL; 2981 } 2982 2983 ep_index = xhci_get_endpoint_index(&ep->desc); 2984 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2985 if (ep_state & EP_HAS_STREAMS || 2986 ep_state & EP_GETTING_STREAMS) { 2987 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2988 "already has streams set up.\n", 2989 ep->desc.bEndpointAddress); 2990 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2991 "dynamic stream context array reallocation.\n"); 2992 return -EINVAL; 2993 } 2994 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2995 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2996 "endpoint 0x%x; URBs are pending.\n", 2997 ep->desc.bEndpointAddress); 2998 return -EINVAL; 2999 } 3000 return 0; 3001 } 3002 3003 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3004 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3005 { 3006 unsigned int max_streams; 3007 3008 /* The stream context array size must be a power of two */ 3009 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3010 /* 3011 * Find out how many primary stream array entries the host controller 3012 * supports. Later we may use secondary stream arrays (similar to 2nd 3013 * level page entries), but that's an optional feature for xHCI host 3014 * controllers. xHCs must support at least 4 stream IDs. 3015 */ 3016 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3017 if (*num_stream_ctxs > max_streams) { 3018 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3019 max_streams); 3020 *num_stream_ctxs = max_streams; 3021 *num_streams = max_streams; 3022 } 3023 } 3024 3025 /* Returns an error code if one of the endpoint already has streams. 3026 * This does not change any data structures, it only checks and gathers 3027 * information. 3028 */ 3029 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3030 struct usb_device *udev, 3031 struct usb_host_endpoint **eps, unsigned int num_eps, 3032 unsigned int *num_streams, u32 *changed_ep_bitmask) 3033 { 3034 unsigned int max_streams; 3035 unsigned int endpoint_flag; 3036 int i; 3037 int ret; 3038 3039 for (i = 0; i < num_eps; i++) { 3040 ret = xhci_check_streams_endpoint(xhci, udev, 3041 eps[i], udev->slot_id); 3042 if (ret < 0) 3043 return ret; 3044 3045 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3046 if (max_streams < (*num_streams - 1)) { 3047 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3048 eps[i]->desc.bEndpointAddress, 3049 max_streams); 3050 *num_streams = max_streams+1; 3051 } 3052 3053 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3054 if (*changed_ep_bitmask & endpoint_flag) 3055 return -EINVAL; 3056 *changed_ep_bitmask |= endpoint_flag; 3057 } 3058 return 0; 3059 } 3060 3061 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3062 struct usb_device *udev, 3063 struct usb_host_endpoint **eps, unsigned int num_eps) 3064 { 3065 u32 changed_ep_bitmask = 0; 3066 unsigned int slot_id; 3067 unsigned int ep_index; 3068 unsigned int ep_state; 3069 int i; 3070 3071 slot_id = udev->slot_id; 3072 if (!xhci->devs[slot_id]) 3073 return 0; 3074 3075 for (i = 0; i < num_eps; i++) { 3076 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3077 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3078 /* Are streams already being freed for the endpoint? */ 3079 if (ep_state & EP_GETTING_NO_STREAMS) { 3080 xhci_warn(xhci, "WARN Can't disable streams for " 3081 "endpoint 0x%x, " 3082 "streams are being disabled already\n", 3083 eps[i]->desc.bEndpointAddress); 3084 return 0; 3085 } 3086 /* Are there actually any streams to free? */ 3087 if (!(ep_state & EP_HAS_STREAMS) && 3088 !(ep_state & EP_GETTING_STREAMS)) { 3089 xhci_warn(xhci, "WARN Can't disable streams for " 3090 "endpoint 0x%x, " 3091 "streams are already disabled!\n", 3092 eps[i]->desc.bEndpointAddress); 3093 xhci_warn(xhci, "WARN xhci_free_streams() called " 3094 "with non-streams endpoint\n"); 3095 return 0; 3096 } 3097 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3098 } 3099 return changed_ep_bitmask; 3100 } 3101 3102 /* 3103 * The USB device drivers use this function (through the HCD interface in USB 3104 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3105 * coordinate mass storage command queueing across multiple endpoints (basically 3106 * a stream ID == a task ID). 3107 * 3108 * Setting up streams involves allocating the same size stream context array 3109 * for each endpoint and issuing a configure endpoint command for all endpoints. 3110 * 3111 * Don't allow the call to succeed if one endpoint only supports one stream 3112 * (which means it doesn't support streams at all). 3113 * 3114 * Drivers may get less stream IDs than they asked for, if the host controller 3115 * hardware or endpoints claim they can't support the number of requested 3116 * stream IDs. 3117 */ 3118 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3119 struct usb_host_endpoint **eps, unsigned int num_eps, 3120 unsigned int num_streams, gfp_t mem_flags) 3121 { 3122 int i, ret; 3123 struct xhci_hcd *xhci; 3124 struct xhci_virt_device *vdev; 3125 struct xhci_command *config_cmd; 3126 struct xhci_input_control_ctx *ctrl_ctx; 3127 unsigned int ep_index; 3128 unsigned int num_stream_ctxs; 3129 unsigned int max_packet; 3130 unsigned long flags; 3131 u32 changed_ep_bitmask = 0; 3132 3133 if (!eps) 3134 return -EINVAL; 3135 3136 /* Add one to the number of streams requested to account for 3137 * stream 0 that is reserved for xHCI usage. 3138 */ 3139 num_streams += 1; 3140 xhci = hcd_to_xhci(hcd); 3141 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3142 num_streams); 3143 3144 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3145 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3146 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3147 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3148 return -ENOSYS; 3149 } 3150 3151 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3152 if (!config_cmd) { 3153 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3154 return -ENOMEM; 3155 } 3156 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3157 if (!ctrl_ctx) { 3158 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3159 __func__); 3160 xhci_free_command(xhci, config_cmd); 3161 return -ENOMEM; 3162 } 3163 3164 /* Check to make sure all endpoints are not already configured for 3165 * streams. While we're at it, find the maximum number of streams that 3166 * all the endpoints will support and check for duplicate endpoints. 3167 */ 3168 spin_lock_irqsave(&xhci->lock, flags); 3169 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3170 num_eps, &num_streams, &changed_ep_bitmask); 3171 if (ret < 0) { 3172 xhci_free_command(xhci, config_cmd); 3173 spin_unlock_irqrestore(&xhci->lock, flags); 3174 return ret; 3175 } 3176 if (num_streams <= 1) { 3177 xhci_warn(xhci, "WARN: endpoints can't handle " 3178 "more than one stream.\n"); 3179 xhci_free_command(xhci, config_cmd); 3180 spin_unlock_irqrestore(&xhci->lock, flags); 3181 return -EINVAL; 3182 } 3183 vdev = xhci->devs[udev->slot_id]; 3184 /* Mark each endpoint as being in transition, so 3185 * xhci_urb_enqueue() will reject all URBs. 3186 */ 3187 for (i = 0; i < num_eps; i++) { 3188 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3189 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3190 } 3191 spin_unlock_irqrestore(&xhci->lock, flags); 3192 3193 /* Setup internal data structures and allocate HW data structures for 3194 * streams (but don't install the HW structures in the input context 3195 * until we're sure all memory allocation succeeded). 3196 */ 3197 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3198 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3199 num_stream_ctxs, num_streams); 3200 3201 for (i = 0; i < num_eps; i++) { 3202 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3203 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3204 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3205 num_stream_ctxs, 3206 num_streams, 3207 max_packet, mem_flags); 3208 if (!vdev->eps[ep_index].stream_info) 3209 goto cleanup; 3210 /* Set maxPstreams in endpoint context and update deq ptr to 3211 * point to stream context array. FIXME 3212 */ 3213 } 3214 3215 /* Set up the input context for a configure endpoint command. */ 3216 for (i = 0; i < num_eps; i++) { 3217 struct xhci_ep_ctx *ep_ctx; 3218 3219 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3220 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3221 3222 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3223 vdev->out_ctx, ep_index); 3224 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3225 vdev->eps[ep_index].stream_info); 3226 } 3227 /* Tell the HW to drop its old copy of the endpoint context info 3228 * and add the updated copy from the input context. 3229 */ 3230 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3231 vdev->out_ctx, ctrl_ctx, 3232 changed_ep_bitmask, changed_ep_bitmask); 3233 3234 /* Issue and wait for the configure endpoint command */ 3235 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3236 false, false); 3237 3238 /* xHC rejected the configure endpoint command for some reason, so we 3239 * leave the old ring intact and free our internal streams data 3240 * structure. 3241 */ 3242 if (ret < 0) 3243 goto cleanup; 3244 3245 spin_lock_irqsave(&xhci->lock, flags); 3246 for (i = 0; i < num_eps; i++) { 3247 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3248 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3249 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3250 udev->slot_id, ep_index); 3251 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3252 } 3253 xhci_free_command(xhci, config_cmd); 3254 spin_unlock_irqrestore(&xhci->lock, flags); 3255 3256 /* Subtract 1 for stream 0, which drivers can't use */ 3257 return num_streams - 1; 3258 3259 cleanup: 3260 /* If it didn't work, free the streams! */ 3261 for (i = 0; i < num_eps; i++) { 3262 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3263 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3264 vdev->eps[ep_index].stream_info = NULL; 3265 /* FIXME Unset maxPstreams in endpoint context and 3266 * update deq ptr to point to normal string ring. 3267 */ 3268 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3269 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3270 xhci_endpoint_zero(xhci, vdev, eps[i]); 3271 } 3272 xhci_free_command(xhci, config_cmd); 3273 return -ENOMEM; 3274 } 3275 3276 /* Transition the endpoint from using streams to being a "normal" endpoint 3277 * without streams. 3278 * 3279 * Modify the endpoint context state, submit a configure endpoint command, 3280 * and free all endpoint rings for streams if that completes successfully. 3281 */ 3282 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3283 struct usb_host_endpoint **eps, unsigned int num_eps, 3284 gfp_t mem_flags) 3285 { 3286 int i, ret; 3287 struct xhci_hcd *xhci; 3288 struct xhci_virt_device *vdev; 3289 struct xhci_command *command; 3290 struct xhci_input_control_ctx *ctrl_ctx; 3291 unsigned int ep_index; 3292 unsigned long flags; 3293 u32 changed_ep_bitmask; 3294 3295 xhci = hcd_to_xhci(hcd); 3296 vdev = xhci->devs[udev->slot_id]; 3297 3298 /* Set up a configure endpoint command to remove the streams rings */ 3299 spin_lock_irqsave(&xhci->lock, flags); 3300 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3301 udev, eps, num_eps); 3302 if (changed_ep_bitmask == 0) { 3303 spin_unlock_irqrestore(&xhci->lock, flags); 3304 return -EINVAL; 3305 } 3306 3307 /* Use the xhci_command structure from the first endpoint. We may have 3308 * allocated too many, but the driver may call xhci_free_streams() for 3309 * each endpoint it grouped into one call to xhci_alloc_streams(). 3310 */ 3311 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3312 command = vdev->eps[ep_index].stream_info->free_streams_command; 3313 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3314 if (!ctrl_ctx) { 3315 spin_unlock_irqrestore(&xhci->lock, flags); 3316 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3317 __func__); 3318 return -EINVAL; 3319 } 3320 3321 for (i = 0; i < num_eps; i++) { 3322 struct xhci_ep_ctx *ep_ctx; 3323 3324 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3325 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3326 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3327 EP_GETTING_NO_STREAMS; 3328 3329 xhci_endpoint_copy(xhci, command->in_ctx, 3330 vdev->out_ctx, ep_index); 3331 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3332 &vdev->eps[ep_index]); 3333 } 3334 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3335 vdev->out_ctx, ctrl_ctx, 3336 changed_ep_bitmask, changed_ep_bitmask); 3337 spin_unlock_irqrestore(&xhci->lock, flags); 3338 3339 /* Issue and wait for the configure endpoint command, 3340 * which must succeed. 3341 */ 3342 ret = xhci_configure_endpoint(xhci, udev, command, 3343 false, true); 3344 3345 /* xHC rejected the configure endpoint command for some reason, so we 3346 * leave the streams rings intact. 3347 */ 3348 if (ret < 0) 3349 return ret; 3350 3351 spin_lock_irqsave(&xhci->lock, flags); 3352 for (i = 0; i < num_eps; i++) { 3353 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3354 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3355 vdev->eps[ep_index].stream_info = NULL; 3356 /* FIXME Unset maxPstreams in endpoint context and 3357 * update deq ptr to point to normal string ring. 3358 */ 3359 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3360 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3361 } 3362 spin_unlock_irqrestore(&xhci->lock, flags); 3363 3364 return 0; 3365 } 3366 3367 /* 3368 * Deletes endpoint resources for endpoints that were active before a Reset 3369 * Device command, or a Disable Slot command. The Reset Device command leaves 3370 * the control endpoint intact, whereas the Disable Slot command deletes it. 3371 * 3372 * Must be called with xhci->lock held. 3373 */ 3374 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3375 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3376 { 3377 int i; 3378 unsigned int num_dropped_eps = 0; 3379 unsigned int drop_flags = 0; 3380 3381 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3382 if (virt_dev->eps[i].ring) { 3383 drop_flags |= 1 << i; 3384 num_dropped_eps++; 3385 } 3386 } 3387 xhci->num_active_eps -= num_dropped_eps; 3388 if (num_dropped_eps) 3389 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3390 "Dropped %u ep ctxs, flags = 0x%x, " 3391 "%u now active.", 3392 num_dropped_eps, drop_flags, 3393 xhci->num_active_eps); 3394 } 3395 3396 /* 3397 * This submits a Reset Device Command, which will set the device state to 0, 3398 * set the device address to 0, and disable all the endpoints except the default 3399 * control endpoint. The USB core should come back and call 3400 * xhci_address_device(), and then re-set up the configuration. If this is 3401 * called because of a usb_reset_and_verify_device(), then the old alternate 3402 * settings will be re-installed through the normal bandwidth allocation 3403 * functions. 3404 * 3405 * Wait for the Reset Device command to finish. Remove all structures 3406 * associated with the endpoints that were disabled. Clear the input device 3407 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3408 * 3409 * If the virt_dev to be reset does not exist or does not match the udev, 3410 * it means the device is lost, possibly due to the xHC restore error and 3411 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3412 * re-allocate the device. 3413 */ 3414 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3415 { 3416 int ret, i; 3417 unsigned long flags; 3418 struct xhci_hcd *xhci; 3419 unsigned int slot_id; 3420 struct xhci_virt_device *virt_dev; 3421 struct xhci_command *reset_device_cmd; 3422 int last_freed_endpoint; 3423 struct xhci_slot_ctx *slot_ctx; 3424 int old_active_eps = 0; 3425 3426 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3427 if (ret <= 0) 3428 return ret; 3429 xhci = hcd_to_xhci(hcd); 3430 slot_id = udev->slot_id; 3431 virt_dev = xhci->devs[slot_id]; 3432 if (!virt_dev) { 3433 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3434 "not exist. Re-allocate the device\n", slot_id); 3435 ret = xhci_alloc_dev(hcd, udev); 3436 if (ret == 1) 3437 return 0; 3438 else 3439 return -EINVAL; 3440 } 3441 3442 if (virt_dev->tt_info) 3443 old_active_eps = virt_dev->tt_info->active_eps; 3444 3445 if (virt_dev->udev != udev) { 3446 /* If the virt_dev and the udev does not match, this virt_dev 3447 * may belong to another udev. 3448 * Re-allocate the device. 3449 */ 3450 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3451 "not match the udev. Re-allocate the device\n", 3452 slot_id); 3453 ret = xhci_alloc_dev(hcd, udev); 3454 if (ret == 1) 3455 return 0; 3456 else 3457 return -EINVAL; 3458 } 3459 3460 /* If device is not setup, there is no point in resetting it */ 3461 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3462 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3463 SLOT_STATE_DISABLED) 3464 return 0; 3465 3466 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3467 /* Allocate the command structure that holds the struct completion. 3468 * Assume we're in process context, since the normal device reset 3469 * process has to wait for the device anyway. Storage devices are 3470 * reset as part of error handling, so use GFP_NOIO instead of 3471 * GFP_KERNEL. 3472 */ 3473 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3474 if (!reset_device_cmd) { 3475 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3476 return -ENOMEM; 3477 } 3478 3479 /* Attempt to submit the Reset Device command to the command ring */ 3480 spin_lock_irqsave(&xhci->lock, flags); 3481 3482 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3483 if (ret) { 3484 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3485 spin_unlock_irqrestore(&xhci->lock, flags); 3486 goto command_cleanup; 3487 } 3488 xhci_ring_cmd_db(xhci); 3489 spin_unlock_irqrestore(&xhci->lock, flags); 3490 3491 /* Wait for the Reset Device command to finish */ 3492 wait_for_completion(reset_device_cmd->completion); 3493 3494 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3495 * unless we tried to reset a slot ID that wasn't enabled, 3496 * or the device wasn't in the addressed or configured state. 3497 */ 3498 ret = reset_device_cmd->status; 3499 switch (ret) { 3500 case COMP_CMD_ABORT: 3501 case COMP_CMD_STOP: 3502 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3503 ret = -ETIME; 3504 goto command_cleanup; 3505 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3506 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3507 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3508 slot_id, 3509 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3510 xhci_dbg(xhci, "Not freeing device rings.\n"); 3511 /* Don't treat this as an error. May change my mind later. */ 3512 ret = 0; 3513 goto command_cleanup; 3514 case COMP_SUCCESS: 3515 xhci_dbg(xhci, "Successful reset device command.\n"); 3516 break; 3517 default: 3518 if (xhci_is_vendor_info_code(xhci, ret)) 3519 break; 3520 xhci_warn(xhci, "Unknown completion code %u for " 3521 "reset device command.\n", ret); 3522 ret = -EINVAL; 3523 goto command_cleanup; 3524 } 3525 3526 /* Free up host controller endpoint resources */ 3527 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3528 spin_lock_irqsave(&xhci->lock, flags); 3529 /* Don't delete the default control endpoint resources */ 3530 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3531 spin_unlock_irqrestore(&xhci->lock, flags); 3532 } 3533 3534 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3535 last_freed_endpoint = 1; 3536 for (i = 1; i < 31; ++i) { 3537 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3538 3539 if (ep->ep_state & EP_HAS_STREAMS) { 3540 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3541 xhci_get_endpoint_address(i)); 3542 xhci_free_stream_info(xhci, ep->stream_info); 3543 ep->stream_info = NULL; 3544 ep->ep_state &= ~EP_HAS_STREAMS; 3545 } 3546 3547 if (ep->ring) { 3548 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3549 last_freed_endpoint = i; 3550 } 3551 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3552 xhci_drop_ep_from_interval_table(xhci, 3553 &virt_dev->eps[i].bw_info, 3554 virt_dev->bw_table, 3555 udev, 3556 &virt_dev->eps[i], 3557 virt_dev->tt_info); 3558 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3559 } 3560 /* If necessary, update the number of active TTs on this root port */ 3561 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3562 3563 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3564 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3565 ret = 0; 3566 3567 command_cleanup: 3568 xhci_free_command(xhci, reset_device_cmd); 3569 return ret; 3570 } 3571 3572 /* 3573 * At this point, the struct usb_device is about to go away, the device has 3574 * disconnected, and all traffic has been stopped and the endpoints have been 3575 * disabled. Free any HC data structures associated with that device. 3576 */ 3577 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3578 { 3579 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3580 struct xhci_virt_device *virt_dev; 3581 unsigned long flags; 3582 u32 state; 3583 int i, ret; 3584 struct xhci_command *command; 3585 3586 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3587 if (!command) 3588 return; 3589 3590 #ifndef CONFIG_USB_DEFAULT_PERSIST 3591 /* 3592 * We called pm_runtime_get_noresume when the device was attached. 3593 * Decrement the counter here to allow controller to runtime suspend 3594 * if no devices remain. 3595 */ 3596 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3597 pm_runtime_put_noidle(hcd->self.controller); 3598 #endif 3599 3600 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3601 /* If the host is halted due to driver unload, we still need to free the 3602 * device. 3603 */ 3604 if (ret <= 0 && ret != -ENODEV) { 3605 kfree(command); 3606 return; 3607 } 3608 3609 virt_dev = xhci->devs[udev->slot_id]; 3610 3611 /* Stop any wayward timer functions (which may grab the lock) */ 3612 for (i = 0; i < 31; ++i) { 3613 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3614 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3615 } 3616 3617 spin_lock_irqsave(&xhci->lock, flags); 3618 /* Don't disable the slot if the host controller is dead. */ 3619 state = readl(&xhci->op_regs->status); 3620 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3621 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3622 xhci_free_virt_device(xhci, udev->slot_id); 3623 spin_unlock_irqrestore(&xhci->lock, flags); 3624 kfree(command); 3625 return; 3626 } 3627 3628 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3629 udev->slot_id)) { 3630 spin_unlock_irqrestore(&xhci->lock, flags); 3631 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3632 return; 3633 } 3634 xhci_ring_cmd_db(xhci); 3635 spin_unlock_irqrestore(&xhci->lock, flags); 3636 3637 /* 3638 * Event command completion handler will free any data structures 3639 * associated with the slot. XXX Can free sleep? 3640 */ 3641 } 3642 3643 /* 3644 * Checks if we have enough host controller resources for the default control 3645 * endpoint. 3646 * 3647 * Must be called with xhci->lock held. 3648 */ 3649 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3650 { 3651 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3652 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3653 "Not enough ep ctxs: " 3654 "%u active, need to add 1, limit is %u.", 3655 xhci->num_active_eps, xhci->limit_active_eps); 3656 return -ENOMEM; 3657 } 3658 xhci->num_active_eps += 1; 3659 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3660 "Adding 1 ep ctx, %u now active.", 3661 xhci->num_active_eps); 3662 return 0; 3663 } 3664 3665 3666 /* 3667 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3668 * timed out, or allocating memory failed. Returns 1 on success. 3669 */ 3670 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3671 { 3672 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3673 unsigned long flags; 3674 int ret, slot_id; 3675 struct xhci_command *command; 3676 3677 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3678 if (!command) 3679 return 0; 3680 3681 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3682 mutex_lock(&xhci->mutex); 3683 spin_lock_irqsave(&xhci->lock, flags); 3684 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3685 if (ret) { 3686 spin_unlock_irqrestore(&xhci->lock, flags); 3687 mutex_unlock(&xhci->mutex); 3688 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3689 xhci_free_command(xhci, command); 3690 return 0; 3691 } 3692 xhci_ring_cmd_db(xhci); 3693 spin_unlock_irqrestore(&xhci->lock, flags); 3694 3695 wait_for_completion(command->completion); 3696 slot_id = command->slot_id; 3697 mutex_unlock(&xhci->mutex); 3698 3699 if (!slot_id || command->status != COMP_SUCCESS) { 3700 xhci_err(xhci, "Error while assigning device slot ID\n"); 3701 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3702 HCS_MAX_SLOTS( 3703 readl(&xhci->cap_regs->hcs_params1))); 3704 xhci_free_command(xhci, command); 3705 return 0; 3706 } 3707 3708 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3709 spin_lock_irqsave(&xhci->lock, flags); 3710 ret = xhci_reserve_host_control_ep_resources(xhci); 3711 if (ret) { 3712 spin_unlock_irqrestore(&xhci->lock, flags); 3713 xhci_warn(xhci, "Not enough host resources, " 3714 "active endpoint contexts = %u\n", 3715 xhci->num_active_eps); 3716 goto disable_slot; 3717 } 3718 spin_unlock_irqrestore(&xhci->lock, flags); 3719 } 3720 /* Use GFP_NOIO, since this function can be called from 3721 * xhci_discover_or_reset_device(), which may be called as part of 3722 * mass storage driver error handling. 3723 */ 3724 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3725 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3726 goto disable_slot; 3727 } 3728 udev->slot_id = slot_id; 3729 3730 #ifndef CONFIG_USB_DEFAULT_PERSIST 3731 /* 3732 * If resetting upon resume, we can't put the controller into runtime 3733 * suspend if there is a device attached. 3734 */ 3735 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3736 pm_runtime_get_noresume(hcd->self.controller); 3737 #endif 3738 3739 3740 xhci_free_command(xhci, command); 3741 /* Is this a LS or FS device under a HS hub? */ 3742 /* Hub or peripherial? */ 3743 return 1; 3744 3745 disable_slot: 3746 /* Disable slot, if we can do it without mem alloc */ 3747 spin_lock_irqsave(&xhci->lock, flags); 3748 kfree(command->completion); 3749 command->completion = NULL; 3750 command->status = 0; 3751 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3752 udev->slot_id)) 3753 xhci_ring_cmd_db(xhci); 3754 spin_unlock_irqrestore(&xhci->lock, flags); 3755 return 0; 3756 } 3757 3758 /* 3759 * Issue an Address Device command and optionally send a corresponding 3760 * SetAddress request to the device. 3761 */ 3762 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3763 enum xhci_setup_dev setup) 3764 { 3765 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3766 unsigned long flags; 3767 struct xhci_virt_device *virt_dev; 3768 int ret = 0; 3769 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3770 struct xhci_slot_ctx *slot_ctx; 3771 struct xhci_input_control_ctx *ctrl_ctx; 3772 u64 temp_64; 3773 struct xhci_command *command = NULL; 3774 3775 mutex_lock(&xhci->mutex); 3776 3777 if (xhci->xhc_state) { /* dying, removing or halted */ 3778 ret = -ESHUTDOWN; 3779 goto out; 3780 } 3781 3782 if (!udev->slot_id) { 3783 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3784 "Bad Slot ID %d", udev->slot_id); 3785 ret = -EINVAL; 3786 goto out; 3787 } 3788 3789 virt_dev = xhci->devs[udev->slot_id]; 3790 3791 if (WARN_ON(!virt_dev)) { 3792 /* 3793 * In plug/unplug torture test with an NEC controller, 3794 * a zero-dereference was observed once due to virt_dev = 0. 3795 * Print useful debug rather than crash if it is observed again! 3796 */ 3797 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3798 udev->slot_id); 3799 ret = -EINVAL; 3800 goto out; 3801 } 3802 3803 if (setup == SETUP_CONTEXT_ONLY) { 3804 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3805 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3806 SLOT_STATE_DEFAULT) { 3807 xhci_dbg(xhci, "Slot already in default state\n"); 3808 goto out; 3809 } 3810 } 3811 3812 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3813 if (!command) { 3814 ret = -ENOMEM; 3815 goto out; 3816 } 3817 3818 command->in_ctx = virt_dev->in_ctx; 3819 3820 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3821 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3822 if (!ctrl_ctx) { 3823 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3824 __func__); 3825 ret = -EINVAL; 3826 goto out; 3827 } 3828 /* 3829 * If this is the first Set Address since device plug-in or 3830 * virt_device realloaction after a resume with an xHCI power loss, 3831 * then set up the slot context. 3832 */ 3833 if (!slot_ctx->dev_info) 3834 xhci_setup_addressable_virt_dev(xhci, udev); 3835 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3836 else 3837 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3838 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3839 ctrl_ctx->drop_flags = 0; 3840 3841 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3842 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3843 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3844 le32_to_cpu(slot_ctx->dev_info) >> 27); 3845 3846 spin_lock_irqsave(&xhci->lock, flags); 3847 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3848 udev->slot_id, setup); 3849 if (ret) { 3850 spin_unlock_irqrestore(&xhci->lock, flags); 3851 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3852 "FIXME: allocate a command ring segment"); 3853 goto out; 3854 } 3855 xhci_ring_cmd_db(xhci); 3856 spin_unlock_irqrestore(&xhci->lock, flags); 3857 3858 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3859 wait_for_completion(command->completion); 3860 3861 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3862 * the SetAddress() "recovery interval" required by USB and aborting the 3863 * command on a timeout. 3864 */ 3865 switch (command->status) { 3866 case COMP_CMD_ABORT: 3867 case COMP_CMD_STOP: 3868 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3869 ret = -ETIME; 3870 break; 3871 case COMP_CTX_STATE: 3872 case COMP_EBADSLT: 3873 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3874 act, udev->slot_id); 3875 ret = -EINVAL; 3876 break; 3877 case COMP_TX_ERR: 3878 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3879 ret = -EPROTO; 3880 break; 3881 case COMP_DEV_ERR: 3882 dev_warn(&udev->dev, 3883 "ERROR: Incompatible device for setup %s command\n", act); 3884 ret = -ENODEV; 3885 break; 3886 case COMP_SUCCESS: 3887 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3888 "Successful setup %s command", act); 3889 break; 3890 default: 3891 xhci_err(xhci, 3892 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3893 act, command->status); 3894 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3895 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3896 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3897 ret = -EINVAL; 3898 break; 3899 } 3900 if (ret) 3901 goto out; 3902 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3903 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3904 "Op regs DCBAA ptr = %#016llx", temp_64); 3905 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3906 "Slot ID %d dcbaa entry @%p = %#016llx", 3907 udev->slot_id, 3908 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3909 (unsigned long long) 3910 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3911 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3912 "Output Context DMA address = %#08llx", 3913 (unsigned long long)virt_dev->out_ctx->dma); 3914 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3915 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3916 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3917 le32_to_cpu(slot_ctx->dev_info) >> 27); 3918 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3919 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3920 /* 3921 * USB core uses address 1 for the roothubs, so we add one to the 3922 * address given back to us by the HC. 3923 */ 3924 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3925 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3926 le32_to_cpu(slot_ctx->dev_info) >> 27); 3927 /* Zero the input context control for later use */ 3928 ctrl_ctx->add_flags = 0; 3929 ctrl_ctx->drop_flags = 0; 3930 3931 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3932 "Internal device address = %d", 3933 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3934 out: 3935 mutex_unlock(&xhci->mutex); 3936 if (command) { 3937 kfree(command->completion); 3938 kfree(command); 3939 } 3940 return ret; 3941 } 3942 3943 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3944 { 3945 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3946 } 3947 3948 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3949 { 3950 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3951 } 3952 3953 /* 3954 * Transfer the port index into real index in the HW port status 3955 * registers. Caculate offset between the port's PORTSC register 3956 * and port status base. Divide the number of per port register 3957 * to get the real index. The raw port number bases 1. 3958 */ 3959 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3960 { 3961 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3962 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3963 __le32 __iomem *addr; 3964 int raw_port; 3965 3966 if (hcd->speed < HCD_USB3) 3967 addr = xhci->usb2_ports[port1 - 1]; 3968 else 3969 addr = xhci->usb3_ports[port1 - 1]; 3970 3971 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3972 return raw_port; 3973 } 3974 3975 /* 3976 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3977 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3978 */ 3979 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3980 struct usb_device *udev, u16 max_exit_latency) 3981 { 3982 struct xhci_virt_device *virt_dev; 3983 struct xhci_command *command; 3984 struct xhci_input_control_ctx *ctrl_ctx; 3985 struct xhci_slot_ctx *slot_ctx; 3986 unsigned long flags; 3987 int ret; 3988 3989 spin_lock_irqsave(&xhci->lock, flags); 3990 3991 virt_dev = xhci->devs[udev->slot_id]; 3992 3993 /* 3994 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3995 * xHC was re-initialized. Exit latency will be set later after 3996 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 3997 */ 3998 3999 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4000 spin_unlock_irqrestore(&xhci->lock, flags); 4001 return 0; 4002 } 4003 4004 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4005 command = xhci->lpm_command; 4006 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4007 if (!ctrl_ctx) { 4008 spin_unlock_irqrestore(&xhci->lock, flags); 4009 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4010 __func__); 4011 return -ENOMEM; 4012 } 4013 4014 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4015 spin_unlock_irqrestore(&xhci->lock, flags); 4016 4017 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4018 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4019 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4020 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4021 slot_ctx->dev_state = 0; 4022 4023 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4024 "Set up evaluate context for LPM MEL change."); 4025 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4026 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4027 4028 /* Issue and wait for the evaluate context command. */ 4029 ret = xhci_configure_endpoint(xhci, udev, command, 4030 true, true); 4031 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4032 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4033 4034 if (!ret) { 4035 spin_lock_irqsave(&xhci->lock, flags); 4036 virt_dev->current_mel = max_exit_latency; 4037 spin_unlock_irqrestore(&xhci->lock, flags); 4038 } 4039 return ret; 4040 } 4041 4042 #ifdef CONFIG_PM 4043 4044 /* BESL to HIRD Encoding array for USB2 LPM */ 4045 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4046 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4047 4048 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4049 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4050 struct usb_device *udev) 4051 { 4052 int u2del, besl, besl_host; 4053 int besl_device = 0; 4054 u32 field; 4055 4056 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4057 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4058 4059 if (field & USB_BESL_SUPPORT) { 4060 for (besl_host = 0; besl_host < 16; besl_host++) { 4061 if (xhci_besl_encoding[besl_host] >= u2del) 4062 break; 4063 } 4064 /* Use baseline BESL value as default */ 4065 if (field & USB_BESL_BASELINE_VALID) 4066 besl_device = USB_GET_BESL_BASELINE(field); 4067 else if (field & USB_BESL_DEEP_VALID) 4068 besl_device = USB_GET_BESL_DEEP(field); 4069 } else { 4070 if (u2del <= 50) 4071 besl_host = 0; 4072 else 4073 besl_host = (u2del - 51) / 75 + 1; 4074 } 4075 4076 besl = besl_host + besl_device; 4077 if (besl > 15) 4078 besl = 15; 4079 4080 return besl; 4081 } 4082 4083 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4084 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4085 { 4086 u32 field; 4087 int l1; 4088 int besld = 0; 4089 int hirdm = 0; 4090 4091 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4092 4093 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4094 l1 = udev->l1_params.timeout / 256; 4095 4096 /* device has preferred BESLD */ 4097 if (field & USB_BESL_DEEP_VALID) { 4098 besld = USB_GET_BESL_DEEP(field); 4099 hirdm = 1; 4100 } 4101 4102 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4103 } 4104 4105 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4106 struct usb_device *udev, int enable) 4107 { 4108 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4109 __le32 __iomem **port_array; 4110 __le32 __iomem *pm_addr, *hlpm_addr; 4111 u32 pm_val, hlpm_val, field; 4112 unsigned int port_num; 4113 unsigned long flags; 4114 int hird, exit_latency; 4115 int ret; 4116 4117 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4118 !udev->lpm_capable) 4119 return -EPERM; 4120 4121 if (!udev->parent || udev->parent->parent || 4122 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4123 return -EPERM; 4124 4125 if (udev->usb2_hw_lpm_capable != 1) 4126 return -EPERM; 4127 4128 spin_lock_irqsave(&xhci->lock, flags); 4129 4130 port_array = xhci->usb2_ports; 4131 port_num = udev->portnum - 1; 4132 pm_addr = port_array[port_num] + PORTPMSC; 4133 pm_val = readl(pm_addr); 4134 hlpm_addr = port_array[port_num] + PORTHLPMC; 4135 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4136 4137 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4138 enable ? "enable" : "disable", port_num + 1); 4139 4140 if (enable) { 4141 /* Host supports BESL timeout instead of HIRD */ 4142 if (udev->usb2_hw_lpm_besl_capable) { 4143 /* if device doesn't have a preferred BESL value use a 4144 * default one which works with mixed HIRD and BESL 4145 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4146 */ 4147 if ((field & USB_BESL_SUPPORT) && 4148 (field & USB_BESL_BASELINE_VALID)) 4149 hird = USB_GET_BESL_BASELINE(field); 4150 else 4151 hird = udev->l1_params.besl; 4152 4153 exit_latency = xhci_besl_encoding[hird]; 4154 spin_unlock_irqrestore(&xhci->lock, flags); 4155 4156 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4157 * input context for link powermanagement evaluate 4158 * context commands. It is protected by hcd->bandwidth 4159 * mutex and is shared by all devices. We need to set 4160 * the max ext latency in USB 2 BESL LPM as well, so 4161 * use the same mutex and xhci_change_max_exit_latency() 4162 */ 4163 mutex_lock(hcd->bandwidth_mutex); 4164 ret = xhci_change_max_exit_latency(xhci, udev, 4165 exit_latency); 4166 mutex_unlock(hcd->bandwidth_mutex); 4167 4168 if (ret < 0) 4169 return ret; 4170 spin_lock_irqsave(&xhci->lock, flags); 4171 4172 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4173 writel(hlpm_val, hlpm_addr); 4174 /* flush write */ 4175 readl(hlpm_addr); 4176 } else { 4177 hird = xhci_calculate_hird_besl(xhci, udev); 4178 } 4179 4180 pm_val &= ~PORT_HIRD_MASK; 4181 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4182 writel(pm_val, pm_addr); 4183 pm_val = readl(pm_addr); 4184 pm_val |= PORT_HLE; 4185 writel(pm_val, pm_addr); 4186 /* flush write */ 4187 readl(pm_addr); 4188 } else { 4189 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4190 writel(pm_val, pm_addr); 4191 /* flush write */ 4192 readl(pm_addr); 4193 if (udev->usb2_hw_lpm_besl_capable) { 4194 spin_unlock_irqrestore(&xhci->lock, flags); 4195 mutex_lock(hcd->bandwidth_mutex); 4196 xhci_change_max_exit_latency(xhci, udev, 0); 4197 mutex_unlock(hcd->bandwidth_mutex); 4198 return 0; 4199 } 4200 } 4201 4202 spin_unlock_irqrestore(&xhci->lock, flags); 4203 return 0; 4204 } 4205 4206 /* check if a usb2 port supports a given extened capability protocol 4207 * only USB2 ports extended protocol capability values are cached. 4208 * Return 1 if capability is supported 4209 */ 4210 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4211 unsigned capability) 4212 { 4213 u32 port_offset, port_count; 4214 int i; 4215 4216 for (i = 0; i < xhci->num_ext_caps; i++) { 4217 if (xhci->ext_caps[i] & capability) { 4218 /* port offsets starts at 1 */ 4219 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4220 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4221 if (port >= port_offset && 4222 port < port_offset + port_count) 4223 return 1; 4224 } 4225 } 4226 return 0; 4227 } 4228 4229 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4230 { 4231 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4232 int portnum = udev->portnum - 1; 4233 4234 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4235 !udev->lpm_capable) 4236 return 0; 4237 4238 /* we only support lpm for non-hub device connected to root hub yet */ 4239 if (!udev->parent || udev->parent->parent || 4240 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4241 return 0; 4242 4243 if (xhci->hw_lpm_support == 1 && 4244 xhci_check_usb2_port_capability( 4245 xhci, portnum, XHCI_HLC)) { 4246 udev->usb2_hw_lpm_capable = 1; 4247 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4248 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4249 if (xhci_check_usb2_port_capability(xhci, portnum, 4250 XHCI_BLC)) 4251 udev->usb2_hw_lpm_besl_capable = 1; 4252 } 4253 4254 return 0; 4255 } 4256 4257 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4258 4259 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4260 static unsigned long long xhci_service_interval_to_ns( 4261 struct usb_endpoint_descriptor *desc) 4262 { 4263 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4264 } 4265 4266 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4267 enum usb3_link_state state) 4268 { 4269 unsigned long long sel; 4270 unsigned long long pel; 4271 unsigned int max_sel_pel; 4272 char *state_name; 4273 4274 switch (state) { 4275 case USB3_LPM_U1: 4276 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4277 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4278 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4279 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4280 state_name = "U1"; 4281 break; 4282 case USB3_LPM_U2: 4283 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4284 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4285 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4286 state_name = "U2"; 4287 break; 4288 default: 4289 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4290 __func__); 4291 return USB3_LPM_DISABLED; 4292 } 4293 4294 if (sel <= max_sel_pel && pel <= max_sel_pel) 4295 return USB3_LPM_DEVICE_INITIATED; 4296 4297 if (sel > max_sel_pel) 4298 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4299 "due to long SEL %llu ms\n", 4300 state_name, sel); 4301 else 4302 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4303 "due to long PEL %llu ms\n", 4304 state_name, pel); 4305 return USB3_LPM_DISABLED; 4306 } 4307 4308 /* The U1 timeout should be the maximum of the following values: 4309 * - For control endpoints, U1 system exit latency (SEL) * 3 4310 * - For bulk endpoints, U1 SEL * 5 4311 * - For interrupt endpoints: 4312 * - Notification EPs, U1 SEL * 3 4313 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4314 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4315 */ 4316 static unsigned long long xhci_calculate_intel_u1_timeout( 4317 struct usb_device *udev, 4318 struct usb_endpoint_descriptor *desc) 4319 { 4320 unsigned long long timeout_ns; 4321 int ep_type; 4322 int intr_type; 4323 4324 ep_type = usb_endpoint_type(desc); 4325 switch (ep_type) { 4326 case USB_ENDPOINT_XFER_CONTROL: 4327 timeout_ns = udev->u1_params.sel * 3; 4328 break; 4329 case USB_ENDPOINT_XFER_BULK: 4330 timeout_ns = udev->u1_params.sel * 5; 4331 break; 4332 case USB_ENDPOINT_XFER_INT: 4333 intr_type = usb_endpoint_interrupt_type(desc); 4334 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4335 timeout_ns = udev->u1_params.sel * 3; 4336 break; 4337 } 4338 /* Otherwise the calculation is the same as isoc eps */ 4339 case USB_ENDPOINT_XFER_ISOC: 4340 timeout_ns = xhci_service_interval_to_ns(desc); 4341 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4342 if (timeout_ns < udev->u1_params.sel * 2) 4343 timeout_ns = udev->u1_params.sel * 2; 4344 break; 4345 default: 4346 return 0; 4347 } 4348 4349 return timeout_ns; 4350 } 4351 4352 /* Returns the hub-encoded U1 timeout value. */ 4353 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4354 struct usb_device *udev, 4355 struct usb_endpoint_descriptor *desc) 4356 { 4357 unsigned long long timeout_ns; 4358 4359 if (xhci->quirks & XHCI_INTEL_HOST) 4360 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4361 else 4362 timeout_ns = udev->u1_params.sel; 4363 4364 /* The U1 timeout is encoded in 1us intervals. 4365 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4366 */ 4367 if (timeout_ns == USB3_LPM_DISABLED) 4368 timeout_ns = 1; 4369 else 4370 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4371 4372 /* If the necessary timeout value is bigger than what we can set in the 4373 * USB 3.0 hub, we have to disable hub-initiated U1. 4374 */ 4375 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4376 return timeout_ns; 4377 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4378 "due to long timeout %llu ms\n", timeout_ns); 4379 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4380 } 4381 4382 /* The U2 timeout should be the maximum of: 4383 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4384 * - largest bInterval of any active periodic endpoint (to avoid going 4385 * into lower power link states between intervals). 4386 * - the U2 Exit Latency of the device 4387 */ 4388 static unsigned long long xhci_calculate_intel_u2_timeout( 4389 struct usb_device *udev, 4390 struct usb_endpoint_descriptor *desc) 4391 { 4392 unsigned long long timeout_ns; 4393 unsigned long long u2_del_ns; 4394 4395 timeout_ns = 10 * 1000 * 1000; 4396 4397 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4398 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4399 timeout_ns = xhci_service_interval_to_ns(desc); 4400 4401 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4402 if (u2_del_ns > timeout_ns) 4403 timeout_ns = u2_del_ns; 4404 4405 return timeout_ns; 4406 } 4407 4408 /* Returns the hub-encoded U2 timeout value. */ 4409 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4410 struct usb_device *udev, 4411 struct usb_endpoint_descriptor *desc) 4412 { 4413 unsigned long long timeout_ns; 4414 4415 if (xhci->quirks & XHCI_INTEL_HOST) 4416 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4417 else 4418 timeout_ns = udev->u2_params.sel; 4419 4420 /* The U2 timeout is encoded in 256us intervals */ 4421 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4422 /* If the necessary timeout value is bigger than what we can set in the 4423 * USB 3.0 hub, we have to disable hub-initiated U2. 4424 */ 4425 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4426 return timeout_ns; 4427 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4428 "due to long timeout %llu ms\n", timeout_ns); 4429 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4430 } 4431 4432 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4433 struct usb_device *udev, 4434 struct usb_endpoint_descriptor *desc, 4435 enum usb3_link_state state, 4436 u16 *timeout) 4437 { 4438 if (state == USB3_LPM_U1) 4439 return xhci_calculate_u1_timeout(xhci, udev, desc); 4440 else if (state == USB3_LPM_U2) 4441 return xhci_calculate_u2_timeout(xhci, udev, desc); 4442 4443 return USB3_LPM_DISABLED; 4444 } 4445 4446 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4447 struct usb_device *udev, 4448 struct usb_endpoint_descriptor *desc, 4449 enum usb3_link_state state, 4450 u16 *timeout) 4451 { 4452 u16 alt_timeout; 4453 4454 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4455 desc, state, timeout); 4456 4457 /* If we found we can't enable hub-initiated LPM, or 4458 * the U1 or U2 exit latency was too high to allow 4459 * device-initiated LPM as well, just stop searching. 4460 */ 4461 if (alt_timeout == USB3_LPM_DISABLED || 4462 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4463 *timeout = alt_timeout; 4464 return -E2BIG; 4465 } 4466 if (alt_timeout > *timeout) 4467 *timeout = alt_timeout; 4468 return 0; 4469 } 4470 4471 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4472 struct usb_device *udev, 4473 struct usb_host_interface *alt, 4474 enum usb3_link_state state, 4475 u16 *timeout) 4476 { 4477 int j; 4478 4479 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4480 if (xhci_update_timeout_for_endpoint(xhci, udev, 4481 &alt->endpoint[j].desc, state, timeout)) 4482 return -E2BIG; 4483 continue; 4484 } 4485 return 0; 4486 } 4487 4488 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4489 enum usb3_link_state state) 4490 { 4491 struct usb_device *parent; 4492 unsigned int num_hubs; 4493 4494 if (state == USB3_LPM_U2) 4495 return 0; 4496 4497 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4498 for (parent = udev->parent, num_hubs = 0; parent->parent; 4499 parent = parent->parent) 4500 num_hubs++; 4501 4502 if (num_hubs < 2) 4503 return 0; 4504 4505 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4506 " below second-tier hub.\n"); 4507 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4508 "to decrease power consumption.\n"); 4509 return -E2BIG; 4510 } 4511 4512 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4513 struct usb_device *udev, 4514 enum usb3_link_state state) 4515 { 4516 if (xhci->quirks & XHCI_INTEL_HOST) 4517 return xhci_check_intel_tier_policy(udev, state); 4518 else 4519 return 0; 4520 } 4521 4522 /* Returns the U1 or U2 timeout that should be enabled. 4523 * If the tier check or timeout setting functions return with a non-zero exit 4524 * code, that means the timeout value has been finalized and we shouldn't look 4525 * at any more endpoints. 4526 */ 4527 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4528 struct usb_device *udev, enum usb3_link_state state) 4529 { 4530 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4531 struct usb_host_config *config; 4532 char *state_name; 4533 int i; 4534 u16 timeout = USB3_LPM_DISABLED; 4535 4536 if (state == USB3_LPM_U1) 4537 state_name = "U1"; 4538 else if (state == USB3_LPM_U2) 4539 state_name = "U2"; 4540 else { 4541 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4542 state); 4543 return timeout; 4544 } 4545 4546 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4547 return timeout; 4548 4549 /* Gather some information about the currently installed configuration 4550 * and alternate interface settings. 4551 */ 4552 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4553 state, &timeout)) 4554 return timeout; 4555 4556 config = udev->actconfig; 4557 if (!config) 4558 return timeout; 4559 4560 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4561 struct usb_driver *driver; 4562 struct usb_interface *intf = config->interface[i]; 4563 4564 if (!intf) 4565 continue; 4566 4567 /* Check if any currently bound drivers want hub-initiated LPM 4568 * disabled. 4569 */ 4570 if (intf->dev.driver) { 4571 driver = to_usb_driver(intf->dev.driver); 4572 if (driver && driver->disable_hub_initiated_lpm) { 4573 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4574 "at request of driver %s\n", 4575 state_name, driver->name); 4576 return xhci_get_timeout_no_hub_lpm(udev, state); 4577 } 4578 } 4579 4580 /* Not sure how this could happen... */ 4581 if (!intf->cur_altsetting) 4582 continue; 4583 4584 if (xhci_update_timeout_for_interface(xhci, udev, 4585 intf->cur_altsetting, 4586 state, &timeout)) 4587 return timeout; 4588 } 4589 return timeout; 4590 } 4591 4592 static int calculate_max_exit_latency(struct usb_device *udev, 4593 enum usb3_link_state state_changed, 4594 u16 hub_encoded_timeout) 4595 { 4596 unsigned long long u1_mel_us = 0; 4597 unsigned long long u2_mel_us = 0; 4598 unsigned long long mel_us = 0; 4599 bool disabling_u1; 4600 bool disabling_u2; 4601 bool enabling_u1; 4602 bool enabling_u2; 4603 4604 disabling_u1 = (state_changed == USB3_LPM_U1 && 4605 hub_encoded_timeout == USB3_LPM_DISABLED); 4606 disabling_u2 = (state_changed == USB3_LPM_U2 && 4607 hub_encoded_timeout == USB3_LPM_DISABLED); 4608 4609 enabling_u1 = (state_changed == USB3_LPM_U1 && 4610 hub_encoded_timeout != USB3_LPM_DISABLED); 4611 enabling_u2 = (state_changed == USB3_LPM_U2 && 4612 hub_encoded_timeout != USB3_LPM_DISABLED); 4613 4614 /* If U1 was already enabled and we're not disabling it, 4615 * or we're going to enable U1, account for the U1 max exit latency. 4616 */ 4617 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4618 enabling_u1) 4619 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4620 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4621 enabling_u2) 4622 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4623 4624 if (u1_mel_us > u2_mel_us) 4625 mel_us = u1_mel_us; 4626 else 4627 mel_us = u2_mel_us; 4628 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4629 if (mel_us > MAX_EXIT) { 4630 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4631 "is too big.\n", mel_us); 4632 return -E2BIG; 4633 } 4634 return mel_us; 4635 } 4636 4637 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4638 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4639 struct usb_device *udev, enum usb3_link_state state) 4640 { 4641 struct xhci_hcd *xhci; 4642 u16 hub_encoded_timeout; 4643 int mel; 4644 int ret; 4645 4646 xhci = hcd_to_xhci(hcd); 4647 /* The LPM timeout values are pretty host-controller specific, so don't 4648 * enable hub-initiated timeouts unless the vendor has provided 4649 * information about their timeout algorithm. 4650 */ 4651 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4652 !xhci->devs[udev->slot_id]) 4653 return USB3_LPM_DISABLED; 4654 4655 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4656 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4657 if (mel < 0) { 4658 /* Max Exit Latency is too big, disable LPM. */ 4659 hub_encoded_timeout = USB3_LPM_DISABLED; 4660 mel = 0; 4661 } 4662 4663 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4664 if (ret) 4665 return ret; 4666 return hub_encoded_timeout; 4667 } 4668 4669 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4670 struct usb_device *udev, enum usb3_link_state state) 4671 { 4672 struct xhci_hcd *xhci; 4673 u16 mel; 4674 4675 xhci = hcd_to_xhci(hcd); 4676 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4677 !xhci->devs[udev->slot_id]) 4678 return 0; 4679 4680 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4681 return xhci_change_max_exit_latency(xhci, udev, mel); 4682 } 4683 #else /* CONFIG_PM */ 4684 4685 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4686 struct usb_device *udev, int enable) 4687 { 4688 return 0; 4689 } 4690 4691 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4692 { 4693 return 0; 4694 } 4695 4696 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4697 struct usb_device *udev, enum usb3_link_state state) 4698 { 4699 return USB3_LPM_DISABLED; 4700 } 4701 4702 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4703 struct usb_device *udev, enum usb3_link_state state) 4704 { 4705 return 0; 4706 } 4707 #endif /* CONFIG_PM */ 4708 4709 /*-------------------------------------------------------------------------*/ 4710 4711 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4712 * internal data structures for the device. 4713 */ 4714 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4715 struct usb_tt *tt, gfp_t mem_flags) 4716 { 4717 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4718 struct xhci_virt_device *vdev; 4719 struct xhci_command *config_cmd; 4720 struct xhci_input_control_ctx *ctrl_ctx; 4721 struct xhci_slot_ctx *slot_ctx; 4722 unsigned long flags; 4723 unsigned think_time; 4724 int ret; 4725 4726 /* Ignore root hubs */ 4727 if (!hdev->parent) 4728 return 0; 4729 4730 vdev = xhci->devs[hdev->slot_id]; 4731 if (!vdev) { 4732 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4733 return -EINVAL; 4734 } 4735 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4736 if (!config_cmd) { 4737 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4738 return -ENOMEM; 4739 } 4740 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4741 if (!ctrl_ctx) { 4742 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4743 __func__); 4744 xhci_free_command(xhci, config_cmd); 4745 return -ENOMEM; 4746 } 4747 4748 spin_lock_irqsave(&xhci->lock, flags); 4749 if (hdev->speed == USB_SPEED_HIGH && 4750 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4751 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4752 xhci_free_command(xhci, config_cmd); 4753 spin_unlock_irqrestore(&xhci->lock, flags); 4754 return -ENOMEM; 4755 } 4756 4757 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4758 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4759 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4760 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4761 /* 4762 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4763 * but it may be already set to 1 when setup an xHCI virtual 4764 * device, so clear it anyway. 4765 */ 4766 if (tt->multi) 4767 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4768 else if (hdev->speed == USB_SPEED_FULL) 4769 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4770 4771 if (xhci->hci_version > 0x95) { 4772 xhci_dbg(xhci, "xHCI version %x needs hub " 4773 "TT think time and number of ports\n", 4774 (unsigned int) xhci->hci_version); 4775 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4776 /* Set TT think time - convert from ns to FS bit times. 4777 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4778 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4779 * 4780 * xHCI 1.0: this field shall be 0 if the device is not a 4781 * High-spped hub. 4782 */ 4783 think_time = tt->think_time; 4784 if (think_time != 0) 4785 think_time = (think_time / 666) - 1; 4786 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4787 slot_ctx->tt_info |= 4788 cpu_to_le32(TT_THINK_TIME(think_time)); 4789 } else { 4790 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4791 "TT think time or number of ports\n", 4792 (unsigned int) xhci->hci_version); 4793 } 4794 slot_ctx->dev_state = 0; 4795 spin_unlock_irqrestore(&xhci->lock, flags); 4796 4797 xhci_dbg(xhci, "Set up %s for hub device.\n", 4798 (xhci->hci_version > 0x95) ? 4799 "configure endpoint" : "evaluate context"); 4800 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4801 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4802 4803 /* Issue and wait for the configure endpoint or 4804 * evaluate context command. 4805 */ 4806 if (xhci->hci_version > 0x95) 4807 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4808 false, false); 4809 else 4810 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4811 true, false); 4812 4813 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4814 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4815 4816 xhci_free_command(xhci, config_cmd); 4817 return ret; 4818 } 4819 4820 int xhci_get_frame(struct usb_hcd *hcd) 4821 { 4822 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4823 /* EHCI mods by the periodic size. Why? */ 4824 return readl(&xhci->run_regs->microframe_index) >> 3; 4825 } 4826 4827 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4828 { 4829 struct xhci_hcd *xhci; 4830 struct device *dev = hcd->self.controller; 4831 int retval; 4832 4833 /* Accept arbitrarily long scatter-gather lists */ 4834 hcd->self.sg_tablesize = ~0; 4835 4836 /* support to build packet from discontinuous buffers */ 4837 hcd->self.no_sg_constraint = 1; 4838 4839 /* XHCI controllers don't stop the ep queue on short packets :| */ 4840 hcd->self.no_stop_on_short = 1; 4841 4842 xhci = hcd_to_xhci(hcd); 4843 4844 if (usb_hcd_is_primary_hcd(hcd)) { 4845 xhci->main_hcd = hcd; 4846 /* Mark the first roothub as being USB 2.0. 4847 * The xHCI driver will register the USB 3.0 roothub. 4848 */ 4849 hcd->speed = HCD_USB2; 4850 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4851 /* 4852 * USB 2.0 roothub under xHCI has an integrated TT, 4853 * (rate matching hub) as opposed to having an OHCI/UHCI 4854 * companion controller. 4855 */ 4856 hcd->has_tt = 1; 4857 } else { 4858 if (xhci->sbrn == 0x31) { 4859 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4860 hcd->speed = HCD_USB31; 4861 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4862 } 4863 /* xHCI private pointer was set in xhci_pci_probe for the second 4864 * registered roothub. 4865 */ 4866 return 0; 4867 } 4868 4869 mutex_init(&xhci->mutex); 4870 xhci->cap_regs = hcd->regs; 4871 xhci->op_regs = hcd->regs + 4872 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4873 xhci->run_regs = hcd->regs + 4874 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4875 /* Cache read-only capability registers */ 4876 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4877 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4878 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4879 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4880 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4881 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4882 if (xhci->hci_version > 0x100) 4883 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4884 xhci_print_registers(xhci); 4885 4886 xhci->quirks |= quirks; 4887 4888 get_quirks(dev, xhci); 4889 4890 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4891 * success event after a short transfer. This quirk will ignore such 4892 * spurious event. 4893 */ 4894 if (xhci->hci_version > 0x96) 4895 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4896 4897 /* Make sure the HC is halted. */ 4898 retval = xhci_halt(xhci); 4899 if (retval) 4900 return retval; 4901 4902 xhci_dbg(xhci, "Resetting HCD\n"); 4903 /* Reset the internal HC memory state and registers. */ 4904 retval = xhci_reset(xhci); 4905 if (retval) 4906 return retval; 4907 xhci_dbg(xhci, "Reset complete\n"); 4908 4909 /* 4910 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4911 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4912 * address memory pointers actually. So, this driver clears the AC64 4913 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4914 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4915 */ 4916 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4917 xhci->hcc_params &= ~BIT(0); 4918 4919 /* Set dma_mask and coherent_dma_mask to 64-bits, 4920 * if xHC supports 64-bit addressing */ 4921 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4922 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4923 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4924 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4925 } else { 4926 /* 4927 * This is to avoid error in cases where a 32-bit USB 4928 * controller is used on a 64-bit capable system. 4929 */ 4930 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4931 if (retval) 4932 return retval; 4933 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4934 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4935 } 4936 4937 xhci_dbg(xhci, "Calling HCD init\n"); 4938 /* Initialize HCD and host controller data structures. */ 4939 retval = xhci_init(hcd); 4940 if (retval) 4941 return retval; 4942 xhci_dbg(xhci, "Called HCD init\n"); 4943 4944 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4945 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4946 4947 return 0; 4948 } 4949 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4950 4951 static const struct hc_driver xhci_hc_driver = { 4952 .description = "xhci-hcd", 4953 .product_desc = "xHCI Host Controller", 4954 .hcd_priv_size = sizeof(struct xhci_hcd), 4955 4956 /* 4957 * generic hardware linkage 4958 */ 4959 .irq = xhci_irq, 4960 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4961 4962 /* 4963 * basic lifecycle operations 4964 */ 4965 .reset = NULL, /* set in xhci_init_driver() */ 4966 .start = xhci_run, 4967 .stop = xhci_stop, 4968 .shutdown = xhci_shutdown, 4969 4970 /* 4971 * managing i/o requests and associated device resources 4972 */ 4973 .urb_enqueue = xhci_urb_enqueue, 4974 .urb_dequeue = xhci_urb_dequeue, 4975 .alloc_dev = xhci_alloc_dev, 4976 .free_dev = xhci_free_dev, 4977 .alloc_streams = xhci_alloc_streams, 4978 .free_streams = xhci_free_streams, 4979 .add_endpoint = xhci_add_endpoint, 4980 .drop_endpoint = xhci_drop_endpoint, 4981 .endpoint_reset = xhci_endpoint_reset, 4982 .check_bandwidth = xhci_check_bandwidth, 4983 .reset_bandwidth = xhci_reset_bandwidth, 4984 .address_device = xhci_address_device, 4985 .enable_device = xhci_enable_device, 4986 .update_hub_device = xhci_update_hub_device, 4987 .reset_device = xhci_discover_or_reset_device, 4988 4989 /* 4990 * scheduling support 4991 */ 4992 .get_frame_number = xhci_get_frame, 4993 4994 /* 4995 * root hub support 4996 */ 4997 .hub_control = xhci_hub_control, 4998 .hub_status_data = xhci_hub_status_data, 4999 .bus_suspend = xhci_bus_suspend, 5000 .bus_resume = xhci_bus_resume, 5001 5002 /* 5003 * call back when device connected and addressed 5004 */ 5005 .update_device = xhci_update_device, 5006 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5007 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5008 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5009 .find_raw_port_number = xhci_find_raw_port_number, 5010 }; 5011 5012 void xhci_init_driver(struct hc_driver *drv, 5013 const struct xhci_driver_overrides *over) 5014 { 5015 BUG_ON(!over); 5016 5017 /* Copy the generic table to drv then apply the overrides */ 5018 *drv = xhci_hc_driver; 5019 5020 if (over) { 5021 drv->hcd_priv_size += over->extra_priv_size; 5022 if (over->reset) 5023 drv->reset = over->reset; 5024 if (over->start) 5025 drv->start = over->start; 5026 } 5027 } 5028 EXPORT_SYMBOL_GPL(xhci_init_driver); 5029 5030 MODULE_DESCRIPTION(DRIVER_DESC); 5031 MODULE_AUTHOR(DRIVER_AUTHOR); 5032 MODULE_LICENSE("GPL"); 5033 5034 static int __init xhci_hcd_init(void) 5035 { 5036 /* 5037 * Check the compiler generated sizes of structures that must be laid 5038 * out in specific ways for hardware access. 5039 */ 5040 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5041 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5042 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5043 /* xhci_device_control has eight fields, and also 5044 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5045 */ 5046 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5047 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5048 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5049 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5050 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5051 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5052 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5053 5054 if (usb_disabled()) 5055 return -ENODEV; 5056 5057 return 0; 5058 } 5059 5060 /* 5061 * If an init function is provided, an exit function must also be provided 5062 * to allow module unload. 5063 */ 5064 static void __exit xhci_hcd_fini(void) { } 5065 5066 module_init(xhci_hcd_init); 5067 module_exit(xhci_hcd_fini); 5068