xref: /openbmc/linux/drivers/usb/host/xhci.c (revision fbb6b31a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70 	u32	result;
71 	int	ret;
72 
73 	ret = readl_poll_timeout_atomic(ptr, result,
74 					(result & mask) == done ||
75 					result == U32_MAX,
76 					1, timeout_us);
77 	if (result == U32_MAX)		/* card removed */
78 		return -ENODEV;
79 
80 	return ret;
81 }
82 
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 	u32 halted;
89 	u32 cmd;
90 	u32 mask;
91 
92 	mask = ~(XHCI_IRQS);
93 	halted = readl(&xhci->op_regs->status) & STS_HALT;
94 	if (!halted)
95 		mask &= ~CMD_RUN;
96 
97 	cmd = readl(&xhci->op_regs->command);
98 	cmd &= mask;
99 	writel(cmd, &xhci->op_regs->command);
100 }
101 
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 	int ret;
113 
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 
124 	xhci->xhc_state |= XHCI_STATE_HALTED;
125 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126 
127 	return ret;
128 }
129 
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 	u32 temp;
136 	int ret;
137 
138 	temp = readl(&xhci->op_regs->command);
139 	temp |= (CMD_RUN);
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 			temp);
142 	writel(temp, &xhci->op_regs->command);
143 
144 	/*
145 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 	 * running.
147 	 */
148 	ret = xhci_handshake(&xhci->op_regs->status,
149 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 	if (ret == -ETIMEDOUT)
151 		xhci_err(xhci, "Host took too long to start, "
152 				"waited %u microseconds.\n",
153 				XHCI_MAX_HALT_USEC);
154 	if (!ret)
155 		/* clear state flags. Including dying, halted or removing */
156 		xhci->xhc_state = 0;
157 
158 	return ret;
159 }
160 
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
169 {
170 	u32 command;
171 	u32 state;
172 	int ret;
173 
174 	state = readl(&xhci->op_regs->status);
175 
176 	if (state == ~(u32)0) {
177 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 		return -ENODEV;
179 	}
180 
181 	if ((state & STS_HALT) == 0) {
182 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 		return 0;
184 	}
185 
186 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 	command = readl(&xhci->op_regs->command);
188 	command |= CMD_RESET;
189 	writel(command, &xhci->op_regs->command);
190 
191 	/* Existing Intel xHCI controllers require a delay of 1 mS,
192 	 * after setting the CMD_RESET bit, and before accessing any
193 	 * HC registers. This allows the HC to complete the
194 	 * reset operation and be ready for HC register access.
195 	 * Without this delay, the subsequent HC register access,
196 	 * may result in a system hang very rarely.
197 	 */
198 	if (xhci->quirks & XHCI_INTEL_HOST)
199 		udelay(1000);
200 
201 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
202 	if (ret)
203 		return ret;
204 
205 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
206 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
207 
208 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
209 			 "Wait for controller to be ready for doorbell rings");
210 	/*
211 	 * xHCI cannot write to any doorbells or operational registers other
212 	 * than status until the "Controller Not Ready" flag is cleared.
213 	 */
214 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 	u32 intrs;
232 
233 	/*
234 	 * Some Renesas controllers get into a weird state if they are
235 	 * reset while programmed with 64bit addresses (they will preserve
236 	 * the top half of the address in internal, non visible
237 	 * registers). You end up with half the address coming from the
238 	 * kernel, and the other half coming from the firmware. Also,
239 	 * changing the programming leads to extra accesses even if the
240 	 * controller is supposed to be halted. The controller ends up with
241 	 * a fatal fault, and is then ripe for being properly reset.
242 	 *
243 	 * Special care is taken to only apply this if the device is behind
244 	 * an iommu. Doing anything when there is no iommu is definitely
245 	 * unsafe...
246 	 */
247 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
248 		return;
249 
250 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251 
252 	/* Clear HSEIE so that faults do not get signaled */
253 	val = readl(&xhci->op_regs->command);
254 	val &= ~CMD_HSEIE;
255 	writel(val, &xhci->op_regs->command);
256 
257 	/* Clear HSE (aka FATAL) */
258 	val = readl(&xhci->op_regs->status);
259 	val |= STS_FATAL;
260 	writel(val, &xhci->op_regs->status);
261 
262 	/* Now zero the registers, and brace for impact */
263 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264 	if (upper_32_bits(val))
265 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267 	if (upper_32_bits(val))
268 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269 
270 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
271 		      ARRAY_SIZE(xhci->run_regs->ir_set));
272 
273 	for (i = 0; i < intrs; i++) {
274 		struct xhci_intr_reg __iomem *ir;
275 
276 		ir = &xhci->run_regs->ir_set[i];
277 		val = xhci_read_64(xhci, &ir->erst_base);
278 		if (upper_32_bits(val))
279 			xhci_write_64(xhci, 0, &ir->erst_base);
280 		val= xhci_read_64(xhci, &ir->erst_dequeue);
281 		if (upper_32_bits(val))
282 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
283 	}
284 
285 	/* Wait for the fault to appear. It will be cleared on reset */
286 	err = xhci_handshake(&xhci->op_regs->status,
287 			     STS_FATAL, STS_FATAL,
288 			     XHCI_MAX_HALT_USEC);
289 	if (!err)
290 		xhci_info(xhci, "Fault detected\n");
291 }
292 
293 #ifdef CONFIG_USB_PCI
294 /*
295  * Set up MSI
296  */
297 static int xhci_setup_msi(struct xhci_hcd *xhci)
298 {
299 	int ret;
300 	/*
301 	 * TODO:Check with MSI Soc for sysdev
302 	 */
303 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304 
305 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
306 	if (ret < 0) {
307 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
308 				"failed to allocate MSI entry");
309 		return ret;
310 	}
311 
312 	ret = request_irq(pdev->irq, xhci_msi_irq,
313 				0, "xhci_hcd", xhci_to_hcd(xhci));
314 	if (ret) {
315 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
316 				"disable MSI interrupt");
317 		pci_free_irq_vectors(pdev);
318 	}
319 
320 	return ret;
321 }
322 
323 /*
324  * Set up MSI-X
325  */
326 static int xhci_setup_msix(struct xhci_hcd *xhci)
327 {
328 	int i, ret;
329 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
330 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
331 
332 	/*
333 	 * calculate number of msi-x vectors supported.
334 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
335 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
336 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
337 	 *   Add additional 1 vector to ensure always available interrupt.
338 	 */
339 	xhci->msix_count = min(num_online_cpus() + 1,
340 				HCS_MAX_INTRS(xhci->hcs_params1));
341 
342 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
343 			PCI_IRQ_MSIX);
344 	if (ret < 0) {
345 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
346 				"Failed to enable MSI-X");
347 		return ret;
348 	}
349 
350 	for (i = 0; i < xhci->msix_count; i++) {
351 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
352 				"xhci_hcd", xhci_to_hcd(xhci));
353 		if (ret)
354 			goto disable_msix;
355 	}
356 
357 	hcd->msix_enabled = 1;
358 	return ret;
359 
360 disable_msix:
361 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
362 	while (--i >= 0)
363 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
364 	pci_free_irq_vectors(pdev);
365 	return ret;
366 }
367 
368 /* Free any IRQs and disable MSI-X */
369 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
370 {
371 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
372 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
373 
374 	if (xhci->quirks & XHCI_PLAT)
375 		return;
376 
377 	/* return if using legacy interrupt */
378 	if (hcd->irq > 0)
379 		return;
380 
381 	if (hcd->msix_enabled) {
382 		int i;
383 
384 		for (i = 0; i < xhci->msix_count; i++)
385 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
386 	} else {
387 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
388 	}
389 
390 	pci_free_irq_vectors(pdev);
391 	hcd->msix_enabled = 0;
392 }
393 
394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
395 {
396 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
397 
398 	if (hcd->msix_enabled) {
399 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
400 		int i;
401 
402 		for (i = 0; i < xhci->msix_count; i++)
403 			synchronize_irq(pci_irq_vector(pdev, i));
404 	}
405 }
406 
407 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
410 	struct pci_dev  *pdev;
411 	int ret;
412 
413 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
414 	if (xhci->quirks & XHCI_PLAT)
415 		return 0;
416 
417 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418 	/*
419 	 * Some Fresco Logic host controllers advertise MSI, but fail to
420 	 * generate interrupts.  Don't even try to enable MSI.
421 	 */
422 	if (xhci->quirks & XHCI_BROKEN_MSI)
423 		goto legacy_irq;
424 
425 	/* unregister the legacy interrupt */
426 	if (hcd->irq)
427 		free_irq(hcd->irq, hcd);
428 	hcd->irq = 0;
429 
430 	ret = xhci_setup_msix(xhci);
431 	if (ret)
432 		/* fall back to msi*/
433 		ret = xhci_setup_msi(xhci);
434 
435 	if (!ret) {
436 		hcd->msi_enabled = 1;
437 		return 0;
438 	}
439 
440 	if (!pdev->irq) {
441 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
442 		return -EINVAL;
443 	}
444 
445  legacy_irq:
446 	if (!strlen(hcd->irq_descr))
447 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
448 			 hcd->driver->description, hcd->self.busnum);
449 
450 	/* fall back to legacy interrupt*/
451 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
452 			hcd->irq_descr, hcd);
453 	if (ret) {
454 		xhci_err(xhci, "request interrupt %d failed\n",
455 				pdev->irq);
456 		return ret;
457 	}
458 	hcd->irq = pdev->irq;
459 	return 0;
460 }
461 
462 #else
463 
464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
465 {
466 	return 0;
467 }
468 
469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
470 {
471 }
472 
473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
474 {
475 }
476 
477 #endif
478 
479 static void compliance_mode_recovery(struct timer_list *t)
480 {
481 	struct xhci_hcd *xhci;
482 	struct usb_hcd *hcd;
483 	struct xhci_hub *rhub;
484 	u32 temp;
485 	int i;
486 
487 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
488 	rhub = &xhci->usb3_rhub;
489 
490 	for (i = 0; i < rhub->num_ports; i++) {
491 		temp = readl(rhub->ports[i]->addr);
492 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
493 			/*
494 			 * Compliance Mode Detected. Letting USB Core
495 			 * handle the Warm Reset
496 			 */
497 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498 					"Compliance mode detected->port %d",
499 					i + 1);
500 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
501 					"Attempting compliance mode recovery");
502 			hcd = xhci->shared_hcd;
503 
504 			if (hcd->state == HC_STATE_SUSPENDED)
505 				usb_hcd_resume_root_hub(hcd);
506 
507 			usb_hcd_poll_rh_status(hcd);
508 		}
509 	}
510 
511 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
512 		mod_timer(&xhci->comp_mode_recovery_timer,
513 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
514 }
515 
516 /*
517  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
518  * that causes ports behind that hardware to enter compliance mode sometimes.
519  * The quirk creates a timer that polls every 2 seconds the link state of
520  * each host controller's port and recovers it by issuing a Warm reset
521  * if Compliance mode is detected, otherwise the port will become "dead" (no
522  * device connections or disconnections will be detected anymore). Becasue no
523  * status event is generated when entering compliance mode (per xhci spec),
524  * this quirk is needed on systems that have the failing hardware installed.
525  */
526 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
527 {
528 	xhci->port_status_u0 = 0;
529 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
530 		    0);
531 	xhci->comp_mode_recovery_timer.expires = jiffies +
532 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
533 
534 	add_timer(&xhci->comp_mode_recovery_timer);
535 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
536 			"Compliance mode recovery timer initialized");
537 }
538 
539 /*
540  * This function identifies the systems that have installed the SN65LVPE502CP
541  * USB3.0 re-driver and that need the Compliance Mode Quirk.
542  * Systems:
543  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
544  */
545 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
546 {
547 	const char *dmi_product_name, *dmi_sys_vendor;
548 
549 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
550 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
551 	if (!dmi_product_name || !dmi_sys_vendor)
552 		return false;
553 
554 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
555 		return false;
556 
557 	if (strstr(dmi_product_name, "Z420") ||
558 			strstr(dmi_product_name, "Z620") ||
559 			strstr(dmi_product_name, "Z820") ||
560 			strstr(dmi_product_name, "Z1 Workstation"))
561 		return true;
562 
563 	return false;
564 }
565 
566 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
567 {
568 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
569 }
570 
571 
572 /*
573  * Initialize memory for HCD and xHC (one-time init).
574  *
575  * Program the PAGESIZE register, initialize the device context array, create
576  * device contexts (?), set up a command ring segment (or two?), create event
577  * ring (one for now).
578  */
579 static int xhci_init(struct usb_hcd *hcd)
580 {
581 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582 	int retval;
583 
584 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
585 	spin_lock_init(&xhci->lock);
586 	if (xhci->hci_version == 0x95 && link_quirk) {
587 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
588 				"QUIRK: Not clearing Link TRB chain bits.");
589 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
590 	} else {
591 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
592 				"xHCI doesn't need link TRB QUIRK");
593 	}
594 	retval = xhci_mem_init(xhci, GFP_KERNEL);
595 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
596 
597 	/* Initializing Compliance Mode Recovery Data If Needed */
598 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
599 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
600 		compliance_mode_recovery_timer_init(xhci);
601 	}
602 
603 	return retval;
604 }
605 
606 /*-------------------------------------------------------------------------*/
607 
608 
609 static int xhci_run_finished(struct xhci_hcd *xhci)
610 {
611 	if (xhci_start(xhci)) {
612 		xhci_halt(xhci);
613 		return -ENODEV;
614 	}
615 	xhci->shared_hcd->state = HC_STATE_RUNNING;
616 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
617 
618 	if (xhci->quirks & XHCI_NEC_HOST)
619 		xhci_ring_cmd_db(xhci);
620 
621 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
622 			"Finished xhci_run for USB3 roothub");
623 	return 0;
624 }
625 
626 /*
627  * Start the HC after it was halted.
628  *
629  * This function is called by the USB core when the HC driver is added.
630  * Its opposite is xhci_stop().
631  *
632  * xhci_init() must be called once before this function can be called.
633  * Reset the HC, enable device slot contexts, program DCBAAP, and
634  * set command ring pointer and event ring pointer.
635  *
636  * Setup MSI-X vectors and enable interrupts.
637  */
638 int xhci_run(struct usb_hcd *hcd)
639 {
640 	u32 temp;
641 	u64 temp_64;
642 	int ret;
643 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644 
645 	/* Start the xHCI host controller running only after the USB 2.0 roothub
646 	 * is setup.
647 	 */
648 
649 	hcd->uses_new_polling = 1;
650 	if (!usb_hcd_is_primary_hcd(hcd))
651 		return xhci_run_finished(xhci);
652 
653 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
654 
655 	ret = xhci_try_enable_msi(hcd);
656 	if (ret)
657 		return ret;
658 
659 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
660 	temp_64 &= ~ERST_PTR_MASK;
661 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
663 
664 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
665 			"// Set the interrupt modulation register");
666 	temp = readl(&xhci->ir_set->irq_control);
667 	temp &= ~ER_IRQ_INTERVAL_MASK;
668 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
669 	writel(temp, &xhci->ir_set->irq_control);
670 
671 	/* Set the HCD state before we enable the irqs */
672 	temp = readl(&xhci->op_regs->command);
673 	temp |= (CMD_EIE);
674 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
675 			"// Enable interrupts, cmd = 0x%x.", temp);
676 	writel(temp, &xhci->op_regs->command);
677 
678 	temp = readl(&xhci->ir_set->irq_pending);
679 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
681 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
682 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
683 
684 	if (xhci->quirks & XHCI_NEC_HOST) {
685 		struct xhci_command *command;
686 
687 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
688 		if (!command)
689 			return -ENOMEM;
690 
691 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
692 				TRB_TYPE(TRB_NEC_GET_FW));
693 		if (ret)
694 			xhci_free_command(xhci, command);
695 	}
696 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
697 			"Finished xhci_run for USB2 roothub");
698 
699 	xhci_create_dbc_dev(xhci);
700 
701 	xhci_debugfs_init(xhci);
702 
703 	return 0;
704 }
705 EXPORT_SYMBOL_GPL(xhci_run);
706 
707 /*
708  * Stop xHCI driver.
709  *
710  * This function is called by the USB core when the HC driver is removed.
711  * Its opposite is xhci_run().
712  *
713  * Disable device contexts, disable IRQs, and quiesce the HC.
714  * Reset the HC, finish any completed transactions, and cleanup memory.
715  */
716 static void xhci_stop(struct usb_hcd *hcd)
717 {
718 	u32 temp;
719 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720 
721 	mutex_lock(&xhci->mutex);
722 
723 	/* Only halt host and free memory after both hcds are removed */
724 	if (!usb_hcd_is_primary_hcd(hcd)) {
725 		mutex_unlock(&xhci->mutex);
726 		return;
727 	}
728 
729 	xhci_remove_dbc_dev(xhci);
730 
731 	spin_lock_irq(&xhci->lock);
732 	xhci->xhc_state |= XHCI_STATE_HALTED;
733 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
734 	xhci_halt(xhci);
735 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
736 	spin_unlock_irq(&xhci->lock);
737 
738 	xhci_cleanup_msix(xhci);
739 
740 	/* Deleting Compliance Mode Recovery Timer */
741 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
742 			(!(xhci_all_ports_seen_u0(xhci)))) {
743 		del_timer_sync(&xhci->comp_mode_recovery_timer);
744 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
745 				"%s: compliance mode recovery timer deleted",
746 				__func__);
747 	}
748 
749 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
750 		usb_amd_dev_put();
751 
752 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753 			"// Disabling event ring interrupts");
754 	temp = readl(&xhci->op_regs->status);
755 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
756 	temp = readl(&xhci->ir_set->irq_pending);
757 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
758 
759 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
760 	xhci_mem_cleanup(xhci);
761 	xhci_debugfs_exit(xhci);
762 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 			"xhci_stop completed - status = %x",
764 			readl(&xhci->op_regs->status));
765 	mutex_unlock(&xhci->mutex);
766 }
767 
768 /*
769  * Shutdown HC (not bus-specific)
770  *
771  * This is called when the machine is rebooting or halting.  We assume that the
772  * machine will be powered off, and the HC's internal state will be reset.
773  * Don't bother to free memory.
774  *
775  * This will only ever be called with the main usb_hcd (the USB3 roothub).
776  */
777 void xhci_shutdown(struct usb_hcd *hcd)
778 {
779 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
780 
781 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
782 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
783 
784 	/* Don't poll the roothubs after shutdown. */
785 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
786 			__func__, hcd->self.busnum);
787 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
788 	del_timer_sync(&hcd->rh_timer);
789 
790 	if (xhci->shared_hcd) {
791 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
792 		del_timer_sync(&xhci->shared_hcd->rh_timer);
793 	}
794 
795 	spin_lock_irq(&xhci->lock);
796 	xhci_halt(xhci);
797 	/* Workaround for spurious wakeups at shutdown with HSW */
798 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
799 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
800 	spin_unlock_irq(&xhci->lock);
801 
802 	xhci_cleanup_msix(xhci);
803 
804 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
805 			"xhci_shutdown completed - status = %x",
806 			readl(&xhci->op_regs->status));
807 }
808 EXPORT_SYMBOL_GPL(xhci_shutdown);
809 
810 #ifdef CONFIG_PM
811 static void xhci_save_registers(struct xhci_hcd *xhci)
812 {
813 	xhci->s3.command = readl(&xhci->op_regs->command);
814 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
815 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
816 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
817 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
818 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
819 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
820 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
821 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
822 }
823 
824 static void xhci_restore_registers(struct xhci_hcd *xhci)
825 {
826 	writel(xhci->s3.command, &xhci->op_regs->command);
827 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
828 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
829 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
830 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
831 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
832 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
833 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
834 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
835 }
836 
837 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
838 {
839 	u64	val_64;
840 
841 	/* step 2: initialize command ring buffer */
842 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
843 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
844 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
845 				      xhci->cmd_ring->dequeue) &
846 		 (u64) ~CMD_RING_RSVD_BITS) |
847 		xhci->cmd_ring->cycle_state;
848 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
849 			"// Setting command ring address to 0x%llx",
850 			(long unsigned long) val_64);
851 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
852 }
853 
854 /*
855  * The whole command ring must be cleared to zero when we suspend the host.
856  *
857  * The host doesn't save the command ring pointer in the suspend well, so we
858  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
859  * aligned, because of the reserved bits in the command ring dequeue pointer
860  * register.  Therefore, we can't just set the dequeue pointer back in the
861  * middle of the ring (TRBs are 16-byte aligned).
862  */
863 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
864 {
865 	struct xhci_ring *ring;
866 	struct xhci_segment *seg;
867 
868 	ring = xhci->cmd_ring;
869 	seg = ring->deq_seg;
870 	do {
871 		memset(seg->trbs, 0,
872 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
873 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
874 			cpu_to_le32(~TRB_CYCLE);
875 		seg = seg->next;
876 	} while (seg != ring->deq_seg);
877 
878 	/* Reset the software enqueue and dequeue pointers */
879 	ring->deq_seg = ring->first_seg;
880 	ring->dequeue = ring->first_seg->trbs;
881 	ring->enq_seg = ring->deq_seg;
882 	ring->enqueue = ring->dequeue;
883 
884 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
885 	/*
886 	 * Ring is now zeroed, so the HW should look for change of ownership
887 	 * when the cycle bit is set to 1.
888 	 */
889 	ring->cycle_state = 1;
890 
891 	/*
892 	 * Reset the hardware dequeue pointer.
893 	 * Yes, this will need to be re-written after resume, but we're paranoid
894 	 * and want to make sure the hardware doesn't access bogus memory
895 	 * because, say, the BIOS or an SMI started the host without changing
896 	 * the command ring pointers.
897 	 */
898 	xhci_set_cmd_ring_deq(xhci);
899 }
900 
901 /*
902  * Disable port wake bits if do_wakeup is not set.
903  *
904  * Also clear a possible internal port wake state left hanging for ports that
905  * detected termination but never successfully enumerated (trained to 0U).
906  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
907  * at enumeration clears this wake, force one here as well for unconnected ports
908  */
909 
910 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
911 				       struct xhci_hub *rhub,
912 				       bool do_wakeup)
913 {
914 	unsigned long flags;
915 	u32 t1, t2, portsc;
916 	int i;
917 
918 	spin_lock_irqsave(&xhci->lock, flags);
919 
920 	for (i = 0; i < rhub->num_ports; i++) {
921 		portsc = readl(rhub->ports[i]->addr);
922 		t1 = xhci_port_state_to_neutral(portsc);
923 		t2 = t1;
924 
925 		/* clear wake bits if do_wake is not set */
926 		if (!do_wakeup)
927 			t2 &= ~PORT_WAKE_BITS;
928 
929 		/* Don't touch csc bit if connected or connect change is set */
930 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
931 			t2 |= PORT_CSC;
932 
933 		if (t1 != t2) {
934 			writel(t2, rhub->ports[i]->addr);
935 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
936 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
937 		}
938 	}
939 	spin_unlock_irqrestore(&xhci->lock, flags);
940 }
941 
942 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
943 {
944 	struct xhci_port	**ports;
945 	int			port_index;
946 	u32			status;
947 	u32			portsc;
948 
949 	status = readl(&xhci->op_regs->status);
950 	if (status & STS_EINT)
951 		return true;
952 	/*
953 	 * Checking STS_EINT is not enough as there is a lag between a change
954 	 * bit being set and the Port Status Change Event that it generated
955 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
956 	 */
957 
958 	port_index = xhci->usb2_rhub.num_ports;
959 	ports = xhci->usb2_rhub.ports;
960 	while (port_index--) {
961 		portsc = readl(ports[port_index]->addr);
962 		if (portsc & PORT_CHANGE_MASK ||
963 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
964 			return true;
965 	}
966 	port_index = xhci->usb3_rhub.num_ports;
967 	ports = xhci->usb3_rhub.ports;
968 	while (port_index--) {
969 		portsc = readl(ports[port_index]->addr);
970 		if (portsc & PORT_CHANGE_MASK ||
971 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
972 			return true;
973 	}
974 	return false;
975 }
976 
977 /*
978  * Stop HC (not bus-specific)
979  *
980  * This is called when the machine transition into S3/S4 mode.
981  *
982  */
983 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
984 {
985 	int			rc = 0;
986 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
987 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
988 	u32			command;
989 	u32			res;
990 
991 	if (!hcd->state)
992 		return 0;
993 
994 	if (hcd->state != HC_STATE_SUSPENDED ||
995 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
996 		return -EINVAL;
997 
998 	/* Clear root port wake on bits if wakeup not allowed. */
999 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1000 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1001 
1002 	if (!HCD_HW_ACCESSIBLE(hcd))
1003 		return 0;
1004 
1005 	xhci_dbc_suspend(xhci);
1006 
1007 	/* Don't poll the roothubs on bus suspend. */
1008 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1009 		 __func__, hcd->self.busnum);
1010 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1011 	del_timer_sync(&hcd->rh_timer);
1012 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1013 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1014 
1015 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1016 		usleep_range(1000, 1500);
1017 
1018 	spin_lock_irq(&xhci->lock);
1019 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1020 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1021 	/* step 1: stop endpoint */
1022 	/* skipped assuming that port suspend has done */
1023 
1024 	/* step 2: clear Run/Stop bit */
1025 	command = readl(&xhci->op_regs->command);
1026 	command &= ~CMD_RUN;
1027 	writel(command, &xhci->op_regs->command);
1028 
1029 	/* Some chips from Fresco Logic need an extraordinary delay */
1030 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1031 
1032 	if (xhci_handshake(&xhci->op_regs->status,
1033 		      STS_HALT, STS_HALT, delay)) {
1034 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1035 		spin_unlock_irq(&xhci->lock);
1036 		return -ETIMEDOUT;
1037 	}
1038 	xhci_clear_command_ring(xhci);
1039 
1040 	/* step 3: save registers */
1041 	xhci_save_registers(xhci);
1042 
1043 	/* step 4: set CSS flag */
1044 	command = readl(&xhci->op_regs->command);
1045 	command |= CMD_CSS;
1046 	writel(command, &xhci->op_regs->command);
1047 	xhci->broken_suspend = 0;
1048 	if (xhci_handshake(&xhci->op_regs->status,
1049 				STS_SAVE, 0, 20 * 1000)) {
1050 	/*
1051 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1052 	 * SSS bit of USBSTS and when driver tries to poll
1053 	 * to see if the xHC clears BIT(8) which never happens
1054 	 * and driver assumes that controller is not responding
1055 	 * and times out. To workaround this, its good to check
1056 	 * if SRE and HCE bits are not set (as per xhci
1057 	 * Section 5.4.2) and bypass the timeout.
1058 	 */
1059 		res = readl(&xhci->op_regs->status);
1060 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1061 		    (((res & STS_SRE) == 0) &&
1062 				((res & STS_HCE) == 0))) {
1063 			xhci->broken_suspend = 1;
1064 		} else {
1065 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1066 			spin_unlock_irq(&xhci->lock);
1067 			return -ETIMEDOUT;
1068 		}
1069 	}
1070 	spin_unlock_irq(&xhci->lock);
1071 
1072 	/*
1073 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1074 	 * is about to be suspended.
1075 	 */
1076 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1077 			(!(xhci_all_ports_seen_u0(xhci)))) {
1078 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1079 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1080 				"%s: compliance mode recovery timer deleted",
1081 				__func__);
1082 	}
1083 
1084 	/* step 5: remove core well power */
1085 	/* synchronize irq when using MSI-X */
1086 	xhci_msix_sync_irqs(xhci);
1087 
1088 	return rc;
1089 }
1090 EXPORT_SYMBOL_GPL(xhci_suspend);
1091 
1092 /*
1093  * start xHC (not bus-specific)
1094  *
1095  * This is called when the machine transition from S3/S4 mode.
1096  *
1097  */
1098 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1099 {
1100 	u32			command, temp = 0;
1101 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1102 	struct usb_hcd		*secondary_hcd;
1103 	int			retval = 0;
1104 	bool			comp_timer_running = false;
1105 	bool			pending_portevent = false;
1106 	bool			reinit_xhc = false;
1107 
1108 	if (!hcd->state)
1109 		return 0;
1110 
1111 	/* Wait a bit if either of the roothubs need to settle from the
1112 	 * transition into bus suspend.
1113 	 */
1114 
1115 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1116 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1117 		msleep(100);
1118 
1119 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1120 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1121 
1122 	spin_lock_irq(&xhci->lock);
1123 
1124 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1125 		reinit_xhc = true;
1126 
1127 	if (!reinit_xhc) {
1128 		/*
1129 		 * Some controllers might lose power during suspend, so wait
1130 		 * for controller not ready bit to clear, just as in xHC init.
1131 		 */
1132 		retval = xhci_handshake(&xhci->op_regs->status,
1133 					STS_CNR, 0, 10 * 1000 * 1000);
1134 		if (retval) {
1135 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1136 				  retval);
1137 			spin_unlock_irq(&xhci->lock);
1138 			return retval;
1139 		}
1140 		/* step 1: restore register */
1141 		xhci_restore_registers(xhci);
1142 		/* step 2: initialize command ring buffer */
1143 		xhci_set_cmd_ring_deq(xhci);
1144 		/* step 3: restore state and start state*/
1145 		/* step 3: set CRS flag */
1146 		command = readl(&xhci->op_regs->command);
1147 		command |= CMD_CRS;
1148 		writel(command, &xhci->op_regs->command);
1149 		/*
1150 		 * Some controllers take up to 55+ ms to complete the controller
1151 		 * restore so setting the timeout to 100ms. Xhci specification
1152 		 * doesn't mention any timeout value.
1153 		 */
1154 		if (xhci_handshake(&xhci->op_regs->status,
1155 			      STS_RESTORE, 0, 100 * 1000)) {
1156 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1157 			spin_unlock_irq(&xhci->lock);
1158 			return -ETIMEDOUT;
1159 		}
1160 	}
1161 
1162 	temp = readl(&xhci->op_regs->status);
1163 
1164 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1165 	if (temp & (STS_SRE | STS_HCE)) {
1166 		reinit_xhc = true;
1167 		xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1168 	}
1169 
1170 	if (reinit_xhc) {
1171 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1172 				!(xhci_all_ports_seen_u0(xhci))) {
1173 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1174 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1175 				"Compliance Mode Recovery Timer deleted!");
1176 		}
1177 
1178 		/* Let the USB core know _both_ roothubs lost power. */
1179 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1180 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1181 
1182 		xhci_dbg(xhci, "Stop HCD\n");
1183 		xhci_halt(xhci);
1184 		xhci_zero_64b_regs(xhci);
1185 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1186 		spin_unlock_irq(&xhci->lock);
1187 		if (retval)
1188 			return retval;
1189 		xhci_cleanup_msix(xhci);
1190 
1191 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1192 		temp = readl(&xhci->op_regs->status);
1193 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1194 		temp = readl(&xhci->ir_set->irq_pending);
1195 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1196 
1197 		xhci_dbg(xhci, "cleaning up memory\n");
1198 		xhci_mem_cleanup(xhci);
1199 		xhci_debugfs_exit(xhci);
1200 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1201 			    readl(&xhci->op_regs->status));
1202 
1203 		/* USB core calls the PCI reinit and start functions twice:
1204 		 * first with the primary HCD, and then with the secondary HCD.
1205 		 * If we don't do the same, the host will never be started.
1206 		 */
1207 		if (!usb_hcd_is_primary_hcd(hcd))
1208 			secondary_hcd = hcd;
1209 		else
1210 			secondary_hcd = xhci->shared_hcd;
1211 
1212 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1213 		retval = xhci_init(hcd->primary_hcd);
1214 		if (retval)
1215 			return retval;
1216 		comp_timer_running = true;
1217 
1218 		xhci_dbg(xhci, "Start the primary HCD\n");
1219 		retval = xhci_run(hcd->primary_hcd);
1220 		if (!retval) {
1221 			xhci_dbg(xhci, "Start the secondary HCD\n");
1222 			retval = xhci_run(secondary_hcd);
1223 		}
1224 		hcd->state = HC_STATE_SUSPENDED;
1225 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1226 		goto done;
1227 	}
1228 
1229 	/* step 4: set Run/Stop bit */
1230 	command = readl(&xhci->op_regs->command);
1231 	command |= CMD_RUN;
1232 	writel(command, &xhci->op_regs->command);
1233 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1234 		  0, 250 * 1000);
1235 
1236 	/* step 5: walk topology and initialize portsc,
1237 	 * portpmsc and portli
1238 	 */
1239 	/* this is done in bus_resume */
1240 
1241 	/* step 6: restart each of the previously
1242 	 * Running endpoints by ringing their doorbells
1243 	 */
1244 
1245 	spin_unlock_irq(&xhci->lock);
1246 
1247 	xhci_dbc_resume(xhci);
1248 
1249  done:
1250 	if (retval == 0) {
1251 		/*
1252 		 * Resume roothubs only if there are pending events.
1253 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1254 		 * the first wake signalling failed, give it that chance.
1255 		 */
1256 		pending_portevent = xhci_pending_portevent(xhci);
1257 		if (!pending_portevent) {
1258 			msleep(120);
1259 			pending_portevent = xhci_pending_portevent(xhci);
1260 		}
1261 
1262 		if (pending_portevent) {
1263 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1264 			usb_hcd_resume_root_hub(hcd);
1265 		}
1266 	}
1267 	/*
1268 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1269 	 * be re-initialized Always after a system resume. Ports are subject
1270 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1271 	 * ports have entered previously to U0 before system's suspension.
1272 	 */
1273 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1274 		compliance_mode_recovery_timer_init(xhci);
1275 
1276 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1277 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1278 
1279 	/* Re-enable port polling. */
1280 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1281 		 __func__, hcd->self.busnum);
1282 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1283 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1284 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1285 	usb_hcd_poll_rh_status(hcd);
1286 
1287 	return retval;
1288 }
1289 EXPORT_SYMBOL_GPL(xhci_resume);
1290 #endif	/* CONFIG_PM */
1291 
1292 /*-------------------------------------------------------------------------*/
1293 
1294 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1295 {
1296 	void *temp;
1297 	int ret = 0;
1298 	unsigned int buf_len;
1299 	enum dma_data_direction dir;
1300 
1301 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1302 	buf_len = urb->transfer_buffer_length;
1303 
1304 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1305 			    dev_to_node(hcd->self.sysdev));
1306 
1307 	if (usb_urb_dir_out(urb))
1308 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1309 				   temp, buf_len, 0);
1310 
1311 	urb->transfer_buffer = temp;
1312 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1313 					   urb->transfer_buffer,
1314 					   urb->transfer_buffer_length,
1315 					   dir);
1316 
1317 	if (dma_mapping_error(hcd->self.sysdev,
1318 			      urb->transfer_dma)) {
1319 		ret = -EAGAIN;
1320 		kfree(temp);
1321 	} else {
1322 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1323 	}
1324 
1325 	return ret;
1326 }
1327 
1328 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1329 					  struct urb *urb)
1330 {
1331 	bool ret = false;
1332 	unsigned int i;
1333 	unsigned int len = 0;
1334 	unsigned int trb_size;
1335 	unsigned int max_pkt;
1336 	struct scatterlist *sg;
1337 	struct scatterlist *tail_sg;
1338 
1339 	tail_sg = urb->sg;
1340 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1341 
1342 	if (!urb->num_sgs)
1343 		return ret;
1344 
1345 	if (urb->dev->speed >= USB_SPEED_SUPER)
1346 		trb_size = TRB_CACHE_SIZE_SS;
1347 	else
1348 		trb_size = TRB_CACHE_SIZE_HS;
1349 
1350 	if (urb->transfer_buffer_length != 0 &&
1351 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1352 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1353 			len = len + sg->length;
1354 			if (i > trb_size - 2) {
1355 				len = len - tail_sg->length;
1356 				if (len < max_pkt) {
1357 					ret = true;
1358 					break;
1359 				}
1360 
1361 				tail_sg = sg_next(tail_sg);
1362 			}
1363 		}
1364 	}
1365 	return ret;
1366 }
1367 
1368 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1369 {
1370 	unsigned int len;
1371 	unsigned int buf_len;
1372 	enum dma_data_direction dir;
1373 
1374 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1375 
1376 	buf_len = urb->transfer_buffer_length;
1377 
1378 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1379 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1380 		dma_unmap_single(hcd->self.sysdev,
1381 				 urb->transfer_dma,
1382 				 urb->transfer_buffer_length,
1383 				 dir);
1384 
1385 	if (usb_urb_dir_in(urb)) {
1386 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1387 					   urb->transfer_buffer,
1388 					   buf_len,
1389 					   0);
1390 		if (len != buf_len) {
1391 			xhci_dbg(hcd_to_xhci(hcd),
1392 				 "Copy from tmp buf to urb sg list failed\n");
1393 			urb->actual_length = len;
1394 		}
1395 	}
1396 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1397 	kfree(urb->transfer_buffer);
1398 	urb->transfer_buffer = NULL;
1399 }
1400 
1401 /*
1402  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1403  * we'll copy the actual data into the TRB address register. This is limited to
1404  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1405  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1406  */
1407 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1408 				gfp_t mem_flags)
1409 {
1410 	struct xhci_hcd *xhci;
1411 
1412 	xhci = hcd_to_xhci(hcd);
1413 
1414 	if (xhci_urb_suitable_for_idt(urb))
1415 		return 0;
1416 
1417 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1418 		if (xhci_urb_temp_buffer_required(hcd, urb))
1419 			return xhci_map_temp_buffer(hcd, urb);
1420 	}
1421 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1422 }
1423 
1424 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1425 {
1426 	struct xhci_hcd *xhci;
1427 	bool unmap_temp_buf = false;
1428 
1429 	xhci = hcd_to_xhci(hcd);
1430 
1431 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1432 		unmap_temp_buf = true;
1433 
1434 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1435 		xhci_unmap_temp_buf(hcd, urb);
1436 	else
1437 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1438 }
1439 
1440 /**
1441  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1442  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1443  * value to right shift 1 for the bitmask.
1444  *
1445  * Index  = (epnum * 2) + direction - 1,
1446  * where direction = 0 for OUT, 1 for IN.
1447  * For control endpoints, the IN index is used (OUT index is unused), so
1448  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1449  */
1450 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1451 {
1452 	unsigned int index;
1453 	if (usb_endpoint_xfer_control(desc))
1454 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1455 	else
1456 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1457 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1458 	return index;
1459 }
1460 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1461 
1462 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1463  * address from the XHCI endpoint index.
1464  */
1465 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1466 {
1467 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1468 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1469 	return direction | number;
1470 }
1471 
1472 /* Find the flag for this endpoint (for use in the control context).  Use the
1473  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1474  * bit 1, etc.
1475  */
1476 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1477 {
1478 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1479 }
1480 
1481 /* Compute the last valid endpoint context index.  Basically, this is the
1482  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1483  * we find the most significant bit set in the added contexts flags.
1484  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1485  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1486  */
1487 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1488 {
1489 	return fls(added_ctxs) - 1;
1490 }
1491 
1492 /* Returns 1 if the arguments are OK;
1493  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1494  */
1495 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1496 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1497 		const char *func) {
1498 	struct xhci_hcd	*xhci;
1499 	struct xhci_virt_device	*virt_dev;
1500 
1501 	if (!hcd || (check_ep && !ep) || !udev) {
1502 		pr_debug("xHCI %s called with invalid args\n", func);
1503 		return -EINVAL;
1504 	}
1505 	if (!udev->parent) {
1506 		pr_debug("xHCI %s called for root hub\n", func);
1507 		return 0;
1508 	}
1509 
1510 	xhci = hcd_to_xhci(hcd);
1511 	if (check_virt_dev) {
1512 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1513 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1514 					func);
1515 			return -EINVAL;
1516 		}
1517 
1518 		virt_dev = xhci->devs[udev->slot_id];
1519 		if (virt_dev->udev != udev) {
1520 			xhci_dbg(xhci, "xHCI %s called with udev and "
1521 					  "virt_dev does not match\n", func);
1522 			return -EINVAL;
1523 		}
1524 	}
1525 
1526 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1527 		return -ENODEV;
1528 
1529 	return 1;
1530 }
1531 
1532 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1533 		struct usb_device *udev, struct xhci_command *command,
1534 		bool ctx_change, bool must_succeed);
1535 
1536 /*
1537  * Full speed devices may have a max packet size greater than 8 bytes, but the
1538  * USB core doesn't know that until it reads the first 8 bytes of the
1539  * descriptor.  If the usb_device's max packet size changes after that point,
1540  * we need to issue an evaluate context command and wait on it.
1541  */
1542 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1543 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1544 {
1545 	struct xhci_container_ctx *out_ctx;
1546 	struct xhci_input_control_ctx *ctrl_ctx;
1547 	struct xhci_ep_ctx *ep_ctx;
1548 	struct xhci_command *command;
1549 	int max_packet_size;
1550 	int hw_max_packet_size;
1551 	int ret = 0;
1552 
1553 	out_ctx = xhci->devs[slot_id]->out_ctx;
1554 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1555 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1556 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1557 	if (hw_max_packet_size != max_packet_size) {
1558 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1559 				"Max Packet Size for ep 0 changed.");
1560 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1561 				"Max packet size in usb_device = %d",
1562 				max_packet_size);
1563 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1564 				"Max packet size in xHCI HW = %d",
1565 				hw_max_packet_size);
1566 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1567 				"Issuing evaluate context command.");
1568 
1569 		/* Set up the input context flags for the command */
1570 		/* FIXME: This won't work if a non-default control endpoint
1571 		 * changes max packet sizes.
1572 		 */
1573 
1574 		command = xhci_alloc_command(xhci, true, mem_flags);
1575 		if (!command)
1576 			return -ENOMEM;
1577 
1578 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1579 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1580 		if (!ctrl_ctx) {
1581 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1582 					__func__);
1583 			ret = -ENOMEM;
1584 			goto command_cleanup;
1585 		}
1586 		/* Set up the modified control endpoint 0 */
1587 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1588 				xhci->devs[slot_id]->out_ctx, ep_index);
1589 
1590 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1591 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1592 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1593 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1594 
1595 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1596 		ctrl_ctx->drop_flags = 0;
1597 
1598 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1599 				true, false);
1600 
1601 		/* Clean up the input context for later use by bandwidth
1602 		 * functions.
1603 		 */
1604 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1605 command_cleanup:
1606 		kfree(command->completion);
1607 		kfree(command);
1608 	}
1609 	return ret;
1610 }
1611 
1612 /*
1613  * non-error returns are a promise to giveback() the urb later
1614  * we drop ownership so next owner (or urb unlink) can get it
1615  */
1616 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1617 {
1618 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1619 	unsigned long flags;
1620 	int ret = 0;
1621 	unsigned int slot_id, ep_index;
1622 	unsigned int *ep_state;
1623 	struct urb_priv	*urb_priv;
1624 	int num_tds;
1625 
1626 	if (!urb)
1627 		return -EINVAL;
1628 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1629 					true, true, __func__);
1630 	if (ret <= 0)
1631 		return ret ? ret : -EINVAL;
1632 
1633 	slot_id = urb->dev->slot_id;
1634 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1635 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1636 
1637 	if (!HCD_HW_ACCESSIBLE(hcd))
1638 		return -ESHUTDOWN;
1639 
1640 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1641 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1642 		return -ENODEV;
1643 	}
1644 
1645 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1646 		num_tds = urb->number_of_packets;
1647 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1648 	    urb->transfer_buffer_length > 0 &&
1649 	    urb->transfer_flags & URB_ZERO_PACKET &&
1650 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1651 		num_tds = 2;
1652 	else
1653 		num_tds = 1;
1654 
1655 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1656 	if (!urb_priv)
1657 		return -ENOMEM;
1658 
1659 	urb_priv->num_tds = num_tds;
1660 	urb_priv->num_tds_done = 0;
1661 	urb->hcpriv = urb_priv;
1662 
1663 	trace_xhci_urb_enqueue(urb);
1664 
1665 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1666 		/* Check to see if the max packet size for the default control
1667 		 * endpoint changed during FS device enumeration
1668 		 */
1669 		if (urb->dev->speed == USB_SPEED_FULL) {
1670 			ret = xhci_check_maxpacket(xhci, slot_id,
1671 					ep_index, urb, mem_flags);
1672 			if (ret < 0) {
1673 				xhci_urb_free_priv(urb_priv);
1674 				urb->hcpriv = NULL;
1675 				return ret;
1676 			}
1677 		}
1678 	}
1679 
1680 	spin_lock_irqsave(&xhci->lock, flags);
1681 
1682 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1683 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1684 			 urb->ep->desc.bEndpointAddress, urb);
1685 		ret = -ESHUTDOWN;
1686 		goto free_priv;
1687 	}
1688 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1689 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1690 			  *ep_state);
1691 		ret = -EINVAL;
1692 		goto free_priv;
1693 	}
1694 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1695 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1696 		ret = -EINVAL;
1697 		goto free_priv;
1698 	}
1699 
1700 	switch (usb_endpoint_type(&urb->ep->desc)) {
1701 
1702 	case USB_ENDPOINT_XFER_CONTROL:
1703 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1704 					 slot_id, ep_index);
1705 		break;
1706 	case USB_ENDPOINT_XFER_BULK:
1707 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1708 					 slot_id, ep_index);
1709 		break;
1710 	case USB_ENDPOINT_XFER_INT:
1711 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1712 				slot_id, ep_index);
1713 		break;
1714 	case USB_ENDPOINT_XFER_ISOC:
1715 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1716 				slot_id, ep_index);
1717 	}
1718 
1719 	if (ret) {
1720 free_priv:
1721 		xhci_urb_free_priv(urb_priv);
1722 		urb->hcpriv = NULL;
1723 	}
1724 	spin_unlock_irqrestore(&xhci->lock, flags);
1725 	return ret;
1726 }
1727 
1728 /*
1729  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1730  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1731  * should pick up where it left off in the TD, unless a Set Transfer Ring
1732  * Dequeue Pointer is issued.
1733  *
1734  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1735  * the ring.  Since the ring is a contiguous structure, they can't be physically
1736  * removed.  Instead, there are two options:
1737  *
1738  *  1) If the HC is in the middle of processing the URB to be canceled, we
1739  *     simply move the ring's dequeue pointer past those TRBs using the Set
1740  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1741  *     when drivers timeout on the last submitted URB and attempt to cancel.
1742  *
1743  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1744  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1745  *     HC will need to invalidate the any TRBs it has cached after the stop
1746  *     endpoint command, as noted in the xHCI 0.95 errata.
1747  *
1748  *  3) The TD may have completed by the time the Stop Endpoint Command
1749  *     completes, so software needs to handle that case too.
1750  *
1751  * This function should protect against the TD enqueueing code ringing the
1752  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1753  * It also needs to account for multiple cancellations on happening at the same
1754  * time for the same endpoint.
1755  *
1756  * Note that this function can be called in any context, or so says
1757  * usb_hcd_unlink_urb()
1758  */
1759 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1760 {
1761 	unsigned long flags;
1762 	int ret, i;
1763 	u32 temp;
1764 	struct xhci_hcd *xhci;
1765 	struct urb_priv	*urb_priv;
1766 	struct xhci_td *td;
1767 	unsigned int ep_index;
1768 	struct xhci_ring *ep_ring;
1769 	struct xhci_virt_ep *ep;
1770 	struct xhci_command *command;
1771 	struct xhci_virt_device *vdev;
1772 
1773 	xhci = hcd_to_xhci(hcd);
1774 	spin_lock_irqsave(&xhci->lock, flags);
1775 
1776 	trace_xhci_urb_dequeue(urb);
1777 
1778 	/* Make sure the URB hasn't completed or been unlinked already */
1779 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1780 	if (ret)
1781 		goto done;
1782 
1783 	/* give back URB now if we can't queue it for cancel */
1784 	vdev = xhci->devs[urb->dev->slot_id];
1785 	urb_priv = urb->hcpriv;
1786 	if (!vdev || !urb_priv)
1787 		goto err_giveback;
1788 
1789 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1790 	ep = &vdev->eps[ep_index];
1791 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1792 	if (!ep || !ep_ring)
1793 		goto err_giveback;
1794 
1795 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1796 	temp = readl(&xhci->op_regs->status);
1797 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1798 		xhci_hc_died(xhci);
1799 		goto done;
1800 	}
1801 
1802 	/*
1803 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1804 	 * make sure none of the ring related pointers in this URB private data
1805 	 * are touched, such as td_list, otherwise we overwrite freed data
1806 	 */
1807 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1808 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1809 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1810 			td = &urb_priv->td[i];
1811 			if (!list_empty(&td->cancelled_td_list))
1812 				list_del_init(&td->cancelled_td_list);
1813 		}
1814 		goto err_giveback;
1815 	}
1816 
1817 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1818 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1819 				"HC halted, freeing TD manually.");
1820 		for (i = urb_priv->num_tds_done;
1821 		     i < urb_priv->num_tds;
1822 		     i++) {
1823 			td = &urb_priv->td[i];
1824 			if (!list_empty(&td->td_list))
1825 				list_del_init(&td->td_list);
1826 			if (!list_empty(&td->cancelled_td_list))
1827 				list_del_init(&td->cancelled_td_list);
1828 		}
1829 		goto err_giveback;
1830 	}
1831 
1832 	i = urb_priv->num_tds_done;
1833 	if (i < urb_priv->num_tds)
1834 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1835 				"Cancel URB %p, dev %s, ep 0x%x, "
1836 				"starting at offset 0x%llx",
1837 				urb, urb->dev->devpath,
1838 				urb->ep->desc.bEndpointAddress,
1839 				(unsigned long long) xhci_trb_virt_to_dma(
1840 					urb_priv->td[i].start_seg,
1841 					urb_priv->td[i].first_trb));
1842 
1843 	for (; i < urb_priv->num_tds; i++) {
1844 		td = &urb_priv->td[i];
1845 		/* TD can already be on cancelled list if ep halted on it */
1846 		if (list_empty(&td->cancelled_td_list)) {
1847 			td->cancel_status = TD_DIRTY;
1848 			list_add_tail(&td->cancelled_td_list,
1849 				      &ep->cancelled_td_list);
1850 		}
1851 	}
1852 
1853 	/* Queue a stop endpoint command, but only if this is
1854 	 * the first cancellation to be handled.
1855 	 */
1856 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1857 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1858 		if (!command) {
1859 			ret = -ENOMEM;
1860 			goto done;
1861 		}
1862 		ep->ep_state |= EP_STOP_CMD_PENDING;
1863 		ep->stop_cmd_timer.expires = jiffies +
1864 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1865 		add_timer(&ep->stop_cmd_timer);
1866 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1867 					 ep_index, 0);
1868 		xhci_ring_cmd_db(xhci);
1869 	}
1870 done:
1871 	spin_unlock_irqrestore(&xhci->lock, flags);
1872 	return ret;
1873 
1874 err_giveback:
1875 	if (urb_priv)
1876 		xhci_urb_free_priv(urb_priv);
1877 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1878 	spin_unlock_irqrestore(&xhci->lock, flags);
1879 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1880 	return ret;
1881 }
1882 
1883 /* Drop an endpoint from a new bandwidth configuration for this device.
1884  * Only one call to this function is allowed per endpoint before
1885  * check_bandwidth() or reset_bandwidth() must be called.
1886  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1887  * add the endpoint to the schedule with possibly new parameters denoted by a
1888  * different endpoint descriptor in usb_host_endpoint.
1889  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1890  * not allowed.
1891  *
1892  * The USB core will not allow URBs to be queued to an endpoint that is being
1893  * disabled, so there's no need for mutual exclusion to protect
1894  * the xhci->devs[slot_id] structure.
1895  */
1896 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1897 		       struct usb_host_endpoint *ep)
1898 {
1899 	struct xhci_hcd *xhci;
1900 	struct xhci_container_ctx *in_ctx, *out_ctx;
1901 	struct xhci_input_control_ctx *ctrl_ctx;
1902 	unsigned int ep_index;
1903 	struct xhci_ep_ctx *ep_ctx;
1904 	u32 drop_flag;
1905 	u32 new_add_flags, new_drop_flags;
1906 	int ret;
1907 
1908 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1909 	if (ret <= 0)
1910 		return ret;
1911 	xhci = hcd_to_xhci(hcd);
1912 	if (xhci->xhc_state & XHCI_STATE_DYING)
1913 		return -ENODEV;
1914 
1915 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1916 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1917 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1918 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1919 				__func__, drop_flag);
1920 		return 0;
1921 	}
1922 
1923 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1924 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1925 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1926 	if (!ctrl_ctx) {
1927 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1928 				__func__);
1929 		return 0;
1930 	}
1931 
1932 	ep_index = xhci_get_endpoint_index(&ep->desc);
1933 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1934 	/* If the HC already knows the endpoint is disabled,
1935 	 * or the HCD has noted it is disabled, ignore this request
1936 	 */
1937 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1938 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1939 	    xhci_get_endpoint_flag(&ep->desc)) {
1940 		/* Do not warn when called after a usb_device_reset */
1941 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1942 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1943 				  __func__, ep);
1944 		return 0;
1945 	}
1946 
1947 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1948 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1949 
1950 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1951 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1952 
1953 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1954 
1955 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1956 
1957 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1958 			(unsigned int) ep->desc.bEndpointAddress,
1959 			udev->slot_id,
1960 			(unsigned int) new_drop_flags,
1961 			(unsigned int) new_add_flags);
1962 	return 0;
1963 }
1964 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1965 
1966 /* Add an endpoint to a new possible bandwidth configuration for this device.
1967  * Only one call to this function is allowed per endpoint before
1968  * check_bandwidth() or reset_bandwidth() must be called.
1969  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1970  * add the endpoint to the schedule with possibly new parameters denoted by a
1971  * different endpoint descriptor in usb_host_endpoint.
1972  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1973  * not allowed.
1974  *
1975  * The USB core will not allow URBs to be queued to an endpoint until the
1976  * configuration or alt setting is installed in the device, so there's no need
1977  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1978  */
1979 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1980 		      struct usb_host_endpoint *ep)
1981 {
1982 	struct xhci_hcd *xhci;
1983 	struct xhci_container_ctx *in_ctx;
1984 	unsigned int ep_index;
1985 	struct xhci_input_control_ctx *ctrl_ctx;
1986 	struct xhci_ep_ctx *ep_ctx;
1987 	u32 added_ctxs;
1988 	u32 new_add_flags, new_drop_flags;
1989 	struct xhci_virt_device *virt_dev;
1990 	int ret = 0;
1991 
1992 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1993 	if (ret <= 0) {
1994 		/* So we won't queue a reset ep command for a root hub */
1995 		ep->hcpriv = NULL;
1996 		return ret;
1997 	}
1998 	xhci = hcd_to_xhci(hcd);
1999 	if (xhci->xhc_state & XHCI_STATE_DYING)
2000 		return -ENODEV;
2001 
2002 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2003 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2004 		/* FIXME when we have to issue an evaluate endpoint command to
2005 		 * deal with ep0 max packet size changing once we get the
2006 		 * descriptors
2007 		 */
2008 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2009 				__func__, added_ctxs);
2010 		return 0;
2011 	}
2012 
2013 	virt_dev = xhci->devs[udev->slot_id];
2014 	in_ctx = virt_dev->in_ctx;
2015 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2016 	if (!ctrl_ctx) {
2017 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2018 				__func__);
2019 		return 0;
2020 	}
2021 
2022 	ep_index = xhci_get_endpoint_index(&ep->desc);
2023 	/* If this endpoint is already in use, and the upper layers are trying
2024 	 * to add it again without dropping it, reject the addition.
2025 	 */
2026 	if (virt_dev->eps[ep_index].ring &&
2027 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2028 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2029 				"without dropping it.\n",
2030 				(unsigned int) ep->desc.bEndpointAddress);
2031 		return -EINVAL;
2032 	}
2033 
2034 	/* If the HCD has already noted the endpoint is enabled,
2035 	 * ignore this request.
2036 	 */
2037 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2038 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2039 				__func__, ep);
2040 		return 0;
2041 	}
2042 
2043 	/*
2044 	 * Configuration and alternate setting changes must be done in
2045 	 * process context, not interrupt context (or so documenation
2046 	 * for usb_set_interface() and usb_set_configuration() claim).
2047 	 */
2048 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2049 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2050 				__func__, ep->desc.bEndpointAddress);
2051 		return -ENOMEM;
2052 	}
2053 
2054 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2055 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2056 
2057 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2058 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2059 	 * this re-adds a new state for the endpoint from the new endpoint
2060 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2061 	 * drop flags alone.
2062 	 */
2063 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2064 
2065 	/* Store the usb_device pointer for later use */
2066 	ep->hcpriv = udev;
2067 
2068 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2069 	trace_xhci_add_endpoint(ep_ctx);
2070 
2071 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2072 			(unsigned int) ep->desc.bEndpointAddress,
2073 			udev->slot_id,
2074 			(unsigned int) new_drop_flags,
2075 			(unsigned int) new_add_flags);
2076 	return 0;
2077 }
2078 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2079 
2080 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2081 {
2082 	struct xhci_input_control_ctx *ctrl_ctx;
2083 	struct xhci_ep_ctx *ep_ctx;
2084 	struct xhci_slot_ctx *slot_ctx;
2085 	int i;
2086 
2087 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2088 	if (!ctrl_ctx) {
2089 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2090 				__func__);
2091 		return;
2092 	}
2093 
2094 	/* When a device's add flag and drop flag are zero, any subsequent
2095 	 * configure endpoint command will leave that endpoint's state
2096 	 * untouched.  Make sure we don't leave any old state in the input
2097 	 * endpoint contexts.
2098 	 */
2099 	ctrl_ctx->drop_flags = 0;
2100 	ctrl_ctx->add_flags = 0;
2101 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2102 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2103 	/* Endpoint 0 is always valid */
2104 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2105 	for (i = 1; i < 31; i++) {
2106 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2107 		ep_ctx->ep_info = 0;
2108 		ep_ctx->ep_info2 = 0;
2109 		ep_ctx->deq = 0;
2110 		ep_ctx->tx_info = 0;
2111 	}
2112 }
2113 
2114 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2115 		struct usb_device *udev, u32 *cmd_status)
2116 {
2117 	int ret;
2118 
2119 	switch (*cmd_status) {
2120 	case COMP_COMMAND_ABORTED:
2121 	case COMP_COMMAND_RING_STOPPED:
2122 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2123 		ret = -ETIME;
2124 		break;
2125 	case COMP_RESOURCE_ERROR:
2126 		dev_warn(&udev->dev,
2127 			 "Not enough host controller resources for new device state.\n");
2128 		ret = -ENOMEM;
2129 		/* FIXME: can we allocate more resources for the HC? */
2130 		break;
2131 	case COMP_BANDWIDTH_ERROR:
2132 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2133 		dev_warn(&udev->dev,
2134 			 "Not enough bandwidth for new device state.\n");
2135 		ret = -ENOSPC;
2136 		/* FIXME: can we go back to the old state? */
2137 		break;
2138 	case COMP_TRB_ERROR:
2139 		/* the HCD set up something wrong */
2140 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2141 				"add flag = 1, "
2142 				"and endpoint is not disabled.\n");
2143 		ret = -EINVAL;
2144 		break;
2145 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2146 		dev_warn(&udev->dev,
2147 			 "ERROR: Incompatible device for endpoint configure command.\n");
2148 		ret = -ENODEV;
2149 		break;
2150 	case COMP_SUCCESS:
2151 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2152 				"Successful Endpoint Configure command");
2153 		ret = 0;
2154 		break;
2155 	default:
2156 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2157 				*cmd_status);
2158 		ret = -EINVAL;
2159 		break;
2160 	}
2161 	return ret;
2162 }
2163 
2164 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2165 		struct usb_device *udev, u32 *cmd_status)
2166 {
2167 	int ret;
2168 
2169 	switch (*cmd_status) {
2170 	case COMP_COMMAND_ABORTED:
2171 	case COMP_COMMAND_RING_STOPPED:
2172 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2173 		ret = -ETIME;
2174 		break;
2175 	case COMP_PARAMETER_ERROR:
2176 		dev_warn(&udev->dev,
2177 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2178 		ret = -EINVAL;
2179 		break;
2180 	case COMP_SLOT_NOT_ENABLED_ERROR:
2181 		dev_warn(&udev->dev,
2182 			"WARN: slot not enabled for evaluate context command.\n");
2183 		ret = -EINVAL;
2184 		break;
2185 	case COMP_CONTEXT_STATE_ERROR:
2186 		dev_warn(&udev->dev,
2187 			"WARN: invalid context state for evaluate context command.\n");
2188 		ret = -EINVAL;
2189 		break;
2190 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2191 		dev_warn(&udev->dev,
2192 			"ERROR: Incompatible device for evaluate context command.\n");
2193 		ret = -ENODEV;
2194 		break;
2195 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2196 		/* Max Exit Latency too large error */
2197 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2198 		ret = -EINVAL;
2199 		break;
2200 	case COMP_SUCCESS:
2201 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2202 				"Successful evaluate context command");
2203 		ret = 0;
2204 		break;
2205 	default:
2206 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2207 			*cmd_status);
2208 		ret = -EINVAL;
2209 		break;
2210 	}
2211 	return ret;
2212 }
2213 
2214 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2215 		struct xhci_input_control_ctx *ctrl_ctx)
2216 {
2217 	u32 valid_add_flags;
2218 	u32 valid_drop_flags;
2219 
2220 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2221 	 * (bit 1).  The default control endpoint is added during the Address
2222 	 * Device command and is never removed until the slot is disabled.
2223 	 */
2224 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2225 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2226 
2227 	/* Use hweight32 to count the number of ones in the add flags, or
2228 	 * number of endpoints added.  Don't count endpoints that are changed
2229 	 * (both added and dropped).
2230 	 */
2231 	return hweight32(valid_add_flags) -
2232 		hweight32(valid_add_flags & valid_drop_flags);
2233 }
2234 
2235 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2236 		struct xhci_input_control_ctx *ctrl_ctx)
2237 {
2238 	u32 valid_add_flags;
2239 	u32 valid_drop_flags;
2240 
2241 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2242 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2243 
2244 	return hweight32(valid_drop_flags) -
2245 		hweight32(valid_add_flags & valid_drop_flags);
2246 }
2247 
2248 /*
2249  * We need to reserve the new number of endpoints before the configure endpoint
2250  * command completes.  We can't subtract the dropped endpoints from the number
2251  * of active endpoints until the command completes because we can oversubscribe
2252  * the host in this case:
2253  *
2254  *  - the first configure endpoint command drops more endpoints than it adds
2255  *  - a second configure endpoint command that adds more endpoints is queued
2256  *  - the first configure endpoint command fails, so the config is unchanged
2257  *  - the second command may succeed, even though there isn't enough resources
2258  *
2259  * Must be called with xhci->lock held.
2260  */
2261 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2262 		struct xhci_input_control_ctx *ctrl_ctx)
2263 {
2264 	u32 added_eps;
2265 
2266 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2267 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2268 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2269 				"Not enough ep ctxs: "
2270 				"%u active, need to add %u, limit is %u.",
2271 				xhci->num_active_eps, added_eps,
2272 				xhci->limit_active_eps);
2273 		return -ENOMEM;
2274 	}
2275 	xhci->num_active_eps += added_eps;
2276 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2277 			"Adding %u ep ctxs, %u now active.", added_eps,
2278 			xhci->num_active_eps);
2279 	return 0;
2280 }
2281 
2282 /*
2283  * The configure endpoint was failed by the xHC for some other reason, so we
2284  * need to revert the resources that failed configuration would have used.
2285  *
2286  * Must be called with xhci->lock held.
2287  */
2288 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2289 		struct xhci_input_control_ctx *ctrl_ctx)
2290 {
2291 	u32 num_failed_eps;
2292 
2293 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2294 	xhci->num_active_eps -= num_failed_eps;
2295 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2296 			"Removing %u failed ep ctxs, %u now active.",
2297 			num_failed_eps,
2298 			xhci->num_active_eps);
2299 }
2300 
2301 /*
2302  * Now that the command has completed, clean up the active endpoint count by
2303  * subtracting out the endpoints that were dropped (but not changed).
2304  *
2305  * Must be called with xhci->lock held.
2306  */
2307 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2308 		struct xhci_input_control_ctx *ctrl_ctx)
2309 {
2310 	u32 num_dropped_eps;
2311 
2312 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2313 	xhci->num_active_eps -= num_dropped_eps;
2314 	if (num_dropped_eps)
2315 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2316 				"Removing %u dropped ep ctxs, %u now active.",
2317 				num_dropped_eps,
2318 				xhci->num_active_eps);
2319 }
2320 
2321 static unsigned int xhci_get_block_size(struct usb_device *udev)
2322 {
2323 	switch (udev->speed) {
2324 	case USB_SPEED_LOW:
2325 	case USB_SPEED_FULL:
2326 		return FS_BLOCK;
2327 	case USB_SPEED_HIGH:
2328 		return HS_BLOCK;
2329 	case USB_SPEED_SUPER:
2330 	case USB_SPEED_SUPER_PLUS:
2331 		return SS_BLOCK;
2332 	case USB_SPEED_UNKNOWN:
2333 	case USB_SPEED_WIRELESS:
2334 	default:
2335 		/* Should never happen */
2336 		return 1;
2337 	}
2338 }
2339 
2340 static unsigned int
2341 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2342 {
2343 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2344 		return LS_OVERHEAD;
2345 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2346 		return FS_OVERHEAD;
2347 	return HS_OVERHEAD;
2348 }
2349 
2350 /* If we are changing a LS/FS device under a HS hub,
2351  * make sure (if we are activating a new TT) that the HS bus has enough
2352  * bandwidth for this new TT.
2353  */
2354 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2355 		struct xhci_virt_device *virt_dev,
2356 		int old_active_eps)
2357 {
2358 	struct xhci_interval_bw_table *bw_table;
2359 	struct xhci_tt_bw_info *tt_info;
2360 
2361 	/* Find the bandwidth table for the root port this TT is attached to. */
2362 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2363 	tt_info = virt_dev->tt_info;
2364 	/* If this TT already had active endpoints, the bandwidth for this TT
2365 	 * has already been added.  Removing all periodic endpoints (and thus
2366 	 * making the TT enactive) will only decrease the bandwidth used.
2367 	 */
2368 	if (old_active_eps)
2369 		return 0;
2370 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2371 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2372 			return -ENOMEM;
2373 		return 0;
2374 	}
2375 	/* Not sure why we would have no new active endpoints...
2376 	 *
2377 	 * Maybe because of an Evaluate Context change for a hub update or a
2378 	 * control endpoint 0 max packet size change?
2379 	 * FIXME: skip the bandwidth calculation in that case.
2380 	 */
2381 	return 0;
2382 }
2383 
2384 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2385 		struct xhci_virt_device *virt_dev)
2386 {
2387 	unsigned int bw_reserved;
2388 
2389 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2390 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2391 		return -ENOMEM;
2392 
2393 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2394 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2395 		return -ENOMEM;
2396 
2397 	return 0;
2398 }
2399 
2400 /*
2401  * This algorithm is a very conservative estimate of the worst-case scheduling
2402  * scenario for any one interval.  The hardware dynamically schedules the
2403  * packets, so we can't tell which microframe could be the limiting factor in
2404  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2405  *
2406  * Obviously, we can't solve an NP complete problem to find the minimum worst
2407  * case scenario.  Instead, we come up with an estimate that is no less than
2408  * the worst case bandwidth used for any one microframe, but may be an
2409  * over-estimate.
2410  *
2411  * We walk the requirements for each endpoint by interval, starting with the
2412  * smallest interval, and place packets in the schedule where there is only one
2413  * possible way to schedule packets for that interval.  In order to simplify
2414  * this algorithm, we record the largest max packet size for each interval, and
2415  * assume all packets will be that size.
2416  *
2417  * For interval 0, we obviously must schedule all packets for each interval.
2418  * The bandwidth for interval 0 is just the amount of data to be transmitted
2419  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2420  * the number of packets).
2421  *
2422  * For interval 1, we have two possible microframes to schedule those packets
2423  * in.  For this algorithm, if we can schedule the same number of packets for
2424  * each possible scheduling opportunity (each microframe), we will do so.  The
2425  * remaining number of packets will be saved to be transmitted in the gaps in
2426  * the next interval's scheduling sequence.
2427  *
2428  * As we move those remaining packets to be scheduled with interval 2 packets,
2429  * we have to double the number of remaining packets to transmit.  This is
2430  * because the intervals are actually powers of 2, and we would be transmitting
2431  * the previous interval's packets twice in this interval.  We also have to be
2432  * sure that when we look at the largest max packet size for this interval, we
2433  * also look at the largest max packet size for the remaining packets and take
2434  * the greater of the two.
2435  *
2436  * The algorithm continues to evenly distribute packets in each scheduling
2437  * opportunity, and push the remaining packets out, until we get to the last
2438  * interval.  Then those packets and their associated overhead are just added
2439  * to the bandwidth used.
2440  */
2441 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2442 		struct xhci_virt_device *virt_dev,
2443 		int old_active_eps)
2444 {
2445 	unsigned int bw_reserved;
2446 	unsigned int max_bandwidth;
2447 	unsigned int bw_used;
2448 	unsigned int block_size;
2449 	struct xhci_interval_bw_table *bw_table;
2450 	unsigned int packet_size = 0;
2451 	unsigned int overhead = 0;
2452 	unsigned int packets_transmitted = 0;
2453 	unsigned int packets_remaining = 0;
2454 	unsigned int i;
2455 
2456 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2457 		return xhci_check_ss_bw(xhci, virt_dev);
2458 
2459 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2460 		max_bandwidth = HS_BW_LIMIT;
2461 		/* Convert percent of bus BW reserved to blocks reserved */
2462 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2463 	} else {
2464 		max_bandwidth = FS_BW_LIMIT;
2465 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2466 	}
2467 
2468 	bw_table = virt_dev->bw_table;
2469 	/* We need to translate the max packet size and max ESIT payloads into
2470 	 * the units the hardware uses.
2471 	 */
2472 	block_size = xhci_get_block_size(virt_dev->udev);
2473 
2474 	/* If we are manipulating a LS/FS device under a HS hub, double check
2475 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2476 	 */
2477 	if (virt_dev->tt_info) {
2478 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2479 				"Recalculating BW for rootport %u",
2480 				virt_dev->real_port);
2481 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2482 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2483 					"newly activated TT.\n");
2484 			return -ENOMEM;
2485 		}
2486 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2487 				"Recalculating BW for TT slot %u port %u",
2488 				virt_dev->tt_info->slot_id,
2489 				virt_dev->tt_info->ttport);
2490 	} else {
2491 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2492 				"Recalculating BW for rootport %u",
2493 				virt_dev->real_port);
2494 	}
2495 
2496 	/* Add in how much bandwidth will be used for interval zero, or the
2497 	 * rounded max ESIT payload + number of packets * largest overhead.
2498 	 */
2499 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2500 		bw_table->interval_bw[0].num_packets *
2501 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2502 
2503 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2504 		unsigned int bw_added;
2505 		unsigned int largest_mps;
2506 		unsigned int interval_overhead;
2507 
2508 		/*
2509 		 * How many packets could we transmit in this interval?
2510 		 * If packets didn't fit in the previous interval, we will need
2511 		 * to transmit that many packets twice within this interval.
2512 		 */
2513 		packets_remaining = 2 * packets_remaining +
2514 			bw_table->interval_bw[i].num_packets;
2515 
2516 		/* Find the largest max packet size of this or the previous
2517 		 * interval.
2518 		 */
2519 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2520 			largest_mps = 0;
2521 		else {
2522 			struct xhci_virt_ep *virt_ep;
2523 			struct list_head *ep_entry;
2524 
2525 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2526 			virt_ep = list_entry(ep_entry,
2527 					struct xhci_virt_ep, bw_endpoint_list);
2528 			/* Convert to blocks, rounding up */
2529 			largest_mps = DIV_ROUND_UP(
2530 					virt_ep->bw_info.max_packet_size,
2531 					block_size);
2532 		}
2533 		if (largest_mps > packet_size)
2534 			packet_size = largest_mps;
2535 
2536 		/* Use the larger overhead of this or the previous interval. */
2537 		interval_overhead = xhci_get_largest_overhead(
2538 				&bw_table->interval_bw[i]);
2539 		if (interval_overhead > overhead)
2540 			overhead = interval_overhead;
2541 
2542 		/* How many packets can we evenly distribute across
2543 		 * (1 << (i + 1)) possible scheduling opportunities?
2544 		 */
2545 		packets_transmitted = packets_remaining >> (i + 1);
2546 
2547 		/* Add in the bandwidth used for those scheduled packets */
2548 		bw_added = packets_transmitted * (overhead + packet_size);
2549 
2550 		/* How many packets do we have remaining to transmit? */
2551 		packets_remaining = packets_remaining % (1 << (i + 1));
2552 
2553 		/* What largest max packet size should those packets have? */
2554 		/* If we've transmitted all packets, don't carry over the
2555 		 * largest packet size.
2556 		 */
2557 		if (packets_remaining == 0) {
2558 			packet_size = 0;
2559 			overhead = 0;
2560 		} else if (packets_transmitted > 0) {
2561 			/* Otherwise if we do have remaining packets, and we've
2562 			 * scheduled some packets in this interval, take the
2563 			 * largest max packet size from endpoints with this
2564 			 * interval.
2565 			 */
2566 			packet_size = largest_mps;
2567 			overhead = interval_overhead;
2568 		}
2569 		/* Otherwise carry over packet_size and overhead from the last
2570 		 * time we had a remainder.
2571 		 */
2572 		bw_used += bw_added;
2573 		if (bw_used > max_bandwidth) {
2574 			xhci_warn(xhci, "Not enough bandwidth. "
2575 					"Proposed: %u, Max: %u\n",
2576 				bw_used, max_bandwidth);
2577 			return -ENOMEM;
2578 		}
2579 	}
2580 	/*
2581 	 * Ok, we know we have some packets left over after even-handedly
2582 	 * scheduling interval 15.  We don't know which microframes they will
2583 	 * fit into, so we over-schedule and say they will be scheduled every
2584 	 * microframe.
2585 	 */
2586 	if (packets_remaining > 0)
2587 		bw_used += overhead + packet_size;
2588 
2589 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2590 		unsigned int port_index = virt_dev->real_port - 1;
2591 
2592 		/* OK, we're manipulating a HS device attached to a
2593 		 * root port bandwidth domain.  Include the number of active TTs
2594 		 * in the bandwidth used.
2595 		 */
2596 		bw_used += TT_HS_OVERHEAD *
2597 			xhci->rh_bw[port_index].num_active_tts;
2598 	}
2599 
2600 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2601 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2602 		"Available: %u " "percent",
2603 		bw_used, max_bandwidth, bw_reserved,
2604 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2605 		max_bandwidth);
2606 
2607 	bw_used += bw_reserved;
2608 	if (bw_used > max_bandwidth) {
2609 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2610 				bw_used, max_bandwidth);
2611 		return -ENOMEM;
2612 	}
2613 
2614 	bw_table->bw_used = bw_used;
2615 	return 0;
2616 }
2617 
2618 static bool xhci_is_async_ep(unsigned int ep_type)
2619 {
2620 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2621 					ep_type != ISOC_IN_EP &&
2622 					ep_type != INT_IN_EP);
2623 }
2624 
2625 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2626 {
2627 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2628 }
2629 
2630 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2631 {
2632 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2633 
2634 	if (ep_bw->ep_interval == 0)
2635 		return SS_OVERHEAD_BURST +
2636 			(ep_bw->mult * ep_bw->num_packets *
2637 					(SS_OVERHEAD + mps));
2638 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2639 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2640 				1 << ep_bw->ep_interval);
2641 
2642 }
2643 
2644 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2645 		struct xhci_bw_info *ep_bw,
2646 		struct xhci_interval_bw_table *bw_table,
2647 		struct usb_device *udev,
2648 		struct xhci_virt_ep *virt_ep,
2649 		struct xhci_tt_bw_info *tt_info)
2650 {
2651 	struct xhci_interval_bw	*interval_bw;
2652 	int normalized_interval;
2653 
2654 	if (xhci_is_async_ep(ep_bw->type))
2655 		return;
2656 
2657 	if (udev->speed >= USB_SPEED_SUPER) {
2658 		if (xhci_is_sync_in_ep(ep_bw->type))
2659 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2660 				xhci_get_ss_bw_consumed(ep_bw);
2661 		else
2662 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2663 				xhci_get_ss_bw_consumed(ep_bw);
2664 		return;
2665 	}
2666 
2667 	/* SuperSpeed endpoints never get added to intervals in the table, so
2668 	 * this check is only valid for HS/FS/LS devices.
2669 	 */
2670 	if (list_empty(&virt_ep->bw_endpoint_list))
2671 		return;
2672 	/* For LS/FS devices, we need to translate the interval expressed in
2673 	 * microframes to frames.
2674 	 */
2675 	if (udev->speed == USB_SPEED_HIGH)
2676 		normalized_interval = ep_bw->ep_interval;
2677 	else
2678 		normalized_interval = ep_bw->ep_interval - 3;
2679 
2680 	if (normalized_interval == 0)
2681 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2682 	interval_bw = &bw_table->interval_bw[normalized_interval];
2683 	interval_bw->num_packets -= ep_bw->num_packets;
2684 	switch (udev->speed) {
2685 	case USB_SPEED_LOW:
2686 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2687 		break;
2688 	case USB_SPEED_FULL:
2689 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2690 		break;
2691 	case USB_SPEED_HIGH:
2692 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2693 		break;
2694 	case USB_SPEED_SUPER:
2695 	case USB_SPEED_SUPER_PLUS:
2696 	case USB_SPEED_UNKNOWN:
2697 	case USB_SPEED_WIRELESS:
2698 		/* Should never happen because only LS/FS/HS endpoints will get
2699 		 * added to the endpoint list.
2700 		 */
2701 		return;
2702 	}
2703 	if (tt_info)
2704 		tt_info->active_eps -= 1;
2705 	list_del_init(&virt_ep->bw_endpoint_list);
2706 }
2707 
2708 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2709 		struct xhci_bw_info *ep_bw,
2710 		struct xhci_interval_bw_table *bw_table,
2711 		struct usb_device *udev,
2712 		struct xhci_virt_ep *virt_ep,
2713 		struct xhci_tt_bw_info *tt_info)
2714 {
2715 	struct xhci_interval_bw	*interval_bw;
2716 	struct xhci_virt_ep *smaller_ep;
2717 	int normalized_interval;
2718 
2719 	if (xhci_is_async_ep(ep_bw->type))
2720 		return;
2721 
2722 	if (udev->speed == USB_SPEED_SUPER) {
2723 		if (xhci_is_sync_in_ep(ep_bw->type))
2724 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2725 				xhci_get_ss_bw_consumed(ep_bw);
2726 		else
2727 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2728 				xhci_get_ss_bw_consumed(ep_bw);
2729 		return;
2730 	}
2731 
2732 	/* For LS/FS devices, we need to translate the interval expressed in
2733 	 * microframes to frames.
2734 	 */
2735 	if (udev->speed == USB_SPEED_HIGH)
2736 		normalized_interval = ep_bw->ep_interval;
2737 	else
2738 		normalized_interval = ep_bw->ep_interval - 3;
2739 
2740 	if (normalized_interval == 0)
2741 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2742 	interval_bw = &bw_table->interval_bw[normalized_interval];
2743 	interval_bw->num_packets += ep_bw->num_packets;
2744 	switch (udev->speed) {
2745 	case USB_SPEED_LOW:
2746 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2747 		break;
2748 	case USB_SPEED_FULL:
2749 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2750 		break;
2751 	case USB_SPEED_HIGH:
2752 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2753 		break;
2754 	case USB_SPEED_SUPER:
2755 	case USB_SPEED_SUPER_PLUS:
2756 	case USB_SPEED_UNKNOWN:
2757 	case USB_SPEED_WIRELESS:
2758 		/* Should never happen because only LS/FS/HS endpoints will get
2759 		 * added to the endpoint list.
2760 		 */
2761 		return;
2762 	}
2763 
2764 	if (tt_info)
2765 		tt_info->active_eps += 1;
2766 	/* Insert the endpoint into the list, largest max packet size first. */
2767 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2768 			bw_endpoint_list) {
2769 		if (ep_bw->max_packet_size >=
2770 				smaller_ep->bw_info.max_packet_size) {
2771 			/* Add the new ep before the smaller endpoint */
2772 			list_add_tail(&virt_ep->bw_endpoint_list,
2773 					&smaller_ep->bw_endpoint_list);
2774 			return;
2775 		}
2776 	}
2777 	/* Add the new endpoint at the end of the list. */
2778 	list_add_tail(&virt_ep->bw_endpoint_list,
2779 			&interval_bw->endpoints);
2780 }
2781 
2782 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2783 		struct xhci_virt_device *virt_dev,
2784 		int old_active_eps)
2785 {
2786 	struct xhci_root_port_bw_info *rh_bw_info;
2787 	if (!virt_dev->tt_info)
2788 		return;
2789 
2790 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2791 	if (old_active_eps == 0 &&
2792 				virt_dev->tt_info->active_eps != 0) {
2793 		rh_bw_info->num_active_tts += 1;
2794 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2795 	} else if (old_active_eps != 0 &&
2796 				virt_dev->tt_info->active_eps == 0) {
2797 		rh_bw_info->num_active_tts -= 1;
2798 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2799 	}
2800 }
2801 
2802 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2803 		struct xhci_virt_device *virt_dev,
2804 		struct xhci_container_ctx *in_ctx)
2805 {
2806 	struct xhci_bw_info ep_bw_info[31];
2807 	int i;
2808 	struct xhci_input_control_ctx *ctrl_ctx;
2809 	int old_active_eps = 0;
2810 
2811 	if (virt_dev->tt_info)
2812 		old_active_eps = virt_dev->tt_info->active_eps;
2813 
2814 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2815 	if (!ctrl_ctx) {
2816 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2817 				__func__);
2818 		return -ENOMEM;
2819 	}
2820 
2821 	for (i = 0; i < 31; i++) {
2822 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2823 			continue;
2824 
2825 		/* Make a copy of the BW info in case we need to revert this */
2826 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2827 				sizeof(ep_bw_info[i]));
2828 		/* Drop the endpoint from the interval table if the endpoint is
2829 		 * being dropped or changed.
2830 		 */
2831 		if (EP_IS_DROPPED(ctrl_ctx, i))
2832 			xhci_drop_ep_from_interval_table(xhci,
2833 					&virt_dev->eps[i].bw_info,
2834 					virt_dev->bw_table,
2835 					virt_dev->udev,
2836 					&virt_dev->eps[i],
2837 					virt_dev->tt_info);
2838 	}
2839 	/* Overwrite the information stored in the endpoints' bw_info */
2840 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2841 	for (i = 0; i < 31; i++) {
2842 		/* Add any changed or added endpoints to the interval table */
2843 		if (EP_IS_ADDED(ctrl_ctx, i))
2844 			xhci_add_ep_to_interval_table(xhci,
2845 					&virt_dev->eps[i].bw_info,
2846 					virt_dev->bw_table,
2847 					virt_dev->udev,
2848 					&virt_dev->eps[i],
2849 					virt_dev->tt_info);
2850 	}
2851 
2852 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2853 		/* Ok, this fits in the bandwidth we have.
2854 		 * Update the number of active TTs.
2855 		 */
2856 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2857 		return 0;
2858 	}
2859 
2860 	/* We don't have enough bandwidth for this, revert the stored info. */
2861 	for (i = 0; i < 31; i++) {
2862 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2863 			continue;
2864 
2865 		/* Drop the new copies of any added or changed endpoints from
2866 		 * the interval table.
2867 		 */
2868 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2869 			xhci_drop_ep_from_interval_table(xhci,
2870 					&virt_dev->eps[i].bw_info,
2871 					virt_dev->bw_table,
2872 					virt_dev->udev,
2873 					&virt_dev->eps[i],
2874 					virt_dev->tt_info);
2875 		}
2876 		/* Revert the endpoint back to its old information */
2877 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2878 				sizeof(ep_bw_info[i]));
2879 		/* Add any changed or dropped endpoints back into the table */
2880 		if (EP_IS_DROPPED(ctrl_ctx, i))
2881 			xhci_add_ep_to_interval_table(xhci,
2882 					&virt_dev->eps[i].bw_info,
2883 					virt_dev->bw_table,
2884 					virt_dev->udev,
2885 					&virt_dev->eps[i],
2886 					virt_dev->tt_info);
2887 	}
2888 	return -ENOMEM;
2889 }
2890 
2891 
2892 /* Issue a configure endpoint command or evaluate context command
2893  * and wait for it to finish.
2894  */
2895 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2896 		struct usb_device *udev,
2897 		struct xhci_command *command,
2898 		bool ctx_change, bool must_succeed)
2899 {
2900 	int ret;
2901 	unsigned long flags;
2902 	struct xhci_input_control_ctx *ctrl_ctx;
2903 	struct xhci_virt_device *virt_dev;
2904 	struct xhci_slot_ctx *slot_ctx;
2905 
2906 	if (!command)
2907 		return -EINVAL;
2908 
2909 	spin_lock_irqsave(&xhci->lock, flags);
2910 
2911 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2912 		spin_unlock_irqrestore(&xhci->lock, flags);
2913 		return -ESHUTDOWN;
2914 	}
2915 
2916 	virt_dev = xhci->devs[udev->slot_id];
2917 
2918 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2919 	if (!ctrl_ctx) {
2920 		spin_unlock_irqrestore(&xhci->lock, flags);
2921 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2922 				__func__);
2923 		return -ENOMEM;
2924 	}
2925 
2926 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2927 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2928 		spin_unlock_irqrestore(&xhci->lock, flags);
2929 		xhci_warn(xhci, "Not enough host resources, "
2930 				"active endpoint contexts = %u\n",
2931 				xhci->num_active_eps);
2932 		return -ENOMEM;
2933 	}
2934 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2935 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2936 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2937 			xhci_free_host_resources(xhci, ctrl_ctx);
2938 		spin_unlock_irqrestore(&xhci->lock, flags);
2939 		xhci_warn(xhci, "Not enough bandwidth\n");
2940 		return -ENOMEM;
2941 	}
2942 
2943 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2944 
2945 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2946 	trace_xhci_configure_endpoint(slot_ctx);
2947 
2948 	if (!ctx_change)
2949 		ret = xhci_queue_configure_endpoint(xhci, command,
2950 				command->in_ctx->dma,
2951 				udev->slot_id, must_succeed);
2952 	else
2953 		ret = xhci_queue_evaluate_context(xhci, command,
2954 				command->in_ctx->dma,
2955 				udev->slot_id, must_succeed);
2956 	if (ret < 0) {
2957 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2958 			xhci_free_host_resources(xhci, ctrl_ctx);
2959 		spin_unlock_irqrestore(&xhci->lock, flags);
2960 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2961 				"FIXME allocate a new ring segment");
2962 		return -ENOMEM;
2963 	}
2964 	xhci_ring_cmd_db(xhci);
2965 	spin_unlock_irqrestore(&xhci->lock, flags);
2966 
2967 	/* Wait for the configure endpoint command to complete */
2968 	wait_for_completion(command->completion);
2969 
2970 	if (!ctx_change)
2971 		ret = xhci_configure_endpoint_result(xhci, udev,
2972 						     &command->status);
2973 	else
2974 		ret = xhci_evaluate_context_result(xhci, udev,
2975 						   &command->status);
2976 
2977 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2978 		spin_lock_irqsave(&xhci->lock, flags);
2979 		/* If the command failed, remove the reserved resources.
2980 		 * Otherwise, clean up the estimate to include dropped eps.
2981 		 */
2982 		if (ret)
2983 			xhci_free_host_resources(xhci, ctrl_ctx);
2984 		else
2985 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2986 		spin_unlock_irqrestore(&xhci->lock, flags);
2987 	}
2988 	return ret;
2989 }
2990 
2991 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2992 	struct xhci_virt_device *vdev, int i)
2993 {
2994 	struct xhci_virt_ep *ep = &vdev->eps[i];
2995 
2996 	if (ep->ep_state & EP_HAS_STREAMS) {
2997 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2998 				xhci_get_endpoint_address(i));
2999 		xhci_free_stream_info(xhci, ep->stream_info);
3000 		ep->stream_info = NULL;
3001 		ep->ep_state &= ~EP_HAS_STREAMS;
3002 	}
3003 }
3004 
3005 /* Called after one or more calls to xhci_add_endpoint() or
3006  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3007  * to call xhci_reset_bandwidth().
3008  *
3009  * Since we are in the middle of changing either configuration or
3010  * installing a new alt setting, the USB core won't allow URBs to be
3011  * enqueued for any endpoint on the old config or interface.  Nothing
3012  * else should be touching the xhci->devs[slot_id] structure, so we
3013  * don't need to take the xhci->lock for manipulating that.
3014  */
3015 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3016 {
3017 	int i;
3018 	int ret = 0;
3019 	struct xhci_hcd *xhci;
3020 	struct xhci_virt_device	*virt_dev;
3021 	struct xhci_input_control_ctx *ctrl_ctx;
3022 	struct xhci_slot_ctx *slot_ctx;
3023 	struct xhci_command *command;
3024 
3025 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3026 	if (ret <= 0)
3027 		return ret;
3028 	xhci = hcd_to_xhci(hcd);
3029 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3030 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3031 		return -ENODEV;
3032 
3033 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3034 	virt_dev = xhci->devs[udev->slot_id];
3035 
3036 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3037 	if (!command)
3038 		return -ENOMEM;
3039 
3040 	command->in_ctx = virt_dev->in_ctx;
3041 
3042 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3043 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3044 	if (!ctrl_ctx) {
3045 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3046 				__func__);
3047 		ret = -ENOMEM;
3048 		goto command_cleanup;
3049 	}
3050 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3051 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3052 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3053 
3054 	/* Don't issue the command if there's no endpoints to update. */
3055 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3056 	    ctrl_ctx->drop_flags == 0) {
3057 		ret = 0;
3058 		goto command_cleanup;
3059 	}
3060 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3061 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3062 	for (i = 31; i >= 1; i--) {
3063 		__le32 le32 = cpu_to_le32(BIT(i));
3064 
3065 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3066 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3067 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3068 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3069 			break;
3070 		}
3071 	}
3072 
3073 	ret = xhci_configure_endpoint(xhci, udev, command,
3074 			false, false);
3075 	if (ret)
3076 		/* Callee should call reset_bandwidth() */
3077 		goto command_cleanup;
3078 
3079 	/* Free any rings that were dropped, but not changed. */
3080 	for (i = 1; i < 31; i++) {
3081 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3082 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3083 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3084 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3085 		}
3086 	}
3087 	xhci_zero_in_ctx(xhci, virt_dev);
3088 	/*
3089 	 * Install any rings for completely new endpoints or changed endpoints,
3090 	 * and free any old rings from changed endpoints.
3091 	 */
3092 	for (i = 1; i < 31; i++) {
3093 		if (!virt_dev->eps[i].new_ring)
3094 			continue;
3095 		/* Only free the old ring if it exists.
3096 		 * It may not if this is the first add of an endpoint.
3097 		 */
3098 		if (virt_dev->eps[i].ring) {
3099 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3100 		}
3101 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3102 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3103 		virt_dev->eps[i].new_ring = NULL;
3104 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3105 	}
3106 command_cleanup:
3107 	kfree(command->completion);
3108 	kfree(command);
3109 
3110 	return ret;
3111 }
3112 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3113 
3114 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3115 {
3116 	struct xhci_hcd *xhci;
3117 	struct xhci_virt_device	*virt_dev;
3118 	int i, ret;
3119 
3120 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3121 	if (ret <= 0)
3122 		return;
3123 	xhci = hcd_to_xhci(hcd);
3124 
3125 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3126 	virt_dev = xhci->devs[udev->slot_id];
3127 	/* Free any rings allocated for added endpoints */
3128 	for (i = 0; i < 31; i++) {
3129 		if (virt_dev->eps[i].new_ring) {
3130 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3131 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3132 			virt_dev->eps[i].new_ring = NULL;
3133 		}
3134 	}
3135 	xhci_zero_in_ctx(xhci, virt_dev);
3136 }
3137 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3138 
3139 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3140 		struct xhci_container_ctx *in_ctx,
3141 		struct xhci_container_ctx *out_ctx,
3142 		struct xhci_input_control_ctx *ctrl_ctx,
3143 		u32 add_flags, u32 drop_flags)
3144 {
3145 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3146 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3147 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3148 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3149 }
3150 
3151 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3152 				  struct usb_host_endpoint *host_ep)
3153 {
3154 	struct xhci_hcd		*xhci;
3155 	struct xhci_virt_device	*vdev;
3156 	struct xhci_virt_ep	*ep;
3157 	struct usb_device	*udev;
3158 	unsigned long		flags;
3159 	unsigned int		ep_index;
3160 
3161 	xhci = hcd_to_xhci(hcd);
3162 rescan:
3163 	spin_lock_irqsave(&xhci->lock, flags);
3164 
3165 	udev = (struct usb_device *)host_ep->hcpriv;
3166 	if (!udev || !udev->slot_id)
3167 		goto done;
3168 
3169 	vdev = xhci->devs[udev->slot_id];
3170 	if (!vdev)
3171 		goto done;
3172 
3173 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3174 	ep = &vdev->eps[ep_index];
3175 
3176 	/* wait for hub_tt_work to finish clearing hub TT */
3177 	if (ep->ep_state & EP_CLEARING_TT) {
3178 		spin_unlock_irqrestore(&xhci->lock, flags);
3179 		schedule_timeout_uninterruptible(1);
3180 		goto rescan;
3181 	}
3182 
3183 	if (ep->ep_state)
3184 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3185 			 ep->ep_state);
3186 done:
3187 	host_ep->hcpriv = NULL;
3188 	spin_unlock_irqrestore(&xhci->lock, flags);
3189 }
3190 
3191 /*
3192  * Called after usb core issues a clear halt control message.
3193  * The host side of the halt should already be cleared by a reset endpoint
3194  * command issued when the STALL event was received.
3195  *
3196  * The reset endpoint command may only be issued to endpoints in the halted
3197  * state. For software that wishes to reset the data toggle or sequence number
3198  * of an endpoint that isn't in the halted state this function will issue a
3199  * configure endpoint command with the Drop and Add bits set for the target
3200  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3201  */
3202 
3203 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3204 		struct usb_host_endpoint *host_ep)
3205 {
3206 	struct xhci_hcd *xhci;
3207 	struct usb_device *udev;
3208 	struct xhci_virt_device *vdev;
3209 	struct xhci_virt_ep *ep;
3210 	struct xhci_input_control_ctx *ctrl_ctx;
3211 	struct xhci_command *stop_cmd, *cfg_cmd;
3212 	unsigned int ep_index;
3213 	unsigned long flags;
3214 	u32 ep_flag;
3215 	int err;
3216 
3217 	xhci = hcd_to_xhci(hcd);
3218 	if (!host_ep->hcpriv)
3219 		return;
3220 	udev = (struct usb_device *) host_ep->hcpriv;
3221 	vdev = xhci->devs[udev->slot_id];
3222 
3223 	/*
3224 	 * vdev may be lost due to xHC restore error and re-initialization
3225 	 * during S3/S4 resume. A new vdev will be allocated later by
3226 	 * xhci_discover_or_reset_device()
3227 	 */
3228 	if (!udev->slot_id || !vdev)
3229 		return;
3230 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3231 	ep = &vdev->eps[ep_index];
3232 
3233 	/* Bail out if toggle is already being cleared by a endpoint reset */
3234 	spin_lock_irqsave(&xhci->lock, flags);
3235 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3236 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3237 		spin_unlock_irqrestore(&xhci->lock, flags);
3238 		return;
3239 	}
3240 	spin_unlock_irqrestore(&xhci->lock, flags);
3241 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3242 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3243 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3244 		return;
3245 
3246 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3247 
3248 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3249 		return;
3250 
3251 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3252 	if (!stop_cmd)
3253 		return;
3254 
3255 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3256 	if (!cfg_cmd)
3257 		goto cleanup;
3258 
3259 	spin_lock_irqsave(&xhci->lock, flags);
3260 
3261 	/* block queuing new trbs and ringing ep doorbell */
3262 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3263 
3264 	/*
3265 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3266 	 * Driver is required to synchronously cancel all transfer request.
3267 	 * Stop the endpoint to force xHC to update the output context
3268 	 */
3269 
3270 	if (!list_empty(&ep->ring->td_list)) {
3271 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3272 		spin_unlock_irqrestore(&xhci->lock, flags);
3273 		xhci_free_command(xhci, cfg_cmd);
3274 		goto cleanup;
3275 	}
3276 
3277 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3278 					ep_index, 0);
3279 	if (err < 0) {
3280 		spin_unlock_irqrestore(&xhci->lock, flags);
3281 		xhci_free_command(xhci, cfg_cmd);
3282 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3283 				__func__, err);
3284 		goto cleanup;
3285 	}
3286 
3287 	xhci_ring_cmd_db(xhci);
3288 	spin_unlock_irqrestore(&xhci->lock, flags);
3289 
3290 	wait_for_completion(stop_cmd->completion);
3291 
3292 	spin_lock_irqsave(&xhci->lock, flags);
3293 
3294 	/* config ep command clears toggle if add and drop ep flags are set */
3295 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3296 	if (!ctrl_ctx) {
3297 		spin_unlock_irqrestore(&xhci->lock, flags);
3298 		xhci_free_command(xhci, cfg_cmd);
3299 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3300 				__func__);
3301 		goto cleanup;
3302 	}
3303 
3304 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3305 					   ctrl_ctx, ep_flag, ep_flag);
3306 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3307 
3308 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3309 				      udev->slot_id, false);
3310 	if (err < 0) {
3311 		spin_unlock_irqrestore(&xhci->lock, flags);
3312 		xhci_free_command(xhci, cfg_cmd);
3313 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3314 				__func__, err);
3315 		goto cleanup;
3316 	}
3317 
3318 	xhci_ring_cmd_db(xhci);
3319 	spin_unlock_irqrestore(&xhci->lock, flags);
3320 
3321 	wait_for_completion(cfg_cmd->completion);
3322 
3323 	xhci_free_command(xhci, cfg_cmd);
3324 cleanup:
3325 	xhci_free_command(xhci, stop_cmd);
3326 	spin_lock_irqsave(&xhci->lock, flags);
3327 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3328 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3329 	spin_unlock_irqrestore(&xhci->lock, flags);
3330 }
3331 
3332 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3333 		struct usb_device *udev, struct usb_host_endpoint *ep,
3334 		unsigned int slot_id)
3335 {
3336 	int ret;
3337 	unsigned int ep_index;
3338 	unsigned int ep_state;
3339 
3340 	if (!ep)
3341 		return -EINVAL;
3342 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3343 	if (ret <= 0)
3344 		return ret ? ret : -EINVAL;
3345 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3346 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3347 				" descriptor for ep 0x%x does not support streams\n",
3348 				ep->desc.bEndpointAddress);
3349 		return -EINVAL;
3350 	}
3351 
3352 	ep_index = xhci_get_endpoint_index(&ep->desc);
3353 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3354 	if (ep_state & EP_HAS_STREAMS ||
3355 			ep_state & EP_GETTING_STREAMS) {
3356 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3357 				"already has streams set up.\n",
3358 				ep->desc.bEndpointAddress);
3359 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3360 				"dynamic stream context array reallocation.\n");
3361 		return -EINVAL;
3362 	}
3363 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3364 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3365 				"endpoint 0x%x; URBs are pending.\n",
3366 				ep->desc.bEndpointAddress);
3367 		return -EINVAL;
3368 	}
3369 	return 0;
3370 }
3371 
3372 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3373 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3374 {
3375 	unsigned int max_streams;
3376 
3377 	/* The stream context array size must be a power of two */
3378 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3379 	/*
3380 	 * Find out how many primary stream array entries the host controller
3381 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3382 	 * level page entries), but that's an optional feature for xHCI host
3383 	 * controllers. xHCs must support at least 4 stream IDs.
3384 	 */
3385 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3386 	if (*num_stream_ctxs > max_streams) {
3387 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3388 				max_streams);
3389 		*num_stream_ctxs = max_streams;
3390 		*num_streams = max_streams;
3391 	}
3392 }
3393 
3394 /* Returns an error code if one of the endpoint already has streams.
3395  * This does not change any data structures, it only checks and gathers
3396  * information.
3397  */
3398 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3399 		struct usb_device *udev,
3400 		struct usb_host_endpoint **eps, unsigned int num_eps,
3401 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3402 {
3403 	unsigned int max_streams;
3404 	unsigned int endpoint_flag;
3405 	int i;
3406 	int ret;
3407 
3408 	for (i = 0; i < num_eps; i++) {
3409 		ret = xhci_check_streams_endpoint(xhci, udev,
3410 				eps[i], udev->slot_id);
3411 		if (ret < 0)
3412 			return ret;
3413 
3414 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3415 		if (max_streams < (*num_streams - 1)) {
3416 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3417 					eps[i]->desc.bEndpointAddress,
3418 					max_streams);
3419 			*num_streams = max_streams+1;
3420 		}
3421 
3422 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3423 		if (*changed_ep_bitmask & endpoint_flag)
3424 			return -EINVAL;
3425 		*changed_ep_bitmask |= endpoint_flag;
3426 	}
3427 	return 0;
3428 }
3429 
3430 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3431 		struct usb_device *udev,
3432 		struct usb_host_endpoint **eps, unsigned int num_eps)
3433 {
3434 	u32 changed_ep_bitmask = 0;
3435 	unsigned int slot_id;
3436 	unsigned int ep_index;
3437 	unsigned int ep_state;
3438 	int i;
3439 
3440 	slot_id = udev->slot_id;
3441 	if (!xhci->devs[slot_id])
3442 		return 0;
3443 
3444 	for (i = 0; i < num_eps; i++) {
3445 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3446 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3447 		/* Are streams already being freed for the endpoint? */
3448 		if (ep_state & EP_GETTING_NO_STREAMS) {
3449 			xhci_warn(xhci, "WARN Can't disable streams for "
3450 					"endpoint 0x%x, "
3451 					"streams are being disabled already\n",
3452 					eps[i]->desc.bEndpointAddress);
3453 			return 0;
3454 		}
3455 		/* Are there actually any streams to free? */
3456 		if (!(ep_state & EP_HAS_STREAMS) &&
3457 				!(ep_state & EP_GETTING_STREAMS)) {
3458 			xhci_warn(xhci, "WARN Can't disable streams for "
3459 					"endpoint 0x%x, "
3460 					"streams are already disabled!\n",
3461 					eps[i]->desc.bEndpointAddress);
3462 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3463 					"with non-streams endpoint\n");
3464 			return 0;
3465 		}
3466 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3467 	}
3468 	return changed_ep_bitmask;
3469 }
3470 
3471 /*
3472  * The USB device drivers use this function (through the HCD interface in USB
3473  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3474  * coordinate mass storage command queueing across multiple endpoints (basically
3475  * a stream ID == a task ID).
3476  *
3477  * Setting up streams involves allocating the same size stream context array
3478  * for each endpoint and issuing a configure endpoint command for all endpoints.
3479  *
3480  * Don't allow the call to succeed if one endpoint only supports one stream
3481  * (which means it doesn't support streams at all).
3482  *
3483  * Drivers may get less stream IDs than they asked for, if the host controller
3484  * hardware or endpoints claim they can't support the number of requested
3485  * stream IDs.
3486  */
3487 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3488 		struct usb_host_endpoint **eps, unsigned int num_eps,
3489 		unsigned int num_streams, gfp_t mem_flags)
3490 {
3491 	int i, ret;
3492 	struct xhci_hcd *xhci;
3493 	struct xhci_virt_device *vdev;
3494 	struct xhci_command *config_cmd;
3495 	struct xhci_input_control_ctx *ctrl_ctx;
3496 	unsigned int ep_index;
3497 	unsigned int num_stream_ctxs;
3498 	unsigned int max_packet;
3499 	unsigned long flags;
3500 	u32 changed_ep_bitmask = 0;
3501 
3502 	if (!eps)
3503 		return -EINVAL;
3504 
3505 	/* Add one to the number of streams requested to account for
3506 	 * stream 0 that is reserved for xHCI usage.
3507 	 */
3508 	num_streams += 1;
3509 	xhci = hcd_to_xhci(hcd);
3510 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3511 			num_streams);
3512 
3513 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3514 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3515 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3516 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3517 		return -ENOSYS;
3518 	}
3519 
3520 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3521 	if (!config_cmd)
3522 		return -ENOMEM;
3523 
3524 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3525 	if (!ctrl_ctx) {
3526 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3527 				__func__);
3528 		xhci_free_command(xhci, config_cmd);
3529 		return -ENOMEM;
3530 	}
3531 
3532 	/* Check to make sure all endpoints are not already configured for
3533 	 * streams.  While we're at it, find the maximum number of streams that
3534 	 * all the endpoints will support and check for duplicate endpoints.
3535 	 */
3536 	spin_lock_irqsave(&xhci->lock, flags);
3537 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3538 			num_eps, &num_streams, &changed_ep_bitmask);
3539 	if (ret < 0) {
3540 		xhci_free_command(xhci, config_cmd);
3541 		spin_unlock_irqrestore(&xhci->lock, flags);
3542 		return ret;
3543 	}
3544 	if (num_streams <= 1) {
3545 		xhci_warn(xhci, "WARN: endpoints can't handle "
3546 				"more than one stream.\n");
3547 		xhci_free_command(xhci, config_cmd);
3548 		spin_unlock_irqrestore(&xhci->lock, flags);
3549 		return -EINVAL;
3550 	}
3551 	vdev = xhci->devs[udev->slot_id];
3552 	/* Mark each endpoint as being in transition, so
3553 	 * xhci_urb_enqueue() will reject all URBs.
3554 	 */
3555 	for (i = 0; i < num_eps; i++) {
3556 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3557 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3558 	}
3559 	spin_unlock_irqrestore(&xhci->lock, flags);
3560 
3561 	/* Setup internal data structures and allocate HW data structures for
3562 	 * streams (but don't install the HW structures in the input context
3563 	 * until we're sure all memory allocation succeeded).
3564 	 */
3565 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3566 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3567 			num_stream_ctxs, num_streams);
3568 
3569 	for (i = 0; i < num_eps; i++) {
3570 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3571 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3572 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3573 				num_stream_ctxs,
3574 				num_streams,
3575 				max_packet, mem_flags);
3576 		if (!vdev->eps[ep_index].stream_info)
3577 			goto cleanup;
3578 		/* Set maxPstreams in endpoint context and update deq ptr to
3579 		 * point to stream context array. FIXME
3580 		 */
3581 	}
3582 
3583 	/* Set up the input context for a configure endpoint command. */
3584 	for (i = 0; i < num_eps; i++) {
3585 		struct xhci_ep_ctx *ep_ctx;
3586 
3587 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3588 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3589 
3590 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3591 				vdev->out_ctx, ep_index);
3592 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3593 				vdev->eps[ep_index].stream_info);
3594 	}
3595 	/* Tell the HW to drop its old copy of the endpoint context info
3596 	 * and add the updated copy from the input context.
3597 	 */
3598 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3599 			vdev->out_ctx, ctrl_ctx,
3600 			changed_ep_bitmask, changed_ep_bitmask);
3601 
3602 	/* Issue and wait for the configure endpoint command */
3603 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3604 			false, false);
3605 
3606 	/* xHC rejected the configure endpoint command for some reason, so we
3607 	 * leave the old ring intact and free our internal streams data
3608 	 * structure.
3609 	 */
3610 	if (ret < 0)
3611 		goto cleanup;
3612 
3613 	spin_lock_irqsave(&xhci->lock, flags);
3614 	for (i = 0; i < num_eps; i++) {
3615 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3616 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3617 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3618 			 udev->slot_id, ep_index);
3619 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3620 	}
3621 	xhci_free_command(xhci, config_cmd);
3622 	spin_unlock_irqrestore(&xhci->lock, flags);
3623 
3624 	for (i = 0; i < num_eps; i++) {
3625 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3626 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3627 	}
3628 	/* Subtract 1 for stream 0, which drivers can't use */
3629 	return num_streams - 1;
3630 
3631 cleanup:
3632 	/* If it didn't work, free the streams! */
3633 	for (i = 0; i < num_eps; i++) {
3634 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3635 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3636 		vdev->eps[ep_index].stream_info = NULL;
3637 		/* FIXME Unset maxPstreams in endpoint context and
3638 		 * update deq ptr to point to normal string ring.
3639 		 */
3640 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3641 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3642 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3643 	}
3644 	xhci_free_command(xhci, config_cmd);
3645 	return -ENOMEM;
3646 }
3647 
3648 /* Transition the endpoint from using streams to being a "normal" endpoint
3649  * without streams.
3650  *
3651  * Modify the endpoint context state, submit a configure endpoint command,
3652  * and free all endpoint rings for streams if that completes successfully.
3653  */
3654 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3655 		struct usb_host_endpoint **eps, unsigned int num_eps,
3656 		gfp_t mem_flags)
3657 {
3658 	int i, ret;
3659 	struct xhci_hcd *xhci;
3660 	struct xhci_virt_device *vdev;
3661 	struct xhci_command *command;
3662 	struct xhci_input_control_ctx *ctrl_ctx;
3663 	unsigned int ep_index;
3664 	unsigned long flags;
3665 	u32 changed_ep_bitmask;
3666 
3667 	xhci = hcd_to_xhci(hcd);
3668 	vdev = xhci->devs[udev->slot_id];
3669 
3670 	/* Set up a configure endpoint command to remove the streams rings */
3671 	spin_lock_irqsave(&xhci->lock, flags);
3672 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3673 			udev, eps, num_eps);
3674 	if (changed_ep_bitmask == 0) {
3675 		spin_unlock_irqrestore(&xhci->lock, flags);
3676 		return -EINVAL;
3677 	}
3678 
3679 	/* Use the xhci_command structure from the first endpoint.  We may have
3680 	 * allocated too many, but the driver may call xhci_free_streams() for
3681 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3682 	 */
3683 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3684 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3685 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3686 	if (!ctrl_ctx) {
3687 		spin_unlock_irqrestore(&xhci->lock, flags);
3688 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3689 				__func__);
3690 		return -EINVAL;
3691 	}
3692 
3693 	for (i = 0; i < num_eps; i++) {
3694 		struct xhci_ep_ctx *ep_ctx;
3695 
3696 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3697 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3698 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3699 			EP_GETTING_NO_STREAMS;
3700 
3701 		xhci_endpoint_copy(xhci, command->in_ctx,
3702 				vdev->out_ctx, ep_index);
3703 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3704 				&vdev->eps[ep_index]);
3705 	}
3706 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3707 			vdev->out_ctx, ctrl_ctx,
3708 			changed_ep_bitmask, changed_ep_bitmask);
3709 	spin_unlock_irqrestore(&xhci->lock, flags);
3710 
3711 	/* Issue and wait for the configure endpoint command,
3712 	 * which must succeed.
3713 	 */
3714 	ret = xhci_configure_endpoint(xhci, udev, command,
3715 			false, true);
3716 
3717 	/* xHC rejected the configure endpoint command for some reason, so we
3718 	 * leave the streams rings intact.
3719 	 */
3720 	if (ret < 0)
3721 		return ret;
3722 
3723 	spin_lock_irqsave(&xhci->lock, flags);
3724 	for (i = 0; i < num_eps; i++) {
3725 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3726 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3727 		vdev->eps[ep_index].stream_info = NULL;
3728 		/* FIXME Unset maxPstreams in endpoint context and
3729 		 * update deq ptr to point to normal string ring.
3730 		 */
3731 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3732 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3733 	}
3734 	spin_unlock_irqrestore(&xhci->lock, flags);
3735 
3736 	return 0;
3737 }
3738 
3739 /*
3740  * Deletes endpoint resources for endpoints that were active before a Reset
3741  * Device command, or a Disable Slot command.  The Reset Device command leaves
3742  * the control endpoint intact, whereas the Disable Slot command deletes it.
3743  *
3744  * Must be called with xhci->lock held.
3745  */
3746 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3747 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3748 {
3749 	int i;
3750 	unsigned int num_dropped_eps = 0;
3751 	unsigned int drop_flags = 0;
3752 
3753 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3754 		if (virt_dev->eps[i].ring) {
3755 			drop_flags |= 1 << i;
3756 			num_dropped_eps++;
3757 		}
3758 	}
3759 	xhci->num_active_eps -= num_dropped_eps;
3760 	if (num_dropped_eps)
3761 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3762 				"Dropped %u ep ctxs, flags = 0x%x, "
3763 				"%u now active.",
3764 				num_dropped_eps, drop_flags,
3765 				xhci->num_active_eps);
3766 }
3767 
3768 /*
3769  * This submits a Reset Device Command, which will set the device state to 0,
3770  * set the device address to 0, and disable all the endpoints except the default
3771  * control endpoint.  The USB core should come back and call
3772  * xhci_address_device(), and then re-set up the configuration.  If this is
3773  * called because of a usb_reset_and_verify_device(), then the old alternate
3774  * settings will be re-installed through the normal bandwidth allocation
3775  * functions.
3776  *
3777  * Wait for the Reset Device command to finish.  Remove all structures
3778  * associated with the endpoints that were disabled.  Clear the input device
3779  * structure? Reset the control endpoint 0 max packet size?
3780  *
3781  * If the virt_dev to be reset does not exist or does not match the udev,
3782  * it means the device is lost, possibly due to the xHC restore error and
3783  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3784  * re-allocate the device.
3785  */
3786 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3787 		struct usb_device *udev)
3788 {
3789 	int ret, i;
3790 	unsigned long flags;
3791 	struct xhci_hcd *xhci;
3792 	unsigned int slot_id;
3793 	struct xhci_virt_device *virt_dev;
3794 	struct xhci_command *reset_device_cmd;
3795 	struct xhci_slot_ctx *slot_ctx;
3796 	int old_active_eps = 0;
3797 
3798 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3799 	if (ret <= 0)
3800 		return ret;
3801 	xhci = hcd_to_xhci(hcd);
3802 	slot_id = udev->slot_id;
3803 	virt_dev = xhci->devs[slot_id];
3804 	if (!virt_dev) {
3805 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3806 				"not exist. Re-allocate the device\n", slot_id);
3807 		ret = xhci_alloc_dev(hcd, udev);
3808 		if (ret == 1)
3809 			return 0;
3810 		else
3811 			return -EINVAL;
3812 	}
3813 
3814 	if (virt_dev->tt_info)
3815 		old_active_eps = virt_dev->tt_info->active_eps;
3816 
3817 	if (virt_dev->udev != udev) {
3818 		/* If the virt_dev and the udev does not match, this virt_dev
3819 		 * may belong to another udev.
3820 		 * Re-allocate the device.
3821 		 */
3822 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3823 				"not match the udev. Re-allocate the device\n",
3824 				slot_id);
3825 		ret = xhci_alloc_dev(hcd, udev);
3826 		if (ret == 1)
3827 			return 0;
3828 		else
3829 			return -EINVAL;
3830 	}
3831 
3832 	/* If device is not setup, there is no point in resetting it */
3833 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3834 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3835 						SLOT_STATE_DISABLED)
3836 		return 0;
3837 
3838 	trace_xhci_discover_or_reset_device(slot_ctx);
3839 
3840 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3841 	/* Allocate the command structure that holds the struct completion.
3842 	 * Assume we're in process context, since the normal device reset
3843 	 * process has to wait for the device anyway.  Storage devices are
3844 	 * reset as part of error handling, so use GFP_NOIO instead of
3845 	 * GFP_KERNEL.
3846 	 */
3847 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3848 	if (!reset_device_cmd) {
3849 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3850 		return -ENOMEM;
3851 	}
3852 
3853 	/* Attempt to submit the Reset Device command to the command ring */
3854 	spin_lock_irqsave(&xhci->lock, flags);
3855 
3856 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3857 	if (ret) {
3858 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3859 		spin_unlock_irqrestore(&xhci->lock, flags);
3860 		goto command_cleanup;
3861 	}
3862 	xhci_ring_cmd_db(xhci);
3863 	spin_unlock_irqrestore(&xhci->lock, flags);
3864 
3865 	/* Wait for the Reset Device command to finish */
3866 	wait_for_completion(reset_device_cmd->completion);
3867 
3868 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3869 	 * unless we tried to reset a slot ID that wasn't enabled,
3870 	 * or the device wasn't in the addressed or configured state.
3871 	 */
3872 	ret = reset_device_cmd->status;
3873 	switch (ret) {
3874 	case COMP_COMMAND_ABORTED:
3875 	case COMP_COMMAND_RING_STOPPED:
3876 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3877 		ret = -ETIME;
3878 		goto command_cleanup;
3879 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3880 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3881 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3882 				slot_id,
3883 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3884 		xhci_dbg(xhci, "Not freeing device rings.\n");
3885 		/* Don't treat this as an error.  May change my mind later. */
3886 		ret = 0;
3887 		goto command_cleanup;
3888 	case COMP_SUCCESS:
3889 		xhci_dbg(xhci, "Successful reset device command.\n");
3890 		break;
3891 	default:
3892 		if (xhci_is_vendor_info_code(xhci, ret))
3893 			break;
3894 		xhci_warn(xhci, "Unknown completion code %u for "
3895 				"reset device command.\n", ret);
3896 		ret = -EINVAL;
3897 		goto command_cleanup;
3898 	}
3899 
3900 	/* Free up host controller endpoint resources */
3901 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3902 		spin_lock_irqsave(&xhci->lock, flags);
3903 		/* Don't delete the default control endpoint resources */
3904 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3905 		spin_unlock_irqrestore(&xhci->lock, flags);
3906 	}
3907 
3908 	/* Everything but endpoint 0 is disabled, so free the rings. */
3909 	for (i = 1; i < 31; i++) {
3910 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3911 
3912 		if (ep->ep_state & EP_HAS_STREAMS) {
3913 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3914 					xhci_get_endpoint_address(i));
3915 			xhci_free_stream_info(xhci, ep->stream_info);
3916 			ep->stream_info = NULL;
3917 			ep->ep_state &= ~EP_HAS_STREAMS;
3918 		}
3919 
3920 		if (ep->ring) {
3921 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3922 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3923 		}
3924 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3925 			xhci_drop_ep_from_interval_table(xhci,
3926 					&virt_dev->eps[i].bw_info,
3927 					virt_dev->bw_table,
3928 					udev,
3929 					&virt_dev->eps[i],
3930 					virt_dev->tt_info);
3931 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3932 	}
3933 	/* If necessary, update the number of active TTs on this root port */
3934 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3935 	virt_dev->flags = 0;
3936 	ret = 0;
3937 
3938 command_cleanup:
3939 	xhci_free_command(xhci, reset_device_cmd);
3940 	return ret;
3941 }
3942 
3943 /*
3944  * At this point, the struct usb_device is about to go away, the device has
3945  * disconnected, and all traffic has been stopped and the endpoints have been
3946  * disabled.  Free any HC data structures associated with that device.
3947  */
3948 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3949 {
3950 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3951 	struct xhci_virt_device *virt_dev;
3952 	struct xhci_slot_ctx *slot_ctx;
3953 	int i, ret;
3954 
3955 	/*
3956 	 * We called pm_runtime_get_noresume when the device was attached.
3957 	 * Decrement the counter here to allow controller to runtime suspend
3958 	 * if no devices remain.
3959 	 */
3960 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3961 		pm_runtime_put_noidle(hcd->self.controller);
3962 
3963 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3964 	/* If the host is halted due to driver unload, we still need to free the
3965 	 * device.
3966 	 */
3967 	if (ret <= 0 && ret != -ENODEV)
3968 		return;
3969 
3970 	virt_dev = xhci->devs[udev->slot_id];
3971 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3972 	trace_xhci_free_dev(slot_ctx);
3973 
3974 	/* Stop any wayward timer functions (which may grab the lock) */
3975 	for (i = 0; i < 31; i++) {
3976 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3977 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3978 	}
3979 	virt_dev->udev = NULL;
3980 	xhci_disable_slot(xhci, udev->slot_id);
3981 	xhci_free_virt_device(xhci, udev->slot_id);
3982 }
3983 
3984 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3985 {
3986 	struct xhci_command *command;
3987 	unsigned long flags;
3988 	u32 state;
3989 	int ret;
3990 
3991 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3992 	if (!command)
3993 		return -ENOMEM;
3994 
3995 	xhci_debugfs_remove_slot(xhci, slot_id);
3996 
3997 	spin_lock_irqsave(&xhci->lock, flags);
3998 	/* Don't disable the slot if the host controller is dead. */
3999 	state = readl(&xhci->op_regs->status);
4000 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4001 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4002 		spin_unlock_irqrestore(&xhci->lock, flags);
4003 		kfree(command);
4004 		return -ENODEV;
4005 	}
4006 
4007 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4008 				slot_id);
4009 	if (ret) {
4010 		spin_unlock_irqrestore(&xhci->lock, flags);
4011 		kfree(command);
4012 		return ret;
4013 	}
4014 	xhci_ring_cmd_db(xhci);
4015 	spin_unlock_irqrestore(&xhci->lock, flags);
4016 
4017 	wait_for_completion(command->completion);
4018 
4019 	if (command->status != COMP_SUCCESS)
4020 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4021 			  slot_id, command->status);
4022 
4023 	xhci_free_command(xhci, command);
4024 
4025 	return 0;
4026 }
4027 
4028 /*
4029  * Checks if we have enough host controller resources for the default control
4030  * endpoint.
4031  *
4032  * Must be called with xhci->lock held.
4033  */
4034 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4035 {
4036 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4037 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4038 				"Not enough ep ctxs: "
4039 				"%u active, need to add 1, limit is %u.",
4040 				xhci->num_active_eps, xhci->limit_active_eps);
4041 		return -ENOMEM;
4042 	}
4043 	xhci->num_active_eps += 1;
4044 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4045 			"Adding 1 ep ctx, %u now active.",
4046 			xhci->num_active_eps);
4047 	return 0;
4048 }
4049 
4050 
4051 /*
4052  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4053  * timed out, or allocating memory failed.  Returns 1 on success.
4054  */
4055 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4056 {
4057 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4058 	struct xhci_virt_device *vdev;
4059 	struct xhci_slot_ctx *slot_ctx;
4060 	unsigned long flags;
4061 	int ret, slot_id;
4062 	struct xhci_command *command;
4063 
4064 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4065 	if (!command)
4066 		return 0;
4067 
4068 	spin_lock_irqsave(&xhci->lock, flags);
4069 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4070 	if (ret) {
4071 		spin_unlock_irqrestore(&xhci->lock, flags);
4072 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4073 		xhci_free_command(xhci, command);
4074 		return 0;
4075 	}
4076 	xhci_ring_cmd_db(xhci);
4077 	spin_unlock_irqrestore(&xhci->lock, flags);
4078 
4079 	wait_for_completion(command->completion);
4080 	slot_id = command->slot_id;
4081 
4082 	if (!slot_id || command->status != COMP_SUCCESS) {
4083 		xhci_err(xhci, "Error while assigning device slot ID\n");
4084 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4085 				HCS_MAX_SLOTS(
4086 					readl(&xhci->cap_regs->hcs_params1)));
4087 		xhci_free_command(xhci, command);
4088 		return 0;
4089 	}
4090 
4091 	xhci_free_command(xhci, command);
4092 
4093 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4094 		spin_lock_irqsave(&xhci->lock, flags);
4095 		ret = xhci_reserve_host_control_ep_resources(xhci);
4096 		if (ret) {
4097 			spin_unlock_irqrestore(&xhci->lock, flags);
4098 			xhci_warn(xhci, "Not enough host resources, "
4099 					"active endpoint contexts = %u\n",
4100 					xhci->num_active_eps);
4101 			goto disable_slot;
4102 		}
4103 		spin_unlock_irqrestore(&xhci->lock, flags);
4104 	}
4105 	/* Use GFP_NOIO, since this function can be called from
4106 	 * xhci_discover_or_reset_device(), which may be called as part of
4107 	 * mass storage driver error handling.
4108 	 */
4109 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4110 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4111 		goto disable_slot;
4112 	}
4113 	vdev = xhci->devs[slot_id];
4114 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4115 	trace_xhci_alloc_dev(slot_ctx);
4116 
4117 	udev->slot_id = slot_id;
4118 
4119 	xhci_debugfs_create_slot(xhci, slot_id);
4120 
4121 	/*
4122 	 * If resetting upon resume, we can't put the controller into runtime
4123 	 * suspend if there is a device attached.
4124 	 */
4125 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4126 		pm_runtime_get_noresume(hcd->self.controller);
4127 
4128 	/* Is this a LS or FS device under a HS hub? */
4129 	/* Hub or peripherial? */
4130 	return 1;
4131 
4132 disable_slot:
4133 	xhci_disable_slot(xhci, udev->slot_id);
4134 	xhci_free_virt_device(xhci, udev->slot_id);
4135 
4136 	return 0;
4137 }
4138 
4139 /*
4140  * Issue an Address Device command and optionally send a corresponding
4141  * SetAddress request to the device.
4142  */
4143 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4144 			     enum xhci_setup_dev setup)
4145 {
4146 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4147 	unsigned long flags;
4148 	struct xhci_virt_device *virt_dev;
4149 	int ret = 0;
4150 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4151 	struct xhci_slot_ctx *slot_ctx;
4152 	struct xhci_input_control_ctx *ctrl_ctx;
4153 	u64 temp_64;
4154 	struct xhci_command *command = NULL;
4155 
4156 	mutex_lock(&xhci->mutex);
4157 
4158 	if (xhci->xhc_state) {	/* dying, removing or halted */
4159 		ret = -ESHUTDOWN;
4160 		goto out;
4161 	}
4162 
4163 	if (!udev->slot_id) {
4164 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4165 				"Bad Slot ID %d", udev->slot_id);
4166 		ret = -EINVAL;
4167 		goto out;
4168 	}
4169 
4170 	virt_dev = xhci->devs[udev->slot_id];
4171 
4172 	if (WARN_ON(!virt_dev)) {
4173 		/*
4174 		 * In plug/unplug torture test with an NEC controller,
4175 		 * a zero-dereference was observed once due to virt_dev = 0.
4176 		 * Print useful debug rather than crash if it is observed again!
4177 		 */
4178 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4179 			udev->slot_id);
4180 		ret = -EINVAL;
4181 		goto out;
4182 	}
4183 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4184 	trace_xhci_setup_device_slot(slot_ctx);
4185 
4186 	if (setup == SETUP_CONTEXT_ONLY) {
4187 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4188 		    SLOT_STATE_DEFAULT) {
4189 			xhci_dbg(xhci, "Slot already in default state\n");
4190 			goto out;
4191 		}
4192 	}
4193 
4194 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4195 	if (!command) {
4196 		ret = -ENOMEM;
4197 		goto out;
4198 	}
4199 
4200 	command->in_ctx = virt_dev->in_ctx;
4201 
4202 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4203 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4204 	if (!ctrl_ctx) {
4205 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4206 				__func__);
4207 		ret = -EINVAL;
4208 		goto out;
4209 	}
4210 	/*
4211 	 * If this is the first Set Address since device plug-in or
4212 	 * virt_device realloaction after a resume with an xHCI power loss,
4213 	 * then set up the slot context.
4214 	 */
4215 	if (!slot_ctx->dev_info)
4216 		xhci_setup_addressable_virt_dev(xhci, udev);
4217 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4218 	else
4219 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4220 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4221 	ctrl_ctx->drop_flags = 0;
4222 
4223 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4224 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4225 
4226 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4227 	spin_lock_irqsave(&xhci->lock, flags);
4228 	trace_xhci_setup_device(virt_dev);
4229 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4230 					udev->slot_id, setup);
4231 	if (ret) {
4232 		spin_unlock_irqrestore(&xhci->lock, flags);
4233 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4234 				"FIXME: allocate a command ring segment");
4235 		goto out;
4236 	}
4237 	xhci_ring_cmd_db(xhci);
4238 	spin_unlock_irqrestore(&xhci->lock, flags);
4239 
4240 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4241 	wait_for_completion(command->completion);
4242 
4243 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4244 	 * the SetAddress() "recovery interval" required by USB and aborting the
4245 	 * command on a timeout.
4246 	 */
4247 	switch (command->status) {
4248 	case COMP_COMMAND_ABORTED:
4249 	case COMP_COMMAND_RING_STOPPED:
4250 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4251 		ret = -ETIME;
4252 		break;
4253 	case COMP_CONTEXT_STATE_ERROR:
4254 	case COMP_SLOT_NOT_ENABLED_ERROR:
4255 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4256 			 act, udev->slot_id);
4257 		ret = -EINVAL;
4258 		break;
4259 	case COMP_USB_TRANSACTION_ERROR:
4260 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4261 
4262 		mutex_unlock(&xhci->mutex);
4263 		ret = xhci_disable_slot(xhci, udev->slot_id);
4264 		xhci_free_virt_device(xhci, udev->slot_id);
4265 		if (!ret)
4266 			xhci_alloc_dev(hcd, udev);
4267 		kfree(command->completion);
4268 		kfree(command);
4269 		return -EPROTO;
4270 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4271 		dev_warn(&udev->dev,
4272 			 "ERROR: Incompatible device for setup %s command\n", act);
4273 		ret = -ENODEV;
4274 		break;
4275 	case COMP_SUCCESS:
4276 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4277 			       "Successful setup %s command", act);
4278 		break;
4279 	default:
4280 		xhci_err(xhci,
4281 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4282 			 act, command->status);
4283 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4284 		ret = -EINVAL;
4285 		break;
4286 	}
4287 	if (ret)
4288 		goto out;
4289 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4290 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4291 			"Op regs DCBAA ptr = %#016llx", temp_64);
4292 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4293 		"Slot ID %d dcbaa entry @%p = %#016llx",
4294 		udev->slot_id,
4295 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4296 		(unsigned long long)
4297 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4298 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4299 			"Output Context DMA address = %#08llx",
4300 			(unsigned long long)virt_dev->out_ctx->dma);
4301 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4302 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4303 	/*
4304 	 * USB core uses address 1 for the roothubs, so we add one to the
4305 	 * address given back to us by the HC.
4306 	 */
4307 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4308 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4309 	/* Zero the input context control for later use */
4310 	ctrl_ctx->add_flags = 0;
4311 	ctrl_ctx->drop_flags = 0;
4312 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4313 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4314 
4315 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4316 		       "Internal device address = %d",
4317 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4318 out:
4319 	mutex_unlock(&xhci->mutex);
4320 	if (command) {
4321 		kfree(command->completion);
4322 		kfree(command);
4323 	}
4324 	return ret;
4325 }
4326 
4327 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4328 {
4329 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4330 }
4331 
4332 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4333 {
4334 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4335 }
4336 
4337 /*
4338  * Transfer the port index into real index in the HW port status
4339  * registers. Caculate offset between the port's PORTSC register
4340  * and port status base. Divide the number of per port register
4341  * to get the real index. The raw port number bases 1.
4342  */
4343 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4344 {
4345 	struct xhci_hub *rhub;
4346 
4347 	rhub = xhci_get_rhub(hcd);
4348 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4349 }
4350 
4351 /*
4352  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4353  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4354  */
4355 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4356 			struct usb_device *udev, u16 max_exit_latency)
4357 {
4358 	struct xhci_virt_device *virt_dev;
4359 	struct xhci_command *command;
4360 	struct xhci_input_control_ctx *ctrl_ctx;
4361 	struct xhci_slot_ctx *slot_ctx;
4362 	unsigned long flags;
4363 	int ret;
4364 
4365 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4366 	if (!command)
4367 		return -ENOMEM;
4368 
4369 	spin_lock_irqsave(&xhci->lock, flags);
4370 
4371 	virt_dev = xhci->devs[udev->slot_id];
4372 
4373 	/*
4374 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4375 	 * xHC was re-initialized. Exit latency will be set later after
4376 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4377 	 */
4378 
4379 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4380 		spin_unlock_irqrestore(&xhci->lock, flags);
4381 		return 0;
4382 	}
4383 
4384 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4385 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4386 	if (!ctrl_ctx) {
4387 		spin_unlock_irqrestore(&xhci->lock, flags);
4388 		xhci_free_command(xhci, command);
4389 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4390 				__func__);
4391 		return -ENOMEM;
4392 	}
4393 
4394 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4395 	spin_unlock_irqrestore(&xhci->lock, flags);
4396 
4397 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4398 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4399 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4400 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4401 	slot_ctx->dev_state = 0;
4402 
4403 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4404 			"Set up evaluate context for LPM MEL change.");
4405 
4406 	/* Issue and wait for the evaluate context command. */
4407 	ret = xhci_configure_endpoint(xhci, udev, command,
4408 			true, true);
4409 
4410 	if (!ret) {
4411 		spin_lock_irqsave(&xhci->lock, flags);
4412 		virt_dev->current_mel = max_exit_latency;
4413 		spin_unlock_irqrestore(&xhci->lock, flags);
4414 	}
4415 
4416 	xhci_free_command(xhci, command);
4417 
4418 	return ret;
4419 }
4420 
4421 #ifdef CONFIG_PM
4422 
4423 /* BESL to HIRD Encoding array for USB2 LPM */
4424 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4425 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4426 
4427 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4428 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4429 					struct usb_device *udev)
4430 {
4431 	int u2del, besl, besl_host;
4432 	int besl_device = 0;
4433 	u32 field;
4434 
4435 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4436 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4437 
4438 	if (field & USB_BESL_SUPPORT) {
4439 		for (besl_host = 0; besl_host < 16; besl_host++) {
4440 			if (xhci_besl_encoding[besl_host] >= u2del)
4441 				break;
4442 		}
4443 		/* Use baseline BESL value as default */
4444 		if (field & USB_BESL_BASELINE_VALID)
4445 			besl_device = USB_GET_BESL_BASELINE(field);
4446 		else if (field & USB_BESL_DEEP_VALID)
4447 			besl_device = USB_GET_BESL_DEEP(field);
4448 	} else {
4449 		if (u2del <= 50)
4450 			besl_host = 0;
4451 		else
4452 			besl_host = (u2del - 51) / 75 + 1;
4453 	}
4454 
4455 	besl = besl_host + besl_device;
4456 	if (besl > 15)
4457 		besl = 15;
4458 
4459 	return besl;
4460 }
4461 
4462 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4463 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4464 {
4465 	u32 field;
4466 	int l1;
4467 	int besld = 0;
4468 	int hirdm = 0;
4469 
4470 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4471 
4472 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4473 	l1 = udev->l1_params.timeout / 256;
4474 
4475 	/* device has preferred BESLD */
4476 	if (field & USB_BESL_DEEP_VALID) {
4477 		besld = USB_GET_BESL_DEEP(field);
4478 		hirdm = 1;
4479 	}
4480 
4481 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4482 }
4483 
4484 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4485 			struct usb_device *udev, int enable)
4486 {
4487 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4488 	struct xhci_port **ports;
4489 	__le32 __iomem	*pm_addr, *hlpm_addr;
4490 	u32		pm_val, hlpm_val, field;
4491 	unsigned int	port_num;
4492 	unsigned long	flags;
4493 	int		hird, exit_latency;
4494 	int		ret;
4495 
4496 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4497 		return -EPERM;
4498 
4499 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4500 			!udev->lpm_capable)
4501 		return -EPERM;
4502 
4503 	if (!udev->parent || udev->parent->parent ||
4504 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4505 		return -EPERM;
4506 
4507 	if (udev->usb2_hw_lpm_capable != 1)
4508 		return -EPERM;
4509 
4510 	spin_lock_irqsave(&xhci->lock, flags);
4511 
4512 	ports = xhci->usb2_rhub.ports;
4513 	port_num = udev->portnum - 1;
4514 	pm_addr = ports[port_num]->addr + PORTPMSC;
4515 	pm_val = readl(pm_addr);
4516 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4517 
4518 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4519 			enable ? "enable" : "disable", port_num + 1);
4520 
4521 	if (enable) {
4522 		/* Host supports BESL timeout instead of HIRD */
4523 		if (udev->usb2_hw_lpm_besl_capable) {
4524 			/* if device doesn't have a preferred BESL value use a
4525 			 * default one which works with mixed HIRD and BESL
4526 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4527 			 */
4528 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4529 			if ((field & USB_BESL_SUPPORT) &&
4530 			    (field & USB_BESL_BASELINE_VALID))
4531 				hird = USB_GET_BESL_BASELINE(field);
4532 			else
4533 				hird = udev->l1_params.besl;
4534 
4535 			exit_latency = xhci_besl_encoding[hird];
4536 			spin_unlock_irqrestore(&xhci->lock, flags);
4537 
4538 			ret = xhci_change_max_exit_latency(xhci, udev,
4539 							   exit_latency);
4540 			if (ret < 0)
4541 				return ret;
4542 			spin_lock_irqsave(&xhci->lock, flags);
4543 
4544 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4545 			writel(hlpm_val, hlpm_addr);
4546 			/* flush write */
4547 			readl(hlpm_addr);
4548 		} else {
4549 			hird = xhci_calculate_hird_besl(xhci, udev);
4550 		}
4551 
4552 		pm_val &= ~PORT_HIRD_MASK;
4553 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4554 		writel(pm_val, pm_addr);
4555 		pm_val = readl(pm_addr);
4556 		pm_val |= PORT_HLE;
4557 		writel(pm_val, pm_addr);
4558 		/* flush write */
4559 		readl(pm_addr);
4560 	} else {
4561 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4562 		writel(pm_val, pm_addr);
4563 		/* flush write */
4564 		readl(pm_addr);
4565 		if (udev->usb2_hw_lpm_besl_capable) {
4566 			spin_unlock_irqrestore(&xhci->lock, flags);
4567 			xhci_change_max_exit_latency(xhci, udev, 0);
4568 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4569 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4570 					   100, 10000);
4571 			return 0;
4572 		}
4573 	}
4574 
4575 	spin_unlock_irqrestore(&xhci->lock, flags);
4576 	return 0;
4577 }
4578 
4579 /* check if a usb2 port supports a given extened capability protocol
4580  * only USB2 ports extended protocol capability values are cached.
4581  * Return 1 if capability is supported
4582  */
4583 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4584 					   unsigned capability)
4585 {
4586 	u32 port_offset, port_count;
4587 	int i;
4588 
4589 	for (i = 0; i < xhci->num_ext_caps; i++) {
4590 		if (xhci->ext_caps[i] & capability) {
4591 			/* port offsets starts at 1 */
4592 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4593 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4594 			if (port >= port_offset &&
4595 			    port < port_offset + port_count)
4596 				return 1;
4597 		}
4598 	}
4599 	return 0;
4600 }
4601 
4602 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4603 {
4604 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4605 	int		portnum = udev->portnum - 1;
4606 
4607 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4608 		return 0;
4609 
4610 	/* we only support lpm for non-hub device connected to root hub yet */
4611 	if (!udev->parent || udev->parent->parent ||
4612 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4613 		return 0;
4614 
4615 	if (xhci->hw_lpm_support == 1 &&
4616 			xhci_check_usb2_port_capability(
4617 				xhci, portnum, XHCI_HLC)) {
4618 		udev->usb2_hw_lpm_capable = 1;
4619 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4620 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4621 		if (xhci_check_usb2_port_capability(xhci, portnum,
4622 					XHCI_BLC))
4623 			udev->usb2_hw_lpm_besl_capable = 1;
4624 	}
4625 
4626 	return 0;
4627 }
4628 
4629 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4630 
4631 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4632 static unsigned long long xhci_service_interval_to_ns(
4633 		struct usb_endpoint_descriptor *desc)
4634 {
4635 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4636 }
4637 
4638 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4639 		enum usb3_link_state state)
4640 {
4641 	unsigned long long sel;
4642 	unsigned long long pel;
4643 	unsigned int max_sel_pel;
4644 	char *state_name;
4645 
4646 	switch (state) {
4647 	case USB3_LPM_U1:
4648 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4649 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4650 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4651 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4652 		state_name = "U1";
4653 		break;
4654 	case USB3_LPM_U2:
4655 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4656 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4657 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4658 		state_name = "U2";
4659 		break;
4660 	default:
4661 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4662 				__func__);
4663 		return USB3_LPM_DISABLED;
4664 	}
4665 
4666 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4667 		return USB3_LPM_DEVICE_INITIATED;
4668 
4669 	if (sel > max_sel_pel)
4670 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4671 				"due to long SEL %llu ms\n",
4672 				state_name, sel);
4673 	else
4674 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4675 				"due to long PEL %llu ms\n",
4676 				state_name, pel);
4677 	return USB3_LPM_DISABLED;
4678 }
4679 
4680 /* The U1 timeout should be the maximum of the following values:
4681  *  - For control endpoints, U1 system exit latency (SEL) * 3
4682  *  - For bulk endpoints, U1 SEL * 5
4683  *  - For interrupt endpoints:
4684  *    - Notification EPs, U1 SEL * 3
4685  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4686  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4687  */
4688 static unsigned long long xhci_calculate_intel_u1_timeout(
4689 		struct usb_device *udev,
4690 		struct usb_endpoint_descriptor *desc)
4691 {
4692 	unsigned long long timeout_ns;
4693 	int ep_type;
4694 	int intr_type;
4695 
4696 	ep_type = usb_endpoint_type(desc);
4697 	switch (ep_type) {
4698 	case USB_ENDPOINT_XFER_CONTROL:
4699 		timeout_ns = udev->u1_params.sel * 3;
4700 		break;
4701 	case USB_ENDPOINT_XFER_BULK:
4702 		timeout_ns = udev->u1_params.sel * 5;
4703 		break;
4704 	case USB_ENDPOINT_XFER_INT:
4705 		intr_type = usb_endpoint_interrupt_type(desc);
4706 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4707 			timeout_ns = udev->u1_params.sel * 3;
4708 			break;
4709 		}
4710 		/* Otherwise the calculation is the same as isoc eps */
4711 		fallthrough;
4712 	case USB_ENDPOINT_XFER_ISOC:
4713 		timeout_ns = xhci_service_interval_to_ns(desc);
4714 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4715 		if (timeout_ns < udev->u1_params.sel * 2)
4716 			timeout_ns = udev->u1_params.sel * 2;
4717 		break;
4718 	default:
4719 		return 0;
4720 	}
4721 
4722 	return timeout_ns;
4723 }
4724 
4725 /* Returns the hub-encoded U1 timeout value. */
4726 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4727 		struct usb_device *udev,
4728 		struct usb_endpoint_descriptor *desc)
4729 {
4730 	unsigned long long timeout_ns;
4731 
4732 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4733 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4734 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4735 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4736 			return USB3_LPM_DISABLED;
4737 		}
4738 	}
4739 
4740 	if (xhci->quirks & XHCI_INTEL_HOST)
4741 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4742 	else
4743 		timeout_ns = udev->u1_params.sel;
4744 
4745 	/* The U1 timeout is encoded in 1us intervals.
4746 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4747 	 */
4748 	if (timeout_ns == USB3_LPM_DISABLED)
4749 		timeout_ns = 1;
4750 	else
4751 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4752 
4753 	/* If the necessary timeout value is bigger than what we can set in the
4754 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4755 	 */
4756 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4757 		return timeout_ns;
4758 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4759 			"due to long timeout %llu ms\n", timeout_ns);
4760 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4761 }
4762 
4763 /* The U2 timeout should be the maximum of:
4764  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4765  *  - largest bInterval of any active periodic endpoint (to avoid going
4766  *    into lower power link states between intervals).
4767  *  - the U2 Exit Latency of the device
4768  */
4769 static unsigned long long xhci_calculate_intel_u2_timeout(
4770 		struct usb_device *udev,
4771 		struct usb_endpoint_descriptor *desc)
4772 {
4773 	unsigned long long timeout_ns;
4774 	unsigned long long u2_del_ns;
4775 
4776 	timeout_ns = 10 * 1000 * 1000;
4777 
4778 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4779 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4780 		timeout_ns = xhci_service_interval_to_ns(desc);
4781 
4782 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4783 	if (u2_del_ns > timeout_ns)
4784 		timeout_ns = u2_del_ns;
4785 
4786 	return timeout_ns;
4787 }
4788 
4789 /* Returns the hub-encoded U2 timeout value. */
4790 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4791 		struct usb_device *udev,
4792 		struct usb_endpoint_descriptor *desc)
4793 {
4794 	unsigned long long timeout_ns;
4795 
4796 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4797 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4798 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4799 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4800 			return USB3_LPM_DISABLED;
4801 		}
4802 	}
4803 
4804 	if (xhci->quirks & XHCI_INTEL_HOST)
4805 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4806 	else
4807 		timeout_ns = udev->u2_params.sel;
4808 
4809 	/* The U2 timeout is encoded in 256us intervals */
4810 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4811 	/* If the necessary timeout value is bigger than what we can set in the
4812 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4813 	 */
4814 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4815 		return timeout_ns;
4816 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4817 			"due to long timeout %llu ms\n", timeout_ns);
4818 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4819 }
4820 
4821 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4822 		struct usb_device *udev,
4823 		struct usb_endpoint_descriptor *desc,
4824 		enum usb3_link_state state,
4825 		u16 *timeout)
4826 {
4827 	if (state == USB3_LPM_U1)
4828 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4829 	else if (state == USB3_LPM_U2)
4830 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4831 
4832 	return USB3_LPM_DISABLED;
4833 }
4834 
4835 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4836 		struct usb_device *udev,
4837 		struct usb_endpoint_descriptor *desc,
4838 		enum usb3_link_state state,
4839 		u16 *timeout)
4840 {
4841 	u16 alt_timeout;
4842 
4843 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4844 		desc, state, timeout);
4845 
4846 	/* If we found we can't enable hub-initiated LPM, and
4847 	 * the U1 or U2 exit latency was too high to allow
4848 	 * device-initiated LPM as well, then we will disable LPM
4849 	 * for this device, so stop searching any further.
4850 	 */
4851 	if (alt_timeout == USB3_LPM_DISABLED) {
4852 		*timeout = alt_timeout;
4853 		return -E2BIG;
4854 	}
4855 	if (alt_timeout > *timeout)
4856 		*timeout = alt_timeout;
4857 	return 0;
4858 }
4859 
4860 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4861 		struct usb_device *udev,
4862 		struct usb_host_interface *alt,
4863 		enum usb3_link_state state,
4864 		u16 *timeout)
4865 {
4866 	int j;
4867 
4868 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4869 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4870 					&alt->endpoint[j].desc, state, timeout))
4871 			return -E2BIG;
4872 	}
4873 	return 0;
4874 }
4875 
4876 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4877 		enum usb3_link_state state)
4878 {
4879 	struct usb_device *parent;
4880 	unsigned int num_hubs;
4881 
4882 	if (state == USB3_LPM_U2)
4883 		return 0;
4884 
4885 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4886 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4887 			parent = parent->parent)
4888 		num_hubs++;
4889 
4890 	if (num_hubs < 2)
4891 		return 0;
4892 
4893 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4894 			" below second-tier hub.\n");
4895 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4896 			"to decrease power consumption.\n");
4897 	return -E2BIG;
4898 }
4899 
4900 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4901 		struct usb_device *udev,
4902 		enum usb3_link_state state)
4903 {
4904 	if (xhci->quirks & XHCI_INTEL_HOST)
4905 		return xhci_check_intel_tier_policy(udev, state);
4906 	else
4907 		return 0;
4908 }
4909 
4910 /* Returns the U1 or U2 timeout that should be enabled.
4911  * If the tier check or timeout setting functions return with a non-zero exit
4912  * code, that means the timeout value has been finalized and we shouldn't look
4913  * at any more endpoints.
4914  */
4915 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4916 			struct usb_device *udev, enum usb3_link_state state)
4917 {
4918 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4919 	struct usb_host_config *config;
4920 	char *state_name;
4921 	int i;
4922 	u16 timeout = USB3_LPM_DISABLED;
4923 
4924 	if (state == USB3_LPM_U1)
4925 		state_name = "U1";
4926 	else if (state == USB3_LPM_U2)
4927 		state_name = "U2";
4928 	else {
4929 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4930 				state);
4931 		return timeout;
4932 	}
4933 
4934 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4935 		return timeout;
4936 
4937 	/* Gather some information about the currently installed configuration
4938 	 * and alternate interface settings.
4939 	 */
4940 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4941 			state, &timeout))
4942 		return timeout;
4943 
4944 	config = udev->actconfig;
4945 	if (!config)
4946 		return timeout;
4947 
4948 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4949 		struct usb_driver *driver;
4950 		struct usb_interface *intf = config->interface[i];
4951 
4952 		if (!intf)
4953 			continue;
4954 
4955 		/* Check if any currently bound drivers want hub-initiated LPM
4956 		 * disabled.
4957 		 */
4958 		if (intf->dev.driver) {
4959 			driver = to_usb_driver(intf->dev.driver);
4960 			if (driver && driver->disable_hub_initiated_lpm) {
4961 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4962 					state_name, driver->name);
4963 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4964 								      state);
4965 				if (timeout == USB3_LPM_DISABLED)
4966 					return timeout;
4967 			}
4968 		}
4969 
4970 		/* Not sure how this could happen... */
4971 		if (!intf->cur_altsetting)
4972 			continue;
4973 
4974 		if (xhci_update_timeout_for_interface(xhci, udev,
4975 					intf->cur_altsetting,
4976 					state, &timeout))
4977 			return timeout;
4978 	}
4979 	return timeout;
4980 }
4981 
4982 static int calculate_max_exit_latency(struct usb_device *udev,
4983 		enum usb3_link_state state_changed,
4984 		u16 hub_encoded_timeout)
4985 {
4986 	unsigned long long u1_mel_us = 0;
4987 	unsigned long long u2_mel_us = 0;
4988 	unsigned long long mel_us = 0;
4989 	bool disabling_u1;
4990 	bool disabling_u2;
4991 	bool enabling_u1;
4992 	bool enabling_u2;
4993 
4994 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4995 			hub_encoded_timeout == USB3_LPM_DISABLED);
4996 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4997 			hub_encoded_timeout == USB3_LPM_DISABLED);
4998 
4999 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5000 			hub_encoded_timeout != USB3_LPM_DISABLED);
5001 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5002 			hub_encoded_timeout != USB3_LPM_DISABLED);
5003 
5004 	/* If U1 was already enabled and we're not disabling it,
5005 	 * or we're going to enable U1, account for the U1 max exit latency.
5006 	 */
5007 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5008 			enabling_u1)
5009 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5010 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5011 			enabling_u2)
5012 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5013 
5014 	mel_us = max(u1_mel_us, u2_mel_us);
5015 
5016 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5017 	if (mel_us > MAX_EXIT) {
5018 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5019 				"is too big.\n", mel_us);
5020 		return -E2BIG;
5021 	}
5022 	return mel_us;
5023 }
5024 
5025 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5026 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5027 			struct usb_device *udev, enum usb3_link_state state)
5028 {
5029 	struct xhci_hcd	*xhci;
5030 	u16 hub_encoded_timeout;
5031 	int mel;
5032 	int ret;
5033 
5034 	xhci = hcd_to_xhci(hcd);
5035 	/* The LPM timeout values are pretty host-controller specific, so don't
5036 	 * enable hub-initiated timeouts unless the vendor has provided
5037 	 * information about their timeout algorithm.
5038 	 */
5039 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5040 			!xhci->devs[udev->slot_id])
5041 		return USB3_LPM_DISABLED;
5042 
5043 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5044 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5045 	if (mel < 0) {
5046 		/* Max Exit Latency is too big, disable LPM. */
5047 		hub_encoded_timeout = USB3_LPM_DISABLED;
5048 		mel = 0;
5049 	}
5050 
5051 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5052 	if (ret)
5053 		return ret;
5054 	return hub_encoded_timeout;
5055 }
5056 
5057 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5058 			struct usb_device *udev, enum usb3_link_state state)
5059 {
5060 	struct xhci_hcd	*xhci;
5061 	u16 mel;
5062 
5063 	xhci = hcd_to_xhci(hcd);
5064 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5065 			!xhci->devs[udev->slot_id])
5066 		return 0;
5067 
5068 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5069 	return xhci_change_max_exit_latency(xhci, udev, mel);
5070 }
5071 #else /* CONFIG_PM */
5072 
5073 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5074 				struct usb_device *udev, int enable)
5075 {
5076 	return 0;
5077 }
5078 
5079 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5080 {
5081 	return 0;
5082 }
5083 
5084 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5085 			struct usb_device *udev, enum usb3_link_state state)
5086 {
5087 	return USB3_LPM_DISABLED;
5088 }
5089 
5090 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5091 			struct usb_device *udev, enum usb3_link_state state)
5092 {
5093 	return 0;
5094 }
5095 #endif	/* CONFIG_PM */
5096 
5097 /*-------------------------------------------------------------------------*/
5098 
5099 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5100  * internal data structures for the device.
5101  */
5102 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5103 			struct usb_tt *tt, gfp_t mem_flags)
5104 {
5105 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5106 	struct xhci_virt_device *vdev;
5107 	struct xhci_command *config_cmd;
5108 	struct xhci_input_control_ctx *ctrl_ctx;
5109 	struct xhci_slot_ctx *slot_ctx;
5110 	unsigned long flags;
5111 	unsigned think_time;
5112 	int ret;
5113 
5114 	/* Ignore root hubs */
5115 	if (!hdev->parent)
5116 		return 0;
5117 
5118 	vdev = xhci->devs[hdev->slot_id];
5119 	if (!vdev) {
5120 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5121 		return -EINVAL;
5122 	}
5123 
5124 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5125 	if (!config_cmd)
5126 		return -ENOMEM;
5127 
5128 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5129 	if (!ctrl_ctx) {
5130 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5131 				__func__);
5132 		xhci_free_command(xhci, config_cmd);
5133 		return -ENOMEM;
5134 	}
5135 
5136 	spin_lock_irqsave(&xhci->lock, flags);
5137 	if (hdev->speed == USB_SPEED_HIGH &&
5138 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5139 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5140 		xhci_free_command(xhci, config_cmd);
5141 		spin_unlock_irqrestore(&xhci->lock, flags);
5142 		return -ENOMEM;
5143 	}
5144 
5145 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5146 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5147 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5148 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5149 	/*
5150 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5151 	 * but it may be already set to 1 when setup an xHCI virtual
5152 	 * device, so clear it anyway.
5153 	 */
5154 	if (tt->multi)
5155 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5156 	else if (hdev->speed == USB_SPEED_FULL)
5157 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5158 
5159 	if (xhci->hci_version > 0x95) {
5160 		xhci_dbg(xhci, "xHCI version %x needs hub "
5161 				"TT think time and number of ports\n",
5162 				(unsigned int) xhci->hci_version);
5163 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5164 		/* Set TT think time - convert from ns to FS bit times.
5165 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5166 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5167 		 *
5168 		 * xHCI 1.0: this field shall be 0 if the device is not a
5169 		 * High-spped hub.
5170 		 */
5171 		think_time = tt->think_time;
5172 		if (think_time != 0)
5173 			think_time = (think_time / 666) - 1;
5174 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5175 			slot_ctx->tt_info |=
5176 				cpu_to_le32(TT_THINK_TIME(think_time));
5177 	} else {
5178 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5179 				"TT think time or number of ports\n",
5180 				(unsigned int) xhci->hci_version);
5181 	}
5182 	slot_ctx->dev_state = 0;
5183 	spin_unlock_irqrestore(&xhci->lock, flags);
5184 
5185 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5186 			(xhci->hci_version > 0x95) ?
5187 			"configure endpoint" : "evaluate context");
5188 
5189 	/* Issue and wait for the configure endpoint or
5190 	 * evaluate context command.
5191 	 */
5192 	if (xhci->hci_version > 0x95)
5193 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5194 				false, false);
5195 	else
5196 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5197 				true, false);
5198 
5199 	xhci_free_command(xhci, config_cmd);
5200 	return ret;
5201 }
5202 
5203 static int xhci_get_frame(struct usb_hcd *hcd)
5204 {
5205 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5206 	/* EHCI mods by the periodic size.  Why? */
5207 	return readl(&xhci->run_regs->microframe_index) >> 3;
5208 }
5209 
5210 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5211 {
5212 	struct xhci_hcd		*xhci;
5213 	/*
5214 	 * TODO: Check with DWC3 clients for sysdev according to
5215 	 * quirks
5216 	 */
5217 	struct device		*dev = hcd->self.sysdev;
5218 	unsigned int		minor_rev;
5219 	int			retval;
5220 
5221 	/* Accept arbitrarily long scatter-gather lists */
5222 	hcd->self.sg_tablesize = ~0;
5223 
5224 	/* support to build packet from discontinuous buffers */
5225 	hcd->self.no_sg_constraint = 1;
5226 
5227 	/* XHCI controllers don't stop the ep queue on short packets :| */
5228 	hcd->self.no_stop_on_short = 1;
5229 
5230 	xhci = hcd_to_xhci(hcd);
5231 
5232 	if (usb_hcd_is_primary_hcd(hcd)) {
5233 		xhci->main_hcd = hcd;
5234 		xhci->usb2_rhub.hcd = hcd;
5235 		/* Mark the first roothub as being USB 2.0.
5236 		 * The xHCI driver will register the USB 3.0 roothub.
5237 		 */
5238 		hcd->speed = HCD_USB2;
5239 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5240 		/*
5241 		 * USB 2.0 roothub under xHCI has an integrated TT,
5242 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5243 		 * companion controller.
5244 		 */
5245 		hcd->has_tt = 1;
5246 	} else {
5247 		/*
5248 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5249 		 * should return 0x31 for sbrn, or that the minor revision
5250 		 * is a two digit BCD containig minor and sub-minor numbers.
5251 		 * This was later clarified in xHCI 1.2.
5252 		 *
5253 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5254 		 * minor revision set to 0x1 instead of 0x10.
5255 		 */
5256 		if (xhci->usb3_rhub.min_rev == 0x1)
5257 			minor_rev = 1;
5258 		else
5259 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5260 
5261 		switch (minor_rev) {
5262 		case 2:
5263 			hcd->speed = HCD_USB32;
5264 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5265 			hcd->self.root_hub->rx_lanes = 2;
5266 			hcd->self.root_hub->tx_lanes = 2;
5267 			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5268 			break;
5269 		case 1:
5270 			hcd->speed = HCD_USB31;
5271 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5272 			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5273 			break;
5274 		}
5275 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5276 			  minor_rev,
5277 			  minor_rev ? "Enhanced " : "");
5278 
5279 		xhci->usb3_rhub.hcd = hcd;
5280 		/* xHCI private pointer was set in xhci_pci_probe for the second
5281 		 * registered roothub.
5282 		 */
5283 		return 0;
5284 	}
5285 
5286 	mutex_init(&xhci->mutex);
5287 	xhci->cap_regs = hcd->regs;
5288 	xhci->op_regs = hcd->regs +
5289 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5290 	xhci->run_regs = hcd->regs +
5291 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5292 	/* Cache read-only capability registers */
5293 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5294 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5295 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5296 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5297 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5298 	if (xhci->hci_version > 0x100)
5299 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5300 
5301 	xhci->quirks |= quirks;
5302 
5303 	get_quirks(dev, xhci);
5304 
5305 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5306 	 * success event after a short transfer. This quirk will ignore such
5307 	 * spurious event.
5308 	 */
5309 	if (xhci->hci_version > 0x96)
5310 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5311 
5312 	/* Make sure the HC is halted. */
5313 	retval = xhci_halt(xhci);
5314 	if (retval)
5315 		return retval;
5316 
5317 	xhci_zero_64b_regs(xhci);
5318 
5319 	xhci_dbg(xhci, "Resetting HCD\n");
5320 	/* Reset the internal HC memory state and registers. */
5321 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5322 	if (retval)
5323 		return retval;
5324 	xhci_dbg(xhci, "Reset complete\n");
5325 
5326 	/*
5327 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5328 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5329 	 * address memory pointers actually. So, this driver clears the AC64
5330 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5331 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5332 	 */
5333 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5334 		xhci->hcc_params &= ~BIT(0);
5335 
5336 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5337 	 * if xHC supports 64-bit addressing */
5338 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5339 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5340 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5341 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5342 	} else {
5343 		/*
5344 		 * This is to avoid error in cases where a 32-bit USB
5345 		 * controller is used on a 64-bit capable system.
5346 		 */
5347 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5348 		if (retval)
5349 			return retval;
5350 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5351 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5352 	}
5353 
5354 	xhci_dbg(xhci, "Calling HCD init\n");
5355 	/* Initialize HCD and host controller data structures. */
5356 	retval = xhci_init(hcd);
5357 	if (retval)
5358 		return retval;
5359 	xhci_dbg(xhci, "Called HCD init\n");
5360 
5361 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5362 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5363 
5364 	return 0;
5365 }
5366 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5367 
5368 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5369 		struct usb_host_endpoint *ep)
5370 {
5371 	struct xhci_hcd *xhci;
5372 	struct usb_device *udev;
5373 	unsigned int slot_id;
5374 	unsigned int ep_index;
5375 	unsigned long flags;
5376 
5377 	xhci = hcd_to_xhci(hcd);
5378 
5379 	spin_lock_irqsave(&xhci->lock, flags);
5380 	udev = (struct usb_device *)ep->hcpriv;
5381 	slot_id = udev->slot_id;
5382 	ep_index = xhci_get_endpoint_index(&ep->desc);
5383 
5384 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5385 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5386 	spin_unlock_irqrestore(&xhci->lock, flags);
5387 }
5388 
5389 static const struct hc_driver xhci_hc_driver = {
5390 	.description =		"xhci-hcd",
5391 	.product_desc =		"xHCI Host Controller",
5392 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5393 
5394 	/*
5395 	 * generic hardware linkage
5396 	 */
5397 	.irq =			xhci_irq,
5398 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5399 				HCD_BH,
5400 
5401 	/*
5402 	 * basic lifecycle operations
5403 	 */
5404 	.reset =		NULL, /* set in xhci_init_driver() */
5405 	.start =		xhci_run,
5406 	.stop =			xhci_stop,
5407 	.shutdown =		xhci_shutdown,
5408 
5409 	/*
5410 	 * managing i/o requests and associated device resources
5411 	 */
5412 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5413 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5414 	.urb_enqueue =		xhci_urb_enqueue,
5415 	.urb_dequeue =		xhci_urb_dequeue,
5416 	.alloc_dev =		xhci_alloc_dev,
5417 	.free_dev =		xhci_free_dev,
5418 	.alloc_streams =	xhci_alloc_streams,
5419 	.free_streams =		xhci_free_streams,
5420 	.add_endpoint =		xhci_add_endpoint,
5421 	.drop_endpoint =	xhci_drop_endpoint,
5422 	.endpoint_disable =	xhci_endpoint_disable,
5423 	.endpoint_reset =	xhci_endpoint_reset,
5424 	.check_bandwidth =	xhci_check_bandwidth,
5425 	.reset_bandwidth =	xhci_reset_bandwidth,
5426 	.address_device =	xhci_address_device,
5427 	.enable_device =	xhci_enable_device,
5428 	.update_hub_device =	xhci_update_hub_device,
5429 	.reset_device =		xhci_discover_or_reset_device,
5430 
5431 	/*
5432 	 * scheduling support
5433 	 */
5434 	.get_frame_number =	xhci_get_frame,
5435 
5436 	/*
5437 	 * root hub support
5438 	 */
5439 	.hub_control =		xhci_hub_control,
5440 	.hub_status_data =	xhci_hub_status_data,
5441 	.bus_suspend =		xhci_bus_suspend,
5442 	.bus_resume =		xhci_bus_resume,
5443 	.get_resuming_ports =	xhci_get_resuming_ports,
5444 
5445 	/*
5446 	 * call back when device connected and addressed
5447 	 */
5448 	.update_device =        xhci_update_device,
5449 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5450 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5451 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5452 	.find_raw_port_number =	xhci_find_raw_port_number,
5453 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5454 };
5455 
5456 void xhci_init_driver(struct hc_driver *drv,
5457 		      const struct xhci_driver_overrides *over)
5458 {
5459 	BUG_ON(!over);
5460 
5461 	/* Copy the generic table to drv then apply the overrides */
5462 	*drv = xhci_hc_driver;
5463 
5464 	if (over) {
5465 		drv->hcd_priv_size += over->extra_priv_size;
5466 		if (over->reset)
5467 			drv->reset = over->reset;
5468 		if (over->start)
5469 			drv->start = over->start;
5470 		if (over->add_endpoint)
5471 			drv->add_endpoint = over->add_endpoint;
5472 		if (over->drop_endpoint)
5473 			drv->drop_endpoint = over->drop_endpoint;
5474 		if (over->check_bandwidth)
5475 			drv->check_bandwidth = over->check_bandwidth;
5476 		if (over->reset_bandwidth)
5477 			drv->reset_bandwidth = over->reset_bandwidth;
5478 	}
5479 }
5480 EXPORT_SYMBOL_GPL(xhci_init_driver);
5481 
5482 MODULE_DESCRIPTION(DRIVER_DESC);
5483 MODULE_AUTHOR(DRIVER_AUTHOR);
5484 MODULE_LICENSE("GPL");
5485 
5486 static int __init xhci_hcd_init(void)
5487 {
5488 	/*
5489 	 * Check the compiler generated sizes of structures that must be laid
5490 	 * out in specific ways for hardware access.
5491 	 */
5492 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5493 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5494 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5495 	/* xhci_device_control has eight fields, and also
5496 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5497 	 */
5498 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5499 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5500 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5501 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5502 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5503 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5504 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5505 
5506 	if (usb_disabled())
5507 		return -ENODEV;
5508 
5509 	xhci_debugfs_create_root();
5510 	xhci_dbc_init();
5511 
5512 	return 0;
5513 }
5514 
5515 /*
5516  * If an init function is provided, an exit function must also be provided
5517  * to allow module unload.
5518  */
5519 static void __exit xhci_hcd_fini(void)
5520 {
5521 	xhci_debugfs_remove_root();
5522 	xhci_dbc_exit();
5523 }
5524 
5525 module_init(xhci_hcd_init);
5526 module_exit(xhci_hcd_fini);
5527