1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (ret) { 117 xhci_warn(xhci, "Host halt failed, %d\n", ret); 118 return ret; 119 } 120 xhci->xhc_state |= XHCI_STATE_HALTED; 121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 171 if (state == ~(u32)0) { 172 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 173 return -ENODEV; 174 } 175 176 if ((state & STS_HALT) == 0) { 177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 178 return 0; 179 } 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 182 command = readl(&xhci->op_regs->command); 183 command |= CMD_RESET; 184 writel(command, &xhci->op_regs->command); 185 186 /* Existing Intel xHCI controllers require a delay of 1 mS, 187 * after setting the CMD_RESET bit, and before accessing any 188 * HC registers. This allows the HC to complete the 189 * reset operation and be ready for HC register access. 190 * Without this delay, the subsequent HC register access, 191 * may result in a system hang very rarely. 192 */ 193 if (xhci->quirks & XHCI_INTEL_HOST) 194 udelay(1000); 195 196 ret = xhci_handshake(&xhci->op_regs->command, 197 CMD_RESET, 0, 10 * 1000 * 1000); 198 if (ret) 199 return ret; 200 201 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 202 "Wait for controller to be ready for doorbell rings"); 203 /* 204 * xHCI cannot write to any doorbells or operational registers other 205 * than status until the "Controller Not Ready" flag is cleared. 206 */ 207 ret = xhci_handshake(&xhci->op_regs->status, 208 STS_CNR, 0, 10 * 1000 * 1000); 209 210 for (i = 0; i < 2; i++) { 211 xhci->bus_state[i].port_c_suspend = 0; 212 xhci->bus_state[i].suspended_ports = 0; 213 xhci->bus_state[i].resuming_ports = 0; 214 } 215 216 return ret; 217 } 218 219 220 #ifdef CONFIG_USB_PCI 221 /* 222 * Set up MSI 223 */ 224 static int xhci_setup_msi(struct xhci_hcd *xhci) 225 { 226 int ret; 227 /* 228 * TODO:Check with MSI Soc for sysdev 229 */ 230 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 231 232 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 233 if (ret < 0) { 234 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 235 "failed to allocate MSI entry"); 236 return ret; 237 } 238 239 ret = request_irq(pdev->irq, xhci_msi_irq, 240 0, "xhci_hcd", xhci_to_hcd(xhci)); 241 if (ret) { 242 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 243 "disable MSI interrupt"); 244 pci_free_irq_vectors(pdev); 245 } 246 247 return ret; 248 } 249 250 /* 251 * Set up MSI-X 252 */ 253 static int xhci_setup_msix(struct xhci_hcd *xhci) 254 { 255 int i, ret = 0; 256 struct usb_hcd *hcd = xhci_to_hcd(xhci); 257 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 258 259 /* 260 * calculate number of msi-x vectors supported. 261 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 262 * with max number of interrupters based on the xhci HCSPARAMS1. 263 * - num_online_cpus: maximum msi-x vectors per CPUs core. 264 * Add additional 1 vector to ensure always available interrupt. 265 */ 266 xhci->msix_count = min(num_online_cpus() + 1, 267 HCS_MAX_INTRS(xhci->hcs_params1)); 268 269 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 270 PCI_IRQ_MSIX); 271 if (ret < 0) { 272 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 273 "Failed to enable MSI-X"); 274 return ret; 275 } 276 277 for (i = 0; i < xhci->msix_count; i++) { 278 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 279 "xhci_hcd", xhci_to_hcd(xhci)); 280 if (ret) 281 goto disable_msix; 282 } 283 284 hcd->msix_enabled = 1; 285 return ret; 286 287 disable_msix: 288 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 289 while (--i >= 0) 290 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 291 pci_free_irq_vectors(pdev); 292 return ret; 293 } 294 295 /* Free any IRQs and disable MSI-X */ 296 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 297 { 298 struct usb_hcd *hcd = xhci_to_hcd(xhci); 299 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 300 301 if (xhci->quirks & XHCI_PLAT) 302 return; 303 304 /* return if using legacy interrupt */ 305 if (hcd->irq > 0) 306 return; 307 308 if (hcd->msix_enabled) { 309 int i; 310 311 for (i = 0; i < xhci->msix_count; i++) 312 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 313 } else { 314 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 315 } 316 317 pci_free_irq_vectors(pdev); 318 hcd->msix_enabled = 0; 319 } 320 321 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 322 { 323 struct usb_hcd *hcd = xhci_to_hcd(xhci); 324 325 if (hcd->msix_enabled) { 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 int i; 328 329 for (i = 0; i < xhci->msix_count; i++) 330 synchronize_irq(pci_irq_vector(pdev, i)); 331 } 332 } 333 334 static int xhci_try_enable_msi(struct usb_hcd *hcd) 335 { 336 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 337 struct pci_dev *pdev; 338 int ret; 339 340 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 341 if (xhci->quirks & XHCI_PLAT) 342 return 0; 343 344 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 345 /* 346 * Some Fresco Logic host controllers advertise MSI, but fail to 347 * generate interrupts. Don't even try to enable MSI. 348 */ 349 if (xhci->quirks & XHCI_BROKEN_MSI) 350 goto legacy_irq; 351 352 /* unregister the legacy interrupt */ 353 if (hcd->irq) 354 free_irq(hcd->irq, hcd); 355 hcd->irq = 0; 356 357 ret = xhci_setup_msix(xhci); 358 if (ret) 359 /* fall back to msi*/ 360 ret = xhci_setup_msi(xhci); 361 362 if (!ret) { 363 hcd->msi_enabled = 1; 364 return 0; 365 } 366 367 if (!pdev->irq) { 368 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 369 return -EINVAL; 370 } 371 372 legacy_irq: 373 if (!strlen(hcd->irq_descr)) 374 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 375 hcd->driver->description, hcd->self.busnum); 376 377 /* fall back to legacy interrupt*/ 378 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 379 hcd->irq_descr, hcd); 380 if (ret) { 381 xhci_err(xhci, "request interrupt %d failed\n", 382 pdev->irq); 383 return ret; 384 } 385 hcd->irq = pdev->irq; 386 return 0; 387 } 388 389 #else 390 391 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 392 { 393 return 0; 394 } 395 396 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 397 { 398 } 399 400 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 401 { 402 } 403 404 #endif 405 406 static void compliance_mode_recovery(unsigned long arg) 407 { 408 struct xhci_hcd *xhci; 409 struct usb_hcd *hcd; 410 u32 temp; 411 int i; 412 413 xhci = (struct xhci_hcd *)arg; 414 415 for (i = 0; i < xhci->num_usb3_ports; i++) { 416 temp = readl(xhci->usb3_ports[i]); 417 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 418 /* 419 * Compliance Mode Detected. Letting USB Core 420 * handle the Warm Reset 421 */ 422 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 423 "Compliance mode detected->port %d", 424 i + 1); 425 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 426 "Attempting compliance mode recovery"); 427 hcd = xhci->shared_hcd; 428 429 if (hcd->state == HC_STATE_SUSPENDED) 430 usb_hcd_resume_root_hub(hcd); 431 432 usb_hcd_poll_rh_status(hcd); 433 } 434 } 435 436 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 437 mod_timer(&xhci->comp_mode_recovery_timer, 438 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 439 } 440 441 /* 442 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 443 * that causes ports behind that hardware to enter compliance mode sometimes. 444 * The quirk creates a timer that polls every 2 seconds the link state of 445 * each host controller's port and recovers it by issuing a Warm reset 446 * if Compliance mode is detected, otherwise the port will become "dead" (no 447 * device connections or disconnections will be detected anymore). Becasue no 448 * status event is generated when entering compliance mode (per xhci spec), 449 * this quirk is needed on systems that have the failing hardware installed. 450 */ 451 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 452 { 453 xhci->port_status_u0 = 0; 454 setup_timer(&xhci->comp_mode_recovery_timer, 455 compliance_mode_recovery, (unsigned long)xhci); 456 xhci->comp_mode_recovery_timer.expires = jiffies + 457 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 458 459 add_timer(&xhci->comp_mode_recovery_timer); 460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 461 "Compliance mode recovery timer initialized"); 462 } 463 464 /* 465 * This function identifies the systems that have installed the SN65LVPE502CP 466 * USB3.0 re-driver and that need the Compliance Mode Quirk. 467 * Systems: 468 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 469 */ 470 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 471 { 472 const char *dmi_product_name, *dmi_sys_vendor; 473 474 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 475 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 476 if (!dmi_product_name || !dmi_sys_vendor) 477 return false; 478 479 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 480 return false; 481 482 if (strstr(dmi_product_name, "Z420") || 483 strstr(dmi_product_name, "Z620") || 484 strstr(dmi_product_name, "Z820") || 485 strstr(dmi_product_name, "Z1 Workstation")) 486 return true; 487 488 return false; 489 } 490 491 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 492 { 493 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 494 } 495 496 497 /* 498 * Initialize memory for HCD and xHC (one-time init). 499 * 500 * Program the PAGESIZE register, initialize the device context array, create 501 * device contexts (?), set up a command ring segment (or two?), create event 502 * ring (one for now). 503 */ 504 static int xhci_init(struct usb_hcd *hcd) 505 { 506 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 507 int retval = 0; 508 509 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 510 spin_lock_init(&xhci->lock); 511 if (xhci->hci_version == 0x95 && link_quirk) { 512 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 513 "QUIRK: Not clearing Link TRB chain bits."); 514 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 515 } else { 516 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 517 "xHCI doesn't need link TRB QUIRK"); 518 } 519 retval = xhci_mem_init(xhci, GFP_KERNEL); 520 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 521 522 /* Initializing Compliance Mode Recovery Data If Needed */ 523 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 524 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 525 compliance_mode_recovery_timer_init(xhci); 526 } 527 528 return retval; 529 } 530 531 /*-------------------------------------------------------------------------*/ 532 533 534 static int xhci_run_finished(struct xhci_hcd *xhci) 535 { 536 if (xhci_start(xhci)) { 537 xhci_halt(xhci); 538 return -ENODEV; 539 } 540 xhci->shared_hcd->state = HC_STATE_RUNNING; 541 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 542 543 if (xhci->quirks & XHCI_NEC_HOST) 544 xhci_ring_cmd_db(xhci); 545 546 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 547 "Finished xhci_run for USB3 roothub"); 548 return 0; 549 } 550 551 /* 552 * Start the HC after it was halted. 553 * 554 * This function is called by the USB core when the HC driver is added. 555 * Its opposite is xhci_stop(). 556 * 557 * xhci_init() must be called once before this function can be called. 558 * Reset the HC, enable device slot contexts, program DCBAAP, and 559 * set command ring pointer and event ring pointer. 560 * 561 * Setup MSI-X vectors and enable interrupts. 562 */ 563 int xhci_run(struct usb_hcd *hcd) 564 { 565 u32 temp; 566 u64 temp_64; 567 int ret; 568 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 569 570 /* Start the xHCI host controller running only after the USB 2.0 roothub 571 * is setup. 572 */ 573 574 hcd->uses_new_polling = 1; 575 if (!usb_hcd_is_primary_hcd(hcd)) 576 return xhci_run_finished(xhci); 577 578 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 579 580 ret = xhci_try_enable_msi(hcd); 581 if (ret) 582 return ret; 583 584 xhci_dbg_cmd_ptrs(xhci); 585 586 xhci_dbg(xhci, "ERST memory map follows:\n"); 587 xhci_dbg_erst(xhci, &xhci->erst); 588 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 589 temp_64 &= ~ERST_PTR_MASK; 590 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 591 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 592 593 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 594 "// Set the interrupt modulation register"); 595 temp = readl(&xhci->ir_set->irq_control); 596 temp &= ~ER_IRQ_INTERVAL_MASK; 597 /* 598 * the increment interval is 8 times as much as that defined 599 * in xHCI spec on MTK's controller 600 */ 601 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 602 writel(temp, &xhci->ir_set->irq_control); 603 604 /* Set the HCD state before we enable the irqs */ 605 temp = readl(&xhci->op_regs->command); 606 temp |= (CMD_EIE); 607 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 608 "// Enable interrupts, cmd = 0x%x.", temp); 609 writel(temp, &xhci->op_regs->command); 610 611 temp = readl(&xhci->ir_set->irq_pending); 612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 613 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 614 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 615 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 616 xhci_print_ir_set(xhci, 0); 617 618 if (xhci->quirks & XHCI_NEC_HOST) { 619 struct xhci_command *command; 620 621 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 622 if (!command) 623 return -ENOMEM; 624 625 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 626 TRB_TYPE(TRB_NEC_GET_FW)); 627 } 628 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 629 "Finished xhci_run for USB2 roothub"); 630 return 0; 631 } 632 EXPORT_SYMBOL_GPL(xhci_run); 633 634 /* 635 * Stop xHCI driver. 636 * 637 * This function is called by the USB core when the HC driver is removed. 638 * Its opposite is xhci_run(). 639 * 640 * Disable device contexts, disable IRQs, and quiesce the HC. 641 * Reset the HC, finish any completed transactions, and cleanup memory. 642 */ 643 static void xhci_stop(struct usb_hcd *hcd) 644 { 645 u32 temp; 646 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 647 648 mutex_lock(&xhci->mutex); 649 650 /* Only halt host and free memory after both hcds are removed */ 651 if (!usb_hcd_is_primary_hcd(hcd)) { 652 /* usb core will free this hcd shortly, unset pointer */ 653 xhci->shared_hcd = NULL; 654 mutex_unlock(&xhci->mutex); 655 return; 656 } 657 658 spin_lock_irq(&xhci->lock); 659 xhci->xhc_state |= XHCI_STATE_HALTED; 660 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 661 xhci_halt(xhci); 662 xhci_reset(xhci); 663 spin_unlock_irq(&xhci->lock); 664 665 xhci_cleanup_msix(xhci); 666 667 /* Deleting Compliance Mode Recovery Timer */ 668 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 669 (!(xhci_all_ports_seen_u0(xhci)))) { 670 del_timer_sync(&xhci->comp_mode_recovery_timer); 671 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 672 "%s: compliance mode recovery timer deleted", 673 __func__); 674 } 675 676 if (xhci->quirks & XHCI_AMD_PLL_FIX) 677 usb_amd_dev_put(); 678 679 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 680 "// Disabling event ring interrupts"); 681 temp = readl(&xhci->op_regs->status); 682 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 683 temp = readl(&xhci->ir_set->irq_pending); 684 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 685 xhci_print_ir_set(xhci, 0); 686 687 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 688 xhci_mem_cleanup(xhci); 689 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 690 "xhci_stop completed - status = %x", 691 readl(&xhci->op_regs->status)); 692 mutex_unlock(&xhci->mutex); 693 } 694 695 /* 696 * Shutdown HC (not bus-specific) 697 * 698 * This is called when the machine is rebooting or halting. We assume that the 699 * machine will be powered off, and the HC's internal state will be reset. 700 * Don't bother to free memory. 701 * 702 * This will only ever be called with the main usb_hcd (the USB3 roothub). 703 */ 704 static void xhci_shutdown(struct usb_hcd *hcd) 705 { 706 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 707 708 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 709 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 710 711 spin_lock_irq(&xhci->lock); 712 xhci_halt(xhci); 713 /* Workaround for spurious wakeups at shutdown with HSW */ 714 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 715 xhci_reset(xhci); 716 spin_unlock_irq(&xhci->lock); 717 718 xhci_cleanup_msix(xhci); 719 720 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 721 "xhci_shutdown completed - status = %x", 722 readl(&xhci->op_regs->status)); 723 724 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 725 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 726 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 727 } 728 729 #ifdef CONFIG_PM 730 static void xhci_save_registers(struct xhci_hcd *xhci) 731 { 732 xhci->s3.command = readl(&xhci->op_regs->command); 733 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 734 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 735 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 736 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 737 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 738 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 739 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 740 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 741 } 742 743 static void xhci_restore_registers(struct xhci_hcd *xhci) 744 { 745 writel(xhci->s3.command, &xhci->op_regs->command); 746 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 747 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 748 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 749 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 750 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 751 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 752 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 753 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 754 } 755 756 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 757 { 758 u64 val_64; 759 760 /* step 2: initialize command ring buffer */ 761 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 762 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 763 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 764 xhci->cmd_ring->dequeue) & 765 (u64) ~CMD_RING_RSVD_BITS) | 766 xhci->cmd_ring->cycle_state; 767 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 768 "// Setting command ring address to 0x%llx", 769 (long unsigned long) val_64); 770 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 771 } 772 773 /* 774 * The whole command ring must be cleared to zero when we suspend the host. 775 * 776 * The host doesn't save the command ring pointer in the suspend well, so we 777 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 778 * aligned, because of the reserved bits in the command ring dequeue pointer 779 * register. Therefore, we can't just set the dequeue pointer back in the 780 * middle of the ring (TRBs are 16-byte aligned). 781 */ 782 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 783 { 784 struct xhci_ring *ring; 785 struct xhci_segment *seg; 786 787 ring = xhci->cmd_ring; 788 seg = ring->deq_seg; 789 do { 790 memset(seg->trbs, 0, 791 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 792 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 793 cpu_to_le32(~TRB_CYCLE); 794 seg = seg->next; 795 } while (seg != ring->deq_seg); 796 797 /* Reset the software enqueue and dequeue pointers */ 798 ring->deq_seg = ring->first_seg; 799 ring->dequeue = ring->first_seg->trbs; 800 ring->enq_seg = ring->deq_seg; 801 ring->enqueue = ring->dequeue; 802 803 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 804 /* 805 * Ring is now zeroed, so the HW should look for change of ownership 806 * when the cycle bit is set to 1. 807 */ 808 ring->cycle_state = 1; 809 810 /* 811 * Reset the hardware dequeue pointer. 812 * Yes, this will need to be re-written after resume, but we're paranoid 813 * and want to make sure the hardware doesn't access bogus memory 814 * because, say, the BIOS or an SMI started the host without changing 815 * the command ring pointers. 816 */ 817 xhci_set_cmd_ring_deq(xhci); 818 } 819 820 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 821 { 822 int port_index; 823 __le32 __iomem **port_array; 824 unsigned long flags; 825 u32 t1, t2; 826 827 spin_lock_irqsave(&xhci->lock, flags); 828 829 /* disable usb3 ports Wake bits */ 830 port_index = xhci->num_usb3_ports; 831 port_array = xhci->usb3_ports; 832 while (port_index--) { 833 t1 = readl(port_array[port_index]); 834 t1 = xhci_port_state_to_neutral(t1); 835 t2 = t1 & ~PORT_WAKE_BITS; 836 if (t1 != t2) 837 writel(t2, port_array[port_index]); 838 } 839 840 /* disable usb2 ports Wake bits */ 841 port_index = xhci->num_usb2_ports; 842 port_array = xhci->usb2_ports; 843 while (port_index--) { 844 t1 = readl(port_array[port_index]); 845 t1 = xhci_port_state_to_neutral(t1); 846 t2 = t1 & ~PORT_WAKE_BITS; 847 if (t1 != t2) 848 writel(t2, port_array[port_index]); 849 } 850 851 spin_unlock_irqrestore(&xhci->lock, flags); 852 } 853 854 /* 855 * Stop HC (not bus-specific) 856 * 857 * This is called when the machine transition into S3/S4 mode. 858 * 859 */ 860 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 861 { 862 int rc = 0; 863 unsigned int delay = XHCI_MAX_HALT_USEC; 864 struct usb_hcd *hcd = xhci_to_hcd(xhci); 865 u32 command; 866 867 if (!hcd->state) 868 return 0; 869 870 if (hcd->state != HC_STATE_SUSPENDED || 871 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 872 return -EINVAL; 873 874 /* Clear root port wake on bits if wakeup not allowed. */ 875 if (!do_wakeup) 876 xhci_disable_port_wake_on_bits(xhci); 877 878 /* Don't poll the roothubs on bus suspend. */ 879 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 880 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 881 del_timer_sync(&hcd->rh_timer); 882 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 883 del_timer_sync(&xhci->shared_hcd->rh_timer); 884 885 spin_lock_irq(&xhci->lock); 886 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 887 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 888 /* step 1: stop endpoint */ 889 /* skipped assuming that port suspend has done */ 890 891 /* step 2: clear Run/Stop bit */ 892 command = readl(&xhci->op_regs->command); 893 command &= ~CMD_RUN; 894 writel(command, &xhci->op_regs->command); 895 896 /* Some chips from Fresco Logic need an extraordinary delay */ 897 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 898 899 if (xhci_handshake(&xhci->op_regs->status, 900 STS_HALT, STS_HALT, delay)) { 901 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 902 spin_unlock_irq(&xhci->lock); 903 return -ETIMEDOUT; 904 } 905 xhci_clear_command_ring(xhci); 906 907 /* step 3: save registers */ 908 xhci_save_registers(xhci); 909 910 /* step 4: set CSS flag */ 911 command = readl(&xhci->op_regs->command); 912 command |= CMD_CSS; 913 writel(command, &xhci->op_regs->command); 914 if (xhci_handshake(&xhci->op_regs->status, 915 STS_SAVE, 0, 10 * 1000)) { 916 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 917 spin_unlock_irq(&xhci->lock); 918 return -ETIMEDOUT; 919 } 920 spin_unlock_irq(&xhci->lock); 921 922 /* 923 * Deleting Compliance Mode Recovery Timer because the xHCI Host 924 * is about to be suspended. 925 */ 926 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 927 (!(xhci_all_ports_seen_u0(xhci)))) { 928 del_timer_sync(&xhci->comp_mode_recovery_timer); 929 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 930 "%s: compliance mode recovery timer deleted", 931 __func__); 932 } 933 934 /* step 5: remove core well power */ 935 /* synchronize irq when using MSI-X */ 936 xhci_msix_sync_irqs(xhci); 937 938 return rc; 939 } 940 EXPORT_SYMBOL_GPL(xhci_suspend); 941 942 /* 943 * start xHC (not bus-specific) 944 * 945 * This is called when the machine transition from S3/S4 mode. 946 * 947 */ 948 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 949 { 950 u32 command, temp = 0, status; 951 struct usb_hcd *hcd = xhci_to_hcd(xhci); 952 struct usb_hcd *secondary_hcd; 953 int retval = 0; 954 bool comp_timer_running = false; 955 956 if (!hcd->state) 957 return 0; 958 959 /* Wait a bit if either of the roothubs need to settle from the 960 * transition into bus suspend. 961 */ 962 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 963 time_before(jiffies, 964 xhci->bus_state[1].next_statechange)) 965 msleep(100); 966 967 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 968 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 969 970 spin_lock_irq(&xhci->lock); 971 if (xhci->quirks & XHCI_RESET_ON_RESUME) 972 hibernated = true; 973 974 if (!hibernated) { 975 /* step 1: restore register */ 976 xhci_restore_registers(xhci); 977 /* step 2: initialize command ring buffer */ 978 xhci_set_cmd_ring_deq(xhci); 979 /* step 3: restore state and start state*/ 980 /* step 3: set CRS flag */ 981 command = readl(&xhci->op_regs->command); 982 command |= CMD_CRS; 983 writel(command, &xhci->op_regs->command); 984 if (xhci_handshake(&xhci->op_regs->status, 985 STS_RESTORE, 0, 10 * 1000)) { 986 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 987 spin_unlock_irq(&xhci->lock); 988 return -ETIMEDOUT; 989 } 990 temp = readl(&xhci->op_regs->status); 991 } 992 993 /* If restore operation fails, re-initialize the HC during resume */ 994 if ((temp & STS_SRE) || hibernated) { 995 996 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 997 !(xhci_all_ports_seen_u0(xhci))) { 998 del_timer_sync(&xhci->comp_mode_recovery_timer); 999 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1000 "Compliance Mode Recovery Timer deleted!"); 1001 } 1002 1003 /* Let the USB core know _both_ roothubs lost power. */ 1004 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1005 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1006 1007 xhci_dbg(xhci, "Stop HCD\n"); 1008 xhci_halt(xhci); 1009 xhci_reset(xhci); 1010 spin_unlock_irq(&xhci->lock); 1011 xhci_cleanup_msix(xhci); 1012 1013 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1014 temp = readl(&xhci->op_regs->status); 1015 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1016 temp = readl(&xhci->ir_set->irq_pending); 1017 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1018 xhci_print_ir_set(xhci, 0); 1019 1020 xhci_dbg(xhci, "cleaning up memory\n"); 1021 xhci_mem_cleanup(xhci); 1022 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1023 readl(&xhci->op_regs->status)); 1024 1025 /* USB core calls the PCI reinit and start functions twice: 1026 * first with the primary HCD, and then with the secondary HCD. 1027 * If we don't do the same, the host will never be started. 1028 */ 1029 if (!usb_hcd_is_primary_hcd(hcd)) 1030 secondary_hcd = hcd; 1031 else 1032 secondary_hcd = xhci->shared_hcd; 1033 1034 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1035 retval = xhci_init(hcd->primary_hcd); 1036 if (retval) 1037 return retval; 1038 comp_timer_running = true; 1039 1040 xhci_dbg(xhci, "Start the primary HCD\n"); 1041 retval = xhci_run(hcd->primary_hcd); 1042 if (!retval) { 1043 xhci_dbg(xhci, "Start the secondary HCD\n"); 1044 retval = xhci_run(secondary_hcd); 1045 } 1046 hcd->state = HC_STATE_SUSPENDED; 1047 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1048 goto done; 1049 } 1050 1051 /* step 4: set Run/Stop bit */ 1052 command = readl(&xhci->op_regs->command); 1053 command |= CMD_RUN; 1054 writel(command, &xhci->op_regs->command); 1055 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1056 0, 250 * 1000); 1057 1058 /* step 5: walk topology and initialize portsc, 1059 * portpmsc and portli 1060 */ 1061 /* this is done in bus_resume */ 1062 1063 /* step 6: restart each of the previously 1064 * Running endpoints by ringing their doorbells 1065 */ 1066 1067 spin_unlock_irq(&xhci->lock); 1068 1069 done: 1070 if (retval == 0) { 1071 /* Resume root hubs only when have pending events. */ 1072 status = readl(&xhci->op_regs->status); 1073 if (status & STS_EINT) { 1074 usb_hcd_resume_root_hub(xhci->shared_hcd); 1075 usb_hcd_resume_root_hub(hcd); 1076 } 1077 } 1078 1079 /* 1080 * If system is subject to the Quirk, Compliance Mode Timer needs to 1081 * be re-initialized Always after a system resume. Ports are subject 1082 * to suffer the Compliance Mode issue again. It doesn't matter if 1083 * ports have entered previously to U0 before system's suspension. 1084 */ 1085 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1086 compliance_mode_recovery_timer_init(xhci); 1087 1088 /* Re-enable port polling. */ 1089 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1090 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1091 usb_hcd_poll_rh_status(xhci->shared_hcd); 1092 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1093 usb_hcd_poll_rh_status(hcd); 1094 1095 return retval; 1096 } 1097 EXPORT_SYMBOL_GPL(xhci_resume); 1098 #endif /* CONFIG_PM */ 1099 1100 /*-------------------------------------------------------------------------*/ 1101 1102 /** 1103 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1104 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1105 * value to right shift 1 for the bitmask. 1106 * 1107 * Index = (epnum * 2) + direction - 1, 1108 * where direction = 0 for OUT, 1 for IN. 1109 * For control endpoints, the IN index is used (OUT index is unused), so 1110 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1111 */ 1112 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1113 { 1114 unsigned int index; 1115 if (usb_endpoint_xfer_control(desc)) 1116 index = (unsigned int) (usb_endpoint_num(desc)*2); 1117 else 1118 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1119 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1120 return index; 1121 } 1122 1123 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1124 * address from the XHCI endpoint index. 1125 */ 1126 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1127 { 1128 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1129 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1130 return direction | number; 1131 } 1132 1133 /* Find the flag for this endpoint (for use in the control context). Use the 1134 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1135 * bit 1, etc. 1136 */ 1137 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1138 { 1139 return 1 << (xhci_get_endpoint_index(desc) + 1); 1140 } 1141 1142 /* Find the flag for this endpoint (for use in the control context). Use the 1143 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1144 * bit 1, etc. 1145 */ 1146 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1147 { 1148 return 1 << (ep_index + 1); 1149 } 1150 1151 /* Compute the last valid endpoint context index. Basically, this is the 1152 * endpoint index plus one. For slot contexts with more than valid endpoint, 1153 * we find the most significant bit set in the added contexts flags. 1154 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1155 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1156 */ 1157 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1158 { 1159 return fls(added_ctxs) - 1; 1160 } 1161 1162 /* Returns 1 if the arguments are OK; 1163 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1164 */ 1165 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1166 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1167 const char *func) { 1168 struct xhci_hcd *xhci; 1169 struct xhci_virt_device *virt_dev; 1170 1171 if (!hcd || (check_ep && !ep) || !udev) { 1172 pr_debug("xHCI %s called with invalid args\n", func); 1173 return -EINVAL; 1174 } 1175 if (!udev->parent) { 1176 pr_debug("xHCI %s called for root hub\n", func); 1177 return 0; 1178 } 1179 1180 xhci = hcd_to_xhci(hcd); 1181 if (check_virt_dev) { 1182 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1183 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1184 func); 1185 return -EINVAL; 1186 } 1187 1188 virt_dev = xhci->devs[udev->slot_id]; 1189 if (virt_dev->udev != udev) { 1190 xhci_dbg(xhci, "xHCI %s called with udev and " 1191 "virt_dev does not match\n", func); 1192 return -EINVAL; 1193 } 1194 } 1195 1196 if (xhci->xhc_state & XHCI_STATE_HALTED) 1197 return -ENODEV; 1198 1199 return 1; 1200 } 1201 1202 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1203 struct usb_device *udev, struct xhci_command *command, 1204 bool ctx_change, bool must_succeed); 1205 1206 /* 1207 * Full speed devices may have a max packet size greater than 8 bytes, but the 1208 * USB core doesn't know that until it reads the first 8 bytes of the 1209 * descriptor. If the usb_device's max packet size changes after that point, 1210 * we need to issue an evaluate context command and wait on it. 1211 */ 1212 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1213 unsigned int ep_index, struct urb *urb) 1214 { 1215 struct xhci_container_ctx *out_ctx; 1216 struct xhci_input_control_ctx *ctrl_ctx; 1217 struct xhci_ep_ctx *ep_ctx; 1218 struct xhci_command *command; 1219 int max_packet_size; 1220 int hw_max_packet_size; 1221 int ret = 0; 1222 1223 out_ctx = xhci->devs[slot_id]->out_ctx; 1224 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1225 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1226 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1227 if (hw_max_packet_size != max_packet_size) { 1228 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1229 "Max Packet Size for ep 0 changed."); 1230 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1231 "Max packet size in usb_device = %d", 1232 max_packet_size); 1233 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1234 "Max packet size in xHCI HW = %d", 1235 hw_max_packet_size); 1236 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1237 "Issuing evaluate context command."); 1238 1239 /* Set up the input context flags for the command */ 1240 /* FIXME: This won't work if a non-default control endpoint 1241 * changes max packet sizes. 1242 */ 1243 1244 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1245 if (!command) 1246 return -ENOMEM; 1247 1248 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1249 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1250 if (!ctrl_ctx) { 1251 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1252 __func__); 1253 ret = -ENOMEM; 1254 goto command_cleanup; 1255 } 1256 /* Set up the modified control endpoint 0 */ 1257 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1258 xhci->devs[slot_id]->out_ctx, ep_index); 1259 1260 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1261 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1262 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1263 1264 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1265 ctrl_ctx->drop_flags = 0; 1266 1267 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1268 true, false); 1269 1270 /* Clean up the input context for later use by bandwidth 1271 * functions. 1272 */ 1273 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1274 command_cleanup: 1275 kfree(command->completion); 1276 kfree(command); 1277 } 1278 return ret; 1279 } 1280 1281 /* 1282 * non-error returns are a promise to giveback() the urb later 1283 * we drop ownership so next owner (or urb unlink) can get it 1284 */ 1285 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1286 { 1287 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1288 unsigned long flags; 1289 int ret = 0; 1290 unsigned int slot_id, ep_index, ep_state; 1291 struct urb_priv *urb_priv; 1292 int num_tds; 1293 1294 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1295 true, true, __func__) <= 0) 1296 return -EINVAL; 1297 1298 slot_id = urb->dev->slot_id; 1299 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1300 1301 if (!HCD_HW_ACCESSIBLE(hcd)) { 1302 if (!in_interrupt()) 1303 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1304 return -ESHUTDOWN; 1305 } 1306 1307 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1308 num_tds = urb->number_of_packets; 1309 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1310 urb->transfer_buffer_length > 0 && 1311 urb->transfer_flags & URB_ZERO_PACKET && 1312 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1313 num_tds = 2; 1314 else 1315 num_tds = 1; 1316 1317 urb_priv = kzalloc(sizeof(struct urb_priv) + 1318 num_tds * sizeof(struct xhci_td), mem_flags); 1319 if (!urb_priv) 1320 return -ENOMEM; 1321 1322 urb_priv->num_tds = num_tds; 1323 urb_priv->num_tds_done = 0; 1324 urb->hcpriv = urb_priv; 1325 1326 trace_xhci_urb_enqueue(urb); 1327 1328 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1329 /* Check to see if the max packet size for the default control 1330 * endpoint changed during FS device enumeration 1331 */ 1332 if (urb->dev->speed == USB_SPEED_FULL) { 1333 ret = xhci_check_maxpacket(xhci, slot_id, 1334 ep_index, urb); 1335 if (ret < 0) { 1336 xhci_urb_free_priv(urb_priv); 1337 urb->hcpriv = NULL; 1338 return ret; 1339 } 1340 } 1341 } 1342 1343 spin_lock_irqsave(&xhci->lock, flags); 1344 1345 if (xhci->xhc_state & XHCI_STATE_DYING) { 1346 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1347 urb->ep->desc.bEndpointAddress, urb); 1348 ret = -ESHUTDOWN; 1349 goto free_priv; 1350 } 1351 1352 switch (usb_endpoint_type(&urb->ep->desc)) { 1353 1354 case USB_ENDPOINT_XFER_CONTROL: 1355 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1356 slot_id, ep_index); 1357 break; 1358 case USB_ENDPOINT_XFER_BULK: 1359 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1360 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1361 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1362 ep_state); 1363 ret = -EINVAL; 1364 break; 1365 } 1366 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1367 slot_id, ep_index); 1368 break; 1369 1370 1371 case USB_ENDPOINT_XFER_INT: 1372 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1373 slot_id, ep_index); 1374 break; 1375 1376 case USB_ENDPOINT_XFER_ISOC: 1377 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1378 slot_id, ep_index); 1379 } 1380 1381 if (ret) { 1382 free_priv: 1383 xhci_urb_free_priv(urb_priv); 1384 urb->hcpriv = NULL; 1385 } 1386 spin_unlock_irqrestore(&xhci->lock, flags); 1387 return ret; 1388 } 1389 1390 /* 1391 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1392 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1393 * should pick up where it left off in the TD, unless a Set Transfer Ring 1394 * Dequeue Pointer is issued. 1395 * 1396 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1397 * the ring. Since the ring is a contiguous structure, they can't be physically 1398 * removed. Instead, there are two options: 1399 * 1400 * 1) If the HC is in the middle of processing the URB to be canceled, we 1401 * simply move the ring's dequeue pointer past those TRBs using the Set 1402 * Transfer Ring Dequeue Pointer command. This will be the common case, 1403 * when drivers timeout on the last submitted URB and attempt to cancel. 1404 * 1405 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1406 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1407 * HC will need to invalidate the any TRBs it has cached after the stop 1408 * endpoint command, as noted in the xHCI 0.95 errata. 1409 * 1410 * 3) The TD may have completed by the time the Stop Endpoint Command 1411 * completes, so software needs to handle that case too. 1412 * 1413 * This function should protect against the TD enqueueing code ringing the 1414 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1415 * It also needs to account for multiple cancellations on happening at the same 1416 * time for the same endpoint. 1417 * 1418 * Note that this function can be called in any context, or so says 1419 * usb_hcd_unlink_urb() 1420 */ 1421 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1422 { 1423 unsigned long flags; 1424 int ret, i; 1425 u32 temp; 1426 struct xhci_hcd *xhci; 1427 struct urb_priv *urb_priv; 1428 struct xhci_td *td; 1429 unsigned int ep_index; 1430 struct xhci_ring *ep_ring; 1431 struct xhci_virt_ep *ep; 1432 struct xhci_command *command; 1433 struct xhci_virt_device *vdev; 1434 1435 xhci = hcd_to_xhci(hcd); 1436 spin_lock_irqsave(&xhci->lock, flags); 1437 1438 trace_xhci_urb_dequeue(urb); 1439 1440 /* Make sure the URB hasn't completed or been unlinked already */ 1441 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1442 if (ret) 1443 goto done; 1444 1445 /* give back URB now if we can't queue it for cancel */ 1446 vdev = xhci->devs[urb->dev->slot_id]; 1447 urb_priv = urb->hcpriv; 1448 if (!vdev || !urb_priv) 1449 goto err_giveback; 1450 1451 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1452 ep = &vdev->eps[ep_index]; 1453 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1454 if (!ep || !ep_ring) 1455 goto err_giveback; 1456 1457 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1458 temp = readl(&xhci->op_regs->status); 1459 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1460 xhci_hc_died(xhci); 1461 goto done; 1462 } 1463 1464 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1465 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1466 "HC halted, freeing TD manually."); 1467 for (i = urb_priv->num_tds_done; 1468 i < urb_priv->num_tds; 1469 i++) { 1470 td = &urb_priv->td[i]; 1471 if (!list_empty(&td->td_list)) 1472 list_del_init(&td->td_list); 1473 if (!list_empty(&td->cancelled_td_list)) 1474 list_del_init(&td->cancelled_td_list); 1475 } 1476 goto err_giveback; 1477 } 1478 1479 i = urb_priv->num_tds_done; 1480 if (i < urb_priv->num_tds) 1481 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1482 "Cancel URB %p, dev %s, ep 0x%x, " 1483 "starting at offset 0x%llx", 1484 urb, urb->dev->devpath, 1485 urb->ep->desc.bEndpointAddress, 1486 (unsigned long long) xhci_trb_virt_to_dma( 1487 urb_priv->td[i].start_seg, 1488 urb_priv->td[i].first_trb)); 1489 1490 for (; i < urb_priv->num_tds; i++) { 1491 td = &urb_priv->td[i]; 1492 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1493 } 1494 1495 /* Queue a stop endpoint command, but only if this is 1496 * the first cancellation to be handled. 1497 */ 1498 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1499 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1500 if (!command) { 1501 ret = -ENOMEM; 1502 goto done; 1503 } 1504 ep->ep_state |= EP_STOP_CMD_PENDING; 1505 ep->stop_cmd_timer.expires = jiffies + 1506 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1507 add_timer(&ep->stop_cmd_timer); 1508 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1509 ep_index, 0); 1510 xhci_ring_cmd_db(xhci); 1511 } 1512 done: 1513 spin_unlock_irqrestore(&xhci->lock, flags); 1514 return ret; 1515 1516 err_giveback: 1517 if (urb_priv) 1518 xhci_urb_free_priv(urb_priv); 1519 usb_hcd_unlink_urb_from_ep(hcd, urb); 1520 spin_unlock_irqrestore(&xhci->lock, flags); 1521 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1522 return ret; 1523 } 1524 1525 /* Drop an endpoint from a new bandwidth configuration for this device. 1526 * Only one call to this function is allowed per endpoint before 1527 * check_bandwidth() or reset_bandwidth() must be called. 1528 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1529 * add the endpoint to the schedule with possibly new parameters denoted by a 1530 * different endpoint descriptor in usb_host_endpoint. 1531 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1532 * not allowed. 1533 * 1534 * The USB core will not allow URBs to be queued to an endpoint that is being 1535 * disabled, so there's no need for mutual exclusion to protect 1536 * the xhci->devs[slot_id] structure. 1537 */ 1538 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1539 struct usb_host_endpoint *ep) 1540 { 1541 struct xhci_hcd *xhci; 1542 struct xhci_container_ctx *in_ctx, *out_ctx; 1543 struct xhci_input_control_ctx *ctrl_ctx; 1544 unsigned int ep_index; 1545 struct xhci_ep_ctx *ep_ctx; 1546 u32 drop_flag; 1547 u32 new_add_flags, new_drop_flags; 1548 int ret; 1549 1550 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1551 if (ret <= 0) 1552 return ret; 1553 xhci = hcd_to_xhci(hcd); 1554 if (xhci->xhc_state & XHCI_STATE_DYING) 1555 return -ENODEV; 1556 1557 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1558 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1559 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1560 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1561 __func__, drop_flag); 1562 return 0; 1563 } 1564 1565 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1566 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1567 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1568 if (!ctrl_ctx) { 1569 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1570 __func__); 1571 return 0; 1572 } 1573 1574 ep_index = xhci_get_endpoint_index(&ep->desc); 1575 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1576 /* If the HC already knows the endpoint is disabled, 1577 * or the HCD has noted it is disabled, ignore this request 1578 */ 1579 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1580 le32_to_cpu(ctrl_ctx->drop_flags) & 1581 xhci_get_endpoint_flag(&ep->desc)) { 1582 /* Do not warn when called after a usb_device_reset */ 1583 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1584 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1585 __func__, ep); 1586 return 0; 1587 } 1588 1589 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1590 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1591 1592 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1593 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1594 1595 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1596 1597 if (xhci->quirks & XHCI_MTK_HOST) 1598 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1599 1600 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1601 (unsigned int) ep->desc.bEndpointAddress, 1602 udev->slot_id, 1603 (unsigned int) new_drop_flags, 1604 (unsigned int) new_add_flags); 1605 return 0; 1606 } 1607 1608 /* Add an endpoint to a new possible bandwidth configuration for this device. 1609 * Only one call to this function is allowed per endpoint before 1610 * check_bandwidth() or reset_bandwidth() must be called. 1611 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1612 * add the endpoint to the schedule with possibly new parameters denoted by a 1613 * different endpoint descriptor in usb_host_endpoint. 1614 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1615 * not allowed. 1616 * 1617 * The USB core will not allow URBs to be queued to an endpoint until the 1618 * configuration or alt setting is installed in the device, so there's no need 1619 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1620 */ 1621 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1622 struct usb_host_endpoint *ep) 1623 { 1624 struct xhci_hcd *xhci; 1625 struct xhci_container_ctx *in_ctx; 1626 unsigned int ep_index; 1627 struct xhci_input_control_ctx *ctrl_ctx; 1628 u32 added_ctxs; 1629 u32 new_add_flags, new_drop_flags; 1630 struct xhci_virt_device *virt_dev; 1631 int ret = 0; 1632 1633 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1634 if (ret <= 0) { 1635 /* So we won't queue a reset ep command for a root hub */ 1636 ep->hcpriv = NULL; 1637 return ret; 1638 } 1639 xhci = hcd_to_xhci(hcd); 1640 if (xhci->xhc_state & XHCI_STATE_DYING) 1641 return -ENODEV; 1642 1643 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1644 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1645 /* FIXME when we have to issue an evaluate endpoint command to 1646 * deal with ep0 max packet size changing once we get the 1647 * descriptors 1648 */ 1649 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1650 __func__, added_ctxs); 1651 return 0; 1652 } 1653 1654 virt_dev = xhci->devs[udev->slot_id]; 1655 in_ctx = virt_dev->in_ctx; 1656 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1657 if (!ctrl_ctx) { 1658 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1659 __func__); 1660 return 0; 1661 } 1662 1663 ep_index = xhci_get_endpoint_index(&ep->desc); 1664 /* If this endpoint is already in use, and the upper layers are trying 1665 * to add it again without dropping it, reject the addition. 1666 */ 1667 if (virt_dev->eps[ep_index].ring && 1668 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1669 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1670 "without dropping it.\n", 1671 (unsigned int) ep->desc.bEndpointAddress); 1672 return -EINVAL; 1673 } 1674 1675 /* If the HCD has already noted the endpoint is enabled, 1676 * ignore this request. 1677 */ 1678 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1679 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1680 __func__, ep); 1681 return 0; 1682 } 1683 1684 /* 1685 * Configuration and alternate setting changes must be done in 1686 * process context, not interrupt context (or so documenation 1687 * for usb_set_interface() and usb_set_configuration() claim). 1688 */ 1689 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1690 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1691 __func__, ep->desc.bEndpointAddress); 1692 return -ENOMEM; 1693 } 1694 1695 if (xhci->quirks & XHCI_MTK_HOST) { 1696 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1697 if (ret < 0) { 1698 xhci_free_or_cache_endpoint_ring(xhci, 1699 virt_dev, ep_index); 1700 return ret; 1701 } 1702 } 1703 1704 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1705 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1706 1707 /* If xhci_endpoint_disable() was called for this endpoint, but the 1708 * xHC hasn't been notified yet through the check_bandwidth() call, 1709 * this re-adds a new state for the endpoint from the new endpoint 1710 * descriptors. We must drop and re-add this endpoint, so we leave the 1711 * drop flags alone. 1712 */ 1713 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1714 1715 /* Store the usb_device pointer for later use */ 1716 ep->hcpriv = udev; 1717 1718 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1719 (unsigned int) ep->desc.bEndpointAddress, 1720 udev->slot_id, 1721 (unsigned int) new_drop_flags, 1722 (unsigned int) new_add_flags); 1723 return 0; 1724 } 1725 1726 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1727 { 1728 struct xhci_input_control_ctx *ctrl_ctx; 1729 struct xhci_ep_ctx *ep_ctx; 1730 struct xhci_slot_ctx *slot_ctx; 1731 int i; 1732 1733 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1734 if (!ctrl_ctx) { 1735 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1736 __func__); 1737 return; 1738 } 1739 1740 /* When a device's add flag and drop flag are zero, any subsequent 1741 * configure endpoint command will leave that endpoint's state 1742 * untouched. Make sure we don't leave any old state in the input 1743 * endpoint contexts. 1744 */ 1745 ctrl_ctx->drop_flags = 0; 1746 ctrl_ctx->add_flags = 0; 1747 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1748 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1749 /* Endpoint 0 is always valid */ 1750 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1751 for (i = 1; i < 31; i++) { 1752 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1753 ep_ctx->ep_info = 0; 1754 ep_ctx->ep_info2 = 0; 1755 ep_ctx->deq = 0; 1756 ep_ctx->tx_info = 0; 1757 } 1758 } 1759 1760 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1761 struct usb_device *udev, u32 *cmd_status) 1762 { 1763 int ret; 1764 1765 switch (*cmd_status) { 1766 case COMP_COMMAND_ABORTED: 1767 case COMP_COMMAND_RING_STOPPED: 1768 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1769 ret = -ETIME; 1770 break; 1771 case COMP_RESOURCE_ERROR: 1772 dev_warn(&udev->dev, 1773 "Not enough host controller resources for new device state.\n"); 1774 ret = -ENOMEM; 1775 /* FIXME: can we allocate more resources for the HC? */ 1776 break; 1777 case COMP_BANDWIDTH_ERROR: 1778 case COMP_SECONDARY_BANDWIDTH_ERROR: 1779 dev_warn(&udev->dev, 1780 "Not enough bandwidth for new device state.\n"); 1781 ret = -ENOSPC; 1782 /* FIXME: can we go back to the old state? */ 1783 break; 1784 case COMP_TRB_ERROR: 1785 /* the HCD set up something wrong */ 1786 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1787 "add flag = 1, " 1788 "and endpoint is not disabled.\n"); 1789 ret = -EINVAL; 1790 break; 1791 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1792 dev_warn(&udev->dev, 1793 "ERROR: Incompatible device for endpoint configure command.\n"); 1794 ret = -ENODEV; 1795 break; 1796 case COMP_SUCCESS: 1797 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1798 "Successful Endpoint Configure command"); 1799 ret = 0; 1800 break; 1801 default: 1802 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1803 *cmd_status); 1804 ret = -EINVAL; 1805 break; 1806 } 1807 return ret; 1808 } 1809 1810 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1811 struct usb_device *udev, u32 *cmd_status) 1812 { 1813 int ret; 1814 1815 switch (*cmd_status) { 1816 case COMP_COMMAND_ABORTED: 1817 case COMP_COMMAND_RING_STOPPED: 1818 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1819 ret = -ETIME; 1820 break; 1821 case COMP_PARAMETER_ERROR: 1822 dev_warn(&udev->dev, 1823 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1824 ret = -EINVAL; 1825 break; 1826 case COMP_SLOT_NOT_ENABLED_ERROR: 1827 dev_warn(&udev->dev, 1828 "WARN: slot not enabled for evaluate context command.\n"); 1829 ret = -EINVAL; 1830 break; 1831 case COMP_CONTEXT_STATE_ERROR: 1832 dev_warn(&udev->dev, 1833 "WARN: invalid context state for evaluate context command.\n"); 1834 ret = -EINVAL; 1835 break; 1836 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1837 dev_warn(&udev->dev, 1838 "ERROR: Incompatible device for evaluate context command.\n"); 1839 ret = -ENODEV; 1840 break; 1841 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1842 /* Max Exit Latency too large error */ 1843 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1844 ret = -EINVAL; 1845 break; 1846 case COMP_SUCCESS: 1847 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1848 "Successful evaluate context command"); 1849 ret = 0; 1850 break; 1851 default: 1852 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1853 *cmd_status); 1854 ret = -EINVAL; 1855 break; 1856 } 1857 return ret; 1858 } 1859 1860 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1861 struct xhci_input_control_ctx *ctrl_ctx) 1862 { 1863 u32 valid_add_flags; 1864 u32 valid_drop_flags; 1865 1866 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1867 * (bit 1). The default control endpoint is added during the Address 1868 * Device command and is never removed until the slot is disabled. 1869 */ 1870 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1871 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1872 1873 /* Use hweight32 to count the number of ones in the add flags, or 1874 * number of endpoints added. Don't count endpoints that are changed 1875 * (both added and dropped). 1876 */ 1877 return hweight32(valid_add_flags) - 1878 hweight32(valid_add_flags & valid_drop_flags); 1879 } 1880 1881 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1882 struct xhci_input_control_ctx *ctrl_ctx) 1883 { 1884 u32 valid_add_flags; 1885 u32 valid_drop_flags; 1886 1887 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1888 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1889 1890 return hweight32(valid_drop_flags) - 1891 hweight32(valid_add_flags & valid_drop_flags); 1892 } 1893 1894 /* 1895 * We need to reserve the new number of endpoints before the configure endpoint 1896 * command completes. We can't subtract the dropped endpoints from the number 1897 * of active endpoints until the command completes because we can oversubscribe 1898 * the host in this case: 1899 * 1900 * - the first configure endpoint command drops more endpoints than it adds 1901 * - a second configure endpoint command that adds more endpoints is queued 1902 * - the first configure endpoint command fails, so the config is unchanged 1903 * - the second command may succeed, even though there isn't enough resources 1904 * 1905 * Must be called with xhci->lock held. 1906 */ 1907 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1908 struct xhci_input_control_ctx *ctrl_ctx) 1909 { 1910 u32 added_eps; 1911 1912 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1913 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1914 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1915 "Not enough ep ctxs: " 1916 "%u active, need to add %u, limit is %u.", 1917 xhci->num_active_eps, added_eps, 1918 xhci->limit_active_eps); 1919 return -ENOMEM; 1920 } 1921 xhci->num_active_eps += added_eps; 1922 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1923 "Adding %u ep ctxs, %u now active.", added_eps, 1924 xhci->num_active_eps); 1925 return 0; 1926 } 1927 1928 /* 1929 * The configure endpoint was failed by the xHC for some other reason, so we 1930 * need to revert the resources that failed configuration would have used. 1931 * 1932 * Must be called with xhci->lock held. 1933 */ 1934 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1935 struct xhci_input_control_ctx *ctrl_ctx) 1936 { 1937 u32 num_failed_eps; 1938 1939 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1940 xhci->num_active_eps -= num_failed_eps; 1941 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1942 "Removing %u failed ep ctxs, %u now active.", 1943 num_failed_eps, 1944 xhci->num_active_eps); 1945 } 1946 1947 /* 1948 * Now that the command has completed, clean up the active endpoint count by 1949 * subtracting out the endpoints that were dropped (but not changed). 1950 * 1951 * Must be called with xhci->lock held. 1952 */ 1953 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1954 struct xhci_input_control_ctx *ctrl_ctx) 1955 { 1956 u32 num_dropped_eps; 1957 1958 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1959 xhci->num_active_eps -= num_dropped_eps; 1960 if (num_dropped_eps) 1961 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1962 "Removing %u dropped ep ctxs, %u now active.", 1963 num_dropped_eps, 1964 xhci->num_active_eps); 1965 } 1966 1967 static unsigned int xhci_get_block_size(struct usb_device *udev) 1968 { 1969 switch (udev->speed) { 1970 case USB_SPEED_LOW: 1971 case USB_SPEED_FULL: 1972 return FS_BLOCK; 1973 case USB_SPEED_HIGH: 1974 return HS_BLOCK; 1975 case USB_SPEED_SUPER: 1976 case USB_SPEED_SUPER_PLUS: 1977 return SS_BLOCK; 1978 case USB_SPEED_UNKNOWN: 1979 case USB_SPEED_WIRELESS: 1980 default: 1981 /* Should never happen */ 1982 return 1; 1983 } 1984 } 1985 1986 static unsigned int 1987 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1988 { 1989 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1990 return LS_OVERHEAD; 1991 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1992 return FS_OVERHEAD; 1993 return HS_OVERHEAD; 1994 } 1995 1996 /* If we are changing a LS/FS device under a HS hub, 1997 * make sure (if we are activating a new TT) that the HS bus has enough 1998 * bandwidth for this new TT. 1999 */ 2000 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2001 struct xhci_virt_device *virt_dev, 2002 int old_active_eps) 2003 { 2004 struct xhci_interval_bw_table *bw_table; 2005 struct xhci_tt_bw_info *tt_info; 2006 2007 /* Find the bandwidth table for the root port this TT is attached to. */ 2008 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2009 tt_info = virt_dev->tt_info; 2010 /* If this TT already had active endpoints, the bandwidth for this TT 2011 * has already been added. Removing all periodic endpoints (and thus 2012 * making the TT enactive) will only decrease the bandwidth used. 2013 */ 2014 if (old_active_eps) 2015 return 0; 2016 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2017 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2018 return -ENOMEM; 2019 return 0; 2020 } 2021 /* Not sure why we would have no new active endpoints... 2022 * 2023 * Maybe because of an Evaluate Context change for a hub update or a 2024 * control endpoint 0 max packet size change? 2025 * FIXME: skip the bandwidth calculation in that case. 2026 */ 2027 return 0; 2028 } 2029 2030 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2031 struct xhci_virt_device *virt_dev) 2032 { 2033 unsigned int bw_reserved; 2034 2035 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2036 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2037 return -ENOMEM; 2038 2039 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2040 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2041 return -ENOMEM; 2042 2043 return 0; 2044 } 2045 2046 /* 2047 * This algorithm is a very conservative estimate of the worst-case scheduling 2048 * scenario for any one interval. The hardware dynamically schedules the 2049 * packets, so we can't tell which microframe could be the limiting factor in 2050 * the bandwidth scheduling. This only takes into account periodic endpoints. 2051 * 2052 * Obviously, we can't solve an NP complete problem to find the minimum worst 2053 * case scenario. Instead, we come up with an estimate that is no less than 2054 * the worst case bandwidth used for any one microframe, but may be an 2055 * over-estimate. 2056 * 2057 * We walk the requirements for each endpoint by interval, starting with the 2058 * smallest interval, and place packets in the schedule where there is only one 2059 * possible way to schedule packets for that interval. In order to simplify 2060 * this algorithm, we record the largest max packet size for each interval, and 2061 * assume all packets will be that size. 2062 * 2063 * For interval 0, we obviously must schedule all packets for each interval. 2064 * The bandwidth for interval 0 is just the amount of data to be transmitted 2065 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2066 * the number of packets). 2067 * 2068 * For interval 1, we have two possible microframes to schedule those packets 2069 * in. For this algorithm, if we can schedule the same number of packets for 2070 * each possible scheduling opportunity (each microframe), we will do so. The 2071 * remaining number of packets will be saved to be transmitted in the gaps in 2072 * the next interval's scheduling sequence. 2073 * 2074 * As we move those remaining packets to be scheduled with interval 2 packets, 2075 * we have to double the number of remaining packets to transmit. This is 2076 * because the intervals are actually powers of 2, and we would be transmitting 2077 * the previous interval's packets twice in this interval. We also have to be 2078 * sure that when we look at the largest max packet size for this interval, we 2079 * also look at the largest max packet size for the remaining packets and take 2080 * the greater of the two. 2081 * 2082 * The algorithm continues to evenly distribute packets in each scheduling 2083 * opportunity, and push the remaining packets out, until we get to the last 2084 * interval. Then those packets and their associated overhead are just added 2085 * to the bandwidth used. 2086 */ 2087 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2088 struct xhci_virt_device *virt_dev, 2089 int old_active_eps) 2090 { 2091 unsigned int bw_reserved; 2092 unsigned int max_bandwidth; 2093 unsigned int bw_used; 2094 unsigned int block_size; 2095 struct xhci_interval_bw_table *bw_table; 2096 unsigned int packet_size = 0; 2097 unsigned int overhead = 0; 2098 unsigned int packets_transmitted = 0; 2099 unsigned int packets_remaining = 0; 2100 unsigned int i; 2101 2102 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2103 return xhci_check_ss_bw(xhci, virt_dev); 2104 2105 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2106 max_bandwidth = HS_BW_LIMIT; 2107 /* Convert percent of bus BW reserved to blocks reserved */ 2108 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2109 } else { 2110 max_bandwidth = FS_BW_LIMIT; 2111 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2112 } 2113 2114 bw_table = virt_dev->bw_table; 2115 /* We need to translate the max packet size and max ESIT payloads into 2116 * the units the hardware uses. 2117 */ 2118 block_size = xhci_get_block_size(virt_dev->udev); 2119 2120 /* If we are manipulating a LS/FS device under a HS hub, double check 2121 * that the HS bus has enough bandwidth if we are activing a new TT. 2122 */ 2123 if (virt_dev->tt_info) { 2124 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2125 "Recalculating BW for rootport %u", 2126 virt_dev->real_port); 2127 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2128 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2129 "newly activated TT.\n"); 2130 return -ENOMEM; 2131 } 2132 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2133 "Recalculating BW for TT slot %u port %u", 2134 virt_dev->tt_info->slot_id, 2135 virt_dev->tt_info->ttport); 2136 } else { 2137 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2138 "Recalculating BW for rootport %u", 2139 virt_dev->real_port); 2140 } 2141 2142 /* Add in how much bandwidth will be used for interval zero, or the 2143 * rounded max ESIT payload + number of packets * largest overhead. 2144 */ 2145 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2146 bw_table->interval_bw[0].num_packets * 2147 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2148 2149 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2150 unsigned int bw_added; 2151 unsigned int largest_mps; 2152 unsigned int interval_overhead; 2153 2154 /* 2155 * How many packets could we transmit in this interval? 2156 * If packets didn't fit in the previous interval, we will need 2157 * to transmit that many packets twice within this interval. 2158 */ 2159 packets_remaining = 2 * packets_remaining + 2160 bw_table->interval_bw[i].num_packets; 2161 2162 /* Find the largest max packet size of this or the previous 2163 * interval. 2164 */ 2165 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2166 largest_mps = 0; 2167 else { 2168 struct xhci_virt_ep *virt_ep; 2169 struct list_head *ep_entry; 2170 2171 ep_entry = bw_table->interval_bw[i].endpoints.next; 2172 virt_ep = list_entry(ep_entry, 2173 struct xhci_virt_ep, bw_endpoint_list); 2174 /* Convert to blocks, rounding up */ 2175 largest_mps = DIV_ROUND_UP( 2176 virt_ep->bw_info.max_packet_size, 2177 block_size); 2178 } 2179 if (largest_mps > packet_size) 2180 packet_size = largest_mps; 2181 2182 /* Use the larger overhead of this or the previous interval. */ 2183 interval_overhead = xhci_get_largest_overhead( 2184 &bw_table->interval_bw[i]); 2185 if (interval_overhead > overhead) 2186 overhead = interval_overhead; 2187 2188 /* How many packets can we evenly distribute across 2189 * (1 << (i + 1)) possible scheduling opportunities? 2190 */ 2191 packets_transmitted = packets_remaining >> (i + 1); 2192 2193 /* Add in the bandwidth used for those scheduled packets */ 2194 bw_added = packets_transmitted * (overhead + packet_size); 2195 2196 /* How many packets do we have remaining to transmit? */ 2197 packets_remaining = packets_remaining % (1 << (i + 1)); 2198 2199 /* What largest max packet size should those packets have? */ 2200 /* If we've transmitted all packets, don't carry over the 2201 * largest packet size. 2202 */ 2203 if (packets_remaining == 0) { 2204 packet_size = 0; 2205 overhead = 0; 2206 } else if (packets_transmitted > 0) { 2207 /* Otherwise if we do have remaining packets, and we've 2208 * scheduled some packets in this interval, take the 2209 * largest max packet size from endpoints with this 2210 * interval. 2211 */ 2212 packet_size = largest_mps; 2213 overhead = interval_overhead; 2214 } 2215 /* Otherwise carry over packet_size and overhead from the last 2216 * time we had a remainder. 2217 */ 2218 bw_used += bw_added; 2219 if (bw_used > max_bandwidth) { 2220 xhci_warn(xhci, "Not enough bandwidth. " 2221 "Proposed: %u, Max: %u\n", 2222 bw_used, max_bandwidth); 2223 return -ENOMEM; 2224 } 2225 } 2226 /* 2227 * Ok, we know we have some packets left over after even-handedly 2228 * scheduling interval 15. We don't know which microframes they will 2229 * fit into, so we over-schedule and say they will be scheduled every 2230 * microframe. 2231 */ 2232 if (packets_remaining > 0) 2233 bw_used += overhead + packet_size; 2234 2235 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2236 unsigned int port_index = virt_dev->real_port - 1; 2237 2238 /* OK, we're manipulating a HS device attached to a 2239 * root port bandwidth domain. Include the number of active TTs 2240 * in the bandwidth used. 2241 */ 2242 bw_used += TT_HS_OVERHEAD * 2243 xhci->rh_bw[port_index].num_active_tts; 2244 } 2245 2246 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2247 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2248 "Available: %u " "percent", 2249 bw_used, max_bandwidth, bw_reserved, 2250 (max_bandwidth - bw_used - bw_reserved) * 100 / 2251 max_bandwidth); 2252 2253 bw_used += bw_reserved; 2254 if (bw_used > max_bandwidth) { 2255 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2256 bw_used, max_bandwidth); 2257 return -ENOMEM; 2258 } 2259 2260 bw_table->bw_used = bw_used; 2261 return 0; 2262 } 2263 2264 static bool xhci_is_async_ep(unsigned int ep_type) 2265 { 2266 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2267 ep_type != ISOC_IN_EP && 2268 ep_type != INT_IN_EP); 2269 } 2270 2271 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2272 { 2273 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2274 } 2275 2276 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2277 { 2278 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2279 2280 if (ep_bw->ep_interval == 0) 2281 return SS_OVERHEAD_BURST + 2282 (ep_bw->mult * ep_bw->num_packets * 2283 (SS_OVERHEAD + mps)); 2284 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2285 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2286 1 << ep_bw->ep_interval); 2287 2288 } 2289 2290 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2291 struct xhci_bw_info *ep_bw, 2292 struct xhci_interval_bw_table *bw_table, 2293 struct usb_device *udev, 2294 struct xhci_virt_ep *virt_ep, 2295 struct xhci_tt_bw_info *tt_info) 2296 { 2297 struct xhci_interval_bw *interval_bw; 2298 int normalized_interval; 2299 2300 if (xhci_is_async_ep(ep_bw->type)) 2301 return; 2302 2303 if (udev->speed >= USB_SPEED_SUPER) { 2304 if (xhci_is_sync_in_ep(ep_bw->type)) 2305 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2306 xhci_get_ss_bw_consumed(ep_bw); 2307 else 2308 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2309 xhci_get_ss_bw_consumed(ep_bw); 2310 return; 2311 } 2312 2313 /* SuperSpeed endpoints never get added to intervals in the table, so 2314 * this check is only valid for HS/FS/LS devices. 2315 */ 2316 if (list_empty(&virt_ep->bw_endpoint_list)) 2317 return; 2318 /* For LS/FS devices, we need to translate the interval expressed in 2319 * microframes to frames. 2320 */ 2321 if (udev->speed == USB_SPEED_HIGH) 2322 normalized_interval = ep_bw->ep_interval; 2323 else 2324 normalized_interval = ep_bw->ep_interval - 3; 2325 2326 if (normalized_interval == 0) 2327 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2328 interval_bw = &bw_table->interval_bw[normalized_interval]; 2329 interval_bw->num_packets -= ep_bw->num_packets; 2330 switch (udev->speed) { 2331 case USB_SPEED_LOW: 2332 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2333 break; 2334 case USB_SPEED_FULL: 2335 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2336 break; 2337 case USB_SPEED_HIGH: 2338 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2339 break; 2340 case USB_SPEED_SUPER: 2341 case USB_SPEED_SUPER_PLUS: 2342 case USB_SPEED_UNKNOWN: 2343 case USB_SPEED_WIRELESS: 2344 /* Should never happen because only LS/FS/HS endpoints will get 2345 * added to the endpoint list. 2346 */ 2347 return; 2348 } 2349 if (tt_info) 2350 tt_info->active_eps -= 1; 2351 list_del_init(&virt_ep->bw_endpoint_list); 2352 } 2353 2354 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2355 struct xhci_bw_info *ep_bw, 2356 struct xhci_interval_bw_table *bw_table, 2357 struct usb_device *udev, 2358 struct xhci_virt_ep *virt_ep, 2359 struct xhci_tt_bw_info *tt_info) 2360 { 2361 struct xhci_interval_bw *interval_bw; 2362 struct xhci_virt_ep *smaller_ep; 2363 int normalized_interval; 2364 2365 if (xhci_is_async_ep(ep_bw->type)) 2366 return; 2367 2368 if (udev->speed == USB_SPEED_SUPER) { 2369 if (xhci_is_sync_in_ep(ep_bw->type)) 2370 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2371 xhci_get_ss_bw_consumed(ep_bw); 2372 else 2373 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2374 xhci_get_ss_bw_consumed(ep_bw); 2375 return; 2376 } 2377 2378 /* For LS/FS devices, we need to translate the interval expressed in 2379 * microframes to frames. 2380 */ 2381 if (udev->speed == USB_SPEED_HIGH) 2382 normalized_interval = ep_bw->ep_interval; 2383 else 2384 normalized_interval = ep_bw->ep_interval - 3; 2385 2386 if (normalized_interval == 0) 2387 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2388 interval_bw = &bw_table->interval_bw[normalized_interval]; 2389 interval_bw->num_packets += ep_bw->num_packets; 2390 switch (udev->speed) { 2391 case USB_SPEED_LOW: 2392 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2393 break; 2394 case USB_SPEED_FULL: 2395 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2396 break; 2397 case USB_SPEED_HIGH: 2398 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2399 break; 2400 case USB_SPEED_SUPER: 2401 case USB_SPEED_SUPER_PLUS: 2402 case USB_SPEED_UNKNOWN: 2403 case USB_SPEED_WIRELESS: 2404 /* Should never happen because only LS/FS/HS endpoints will get 2405 * added to the endpoint list. 2406 */ 2407 return; 2408 } 2409 2410 if (tt_info) 2411 tt_info->active_eps += 1; 2412 /* Insert the endpoint into the list, largest max packet size first. */ 2413 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2414 bw_endpoint_list) { 2415 if (ep_bw->max_packet_size >= 2416 smaller_ep->bw_info.max_packet_size) { 2417 /* Add the new ep before the smaller endpoint */ 2418 list_add_tail(&virt_ep->bw_endpoint_list, 2419 &smaller_ep->bw_endpoint_list); 2420 return; 2421 } 2422 } 2423 /* Add the new endpoint at the end of the list. */ 2424 list_add_tail(&virt_ep->bw_endpoint_list, 2425 &interval_bw->endpoints); 2426 } 2427 2428 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2429 struct xhci_virt_device *virt_dev, 2430 int old_active_eps) 2431 { 2432 struct xhci_root_port_bw_info *rh_bw_info; 2433 if (!virt_dev->tt_info) 2434 return; 2435 2436 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2437 if (old_active_eps == 0 && 2438 virt_dev->tt_info->active_eps != 0) { 2439 rh_bw_info->num_active_tts += 1; 2440 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2441 } else if (old_active_eps != 0 && 2442 virt_dev->tt_info->active_eps == 0) { 2443 rh_bw_info->num_active_tts -= 1; 2444 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2445 } 2446 } 2447 2448 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2449 struct xhci_virt_device *virt_dev, 2450 struct xhci_container_ctx *in_ctx) 2451 { 2452 struct xhci_bw_info ep_bw_info[31]; 2453 int i; 2454 struct xhci_input_control_ctx *ctrl_ctx; 2455 int old_active_eps = 0; 2456 2457 if (virt_dev->tt_info) 2458 old_active_eps = virt_dev->tt_info->active_eps; 2459 2460 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2461 if (!ctrl_ctx) { 2462 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2463 __func__); 2464 return -ENOMEM; 2465 } 2466 2467 for (i = 0; i < 31; i++) { 2468 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2469 continue; 2470 2471 /* Make a copy of the BW info in case we need to revert this */ 2472 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2473 sizeof(ep_bw_info[i])); 2474 /* Drop the endpoint from the interval table if the endpoint is 2475 * being dropped or changed. 2476 */ 2477 if (EP_IS_DROPPED(ctrl_ctx, i)) 2478 xhci_drop_ep_from_interval_table(xhci, 2479 &virt_dev->eps[i].bw_info, 2480 virt_dev->bw_table, 2481 virt_dev->udev, 2482 &virt_dev->eps[i], 2483 virt_dev->tt_info); 2484 } 2485 /* Overwrite the information stored in the endpoints' bw_info */ 2486 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2487 for (i = 0; i < 31; i++) { 2488 /* Add any changed or added endpoints to the interval table */ 2489 if (EP_IS_ADDED(ctrl_ctx, i)) 2490 xhci_add_ep_to_interval_table(xhci, 2491 &virt_dev->eps[i].bw_info, 2492 virt_dev->bw_table, 2493 virt_dev->udev, 2494 &virt_dev->eps[i], 2495 virt_dev->tt_info); 2496 } 2497 2498 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2499 /* Ok, this fits in the bandwidth we have. 2500 * Update the number of active TTs. 2501 */ 2502 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2503 return 0; 2504 } 2505 2506 /* We don't have enough bandwidth for this, revert the stored info. */ 2507 for (i = 0; i < 31; i++) { 2508 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2509 continue; 2510 2511 /* Drop the new copies of any added or changed endpoints from 2512 * the interval table. 2513 */ 2514 if (EP_IS_ADDED(ctrl_ctx, i)) { 2515 xhci_drop_ep_from_interval_table(xhci, 2516 &virt_dev->eps[i].bw_info, 2517 virt_dev->bw_table, 2518 virt_dev->udev, 2519 &virt_dev->eps[i], 2520 virt_dev->tt_info); 2521 } 2522 /* Revert the endpoint back to its old information */ 2523 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2524 sizeof(ep_bw_info[i])); 2525 /* Add any changed or dropped endpoints back into the table */ 2526 if (EP_IS_DROPPED(ctrl_ctx, i)) 2527 xhci_add_ep_to_interval_table(xhci, 2528 &virt_dev->eps[i].bw_info, 2529 virt_dev->bw_table, 2530 virt_dev->udev, 2531 &virt_dev->eps[i], 2532 virt_dev->tt_info); 2533 } 2534 return -ENOMEM; 2535 } 2536 2537 2538 /* Issue a configure endpoint command or evaluate context command 2539 * and wait for it to finish. 2540 */ 2541 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2542 struct usb_device *udev, 2543 struct xhci_command *command, 2544 bool ctx_change, bool must_succeed) 2545 { 2546 int ret; 2547 unsigned long flags; 2548 struct xhci_input_control_ctx *ctrl_ctx; 2549 struct xhci_virt_device *virt_dev; 2550 2551 if (!command) 2552 return -EINVAL; 2553 2554 spin_lock_irqsave(&xhci->lock, flags); 2555 2556 if (xhci->xhc_state & XHCI_STATE_DYING) { 2557 spin_unlock_irqrestore(&xhci->lock, flags); 2558 return -ESHUTDOWN; 2559 } 2560 2561 virt_dev = xhci->devs[udev->slot_id]; 2562 2563 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2564 if (!ctrl_ctx) { 2565 spin_unlock_irqrestore(&xhci->lock, flags); 2566 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2567 __func__); 2568 return -ENOMEM; 2569 } 2570 2571 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2572 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2573 spin_unlock_irqrestore(&xhci->lock, flags); 2574 xhci_warn(xhci, "Not enough host resources, " 2575 "active endpoint contexts = %u\n", 2576 xhci->num_active_eps); 2577 return -ENOMEM; 2578 } 2579 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2580 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2581 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2582 xhci_free_host_resources(xhci, ctrl_ctx); 2583 spin_unlock_irqrestore(&xhci->lock, flags); 2584 xhci_warn(xhci, "Not enough bandwidth\n"); 2585 return -ENOMEM; 2586 } 2587 2588 if (!ctx_change) 2589 ret = xhci_queue_configure_endpoint(xhci, command, 2590 command->in_ctx->dma, 2591 udev->slot_id, must_succeed); 2592 else 2593 ret = xhci_queue_evaluate_context(xhci, command, 2594 command->in_ctx->dma, 2595 udev->slot_id, must_succeed); 2596 if (ret < 0) { 2597 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2598 xhci_free_host_resources(xhci, ctrl_ctx); 2599 spin_unlock_irqrestore(&xhci->lock, flags); 2600 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2601 "FIXME allocate a new ring segment"); 2602 return -ENOMEM; 2603 } 2604 xhci_ring_cmd_db(xhci); 2605 spin_unlock_irqrestore(&xhci->lock, flags); 2606 2607 /* Wait for the configure endpoint command to complete */ 2608 wait_for_completion(command->completion); 2609 2610 if (!ctx_change) 2611 ret = xhci_configure_endpoint_result(xhci, udev, 2612 &command->status); 2613 else 2614 ret = xhci_evaluate_context_result(xhci, udev, 2615 &command->status); 2616 2617 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2618 spin_lock_irqsave(&xhci->lock, flags); 2619 /* If the command failed, remove the reserved resources. 2620 * Otherwise, clean up the estimate to include dropped eps. 2621 */ 2622 if (ret) 2623 xhci_free_host_resources(xhci, ctrl_ctx); 2624 else 2625 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2626 spin_unlock_irqrestore(&xhci->lock, flags); 2627 } 2628 return ret; 2629 } 2630 2631 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2632 struct xhci_virt_device *vdev, int i) 2633 { 2634 struct xhci_virt_ep *ep = &vdev->eps[i]; 2635 2636 if (ep->ep_state & EP_HAS_STREAMS) { 2637 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2638 xhci_get_endpoint_address(i)); 2639 xhci_free_stream_info(xhci, ep->stream_info); 2640 ep->stream_info = NULL; 2641 ep->ep_state &= ~EP_HAS_STREAMS; 2642 } 2643 } 2644 2645 /* Called after one or more calls to xhci_add_endpoint() or 2646 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2647 * to call xhci_reset_bandwidth(). 2648 * 2649 * Since we are in the middle of changing either configuration or 2650 * installing a new alt setting, the USB core won't allow URBs to be 2651 * enqueued for any endpoint on the old config or interface. Nothing 2652 * else should be touching the xhci->devs[slot_id] structure, so we 2653 * don't need to take the xhci->lock for manipulating that. 2654 */ 2655 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2656 { 2657 int i; 2658 int ret = 0; 2659 struct xhci_hcd *xhci; 2660 struct xhci_virt_device *virt_dev; 2661 struct xhci_input_control_ctx *ctrl_ctx; 2662 struct xhci_slot_ctx *slot_ctx; 2663 struct xhci_command *command; 2664 2665 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2666 if (ret <= 0) 2667 return ret; 2668 xhci = hcd_to_xhci(hcd); 2669 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2670 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2671 return -ENODEV; 2672 2673 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2674 virt_dev = xhci->devs[udev->slot_id]; 2675 2676 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2677 if (!command) 2678 return -ENOMEM; 2679 2680 command->in_ctx = virt_dev->in_ctx; 2681 2682 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2683 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2684 if (!ctrl_ctx) { 2685 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2686 __func__); 2687 ret = -ENOMEM; 2688 goto command_cleanup; 2689 } 2690 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2691 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2692 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2693 2694 /* Don't issue the command if there's no endpoints to update. */ 2695 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2696 ctrl_ctx->drop_flags == 0) { 2697 ret = 0; 2698 goto command_cleanup; 2699 } 2700 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2701 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2702 for (i = 31; i >= 1; i--) { 2703 __le32 le32 = cpu_to_le32(BIT(i)); 2704 2705 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2706 || (ctrl_ctx->add_flags & le32) || i == 1) { 2707 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2708 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2709 break; 2710 } 2711 } 2712 2713 ret = xhci_configure_endpoint(xhci, udev, command, 2714 false, false); 2715 if (ret) 2716 /* Callee should call reset_bandwidth() */ 2717 goto command_cleanup; 2718 2719 /* Free any rings that were dropped, but not changed. */ 2720 for (i = 1; i < 31; i++) { 2721 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2722 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2723 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2724 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2725 } 2726 } 2727 xhci_zero_in_ctx(xhci, virt_dev); 2728 /* 2729 * Install any rings for completely new endpoints or changed endpoints, 2730 * and free or cache any old rings from changed endpoints. 2731 */ 2732 for (i = 1; i < 31; i++) { 2733 if (!virt_dev->eps[i].new_ring) 2734 continue; 2735 /* Only cache or free the old ring if it exists. 2736 * It may not if this is the first add of an endpoint. 2737 */ 2738 if (virt_dev->eps[i].ring) { 2739 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2740 } 2741 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2742 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2743 virt_dev->eps[i].new_ring = NULL; 2744 } 2745 command_cleanup: 2746 kfree(command->completion); 2747 kfree(command); 2748 2749 return ret; 2750 } 2751 2752 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2753 { 2754 struct xhci_hcd *xhci; 2755 struct xhci_virt_device *virt_dev; 2756 int i, ret; 2757 2758 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2759 if (ret <= 0) 2760 return; 2761 xhci = hcd_to_xhci(hcd); 2762 2763 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2764 virt_dev = xhci->devs[udev->slot_id]; 2765 /* Free any rings allocated for added endpoints */ 2766 for (i = 0; i < 31; i++) { 2767 if (virt_dev->eps[i].new_ring) { 2768 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2769 virt_dev->eps[i].new_ring = NULL; 2770 } 2771 } 2772 xhci_zero_in_ctx(xhci, virt_dev); 2773 } 2774 2775 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2776 struct xhci_container_ctx *in_ctx, 2777 struct xhci_container_ctx *out_ctx, 2778 struct xhci_input_control_ctx *ctrl_ctx, 2779 u32 add_flags, u32 drop_flags) 2780 { 2781 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2782 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2783 xhci_slot_copy(xhci, in_ctx, out_ctx); 2784 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2785 } 2786 2787 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2788 unsigned int slot_id, unsigned int ep_index, 2789 struct xhci_dequeue_state *deq_state) 2790 { 2791 struct xhci_input_control_ctx *ctrl_ctx; 2792 struct xhci_container_ctx *in_ctx; 2793 struct xhci_ep_ctx *ep_ctx; 2794 u32 added_ctxs; 2795 dma_addr_t addr; 2796 2797 in_ctx = xhci->devs[slot_id]->in_ctx; 2798 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2799 if (!ctrl_ctx) { 2800 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2801 __func__); 2802 return; 2803 } 2804 2805 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2806 xhci->devs[slot_id]->out_ctx, ep_index); 2807 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2808 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2809 deq_state->new_deq_ptr); 2810 if (addr == 0) { 2811 xhci_warn(xhci, "WARN Cannot submit config ep after " 2812 "reset ep command\n"); 2813 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2814 deq_state->new_deq_seg, 2815 deq_state->new_deq_ptr); 2816 return; 2817 } 2818 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2819 2820 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2821 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2822 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2823 added_ctxs, added_ctxs); 2824 } 2825 2826 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2827 unsigned int ep_index, struct xhci_td *td) 2828 { 2829 struct xhci_dequeue_state deq_state; 2830 struct xhci_virt_ep *ep; 2831 struct usb_device *udev = td->urb->dev; 2832 2833 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2834 "Cleaning up stalled endpoint ring"); 2835 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2836 /* We need to move the HW's dequeue pointer past this TD, 2837 * or it will attempt to resend it on the next doorbell ring. 2838 */ 2839 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2840 ep_index, ep->stopped_stream, td, &deq_state); 2841 2842 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2843 return; 2844 2845 /* HW with the reset endpoint quirk will use the saved dequeue state to 2846 * issue a configure endpoint command later. 2847 */ 2848 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2849 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2850 "Queueing new dequeue state"); 2851 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2852 ep_index, ep->stopped_stream, &deq_state); 2853 } else { 2854 /* Better hope no one uses the input context between now and the 2855 * reset endpoint completion! 2856 * XXX: No idea how this hardware will react when stream rings 2857 * are enabled. 2858 */ 2859 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2860 "Setting up input context for " 2861 "configure endpoint command"); 2862 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2863 ep_index, &deq_state); 2864 } 2865 } 2866 2867 /* Called when clearing halted device. The core should have sent the control 2868 * message to clear the device halt condition. The host side of the halt should 2869 * already be cleared with a reset endpoint command issued when the STALL tx 2870 * event was received. 2871 * 2872 * Context: in_interrupt 2873 */ 2874 2875 static void xhci_endpoint_reset(struct usb_hcd *hcd, 2876 struct usb_host_endpoint *ep) 2877 { 2878 struct xhci_hcd *xhci; 2879 2880 xhci = hcd_to_xhci(hcd); 2881 2882 /* 2883 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2884 * The Reset Endpoint Command may only be issued to endpoints in the 2885 * Halted state. If software wishes reset the Data Toggle or Sequence 2886 * Number of an endpoint that isn't in the Halted state, then software 2887 * may issue a Configure Endpoint Command with the Drop and Add bits set 2888 * for the target endpoint. that is in the Stopped state. 2889 */ 2890 2891 /* For now just print debug to follow the situation */ 2892 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2893 ep->desc.bEndpointAddress); 2894 } 2895 2896 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2897 struct usb_device *udev, struct usb_host_endpoint *ep, 2898 unsigned int slot_id) 2899 { 2900 int ret; 2901 unsigned int ep_index; 2902 unsigned int ep_state; 2903 2904 if (!ep) 2905 return -EINVAL; 2906 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2907 if (ret <= 0) 2908 return -EINVAL; 2909 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2910 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2911 " descriptor for ep 0x%x does not support streams\n", 2912 ep->desc.bEndpointAddress); 2913 return -EINVAL; 2914 } 2915 2916 ep_index = xhci_get_endpoint_index(&ep->desc); 2917 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2918 if (ep_state & EP_HAS_STREAMS || 2919 ep_state & EP_GETTING_STREAMS) { 2920 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2921 "already has streams set up.\n", 2922 ep->desc.bEndpointAddress); 2923 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2924 "dynamic stream context array reallocation.\n"); 2925 return -EINVAL; 2926 } 2927 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2928 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2929 "endpoint 0x%x; URBs are pending.\n", 2930 ep->desc.bEndpointAddress); 2931 return -EINVAL; 2932 } 2933 return 0; 2934 } 2935 2936 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2937 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2938 { 2939 unsigned int max_streams; 2940 2941 /* The stream context array size must be a power of two */ 2942 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2943 /* 2944 * Find out how many primary stream array entries the host controller 2945 * supports. Later we may use secondary stream arrays (similar to 2nd 2946 * level page entries), but that's an optional feature for xHCI host 2947 * controllers. xHCs must support at least 4 stream IDs. 2948 */ 2949 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2950 if (*num_stream_ctxs > max_streams) { 2951 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2952 max_streams); 2953 *num_stream_ctxs = max_streams; 2954 *num_streams = max_streams; 2955 } 2956 } 2957 2958 /* Returns an error code if one of the endpoint already has streams. 2959 * This does not change any data structures, it only checks and gathers 2960 * information. 2961 */ 2962 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2963 struct usb_device *udev, 2964 struct usb_host_endpoint **eps, unsigned int num_eps, 2965 unsigned int *num_streams, u32 *changed_ep_bitmask) 2966 { 2967 unsigned int max_streams; 2968 unsigned int endpoint_flag; 2969 int i; 2970 int ret; 2971 2972 for (i = 0; i < num_eps; i++) { 2973 ret = xhci_check_streams_endpoint(xhci, udev, 2974 eps[i], udev->slot_id); 2975 if (ret < 0) 2976 return ret; 2977 2978 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2979 if (max_streams < (*num_streams - 1)) { 2980 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2981 eps[i]->desc.bEndpointAddress, 2982 max_streams); 2983 *num_streams = max_streams+1; 2984 } 2985 2986 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2987 if (*changed_ep_bitmask & endpoint_flag) 2988 return -EINVAL; 2989 *changed_ep_bitmask |= endpoint_flag; 2990 } 2991 return 0; 2992 } 2993 2994 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 2995 struct usb_device *udev, 2996 struct usb_host_endpoint **eps, unsigned int num_eps) 2997 { 2998 u32 changed_ep_bitmask = 0; 2999 unsigned int slot_id; 3000 unsigned int ep_index; 3001 unsigned int ep_state; 3002 int i; 3003 3004 slot_id = udev->slot_id; 3005 if (!xhci->devs[slot_id]) 3006 return 0; 3007 3008 for (i = 0; i < num_eps; i++) { 3009 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3010 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3011 /* Are streams already being freed for the endpoint? */ 3012 if (ep_state & EP_GETTING_NO_STREAMS) { 3013 xhci_warn(xhci, "WARN Can't disable streams for " 3014 "endpoint 0x%x, " 3015 "streams are being disabled already\n", 3016 eps[i]->desc.bEndpointAddress); 3017 return 0; 3018 } 3019 /* Are there actually any streams to free? */ 3020 if (!(ep_state & EP_HAS_STREAMS) && 3021 !(ep_state & EP_GETTING_STREAMS)) { 3022 xhci_warn(xhci, "WARN Can't disable streams for " 3023 "endpoint 0x%x, " 3024 "streams are already disabled!\n", 3025 eps[i]->desc.bEndpointAddress); 3026 xhci_warn(xhci, "WARN xhci_free_streams() called " 3027 "with non-streams endpoint\n"); 3028 return 0; 3029 } 3030 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3031 } 3032 return changed_ep_bitmask; 3033 } 3034 3035 /* 3036 * The USB device drivers use this function (through the HCD interface in USB 3037 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3038 * coordinate mass storage command queueing across multiple endpoints (basically 3039 * a stream ID == a task ID). 3040 * 3041 * Setting up streams involves allocating the same size stream context array 3042 * for each endpoint and issuing a configure endpoint command for all endpoints. 3043 * 3044 * Don't allow the call to succeed if one endpoint only supports one stream 3045 * (which means it doesn't support streams at all). 3046 * 3047 * Drivers may get less stream IDs than they asked for, if the host controller 3048 * hardware or endpoints claim they can't support the number of requested 3049 * stream IDs. 3050 */ 3051 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3052 struct usb_host_endpoint **eps, unsigned int num_eps, 3053 unsigned int num_streams, gfp_t mem_flags) 3054 { 3055 int i, ret; 3056 struct xhci_hcd *xhci; 3057 struct xhci_virt_device *vdev; 3058 struct xhci_command *config_cmd; 3059 struct xhci_input_control_ctx *ctrl_ctx; 3060 unsigned int ep_index; 3061 unsigned int num_stream_ctxs; 3062 unsigned int max_packet; 3063 unsigned long flags; 3064 u32 changed_ep_bitmask = 0; 3065 3066 if (!eps) 3067 return -EINVAL; 3068 3069 /* Add one to the number of streams requested to account for 3070 * stream 0 that is reserved for xHCI usage. 3071 */ 3072 num_streams += 1; 3073 xhci = hcd_to_xhci(hcd); 3074 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3075 num_streams); 3076 3077 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3078 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3079 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3080 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3081 return -ENOSYS; 3082 } 3083 3084 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3085 if (!config_cmd) 3086 return -ENOMEM; 3087 3088 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3089 if (!ctrl_ctx) { 3090 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3091 __func__); 3092 xhci_free_command(xhci, config_cmd); 3093 return -ENOMEM; 3094 } 3095 3096 /* Check to make sure all endpoints are not already configured for 3097 * streams. While we're at it, find the maximum number of streams that 3098 * all the endpoints will support and check for duplicate endpoints. 3099 */ 3100 spin_lock_irqsave(&xhci->lock, flags); 3101 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3102 num_eps, &num_streams, &changed_ep_bitmask); 3103 if (ret < 0) { 3104 xhci_free_command(xhci, config_cmd); 3105 spin_unlock_irqrestore(&xhci->lock, flags); 3106 return ret; 3107 } 3108 if (num_streams <= 1) { 3109 xhci_warn(xhci, "WARN: endpoints can't handle " 3110 "more than one stream.\n"); 3111 xhci_free_command(xhci, config_cmd); 3112 spin_unlock_irqrestore(&xhci->lock, flags); 3113 return -EINVAL; 3114 } 3115 vdev = xhci->devs[udev->slot_id]; 3116 /* Mark each endpoint as being in transition, so 3117 * xhci_urb_enqueue() will reject all URBs. 3118 */ 3119 for (i = 0; i < num_eps; i++) { 3120 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3121 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3122 } 3123 spin_unlock_irqrestore(&xhci->lock, flags); 3124 3125 /* Setup internal data structures and allocate HW data structures for 3126 * streams (but don't install the HW structures in the input context 3127 * until we're sure all memory allocation succeeded). 3128 */ 3129 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3130 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3131 num_stream_ctxs, num_streams); 3132 3133 for (i = 0; i < num_eps; i++) { 3134 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3135 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3136 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3137 num_stream_ctxs, 3138 num_streams, 3139 max_packet, mem_flags); 3140 if (!vdev->eps[ep_index].stream_info) 3141 goto cleanup; 3142 /* Set maxPstreams in endpoint context and update deq ptr to 3143 * point to stream context array. FIXME 3144 */ 3145 } 3146 3147 /* Set up the input context for a configure endpoint command. */ 3148 for (i = 0; i < num_eps; i++) { 3149 struct xhci_ep_ctx *ep_ctx; 3150 3151 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3152 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3153 3154 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3155 vdev->out_ctx, ep_index); 3156 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3157 vdev->eps[ep_index].stream_info); 3158 } 3159 /* Tell the HW to drop its old copy of the endpoint context info 3160 * and add the updated copy from the input context. 3161 */ 3162 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3163 vdev->out_ctx, ctrl_ctx, 3164 changed_ep_bitmask, changed_ep_bitmask); 3165 3166 /* Issue and wait for the configure endpoint command */ 3167 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3168 false, false); 3169 3170 /* xHC rejected the configure endpoint command for some reason, so we 3171 * leave the old ring intact and free our internal streams data 3172 * structure. 3173 */ 3174 if (ret < 0) 3175 goto cleanup; 3176 3177 spin_lock_irqsave(&xhci->lock, flags); 3178 for (i = 0; i < num_eps; i++) { 3179 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3180 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3181 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3182 udev->slot_id, ep_index); 3183 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3184 } 3185 xhci_free_command(xhci, config_cmd); 3186 spin_unlock_irqrestore(&xhci->lock, flags); 3187 3188 /* Subtract 1 for stream 0, which drivers can't use */ 3189 return num_streams - 1; 3190 3191 cleanup: 3192 /* If it didn't work, free the streams! */ 3193 for (i = 0; i < num_eps; i++) { 3194 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3195 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3196 vdev->eps[ep_index].stream_info = NULL; 3197 /* FIXME Unset maxPstreams in endpoint context and 3198 * update deq ptr to point to normal string ring. 3199 */ 3200 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3201 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3202 xhci_endpoint_zero(xhci, vdev, eps[i]); 3203 } 3204 xhci_free_command(xhci, config_cmd); 3205 return -ENOMEM; 3206 } 3207 3208 /* Transition the endpoint from using streams to being a "normal" endpoint 3209 * without streams. 3210 * 3211 * Modify the endpoint context state, submit a configure endpoint command, 3212 * and free all endpoint rings for streams if that completes successfully. 3213 */ 3214 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3215 struct usb_host_endpoint **eps, unsigned int num_eps, 3216 gfp_t mem_flags) 3217 { 3218 int i, ret; 3219 struct xhci_hcd *xhci; 3220 struct xhci_virt_device *vdev; 3221 struct xhci_command *command; 3222 struct xhci_input_control_ctx *ctrl_ctx; 3223 unsigned int ep_index; 3224 unsigned long flags; 3225 u32 changed_ep_bitmask; 3226 3227 xhci = hcd_to_xhci(hcd); 3228 vdev = xhci->devs[udev->slot_id]; 3229 3230 /* Set up a configure endpoint command to remove the streams rings */ 3231 spin_lock_irqsave(&xhci->lock, flags); 3232 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3233 udev, eps, num_eps); 3234 if (changed_ep_bitmask == 0) { 3235 spin_unlock_irqrestore(&xhci->lock, flags); 3236 return -EINVAL; 3237 } 3238 3239 /* Use the xhci_command structure from the first endpoint. We may have 3240 * allocated too many, but the driver may call xhci_free_streams() for 3241 * each endpoint it grouped into one call to xhci_alloc_streams(). 3242 */ 3243 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3244 command = vdev->eps[ep_index].stream_info->free_streams_command; 3245 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3246 if (!ctrl_ctx) { 3247 spin_unlock_irqrestore(&xhci->lock, flags); 3248 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3249 __func__); 3250 return -EINVAL; 3251 } 3252 3253 for (i = 0; i < num_eps; i++) { 3254 struct xhci_ep_ctx *ep_ctx; 3255 3256 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3257 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3258 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3259 EP_GETTING_NO_STREAMS; 3260 3261 xhci_endpoint_copy(xhci, command->in_ctx, 3262 vdev->out_ctx, ep_index); 3263 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3264 &vdev->eps[ep_index]); 3265 } 3266 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3267 vdev->out_ctx, ctrl_ctx, 3268 changed_ep_bitmask, changed_ep_bitmask); 3269 spin_unlock_irqrestore(&xhci->lock, flags); 3270 3271 /* Issue and wait for the configure endpoint command, 3272 * which must succeed. 3273 */ 3274 ret = xhci_configure_endpoint(xhci, udev, command, 3275 false, true); 3276 3277 /* xHC rejected the configure endpoint command for some reason, so we 3278 * leave the streams rings intact. 3279 */ 3280 if (ret < 0) 3281 return ret; 3282 3283 spin_lock_irqsave(&xhci->lock, flags); 3284 for (i = 0; i < num_eps; i++) { 3285 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3286 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3287 vdev->eps[ep_index].stream_info = NULL; 3288 /* FIXME Unset maxPstreams in endpoint context and 3289 * update deq ptr to point to normal string ring. 3290 */ 3291 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3292 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3293 } 3294 spin_unlock_irqrestore(&xhci->lock, flags); 3295 3296 return 0; 3297 } 3298 3299 /* 3300 * Deletes endpoint resources for endpoints that were active before a Reset 3301 * Device command, or a Disable Slot command. The Reset Device command leaves 3302 * the control endpoint intact, whereas the Disable Slot command deletes it. 3303 * 3304 * Must be called with xhci->lock held. 3305 */ 3306 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3307 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3308 { 3309 int i; 3310 unsigned int num_dropped_eps = 0; 3311 unsigned int drop_flags = 0; 3312 3313 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3314 if (virt_dev->eps[i].ring) { 3315 drop_flags |= 1 << i; 3316 num_dropped_eps++; 3317 } 3318 } 3319 xhci->num_active_eps -= num_dropped_eps; 3320 if (num_dropped_eps) 3321 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3322 "Dropped %u ep ctxs, flags = 0x%x, " 3323 "%u now active.", 3324 num_dropped_eps, drop_flags, 3325 xhci->num_active_eps); 3326 } 3327 3328 /* 3329 * This submits a Reset Device Command, which will set the device state to 0, 3330 * set the device address to 0, and disable all the endpoints except the default 3331 * control endpoint. The USB core should come back and call 3332 * xhci_address_device(), and then re-set up the configuration. If this is 3333 * called because of a usb_reset_and_verify_device(), then the old alternate 3334 * settings will be re-installed through the normal bandwidth allocation 3335 * functions. 3336 * 3337 * Wait for the Reset Device command to finish. Remove all structures 3338 * associated with the endpoints that were disabled. Clear the input device 3339 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3340 * 3341 * If the virt_dev to be reset does not exist or does not match the udev, 3342 * it means the device is lost, possibly due to the xHC restore error and 3343 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3344 * re-allocate the device. 3345 */ 3346 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3347 struct usb_device *udev) 3348 { 3349 int ret, i; 3350 unsigned long flags; 3351 struct xhci_hcd *xhci; 3352 unsigned int slot_id; 3353 struct xhci_virt_device *virt_dev; 3354 struct xhci_command *reset_device_cmd; 3355 int last_freed_endpoint; 3356 struct xhci_slot_ctx *slot_ctx; 3357 int old_active_eps = 0; 3358 3359 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3360 if (ret <= 0) 3361 return ret; 3362 xhci = hcd_to_xhci(hcd); 3363 slot_id = udev->slot_id; 3364 virt_dev = xhci->devs[slot_id]; 3365 if (!virt_dev) { 3366 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3367 "not exist. Re-allocate the device\n", slot_id); 3368 ret = xhci_alloc_dev(hcd, udev); 3369 if (ret == 1) 3370 return 0; 3371 else 3372 return -EINVAL; 3373 } 3374 3375 if (virt_dev->tt_info) 3376 old_active_eps = virt_dev->tt_info->active_eps; 3377 3378 if (virt_dev->udev != udev) { 3379 /* If the virt_dev and the udev does not match, this virt_dev 3380 * may belong to another udev. 3381 * Re-allocate the device. 3382 */ 3383 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3384 "not match the udev. Re-allocate the device\n", 3385 slot_id); 3386 ret = xhci_alloc_dev(hcd, udev); 3387 if (ret == 1) 3388 return 0; 3389 else 3390 return -EINVAL; 3391 } 3392 3393 /* If device is not setup, there is no point in resetting it */ 3394 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3395 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3396 SLOT_STATE_DISABLED) 3397 return 0; 3398 3399 trace_xhci_discover_or_reset_device(slot_ctx); 3400 3401 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3402 /* Allocate the command structure that holds the struct completion. 3403 * Assume we're in process context, since the normal device reset 3404 * process has to wait for the device anyway. Storage devices are 3405 * reset as part of error handling, so use GFP_NOIO instead of 3406 * GFP_KERNEL. 3407 */ 3408 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3409 if (!reset_device_cmd) { 3410 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3411 return -ENOMEM; 3412 } 3413 3414 /* Attempt to submit the Reset Device command to the command ring */ 3415 spin_lock_irqsave(&xhci->lock, flags); 3416 3417 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3418 if (ret) { 3419 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3420 spin_unlock_irqrestore(&xhci->lock, flags); 3421 goto command_cleanup; 3422 } 3423 xhci_ring_cmd_db(xhci); 3424 spin_unlock_irqrestore(&xhci->lock, flags); 3425 3426 /* Wait for the Reset Device command to finish */ 3427 wait_for_completion(reset_device_cmd->completion); 3428 3429 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3430 * unless we tried to reset a slot ID that wasn't enabled, 3431 * or the device wasn't in the addressed or configured state. 3432 */ 3433 ret = reset_device_cmd->status; 3434 switch (ret) { 3435 case COMP_COMMAND_ABORTED: 3436 case COMP_COMMAND_RING_STOPPED: 3437 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3438 ret = -ETIME; 3439 goto command_cleanup; 3440 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3441 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3442 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3443 slot_id, 3444 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3445 xhci_dbg(xhci, "Not freeing device rings.\n"); 3446 /* Don't treat this as an error. May change my mind later. */ 3447 ret = 0; 3448 goto command_cleanup; 3449 case COMP_SUCCESS: 3450 xhci_dbg(xhci, "Successful reset device command.\n"); 3451 break; 3452 default: 3453 if (xhci_is_vendor_info_code(xhci, ret)) 3454 break; 3455 xhci_warn(xhci, "Unknown completion code %u for " 3456 "reset device command.\n", ret); 3457 ret = -EINVAL; 3458 goto command_cleanup; 3459 } 3460 3461 /* Free up host controller endpoint resources */ 3462 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3463 spin_lock_irqsave(&xhci->lock, flags); 3464 /* Don't delete the default control endpoint resources */ 3465 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3466 spin_unlock_irqrestore(&xhci->lock, flags); 3467 } 3468 3469 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3470 last_freed_endpoint = 1; 3471 for (i = 1; i < 31; i++) { 3472 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3473 3474 if (ep->ep_state & EP_HAS_STREAMS) { 3475 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3476 xhci_get_endpoint_address(i)); 3477 xhci_free_stream_info(xhci, ep->stream_info); 3478 ep->stream_info = NULL; 3479 ep->ep_state &= ~EP_HAS_STREAMS; 3480 } 3481 3482 if (ep->ring) { 3483 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3484 last_freed_endpoint = i; 3485 } 3486 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3487 xhci_drop_ep_from_interval_table(xhci, 3488 &virt_dev->eps[i].bw_info, 3489 virt_dev->bw_table, 3490 udev, 3491 &virt_dev->eps[i], 3492 virt_dev->tt_info); 3493 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3494 } 3495 /* If necessary, update the number of active TTs on this root port */ 3496 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3497 ret = 0; 3498 3499 command_cleanup: 3500 xhci_free_command(xhci, reset_device_cmd); 3501 return ret; 3502 } 3503 3504 /* 3505 * At this point, the struct usb_device is about to go away, the device has 3506 * disconnected, and all traffic has been stopped and the endpoints have been 3507 * disabled. Free any HC data structures associated with that device. 3508 */ 3509 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3510 { 3511 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3512 struct xhci_virt_device *virt_dev; 3513 struct xhci_slot_ctx *slot_ctx; 3514 int i, ret; 3515 struct xhci_command *command; 3516 3517 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3518 if (!command) 3519 return; 3520 3521 #ifndef CONFIG_USB_DEFAULT_PERSIST 3522 /* 3523 * We called pm_runtime_get_noresume when the device was attached. 3524 * Decrement the counter here to allow controller to runtime suspend 3525 * if no devices remain. 3526 */ 3527 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3528 pm_runtime_put_noidle(hcd->self.controller); 3529 #endif 3530 3531 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3532 /* If the host is halted due to driver unload, we still need to free the 3533 * device. 3534 */ 3535 if (ret <= 0 && ret != -ENODEV) { 3536 kfree(command); 3537 return; 3538 } 3539 3540 virt_dev = xhci->devs[udev->slot_id]; 3541 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3542 trace_xhci_free_dev(slot_ctx); 3543 3544 /* Stop any wayward timer functions (which may grab the lock) */ 3545 for (i = 0; i < 31; i++) { 3546 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3547 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3548 } 3549 3550 xhci_disable_slot(xhci, command, udev->slot_id); 3551 /* 3552 * Event command completion handler will free any data structures 3553 * associated with the slot. XXX Can free sleep? 3554 */ 3555 } 3556 3557 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command, 3558 u32 slot_id) 3559 { 3560 unsigned long flags; 3561 u32 state; 3562 int ret = 0; 3563 struct xhci_virt_device *virt_dev; 3564 3565 virt_dev = xhci->devs[slot_id]; 3566 if (!virt_dev) 3567 return -EINVAL; 3568 if (!command) 3569 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3570 if (!command) 3571 return -ENOMEM; 3572 3573 spin_lock_irqsave(&xhci->lock, flags); 3574 /* Don't disable the slot if the host controller is dead. */ 3575 state = readl(&xhci->op_regs->status); 3576 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3577 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3578 xhci_free_virt_device(xhci, slot_id); 3579 spin_unlock_irqrestore(&xhci->lock, flags); 3580 kfree(command); 3581 return ret; 3582 } 3583 3584 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3585 slot_id); 3586 if (ret) { 3587 spin_unlock_irqrestore(&xhci->lock, flags); 3588 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3589 return ret; 3590 } 3591 xhci_ring_cmd_db(xhci); 3592 spin_unlock_irqrestore(&xhci->lock, flags); 3593 return ret; 3594 } 3595 3596 /* 3597 * Checks if we have enough host controller resources for the default control 3598 * endpoint. 3599 * 3600 * Must be called with xhci->lock held. 3601 */ 3602 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3603 { 3604 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3605 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3606 "Not enough ep ctxs: " 3607 "%u active, need to add 1, limit is %u.", 3608 xhci->num_active_eps, xhci->limit_active_eps); 3609 return -ENOMEM; 3610 } 3611 xhci->num_active_eps += 1; 3612 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3613 "Adding 1 ep ctx, %u now active.", 3614 xhci->num_active_eps); 3615 return 0; 3616 } 3617 3618 3619 /* 3620 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3621 * timed out, or allocating memory failed. Returns 1 on success. 3622 */ 3623 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3624 { 3625 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3626 struct xhci_virt_device *vdev; 3627 struct xhci_slot_ctx *slot_ctx; 3628 unsigned long flags; 3629 int ret, slot_id; 3630 struct xhci_command *command; 3631 3632 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3633 if (!command) 3634 return 0; 3635 3636 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3637 mutex_lock(&xhci->mutex); 3638 spin_lock_irqsave(&xhci->lock, flags); 3639 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3640 if (ret) { 3641 spin_unlock_irqrestore(&xhci->lock, flags); 3642 mutex_unlock(&xhci->mutex); 3643 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3644 xhci_free_command(xhci, command); 3645 return 0; 3646 } 3647 xhci_ring_cmd_db(xhci); 3648 spin_unlock_irqrestore(&xhci->lock, flags); 3649 3650 wait_for_completion(command->completion); 3651 slot_id = command->slot_id; 3652 mutex_unlock(&xhci->mutex); 3653 3654 if (!slot_id || command->status != COMP_SUCCESS) { 3655 xhci_err(xhci, "Error while assigning device slot ID\n"); 3656 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3657 HCS_MAX_SLOTS( 3658 readl(&xhci->cap_regs->hcs_params1))); 3659 xhci_free_command(xhci, command); 3660 return 0; 3661 } 3662 3663 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3664 spin_lock_irqsave(&xhci->lock, flags); 3665 ret = xhci_reserve_host_control_ep_resources(xhci); 3666 if (ret) { 3667 spin_unlock_irqrestore(&xhci->lock, flags); 3668 xhci_warn(xhci, "Not enough host resources, " 3669 "active endpoint contexts = %u\n", 3670 xhci->num_active_eps); 3671 goto disable_slot; 3672 } 3673 spin_unlock_irqrestore(&xhci->lock, flags); 3674 } 3675 /* Use GFP_NOIO, since this function can be called from 3676 * xhci_discover_or_reset_device(), which may be called as part of 3677 * mass storage driver error handling. 3678 */ 3679 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3680 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3681 goto disable_slot; 3682 } 3683 vdev = xhci->devs[slot_id]; 3684 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3685 trace_xhci_alloc_dev(slot_ctx); 3686 3687 udev->slot_id = slot_id; 3688 3689 #ifndef CONFIG_USB_DEFAULT_PERSIST 3690 /* 3691 * If resetting upon resume, we can't put the controller into runtime 3692 * suspend if there is a device attached. 3693 */ 3694 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3695 pm_runtime_get_noresume(hcd->self.controller); 3696 #endif 3697 3698 3699 xhci_free_command(xhci, command); 3700 /* Is this a LS or FS device under a HS hub? */ 3701 /* Hub or peripherial? */ 3702 return 1; 3703 3704 disable_slot: 3705 /* Disable slot, if we can do it without mem alloc */ 3706 kfree(command->completion); 3707 command->completion = NULL; 3708 command->status = 0; 3709 return xhci_disable_slot(xhci, command, udev->slot_id); 3710 } 3711 3712 /* 3713 * Issue an Address Device command and optionally send a corresponding 3714 * SetAddress request to the device. 3715 */ 3716 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3717 enum xhci_setup_dev setup) 3718 { 3719 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3720 unsigned long flags; 3721 struct xhci_virt_device *virt_dev; 3722 int ret = 0; 3723 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3724 struct xhci_slot_ctx *slot_ctx; 3725 struct xhci_input_control_ctx *ctrl_ctx; 3726 u64 temp_64; 3727 struct xhci_command *command = NULL; 3728 3729 mutex_lock(&xhci->mutex); 3730 3731 if (xhci->xhc_state) { /* dying, removing or halted */ 3732 ret = -ESHUTDOWN; 3733 goto out; 3734 } 3735 3736 if (!udev->slot_id) { 3737 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3738 "Bad Slot ID %d", udev->slot_id); 3739 ret = -EINVAL; 3740 goto out; 3741 } 3742 3743 virt_dev = xhci->devs[udev->slot_id]; 3744 3745 if (WARN_ON(!virt_dev)) { 3746 /* 3747 * In plug/unplug torture test with an NEC controller, 3748 * a zero-dereference was observed once due to virt_dev = 0. 3749 * Print useful debug rather than crash if it is observed again! 3750 */ 3751 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3752 udev->slot_id); 3753 ret = -EINVAL; 3754 goto out; 3755 } 3756 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3757 trace_xhci_setup_device_slot(slot_ctx); 3758 3759 if (setup == SETUP_CONTEXT_ONLY) { 3760 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3761 SLOT_STATE_DEFAULT) { 3762 xhci_dbg(xhci, "Slot already in default state\n"); 3763 goto out; 3764 } 3765 } 3766 3767 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3768 if (!command) { 3769 ret = -ENOMEM; 3770 goto out; 3771 } 3772 3773 command->in_ctx = virt_dev->in_ctx; 3774 3775 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3776 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3777 if (!ctrl_ctx) { 3778 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3779 __func__); 3780 ret = -EINVAL; 3781 goto out; 3782 } 3783 /* 3784 * If this is the first Set Address since device plug-in or 3785 * virt_device realloaction after a resume with an xHCI power loss, 3786 * then set up the slot context. 3787 */ 3788 if (!slot_ctx->dev_info) 3789 xhci_setup_addressable_virt_dev(xhci, udev); 3790 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3791 else 3792 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3793 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3794 ctrl_ctx->drop_flags = 0; 3795 3796 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3797 le32_to_cpu(slot_ctx->dev_info) >> 27); 3798 3799 spin_lock_irqsave(&xhci->lock, flags); 3800 trace_xhci_setup_device(virt_dev); 3801 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3802 udev->slot_id, setup); 3803 if (ret) { 3804 spin_unlock_irqrestore(&xhci->lock, flags); 3805 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3806 "FIXME: allocate a command ring segment"); 3807 goto out; 3808 } 3809 xhci_ring_cmd_db(xhci); 3810 spin_unlock_irqrestore(&xhci->lock, flags); 3811 3812 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3813 wait_for_completion(command->completion); 3814 3815 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3816 * the SetAddress() "recovery interval" required by USB and aborting the 3817 * command on a timeout. 3818 */ 3819 switch (command->status) { 3820 case COMP_COMMAND_ABORTED: 3821 case COMP_COMMAND_RING_STOPPED: 3822 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3823 ret = -ETIME; 3824 break; 3825 case COMP_CONTEXT_STATE_ERROR: 3826 case COMP_SLOT_NOT_ENABLED_ERROR: 3827 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3828 act, udev->slot_id); 3829 ret = -EINVAL; 3830 break; 3831 case COMP_USB_TRANSACTION_ERROR: 3832 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3833 ret = -EPROTO; 3834 break; 3835 case COMP_INCOMPATIBLE_DEVICE_ERROR: 3836 dev_warn(&udev->dev, 3837 "ERROR: Incompatible device for setup %s command\n", act); 3838 ret = -ENODEV; 3839 break; 3840 case COMP_SUCCESS: 3841 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3842 "Successful setup %s command", act); 3843 break; 3844 default: 3845 xhci_err(xhci, 3846 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3847 act, command->status); 3848 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3849 ret = -EINVAL; 3850 break; 3851 } 3852 if (ret) 3853 goto out; 3854 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3855 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3856 "Op regs DCBAA ptr = %#016llx", temp_64); 3857 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3858 "Slot ID %d dcbaa entry @%p = %#016llx", 3859 udev->slot_id, 3860 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3861 (unsigned long long) 3862 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3863 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3864 "Output Context DMA address = %#08llx", 3865 (unsigned long long)virt_dev->out_ctx->dma); 3866 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3867 le32_to_cpu(slot_ctx->dev_info) >> 27); 3868 /* 3869 * USB core uses address 1 for the roothubs, so we add one to the 3870 * address given back to us by the HC. 3871 */ 3872 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3873 le32_to_cpu(slot_ctx->dev_info) >> 27); 3874 /* Zero the input context control for later use */ 3875 ctrl_ctx->add_flags = 0; 3876 ctrl_ctx->drop_flags = 0; 3877 3878 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3879 "Internal device address = %d", 3880 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3881 out: 3882 mutex_unlock(&xhci->mutex); 3883 if (command) { 3884 kfree(command->completion); 3885 kfree(command); 3886 } 3887 return ret; 3888 } 3889 3890 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3891 { 3892 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3893 } 3894 3895 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3896 { 3897 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3898 } 3899 3900 /* 3901 * Transfer the port index into real index in the HW port status 3902 * registers. Caculate offset between the port's PORTSC register 3903 * and port status base. Divide the number of per port register 3904 * to get the real index. The raw port number bases 1. 3905 */ 3906 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3907 { 3908 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3909 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3910 __le32 __iomem *addr; 3911 int raw_port; 3912 3913 if (hcd->speed < HCD_USB3) 3914 addr = xhci->usb2_ports[port1 - 1]; 3915 else 3916 addr = xhci->usb3_ports[port1 - 1]; 3917 3918 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3919 return raw_port; 3920 } 3921 3922 /* 3923 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3924 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3925 */ 3926 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3927 struct usb_device *udev, u16 max_exit_latency) 3928 { 3929 struct xhci_virt_device *virt_dev; 3930 struct xhci_command *command; 3931 struct xhci_input_control_ctx *ctrl_ctx; 3932 struct xhci_slot_ctx *slot_ctx; 3933 unsigned long flags; 3934 int ret; 3935 3936 spin_lock_irqsave(&xhci->lock, flags); 3937 3938 virt_dev = xhci->devs[udev->slot_id]; 3939 3940 /* 3941 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3942 * xHC was re-initialized. Exit latency will be set later after 3943 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 3944 */ 3945 3946 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 3947 spin_unlock_irqrestore(&xhci->lock, flags); 3948 return 0; 3949 } 3950 3951 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3952 command = xhci->lpm_command; 3953 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3954 if (!ctrl_ctx) { 3955 spin_unlock_irqrestore(&xhci->lock, flags); 3956 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3957 __func__); 3958 return -ENOMEM; 3959 } 3960 3961 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3962 spin_unlock_irqrestore(&xhci->lock, flags); 3963 3964 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3965 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3966 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3967 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3968 slot_ctx->dev_state = 0; 3969 3970 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3971 "Set up evaluate context for LPM MEL change."); 3972 3973 /* Issue and wait for the evaluate context command. */ 3974 ret = xhci_configure_endpoint(xhci, udev, command, 3975 true, true); 3976 3977 if (!ret) { 3978 spin_lock_irqsave(&xhci->lock, flags); 3979 virt_dev->current_mel = max_exit_latency; 3980 spin_unlock_irqrestore(&xhci->lock, flags); 3981 } 3982 return ret; 3983 } 3984 3985 #ifdef CONFIG_PM 3986 3987 /* BESL to HIRD Encoding array for USB2 LPM */ 3988 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3989 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3990 3991 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3992 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3993 struct usb_device *udev) 3994 { 3995 int u2del, besl, besl_host; 3996 int besl_device = 0; 3997 u32 field; 3998 3999 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4000 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4001 4002 if (field & USB_BESL_SUPPORT) { 4003 for (besl_host = 0; besl_host < 16; besl_host++) { 4004 if (xhci_besl_encoding[besl_host] >= u2del) 4005 break; 4006 } 4007 /* Use baseline BESL value as default */ 4008 if (field & USB_BESL_BASELINE_VALID) 4009 besl_device = USB_GET_BESL_BASELINE(field); 4010 else if (field & USB_BESL_DEEP_VALID) 4011 besl_device = USB_GET_BESL_DEEP(field); 4012 } else { 4013 if (u2del <= 50) 4014 besl_host = 0; 4015 else 4016 besl_host = (u2del - 51) / 75 + 1; 4017 } 4018 4019 besl = besl_host + besl_device; 4020 if (besl > 15) 4021 besl = 15; 4022 4023 return besl; 4024 } 4025 4026 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4027 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4028 { 4029 u32 field; 4030 int l1; 4031 int besld = 0; 4032 int hirdm = 0; 4033 4034 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4035 4036 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4037 l1 = udev->l1_params.timeout / 256; 4038 4039 /* device has preferred BESLD */ 4040 if (field & USB_BESL_DEEP_VALID) { 4041 besld = USB_GET_BESL_DEEP(field); 4042 hirdm = 1; 4043 } 4044 4045 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4046 } 4047 4048 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4049 struct usb_device *udev, int enable) 4050 { 4051 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4052 __le32 __iomem **port_array; 4053 __le32 __iomem *pm_addr, *hlpm_addr; 4054 u32 pm_val, hlpm_val, field; 4055 unsigned int port_num; 4056 unsigned long flags; 4057 int hird, exit_latency; 4058 int ret; 4059 4060 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4061 !udev->lpm_capable) 4062 return -EPERM; 4063 4064 if (!udev->parent || udev->parent->parent || 4065 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4066 return -EPERM; 4067 4068 if (udev->usb2_hw_lpm_capable != 1) 4069 return -EPERM; 4070 4071 spin_lock_irqsave(&xhci->lock, flags); 4072 4073 port_array = xhci->usb2_ports; 4074 port_num = udev->portnum - 1; 4075 pm_addr = port_array[port_num] + PORTPMSC; 4076 pm_val = readl(pm_addr); 4077 hlpm_addr = port_array[port_num] + PORTHLPMC; 4078 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4079 4080 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4081 enable ? "enable" : "disable", port_num + 1); 4082 4083 if (enable) { 4084 /* Host supports BESL timeout instead of HIRD */ 4085 if (udev->usb2_hw_lpm_besl_capable) { 4086 /* if device doesn't have a preferred BESL value use a 4087 * default one which works with mixed HIRD and BESL 4088 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4089 */ 4090 if ((field & USB_BESL_SUPPORT) && 4091 (field & USB_BESL_BASELINE_VALID)) 4092 hird = USB_GET_BESL_BASELINE(field); 4093 else 4094 hird = udev->l1_params.besl; 4095 4096 exit_latency = xhci_besl_encoding[hird]; 4097 spin_unlock_irqrestore(&xhci->lock, flags); 4098 4099 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4100 * input context for link powermanagement evaluate 4101 * context commands. It is protected by hcd->bandwidth 4102 * mutex and is shared by all devices. We need to set 4103 * the max ext latency in USB 2 BESL LPM as well, so 4104 * use the same mutex and xhci_change_max_exit_latency() 4105 */ 4106 mutex_lock(hcd->bandwidth_mutex); 4107 ret = xhci_change_max_exit_latency(xhci, udev, 4108 exit_latency); 4109 mutex_unlock(hcd->bandwidth_mutex); 4110 4111 if (ret < 0) 4112 return ret; 4113 spin_lock_irqsave(&xhci->lock, flags); 4114 4115 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4116 writel(hlpm_val, hlpm_addr); 4117 /* flush write */ 4118 readl(hlpm_addr); 4119 } else { 4120 hird = xhci_calculate_hird_besl(xhci, udev); 4121 } 4122 4123 pm_val &= ~PORT_HIRD_MASK; 4124 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4125 writel(pm_val, pm_addr); 4126 pm_val = readl(pm_addr); 4127 pm_val |= PORT_HLE; 4128 writel(pm_val, pm_addr); 4129 /* flush write */ 4130 readl(pm_addr); 4131 } else { 4132 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4133 writel(pm_val, pm_addr); 4134 /* flush write */ 4135 readl(pm_addr); 4136 if (udev->usb2_hw_lpm_besl_capable) { 4137 spin_unlock_irqrestore(&xhci->lock, flags); 4138 mutex_lock(hcd->bandwidth_mutex); 4139 xhci_change_max_exit_latency(xhci, udev, 0); 4140 mutex_unlock(hcd->bandwidth_mutex); 4141 return 0; 4142 } 4143 } 4144 4145 spin_unlock_irqrestore(&xhci->lock, flags); 4146 return 0; 4147 } 4148 4149 /* check if a usb2 port supports a given extened capability protocol 4150 * only USB2 ports extended protocol capability values are cached. 4151 * Return 1 if capability is supported 4152 */ 4153 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4154 unsigned capability) 4155 { 4156 u32 port_offset, port_count; 4157 int i; 4158 4159 for (i = 0; i < xhci->num_ext_caps; i++) { 4160 if (xhci->ext_caps[i] & capability) { 4161 /* port offsets starts at 1 */ 4162 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4163 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4164 if (port >= port_offset && 4165 port < port_offset + port_count) 4166 return 1; 4167 } 4168 } 4169 return 0; 4170 } 4171 4172 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4173 { 4174 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4175 int portnum = udev->portnum - 1; 4176 4177 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4178 !udev->lpm_capable) 4179 return 0; 4180 4181 /* we only support lpm for non-hub device connected to root hub yet */ 4182 if (!udev->parent || udev->parent->parent || 4183 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4184 return 0; 4185 4186 if (xhci->hw_lpm_support == 1 && 4187 xhci_check_usb2_port_capability( 4188 xhci, portnum, XHCI_HLC)) { 4189 udev->usb2_hw_lpm_capable = 1; 4190 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4191 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4192 if (xhci_check_usb2_port_capability(xhci, portnum, 4193 XHCI_BLC)) 4194 udev->usb2_hw_lpm_besl_capable = 1; 4195 } 4196 4197 return 0; 4198 } 4199 4200 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4201 4202 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4203 static unsigned long long xhci_service_interval_to_ns( 4204 struct usb_endpoint_descriptor *desc) 4205 { 4206 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4207 } 4208 4209 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4210 enum usb3_link_state state) 4211 { 4212 unsigned long long sel; 4213 unsigned long long pel; 4214 unsigned int max_sel_pel; 4215 char *state_name; 4216 4217 switch (state) { 4218 case USB3_LPM_U1: 4219 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4220 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4221 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4222 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4223 state_name = "U1"; 4224 break; 4225 case USB3_LPM_U2: 4226 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4227 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4228 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4229 state_name = "U2"; 4230 break; 4231 default: 4232 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4233 __func__); 4234 return USB3_LPM_DISABLED; 4235 } 4236 4237 if (sel <= max_sel_pel && pel <= max_sel_pel) 4238 return USB3_LPM_DEVICE_INITIATED; 4239 4240 if (sel > max_sel_pel) 4241 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4242 "due to long SEL %llu ms\n", 4243 state_name, sel); 4244 else 4245 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4246 "due to long PEL %llu ms\n", 4247 state_name, pel); 4248 return USB3_LPM_DISABLED; 4249 } 4250 4251 /* The U1 timeout should be the maximum of the following values: 4252 * - For control endpoints, U1 system exit latency (SEL) * 3 4253 * - For bulk endpoints, U1 SEL * 5 4254 * - For interrupt endpoints: 4255 * - Notification EPs, U1 SEL * 3 4256 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4257 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4258 */ 4259 static unsigned long long xhci_calculate_intel_u1_timeout( 4260 struct usb_device *udev, 4261 struct usb_endpoint_descriptor *desc) 4262 { 4263 unsigned long long timeout_ns; 4264 int ep_type; 4265 int intr_type; 4266 4267 ep_type = usb_endpoint_type(desc); 4268 switch (ep_type) { 4269 case USB_ENDPOINT_XFER_CONTROL: 4270 timeout_ns = udev->u1_params.sel * 3; 4271 break; 4272 case USB_ENDPOINT_XFER_BULK: 4273 timeout_ns = udev->u1_params.sel * 5; 4274 break; 4275 case USB_ENDPOINT_XFER_INT: 4276 intr_type = usb_endpoint_interrupt_type(desc); 4277 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4278 timeout_ns = udev->u1_params.sel * 3; 4279 break; 4280 } 4281 /* Otherwise the calculation is the same as isoc eps */ 4282 case USB_ENDPOINT_XFER_ISOC: 4283 timeout_ns = xhci_service_interval_to_ns(desc); 4284 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4285 if (timeout_ns < udev->u1_params.sel * 2) 4286 timeout_ns = udev->u1_params.sel * 2; 4287 break; 4288 default: 4289 return 0; 4290 } 4291 4292 return timeout_ns; 4293 } 4294 4295 /* Returns the hub-encoded U1 timeout value. */ 4296 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4297 struct usb_device *udev, 4298 struct usb_endpoint_descriptor *desc) 4299 { 4300 unsigned long long timeout_ns; 4301 4302 if (xhci->quirks & XHCI_INTEL_HOST) 4303 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4304 else 4305 timeout_ns = udev->u1_params.sel; 4306 4307 /* The U1 timeout is encoded in 1us intervals. 4308 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4309 */ 4310 if (timeout_ns == USB3_LPM_DISABLED) 4311 timeout_ns = 1; 4312 else 4313 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4314 4315 /* If the necessary timeout value is bigger than what we can set in the 4316 * USB 3.0 hub, we have to disable hub-initiated U1. 4317 */ 4318 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4319 return timeout_ns; 4320 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4321 "due to long timeout %llu ms\n", timeout_ns); 4322 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4323 } 4324 4325 /* The U2 timeout should be the maximum of: 4326 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4327 * - largest bInterval of any active periodic endpoint (to avoid going 4328 * into lower power link states between intervals). 4329 * - the U2 Exit Latency of the device 4330 */ 4331 static unsigned long long xhci_calculate_intel_u2_timeout( 4332 struct usb_device *udev, 4333 struct usb_endpoint_descriptor *desc) 4334 { 4335 unsigned long long timeout_ns; 4336 unsigned long long u2_del_ns; 4337 4338 timeout_ns = 10 * 1000 * 1000; 4339 4340 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4341 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4342 timeout_ns = xhci_service_interval_to_ns(desc); 4343 4344 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4345 if (u2_del_ns > timeout_ns) 4346 timeout_ns = u2_del_ns; 4347 4348 return timeout_ns; 4349 } 4350 4351 /* Returns the hub-encoded U2 timeout value. */ 4352 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4353 struct usb_device *udev, 4354 struct usb_endpoint_descriptor *desc) 4355 { 4356 unsigned long long timeout_ns; 4357 4358 if (xhci->quirks & XHCI_INTEL_HOST) 4359 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4360 else 4361 timeout_ns = udev->u2_params.sel; 4362 4363 /* The U2 timeout is encoded in 256us intervals */ 4364 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4365 /* If the necessary timeout value is bigger than what we can set in the 4366 * USB 3.0 hub, we have to disable hub-initiated U2. 4367 */ 4368 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4369 return timeout_ns; 4370 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4371 "due to long timeout %llu ms\n", timeout_ns); 4372 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4373 } 4374 4375 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4376 struct usb_device *udev, 4377 struct usb_endpoint_descriptor *desc, 4378 enum usb3_link_state state, 4379 u16 *timeout) 4380 { 4381 if (state == USB3_LPM_U1) 4382 return xhci_calculate_u1_timeout(xhci, udev, desc); 4383 else if (state == USB3_LPM_U2) 4384 return xhci_calculate_u2_timeout(xhci, udev, desc); 4385 4386 return USB3_LPM_DISABLED; 4387 } 4388 4389 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4390 struct usb_device *udev, 4391 struct usb_endpoint_descriptor *desc, 4392 enum usb3_link_state state, 4393 u16 *timeout) 4394 { 4395 u16 alt_timeout; 4396 4397 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4398 desc, state, timeout); 4399 4400 /* If we found we can't enable hub-initiated LPM, or 4401 * the U1 or U2 exit latency was too high to allow 4402 * device-initiated LPM as well, just stop searching. 4403 */ 4404 if (alt_timeout == USB3_LPM_DISABLED || 4405 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4406 *timeout = alt_timeout; 4407 return -E2BIG; 4408 } 4409 if (alt_timeout > *timeout) 4410 *timeout = alt_timeout; 4411 return 0; 4412 } 4413 4414 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4415 struct usb_device *udev, 4416 struct usb_host_interface *alt, 4417 enum usb3_link_state state, 4418 u16 *timeout) 4419 { 4420 int j; 4421 4422 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4423 if (xhci_update_timeout_for_endpoint(xhci, udev, 4424 &alt->endpoint[j].desc, state, timeout)) 4425 return -E2BIG; 4426 continue; 4427 } 4428 return 0; 4429 } 4430 4431 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4432 enum usb3_link_state state) 4433 { 4434 struct usb_device *parent; 4435 unsigned int num_hubs; 4436 4437 if (state == USB3_LPM_U2) 4438 return 0; 4439 4440 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4441 for (parent = udev->parent, num_hubs = 0; parent->parent; 4442 parent = parent->parent) 4443 num_hubs++; 4444 4445 if (num_hubs < 2) 4446 return 0; 4447 4448 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4449 " below second-tier hub.\n"); 4450 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4451 "to decrease power consumption.\n"); 4452 return -E2BIG; 4453 } 4454 4455 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4456 struct usb_device *udev, 4457 enum usb3_link_state state) 4458 { 4459 if (xhci->quirks & XHCI_INTEL_HOST) 4460 return xhci_check_intel_tier_policy(udev, state); 4461 else 4462 return 0; 4463 } 4464 4465 /* Returns the U1 or U2 timeout that should be enabled. 4466 * If the tier check or timeout setting functions return with a non-zero exit 4467 * code, that means the timeout value has been finalized and we shouldn't look 4468 * at any more endpoints. 4469 */ 4470 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4471 struct usb_device *udev, enum usb3_link_state state) 4472 { 4473 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4474 struct usb_host_config *config; 4475 char *state_name; 4476 int i; 4477 u16 timeout = USB3_LPM_DISABLED; 4478 4479 if (state == USB3_LPM_U1) 4480 state_name = "U1"; 4481 else if (state == USB3_LPM_U2) 4482 state_name = "U2"; 4483 else { 4484 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4485 state); 4486 return timeout; 4487 } 4488 4489 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4490 return timeout; 4491 4492 /* Gather some information about the currently installed configuration 4493 * and alternate interface settings. 4494 */ 4495 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4496 state, &timeout)) 4497 return timeout; 4498 4499 config = udev->actconfig; 4500 if (!config) 4501 return timeout; 4502 4503 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4504 struct usb_driver *driver; 4505 struct usb_interface *intf = config->interface[i]; 4506 4507 if (!intf) 4508 continue; 4509 4510 /* Check if any currently bound drivers want hub-initiated LPM 4511 * disabled. 4512 */ 4513 if (intf->dev.driver) { 4514 driver = to_usb_driver(intf->dev.driver); 4515 if (driver && driver->disable_hub_initiated_lpm) { 4516 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4517 "at request of driver %s\n", 4518 state_name, driver->name); 4519 return xhci_get_timeout_no_hub_lpm(udev, state); 4520 } 4521 } 4522 4523 /* Not sure how this could happen... */ 4524 if (!intf->cur_altsetting) 4525 continue; 4526 4527 if (xhci_update_timeout_for_interface(xhci, udev, 4528 intf->cur_altsetting, 4529 state, &timeout)) 4530 return timeout; 4531 } 4532 return timeout; 4533 } 4534 4535 static int calculate_max_exit_latency(struct usb_device *udev, 4536 enum usb3_link_state state_changed, 4537 u16 hub_encoded_timeout) 4538 { 4539 unsigned long long u1_mel_us = 0; 4540 unsigned long long u2_mel_us = 0; 4541 unsigned long long mel_us = 0; 4542 bool disabling_u1; 4543 bool disabling_u2; 4544 bool enabling_u1; 4545 bool enabling_u2; 4546 4547 disabling_u1 = (state_changed == USB3_LPM_U1 && 4548 hub_encoded_timeout == USB3_LPM_DISABLED); 4549 disabling_u2 = (state_changed == USB3_LPM_U2 && 4550 hub_encoded_timeout == USB3_LPM_DISABLED); 4551 4552 enabling_u1 = (state_changed == USB3_LPM_U1 && 4553 hub_encoded_timeout != USB3_LPM_DISABLED); 4554 enabling_u2 = (state_changed == USB3_LPM_U2 && 4555 hub_encoded_timeout != USB3_LPM_DISABLED); 4556 4557 /* If U1 was already enabled and we're not disabling it, 4558 * or we're going to enable U1, account for the U1 max exit latency. 4559 */ 4560 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4561 enabling_u1) 4562 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4563 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4564 enabling_u2) 4565 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4566 4567 if (u1_mel_us > u2_mel_us) 4568 mel_us = u1_mel_us; 4569 else 4570 mel_us = u2_mel_us; 4571 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4572 if (mel_us > MAX_EXIT) { 4573 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4574 "is too big.\n", mel_us); 4575 return -E2BIG; 4576 } 4577 return mel_us; 4578 } 4579 4580 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4581 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4582 struct usb_device *udev, enum usb3_link_state state) 4583 { 4584 struct xhci_hcd *xhci; 4585 u16 hub_encoded_timeout; 4586 int mel; 4587 int ret; 4588 4589 xhci = hcd_to_xhci(hcd); 4590 /* The LPM timeout values are pretty host-controller specific, so don't 4591 * enable hub-initiated timeouts unless the vendor has provided 4592 * information about their timeout algorithm. 4593 */ 4594 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4595 !xhci->devs[udev->slot_id]) 4596 return USB3_LPM_DISABLED; 4597 4598 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4599 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4600 if (mel < 0) { 4601 /* Max Exit Latency is too big, disable LPM. */ 4602 hub_encoded_timeout = USB3_LPM_DISABLED; 4603 mel = 0; 4604 } 4605 4606 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4607 if (ret) 4608 return ret; 4609 return hub_encoded_timeout; 4610 } 4611 4612 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4613 struct usb_device *udev, enum usb3_link_state state) 4614 { 4615 struct xhci_hcd *xhci; 4616 u16 mel; 4617 4618 xhci = hcd_to_xhci(hcd); 4619 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4620 !xhci->devs[udev->slot_id]) 4621 return 0; 4622 4623 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4624 return xhci_change_max_exit_latency(xhci, udev, mel); 4625 } 4626 #else /* CONFIG_PM */ 4627 4628 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4629 struct usb_device *udev, int enable) 4630 { 4631 return 0; 4632 } 4633 4634 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4635 { 4636 return 0; 4637 } 4638 4639 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4640 struct usb_device *udev, enum usb3_link_state state) 4641 { 4642 return USB3_LPM_DISABLED; 4643 } 4644 4645 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4646 struct usb_device *udev, enum usb3_link_state state) 4647 { 4648 return 0; 4649 } 4650 #endif /* CONFIG_PM */ 4651 4652 /*-------------------------------------------------------------------------*/ 4653 4654 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4655 * internal data structures for the device. 4656 */ 4657 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4658 struct usb_tt *tt, gfp_t mem_flags) 4659 { 4660 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4661 struct xhci_virt_device *vdev; 4662 struct xhci_command *config_cmd; 4663 struct xhci_input_control_ctx *ctrl_ctx; 4664 struct xhci_slot_ctx *slot_ctx; 4665 unsigned long flags; 4666 unsigned think_time; 4667 int ret; 4668 4669 /* Ignore root hubs */ 4670 if (!hdev->parent) 4671 return 0; 4672 4673 vdev = xhci->devs[hdev->slot_id]; 4674 if (!vdev) { 4675 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4676 return -EINVAL; 4677 } 4678 4679 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4680 if (!config_cmd) 4681 return -ENOMEM; 4682 4683 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4684 if (!ctrl_ctx) { 4685 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4686 __func__); 4687 xhci_free_command(xhci, config_cmd); 4688 return -ENOMEM; 4689 } 4690 4691 spin_lock_irqsave(&xhci->lock, flags); 4692 if (hdev->speed == USB_SPEED_HIGH && 4693 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4694 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4695 xhci_free_command(xhci, config_cmd); 4696 spin_unlock_irqrestore(&xhci->lock, flags); 4697 return -ENOMEM; 4698 } 4699 4700 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4701 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4702 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4703 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4704 /* 4705 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4706 * but it may be already set to 1 when setup an xHCI virtual 4707 * device, so clear it anyway. 4708 */ 4709 if (tt->multi) 4710 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4711 else if (hdev->speed == USB_SPEED_FULL) 4712 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4713 4714 if (xhci->hci_version > 0x95) { 4715 xhci_dbg(xhci, "xHCI version %x needs hub " 4716 "TT think time and number of ports\n", 4717 (unsigned int) xhci->hci_version); 4718 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4719 /* Set TT think time - convert from ns to FS bit times. 4720 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4721 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4722 * 4723 * xHCI 1.0: this field shall be 0 if the device is not a 4724 * High-spped hub. 4725 */ 4726 think_time = tt->think_time; 4727 if (think_time != 0) 4728 think_time = (think_time / 666) - 1; 4729 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4730 slot_ctx->tt_info |= 4731 cpu_to_le32(TT_THINK_TIME(think_time)); 4732 } else { 4733 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4734 "TT think time or number of ports\n", 4735 (unsigned int) xhci->hci_version); 4736 } 4737 slot_ctx->dev_state = 0; 4738 spin_unlock_irqrestore(&xhci->lock, flags); 4739 4740 xhci_dbg(xhci, "Set up %s for hub device.\n", 4741 (xhci->hci_version > 0x95) ? 4742 "configure endpoint" : "evaluate context"); 4743 4744 /* Issue and wait for the configure endpoint or 4745 * evaluate context command. 4746 */ 4747 if (xhci->hci_version > 0x95) 4748 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4749 false, false); 4750 else 4751 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4752 true, false); 4753 4754 xhci_free_command(xhci, config_cmd); 4755 return ret; 4756 } 4757 4758 static int xhci_get_frame(struct usb_hcd *hcd) 4759 { 4760 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4761 /* EHCI mods by the periodic size. Why? */ 4762 return readl(&xhci->run_regs->microframe_index) >> 3; 4763 } 4764 4765 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4766 { 4767 struct xhci_hcd *xhci; 4768 /* 4769 * TODO: Check with DWC3 clients for sysdev according to 4770 * quirks 4771 */ 4772 struct device *dev = hcd->self.sysdev; 4773 int retval; 4774 4775 /* Accept arbitrarily long scatter-gather lists */ 4776 hcd->self.sg_tablesize = ~0; 4777 4778 /* support to build packet from discontinuous buffers */ 4779 hcd->self.no_sg_constraint = 1; 4780 4781 /* XHCI controllers don't stop the ep queue on short packets :| */ 4782 hcd->self.no_stop_on_short = 1; 4783 4784 xhci = hcd_to_xhci(hcd); 4785 4786 if (usb_hcd_is_primary_hcd(hcd)) { 4787 xhci->main_hcd = hcd; 4788 /* Mark the first roothub as being USB 2.0. 4789 * The xHCI driver will register the USB 3.0 roothub. 4790 */ 4791 hcd->speed = HCD_USB2; 4792 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4793 /* 4794 * USB 2.0 roothub under xHCI has an integrated TT, 4795 * (rate matching hub) as opposed to having an OHCI/UHCI 4796 * companion controller. 4797 */ 4798 hcd->has_tt = 1; 4799 } else { 4800 if (xhci->sbrn == 0x31) { 4801 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4802 hcd->speed = HCD_USB31; 4803 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4804 } 4805 /* xHCI private pointer was set in xhci_pci_probe for the second 4806 * registered roothub. 4807 */ 4808 return 0; 4809 } 4810 4811 mutex_init(&xhci->mutex); 4812 xhci->cap_regs = hcd->regs; 4813 xhci->op_regs = hcd->regs + 4814 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4815 xhci->run_regs = hcd->regs + 4816 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4817 /* Cache read-only capability registers */ 4818 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4819 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4820 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4821 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4822 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4823 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4824 if (xhci->hci_version > 0x100) 4825 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4826 xhci_print_registers(xhci); 4827 4828 xhci->quirks |= quirks; 4829 4830 get_quirks(dev, xhci); 4831 4832 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4833 * success event after a short transfer. This quirk will ignore such 4834 * spurious event. 4835 */ 4836 if (xhci->hci_version > 0x96) 4837 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4838 4839 /* Make sure the HC is halted. */ 4840 retval = xhci_halt(xhci); 4841 if (retval) 4842 return retval; 4843 4844 xhci_dbg(xhci, "Resetting HCD\n"); 4845 /* Reset the internal HC memory state and registers. */ 4846 retval = xhci_reset(xhci); 4847 if (retval) 4848 return retval; 4849 xhci_dbg(xhci, "Reset complete\n"); 4850 4851 /* 4852 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4853 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4854 * address memory pointers actually. So, this driver clears the AC64 4855 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4856 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4857 */ 4858 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4859 xhci->hcc_params &= ~BIT(0); 4860 4861 /* Set dma_mask and coherent_dma_mask to 64-bits, 4862 * if xHC supports 64-bit addressing */ 4863 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4864 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4865 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4866 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4867 } else { 4868 /* 4869 * This is to avoid error in cases where a 32-bit USB 4870 * controller is used on a 64-bit capable system. 4871 */ 4872 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4873 if (retval) 4874 return retval; 4875 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4876 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4877 } 4878 4879 xhci_dbg(xhci, "Calling HCD init\n"); 4880 /* Initialize HCD and host controller data structures. */ 4881 retval = xhci_init(hcd); 4882 if (retval) 4883 return retval; 4884 xhci_dbg(xhci, "Called HCD init\n"); 4885 4886 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4887 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4888 4889 return 0; 4890 } 4891 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4892 4893 static const struct hc_driver xhci_hc_driver = { 4894 .description = "xhci-hcd", 4895 .product_desc = "xHCI Host Controller", 4896 .hcd_priv_size = sizeof(struct xhci_hcd), 4897 4898 /* 4899 * generic hardware linkage 4900 */ 4901 .irq = xhci_irq, 4902 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4903 4904 /* 4905 * basic lifecycle operations 4906 */ 4907 .reset = NULL, /* set in xhci_init_driver() */ 4908 .start = xhci_run, 4909 .stop = xhci_stop, 4910 .shutdown = xhci_shutdown, 4911 4912 /* 4913 * managing i/o requests and associated device resources 4914 */ 4915 .urb_enqueue = xhci_urb_enqueue, 4916 .urb_dequeue = xhci_urb_dequeue, 4917 .alloc_dev = xhci_alloc_dev, 4918 .free_dev = xhci_free_dev, 4919 .alloc_streams = xhci_alloc_streams, 4920 .free_streams = xhci_free_streams, 4921 .add_endpoint = xhci_add_endpoint, 4922 .drop_endpoint = xhci_drop_endpoint, 4923 .endpoint_reset = xhci_endpoint_reset, 4924 .check_bandwidth = xhci_check_bandwidth, 4925 .reset_bandwidth = xhci_reset_bandwidth, 4926 .address_device = xhci_address_device, 4927 .enable_device = xhci_enable_device, 4928 .update_hub_device = xhci_update_hub_device, 4929 .reset_device = xhci_discover_or_reset_device, 4930 4931 /* 4932 * scheduling support 4933 */ 4934 .get_frame_number = xhci_get_frame, 4935 4936 /* 4937 * root hub support 4938 */ 4939 .hub_control = xhci_hub_control, 4940 .hub_status_data = xhci_hub_status_data, 4941 .bus_suspend = xhci_bus_suspend, 4942 .bus_resume = xhci_bus_resume, 4943 4944 /* 4945 * call back when device connected and addressed 4946 */ 4947 .update_device = xhci_update_device, 4948 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4949 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4950 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 4951 .find_raw_port_number = xhci_find_raw_port_number, 4952 }; 4953 4954 void xhci_init_driver(struct hc_driver *drv, 4955 const struct xhci_driver_overrides *over) 4956 { 4957 BUG_ON(!over); 4958 4959 /* Copy the generic table to drv then apply the overrides */ 4960 *drv = xhci_hc_driver; 4961 4962 if (over) { 4963 drv->hcd_priv_size += over->extra_priv_size; 4964 if (over->reset) 4965 drv->reset = over->reset; 4966 if (over->start) 4967 drv->start = over->start; 4968 } 4969 } 4970 EXPORT_SYMBOL_GPL(xhci_init_driver); 4971 4972 MODULE_DESCRIPTION(DRIVER_DESC); 4973 MODULE_AUTHOR(DRIVER_AUTHOR); 4974 MODULE_LICENSE("GPL"); 4975 4976 static int __init xhci_hcd_init(void) 4977 { 4978 /* 4979 * Check the compiler generated sizes of structures that must be laid 4980 * out in specific ways for hardware access. 4981 */ 4982 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4983 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4984 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4985 /* xhci_device_control has eight fields, and also 4986 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4987 */ 4988 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4989 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4990 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4991 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 4992 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4993 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4994 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4995 4996 if (usb_disabled()) 4997 return -ENODEV; 4998 4999 return 0; 5000 } 5001 5002 /* 5003 * If an init function is provided, an exit function must also be provided 5004 * to allow module unload. 5005 */ 5006 static void __exit xhci_hcd_fini(void) { } 5007 5008 module_init(xhci_hcd_init); 5009 module_exit(xhci_hcd_fini); 5010