1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/log2.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/slab.h> 17 #include <linux/dmi.h> 18 #include <linux/dma-mapping.h> 19 20 #include "xhci.h" 21 #include "xhci-trace.h" 22 #include "xhci-mtk.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * xhci_handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 55 { 56 u32 result; 57 58 do { 59 result = readl(ptr); 60 if (result == ~(u32)0) /* card removed */ 61 return -ENODEV; 62 result &= mask; 63 if (result == done) 64 return 0; 65 udelay(1); 66 usec--; 67 } while (usec > 0); 68 return -ETIMEDOUT; 69 } 70 71 /* 72 * Disable interrupts and begin the xHCI halting process. 73 */ 74 void xhci_quiesce(struct xhci_hcd *xhci) 75 { 76 u32 halted; 77 u32 cmd; 78 u32 mask; 79 80 mask = ~(XHCI_IRQS); 81 halted = readl(&xhci->op_regs->status) & STS_HALT; 82 if (!halted) 83 mask &= ~CMD_RUN; 84 85 cmd = readl(&xhci->op_regs->command); 86 cmd &= mask; 87 writel(cmd, &xhci->op_regs->command); 88 } 89 90 /* 91 * Force HC into halt state. 92 * 93 * Disable any IRQs and clear the run/stop bit. 94 * HC will complete any current and actively pipelined transactions, and 95 * should halt within 16 ms of the run/stop bit being cleared. 96 * Read HC Halted bit in the status register to see when the HC is finished. 97 */ 98 int xhci_halt(struct xhci_hcd *xhci) 99 { 100 int ret; 101 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 102 xhci_quiesce(xhci); 103 104 ret = xhci_handshake(&xhci->op_regs->status, 105 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 106 if (ret) { 107 xhci_warn(xhci, "Host halt failed, %d\n", ret); 108 return ret; 109 } 110 xhci->xhc_state |= XHCI_STATE_HALTED; 111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 112 return ret; 113 } 114 115 /* 116 * Set the run bit and wait for the host to be running. 117 */ 118 int xhci_start(struct xhci_hcd *xhci) 119 { 120 u32 temp; 121 int ret; 122 123 temp = readl(&xhci->op_regs->command); 124 temp |= (CMD_RUN); 125 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 126 temp); 127 writel(temp, &xhci->op_regs->command); 128 129 /* 130 * Wait for the HCHalted Status bit to be 0 to indicate the host is 131 * running. 132 */ 133 ret = xhci_handshake(&xhci->op_regs->status, 134 STS_HALT, 0, XHCI_MAX_HALT_USEC); 135 if (ret == -ETIMEDOUT) 136 xhci_err(xhci, "Host took too long to start, " 137 "waited %u microseconds.\n", 138 XHCI_MAX_HALT_USEC); 139 if (!ret) 140 /* clear state flags. Including dying, halted or removing */ 141 xhci->xhc_state = 0; 142 143 return ret; 144 } 145 146 /* 147 * Reset a halted HC. 148 * 149 * This resets pipelines, timers, counters, state machines, etc. 150 * Transactions will be terminated immediately, and operational registers 151 * will be set to their defaults. 152 */ 153 int xhci_reset(struct xhci_hcd *xhci) 154 { 155 u32 command; 156 u32 state; 157 int ret, i; 158 159 state = readl(&xhci->op_regs->status); 160 161 if (state == ~(u32)0) { 162 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 163 return -ENODEV; 164 } 165 166 if ((state & STS_HALT) == 0) { 167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 168 return 0; 169 } 170 171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 172 command = readl(&xhci->op_regs->command); 173 command |= CMD_RESET; 174 writel(command, &xhci->op_regs->command); 175 176 /* Existing Intel xHCI controllers require a delay of 1 mS, 177 * after setting the CMD_RESET bit, and before accessing any 178 * HC registers. This allows the HC to complete the 179 * reset operation and be ready for HC register access. 180 * Without this delay, the subsequent HC register access, 181 * may result in a system hang very rarely. 182 */ 183 if (xhci->quirks & XHCI_INTEL_HOST) 184 udelay(1000); 185 186 ret = xhci_handshake(&xhci->op_regs->command, 187 CMD_RESET, 0, 10 * 1000 * 1000); 188 if (ret) 189 return ret; 190 191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 192 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 193 194 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 195 "Wait for controller to be ready for doorbell rings"); 196 /* 197 * xHCI cannot write to any doorbells or operational registers other 198 * than status until the "Controller Not Ready" flag is cleared. 199 */ 200 ret = xhci_handshake(&xhci->op_regs->status, 201 STS_CNR, 0, 10 * 1000 * 1000); 202 203 for (i = 0; i < 2; i++) { 204 xhci->bus_state[i].port_c_suspend = 0; 205 xhci->bus_state[i].suspended_ports = 0; 206 xhci->bus_state[i].resuming_ports = 0; 207 } 208 209 return ret; 210 } 211 212 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 213 { 214 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 215 int err, i; 216 u64 val; 217 218 /* 219 * Some Renesas controllers get into a weird state if they are 220 * reset while programmed with 64bit addresses (they will preserve 221 * the top half of the address in internal, non visible 222 * registers). You end up with half the address coming from the 223 * kernel, and the other half coming from the firmware. Also, 224 * changing the programming leads to extra accesses even if the 225 * controller is supposed to be halted. The controller ends up with 226 * a fatal fault, and is then ripe for being properly reset. 227 * 228 * Special care is taken to only apply this if the device is behind 229 * an iommu. Doing anything when there is no iommu is definitely 230 * unsafe... 231 */ 232 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group) 233 return; 234 235 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 236 237 /* Clear HSEIE so that faults do not get signaled */ 238 val = readl(&xhci->op_regs->command); 239 val &= ~CMD_HSEIE; 240 writel(val, &xhci->op_regs->command); 241 242 /* Clear HSE (aka FATAL) */ 243 val = readl(&xhci->op_regs->status); 244 val |= STS_FATAL; 245 writel(val, &xhci->op_regs->status); 246 247 /* Now zero the registers, and brace for impact */ 248 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 249 if (upper_32_bits(val)) 250 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 251 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 252 if (upper_32_bits(val)) 253 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 254 255 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 256 struct xhci_intr_reg __iomem *ir; 257 258 ir = &xhci->run_regs->ir_set[i]; 259 val = xhci_read_64(xhci, &ir->erst_base); 260 if (upper_32_bits(val)) 261 xhci_write_64(xhci, 0, &ir->erst_base); 262 val= xhci_read_64(xhci, &ir->erst_dequeue); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &ir->erst_dequeue); 265 } 266 267 /* Wait for the fault to appear. It will be cleared on reset */ 268 err = xhci_handshake(&xhci->op_regs->status, 269 STS_FATAL, STS_FATAL, 270 XHCI_MAX_HALT_USEC); 271 if (!err) 272 xhci_info(xhci, "Fault detected\n"); 273 } 274 275 #ifdef CONFIG_USB_PCI 276 /* 277 * Set up MSI 278 */ 279 static int xhci_setup_msi(struct xhci_hcd *xhci) 280 { 281 int ret; 282 /* 283 * TODO:Check with MSI Soc for sysdev 284 */ 285 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 286 287 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 288 if (ret < 0) { 289 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 290 "failed to allocate MSI entry"); 291 return ret; 292 } 293 294 ret = request_irq(pdev->irq, xhci_msi_irq, 295 0, "xhci_hcd", xhci_to_hcd(xhci)); 296 if (ret) { 297 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 298 "disable MSI interrupt"); 299 pci_free_irq_vectors(pdev); 300 } 301 302 return ret; 303 } 304 305 /* 306 * Set up MSI-X 307 */ 308 static int xhci_setup_msix(struct xhci_hcd *xhci) 309 { 310 int i, ret = 0; 311 struct usb_hcd *hcd = xhci_to_hcd(xhci); 312 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 313 314 /* 315 * calculate number of msi-x vectors supported. 316 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 317 * with max number of interrupters based on the xhci HCSPARAMS1. 318 * - num_online_cpus: maximum msi-x vectors per CPUs core. 319 * Add additional 1 vector to ensure always available interrupt. 320 */ 321 xhci->msix_count = min(num_online_cpus() + 1, 322 HCS_MAX_INTRS(xhci->hcs_params1)); 323 324 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 325 PCI_IRQ_MSIX); 326 if (ret < 0) { 327 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 328 "Failed to enable MSI-X"); 329 return ret; 330 } 331 332 for (i = 0; i < xhci->msix_count; i++) { 333 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 334 "xhci_hcd", xhci_to_hcd(xhci)); 335 if (ret) 336 goto disable_msix; 337 } 338 339 hcd->msix_enabled = 1; 340 return ret; 341 342 disable_msix: 343 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 344 while (--i >= 0) 345 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 346 pci_free_irq_vectors(pdev); 347 return ret; 348 } 349 350 /* Free any IRQs and disable MSI-X */ 351 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 352 { 353 struct usb_hcd *hcd = xhci_to_hcd(xhci); 354 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 355 356 if (xhci->quirks & XHCI_PLAT) 357 return; 358 359 /* return if using legacy interrupt */ 360 if (hcd->irq > 0) 361 return; 362 363 if (hcd->msix_enabled) { 364 int i; 365 366 for (i = 0; i < xhci->msix_count; i++) 367 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 368 } else { 369 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 370 } 371 372 pci_free_irq_vectors(pdev); 373 hcd->msix_enabled = 0; 374 } 375 376 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 377 { 378 struct usb_hcd *hcd = xhci_to_hcd(xhci); 379 380 if (hcd->msix_enabled) { 381 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 382 int i; 383 384 for (i = 0; i < xhci->msix_count; i++) 385 synchronize_irq(pci_irq_vector(pdev, i)); 386 } 387 } 388 389 static int xhci_try_enable_msi(struct usb_hcd *hcd) 390 { 391 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 392 struct pci_dev *pdev; 393 int ret; 394 395 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 396 if (xhci->quirks & XHCI_PLAT) 397 return 0; 398 399 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 400 /* 401 * Some Fresco Logic host controllers advertise MSI, but fail to 402 * generate interrupts. Don't even try to enable MSI. 403 */ 404 if (xhci->quirks & XHCI_BROKEN_MSI) 405 goto legacy_irq; 406 407 /* unregister the legacy interrupt */ 408 if (hcd->irq) 409 free_irq(hcd->irq, hcd); 410 hcd->irq = 0; 411 412 ret = xhci_setup_msix(xhci); 413 if (ret) 414 /* fall back to msi*/ 415 ret = xhci_setup_msi(xhci); 416 417 if (!ret) { 418 hcd->msi_enabled = 1; 419 return 0; 420 } 421 422 if (!pdev->irq) { 423 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 424 return -EINVAL; 425 } 426 427 legacy_irq: 428 if (!strlen(hcd->irq_descr)) 429 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 430 hcd->driver->description, hcd->self.busnum); 431 432 /* fall back to legacy interrupt*/ 433 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 434 hcd->irq_descr, hcd); 435 if (ret) { 436 xhci_err(xhci, "request interrupt %d failed\n", 437 pdev->irq); 438 return ret; 439 } 440 hcd->irq = pdev->irq; 441 return 0; 442 } 443 444 #else 445 446 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 447 { 448 return 0; 449 } 450 451 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 452 { 453 } 454 455 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 456 { 457 } 458 459 #endif 460 461 static void compliance_mode_recovery(struct timer_list *t) 462 { 463 struct xhci_hcd *xhci; 464 struct usb_hcd *hcd; 465 struct xhci_hub *rhub; 466 u32 temp; 467 int i; 468 469 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 470 rhub = &xhci->usb3_rhub; 471 472 for (i = 0; i < rhub->num_ports; i++) { 473 temp = readl(rhub->ports[i]->addr); 474 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 475 /* 476 * Compliance Mode Detected. Letting USB Core 477 * handle the Warm Reset 478 */ 479 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 480 "Compliance mode detected->port %d", 481 i + 1); 482 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 483 "Attempting compliance mode recovery"); 484 hcd = xhci->shared_hcd; 485 486 if (hcd->state == HC_STATE_SUSPENDED) 487 usb_hcd_resume_root_hub(hcd); 488 489 usb_hcd_poll_rh_status(hcd); 490 } 491 } 492 493 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 494 mod_timer(&xhci->comp_mode_recovery_timer, 495 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 496 } 497 498 /* 499 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 500 * that causes ports behind that hardware to enter compliance mode sometimes. 501 * The quirk creates a timer that polls every 2 seconds the link state of 502 * each host controller's port and recovers it by issuing a Warm reset 503 * if Compliance mode is detected, otherwise the port will become "dead" (no 504 * device connections or disconnections will be detected anymore). Becasue no 505 * status event is generated when entering compliance mode (per xhci spec), 506 * this quirk is needed on systems that have the failing hardware installed. 507 */ 508 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 509 { 510 xhci->port_status_u0 = 0; 511 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 512 0); 513 xhci->comp_mode_recovery_timer.expires = jiffies + 514 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 515 516 add_timer(&xhci->comp_mode_recovery_timer); 517 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 518 "Compliance mode recovery timer initialized"); 519 } 520 521 /* 522 * This function identifies the systems that have installed the SN65LVPE502CP 523 * USB3.0 re-driver and that need the Compliance Mode Quirk. 524 * Systems: 525 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 526 */ 527 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 528 { 529 const char *dmi_product_name, *dmi_sys_vendor; 530 531 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 532 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 533 if (!dmi_product_name || !dmi_sys_vendor) 534 return false; 535 536 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 537 return false; 538 539 if (strstr(dmi_product_name, "Z420") || 540 strstr(dmi_product_name, "Z620") || 541 strstr(dmi_product_name, "Z820") || 542 strstr(dmi_product_name, "Z1 Workstation")) 543 return true; 544 545 return false; 546 } 547 548 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 549 { 550 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 551 } 552 553 554 /* 555 * Initialize memory for HCD and xHC (one-time init). 556 * 557 * Program the PAGESIZE register, initialize the device context array, create 558 * device contexts (?), set up a command ring segment (or two?), create event 559 * ring (one for now). 560 */ 561 static int xhci_init(struct usb_hcd *hcd) 562 { 563 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 564 int retval = 0; 565 566 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 567 spin_lock_init(&xhci->lock); 568 if (xhci->hci_version == 0x95 && link_quirk) { 569 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 570 "QUIRK: Not clearing Link TRB chain bits."); 571 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 572 } else { 573 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 574 "xHCI doesn't need link TRB QUIRK"); 575 } 576 retval = xhci_mem_init(xhci, GFP_KERNEL); 577 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 578 579 /* Initializing Compliance Mode Recovery Data If Needed */ 580 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 581 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 582 compliance_mode_recovery_timer_init(xhci); 583 } 584 585 return retval; 586 } 587 588 /*-------------------------------------------------------------------------*/ 589 590 591 static int xhci_run_finished(struct xhci_hcd *xhci) 592 { 593 if (xhci_start(xhci)) { 594 xhci_halt(xhci); 595 return -ENODEV; 596 } 597 xhci->shared_hcd->state = HC_STATE_RUNNING; 598 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 599 600 if (xhci->quirks & XHCI_NEC_HOST) 601 xhci_ring_cmd_db(xhci); 602 603 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 604 "Finished xhci_run for USB3 roothub"); 605 return 0; 606 } 607 608 /* 609 * Start the HC after it was halted. 610 * 611 * This function is called by the USB core when the HC driver is added. 612 * Its opposite is xhci_stop(). 613 * 614 * xhci_init() must be called once before this function can be called. 615 * Reset the HC, enable device slot contexts, program DCBAAP, and 616 * set command ring pointer and event ring pointer. 617 * 618 * Setup MSI-X vectors and enable interrupts. 619 */ 620 int xhci_run(struct usb_hcd *hcd) 621 { 622 u32 temp; 623 u64 temp_64; 624 int ret; 625 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 626 627 /* Start the xHCI host controller running only after the USB 2.0 roothub 628 * is setup. 629 */ 630 631 hcd->uses_new_polling = 1; 632 if (!usb_hcd_is_primary_hcd(hcd)) 633 return xhci_run_finished(xhci); 634 635 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 636 637 ret = xhci_try_enable_msi(hcd); 638 if (ret) 639 return ret; 640 641 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 642 temp_64 &= ~ERST_PTR_MASK; 643 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 644 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 645 646 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 647 "// Set the interrupt modulation register"); 648 temp = readl(&xhci->ir_set->irq_control); 649 temp &= ~ER_IRQ_INTERVAL_MASK; 650 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 651 writel(temp, &xhci->ir_set->irq_control); 652 653 /* Set the HCD state before we enable the irqs */ 654 temp = readl(&xhci->op_regs->command); 655 temp |= (CMD_EIE); 656 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 657 "// Enable interrupts, cmd = 0x%x.", temp); 658 writel(temp, &xhci->op_regs->command); 659 660 temp = readl(&xhci->ir_set->irq_pending); 661 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 662 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 663 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 664 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 665 666 if (xhci->quirks & XHCI_NEC_HOST) { 667 struct xhci_command *command; 668 669 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 670 if (!command) 671 return -ENOMEM; 672 673 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 674 TRB_TYPE(TRB_NEC_GET_FW)); 675 if (ret) 676 xhci_free_command(xhci, command); 677 } 678 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 679 "Finished xhci_run for USB2 roothub"); 680 681 xhci_dbc_init(xhci); 682 683 xhci_debugfs_init(xhci); 684 685 return 0; 686 } 687 EXPORT_SYMBOL_GPL(xhci_run); 688 689 /* 690 * Stop xHCI driver. 691 * 692 * This function is called by the USB core when the HC driver is removed. 693 * Its opposite is xhci_run(). 694 * 695 * Disable device contexts, disable IRQs, and quiesce the HC. 696 * Reset the HC, finish any completed transactions, and cleanup memory. 697 */ 698 static void xhci_stop(struct usb_hcd *hcd) 699 { 700 u32 temp; 701 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 702 703 mutex_lock(&xhci->mutex); 704 705 /* Only halt host and free memory after both hcds are removed */ 706 if (!usb_hcd_is_primary_hcd(hcd)) { 707 /* usb core will free this hcd shortly, unset pointer */ 708 xhci->shared_hcd = NULL; 709 mutex_unlock(&xhci->mutex); 710 return; 711 } 712 713 xhci_dbc_exit(xhci); 714 715 spin_lock_irq(&xhci->lock); 716 xhci->xhc_state |= XHCI_STATE_HALTED; 717 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 718 xhci_halt(xhci); 719 xhci_reset(xhci); 720 spin_unlock_irq(&xhci->lock); 721 722 xhci_cleanup_msix(xhci); 723 724 /* Deleting Compliance Mode Recovery Timer */ 725 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 726 (!(xhci_all_ports_seen_u0(xhci)))) { 727 del_timer_sync(&xhci->comp_mode_recovery_timer); 728 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 729 "%s: compliance mode recovery timer deleted", 730 __func__); 731 } 732 733 if (xhci->quirks & XHCI_AMD_PLL_FIX) 734 usb_amd_dev_put(); 735 736 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 737 "// Disabling event ring interrupts"); 738 temp = readl(&xhci->op_regs->status); 739 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 740 temp = readl(&xhci->ir_set->irq_pending); 741 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 742 743 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 744 xhci_mem_cleanup(xhci); 745 xhci_debugfs_exit(xhci); 746 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 747 "xhci_stop completed - status = %x", 748 readl(&xhci->op_regs->status)); 749 mutex_unlock(&xhci->mutex); 750 } 751 752 /* 753 * Shutdown HC (not bus-specific) 754 * 755 * This is called when the machine is rebooting or halting. We assume that the 756 * machine will be powered off, and the HC's internal state will be reset. 757 * Don't bother to free memory. 758 * 759 * This will only ever be called with the main usb_hcd (the USB3 roothub). 760 */ 761 static void xhci_shutdown(struct usb_hcd *hcd) 762 { 763 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 764 765 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 766 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 767 768 spin_lock_irq(&xhci->lock); 769 xhci_halt(xhci); 770 /* Workaround for spurious wakeups at shutdown with HSW */ 771 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 772 xhci_reset(xhci); 773 spin_unlock_irq(&xhci->lock); 774 775 xhci_cleanup_msix(xhci); 776 777 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 778 "xhci_shutdown completed - status = %x", 779 readl(&xhci->op_regs->status)); 780 781 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 782 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 783 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 784 } 785 786 #ifdef CONFIG_PM 787 static void xhci_save_registers(struct xhci_hcd *xhci) 788 { 789 xhci->s3.command = readl(&xhci->op_regs->command); 790 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 791 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 792 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 793 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 794 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 795 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 796 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 797 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 798 } 799 800 static void xhci_restore_registers(struct xhci_hcd *xhci) 801 { 802 writel(xhci->s3.command, &xhci->op_regs->command); 803 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 804 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 805 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 806 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 807 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 808 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 809 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 810 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 811 } 812 813 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 814 { 815 u64 val_64; 816 817 /* step 2: initialize command ring buffer */ 818 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 819 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 820 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 821 xhci->cmd_ring->dequeue) & 822 (u64) ~CMD_RING_RSVD_BITS) | 823 xhci->cmd_ring->cycle_state; 824 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 825 "// Setting command ring address to 0x%llx", 826 (long unsigned long) val_64); 827 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 828 } 829 830 /* 831 * The whole command ring must be cleared to zero when we suspend the host. 832 * 833 * The host doesn't save the command ring pointer in the suspend well, so we 834 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 835 * aligned, because of the reserved bits in the command ring dequeue pointer 836 * register. Therefore, we can't just set the dequeue pointer back in the 837 * middle of the ring (TRBs are 16-byte aligned). 838 */ 839 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 840 { 841 struct xhci_ring *ring; 842 struct xhci_segment *seg; 843 844 ring = xhci->cmd_ring; 845 seg = ring->deq_seg; 846 do { 847 memset(seg->trbs, 0, 848 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 849 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 850 cpu_to_le32(~TRB_CYCLE); 851 seg = seg->next; 852 } while (seg != ring->deq_seg); 853 854 /* Reset the software enqueue and dequeue pointers */ 855 ring->deq_seg = ring->first_seg; 856 ring->dequeue = ring->first_seg->trbs; 857 ring->enq_seg = ring->deq_seg; 858 ring->enqueue = ring->dequeue; 859 860 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 861 /* 862 * Ring is now zeroed, so the HW should look for change of ownership 863 * when the cycle bit is set to 1. 864 */ 865 ring->cycle_state = 1; 866 867 /* 868 * Reset the hardware dequeue pointer. 869 * Yes, this will need to be re-written after resume, but we're paranoid 870 * and want to make sure the hardware doesn't access bogus memory 871 * because, say, the BIOS or an SMI started the host without changing 872 * the command ring pointers. 873 */ 874 xhci_set_cmd_ring_deq(xhci); 875 } 876 877 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 878 { 879 struct xhci_port **ports; 880 int port_index; 881 unsigned long flags; 882 u32 t1, t2; 883 884 spin_lock_irqsave(&xhci->lock, flags); 885 886 /* disable usb3 ports Wake bits */ 887 port_index = xhci->usb3_rhub.num_ports; 888 ports = xhci->usb3_rhub.ports; 889 while (port_index--) { 890 t1 = readl(ports[port_index]->addr); 891 t1 = xhci_port_state_to_neutral(t1); 892 t2 = t1 & ~PORT_WAKE_BITS; 893 if (t1 != t2) 894 writel(t2, ports[port_index]->addr); 895 } 896 897 /* disable usb2 ports Wake bits */ 898 port_index = xhci->usb2_rhub.num_ports; 899 ports = xhci->usb2_rhub.ports; 900 while (port_index--) { 901 t1 = readl(ports[port_index]->addr); 902 t1 = xhci_port_state_to_neutral(t1); 903 t2 = t1 & ~PORT_WAKE_BITS; 904 if (t1 != t2) 905 writel(t2, ports[port_index]->addr); 906 } 907 908 spin_unlock_irqrestore(&xhci->lock, flags); 909 } 910 911 /* 912 * Stop HC (not bus-specific) 913 * 914 * This is called when the machine transition into S3/S4 mode. 915 * 916 */ 917 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 918 { 919 int rc = 0; 920 unsigned int delay = XHCI_MAX_HALT_USEC; 921 struct usb_hcd *hcd = xhci_to_hcd(xhci); 922 u32 command; 923 924 if (!hcd->state) 925 return 0; 926 927 if (hcd->state != HC_STATE_SUSPENDED || 928 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 929 return -EINVAL; 930 931 xhci_dbc_suspend(xhci); 932 933 /* Clear root port wake on bits if wakeup not allowed. */ 934 if (!do_wakeup) 935 xhci_disable_port_wake_on_bits(xhci); 936 937 /* Don't poll the roothubs on bus suspend. */ 938 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 939 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 940 del_timer_sync(&hcd->rh_timer); 941 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 942 del_timer_sync(&xhci->shared_hcd->rh_timer); 943 944 if (xhci->quirks & XHCI_SUSPEND_DELAY) 945 usleep_range(1000, 1500); 946 947 spin_lock_irq(&xhci->lock); 948 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 949 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 950 /* step 1: stop endpoint */ 951 /* skipped assuming that port suspend has done */ 952 953 /* step 2: clear Run/Stop bit */ 954 command = readl(&xhci->op_regs->command); 955 command &= ~CMD_RUN; 956 writel(command, &xhci->op_regs->command); 957 958 /* Some chips from Fresco Logic need an extraordinary delay */ 959 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 960 961 if (xhci_handshake(&xhci->op_regs->status, 962 STS_HALT, STS_HALT, delay)) { 963 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 964 spin_unlock_irq(&xhci->lock); 965 return -ETIMEDOUT; 966 } 967 xhci_clear_command_ring(xhci); 968 969 /* step 3: save registers */ 970 xhci_save_registers(xhci); 971 972 /* step 4: set CSS flag */ 973 command = readl(&xhci->op_regs->command); 974 command |= CMD_CSS; 975 writel(command, &xhci->op_regs->command); 976 if (xhci_handshake(&xhci->op_regs->status, 977 STS_SAVE, 0, 10 * 1000)) { 978 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 979 spin_unlock_irq(&xhci->lock); 980 return -ETIMEDOUT; 981 } 982 spin_unlock_irq(&xhci->lock); 983 984 /* 985 * Deleting Compliance Mode Recovery Timer because the xHCI Host 986 * is about to be suspended. 987 */ 988 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 989 (!(xhci_all_ports_seen_u0(xhci)))) { 990 del_timer_sync(&xhci->comp_mode_recovery_timer); 991 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 992 "%s: compliance mode recovery timer deleted", 993 __func__); 994 } 995 996 /* step 5: remove core well power */ 997 /* synchronize irq when using MSI-X */ 998 xhci_msix_sync_irqs(xhci); 999 1000 return rc; 1001 } 1002 EXPORT_SYMBOL_GPL(xhci_suspend); 1003 1004 /* 1005 * start xHC (not bus-specific) 1006 * 1007 * This is called when the machine transition from S3/S4 mode. 1008 * 1009 */ 1010 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1011 { 1012 u32 command, temp = 0, status; 1013 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1014 struct usb_hcd *secondary_hcd; 1015 int retval = 0; 1016 bool comp_timer_running = false; 1017 1018 if (!hcd->state) 1019 return 0; 1020 1021 /* Wait a bit if either of the roothubs need to settle from the 1022 * transition into bus suspend. 1023 */ 1024 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1025 time_before(jiffies, 1026 xhci->bus_state[1].next_statechange)) 1027 msleep(100); 1028 1029 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1030 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1031 1032 spin_lock_irq(&xhci->lock); 1033 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1034 hibernated = true; 1035 1036 if (!hibernated) { 1037 /* step 1: restore register */ 1038 xhci_restore_registers(xhci); 1039 /* step 2: initialize command ring buffer */ 1040 xhci_set_cmd_ring_deq(xhci); 1041 /* step 3: restore state and start state*/ 1042 /* step 3: set CRS flag */ 1043 command = readl(&xhci->op_regs->command); 1044 command |= CMD_CRS; 1045 writel(command, &xhci->op_regs->command); 1046 if (xhci_handshake(&xhci->op_regs->status, 1047 STS_RESTORE, 0, 10 * 1000)) { 1048 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1049 spin_unlock_irq(&xhci->lock); 1050 return -ETIMEDOUT; 1051 } 1052 temp = readl(&xhci->op_regs->status); 1053 } 1054 1055 /* If restore operation fails, re-initialize the HC during resume */ 1056 if ((temp & STS_SRE) || hibernated) { 1057 1058 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1059 !(xhci_all_ports_seen_u0(xhci))) { 1060 del_timer_sync(&xhci->comp_mode_recovery_timer); 1061 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1062 "Compliance Mode Recovery Timer deleted!"); 1063 } 1064 1065 /* Let the USB core know _both_ roothubs lost power. */ 1066 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1067 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1068 1069 xhci_dbg(xhci, "Stop HCD\n"); 1070 xhci_halt(xhci); 1071 xhci_zero_64b_regs(xhci); 1072 xhci_reset(xhci); 1073 spin_unlock_irq(&xhci->lock); 1074 xhci_cleanup_msix(xhci); 1075 1076 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1077 temp = readl(&xhci->op_regs->status); 1078 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1079 temp = readl(&xhci->ir_set->irq_pending); 1080 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1081 1082 xhci_dbg(xhci, "cleaning up memory\n"); 1083 xhci_mem_cleanup(xhci); 1084 xhci_debugfs_exit(xhci); 1085 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1086 readl(&xhci->op_regs->status)); 1087 1088 /* USB core calls the PCI reinit and start functions twice: 1089 * first with the primary HCD, and then with the secondary HCD. 1090 * If we don't do the same, the host will never be started. 1091 */ 1092 if (!usb_hcd_is_primary_hcd(hcd)) 1093 secondary_hcd = hcd; 1094 else 1095 secondary_hcd = xhci->shared_hcd; 1096 1097 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1098 retval = xhci_init(hcd->primary_hcd); 1099 if (retval) 1100 return retval; 1101 comp_timer_running = true; 1102 1103 xhci_dbg(xhci, "Start the primary HCD\n"); 1104 retval = xhci_run(hcd->primary_hcd); 1105 if (!retval) { 1106 xhci_dbg(xhci, "Start the secondary HCD\n"); 1107 retval = xhci_run(secondary_hcd); 1108 } 1109 hcd->state = HC_STATE_SUSPENDED; 1110 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1111 goto done; 1112 } 1113 1114 /* step 4: set Run/Stop bit */ 1115 command = readl(&xhci->op_regs->command); 1116 command |= CMD_RUN; 1117 writel(command, &xhci->op_regs->command); 1118 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1119 0, 250 * 1000); 1120 1121 /* step 5: walk topology and initialize portsc, 1122 * portpmsc and portli 1123 */ 1124 /* this is done in bus_resume */ 1125 1126 /* step 6: restart each of the previously 1127 * Running endpoints by ringing their doorbells 1128 */ 1129 1130 spin_unlock_irq(&xhci->lock); 1131 1132 xhci_dbc_resume(xhci); 1133 1134 done: 1135 if (retval == 0) { 1136 /* Resume root hubs only when have pending events. */ 1137 status = readl(&xhci->op_regs->status); 1138 if (status & STS_EINT) { 1139 usb_hcd_resume_root_hub(xhci->shared_hcd); 1140 usb_hcd_resume_root_hub(hcd); 1141 } 1142 } 1143 1144 /* 1145 * If system is subject to the Quirk, Compliance Mode Timer needs to 1146 * be re-initialized Always after a system resume. Ports are subject 1147 * to suffer the Compliance Mode issue again. It doesn't matter if 1148 * ports have entered previously to U0 before system's suspension. 1149 */ 1150 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1151 compliance_mode_recovery_timer_init(xhci); 1152 1153 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1154 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1155 1156 /* Re-enable port polling. */ 1157 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1158 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1159 usb_hcd_poll_rh_status(xhci->shared_hcd); 1160 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1161 usb_hcd_poll_rh_status(hcd); 1162 1163 return retval; 1164 } 1165 EXPORT_SYMBOL_GPL(xhci_resume); 1166 #endif /* CONFIG_PM */ 1167 1168 /*-------------------------------------------------------------------------*/ 1169 1170 /** 1171 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1172 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1173 * value to right shift 1 for the bitmask. 1174 * 1175 * Index = (epnum * 2) + direction - 1, 1176 * where direction = 0 for OUT, 1 for IN. 1177 * For control endpoints, the IN index is used (OUT index is unused), so 1178 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1179 */ 1180 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1181 { 1182 unsigned int index; 1183 if (usb_endpoint_xfer_control(desc)) 1184 index = (unsigned int) (usb_endpoint_num(desc)*2); 1185 else 1186 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1187 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1188 return index; 1189 } 1190 1191 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1192 * address from the XHCI endpoint index. 1193 */ 1194 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1195 { 1196 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1197 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1198 return direction | number; 1199 } 1200 1201 /* Find the flag for this endpoint (for use in the control context). Use the 1202 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1203 * bit 1, etc. 1204 */ 1205 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1206 { 1207 return 1 << (xhci_get_endpoint_index(desc) + 1); 1208 } 1209 1210 /* Find the flag for this endpoint (for use in the control context). Use the 1211 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1212 * bit 1, etc. 1213 */ 1214 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1215 { 1216 return 1 << (ep_index + 1); 1217 } 1218 1219 /* Compute the last valid endpoint context index. Basically, this is the 1220 * endpoint index plus one. For slot contexts with more than valid endpoint, 1221 * we find the most significant bit set in the added contexts flags. 1222 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1223 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1224 */ 1225 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1226 { 1227 return fls(added_ctxs) - 1; 1228 } 1229 1230 /* Returns 1 if the arguments are OK; 1231 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1232 */ 1233 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1234 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1235 const char *func) { 1236 struct xhci_hcd *xhci; 1237 struct xhci_virt_device *virt_dev; 1238 1239 if (!hcd || (check_ep && !ep) || !udev) { 1240 pr_debug("xHCI %s called with invalid args\n", func); 1241 return -EINVAL; 1242 } 1243 if (!udev->parent) { 1244 pr_debug("xHCI %s called for root hub\n", func); 1245 return 0; 1246 } 1247 1248 xhci = hcd_to_xhci(hcd); 1249 if (check_virt_dev) { 1250 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1251 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1252 func); 1253 return -EINVAL; 1254 } 1255 1256 virt_dev = xhci->devs[udev->slot_id]; 1257 if (virt_dev->udev != udev) { 1258 xhci_dbg(xhci, "xHCI %s called with udev and " 1259 "virt_dev does not match\n", func); 1260 return -EINVAL; 1261 } 1262 } 1263 1264 if (xhci->xhc_state & XHCI_STATE_HALTED) 1265 return -ENODEV; 1266 1267 return 1; 1268 } 1269 1270 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1271 struct usb_device *udev, struct xhci_command *command, 1272 bool ctx_change, bool must_succeed); 1273 1274 /* 1275 * Full speed devices may have a max packet size greater than 8 bytes, but the 1276 * USB core doesn't know that until it reads the first 8 bytes of the 1277 * descriptor. If the usb_device's max packet size changes after that point, 1278 * we need to issue an evaluate context command and wait on it. 1279 */ 1280 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1281 unsigned int ep_index, struct urb *urb) 1282 { 1283 struct xhci_container_ctx *out_ctx; 1284 struct xhci_input_control_ctx *ctrl_ctx; 1285 struct xhci_ep_ctx *ep_ctx; 1286 struct xhci_command *command; 1287 int max_packet_size; 1288 int hw_max_packet_size; 1289 int ret = 0; 1290 1291 out_ctx = xhci->devs[slot_id]->out_ctx; 1292 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1293 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1294 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1295 if (hw_max_packet_size != max_packet_size) { 1296 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1297 "Max Packet Size for ep 0 changed."); 1298 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1299 "Max packet size in usb_device = %d", 1300 max_packet_size); 1301 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1302 "Max packet size in xHCI HW = %d", 1303 hw_max_packet_size); 1304 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1305 "Issuing evaluate context command."); 1306 1307 /* Set up the input context flags for the command */ 1308 /* FIXME: This won't work if a non-default control endpoint 1309 * changes max packet sizes. 1310 */ 1311 1312 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1313 if (!command) 1314 return -ENOMEM; 1315 1316 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1317 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1318 if (!ctrl_ctx) { 1319 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1320 __func__); 1321 ret = -ENOMEM; 1322 goto command_cleanup; 1323 } 1324 /* Set up the modified control endpoint 0 */ 1325 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1326 xhci->devs[slot_id]->out_ctx, ep_index); 1327 1328 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1329 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1330 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1331 1332 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1333 ctrl_ctx->drop_flags = 0; 1334 1335 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1336 true, false); 1337 1338 /* Clean up the input context for later use by bandwidth 1339 * functions. 1340 */ 1341 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1342 command_cleanup: 1343 kfree(command->completion); 1344 kfree(command); 1345 } 1346 return ret; 1347 } 1348 1349 /* 1350 * non-error returns are a promise to giveback() the urb later 1351 * we drop ownership so next owner (or urb unlink) can get it 1352 */ 1353 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1354 { 1355 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1356 unsigned long flags; 1357 int ret = 0; 1358 unsigned int slot_id, ep_index; 1359 unsigned int *ep_state; 1360 struct urb_priv *urb_priv; 1361 int num_tds; 1362 1363 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1364 true, true, __func__) <= 0) 1365 return -EINVAL; 1366 1367 slot_id = urb->dev->slot_id; 1368 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1369 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1370 1371 if (!HCD_HW_ACCESSIBLE(hcd)) { 1372 if (!in_interrupt()) 1373 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1374 return -ESHUTDOWN; 1375 } 1376 1377 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1378 num_tds = urb->number_of_packets; 1379 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1380 urb->transfer_buffer_length > 0 && 1381 urb->transfer_flags & URB_ZERO_PACKET && 1382 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1383 num_tds = 2; 1384 else 1385 num_tds = 1; 1386 1387 urb_priv = kzalloc(sizeof(struct urb_priv) + 1388 num_tds * sizeof(struct xhci_td), mem_flags); 1389 if (!urb_priv) 1390 return -ENOMEM; 1391 1392 urb_priv->num_tds = num_tds; 1393 urb_priv->num_tds_done = 0; 1394 urb->hcpriv = urb_priv; 1395 1396 trace_xhci_urb_enqueue(urb); 1397 1398 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1399 /* Check to see if the max packet size for the default control 1400 * endpoint changed during FS device enumeration 1401 */ 1402 if (urb->dev->speed == USB_SPEED_FULL) { 1403 ret = xhci_check_maxpacket(xhci, slot_id, 1404 ep_index, urb); 1405 if (ret < 0) { 1406 xhci_urb_free_priv(urb_priv); 1407 urb->hcpriv = NULL; 1408 return ret; 1409 } 1410 } 1411 } 1412 1413 spin_lock_irqsave(&xhci->lock, flags); 1414 1415 if (xhci->xhc_state & XHCI_STATE_DYING) { 1416 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1417 urb->ep->desc.bEndpointAddress, urb); 1418 ret = -ESHUTDOWN; 1419 goto free_priv; 1420 } 1421 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1422 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1423 *ep_state); 1424 ret = -EINVAL; 1425 goto free_priv; 1426 } 1427 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1428 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1429 ret = -EINVAL; 1430 goto free_priv; 1431 } 1432 1433 switch (usb_endpoint_type(&urb->ep->desc)) { 1434 1435 case USB_ENDPOINT_XFER_CONTROL: 1436 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1437 slot_id, ep_index); 1438 break; 1439 case USB_ENDPOINT_XFER_BULK: 1440 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1441 slot_id, ep_index); 1442 break; 1443 case USB_ENDPOINT_XFER_INT: 1444 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1445 slot_id, ep_index); 1446 break; 1447 case USB_ENDPOINT_XFER_ISOC: 1448 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1449 slot_id, ep_index); 1450 } 1451 1452 if (ret) { 1453 free_priv: 1454 xhci_urb_free_priv(urb_priv); 1455 urb->hcpriv = NULL; 1456 } 1457 spin_unlock_irqrestore(&xhci->lock, flags); 1458 return ret; 1459 } 1460 1461 /* 1462 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1463 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1464 * should pick up where it left off in the TD, unless a Set Transfer Ring 1465 * Dequeue Pointer is issued. 1466 * 1467 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1468 * the ring. Since the ring is a contiguous structure, they can't be physically 1469 * removed. Instead, there are two options: 1470 * 1471 * 1) If the HC is in the middle of processing the URB to be canceled, we 1472 * simply move the ring's dequeue pointer past those TRBs using the Set 1473 * Transfer Ring Dequeue Pointer command. This will be the common case, 1474 * when drivers timeout on the last submitted URB and attempt to cancel. 1475 * 1476 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1477 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1478 * HC will need to invalidate the any TRBs it has cached after the stop 1479 * endpoint command, as noted in the xHCI 0.95 errata. 1480 * 1481 * 3) The TD may have completed by the time the Stop Endpoint Command 1482 * completes, so software needs to handle that case too. 1483 * 1484 * This function should protect against the TD enqueueing code ringing the 1485 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1486 * It also needs to account for multiple cancellations on happening at the same 1487 * time for the same endpoint. 1488 * 1489 * Note that this function can be called in any context, or so says 1490 * usb_hcd_unlink_urb() 1491 */ 1492 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1493 { 1494 unsigned long flags; 1495 int ret, i; 1496 u32 temp; 1497 struct xhci_hcd *xhci; 1498 struct urb_priv *urb_priv; 1499 struct xhci_td *td; 1500 unsigned int ep_index; 1501 struct xhci_ring *ep_ring; 1502 struct xhci_virt_ep *ep; 1503 struct xhci_command *command; 1504 struct xhci_virt_device *vdev; 1505 1506 xhci = hcd_to_xhci(hcd); 1507 spin_lock_irqsave(&xhci->lock, flags); 1508 1509 trace_xhci_urb_dequeue(urb); 1510 1511 /* Make sure the URB hasn't completed or been unlinked already */ 1512 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1513 if (ret) 1514 goto done; 1515 1516 /* give back URB now if we can't queue it for cancel */ 1517 vdev = xhci->devs[urb->dev->slot_id]; 1518 urb_priv = urb->hcpriv; 1519 if (!vdev || !urb_priv) 1520 goto err_giveback; 1521 1522 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1523 ep = &vdev->eps[ep_index]; 1524 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1525 if (!ep || !ep_ring) 1526 goto err_giveback; 1527 1528 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1529 temp = readl(&xhci->op_regs->status); 1530 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1531 xhci_hc_died(xhci); 1532 goto done; 1533 } 1534 1535 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1536 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1537 "HC halted, freeing TD manually."); 1538 for (i = urb_priv->num_tds_done; 1539 i < urb_priv->num_tds; 1540 i++) { 1541 td = &urb_priv->td[i]; 1542 if (!list_empty(&td->td_list)) 1543 list_del_init(&td->td_list); 1544 if (!list_empty(&td->cancelled_td_list)) 1545 list_del_init(&td->cancelled_td_list); 1546 } 1547 goto err_giveback; 1548 } 1549 1550 i = urb_priv->num_tds_done; 1551 if (i < urb_priv->num_tds) 1552 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1553 "Cancel URB %p, dev %s, ep 0x%x, " 1554 "starting at offset 0x%llx", 1555 urb, urb->dev->devpath, 1556 urb->ep->desc.bEndpointAddress, 1557 (unsigned long long) xhci_trb_virt_to_dma( 1558 urb_priv->td[i].start_seg, 1559 urb_priv->td[i].first_trb)); 1560 1561 for (; i < urb_priv->num_tds; i++) { 1562 td = &urb_priv->td[i]; 1563 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1564 } 1565 1566 /* Queue a stop endpoint command, but only if this is 1567 * the first cancellation to be handled. 1568 */ 1569 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1570 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1571 if (!command) { 1572 ret = -ENOMEM; 1573 goto done; 1574 } 1575 ep->ep_state |= EP_STOP_CMD_PENDING; 1576 ep->stop_cmd_timer.expires = jiffies + 1577 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1578 add_timer(&ep->stop_cmd_timer); 1579 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1580 ep_index, 0); 1581 xhci_ring_cmd_db(xhci); 1582 } 1583 done: 1584 spin_unlock_irqrestore(&xhci->lock, flags); 1585 return ret; 1586 1587 err_giveback: 1588 if (urb_priv) 1589 xhci_urb_free_priv(urb_priv); 1590 usb_hcd_unlink_urb_from_ep(hcd, urb); 1591 spin_unlock_irqrestore(&xhci->lock, flags); 1592 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1593 return ret; 1594 } 1595 1596 /* Drop an endpoint from a new bandwidth configuration for this device. 1597 * Only one call to this function is allowed per endpoint before 1598 * check_bandwidth() or reset_bandwidth() must be called. 1599 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1600 * add the endpoint to the schedule with possibly new parameters denoted by a 1601 * different endpoint descriptor in usb_host_endpoint. 1602 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1603 * not allowed. 1604 * 1605 * The USB core will not allow URBs to be queued to an endpoint that is being 1606 * disabled, so there's no need for mutual exclusion to protect 1607 * the xhci->devs[slot_id] structure. 1608 */ 1609 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1610 struct usb_host_endpoint *ep) 1611 { 1612 struct xhci_hcd *xhci; 1613 struct xhci_container_ctx *in_ctx, *out_ctx; 1614 struct xhci_input_control_ctx *ctrl_ctx; 1615 unsigned int ep_index; 1616 struct xhci_ep_ctx *ep_ctx; 1617 u32 drop_flag; 1618 u32 new_add_flags, new_drop_flags; 1619 int ret; 1620 1621 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1622 if (ret <= 0) 1623 return ret; 1624 xhci = hcd_to_xhci(hcd); 1625 if (xhci->xhc_state & XHCI_STATE_DYING) 1626 return -ENODEV; 1627 1628 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1629 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1630 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1631 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1632 __func__, drop_flag); 1633 return 0; 1634 } 1635 1636 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1637 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1638 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1639 if (!ctrl_ctx) { 1640 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1641 __func__); 1642 return 0; 1643 } 1644 1645 ep_index = xhci_get_endpoint_index(&ep->desc); 1646 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1647 /* If the HC already knows the endpoint is disabled, 1648 * or the HCD has noted it is disabled, ignore this request 1649 */ 1650 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1651 le32_to_cpu(ctrl_ctx->drop_flags) & 1652 xhci_get_endpoint_flag(&ep->desc)) { 1653 /* Do not warn when called after a usb_device_reset */ 1654 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1655 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1656 __func__, ep); 1657 return 0; 1658 } 1659 1660 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1661 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1662 1663 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1664 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1665 1666 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1667 1668 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1669 1670 if (xhci->quirks & XHCI_MTK_HOST) 1671 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1672 1673 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1674 (unsigned int) ep->desc.bEndpointAddress, 1675 udev->slot_id, 1676 (unsigned int) new_drop_flags, 1677 (unsigned int) new_add_flags); 1678 return 0; 1679 } 1680 1681 /* Add an endpoint to a new possible bandwidth configuration for this device. 1682 * Only one call to this function is allowed per endpoint before 1683 * check_bandwidth() or reset_bandwidth() must be called. 1684 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1685 * add the endpoint to the schedule with possibly new parameters denoted by a 1686 * different endpoint descriptor in usb_host_endpoint. 1687 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1688 * not allowed. 1689 * 1690 * The USB core will not allow URBs to be queued to an endpoint until the 1691 * configuration or alt setting is installed in the device, so there's no need 1692 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1693 */ 1694 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1695 struct usb_host_endpoint *ep) 1696 { 1697 struct xhci_hcd *xhci; 1698 struct xhci_container_ctx *in_ctx; 1699 unsigned int ep_index; 1700 struct xhci_input_control_ctx *ctrl_ctx; 1701 u32 added_ctxs; 1702 u32 new_add_flags, new_drop_flags; 1703 struct xhci_virt_device *virt_dev; 1704 int ret = 0; 1705 1706 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1707 if (ret <= 0) { 1708 /* So we won't queue a reset ep command for a root hub */ 1709 ep->hcpriv = NULL; 1710 return ret; 1711 } 1712 xhci = hcd_to_xhci(hcd); 1713 if (xhci->xhc_state & XHCI_STATE_DYING) 1714 return -ENODEV; 1715 1716 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1717 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1718 /* FIXME when we have to issue an evaluate endpoint command to 1719 * deal with ep0 max packet size changing once we get the 1720 * descriptors 1721 */ 1722 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1723 __func__, added_ctxs); 1724 return 0; 1725 } 1726 1727 virt_dev = xhci->devs[udev->slot_id]; 1728 in_ctx = virt_dev->in_ctx; 1729 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1730 if (!ctrl_ctx) { 1731 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1732 __func__); 1733 return 0; 1734 } 1735 1736 ep_index = xhci_get_endpoint_index(&ep->desc); 1737 /* If this endpoint is already in use, and the upper layers are trying 1738 * to add it again without dropping it, reject the addition. 1739 */ 1740 if (virt_dev->eps[ep_index].ring && 1741 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1742 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1743 "without dropping it.\n", 1744 (unsigned int) ep->desc.bEndpointAddress); 1745 return -EINVAL; 1746 } 1747 1748 /* If the HCD has already noted the endpoint is enabled, 1749 * ignore this request. 1750 */ 1751 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1752 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1753 __func__, ep); 1754 return 0; 1755 } 1756 1757 /* 1758 * Configuration and alternate setting changes must be done in 1759 * process context, not interrupt context (or so documenation 1760 * for usb_set_interface() and usb_set_configuration() claim). 1761 */ 1762 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1763 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1764 __func__, ep->desc.bEndpointAddress); 1765 return -ENOMEM; 1766 } 1767 1768 if (xhci->quirks & XHCI_MTK_HOST) { 1769 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1770 if (ret < 0) { 1771 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1772 virt_dev->eps[ep_index].new_ring = NULL; 1773 return ret; 1774 } 1775 } 1776 1777 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1778 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1779 1780 /* If xhci_endpoint_disable() was called for this endpoint, but the 1781 * xHC hasn't been notified yet through the check_bandwidth() call, 1782 * this re-adds a new state for the endpoint from the new endpoint 1783 * descriptors. We must drop and re-add this endpoint, so we leave the 1784 * drop flags alone. 1785 */ 1786 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1787 1788 /* Store the usb_device pointer for later use */ 1789 ep->hcpriv = udev; 1790 1791 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index); 1792 1793 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1794 (unsigned int) ep->desc.bEndpointAddress, 1795 udev->slot_id, 1796 (unsigned int) new_drop_flags, 1797 (unsigned int) new_add_flags); 1798 return 0; 1799 } 1800 1801 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1802 { 1803 struct xhci_input_control_ctx *ctrl_ctx; 1804 struct xhci_ep_ctx *ep_ctx; 1805 struct xhci_slot_ctx *slot_ctx; 1806 int i; 1807 1808 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1809 if (!ctrl_ctx) { 1810 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1811 __func__); 1812 return; 1813 } 1814 1815 /* When a device's add flag and drop flag are zero, any subsequent 1816 * configure endpoint command will leave that endpoint's state 1817 * untouched. Make sure we don't leave any old state in the input 1818 * endpoint contexts. 1819 */ 1820 ctrl_ctx->drop_flags = 0; 1821 ctrl_ctx->add_flags = 0; 1822 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1823 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1824 /* Endpoint 0 is always valid */ 1825 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1826 for (i = 1; i < 31; i++) { 1827 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1828 ep_ctx->ep_info = 0; 1829 ep_ctx->ep_info2 = 0; 1830 ep_ctx->deq = 0; 1831 ep_ctx->tx_info = 0; 1832 } 1833 } 1834 1835 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1836 struct usb_device *udev, u32 *cmd_status) 1837 { 1838 int ret; 1839 1840 switch (*cmd_status) { 1841 case COMP_COMMAND_ABORTED: 1842 case COMP_COMMAND_RING_STOPPED: 1843 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1844 ret = -ETIME; 1845 break; 1846 case COMP_RESOURCE_ERROR: 1847 dev_warn(&udev->dev, 1848 "Not enough host controller resources for new device state.\n"); 1849 ret = -ENOMEM; 1850 /* FIXME: can we allocate more resources for the HC? */ 1851 break; 1852 case COMP_BANDWIDTH_ERROR: 1853 case COMP_SECONDARY_BANDWIDTH_ERROR: 1854 dev_warn(&udev->dev, 1855 "Not enough bandwidth for new device state.\n"); 1856 ret = -ENOSPC; 1857 /* FIXME: can we go back to the old state? */ 1858 break; 1859 case COMP_TRB_ERROR: 1860 /* the HCD set up something wrong */ 1861 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1862 "add flag = 1, " 1863 "and endpoint is not disabled.\n"); 1864 ret = -EINVAL; 1865 break; 1866 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1867 dev_warn(&udev->dev, 1868 "ERROR: Incompatible device for endpoint configure command.\n"); 1869 ret = -ENODEV; 1870 break; 1871 case COMP_SUCCESS: 1872 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1873 "Successful Endpoint Configure command"); 1874 ret = 0; 1875 break; 1876 default: 1877 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1878 *cmd_status); 1879 ret = -EINVAL; 1880 break; 1881 } 1882 return ret; 1883 } 1884 1885 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1886 struct usb_device *udev, u32 *cmd_status) 1887 { 1888 int ret; 1889 1890 switch (*cmd_status) { 1891 case COMP_COMMAND_ABORTED: 1892 case COMP_COMMAND_RING_STOPPED: 1893 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1894 ret = -ETIME; 1895 break; 1896 case COMP_PARAMETER_ERROR: 1897 dev_warn(&udev->dev, 1898 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1899 ret = -EINVAL; 1900 break; 1901 case COMP_SLOT_NOT_ENABLED_ERROR: 1902 dev_warn(&udev->dev, 1903 "WARN: slot not enabled for evaluate context command.\n"); 1904 ret = -EINVAL; 1905 break; 1906 case COMP_CONTEXT_STATE_ERROR: 1907 dev_warn(&udev->dev, 1908 "WARN: invalid context state for evaluate context command.\n"); 1909 ret = -EINVAL; 1910 break; 1911 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1912 dev_warn(&udev->dev, 1913 "ERROR: Incompatible device for evaluate context command.\n"); 1914 ret = -ENODEV; 1915 break; 1916 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1917 /* Max Exit Latency too large error */ 1918 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1919 ret = -EINVAL; 1920 break; 1921 case COMP_SUCCESS: 1922 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1923 "Successful evaluate context command"); 1924 ret = 0; 1925 break; 1926 default: 1927 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1928 *cmd_status); 1929 ret = -EINVAL; 1930 break; 1931 } 1932 return ret; 1933 } 1934 1935 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1936 struct xhci_input_control_ctx *ctrl_ctx) 1937 { 1938 u32 valid_add_flags; 1939 u32 valid_drop_flags; 1940 1941 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1942 * (bit 1). The default control endpoint is added during the Address 1943 * Device command and is never removed until the slot is disabled. 1944 */ 1945 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1946 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1947 1948 /* Use hweight32 to count the number of ones in the add flags, or 1949 * number of endpoints added. Don't count endpoints that are changed 1950 * (both added and dropped). 1951 */ 1952 return hweight32(valid_add_flags) - 1953 hweight32(valid_add_flags & valid_drop_flags); 1954 } 1955 1956 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1957 struct xhci_input_control_ctx *ctrl_ctx) 1958 { 1959 u32 valid_add_flags; 1960 u32 valid_drop_flags; 1961 1962 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1963 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1964 1965 return hweight32(valid_drop_flags) - 1966 hweight32(valid_add_flags & valid_drop_flags); 1967 } 1968 1969 /* 1970 * We need to reserve the new number of endpoints before the configure endpoint 1971 * command completes. We can't subtract the dropped endpoints from the number 1972 * of active endpoints until the command completes because we can oversubscribe 1973 * the host in this case: 1974 * 1975 * - the first configure endpoint command drops more endpoints than it adds 1976 * - a second configure endpoint command that adds more endpoints is queued 1977 * - the first configure endpoint command fails, so the config is unchanged 1978 * - the second command may succeed, even though there isn't enough resources 1979 * 1980 * Must be called with xhci->lock held. 1981 */ 1982 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1983 struct xhci_input_control_ctx *ctrl_ctx) 1984 { 1985 u32 added_eps; 1986 1987 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1988 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1989 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1990 "Not enough ep ctxs: " 1991 "%u active, need to add %u, limit is %u.", 1992 xhci->num_active_eps, added_eps, 1993 xhci->limit_active_eps); 1994 return -ENOMEM; 1995 } 1996 xhci->num_active_eps += added_eps; 1997 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1998 "Adding %u ep ctxs, %u now active.", added_eps, 1999 xhci->num_active_eps); 2000 return 0; 2001 } 2002 2003 /* 2004 * The configure endpoint was failed by the xHC for some other reason, so we 2005 * need to revert the resources that failed configuration would have used. 2006 * 2007 * Must be called with xhci->lock held. 2008 */ 2009 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2010 struct xhci_input_control_ctx *ctrl_ctx) 2011 { 2012 u32 num_failed_eps; 2013 2014 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2015 xhci->num_active_eps -= num_failed_eps; 2016 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2017 "Removing %u failed ep ctxs, %u now active.", 2018 num_failed_eps, 2019 xhci->num_active_eps); 2020 } 2021 2022 /* 2023 * Now that the command has completed, clean up the active endpoint count by 2024 * subtracting out the endpoints that were dropped (but not changed). 2025 * 2026 * Must be called with xhci->lock held. 2027 */ 2028 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2029 struct xhci_input_control_ctx *ctrl_ctx) 2030 { 2031 u32 num_dropped_eps; 2032 2033 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2034 xhci->num_active_eps -= num_dropped_eps; 2035 if (num_dropped_eps) 2036 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2037 "Removing %u dropped ep ctxs, %u now active.", 2038 num_dropped_eps, 2039 xhci->num_active_eps); 2040 } 2041 2042 static unsigned int xhci_get_block_size(struct usb_device *udev) 2043 { 2044 switch (udev->speed) { 2045 case USB_SPEED_LOW: 2046 case USB_SPEED_FULL: 2047 return FS_BLOCK; 2048 case USB_SPEED_HIGH: 2049 return HS_BLOCK; 2050 case USB_SPEED_SUPER: 2051 case USB_SPEED_SUPER_PLUS: 2052 return SS_BLOCK; 2053 case USB_SPEED_UNKNOWN: 2054 case USB_SPEED_WIRELESS: 2055 default: 2056 /* Should never happen */ 2057 return 1; 2058 } 2059 } 2060 2061 static unsigned int 2062 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2063 { 2064 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2065 return LS_OVERHEAD; 2066 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2067 return FS_OVERHEAD; 2068 return HS_OVERHEAD; 2069 } 2070 2071 /* If we are changing a LS/FS device under a HS hub, 2072 * make sure (if we are activating a new TT) that the HS bus has enough 2073 * bandwidth for this new TT. 2074 */ 2075 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2076 struct xhci_virt_device *virt_dev, 2077 int old_active_eps) 2078 { 2079 struct xhci_interval_bw_table *bw_table; 2080 struct xhci_tt_bw_info *tt_info; 2081 2082 /* Find the bandwidth table for the root port this TT is attached to. */ 2083 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2084 tt_info = virt_dev->tt_info; 2085 /* If this TT already had active endpoints, the bandwidth for this TT 2086 * has already been added. Removing all periodic endpoints (and thus 2087 * making the TT enactive) will only decrease the bandwidth used. 2088 */ 2089 if (old_active_eps) 2090 return 0; 2091 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2092 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2093 return -ENOMEM; 2094 return 0; 2095 } 2096 /* Not sure why we would have no new active endpoints... 2097 * 2098 * Maybe because of an Evaluate Context change for a hub update or a 2099 * control endpoint 0 max packet size change? 2100 * FIXME: skip the bandwidth calculation in that case. 2101 */ 2102 return 0; 2103 } 2104 2105 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2106 struct xhci_virt_device *virt_dev) 2107 { 2108 unsigned int bw_reserved; 2109 2110 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2111 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2112 return -ENOMEM; 2113 2114 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2115 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2116 return -ENOMEM; 2117 2118 return 0; 2119 } 2120 2121 /* 2122 * This algorithm is a very conservative estimate of the worst-case scheduling 2123 * scenario for any one interval. The hardware dynamically schedules the 2124 * packets, so we can't tell which microframe could be the limiting factor in 2125 * the bandwidth scheduling. This only takes into account periodic endpoints. 2126 * 2127 * Obviously, we can't solve an NP complete problem to find the minimum worst 2128 * case scenario. Instead, we come up with an estimate that is no less than 2129 * the worst case bandwidth used for any one microframe, but may be an 2130 * over-estimate. 2131 * 2132 * We walk the requirements for each endpoint by interval, starting with the 2133 * smallest interval, and place packets in the schedule where there is only one 2134 * possible way to schedule packets for that interval. In order to simplify 2135 * this algorithm, we record the largest max packet size for each interval, and 2136 * assume all packets will be that size. 2137 * 2138 * For interval 0, we obviously must schedule all packets for each interval. 2139 * The bandwidth for interval 0 is just the amount of data to be transmitted 2140 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2141 * the number of packets). 2142 * 2143 * For interval 1, we have two possible microframes to schedule those packets 2144 * in. For this algorithm, if we can schedule the same number of packets for 2145 * each possible scheduling opportunity (each microframe), we will do so. The 2146 * remaining number of packets will be saved to be transmitted in the gaps in 2147 * the next interval's scheduling sequence. 2148 * 2149 * As we move those remaining packets to be scheduled with interval 2 packets, 2150 * we have to double the number of remaining packets to transmit. This is 2151 * because the intervals are actually powers of 2, and we would be transmitting 2152 * the previous interval's packets twice in this interval. We also have to be 2153 * sure that when we look at the largest max packet size for this interval, we 2154 * also look at the largest max packet size for the remaining packets and take 2155 * the greater of the two. 2156 * 2157 * The algorithm continues to evenly distribute packets in each scheduling 2158 * opportunity, and push the remaining packets out, until we get to the last 2159 * interval. Then those packets and their associated overhead are just added 2160 * to the bandwidth used. 2161 */ 2162 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2163 struct xhci_virt_device *virt_dev, 2164 int old_active_eps) 2165 { 2166 unsigned int bw_reserved; 2167 unsigned int max_bandwidth; 2168 unsigned int bw_used; 2169 unsigned int block_size; 2170 struct xhci_interval_bw_table *bw_table; 2171 unsigned int packet_size = 0; 2172 unsigned int overhead = 0; 2173 unsigned int packets_transmitted = 0; 2174 unsigned int packets_remaining = 0; 2175 unsigned int i; 2176 2177 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2178 return xhci_check_ss_bw(xhci, virt_dev); 2179 2180 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2181 max_bandwidth = HS_BW_LIMIT; 2182 /* Convert percent of bus BW reserved to blocks reserved */ 2183 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2184 } else { 2185 max_bandwidth = FS_BW_LIMIT; 2186 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2187 } 2188 2189 bw_table = virt_dev->bw_table; 2190 /* We need to translate the max packet size and max ESIT payloads into 2191 * the units the hardware uses. 2192 */ 2193 block_size = xhci_get_block_size(virt_dev->udev); 2194 2195 /* If we are manipulating a LS/FS device under a HS hub, double check 2196 * that the HS bus has enough bandwidth if we are activing a new TT. 2197 */ 2198 if (virt_dev->tt_info) { 2199 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2200 "Recalculating BW for rootport %u", 2201 virt_dev->real_port); 2202 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2203 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2204 "newly activated TT.\n"); 2205 return -ENOMEM; 2206 } 2207 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2208 "Recalculating BW for TT slot %u port %u", 2209 virt_dev->tt_info->slot_id, 2210 virt_dev->tt_info->ttport); 2211 } else { 2212 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2213 "Recalculating BW for rootport %u", 2214 virt_dev->real_port); 2215 } 2216 2217 /* Add in how much bandwidth will be used for interval zero, or the 2218 * rounded max ESIT payload + number of packets * largest overhead. 2219 */ 2220 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2221 bw_table->interval_bw[0].num_packets * 2222 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2223 2224 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2225 unsigned int bw_added; 2226 unsigned int largest_mps; 2227 unsigned int interval_overhead; 2228 2229 /* 2230 * How many packets could we transmit in this interval? 2231 * If packets didn't fit in the previous interval, we will need 2232 * to transmit that many packets twice within this interval. 2233 */ 2234 packets_remaining = 2 * packets_remaining + 2235 bw_table->interval_bw[i].num_packets; 2236 2237 /* Find the largest max packet size of this or the previous 2238 * interval. 2239 */ 2240 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2241 largest_mps = 0; 2242 else { 2243 struct xhci_virt_ep *virt_ep; 2244 struct list_head *ep_entry; 2245 2246 ep_entry = bw_table->interval_bw[i].endpoints.next; 2247 virt_ep = list_entry(ep_entry, 2248 struct xhci_virt_ep, bw_endpoint_list); 2249 /* Convert to blocks, rounding up */ 2250 largest_mps = DIV_ROUND_UP( 2251 virt_ep->bw_info.max_packet_size, 2252 block_size); 2253 } 2254 if (largest_mps > packet_size) 2255 packet_size = largest_mps; 2256 2257 /* Use the larger overhead of this or the previous interval. */ 2258 interval_overhead = xhci_get_largest_overhead( 2259 &bw_table->interval_bw[i]); 2260 if (interval_overhead > overhead) 2261 overhead = interval_overhead; 2262 2263 /* How many packets can we evenly distribute across 2264 * (1 << (i + 1)) possible scheduling opportunities? 2265 */ 2266 packets_transmitted = packets_remaining >> (i + 1); 2267 2268 /* Add in the bandwidth used for those scheduled packets */ 2269 bw_added = packets_transmitted * (overhead + packet_size); 2270 2271 /* How many packets do we have remaining to transmit? */ 2272 packets_remaining = packets_remaining % (1 << (i + 1)); 2273 2274 /* What largest max packet size should those packets have? */ 2275 /* If we've transmitted all packets, don't carry over the 2276 * largest packet size. 2277 */ 2278 if (packets_remaining == 0) { 2279 packet_size = 0; 2280 overhead = 0; 2281 } else if (packets_transmitted > 0) { 2282 /* Otherwise if we do have remaining packets, and we've 2283 * scheduled some packets in this interval, take the 2284 * largest max packet size from endpoints with this 2285 * interval. 2286 */ 2287 packet_size = largest_mps; 2288 overhead = interval_overhead; 2289 } 2290 /* Otherwise carry over packet_size and overhead from the last 2291 * time we had a remainder. 2292 */ 2293 bw_used += bw_added; 2294 if (bw_used > max_bandwidth) { 2295 xhci_warn(xhci, "Not enough bandwidth. " 2296 "Proposed: %u, Max: %u\n", 2297 bw_used, max_bandwidth); 2298 return -ENOMEM; 2299 } 2300 } 2301 /* 2302 * Ok, we know we have some packets left over after even-handedly 2303 * scheduling interval 15. We don't know which microframes they will 2304 * fit into, so we over-schedule and say they will be scheduled every 2305 * microframe. 2306 */ 2307 if (packets_remaining > 0) 2308 bw_used += overhead + packet_size; 2309 2310 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2311 unsigned int port_index = virt_dev->real_port - 1; 2312 2313 /* OK, we're manipulating a HS device attached to a 2314 * root port bandwidth domain. Include the number of active TTs 2315 * in the bandwidth used. 2316 */ 2317 bw_used += TT_HS_OVERHEAD * 2318 xhci->rh_bw[port_index].num_active_tts; 2319 } 2320 2321 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2322 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2323 "Available: %u " "percent", 2324 bw_used, max_bandwidth, bw_reserved, 2325 (max_bandwidth - bw_used - bw_reserved) * 100 / 2326 max_bandwidth); 2327 2328 bw_used += bw_reserved; 2329 if (bw_used > max_bandwidth) { 2330 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2331 bw_used, max_bandwidth); 2332 return -ENOMEM; 2333 } 2334 2335 bw_table->bw_used = bw_used; 2336 return 0; 2337 } 2338 2339 static bool xhci_is_async_ep(unsigned int ep_type) 2340 { 2341 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2342 ep_type != ISOC_IN_EP && 2343 ep_type != INT_IN_EP); 2344 } 2345 2346 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2347 { 2348 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2349 } 2350 2351 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2352 { 2353 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2354 2355 if (ep_bw->ep_interval == 0) 2356 return SS_OVERHEAD_BURST + 2357 (ep_bw->mult * ep_bw->num_packets * 2358 (SS_OVERHEAD + mps)); 2359 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2360 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2361 1 << ep_bw->ep_interval); 2362 2363 } 2364 2365 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2366 struct xhci_bw_info *ep_bw, 2367 struct xhci_interval_bw_table *bw_table, 2368 struct usb_device *udev, 2369 struct xhci_virt_ep *virt_ep, 2370 struct xhci_tt_bw_info *tt_info) 2371 { 2372 struct xhci_interval_bw *interval_bw; 2373 int normalized_interval; 2374 2375 if (xhci_is_async_ep(ep_bw->type)) 2376 return; 2377 2378 if (udev->speed >= USB_SPEED_SUPER) { 2379 if (xhci_is_sync_in_ep(ep_bw->type)) 2380 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2381 xhci_get_ss_bw_consumed(ep_bw); 2382 else 2383 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2384 xhci_get_ss_bw_consumed(ep_bw); 2385 return; 2386 } 2387 2388 /* SuperSpeed endpoints never get added to intervals in the table, so 2389 * this check is only valid for HS/FS/LS devices. 2390 */ 2391 if (list_empty(&virt_ep->bw_endpoint_list)) 2392 return; 2393 /* For LS/FS devices, we need to translate the interval expressed in 2394 * microframes to frames. 2395 */ 2396 if (udev->speed == USB_SPEED_HIGH) 2397 normalized_interval = ep_bw->ep_interval; 2398 else 2399 normalized_interval = ep_bw->ep_interval - 3; 2400 2401 if (normalized_interval == 0) 2402 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2403 interval_bw = &bw_table->interval_bw[normalized_interval]; 2404 interval_bw->num_packets -= ep_bw->num_packets; 2405 switch (udev->speed) { 2406 case USB_SPEED_LOW: 2407 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2408 break; 2409 case USB_SPEED_FULL: 2410 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2411 break; 2412 case USB_SPEED_HIGH: 2413 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2414 break; 2415 case USB_SPEED_SUPER: 2416 case USB_SPEED_SUPER_PLUS: 2417 case USB_SPEED_UNKNOWN: 2418 case USB_SPEED_WIRELESS: 2419 /* Should never happen because only LS/FS/HS endpoints will get 2420 * added to the endpoint list. 2421 */ 2422 return; 2423 } 2424 if (tt_info) 2425 tt_info->active_eps -= 1; 2426 list_del_init(&virt_ep->bw_endpoint_list); 2427 } 2428 2429 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2430 struct xhci_bw_info *ep_bw, 2431 struct xhci_interval_bw_table *bw_table, 2432 struct usb_device *udev, 2433 struct xhci_virt_ep *virt_ep, 2434 struct xhci_tt_bw_info *tt_info) 2435 { 2436 struct xhci_interval_bw *interval_bw; 2437 struct xhci_virt_ep *smaller_ep; 2438 int normalized_interval; 2439 2440 if (xhci_is_async_ep(ep_bw->type)) 2441 return; 2442 2443 if (udev->speed == USB_SPEED_SUPER) { 2444 if (xhci_is_sync_in_ep(ep_bw->type)) 2445 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2446 xhci_get_ss_bw_consumed(ep_bw); 2447 else 2448 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2449 xhci_get_ss_bw_consumed(ep_bw); 2450 return; 2451 } 2452 2453 /* For LS/FS devices, we need to translate the interval expressed in 2454 * microframes to frames. 2455 */ 2456 if (udev->speed == USB_SPEED_HIGH) 2457 normalized_interval = ep_bw->ep_interval; 2458 else 2459 normalized_interval = ep_bw->ep_interval - 3; 2460 2461 if (normalized_interval == 0) 2462 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2463 interval_bw = &bw_table->interval_bw[normalized_interval]; 2464 interval_bw->num_packets += ep_bw->num_packets; 2465 switch (udev->speed) { 2466 case USB_SPEED_LOW: 2467 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2468 break; 2469 case USB_SPEED_FULL: 2470 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2471 break; 2472 case USB_SPEED_HIGH: 2473 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2474 break; 2475 case USB_SPEED_SUPER: 2476 case USB_SPEED_SUPER_PLUS: 2477 case USB_SPEED_UNKNOWN: 2478 case USB_SPEED_WIRELESS: 2479 /* Should never happen because only LS/FS/HS endpoints will get 2480 * added to the endpoint list. 2481 */ 2482 return; 2483 } 2484 2485 if (tt_info) 2486 tt_info->active_eps += 1; 2487 /* Insert the endpoint into the list, largest max packet size first. */ 2488 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2489 bw_endpoint_list) { 2490 if (ep_bw->max_packet_size >= 2491 smaller_ep->bw_info.max_packet_size) { 2492 /* Add the new ep before the smaller endpoint */ 2493 list_add_tail(&virt_ep->bw_endpoint_list, 2494 &smaller_ep->bw_endpoint_list); 2495 return; 2496 } 2497 } 2498 /* Add the new endpoint at the end of the list. */ 2499 list_add_tail(&virt_ep->bw_endpoint_list, 2500 &interval_bw->endpoints); 2501 } 2502 2503 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2504 struct xhci_virt_device *virt_dev, 2505 int old_active_eps) 2506 { 2507 struct xhci_root_port_bw_info *rh_bw_info; 2508 if (!virt_dev->tt_info) 2509 return; 2510 2511 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2512 if (old_active_eps == 0 && 2513 virt_dev->tt_info->active_eps != 0) { 2514 rh_bw_info->num_active_tts += 1; 2515 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2516 } else if (old_active_eps != 0 && 2517 virt_dev->tt_info->active_eps == 0) { 2518 rh_bw_info->num_active_tts -= 1; 2519 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2520 } 2521 } 2522 2523 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2524 struct xhci_virt_device *virt_dev, 2525 struct xhci_container_ctx *in_ctx) 2526 { 2527 struct xhci_bw_info ep_bw_info[31]; 2528 int i; 2529 struct xhci_input_control_ctx *ctrl_ctx; 2530 int old_active_eps = 0; 2531 2532 if (virt_dev->tt_info) 2533 old_active_eps = virt_dev->tt_info->active_eps; 2534 2535 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2536 if (!ctrl_ctx) { 2537 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2538 __func__); 2539 return -ENOMEM; 2540 } 2541 2542 for (i = 0; i < 31; i++) { 2543 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2544 continue; 2545 2546 /* Make a copy of the BW info in case we need to revert this */ 2547 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2548 sizeof(ep_bw_info[i])); 2549 /* Drop the endpoint from the interval table if the endpoint is 2550 * being dropped or changed. 2551 */ 2552 if (EP_IS_DROPPED(ctrl_ctx, i)) 2553 xhci_drop_ep_from_interval_table(xhci, 2554 &virt_dev->eps[i].bw_info, 2555 virt_dev->bw_table, 2556 virt_dev->udev, 2557 &virt_dev->eps[i], 2558 virt_dev->tt_info); 2559 } 2560 /* Overwrite the information stored in the endpoints' bw_info */ 2561 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2562 for (i = 0; i < 31; i++) { 2563 /* Add any changed or added endpoints to the interval table */ 2564 if (EP_IS_ADDED(ctrl_ctx, i)) 2565 xhci_add_ep_to_interval_table(xhci, 2566 &virt_dev->eps[i].bw_info, 2567 virt_dev->bw_table, 2568 virt_dev->udev, 2569 &virt_dev->eps[i], 2570 virt_dev->tt_info); 2571 } 2572 2573 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2574 /* Ok, this fits in the bandwidth we have. 2575 * Update the number of active TTs. 2576 */ 2577 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2578 return 0; 2579 } 2580 2581 /* We don't have enough bandwidth for this, revert the stored info. */ 2582 for (i = 0; i < 31; i++) { 2583 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2584 continue; 2585 2586 /* Drop the new copies of any added or changed endpoints from 2587 * the interval table. 2588 */ 2589 if (EP_IS_ADDED(ctrl_ctx, i)) { 2590 xhci_drop_ep_from_interval_table(xhci, 2591 &virt_dev->eps[i].bw_info, 2592 virt_dev->bw_table, 2593 virt_dev->udev, 2594 &virt_dev->eps[i], 2595 virt_dev->tt_info); 2596 } 2597 /* Revert the endpoint back to its old information */ 2598 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2599 sizeof(ep_bw_info[i])); 2600 /* Add any changed or dropped endpoints back into the table */ 2601 if (EP_IS_DROPPED(ctrl_ctx, i)) 2602 xhci_add_ep_to_interval_table(xhci, 2603 &virt_dev->eps[i].bw_info, 2604 virt_dev->bw_table, 2605 virt_dev->udev, 2606 &virt_dev->eps[i], 2607 virt_dev->tt_info); 2608 } 2609 return -ENOMEM; 2610 } 2611 2612 2613 /* Issue a configure endpoint command or evaluate context command 2614 * and wait for it to finish. 2615 */ 2616 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2617 struct usb_device *udev, 2618 struct xhci_command *command, 2619 bool ctx_change, bool must_succeed) 2620 { 2621 int ret; 2622 unsigned long flags; 2623 struct xhci_input_control_ctx *ctrl_ctx; 2624 struct xhci_virt_device *virt_dev; 2625 struct xhci_slot_ctx *slot_ctx; 2626 2627 if (!command) 2628 return -EINVAL; 2629 2630 spin_lock_irqsave(&xhci->lock, flags); 2631 2632 if (xhci->xhc_state & XHCI_STATE_DYING) { 2633 spin_unlock_irqrestore(&xhci->lock, flags); 2634 return -ESHUTDOWN; 2635 } 2636 2637 virt_dev = xhci->devs[udev->slot_id]; 2638 2639 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2640 if (!ctrl_ctx) { 2641 spin_unlock_irqrestore(&xhci->lock, flags); 2642 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2643 __func__); 2644 return -ENOMEM; 2645 } 2646 2647 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2648 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2649 spin_unlock_irqrestore(&xhci->lock, flags); 2650 xhci_warn(xhci, "Not enough host resources, " 2651 "active endpoint contexts = %u\n", 2652 xhci->num_active_eps); 2653 return -ENOMEM; 2654 } 2655 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2656 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2657 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2658 xhci_free_host_resources(xhci, ctrl_ctx); 2659 spin_unlock_irqrestore(&xhci->lock, flags); 2660 xhci_warn(xhci, "Not enough bandwidth\n"); 2661 return -ENOMEM; 2662 } 2663 2664 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2665 trace_xhci_configure_endpoint(slot_ctx); 2666 2667 if (!ctx_change) 2668 ret = xhci_queue_configure_endpoint(xhci, command, 2669 command->in_ctx->dma, 2670 udev->slot_id, must_succeed); 2671 else 2672 ret = xhci_queue_evaluate_context(xhci, command, 2673 command->in_ctx->dma, 2674 udev->slot_id, must_succeed); 2675 if (ret < 0) { 2676 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2677 xhci_free_host_resources(xhci, ctrl_ctx); 2678 spin_unlock_irqrestore(&xhci->lock, flags); 2679 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2680 "FIXME allocate a new ring segment"); 2681 return -ENOMEM; 2682 } 2683 xhci_ring_cmd_db(xhci); 2684 spin_unlock_irqrestore(&xhci->lock, flags); 2685 2686 /* Wait for the configure endpoint command to complete */ 2687 wait_for_completion(command->completion); 2688 2689 if (!ctx_change) 2690 ret = xhci_configure_endpoint_result(xhci, udev, 2691 &command->status); 2692 else 2693 ret = xhci_evaluate_context_result(xhci, udev, 2694 &command->status); 2695 2696 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2697 spin_lock_irqsave(&xhci->lock, flags); 2698 /* If the command failed, remove the reserved resources. 2699 * Otherwise, clean up the estimate to include dropped eps. 2700 */ 2701 if (ret) 2702 xhci_free_host_resources(xhci, ctrl_ctx); 2703 else 2704 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2705 spin_unlock_irqrestore(&xhci->lock, flags); 2706 } 2707 return ret; 2708 } 2709 2710 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2711 struct xhci_virt_device *vdev, int i) 2712 { 2713 struct xhci_virt_ep *ep = &vdev->eps[i]; 2714 2715 if (ep->ep_state & EP_HAS_STREAMS) { 2716 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2717 xhci_get_endpoint_address(i)); 2718 xhci_free_stream_info(xhci, ep->stream_info); 2719 ep->stream_info = NULL; 2720 ep->ep_state &= ~EP_HAS_STREAMS; 2721 } 2722 } 2723 2724 /* Called after one or more calls to xhci_add_endpoint() or 2725 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2726 * to call xhci_reset_bandwidth(). 2727 * 2728 * Since we are in the middle of changing either configuration or 2729 * installing a new alt setting, the USB core won't allow URBs to be 2730 * enqueued for any endpoint on the old config or interface. Nothing 2731 * else should be touching the xhci->devs[slot_id] structure, so we 2732 * don't need to take the xhci->lock for manipulating that. 2733 */ 2734 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2735 { 2736 int i; 2737 int ret = 0; 2738 struct xhci_hcd *xhci; 2739 struct xhci_virt_device *virt_dev; 2740 struct xhci_input_control_ctx *ctrl_ctx; 2741 struct xhci_slot_ctx *slot_ctx; 2742 struct xhci_command *command; 2743 2744 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2745 if (ret <= 0) 2746 return ret; 2747 xhci = hcd_to_xhci(hcd); 2748 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2749 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2750 return -ENODEV; 2751 2752 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2753 virt_dev = xhci->devs[udev->slot_id]; 2754 2755 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2756 if (!command) 2757 return -ENOMEM; 2758 2759 command->in_ctx = virt_dev->in_ctx; 2760 2761 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2762 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2763 if (!ctrl_ctx) { 2764 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2765 __func__); 2766 ret = -ENOMEM; 2767 goto command_cleanup; 2768 } 2769 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2770 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2771 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2772 2773 /* Don't issue the command if there's no endpoints to update. */ 2774 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2775 ctrl_ctx->drop_flags == 0) { 2776 ret = 0; 2777 goto command_cleanup; 2778 } 2779 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2780 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2781 for (i = 31; i >= 1; i--) { 2782 __le32 le32 = cpu_to_le32(BIT(i)); 2783 2784 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2785 || (ctrl_ctx->add_flags & le32) || i == 1) { 2786 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2787 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2788 break; 2789 } 2790 } 2791 2792 ret = xhci_configure_endpoint(xhci, udev, command, 2793 false, false); 2794 if (ret) 2795 /* Callee should call reset_bandwidth() */ 2796 goto command_cleanup; 2797 2798 /* Free any rings that were dropped, but not changed. */ 2799 for (i = 1; i < 31; i++) { 2800 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2801 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2802 xhci_free_endpoint_ring(xhci, virt_dev, i); 2803 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2804 } 2805 } 2806 xhci_zero_in_ctx(xhci, virt_dev); 2807 /* 2808 * Install any rings for completely new endpoints or changed endpoints, 2809 * and free any old rings from changed endpoints. 2810 */ 2811 for (i = 1; i < 31; i++) { 2812 if (!virt_dev->eps[i].new_ring) 2813 continue; 2814 /* Only free the old ring if it exists. 2815 * It may not if this is the first add of an endpoint. 2816 */ 2817 if (virt_dev->eps[i].ring) { 2818 xhci_free_endpoint_ring(xhci, virt_dev, i); 2819 } 2820 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2821 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2822 virt_dev->eps[i].new_ring = NULL; 2823 } 2824 command_cleanup: 2825 kfree(command->completion); 2826 kfree(command); 2827 2828 return ret; 2829 } 2830 2831 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2832 { 2833 struct xhci_hcd *xhci; 2834 struct xhci_virt_device *virt_dev; 2835 int i, ret; 2836 2837 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2838 if (ret <= 0) 2839 return; 2840 xhci = hcd_to_xhci(hcd); 2841 2842 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2843 virt_dev = xhci->devs[udev->slot_id]; 2844 /* Free any rings allocated for added endpoints */ 2845 for (i = 0; i < 31; i++) { 2846 if (virt_dev->eps[i].new_ring) { 2847 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2848 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2849 virt_dev->eps[i].new_ring = NULL; 2850 } 2851 } 2852 xhci_zero_in_ctx(xhci, virt_dev); 2853 } 2854 2855 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2856 struct xhci_container_ctx *in_ctx, 2857 struct xhci_container_ctx *out_ctx, 2858 struct xhci_input_control_ctx *ctrl_ctx, 2859 u32 add_flags, u32 drop_flags) 2860 { 2861 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2862 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2863 xhci_slot_copy(xhci, in_ctx, out_ctx); 2864 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2865 } 2866 2867 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2868 unsigned int slot_id, unsigned int ep_index, 2869 struct xhci_dequeue_state *deq_state) 2870 { 2871 struct xhci_input_control_ctx *ctrl_ctx; 2872 struct xhci_container_ctx *in_ctx; 2873 struct xhci_ep_ctx *ep_ctx; 2874 u32 added_ctxs; 2875 dma_addr_t addr; 2876 2877 in_ctx = xhci->devs[slot_id]->in_ctx; 2878 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2879 if (!ctrl_ctx) { 2880 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2881 __func__); 2882 return; 2883 } 2884 2885 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2886 xhci->devs[slot_id]->out_ctx, ep_index); 2887 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2888 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2889 deq_state->new_deq_ptr); 2890 if (addr == 0) { 2891 xhci_warn(xhci, "WARN Cannot submit config ep after " 2892 "reset ep command\n"); 2893 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2894 deq_state->new_deq_seg, 2895 deq_state->new_deq_ptr); 2896 return; 2897 } 2898 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2899 2900 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2901 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2902 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2903 added_ctxs, added_ctxs); 2904 } 2905 2906 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 2907 unsigned int stream_id, struct xhci_td *td) 2908 { 2909 struct xhci_dequeue_state deq_state; 2910 struct usb_device *udev = td->urb->dev; 2911 2912 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2913 "Cleaning up stalled endpoint ring"); 2914 /* We need to move the HW's dequeue pointer past this TD, 2915 * or it will attempt to resend it on the next doorbell ring. 2916 */ 2917 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2918 ep_index, stream_id, td, &deq_state); 2919 2920 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2921 return; 2922 2923 /* HW with the reset endpoint quirk will use the saved dequeue state to 2924 * issue a configure endpoint command later. 2925 */ 2926 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2927 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2928 "Queueing new dequeue state"); 2929 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2930 ep_index, &deq_state); 2931 } else { 2932 /* Better hope no one uses the input context between now and the 2933 * reset endpoint completion! 2934 * XXX: No idea how this hardware will react when stream rings 2935 * are enabled. 2936 */ 2937 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2938 "Setting up input context for " 2939 "configure endpoint command"); 2940 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2941 ep_index, &deq_state); 2942 } 2943 } 2944 2945 /* 2946 * Called after usb core issues a clear halt control message. 2947 * The host side of the halt should already be cleared by a reset endpoint 2948 * command issued when the STALL event was received. 2949 * 2950 * The reset endpoint command may only be issued to endpoints in the halted 2951 * state. For software that wishes to reset the data toggle or sequence number 2952 * of an endpoint that isn't in the halted state this function will issue a 2953 * configure endpoint command with the Drop and Add bits set for the target 2954 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 2955 */ 2956 2957 static void xhci_endpoint_reset(struct usb_hcd *hcd, 2958 struct usb_host_endpoint *host_ep) 2959 { 2960 struct xhci_hcd *xhci; 2961 struct usb_device *udev; 2962 struct xhci_virt_device *vdev; 2963 struct xhci_virt_ep *ep; 2964 struct xhci_input_control_ctx *ctrl_ctx; 2965 struct xhci_command *stop_cmd, *cfg_cmd; 2966 unsigned int ep_index; 2967 unsigned long flags; 2968 u32 ep_flag; 2969 2970 xhci = hcd_to_xhci(hcd); 2971 if (!host_ep->hcpriv) 2972 return; 2973 udev = (struct usb_device *) host_ep->hcpriv; 2974 vdev = xhci->devs[udev->slot_id]; 2975 ep_index = xhci_get_endpoint_index(&host_ep->desc); 2976 ep = &vdev->eps[ep_index]; 2977 2978 /* Bail out if toggle is already being cleared by a endpoint reset */ 2979 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 2980 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 2981 return; 2982 } 2983 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 2984 if (usb_endpoint_xfer_control(&host_ep->desc) || 2985 usb_endpoint_xfer_isoc(&host_ep->desc)) 2986 return; 2987 2988 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 2989 2990 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 2991 return; 2992 2993 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 2994 if (!stop_cmd) 2995 return; 2996 2997 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 2998 if (!cfg_cmd) 2999 goto cleanup; 3000 3001 spin_lock_irqsave(&xhci->lock, flags); 3002 3003 /* block queuing new trbs and ringing ep doorbell */ 3004 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3005 3006 /* 3007 * Make sure endpoint ring is empty before resetting the toggle/seq. 3008 * Driver is required to synchronously cancel all transfer request. 3009 * Stop the endpoint to force xHC to update the output context 3010 */ 3011 3012 if (!list_empty(&ep->ring->td_list)) { 3013 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3014 spin_unlock_irqrestore(&xhci->lock, flags); 3015 goto cleanup; 3016 } 3017 xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0); 3018 xhci_ring_cmd_db(xhci); 3019 spin_unlock_irqrestore(&xhci->lock, flags); 3020 3021 wait_for_completion(stop_cmd->completion); 3022 3023 spin_lock_irqsave(&xhci->lock, flags); 3024 3025 /* config ep command clears toggle if add and drop ep flags are set */ 3026 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3027 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3028 ctrl_ctx, ep_flag, ep_flag); 3029 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3030 3031 xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3032 udev->slot_id, false); 3033 xhci_ring_cmd_db(xhci); 3034 spin_unlock_irqrestore(&xhci->lock, flags); 3035 3036 wait_for_completion(cfg_cmd->completion); 3037 3038 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3039 xhci_free_command(xhci, cfg_cmd); 3040 cleanup: 3041 xhci_free_command(xhci, stop_cmd); 3042 } 3043 3044 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3045 struct usb_device *udev, struct usb_host_endpoint *ep, 3046 unsigned int slot_id) 3047 { 3048 int ret; 3049 unsigned int ep_index; 3050 unsigned int ep_state; 3051 3052 if (!ep) 3053 return -EINVAL; 3054 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3055 if (ret <= 0) 3056 return -EINVAL; 3057 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3058 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3059 " descriptor for ep 0x%x does not support streams\n", 3060 ep->desc.bEndpointAddress); 3061 return -EINVAL; 3062 } 3063 3064 ep_index = xhci_get_endpoint_index(&ep->desc); 3065 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3066 if (ep_state & EP_HAS_STREAMS || 3067 ep_state & EP_GETTING_STREAMS) { 3068 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3069 "already has streams set up.\n", 3070 ep->desc.bEndpointAddress); 3071 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3072 "dynamic stream context array reallocation.\n"); 3073 return -EINVAL; 3074 } 3075 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3076 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3077 "endpoint 0x%x; URBs are pending.\n", 3078 ep->desc.bEndpointAddress); 3079 return -EINVAL; 3080 } 3081 return 0; 3082 } 3083 3084 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3085 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3086 { 3087 unsigned int max_streams; 3088 3089 /* The stream context array size must be a power of two */ 3090 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3091 /* 3092 * Find out how many primary stream array entries the host controller 3093 * supports. Later we may use secondary stream arrays (similar to 2nd 3094 * level page entries), but that's an optional feature for xHCI host 3095 * controllers. xHCs must support at least 4 stream IDs. 3096 */ 3097 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3098 if (*num_stream_ctxs > max_streams) { 3099 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3100 max_streams); 3101 *num_stream_ctxs = max_streams; 3102 *num_streams = max_streams; 3103 } 3104 } 3105 3106 /* Returns an error code if one of the endpoint already has streams. 3107 * This does not change any data structures, it only checks and gathers 3108 * information. 3109 */ 3110 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3111 struct usb_device *udev, 3112 struct usb_host_endpoint **eps, unsigned int num_eps, 3113 unsigned int *num_streams, u32 *changed_ep_bitmask) 3114 { 3115 unsigned int max_streams; 3116 unsigned int endpoint_flag; 3117 int i; 3118 int ret; 3119 3120 for (i = 0; i < num_eps; i++) { 3121 ret = xhci_check_streams_endpoint(xhci, udev, 3122 eps[i], udev->slot_id); 3123 if (ret < 0) 3124 return ret; 3125 3126 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3127 if (max_streams < (*num_streams - 1)) { 3128 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3129 eps[i]->desc.bEndpointAddress, 3130 max_streams); 3131 *num_streams = max_streams+1; 3132 } 3133 3134 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3135 if (*changed_ep_bitmask & endpoint_flag) 3136 return -EINVAL; 3137 *changed_ep_bitmask |= endpoint_flag; 3138 } 3139 return 0; 3140 } 3141 3142 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3143 struct usb_device *udev, 3144 struct usb_host_endpoint **eps, unsigned int num_eps) 3145 { 3146 u32 changed_ep_bitmask = 0; 3147 unsigned int slot_id; 3148 unsigned int ep_index; 3149 unsigned int ep_state; 3150 int i; 3151 3152 slot_id = udev->slot_id; 3153 if (!xhci->devs[slot_id]) 3154 return 0; 3155 3156 for (i = 0; i < num_eps; i++) { 3157 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3158 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3159 /* Are streams already being freed for the endpoint? */ 3160 if (ep_state & EP_GETTING_NO_STREAMS) { 3161 xhci_warn(xhci, "WARN Can't disable streams for " 3162 "endpoint 0x%x, " 3163 "streams are being disabled already\n", 3164 eps[i]->desc.bEndpointAddress); 3165 return 0; 3166 } 3167 /* Are there actually any streams to free? */ 3168 if (!(ep_state & EP_HAS_STREAMS) && 3169 !(ep_state & EP_GETTING_STREAMS)) { 3170 xhci_warn(xhci, "WARN Can't disable streams for " 3171 "endpoint 0x%x, " 3172 "streams are already disabled!\n", 3173 eps[i]->desc.bEndpointAddress); 3174 xhci_warn(xhci, "WARN xhci_free_streams() called " 3175 "with non-streams endpoint\n"); 3176 return 0; 3177 } 3178 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3179 } 3180 return changed_ep_bitmask; 3181 } 3182 3183 /* 3184 * The USB device drivers use this function (through the HCD interface in USB 3185 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3186 * coordinate mass storage command queueing across multiple endpoints (basically 3187 * a stream ID == a task ID). 3188 * 3189 * Setting up streams involves allocating the same size stream context array 3190 * for each endpoint and issuing a configure endpoint command for all endpoints. 3191 * 3192 * Don't allow the call to succeed if one endpoint only supports one stream 3193 * (which means it doesn't support streams at all). 3194 * 3195 * Drivers may get less stream IDs than they asked for, if the host controller 3196 * hardware or endpoints claim they can't support the number of requested 3197 * stream IDs. 3198 */ 3199 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3200 struct usb_host_endpoint **eps, unsigned int num_eps, 3201 unsigned int num_streams, gfp_t mem_flags) 3202 { 3203 int i, ret; 3204 struct xhci_hcd *xhci; 3205 struct xhci_virt_device *vdev; 3206 struct xhci_command *config_cmd; 3207 struct xhci_input_control_ctx *ctrl_ctx; 3208 unsigned int ep_index; 3209 unsigned int num_stream_ctxs; 3210 unsigned int max_packet; 3211 unsigned long flags; 3212 u32 changed_ep_bitmask = 0; 3213 3214 if (!eps) 3215 return -EINVAL; 3216 3217 /* Add one to the number of streams requested to account for 3218 * stream 0 that is reserved for xHCI usage. 3219 */ 3220 num_streams += 1; 3221 xhci = hcd_to_xhci(hcd); 3222 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3223 num_streams); 3224 3225 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3226 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3227 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3228 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3229 return -ENOSYS; 3230 } 3231 3232 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3233 if (!config_cmd) 3234 return -ENOMEM; 3235 3236 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3237 if (!ctrl_ctx) { 3238 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3239 __func__); 3240 xhci_free_command(xhci, config_cmd); 3241 return -ENOMEM; 3242 } 3243 3244 /* Check to make sure all endpoints are not already configured for 3245 * streams. While we're at it, find the maximum number of streams that 3246 * all the endpoints will support and check for duplicate endpoints. 3247 */ 3248 spin_lock_irqsave(&xhci->lock, flags); 3249 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3250 num_eps, &num_streams, &changed_ep_bitmask); 3251 if (ret < 0) { 3252 xhci_free_command(xhci, config_cmd); 3253 spin_unlock_irqrestore(&xhci->lock, flags); 3254 return ret; 3255 } 3256 if (num_streams <= 1) { 3257 xhci_warn(xhci, "WARN: endpoints can't handle " 3258 "more than one stream.\n"); 3259 xhci_free_command(xhci, config_cmd); 3260 spin_unlock_irqrestore(&xhci->lock, flags); 3261 return -EINVAL; 3262 } 3263 vdev = xhci->devs[udev->slot_id]; 3264 /* Mark each endpoint as being in transition, so 3265 * xhci_urb_enqueue() will reject all URBs. 3266 */ 3267 for (i = 0; i < num_eps; i++) { 3268 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3269 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3270 } 3271 spin_unlock_irqrestore(&xhci->lock, flags); 3272 3273 /* Setup internal data structures and allocate HW data structures for 3274 * streams (but don't install the HW structures in the input context 3275 * until we're sure all memory allocation succeeded). 3276 */ 3277 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3278 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3279 num_stream_ctxs, num_streams); 3280 3281 for (i = 0; i < num_eps; i++) { 3282 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3283 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3284 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3285 num_stream_ctxs, 3286 num_streams, 3287 max_packet, mem_flags); 3288 if (!vdev->eps[ep_index].stream_info) 3289 goto cleanup; 3290 /* Set maxPstreams in endpoint context and update deq ptr to 3291 * point to stream context array. FIXME 3292 */ 3293 } 3294 3295 /* Set up the input context for a configure endpoint command. */ 3296 for (i = 0; i < num_eps; i++) { 3297 struct xhci_ep_ctx *ep_ctx; 3298 3299 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3300 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3301 3302 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3303 vdev->out_ctx, ep_index); 3304 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3305 vdev->eps[ep_index].stream_info); 3306 } 3307 /* Tell the HW to drop its old copy of the endpoint context info 3308 * and add the updated copy from the input context. 3309 */ 3310 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3311 vdev->out_ctx, ctrl_ctx, 3312 changed_ep_bitmask, changed_ep_bitmask); 3313 3314 /* Issue and wait for the configure endpoint command */ 3315 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3316 false, false); 3317 3318 /* xHC rejected the configure endpoint command for some reason, so we 3319 * leave the old ring intact and free our internal streams data 3320 * structure. 3321 */ 3322 if (ret < 0) 3323 goto cleanup; 3324 3325 spin_lock_irqsave(&xhci->lock, flags); 3326 for (i = 0; i < num_eps; i++) { 3327 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3328 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3329 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3330 udev->slot_id, ep_index); 3331 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3332 } 3333 xhci_free_command(xhci, config_cmd); 3334 spin_unlock_irqrestore(&xhci->lock, flags); 3335 3336 /* Subtract 1 for stream 0, which drivers can't use */ 3337 return num_streams - 1; 3338 3339 cleanup: 3340 /* If it didn't work, free the streams! */ 3341 for (i = 0; i < num_eps; i++) { 3342 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3343 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3344 vdev->eps[ep_index].stream_info = NULL; 3345 /* FIXME Unset maxPstreams in endpoint context and 3346 * update deq ptr to point to normal string ring. 3347 */ 3348 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3349 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3350 xhci_endpoint_zero(xhci, vdev, eps[i]); 3351 } 3352 xhci_free_command(xhci, config_cmd); 3353 return -ENOMEM; 3354 } 3355 3356 /* Transition the endpoint from using streams to being a "normal" endpoint 3357 * without streams. 3358 * 3359 * Modify the endpoint context state, submit a configure endpoint command, 3360 * and free all endpoint rings for streams if that completes successfully. 3361 */ 3362 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3363 struct usb_host_endpoint **eps, unsigned int num_eps, 3364 gfp_t mem_flags) 3365 { 3366 int i, ret; 3367 struct xhci_hcd *xhci; 3368 struct xhci_virt_device *vdev; 3369 struct xhci_command *command; 3370 struct xhci_input_control_ctx *ctrl_ctx; 3371 unsigned int ep_index; 3372 unsigned long flags; 3373 u32 changed_ep_bitmask; 3374 3375 xhci = hcd_to_xhci(hcd); 3376 vdev = xhci->devs[udev->slot_id]; 3377 3378 /* Set up a configure endpoint command to remove the streams rings */ 3379 spin_lock_irqsave(&xhci->lock, flags); 3380 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3381 udev, eps, num_eps); 3382 if (changed_ep_bitmask == 0) { 3383 spin_unlock_irqrestore(&xhci->lock, flags); 3384 return -EINVAL; 3385 } 3386 3387 /* Use the xhci_command structure from the first endpoint. We may have 3388 * allocated too many, but the driver may call xhci_free_streams() for 3389 * each endpoint it grouped into one call to xhci_alloc_streams(). 3390 */ 3391 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3392 command = vdev->eps[ep_index].stream_info->free_streams_command; 3393 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3394 if (!ctrl_ctx) { 3395 spin_unlock_irqrestore(&xhci->lock, flags); 3396 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3397 __func__); 3398 return -EINVAL; 3399 } 3400 3401 for (i = 0; i < num_eps; i++) { 3402 struct xhci_ep_ctx *ep_ctx; 3403 3404 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3405 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3406 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3407 EP_GETTING_NO_STREAMS; 3408 3409 xhci_endpoint_copy(xhci, command->in_ctx, 3410 vdev->out_ctx, ep_index); 3411 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3412 &vdev->eps[ep_index]); 3413 } 3414 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3415 vdev->out_ctx, ctrl_ctx, 3416 changed_ep_bitmask, changed_ep_bitmask); 3417 spin_unlock_irqrestore(&xhci->lock, flags); 3418 3419 /* Issue and wait for the configure endpoint command, 3420 * which must succeed. 3421 */ 3422 ret = xhci_configure_endpoint(xhci, udev, command, 3423 false, true); 3424 3425 /* xHC rejected the configure endpoint command for some reason, so we 3426 * leave the streams rings intact. 3427 */ 3428 if (ret < 0) 3429 return ret; 3430 3431 spin_lock_irqsave(&xhci->lock, flags); 3432 for (i = 0; i < num_eps; i++) { 3433 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3434 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3435 vdev->eps[ep_index].stream_info = NULL; 3436 /* FIXME Unset maxPstreams in endpoint context and 3437 * update deq ptr to point to normal string ring. 3438 */ 3439 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3440 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3441 } 3442 spin_unlock_irqrestore(&xhci->lock, flags); 3443 3444 return 0; 3445 } 3446 3447 /* 3448 * Deletes endpoint resources for endpoints that were active before a Reset 3449 * Device command, or a Disable Slot command. The Reset Device command leaves 3450 * the control endpoint intact, whereas the Disable Slot command deletes it. 3451 * 3452 * Must be called with xhci->lock held. 3453 */ 3454 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3455 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3456 { 3457 int i; 3458 unsigned int num_dropped_eps = 0; 3459 unsigned int drop_flags = 0; 3460 3461 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3462 if (virt_dev->eps[i].ring) { 3463 drop_flags |= 1 << i; 3464 num_dropped_eps++; 3465 } 3466 } 3467 xhci->num_active_eps -= num_dropped_eps; 3468 if (num_dropped_eps) 3469 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3470 "Dropped %u ep ctxs, flags = 0x%x, " 3471 "%u now active.", 3472 num_dropped_eps, drop_flags, 3473 xhci->num_active_eps); 3474 } 3475 3476 /* 3477 * This submits a Reset Device Command, which will set the device state to 0, 3478 * set the device address to 0, and disable all the endpoints except the default 3479 * control endpoint. The USB core should come back and call 3480 * xhci_address_device(), and then re-set up the configuration. If this is 3481 * called because of a usb_reset_and_verify_device(), then the old alternate 3482 * settings will be re-installed through the normal bandwidth allocation 3483 * functions. 3484 * 3485 * Wait for the Reset Device command to finish. Remove all structures 3486 * associated with the endpoints that were disabled. Clear the input device 3487 * structure? Reset the control endpoint 0 max packet size? 3488 * 3489 * If the virt_dev to be reset does not exist or does not match the udev, 3490 * it means the device is lost, possibly due to the xHC restore error and 3491 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3492 * re-allocate the device. 3493 */ 3494 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3495 struct usb_device *udev) 3496 { 3497 int ret, i; 3498 unsigned long flags; 3499 struct xhci_hcd *xhci; 3500 unsigned int slot_id; 3501 struct xhci_virt_device *virt_dev; 3502 struct xhci_command *reset_device_cmd; 3503 struct xhci_slot_ctx *slot_ctx; 3504 int old_active_eps = 0; 3505 3506 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3507 if (ret <= 0) 3508 return ret; 3509 xhci = hcd_to_xhci(hcd); 3510 slot_id = udev->slot_id; 3511 virt_dev = xhci->devs[slot_id]; 3512 if (!virt_dev) { 3513 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3514 "not exist. Re-allocate the device\n", slot_id); 3515 ret = xhci_alloc_dev(hcd, udev); 3516 if (ret == 1) 3517 return 0; 3518 else 3519 return -EINVAL; 3520 } 3521 3522 if (virt_dev->tt_info) 3523 old_active_eps = virt_dev->tt_info->active_eps; 3524 3525 if (virt_dev->udev != udev) { 3526 /* If the virt_dev and the udev does not match, this virt_dev 3527 * may belong to another udev. 3528 * Re-allocate the device. 3529 */ 3530 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3531 "not match the udev. Re-allocate the device\n", 3532 slot_id); 3533 ret = xhci_alloc_dev(hcd, udev); 3534 if (ret == 1) 3535 return 0; 3536 else 3537 return -EINVAL; 3538 } 3539 3540 /* If device is not setup, there is no point in resetting it */ 3541 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3542 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3543 SLOT_STATE_DISABLED) 3544 return 0; 3545 3546 trace_xhci_discover_or_reset_device(slot_ctx); 3547 3548 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3549 /* Allocate the command structure that holds the struct completion. 3550 * Assume we're in process context, since the normal device reset 3551 * process has to wait for the device anyway. Storage devices are 3552 * reset as part of error handling, so use GFP_NOIO instead of 3553 * GFP_KERNEL. 3554 */ 3555 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3556 if (!reset_device_cmd) { 3557 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3558 return -ENOMEM; 3559 } 3560 3561 /* Attempt to submit the Reset Device command to the command ring */ 3562 spin_lock_irqsave(&xhci->lock, flags); 3563 3564 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3565 if (ret) { 3566 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3567 spin_unlock_irqrestore(&xhci->lock, flags); 3568 goto command_cleanup; 3569 } 3570 xhci_ring_cmd_db(xhci); 3571 spin_unlock_irqrestore(&xhci->lock, flags); 3572 3573 /* Wait for the Reset Device command to finish */ 3574 wait_for_completion(reset_device_cmd->completion); 3575 3576 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3577 * unless we tried to reset a slot ID that wasn't enabled, 3578 * or the device wasn't in the addressed or configured state. 3579 */ 3580 ret = reset_device_cmd->status; 3581 switch (ret) { 3582 case COMP_COMMAND_ABORTED: 3583 case COMP_COMMAND_RING_STOPPED: 3584 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3585 ret = -ETIME; 3586 goto command_cleanup; 3587 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3588 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3589 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3590 slot_id, 3591 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3592 xhci_dbg(xhci, "Not freeing device rings.\n"); 3593 /* Don't treat this as an error. May change my mind later. */ 3594 ret = 0; 3595 goto command_cleanup; 3596 case COMP_SUCCESS: 3597 xhci_dbg(xhci, "Successful reset device command.\n"); 3598 break; 3599 default: 3600 if (xhci_is_vendor_info_code(xhci, ret)) 3601 break; 3602 xhci_warn(xhci, "Unknown completion code %u for " 3603 "reset device command.\n", ret); 3604 ret = -EINVAL; 3605 goto command_cleanup; 3606 } 3607 3608 /* Free up host controller endpoint resources */ 3609 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3610 spin_lock_irqsave(&xhci->lock, flags); 3611 /* Don't delete the default control endpoint resources */ 3612 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3613 spin_unlock_irqrestore(&xhci->lock, flags); 3614 } 3615 3616 /* Everything but endpoint 0 is disabled, so free the rings. */ 3617 for (i = 1; i < 31; i++) { 3618 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3619 3620 if (ep->ep_state & EP_HAS_STREAMS) { 3621 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3622 xhci_get_endpoint_address(i)); 3623 xhci_free_stream_info(xhci, ep->stream_info); 3624 ep->stream_info = NULL; 3625 ep->ep_state &= ~EP_HAS_STREAMS; 3626 } 3627 3628 if (ep->ring) { 3629 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3630 xhci_free_endpoint_ring(xhci, virt_dev, i); 3631 } 3632 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3633 xhci_drop_ep_from_interval_table(xhci, 3634 &virt_dev->eps[i].bw_info, 3635 virt_dev->bw_table, 3636 udev, 3637 &virt_dev->eps[i], 3638 virt_dev->tt_info); 3639 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3640 } 3641 /* If necessary, update the number of active TTs on this root port */ 3642 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3643 ret = 0; 3644 3645 command_cleanup: 3646 xhci_free_command(xhci, reset_device_cmd); 3647 return ret; 3648 } 3649 3650 /* 3651 * At this point, the struct usb_device is about to go away, the device has 3652 * disconnected, and all traffic has been stopped and the endpoints have been 3653 * disabled. Free any HC data structures associated with that device. 3654 */ 3655 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3656 { 3657 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3658 struct xhci_virt_device *virt_dev; 3659 struct xhci_slot_ctx *slot_ctx; 3660 int i, ret; 3661 3662 #ifndef CONFIG_USB_DEFAULT_PERSIST 3663 /* 3664 * We called pm_runtime_get_noresume when the device was attached. 3665 * Decrement the counter here to allow controller to runtime suspend 3666 * if no devices remain. 3667 */ 3668 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3669 pm_runtime_put_noidle(hcd->self.controller); 3670 #endif 3671 3672 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3673 /* If the host is halted due to driver unload, we still need to free the 3674 * device. 3675 */ 3676 if (ret <= 0 && ret != -ENODEV) 3677 return; 3678 3679 virt_dev = xhci->devs[udev->slot_id]; 3680 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3681 trace_xhci_free_dev(slot_ctx); 3682 3683 /* Stop any wayward timer functions (which may grab the lock) */ 3684 for (i = 0; i < 31; i++) { 3685 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3686 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3687 } 3688 xhci_debugfs_remove_slot(xhci, udev->slot_id); 3689 virt_dev->udev = NULL; 3690 ret = xhci_disable_slot(xhci, udev->slot_id); 3691 if (ret) 3692 xhci_free_virt_device(xhci, udev->slot_id); 3693 } 3694 3695 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3696 { 3697 struct xhci_command *command; 3698 unsigned long flags; 3699 u32 state; 3700 int ret = 0; 3701 3702 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3703 if (!command) 3704 return -ENOMEM; 3705 3706 spin_lock_irqsave(&xhci->lock, flags); 3707 /* Don't disable the slot if the host controller is dead. */ 3708 state = readl(&xhci->op_regs->status); 3709 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3710 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3711 spin_unlock_irqrestore(&xhci->lock, flags); 3712 kfree(command); 3713 return -ENODEV; 3714 } 3715 3716 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3717 slot_id); 3718 if (ret) { 3719 spin_unlock_irqrestore(&xhci->lock, flags); 3720 kfree(command); 3721 return ret; 3722 } 3723 xhci_ring_cmd_db(xhci); 3724 spin_unlock_irqrestore(&xhci->lock, flags); 3725 return ret; 3726 } 3727 3728 /* 3729 * Checks if we have enough host controller resources for the default control 3730 * endpoint. 3731 * 3732 * Must be called with xhci->lock held. 3733 */ 3734 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3735 { 3736 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3737 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3738 "Not enough ep ctxs: " 3739 "%u active, need to add 1, limit is %u.", 3740 xhci->num_active_eps, xhci->limit_active_eps); 3741 return -ENOMEM; 3742 } 3743 xhci->num_active_eps += 1; 3744 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3745 "Adding 1 ep ctx, %u now active.", 3746 xhci->num_active_eps); 3747 return 0; 3748 } 3749 3750 3751 /* 3752 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3753 * timed out, or allocating memory failed. Returns 1 on success. 3754 */ 3755 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3756 { 3757 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3758 struct xhci_virt_device *vdev; 3759 struct xhci_slot_ctx *slot_ctx; 3760 unsigned long flags; 3761 int ret, slot_id; 3762 struct xhci_command *command; 3763 3764 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3765 if (!command) 3766 return 0; 3767 3768 spin_lock_irqsave(&xhci->lock, flags); 3769 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3770 if (ret) { 3771 spin_unlock_irqrestore(&xhci->lock, flags); 3772 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3773 xhci_free_command(xhci, command); 3774 return 0; 3775 } 3776 xhci_ring_cmd_db(xhci); 3777 spin_unlock_irqrestore(&xhci->lock, flags); 3778 3779 wait_for_completion(command->completion); 3780 slot_id = command->slot_id; 3781 3782 if (!slot_id || command->status != COMP_SUCCESS) { 3783 xhci_err(xhci, "Error while assigning device slot ID\n"); 3784 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3785 HCS_MAX_SLOTS( 3786 readl(&xhci->cap_regs->hcs_params1))); 3787 xhci_free_command(xhci, command); 3788 return 0; 3789 } 3790 3791 xhci_free_command(xhci, command); 3792 3793 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3794 spin_lock_irqsave(&xhci->lock, flags); 3795 ret = xhci_reserve_host_control_ep_resources(xhci); 3796 if (ret) { 3797 spin_unlock_irqrestore(&xhci->lock, flags); 3798 xhci_warn(xhci, "Not enough host resources, " 3799 "active endpoint contexts = %u\n", 3800 xhci->num_active_eps); 3801 goto disable_slot; 3802 } 3803 spin_unlock_irqrestore(&xhci->lock, flags); 3804 } 3805 /* Use GFP_NOIO, since this function can be called from 3806 * xhci_discover_or_reset_device(), which may be called as part of 3807 * mass storage driver error handling. 3808 */ 3809 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3810 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3811 goto disable_slot; 3812 } 3813 vdev = xhci->devs[slot_id]; 3814 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3815 trace_xhci_alloc_dev(slot_ctx); 3816 3817 udev->slot_id = slot_id; 3818 3819 xhci_debugfs_create_slot(xhci, slot_id); 3820 3821 #ifndef CONFIG_USB_DEFAULT_PERSIST 3822 /* 3823 * If resetting upon resume, we can't put the controller into runtime 3824 * suspend if there is a device attached. 3825 */ 3826 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3827 pm_runtime_get_noresume(hcd->self.controller); 3828 #endif 3829 3830 /* Is this a LS or FS device under a HS hub? */ 3831 /* Hub or peripherial? */ 3832 return 1; 3833 3834 disable_slot: 3835 ret = xhci_disable_slot(xhci, udev->slot_id); 3836 if (ret) 3837 xhci_free_virt_device(xhci, udev->slot_id); 3838 3839 return 0; 3840 } 3841 3842 /* 3843 * Issue an Address Device command and optionally send a corresponding 3844 * SetAddress request to the device. 3845 */ 3846 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3847 enum xhci_setup_dev setup) 3848 { 3849 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3850 unsigned long flags; 3851 struct xhci_virt_device *virt_dev; 3852 int ret = 0; 3853 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3854 struct xhci_slot_ctx *slot_ctx; 3855 struct xhci_input_control_ctx *ctrl_ctx; 3856 u64 temp_64; 3857 struct xhci_command *command = NULL; 3858 3859 mutex_lock(&xhci->mutex); 3860 3861 if (xhci->xhc_state) { /* dying, removing or halted */ 3862 ret = -ESHUTDOWN; 3863 goto out; 3864 } 3865 3866 if (!udev->slot_id) { 3867 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3868 "Bad Slot ID %d", udev->slot_id); 3869 ret = -EINVAL; 3870 goto out; 3871 } 3872 3873 virt_dev = xhci->devs[udev->slot_id]; 3874 3875 if (WARN_ON(!virt_dev)) { 3876 /* 3877 * In plug/unplug torture test with an NEC controller, 3878 * a zero-dereference was observed once due to virt_dev = 0. 3879 * Print useful debug rather than crash if it is observed again! 3880 */ 3881 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3882 udev->slot_id); 3883 ret = -EINVAL; 3884 goto out; 3885 } 3886 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3887 trace_xhci_setup_device_slot(slot_ctx); 3888 3889 if (setup == SETUP_CONTEXT_ONLY) { 3890 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3891 SLOT_STATE_DEFAULT) { 3892 xhci_dbg(xhci, "Slot already in default state\n"); 3893 goto out; 3894 } 3895 } 3896 3897 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3898 if (!command) { 3899 ret = -ENOMEM; 3900 goto out; 3901 } 3902 3903 command->in_ctx = virt_dev->in_ctx; 3904 3905 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3906 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3907 if (!ctrl_ctx) { 3908 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3909 __func__); 3910 ret = -EINVAL; 3911 goto out; 3912 } 3913 /* 3914 * If this is the first Set Address since device plug-in or 3915 * virt_device realloaction after a resume with an xHCI power loss, 3916 * then set up the slot context. 3917 */ 3918 if (!slot_ctx->dev_info) 3919 xhci_setup_addressable_virt_dev(xhci, udev); 3920 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3921 else 3922 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3923 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3924 ctrl_ctx->drop_flags = 0; 3925 3926 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3927 le32_to_cpu(slot_ctx->dev_info) >> 27); 3928 3929 spin_lock_irqsave(&xhci->lock, flags); 3930 trace_xhci_setup_device(virt_dev); 3931 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3932 udev->slot_id, setup); 3933 if (ret) { 3934 spin_unlock_irqrestore(&xhci->lock, flags); 3935 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3936 "FIXME: allocate a command ring segment"); 3937 goto out; 3938 } 3939 xhci_ring_cmd_db(xhci); 3940 spin_unlock_irqrestore(&xhci->lock, flags); 3941 3942 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3943 wait_for_completion(command->completion); 3944 3945 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3946 * the SetAddress() "recovery interval" required by USB and aborting the 3947 * command on a timeout. 3948 */ 3949 switch (command->status) { 3950 case COMP_COMMAND_ABORTED: 3951 case COMP_COMMAND_RING_STOPPED: 3952 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3953 ret = -ETIME; 3954 break; 3955 case COMP_CONTEXT_STATE_ERROR: 3956 case COMP_SLOT_NOT_ENABLED_ERROR: 3957 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3958 act, udev->slot_id); 3959 ret = -EINVAL; 3960 break; 3961 case COMP_USB_TRANSACTION_ERROR: 3962 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3963 3964 mutex_unlock(&xhci->mutex); 3965 ret = xhci_disable_slot(xhci, udev->slot_id); 3966 if (!ret) 3967 xhci_alloc_dev(hcd, udev); 3968 kfree(command->completion); 3969 kfree(command); 3970 return -EPROTO; 3971 case COMP_INCOMPATIBLE_DEVICE_ERROR: 3972 dev_warn(&udev->dev, 3973 "ERROR: Incompatible device for setup %s command\n", act); 3974 ret = -ENODEV; 3975 break; 3976 case COMP_SUCCESS: 3977 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3978 "Successful setup %s command", act); 3979 break; 3980 default: 3981 xhci_err(xhci, 3982 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3983 act, command->status); 3984 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3985 ret = -EINVAL; 3986 break; 3987 } 3988 if (ret) 3989 goto out; 3990 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3991 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3992 "Op regs DCBAA ptr = %#016llx", temp_64); 3993 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3994 "Slot ID %d dcbaa entry @%p = %#016llx", 3995 udev->slot_id, 3996 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3997 (unsigned long long) 3998 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3999 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4000 "Output Context DMA address = %#08llx", 4001 (unsigned long long)virt_dev->out_ctx->dma); 4002 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4003 le32_to_cpu(slot_ctx->dev_info) >> 27); 4004 /* 4005 * USB core uses address 1 for the roothubs, so we add one to the 4006 * address given back to us by the HC. 4007 */ 4008 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4009 le32_to_cpu(slot_ctx->dev_info) >> 27); 4010 /* Zero the input context control for later use */ 4011 ctrl_ctx->add_flags = 0; 4012 ctrl_ctx->drop_flags = 0; 4013 4014 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4015 "Internal device address = %d", 4016 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4017 out: 4018 mutex_unlock(&xhci->mutex); 4019 if (command) { 4020 kfree(command->completion); 4021 kfree(command); 4022 } 4023 return ret; 4024 } 4025 4026 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4027 { 4028 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4029 } 4030 4031 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4032 { 4033 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4034 } 4035 4036 /* 4037 * Transfer the port index into real index in the HW port status 4038 * registers. Caculate offset between the port's PORTSC register 4039 * and port status base. Divide the number of per port register 4040 * to get the real index. The raw port number bases 1. 4041 */ 4042 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4043 { 4044 struct xhci_hub *rhub; 4045 4046 rhub = xhci_get_rhub(hcd); 4047 return rhub->ports[port1 - 1]->hw_portnum + 1; 4048 } 4049 4050 /* 4051 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4052 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4053 */ 4054 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4055 struct usb_device *udev, u16 max_exit_latency) 4056 { 4057 struct xhci_virt_device *virt_dev; 4058 struct xhci_command *command; 4059 struct xhci_input_control_ctx *ctrl_ctx; 4060 struct xhci_slot_ctx *slot_ctx; 4061 unsigned long flags; 4062 int ret; 4063 4064 spin_lock_irqsave(&xhci->lock, flags); 4065 4066 virt_dev = xhci->devs[udev->slot_id]; 4067 4068 /* 4069 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4070 * xHC was re-initialized. Exit latency will be set later after 4071 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4072 */ 4073 4074 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4075 spin_unlock_irqrestore(&xhci->lock, flags); 4076 return 0; 4077 } 4078 4079 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4080 command = xhci->lpm_command; 4081 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4082 if (!ctrl_ctx) { 4083 spin_unlock_irqrestore(&xhci->lock, flags); 4084 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4085 __func__); 4086 return -ENOMEM; 4087 } 4088 4089 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4090 spin_unlock_irqrestore(&xhci->lock, flags); 4091 4092 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4093 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4094 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4095 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4096 slot_ctx->dev_state = 0; 4097 4098 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4099 "Set up evaluate context for LPM MEL change."); 4100 4101 /* Issue and wait for the evaluate context command. */ 4102 ret = xhci_configure_endpoint(xhci, udev, command, 4103 true, true); 4104 4105 if (!ret) { 4106 spin_lock_irqsave(&xhci->lock, flags); 4107 virt_dev->current_mel = max_exit_latency; 4108 spin_unlock_irqrestore(&xhci->lock, flags); 4109 } 4110 return ret; 4111 } 4112 4113 #ifdef CONFIG_PM 4114 4115 /* BESL to HIRD Encoding array for USB2 LPM */ 4116 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4117 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4118 4119 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4120 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4121 struct usb_device *udev) 4122 { 4123 int u2del, besl, besl_host; 4124 int besl_device = 0; 4125 u32 field; 4126 4127 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4128 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4129 4130 if (field & USB_BESL_SUPPORT) { 4131 for (besl_host = 0; besl_host < 16; besl_host++) { 4132 if (xhci_besl_encoding[besl_host] >= u2del) 4133 break; 4134 } 4135 /* Use baseline BESL value as default */ 4136 if (field & USB_BESL_BASELINE_VALID) 4137 besl_device = USB_GET_BESL_BASELINE(field); 4138 else if (field & USB_BESL_DEEP_VALID) 4139 besl_device = USB_GET_BESL_DEEP(field); 4140 } else { 4141 if (u2del <= 50) 4142 besl_host = 0; 4143 else 4144 besl_host = (u2del - 51) / 75 + 1; 4145 } 4146 4147 besl = besl_host + besl_device; 4148 if (besl > 15) 4149 besl = 15; 4150 4151 return besl; 4152 } 4153 4154 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4155 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4156 { 4157 u32 field; 4158 int l1; 4159 int besld = 0; 4160 int hirdm = 0; 4161 4162 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4163 4164 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4165 l1 = udev->l1_params.timeout / 256; 4166 4167 /* device has preferred BESLD */ 4168 if (field & USB_BESL_DEEP_VALID) { 4169 besld = USB_GET_BESL_DEEP(field); 4170 hirdm = 1; 4171 } 4172 4173 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4174 } 4175 4176 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4177 struct usb_device *udev, int enable) 4178 { 4179 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4180 struct xhci_port **ports; 4181 __le32 __iomem *pm_addr, *hlpm_addr; 4182 u32 pm_val, hlpm_val, field; 4183 unsigned int port_num; 4184 unsigned long flags; 4185 int hird, exit_latency; 4186 int ret; 4187 4188 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4189 !udev->lpm_capable) 4190 return -EPERM; 4191 4192 if (!udev->parent || udev->parent->parent || 4193 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4194 return -EPERM; 4195 4196 if (udev->usb2_hw_lpm_capable != 1) 4197 return -EPERM; 4198 4199 spin_lock_irqsave(&xhci->lock, flags); 4200 4201 ports = xhci->usb2_rhub.ports; 4202 port_num = udev->portnum - 1; 4203 pm_addr = ports[port_num]->addr + PORTPMSC; 4204 pm_val = readl(pm_addr); 4205 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4206 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4207 4208 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4209 enable ? "enable" : "disable", port_num + 1); 4210 4211 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) { 4212 /* Host supports BESL timeout instead of HIRD */ 4213 if (udev->usb2_hw_lpm_besl_capable) { 4214 /* if device doesn't have a preferred BESL value use a 4215 * default one which works with mixed HIRD and BESL 4216 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4217 */ 4218 if ((field & USB_BESL_SUPPORT) && 4219 (field & USB_BESL_BASELINE_VALID)) 4220 hird = USB_GET_BESL_BASELINE(field); 4221 else 4222 hird = udev->l1_params.besl; 4223 4224 exit_latency = xhci_besl_encoding[hird]; 4225 spin_unlock_irqrestore(&xhci->lock, flags); 4226 4227 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4228 * input context for link powermanagement evaluate 4229 * context commands. It is protected by hcd->bandwidth 4230 * mutex and is shared by all devices. We need to set 4231 * the max ext latency in USB 2 BESL LPM as well, so 4232 * use the same mutex and xhci_change_max_exit_latency() 4233 */ 4234 mutex_lock(hcd->bandwidth_mutex); 4235 ret = xhci_change_max_exit_latency(xhci, udev, 4236 exit_latency); 4237 mutex_unlock(hcd->bandwidth_mutex); 4238 4239 if (ret < 0) 4240 return ret; 4241 spin_lock_irqsave(&xhci->lock, flags); 4242 4243 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4244 writel(hlpm_val, hlpm_addr); 4245 /* flush write */ 4246 readl(hlpm_addr); 4247 } else { 4248 hird = xhci_calculate_hird_besl(xhci, udev); 4249 } 4250 4251 pm_val &= ~PORT_HIRD_MASK; 4252 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4253 writel(pm_val, pm_addr); 4254 pm_val = readl(pm_addr); 4255 pm_val |= PORT_HLE; 4256 writel(pm_val, pm_addr); 4257 /* flush write */ 4258 readl(pm_addr); 4259 } else { 4260 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4261 writel(pm_val, pm_addr); 4262 /* flush write */ 4263 readl(pm_addr); 4264 if (udev->usb2_hw_lpm_besl_capable) { 4265 spin_unlock_irqrestore(&xhci->lock, flags); 4266 mutex_lock(hcd->bandwidth_mutex); 4267 xhci_change_max_exit_latency(xhci, udev, 0); 4268 mutex_unlock(hcd->bandwidth_mutex); 4269 return 0; 4270 } 4271 } 4272 4273 spin_unlock_irqrestore(&xhci->lock, flags); 4274 return 0; 4275 } 4276 4277 /* check if a usb2 port supports a given extened capability protocol 4278 * only USB2 ports extended protocol capability values are cached. 4279 * Return 1 if capability is supported 4280 */ 4281 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4282 unsigned capability) 4283 { 4284 u32 port_offset, port_count; 4285 int i; 4286 4287 for (i = 0; i < xhci->num_ext_caps; i++) { 4288 if (xhci->ext_caps[i] & capability) { 4289 /* port offsets starts at 1 */ 4290 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4291 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4292 if (port >= port_offset && 4293 port < port_offset + port_count) 4294 return 1; 4295 } 4296 } 4297 return 0; 4298 } 4299 4300 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4301 { 4302 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4303 int portnum = udev->portnum - 1; 4304 4305 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4306 !udev->lpm_capable) 4307 return 0; 4308 4309 /* we only support lpm for non-hub device connected to root hub yet */ 4310 if (!udev->parent || udev->parent->parent || 4311 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4312 return 0; 4313 4314 if (xhci->hw_lpm_support == 1 && 4315 xhci_check_usb2_port_capability( 4316 xhci, portnum, XHCI_HLC)) { 4317 udev->usb2_hw_lpm_capable = 1; 4318 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4319 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4320 if (xhci_check_usb2_port_capability(xhci, portnum, 4321 XHCI_BLC)) 4322 udev->usb2_hw_lpm_besl_capable = 1; 4323 } 4324 4325 return 0; 4326 } 4327 4328 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4329 4330 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4331 static unsigned long long xhci_service_interval_to_ns( 4332 struct usb_endpoint_descriptor *desc) 4333 { 4334 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4335 } 4336 4337 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4338 enum usb3_link_state state) 4339 { 4340 unsigned long long sel; 4341 unsigned long long pel; 4342 unsigned int max_sel_pel; 4343 char *state_name; 4344 4345 switch (state) { 4346 case USB3_LPM_U1: 4347 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4348 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4349 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4350 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4351 state_name = "U1"; 4352 break; 4353 case USB3_LPM_U2: 4354 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4355 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4356 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4357 state_name = "U2"; 4358 break; 4359 default: 4360 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4361 __func__); 4362 return USB3_LPM_DISABLED; 4363 } 4364 4365 if (sel <= max_sel_pel && pel <= max_sel_pel) 4366 return USB3_LPM_DEVICE_INITIATED; 4367 4368 if (sel > max_sel_pel) 4369 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4370 "due to long SEL %llu ms\n", 4371 state_name, sel); 4372 else 4373 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4374 "due to long PEL %llu ms\n", 4375 state_name, pel); 4376 return USB3_LPM_DISABLED; 4377 } 4378 4379 /* The U1 timeout should be the maximum of the following values: 4380 * - For control endpoints, U1 system exit latency (SEL) * 3 4381 * - For bulk endpoints, U1 SEL * 5 4382 * - For interrupt endpoints: 4383 * - Notification EPs, U1 SEL * 3 4384 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4385 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4386 */ 4387 static unsigned long long xhci_calculate_intel_u1_timeout( 4388 struct usb_device *udev, 4389 struct usb_endpoint_descriptor *desc) 4390 { 4391 unsigned long long timeout_ns; 4392 int ep_type; 4393 int intr_type; 4394 4395 ep_type = usb_endpoint_type(desc); 4396 switch (ep_type) { 4397 case USB_ENDPOINT_XFER_CONTROL: 4398 timeout_ns = udev->u1_params.sel * 3; 4399 break; 4400 case USB_ENDPOINT_XFER_BULK: 4401 timeout_ns = udev->u1_params.sel * 5; 4402 break; 4403 case USB_ENDPOINT_XFER_INT: 4404 intr_type = usb_endpoint_interrupt_type(desc); 4405 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4406 timeout_ns = udev->u1_params.sel * 3; 4407 break; 4408 } 4409 /* Otherwise the calculation is the same as isoc eps */ 4410 /* fall through */ 4411 case USB_ENDPOINT_XFER_ISOC: 4412 timeout_ns = xhci_service_interval_to_ns(desc); 4413 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4414 if (timeout_ns < udev->u1_params.sel * 2) 4415 timeout_ns = udev->u1_params.sel * 2; 4416 break; 4417 default: 4418 return 0; 4419 } 4420 4421 return timeout_ns; 4422 } 4423 4424 /* Returns the hub-encoded U1 timeout value. */ 4425 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4426 struct usb_device *udev, 4427 struct usb_endpoint_descriptor *desc) 4428 { 4429 unsigned long long timeout_ns; 4430 4431 if (xhci->quirks & XHCI_INTEL_HOST) 4432 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4433 else 4434 timeout_ns = udev->u1_params.sel; 4435 4436 /* The U1 timeout is encoded in 1us intervals. 4437 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4438 */ 4439 if (timeout_ns == USB3_LPM_DISABLED) 4440 timeout_ns = 1; 4441 else 4442 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4443 4444 /* If the necessary timeout value is bigger than what we can set in the 4445 * USB 3.0 hub, we have to disable hub-initiated U1. 4446 */ 4447 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4448 return timeout_ns; 4449 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4450 "due to long timeout %llu ms\n", timeout_ns); 4451 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4452 } 4453 4454 /* The U2 timeout should be the maximum of: 4455 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4456 * - largest bInterval of any active periodic endpoint (to avoid going 4457 * into lower power link states between intervals). 4458 * - the U2 Exit Latency of the device 4459 */ 4460 static unsigned long long xhci_calculate_intel_u2_timeout( 4461 struct usb_device *udev, 4462 struct usb_endpoint_descriptor *desc) 4463 { 4464 unsigned long long timeout_ns; 4465 unsigned long long u2_del_ns; 4466 4467 timeout_ns = 10 * 1000 * 1000; 4468 4469 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4470 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4471 timeout_ns = xhci_service_interval_to_ns(desc); 4472 4473 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4474 if (u2_del_ns > timeout_ns) 4475 timeout_ns = u2_del_ns; 4476 4477 return timeout_ns; 4478 } 4479 4480 /* Returns the hub-encoded U2 timeout value. */ 4481 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4482 struct usb_device *udev, 4483 struct usb_endpoint_descriptor *desc) 4484 { 4485 unsigned long long timeout_ns; 4486 4487 if (xhci->quirks & XHCI_INTEL_HOST) 4488 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4489 else 4490 timeout_ns = udev->u2_params.sel; 4491 4492 /* The U2 timeout is encoded in 256us intervals */ 4493 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4494 /* If the necessary timeout value is bigger than what we can set in the 4495 * USB 3.0 hub, we have to disable hub-initiated U2. 4496 */ 4497 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4498 return timeout_ns; 4499 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4500 "due to long timeout %llu ms\n", timeout_ns); 4501 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4502 } 4503 4504 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4505 struct usb_device *udev, 4506 struct usb_endpoint_descriptor *desc, 4507 enum usb3_link_state state, 4508 u16 *timeout) 4509 { 4510 if (state == USB3_LPM_U1) 4511 return xhci_calculate_u1_timeout(xhci, udev, desc); 4512 else if (state == USB3_LPM_U2) 4513 return xhci_calculate_u2_timeout(xhci, udev, desc); 4514 4515 return USB3_LPM_DISABLED; 4516 } 4517 4518 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4519 struct usb_device *udev, 4520 struct usb_endpoint_descriptor *desc, 4521 enum usb3_link_state state, 4522 u16 *timeout) 4523 { 4524 u16 alt_timeout; 4525 4526 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4527 desc, state, timeout); 4528 4529 /* If we found we can't enable hub-initiated LPM, or 4530 * the U1 or U2 exit latency was too high to allow 4531 * device-initiated LPM as well, just stop searching. 4532 */ 4533 if (alt_timeout == USB3_LPM_DISABLED || 4534 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4535 *timeout = alt_timeout; 4536 return -E2BIG; 4537 } 4538 if (alt_timeout > *timeout) 4539 *timeout = alt_timeout; 4540 return 0; 4541 } 4542 4543 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4544 struct usb_device *udev, 4545 struct usb_host_interface *alt, 4546 enum usb3_link_state state, 4547 u16 *timeout) 4548 { 4549 int j; 4550 4551 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4552 if (xhci_update_timeout_for_endpoint(xhci, udev, 4553 &alt->endpoint[j].desc, state, timeout)) 4554 return -E2BIG; 4555 continue; 4556 } 4557 return 0; 4558 } 4559 4560 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4561 enum usb3_link_state state) 4562 { 4563 struct usb_device *parent; 4564 unsigned int num_hubs; 4565 4566 if (state == USB3_LPM_U2) 4567 return 0; 4568 4569 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4570 for (parent = udev->parent, num_hubs = 0; parent->parent; 4571 parent = parent->parent) 4572 num_hubs++; 4573 4574 if (num_hubs < 2) 4575 return 0; 4576 4577 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4578 " below second-tier hub.\n"); 4579 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4580 "to decrease power consumption.\n"); 4581 return -E2BIG; 4582 } 4583 4584 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4585 struct usb_device *udev, 4586 enum usb3_link_state state) 4587 { 4588 if (xhci->quirks & XHCI_INTEL_HOST) 4589 return xhci_check_intel_tier_policy(udev, state); 4590 else 4591 return 0; 4592 } 4593 4594 /* Returns the U1 or U2 timeout that should be enabled. 4595 * If the tier check or timeout setting functions return with a non-zero exit 4596 * code, that means the timeout value has been finalized and we shouldn't look 4597 * at any more endpoints. 4598 */ 4599 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4600 struct usb_device *udev, enum usb3_link_state state) 4601 { 4602 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4603 struct usb_host_config *config; 4604 char *state_name; 4605 int i; 4606 u16 timeout = USB3_LPM_DISABLED; 4607 4608 if (state == USB3_LPM_U1) 4609 state_name = "U1"; 4610 else if (state == USB3_LPM_U2) 4611 state_name = "U2"; 4612 else { 4613 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4614 state); 4615 return timeout; 4616 } 4617 4618 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4619 return timeout; 4620 4621 /* Gather some information about the currently installed configuration 4622 * and alternate interface settings. 4623 */ 4624 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4625 state, &timeout)) 4626 return timeout; 4627 4628 config = udev->actconfig; 4629 if (!config) 4630 return timeout; 4631 4632 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4633 struct usb_driver *driver; 4634 struct usb_interface *intf = config->interface[i]; 4635 4636 if (!intf) 4637 continue; 4638 4639 /* Check if any currently bound drivers want hub-initiated LPM 4640 * disabled. 4641 */ 4642 if (intf->dev.driver) { 4643 driver = to_usb_driver(intf->dev.driver); 4644 if (driver && driver->disable_hub_initiated_lpm) { 4645 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4646 "at request of driver %s\n", 4647 state_name, driver->name); 4648 return xhci_get_timeout_no_hub_lpm(udev, state); 4649 } 4650 } 4651 4652 /* Not sure how this could happen... */ 4653 if (!intf->cur_altsetting) 4654 continue; 4655 4656 if (xhci_update_timeout_for_interface(xhci, udev, 4657 intf->cur_altsetting, 4658 state, &timeout)) 4659 return timeout; 4660 } 4661 return timeout; 4662 } 4663 4664 static int calculate_max_exit_latency(struct usb_device *udev, 4665 enum usb3_link_state state_changed, 4666 u16 hub_encoded_timeout) 4667 { 4668 unsigned long long u1_mel_us = 0; 4669 unsigned long long u2_mel_us = 0; 4670 unsigned long long mel_us = 0; 4671 bool disabling_u1; 4672 bool disabling_u2; 4673 bool enabling_u1; 4674 bool enabling_u2; 4675 4676 disabling_u1 = (state_changed == USB3_LPM_U1 && 4677 hub_encoded_timeout == USB3_LPM_DISABLED); 4678 disabling_u2 = (state_changed == USB3_LPM_U2 && 4679 hub_encoded_timeout == USB3_LPM_DISABLED); 4680 4681 enabling_u1 = (state_changed == USB3_LPM_U1 && 4682 hub_encoded_timeout != USB3_LPM_DISABLED); 4683 enabling_u2 = (state_changed == USB3_LPM_U2 && 4684 hub_encoded_timeout != USB3_LPM_DISABLED); 4685 4686 /* If U1 was already enabled and we're not disabling it, 4687 * or we're going to enable U1, account for the U1 max exit latency. 4688 */ 4689 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4690 enabling_u1) 4691 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4692 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4693 enabling_u2) 4694 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4695 4696 if (u1_mel_us > u2_mel_us) 4697 mel_us = u1_mel_us; 4698 else 4699 mel_us = u2_mel_us; 4700 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4701 if (mel_us > MAX_EXIT) { 4702 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4703 "is too big.\n", mel_us); 4704 return -E2BIG; 4705 } 4706 return mel_us; 4707 } 4708 4709 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4710 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4711 struct usb_device *udev, enum usb3_link_state state) 4712 { 4713 struct xhci_hcd *xhci; 4714 u16 hub_encoded_timeout; 4715 int mel; 4716 int ret; 4717 4718 xhci = hcd_to_xhci(hcd); 4719 /* The LPM timeout values are pretty host-controller specific, so don't 4720 * enable hub-initiated timeouts unless the vendor has provided 4721 * information about their timeout algorithm. 4722 */ 4723 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4724 !xhci->devs[udev->slot_id]) 4725 return USB3_LPM_DISABLED; 4726 4727 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4728 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4729 if (mel < 0) { 4730 /* Max Exit Latency is too big, disable LPM. */ 4731 hub_encoded_timeout = USB3_LPM_DISABLED; 4732 mel = 0; 4733 } 4734 4735 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4736 if (ret) 4737 return ret; 4738 return hub_encoded_timeout; 4739 } 4740 4741 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4742 struct usb_device *udev, enum usb3_link_state state) 4743 { 4744 struct xhci_hcd *xhci; 4745 u16 mel; 4746 4747 xhci = hcd_to_xhci(hcd); 4748 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4749 !xhci->devs[udev->slot_id]) 4750 return 0; 4751 4752 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4753 return xhci_change_max_exit_latency(xhci, udev, mel); 4754 } 4755 #else /* CONFIG_PM */ 4756 4757 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4758 struct usb_device *udev, int enable) 4759 { 4760 return 0; 4761 } 4762 4763 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4764 { 4765 return 0; 4766 } 4767 4768 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4769 struct usb_device *udev, enum usb3_link_state state) 4770 { 4771 return USB3_LPM_DISABLED; 4772 } 4773 4774 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4775 struct usb_device *udev, enum usb3_link_state state) 4776 { 4777 return 0; 4778 } 4779 #endif /* CONFIG_PM */ 4780 4781 /*-------------------------------------------------------------------------*/ 4782 4783 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4784 * internal data structures for the device. 4785 */ 4786 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4787 struct usb_tt *tt, gfp_t mem_flags) 4788 { 4789 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4790 struct xhci_virt_device *vdev; 4791 struct xhci_command *config_cmd; 4792 struct xhci_input_control_ctx *ctrl_ctx; 4793 struct xhci_slot_ctx *slot_ctx; 4794 unsigned long flags; 4795 unsigned think_time; 4796 int ret; 4797 4798 /* Ignore root hubs */ 4799 if (!hdev->parent) 4800 return 0; 4801 4802 vdev = xhci->devs[hdev->slot_id]; 4803 if (!vdev) { 4804 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4805 return -EINVAL; 4806 } 4807 4808 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4809 if (!config_cmd) 4810 return -ENOMEM; 4811 4812 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4813 if (!ctrl_ctx) { 4814 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4815 __func__); 4816 xhci_free_command(xhci, config_cmd); 4817 return -ENOMEM; 4818 } 4819 4820 spin_lock_irqsave(&xhci->lock, flags); 4821 if (hdev->speed == USB_SPEED_HIGH && 4822 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4823 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4824 xhci_free_command(xhci, config_cmd); 4825 spin_unlock_irqrestore(&xhci->lock, flags); 4826 return -ENOMEM; 4827 } 4828 4829 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4830 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4831 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4832 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4833 /* 4834 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4835 * but it may be already set to 1 when setup an xHCI virtual 4836 * device, so clear it anyway. 4837 */ 4838 if (tt->multi) 4839 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4840 else if (hdev->speed == USB_SPEED_FULL) 4841 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4842 4843 if (xhci->hci_version > 0x95) { 4844 xhci_dbg(xhci, "xHCI version %x needs hub " 4845 "TT think time and number of ports\n", 4846 (unsigned int) xhci->hci_version); 4847 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4848 /* Set TT think time - convert from ns to FS bit times. 4849 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4850 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4851 * 4852 * xHCI 1.0: this field shall be 0 if the device is not a 4853 * High-spped hub. 4854 */ 4855 think_time = tt->think_time; 4856 if (think_time != 0) 4857 think_time = (think_time / 666) - 1; 4858 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4859 slot_ctx->tt_info |= 4860 cpu_to_le32(TT_THINK_TIME(think_time)); 4861 } else { 4862 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4863 "TT think time or number of ports\n", 4864 (unsigned int) xhci->hci_version); 4865 } 4866 slot_ctx->dev_state = 0; 4867 spin_unlock_irqrestore(&xhci->lock, flags); 4868 4869 xhci_dbg(xhci, "Set up %s for hub device.\n", 4870 (xhci->hci_version > 0x95) ? 4871 "configure endpoint" : "evaluate context"); 4872 4873 /* Issue and wait for the configure endpoint or 4874 * evaluate context command. 4875 */ 4876 if (xhci->hci_version > 0x95) 4877 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4878 false, false); 4879 else 4880 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4881 true, false); 4882 4883 xhci_free_command(xhci, config_cmd); 4884 return ret; 4885 } 4886 4887 static int xhci_get_frame(struct usb_hcd *hcd) 4888 { 4889 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4890 /* EHCI mods by the periodic size. Why? */ 4891 return readl(&xhci->run_regs->microframe_index) >> 3; 4892 } 4893 4894 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4895 { 4896 struct xhci_hcd *xhci; 4897 /* 4898 * TODO: Check with DWC3 clients for sysdev according to 4899 * quirks 4900 */ 4901 struct device *dev = hcd->self.sysdev; 4902 unsigned int minor_rev; 4903 int retval; 4904 4905 /* Accept arbitrarily long scatter-gather lists */ 4906 hcd->self.sg_tablesize = ~0; 4907 4908 /* support to build packet from discontinuous buffers */ 4909 hcd->self.no_sg_constraint = 1; 4910 4911 /* XHCI controllers don't stop the ep queue on short packets :| */ 4912 hcd->self.no_stop_on_short = 1; 4913 4914 xhci = hcd_to_xhci(hcd); 4915 4916 if (usb_hcd_is_primary_hcd(hcd)) { 4917 xhci->main_hcd = hcd; 4918 xhci->usb2_rhub.hcd = hcd; 4919 /* Mark the first roothub as being USB 2.0. 4920 * The xHCI driver will register the USB 3.0 roothub. 4921 */ 4922 hcd->speed = HCD_USB2; 4923 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4924 /* 4925 * USB 2.0 roothub under xHCI has an integrated TT, 4926 * (rate matching hub) as opposed to having an OHCI/UHCI 4927 * companion controller. 4928 */ 4929 hcd->has_tt = 1; 4930 } else { 4931 /* 4932 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol 4933 * minor revision instead of sbrn 4934 */ 4935 minor_rev = xhci->usb3_rhub.min_rev; 4936 if (minor_rev) { 4937 hcd->speed = HCD_USB31; 4938 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4939 } 4940 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n", 4941 minor_rev, 4942 minor_rev ? "Enhanced" : ""); 4943 4944 xhci->usb3_rhub.hcd = hcd; 4945 /* xHCI private pointer was set in xhci_pci_probe for the second 4946 * registered roothub. 4947 */ 4948 return 0; 4949 } 4950 4951 mutex_init(&xhci->mutex); 4952 xhci->cap_regs = hcd->regs; 4953 xhci->op_regs = hcd->regs + 4954 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4955 xhci->run_regs = hcd->regs + 4956 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4957 /* Cache read-only capability registers */ 4958 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4959 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4960 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4961 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4962 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4963 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4964 if (xhci->hci_version > 0x100) 4965 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4966 4967 xhci->quirks |= quirks; 4968 4969 get_quirks(dev, xhci); 4970 4971 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4972 * success event after a short transfer. This quirk will ignore such 4973 * spurious event. 4974 */ 4975 if (xhci->hci_version > 0x96) 4976 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4977 4978 /* Make sure the HC is halted. */ 4979 retval = xhci_halt(xhci); 4980 if (retval) 4981 return retval; 4982 4983 xhci_zero_64b_regs(xhci); 4984 4985 xhci_dbg(xhci, "Resetting HCD\n"); 4986 /* Reset the internal HC memory state and registers. */ 4987 retval = xhci_reset(xhci); 4988 if (retval) 4989 return retval; 4990 xhci_dbg(xhci, "Reset complete\n"); 4991 4992 /* 4993 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4994 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4995 * address memory pointers actually. So, this driver clears the AC64 4996 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4997 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4998 */ 4999 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5000 xhci->hcc_params &= ~BIT(0); 5001 5002 /* Set dma_mask and coherent_dma_mask to 64-bits, 5003 * if xHC supports 64-bit addressing */ 5004 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5005 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5006 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5007 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5008 } else { 5009 /* 5010 * This is to avoid error in cases where a 32-bit USB 5011 * controller is used on a 64-bit capable system. 5012 */ 5013 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5014 if (retval) 5015 return retval; 5016 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5017 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5018 } 5019 5020 xhci_dbg(xhci, "Calling HCD init\n"); 5021 /* Initialize HCD and host controller data structures. */ 5022 retval = xhci_init(hcd); 5023 if (retval) 5024 return retval; 5025 xhci_dbg(xhci, "Called HCD init\n"); 5026 5027 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5028 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5029 5030 return 0; 5031 } 5032 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5033 5034 static const struct hc_driver xhci_hc_driver = { 5035 .description = "xhci-hcd", 5036 .product_desc = "xHCI Host Controller", 5037 .hcd_priv_size = sizeof(struct xhci_hcd), 5038 5039 /* 5040 * generic hardware linkage 5041 */ 5042 .irq = xhci_irq, 5043 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 5044 5045 /* 5046 * basic lifecycle operations 5047 */ 5048 .reset = NULL, /* set in xhci_init_driver() */ 5049 .start = xhci_run, 5050 .stop = xhci_stop, 5051 .shutdown = xhci_shutdown, 5052 5053 /* 5054 * managing i/o requests and associated device resources 5055 */ 5056 .urb_enqueue = xhci_urb_enqueue, 5057 .urb_dequeue = xhci_urb_dequeue, 5058 .alloc_dev = xhci_alloc_dev, 5059 .free_dev = xhci_free_dev, 5060 .alloc_streams = xhci_alloc_streams, 5061 .free_streams = xhci_free_streams, 5062 .add_endpoint = xhci_add_endpoint, 5063 .drop_endpoint = xhci_drop_endpoint, 5064 .endpoint_reset = xhci_endpoint_reset, 5065 .check_bandwidth = xhci_check_bandwidth, 5066 .reset_bandwidth = xhci_reset_bandwidth, 5067 .address_device = xhci_address_device, 5068 .enable_device = xhci_enable_device, 5069 .update_hub_device = xhci_update_hub_device, 5070 .reset_device = xhci_discover_or_reset_device, 5071 5072 /* 5073 * scheduling support 5074 */ 5075 .get_frame_number = xhci_get_frame, 5076 5077 /* 5078 * root hub support 5079 */ 5080 .hub_control = xhci_hub_control, 5081 .hub_status_data = xhci_hub_status_data, 5082 .bus_suspend = xhci_bus_suspend, 5083 .bus_resume = xhci_bus_resume, 5084 5085 /* 5086 * call back when device connected and addressed 5087 */ 5088 .update_device = xhci_update_device, 5089 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5090 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5091 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5092 .find_raw_port_number = xhci_find_raw_port_number, 5093 }; 5094 5095 void xhci_init_driver(struct hc_driver *drv, 5096 const struct xhci_driver_overrides *over) 5097 { 5098 BUG_ON(!over); 5099 5100 /* Copy the generic table to drv then apply the overrides */ 5101 *drv = xhci_hc_driver; 5102 5103 if (over) { 5104 drv->hcd_priv_size += over->extra_priv_size; 5105 if (over->reset) 5106 drv->reset = over->reset; 5107 if (over->start) 5108 drv->start = over->start; 5109 } 5110 } 5111 EXPORT_SYMBOL_GPL(xhci_init_driver); 5112 5113 MODULE_DESCRIPTION(DRIVER_DESC); 5114 MODULE_AUTHOR(DRIVER_AUTHOR); 5115 MODULE_LICENSE("GPL"); 5116 5117 static int __init xhci_hcd_init(void) 5118 { 5119 /* 5120 * Check the compiler generated sizes of structures that must be laid 5121 * out in specific ways for hardware access. 5122 */ 5123 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5124 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5125 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5126 /* xhci_device_control has eight fields, and also 5127 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5128 */ 5129 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5130 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5131 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5132 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5133 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5134 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5135 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5136 5137 if (usb_disabled()) 5138 return -ENODEV; 5139 5140 xhci_debugfs_create_root(); 5141 5142 return 0; 5143 } 5144 5145 /* 5146 * If an init function is provided, an exit function must also be provided 5147 * to allow module unload. 5148 */ 5149 static void __exit xhci_hcd_fini(void) 5150 { 5151 xhci_debugfs_remove_root(); 5152 } 5153 5154 module_init(xhci_hcd_init); 5155 module_exit(xhci_hcd_fini); 5156