xref: /openbmc/linux/drivers/usb/host/xhci.c (revision f7d84fa7)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (ret) {
117 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 		return ret;
119 	}
120 	xhci->xhc_state |= XHCI_STATE_HALTED;
121 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		/* clear state flags. Including dying, halted or removing */
151 		xhci->xhc_state = 0;
152 
153 	return ret;
154 }
155 
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 	u32 command;
166 	u32 state;
167 	int ret, i;
168 
169 	state = readl(&xhci->op_regs->status);
170 
171 	if (state == ~(u32)0) {
172 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 		return -ENODEV;
174 	}
175 
176 	if ((state & STS_HALT) == 0) {
177 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 		return 0;
179 	}
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 	command = readl(&xhci->op_regs->command);
183 	command |= CMD_RESET;
184 	writel(command, &xhci->op_regs->command);
185 
186 	/* Existing Intel xHCI controllers require a delay of 1 mS,
187 	 * after setting the CMD_RESET bit, and before accessing any
188 	 * HC registers. This allows the HC to complete the
189 	 * reset operation and be ready for HC register access.
190 	 * Without this delay, the subsequent HC register access,
191 	 * may result in a system hang very rarely.
192 	 */
193 	if (xhci->quirks & XHCI_INTEL_HOST)
194 		udelay(1000);
195 
196 	ret = xhci_handshake(&xhci->op_regs->command,
197 			CMD_RESET, 0, 10 * 1000 * 1000);
198 	if (ret)
199 		return ret;
200 
201 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202 			 "Wait for controller to be ready for doorbell rings");
203 	/*
204 	 * xHCI cannot write to any doorbells or operational registers other
205 	 * than status until the "Controller Not Ready" flag is cleared.
206 	 */
207 	ret = xhci_handshake(&xhci->op_regs->status,
208 			STS_CNR, 0, 10 * 1000 * 1000);
209 
210 	for (i = 0; i < 2; i++) {
211 		xhci->bus_state[i].port_c_suspend = 0;
212 		xhci->bus_state[i].suspended_ports = 0;
213 		xhci->bus_state[i].resuming_ports = 0;
214 	}
215 
216 	return ret;
217 }
218 
219 
220 #ifdef CONFIG_USB_PCI
221 /*
222  * Set up MSI
223  */
224 static int xhci_setup_msi(struct xhci_hcd *xhci)
225 {
226 	int ret;
227 	/*
228 	 * TODO:Check with MSI Soc for sysdev
229 	 */
230 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
231 
232 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
233 	if (ret < 0) {
234 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
235 				"failed to allocate MSI entry");
236 		return ret;
237 	}
238 
239 	ret = request_irq(pdev->irq, xhci_msi_irq,
240 				0, "xhci_hcd", xhci_to_hcd(xhci));
241 	if (ret) {
242 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
243 				"disable MSI interrupt");
244 		pci_free_irq_vectors(pdev);
245 	}
246 
247 	return ret;
248 }
249 
250 /*
251  * Set up MSI-X
252  */
253 static int xhci_setup_msix(struct xhci_hcd *xhci)
254 {
255 	int i, ret = 0;
256 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
257 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
258 
259 	/*
260 	 * calculate number of msi-x vectors supported.
261 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
262 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
263 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
264 	 *   Add additional 1 vector to ensure always available interrupt.
265 	 */
266 	xhci->msix_count = min(num_online_cpus() + 1,
267 				HCS_MAX_INTRS(xhci->hcs_params1));
268 
269 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
270 			PCI_IRQ_MSIX);
271 	if (ret < 0) {
272 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
273 				"Failed to enable MSI-X");
274 		return ret;
275 	}
276 
277 	for (i = 0; i < xhci->msix_count; i++) {
278 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
279 				"xhci_hcd", xhci_to_hcd(xhci));
280 		if (ret)
281 			goto disable_msix;
282 	}
283 
284 	hcd->msix_enabled = 1;
285 	return ret;
286 
287 disable_msix:
288 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
289 	while (--i >= 0)
290 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
291 	pci_free_irq_vectors(pdev);
292 	return ret;
293 }
294 
295 /* Free any IRQs and disable MSI-X */
296 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
297 {
298 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
299 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
300 
301 	if (xhci->quirks & XHCI_PLAT)
302 		return;
303 
304 	/* return if using legacy interrupt */
305 	if (hcd->irq > 0)
306 		return;
307 
308 	if (hcd->msix_enabled) {
309 		int i;
310 
311 		for (i = 0; i < xhci->msix_count; i++)
312 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
313 	} else {
314 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
315 	}
316 
317 	pci_free_irq_vectors(pdev);
318 	hcd->msix_enabled = 0;
319 }
320 
321 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
322 {
323 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
324 
325 	if (hcd->msix_enabled) {
326 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 		int i;
328 
329 		for (i = 0; i < xhci->msix_count; i++)
330 			synchronize_irq(pci_irq_vector(pdev, i));
331 	}
332 }
333 
334 static int xhci_try_enable_msi(struct usb_hcd *hcd)
335 {
336 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
337 	struct pci_dev  *pdev;
338 	int ret;
339 
340 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
341 	if (xhci->quirks & XHCI_PLAT)
342 		return 0;
343 
344 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
345 	/*
346 	 * Some Fresco Logic host controllers advertise MSI, but fail to
347 	 * generate interrupts.  Don't even try to enable MSI.
348 	 */
349 	if (xhci->quirks & XHCI_BROKEN_MSI)
350 		goto legacy_irq;
351 
352 	/* unregister the legacy interrupt */
353 	if (hcd->irq)
354 		free_irq(hcd->irq, hcd);
355 	hcd->irq = 0;
356 
357 	ret = xhci_setup_msix(xhci);
358 	if (ret)
359 		/* fall back to msi*/
360 		ret = xhci_setup_msi(xhci);
361 
362 	if (!ret) {
363 		hcd->msi_enabled = 1;
364 		return 0;
365 	}
366 
367 	if (!pdev->irq) {
368 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
369 		return -EINVAL;
370 	}
371 
372  legacy_irq:
373 	if (!strlen(hcd->irq_descr))
374 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
375 			 hcd->driver->description, hcd->self.busnum);
376 
377 	/* fall back to legacy interrupt*/
378 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
379 			hcd->irq_descr, hcd);
380 	if (ret) {
381 		xhci_err(xhci, "request interrupt %d failed\n",
382 				pdev->irq);
383 		return ret;
384 	}
385 	hcd->irq = pdev->irq;
386 	return 0;
387 }
388 
389 #else
390 
391 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
392 {
393 	return 0;
394 }
395 
396 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
397 {
398 }
399 
400 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
401 {
402 }
403 
404 #endif
405 
406 static void compliance_mode_recovery(unsigned long arg)
407 {
408 	struct xhci_hcd *xhci;
409 	struct usb_hcd *hcd;
410 	u32 temp;
411 	int i;
412 
413 	xhci = (struct xhci_hcd *)arg;
414 
415 	for (i = 0; i < xhci->num_usb3_ports; i++) {
416 		temp = readl(xhci->usb3_ports[i]);
417 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
418 			/*
419 			 * Compliance Mode Detected. Letting USB Core
420 			 * handle the Warm Reset
421 			 */
422 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
423 					"Compliance mode detected->port %d",
424 					i + 1);
425 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426 					"Attempting compliance mode recovery");
427 			hcd = xhci->shared_hcd;
428 
429 			if (hcd->state == HC_STATE_SUSPENDED)
430 				usb_hcd_resume_root_hub(hcd);
431 
432 			usb_hcd_poll_rh_status(hcd);
433 		}
434 	}
435 
436 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
437 		mod_timer(&xhci->comp_mode_recovery_timer,
438 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
439 }
440 
441 /*
442  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
443  * that causes ports behind that hardware to enter compliance mode sometimes.
444  * The quirk creates a timer that polls every 2 seconds the link state of
445  * each host controller's port and recovers it by issuing a Warm reset
446  * if Compliance mode is detected, otherwise the port will become "dead" (no
447  * device connections or disconnections will be detected anymore). Becasue no
448  * status event is generated when entering compliance mode (per xhci spec),
449  * this quirk is needed on systems that have the failing hardware installed.
450  */
451 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
452 {
453 	xhci->port_status_u0 = 0;
454 	setup_timer(&xhci->comp_mode_recovery_timer,
455 		    compliance_mode_recovery, (unsigned long)xhci);
456 	xhci->comp_mode_recovery_timer.expires = jiffies +
457 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
458 
459 	add_timer(&xhci->comp_mode_recovery_timer);
460 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461 			"Compliance mode recovery timer initialized");
462 }
463 
464 /*
465  * This function identifies the systems that have installed the SN65LVPE502CP
466  * USB3.0 re-driver and that need the Compliance Mode Quirk.
467  * Systems:
468  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
469  */
470 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
471 {
472 	const char *dmi_product_name, *dmi_sys_vendor;
473 
474 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
475 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
476 	if (!dmi_product_name || !dmi_sys_vendor)
477 		return false;
478 
479 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
480 		return false;
481 
482 	if (strstr(dmi_product_name, "Z420") ||
483 			strstr(dmi_product_name, "Z620") ||
484 			strstr(dmi_product_name, "Z820") ||
485 			strstr(dmi_product_name, "Z1 Workstation"))
486 		return true;
487 
488 	return false;
489 }
490 
491 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
492 {
493 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
494 }
495 
496 
497 /*
498  * Initialize memory for HCD and xHC (one-time init).
499  *
500  * Program the PAGESIZE register, initialize the device context array, create
501  * device contexts (?), set up a command ring segment (or two?), create event
502  * ring (one for now).
503  */
504 static int xhci_init(struct usb_hcd *hcd)
505 {
506 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
507 	int retval = 0;
508 
509 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
510 	spin_lock_init(&xhci->lock);
511 	if (xhci->hci_version == 0x95 && link_quirk) {
512 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
513 				"QUIRK: Not clearing Link TRB chain bits.");
514 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
515 	} else {
516 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
517 				"xHCI doesn't need link TRB QUIRK");
518 	}
519 	retval = xhci_mem_init(xhci, GFP_KERNEL);
520 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
521 
522 	/* Initializing Compliance Mode Recovery Data If Needed */
523 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
524 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
525 		compliance_mode_recovery_timer_init(xhci);
526 	}
527 
528 	return retval;
529 }
530 
531 /*-------------------------------------------------------------------------*/
532 
533 
534 static int xhci_run_finished(struct xhci_hcd *xhci)
535 {
536 	if (xhci_start(xhci)) {
537 		xhci_halt(xhci);
538 		return -ENODEV;
539 	}
540 	xhci->shared_hcd->state = HC_STATE_RUNNING;
541 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
542 
543 	if (xhci->quirks & XHCI_NEC_HOST)
544 		xhci_ring_cmd_db(xhci);
545 
546 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547 			"Finished xhci_run for USB3 roothub");
548 	return 0;
549 }
550 
551 /*
552  * Start the HC after it was halted.
553  *
554  * This function is called by the USB core when the HC driver is added.
555  * Its opposite is xhci_stop().
556  *
557  * xhci_init() must be called once before this function can be called.
558  * Reset the HC, enable device slot contexts, program DCBAAP, and
559  * set command ring pointer and event ring pointer.
560  *
561  * Setup MSI-X vectors and enable interrupts.
562  */
563 int xhci_run(struct usb_hcd *hcd)
564 {
565 	u32 temp;
566 	u64 temp_64;
567 	int ret;
568 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
569 
570 	/* Start the xHCI host controller running only after the USB 2.0 roothub
571 	 * is setup.
572 	 */
573 
574 	hcd->uses_new_polling = 1;
575 	if (!usb_hcd_is_primary_hcd(hcd))
576 		return xhci_run_finished(xhci);
577 
578 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
579 
580 	ret = xhci_try_enable_msi(hcd);
581 	if (ret)
582 		return ret;
583 
584 	xhci_dbg_cmd_ptrs(xhci);
585 
586 	xhci_dbg(xhci, "ERST memory map follows:\n");
587 	xhci_dbg_erst(xhci, &xhci->erst);
588 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
589 	temp_64 &= ~ERST_PTR_MASK;
590 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
592 
593 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
594 			"// Set the interrupt modulation register");
595 	temp = readl(&xhci->ir_set->irq_control);
596 	temp &= ~ER_IRQ_INTERVAL_MASK;
597 	/*
598 	 * the increment interval is 8 times as much as that defined
599 	 * in xHCI spec on MTK's controller
600 	 */
601 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
602 	writel(temp, &xhci->ir_set->irq_control);
603 
604 	/* Set the HCD state before we enable the irqs */
605 	temp = readl(&xhci->op_regs->command);
606 	temp |= (CMD_EIE);
607 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
608 			"// Enable interrupts, cmd = 0x%x.", temp);
609 	writel(temp, &xhci->op_regs->command);
610 
611 	temp = readl(&xhci->ir_set->irq_pending);
612 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
614 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
615 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
616 	xhci_print_ir_set(xhci, 0);
617 
618 	if (xhci->quirks & XHCI_NEC_HOST) {
619 		struct xhci_command *command;
620 
621 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
622 		if (!command)
623 			return -ENOMEM;
624 
625 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
626 				TRB_TYPE(TRB_NEC_GET_FW));
627 	}
628 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
629 			"Finished xhci_run for USB2 roothub");
630 	return 0;
631 }
632 EXPORT_SYMBOL_GPL(xhci_run);
633 
634 /*
635  * Stop xHCI driver.
636  *
637  * This function is called by the USB core when the HC driver is removed.
638  * Its opposite is xhci_run().
639  *
640  * Disable device contexts, disable IRQs, and quiesce the HC.
641  * Reset the HC, finish any completed transactions, and cleanup memory.
642  */
643 static void xhci_stop(struct usb_hcd *hcd)
644 {
645 	u32 temp;
646 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
647 
648 	mutex_lock(&xhci->mutex);
649 
650 	/* Only halt host and free memory after both hcds are removed */
651 	if (!usb_hcd_is_primary_hcd(hcd)) {
652 		/* usb core will free this hcd shortly, unset pointer */
653 		xhci->shared_hcd = NULL;
654 		mutex_unlock(&xhci->mutex);
655 		return;
656 	}
657 
658 	spin_lock_irq(&xhci->lock);
659 	xhci->xhc_state |= XHCI_STATE_HALTED;
660 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
661 	xhci_halt(xhci);
662 	xhci_reset(xhci);
663 	spin_unlock_irq(&xhci->lock);
664 
665 	xhci_cleanup_msix(xhci);
666 
667 	/* Deleting Compliance Mode Recovery Timer */
668 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
669 			(!(xhci_all_ports_seen_u0(xhci)))) {
670 		del_timer_sync(&xhci->comp_mode_recovery_timer);
671 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
672 				"%s: compliance mode recovery timer deleted",
673 				__func__);
674 	}
675 
676 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
677 		usb_amd_dev_put();
678 
679 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680 			"// Disabling event ring interrupts");
681 	temp = readl(&xhci->op_regs->status);
682 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
683 	temp = readl(&xhci->ir_set->irq_pending);
684 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
685 	xhci_print_ir_set(xhci, 0);
686 
687 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
688 	xhci_mem_cleanup(xhci);
689 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
690 			"xhci_stop completed - status = %x",
691 			readl(&xhci->op_regs->status));
692 	mutex_unlock(&xhci->mutex);
693 }
694 
695 /*
696  * Shutdown HC (not bus-specific)
697  *
698  * This is called when the machine is rebooting or halting.  We assume that the
699  * machine will be powered off, and the HC's internal state will be reset.
700  * Don't bother to free memory.
701  *
702  * This will only ever be called with the main usb_hcd (the USB3 roothub).
703  */
704 static void xhci_shutdown(struct usb_hcd *hcd)
705 {
706 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
707 
708 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
709 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
710 
711 	spin_lock_irq(&xhci->lock);
712 	xhci_halt(xhci);
713 	/* Workaround for spurious wakeups at shutdown with HSW */
714 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
715 		xhci_reset(xhci);
716 	spin_unlock_irq(&xhci->lock);
717 
718 	xhci_cleanup_msix(xhci);
719 
720 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
721 			"xhci_shutdown completed - status = %x",
722 			readl(&xhci->op_regs->status));
723 
724 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
725 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
726 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
727 }
728 
729 #ifdef CONFIG_PM
730 static void xhci_save_registers(struct xhci_hcd *xhci)
731 {
732 	xhci->s3.command = readl(&xhci->op_regs->command);
733 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
734 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
735 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
736 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
737 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
738 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
739 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
740 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
741 }
742 
743 static void xhci_restore_registers(struct xhci_hcd *xhci)
744 {
745 	writel(xhci->s3.command, &xhci->op_regs->command);
746 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
747 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
748 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
749 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
750 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
751 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
752 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
753 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
754 }
755 
756 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
757 {
758 	u64	val_64;
759 
760 	/* step 2: initialize command ring buffer */
761 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
762 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
763 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
764 				      xhci->cmd_ring->dequeue) &
765 		 (u64) ~CMD_RING_RSVD_BITS) |
766 		xhci->cmd_ring->cycle_state;
767 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
768 			"// Setting command ring address to 0x%llx",
769 			(long unsigned long) val_64);
770 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
771 }
772 
773 /*
774  * The whole command ring must be cleared to zero when we suspend the host.
775  *
776  * The host doesn't save the command ring pointer in the suspend well, so we
777  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
778  * aligned, because of the reserved bits in the command ring dequeue pointer
779  * register.  Therefore, we can't just set the dequeue pointer back in the
780  * middle of the ring (TRBs are 16-byte aligned).
781  */
782 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
783 {
784 	struct xhci_ring *ring;
785 	struct xhci_segment *seg;
786 
787 	ring = xhci->cmd_ring;
788 	seg = ring->deq_seg;
789 	do {
790 		memset(seg->trbs, 0,
791 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
792 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
793 			cpu_to_le32(~TRB_CYCLE);
794 		seg = seg->next;
795 	} while (seg != ring->deq_seg);
796 
797 	/* Reset the software enqueue and dequeue pointers */
798 	ring->deq_seg = ring->first_seg;
799 	ring->dequeue = ring->first_seg->trbs;
800 	ring->enq_seg = ring->deq_seg;
801 	ring->enqueue = ring->dequeue;
802 
803 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
804 	/*
805 	 * Ring is now zeroed, so the HW should look for change of ownership
806 	 * when the cycle bit is set to 1.
807 	 */
808 	ring->cycle_state = 1;
809 
810 	/*
811 	 * Reset the hardware dequeue pointer.
812 	 * Yes, this will need to be re-written after resume, but we're paranoid
813 	 * and want to make sure the hardware doesn't access bogus memory
814 	 * because, say, the BIOS or an SMI started the host without changing
815 	 * the command ring pointers.
816 	 */
817 	xhci_set_cmd_ring_deq(xhci);
818 }
819 
820 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
821 {
822 	int port_index;
823 	__le32 __iomem **port_array;
824 	unsigned long flags;
825 	u32 t1, t2;
826 
827 	spin_lock_irqsave(&xhci->lock, flags);
828 
829 	/* disable usb3 ports Wake bits */
830 	port_index = xhci->num_usb3_ports;
831 	port_array = xhci->usb3_ports;
832 	while (port_index--) {
833 		t1 = readl(port_array[port_index]);
834 		t1 = xhci_port_state_to_neutral(t1);
835 		t2 = t1 & ~PORT_WAKE_BITS;
836 		if (t1 != t2)
837 			writel(t2, port_array[port_index]);
838 	}
839 
840 	/* disable usb2 ports Wake bits */
841 	port_index = xhci->num_usb2_ports;
842 	port_array = xhci->usb2_ports;
843 	while (port_index--) {
844 		t1 = readl(port_array[port_index]);
845 		t1 = xhci_port_state_to_neutral(t1);
846 		t2 = t1 & ~PORT_WAKE_BITS;
847 		if (t1 != t2)
848 			writel(t2, port_array[port_index]);
849 	}
850 
851 	spin_unlock_irqrestore(&xhci->lock, flags);
852 }
853 
854 /*
855  * Stop HC (not bus-specific)
856  *
857  * This is called when the machine transition into S3/S4 mode.
858  *
859  */
860 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
861 {
862 	int			rc = 0;
863 	unsigned int		delay = XHCI_MAX_HALT_USEC;
864 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
865 	u32			command;
866 
867 	if (!hcd->state)
868 		return 0;
869 
870 	if (hcd->state != HC_STATE_SUSPENDED ||
871 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
872 		return -EINVAL;
873 
874 	/* Clear root port wake on bits if wakeup not allowed. */
875 	if (!do_wakeup)
876 		xhci_disable_port_wake_on_bits(xhci);
877 
878 	/* Don't poll the roothubs on bus suspend. */
879 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
880 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
881 	del_timer_sync(&hcd->rh_timer);
882 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
883 	del_timer_sync(&xhci->shared_hcd->rh_timer);
884 
885 	spin_lock_irq(&xhci->lock);
886 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
887 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
888 	/* step 1: stop endpoint */
889 	/* skipped assuming that port suspend has done */
890 
891 	/* step 2: clear Run/Stop bit */
892 	command = readl(&xhci->op_regs->command);
893 	command &= ~CMD_RUN;
894 	writel(command, &xhci->op_regs->command);
895 
896 	/* Some chips from Fresco Logic need an extraordinary delay */
897 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
898 
899 	if (xhci_handshake(&xhci->op_regs->status,
900 		      STS_HALT, STS_HALT, delay)) {
901 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
902 		spin_unlock_irq(&xhci->lock);
903 		return -ETIMEDOUT;
904 	}
905 	xhci_clear_command_ring(xhci);
906 
907 	/* step 3: save registers */
908 	xhci_save_registers(xhci);
909 
910 	/* step 4: set CSS flag */
911 	command = readl(&xhci->op_regs->command);
912 	command |= CMD_CSS;
913 	writel(command, &xhci->op_regs->command);
914 	if (xhci_handshake(&xhci->op_regs->status,
915 				STS_SAVE, 0, 10 * 1000)) {
916 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
917 		spin_unlock_irq(&xhci->lock);
918 		return -ETIMEDOUT;
919 	}
920 	spin_unlock_irq(&xhci->lock);
921 
922 	/*
923 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
924 	 * is about to be suspended.
925 	 */
926 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
927 			(!(xhci_all_ports_seen_u0(xhci)))) {
928 		del_timer_sync(&xhci->comp_mode_recovery_timer);
929 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
930 				"%s: compliance mode recovery timer deleted",
931 				__func__);
932 	}
933 
934 	/* step 5: remove core well power */
935 	/* synchronize irq when using MSI-X */
936 	xhci_msix_sync_irqs(xhci);
937 
938 	return rc;
939 }
940 EXPORT_SYMBOL_GPL(xhci_suspend);
941 
942 /*
943  * start xHC (not bus-specific)
944  *
945  * This is called when the machine transition from S3/S4 mode.
946  *
947  */
948 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
949 {
950 	u32			command, temp = 0, status;
951 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
952 	struct usb_hcd		*secondary_hcd;
953 	int			retval = 0;
954 	bool			comp_timer_running = false;
955 
956 	if (!hcd->state)
957 		return 0;
958 
959 	/* Wait a bit if either of the roothubs need to settle from the
960 	 * transition into bus suspend.
961 	 */
962 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
963 			time_before(jiffies,
964 				xhci->bus_state[1].next_statechange))
965 		msleep(100);
966 
967 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
968 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
969 
970 	spin_lock_irq(&xhci->lock);
971 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
972 		hibernated = true;
973 
974 	if (!hibernated) {
975 		/* step 1: restore register */
976 		xhci_restore_registers(xhci);
977 		/* step 2: initialize command ring buffer */
978 		xhci_set_cmd_ring_deq(xhci);
979 		/* step 3: restore state and start state*/
980 		/* step 3: set CRS flag */
981 		command = readl(&xhci->op_regs->command);
982 		command |= CMD_CRS;
983 		writel(command, &xhci->op_regs->command);
984 		if (xhci_handshake(&xhci->op_regs->status,
985 			      STS_RESTORE, 0, 10 * 1000)) {
986 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
987 			spin_unlock_irq(&xhci->lock);
988 			return -ETIMEDOUT;
989 		}
990 		temp = readl(&xhci->op_regs->status);
991 	}
992 
993 	/* If restore operation fails, re-initialize the HC during resume */
994 	if ((temp & STS_SRE) || hibernated) {
995 
996 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
997 				!(xhci_all_ports_seen_u0(xhci))) {
998 			del_timer_sync(&xhci->comp_mode_recovery_timer);
999 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1000 				"Compliance Mode Recovery Timer deleted!");
1001 		}
1002 
1003 		/* Let the USB core know _both_ roothubs lost power. */
1004 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1005 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1006 
1007 		xhci_dbg(xhci, "Stop HCD\n");
1008 		xhci_halt(xhci);
1009 		xhci_reset(xhci);
1010 		spin_unlock_irq(&xhci->lock);
1011 		xhci_cleanup_msix(xhci);
1012 
1013 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1014 		temp = readl(&xhci->op_regs->status);
1015 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1016 		temp = readl(&xhci->ir_set->irq_pending);
1017 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1018 		xhci_print_ir_set(xhci, 0);
1019 
1020 		xhci_dbg(xhci, "cleaning up memory\n");
1021 		xhci_mem_cleanup(xhci);
1022 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1023 			    readl(&xhci->op_regs->status));
1024 
1025 		/* USB core calls the PCI reinit and start functions twice:
1026 		 * first with the primary HCD, and then with the secondary HCD.
1027 		 * If we don't do the same, the host will never be started.
1028 		 */
1029 		if (!usb_hcd_is_primary_hcd(hcd))
1030 			secondary_hcd = hcd;
1031 		else
1032 			secondary_hcd = xhci->shared_hcd;
1033 
1034 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1035 		retval = xhci_init(hcd->primary_hcd);
1036 		if (retval)
1037 			return retval;
1038 		comp_timer_running = true;
1039 
1040 		xhci_dbg(xhci, "Start the primary HCD\n");
1041 		retval = xhci_run(hcd->primary_hcd);
1042 		if (!retval) {
1043 			xhci_dbg(xhci, "Start the secondary HCD\n");
1044 			retval = xhci_run(secondary_hcd);
1045 		}
1046 		hcd->state = HC_STATE_SUSPENDED;
1047 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1048 		goto done;
1049 	}
1050 
1051 	/* step 4: set Run/Stop bit */
1052 	command = readl(&xhci->op_regs->command);
1053 	command |= CMD_RUN;
1054 	writel(command, &xhci->op_regs->command);
1055 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1056 		  0, 250 * 1000);
1057 
1058 	/* step 5: walk topology and initialize portsc,
1059 	 * portpmsc and portli
1060 	 */
1061 	/* this is done in bus_resume */
1062 
1063 	/* step 6: restart each of the previously
1064 	 * Running endpoints by ringing their doorbells
1065 	 */
1066 
1067 	spin_unlock_irq(&xhci->lock);
1068 
1069  done:
1070 	if (retval == 0) {
1071 		/* Resume root hubs only when have pending events. */
1072 		status = readl(&xhci->op_regs->status);
1073 		if (status & STS_EINT) {
1074 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1075 			usb_hcd_resume_root_hub(hcd);
1076 		}
1077 	}
1078 
1079 	/*
1080 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1081 	 * be re-initialized Always after a system resume. Ports are subject
1082 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1083 	 * ports have entered previously to U0 before system's suspension.
1084 	 */
1085 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1086 		compliance_mode_recovery_timer_init(xhci);
1087 
1088 	/* Re-enable port polling. */
1089 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1090 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1091 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1092 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1093 	usb_hcd_poll_rh_status(hcd);
1094 
1095 	return retval;
1096 }
1097 EXPORT_SYMBOL_GPL(xhci_resume);
1098 #endif	/* CONFIG_PM */
1099 
1100 /*-------------------------------------------------------------------------*/
1101 
1102 /**
1103  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1104  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1105  * value to right shift 1 for the bitmask.
1106  *
1107  * Index  = (epnum * 2) + direction - 1,
1108  * where direction = 0 for OUT, 1 for IN.
1109  * For control endpoints, the IN index is used (OUT index is unused), so
1110  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1111  */
1112 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1113 {
1114 	unsigned int index;
1115 	if (usb_endpoint_xfer_control(desc))
1116 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1117 	else
1118 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1119 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1120 	return index;
1121 }
1122 
1123 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1124  * address from the XHCI endpoint index.
1125  */
1126 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1127 {
1128 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1129 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1130 	return direction | number;
1131 }
1132 
1133 /* Find the flag for this endpoint (for use in the control context).  Use the
1134  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1135  * bit 1, etc.
1136  */
1137 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1138 {
1139 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1140 }
1141 
1142 /* Find the flag for this endpoint (for use in the control context).  Use the
1143  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1144  * bit 1, etc.
1145  */
1146 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1147 {
1148 	return 1 << (ep_index + 1);
1149 }
1150 
1151 /* Compute the last valid endpoint context index.  Basically, this is the
1152  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1153  * we find the most significant bit set in the added contexts flags.
1154  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1155  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1156  */
1157 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1158 {
1159 	return fls(added_ctxs) - 1;
1160 }
1161 
1162 /* Returns 1 if the arguments are OK;
1163  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1164  */
1165 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1166 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1167 		const char *func) {
1168 	struct xhci_hcd	*xhci;
1169 	struct xhci_virt_device	*virt_dev;
1170 
1171 	if (!hcd || (check_ep && !ep) || !udev) {
1172 		pr_debug("xHCI %s called with invalid args\n", func);
1173 		return -EINVAL;
1174 	}
1175 	if (!udev->parent) {
1176 		pr_debug("xHCI %s called for root hub\n", func);
1177 		return 0;
1178 	}
1179 
1180 	xhci = hcd_to_xhci(hcd);
1181 	if (check_virt_dev) {
1182 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1183 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1184 					func);
1185 			return -EINVAL;
1186 		}
1187 
1188 		virt_dev = xhci->devs[udev->slot_id];
1189 		if (virt_dev->udev != udev) {
1190 			xhci_dbg(xhci, "xHCI %s called with udev and "
1191 					  "virt_dev does not match\n", func);
1192 			return -EINVAL;
1193 		}
1194 	}
1195 
1196 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1197 		return -ENODEV;
1198 
1199 	return 1;
1200 }
1201 
1202 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1203 		struct usb_device *udev, struct xhci_command *command,
1204 		bool ctx_change, bool must_succeed);
1205 
1206 /*
1207  * Full speed devices may have a max packet size greater than 8 bytes, but the
1208  * USB core doesn't know that until it reads the first 8 bytes of the
1209  * descriptor.  If the usb_device's max packet size changes after that point,
1210  * we need to issue an evaluate context command and wait on it.
1211  */
1212 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1213 		unsigned int ep_index, struct urb *urb)
1214 {
1215 	struct xhci_container_ctx *out_ctx;
1216 	struct xhci_input_control_ctx *ctrl_ctx;
1217 	struct xhci_ep_ctx *ep_ctx;
1218 	struct xhci_command *command;
1219 	int max_packet_size;
1220 	int hw_max_packet_size;
1221 	int ret = 0;
1222 
1223 	out_ctx = xhci->devs[slot_id]->out_ctx;
1224 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1225 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1226 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1227 	if (hw_max_packet_size != max_packet_size) {
1228 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1229 				"Max Packet Size for ep 0 changed.");
1230 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1231 				"Max packet size in usb_device = %d",
1232 				max_packet_size);
1233 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1234 				"Max packet size in xHCI HW = %d",
1235 				hw_max_packet_size);
1236 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237 				"Issuing evaluate context command.");
1238 
1239 		/* Set up the input context flags for the command */
1240 		/* FIXME: This won't work if a non-default control endpoint
1241 		 * changes max packet sizes.
1242 		 */
1243 
1244 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1245 		if (!command)
1246 			return -ENOMEM;
1247 
1248 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1249 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1250 		if (!ctrl_ctx) {
1251 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1252 					__func__);
1253 			ret = -ENOMEM;
1254 			goto command_cleanup;
1255 		}
1256 		/* Set up the modified control endpoint 0 */
1257 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1258 				xhci->devs[slot_id]->out_ctx, ep_index);
1259 
1260 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1261 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1262 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1263 
1264 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1265 		ctrl_ctx->drop_flags = 0;
1266 
1267 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1268 				true, false);
1269 
1270 		/* Clean up the input context for later use by bandwidth
1271 		 * functions.
1272 		 */
1273 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1274 command_cleanup:
1275 		kfree(command->completion);
1276 		kfree(command);
1277 	}
1278 	return ret;
1279 }
1280 
1281 /*
1282  * non-error returns are a promise to giveback() the urb later
1283  * we drop ownership so next owner (or urb unlink) can get it
1284  */
1285 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1286 {
1287 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1288 	unsigned long flags;
1289 	int ret = 0;
1290 	unsigned int slot_id, ep_index, ep_state;
1291 	struct urb_priv	*urb_priv;
1292 	int num_tds;
1293 
1294 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1295 					true, true, __func__) <= 0)
1296 		return -EINVAL;
1297 
1298 	slot_id = urb->dev->slot_id;
1299 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1300 
1301 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1302 		if (!in_interrupt())
1303 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1304 		return -ESHUTDOWN;
1305 	}
1306 
1307 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1308 		num_tds = urb->number_of_packets;
1309 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1310 	    urb->transfer_buffer_length > 0 &&
1311 	    urb->transfer_flags & URB_ZERO_PACKET &&
1312 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1313 		num_tds = 2;
1314 	else
1315 		num_tds = 1;
1316 
1317 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1318 			   num_tds * sizeof(struct xhci_td), mem_flags);
1319 	if (!urb_priv)
1320 		return -ENOMEM;
1321 
1322 	urb_priv->num_tds = num_tds;
1323 	urb_priv->num_tds_done = 0;
1324 	urb->hcpriv = urb_priv;
1325 
1326 	trace_xhci_urb_enqueue(urb);
1327 
1328 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1329 		/* Check to see if the max packet size for the default control
1330 		 * endpoint changed during FS device enumeration
1331 		 */
1332 		if (urb->dev->speed == USB_SPEED_FULL) {
1333 			ret = xhci_check_maxpacket(xhci, slot_id,
1334 					ep_index, urb);
1335 			if (ret < 0) {
1336 				xhci_urb_free_priv(urb_priv);
1337 				urb->hcpriv = NULL;
1338 				return ret;
1339 			}
1340 		}
1341 	}
1342 
1343 	spin_lock_irqsave(&xhci->lock, flags);
1344 
1345 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1346 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1347 			 urb->ep->desc.bEndpointAddress, urb);
1348 		ret = -ESHUTDOWN;
1349 		goto free_priv;
1350 	}
1351 
1352 	switch (usb_endpoint_type(&urb->ep->desc)) {
1353 
1354 	case USB_ENDPOINT_XFER_CONTROL:
1355 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1356 					 slot_id, ep_index);
1357 		break;
1358 	case USB_ENDPOINT_XFER_BULK:
1359 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1360 		if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1361 			xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1362 				  ep_state);
1363 			ret = -EINVAL;
1364 			break;
1365 		}
1366 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1367 					 slot_id, ep_index);
1368 		break;
1369 
1370 
1371 	case USB_ENDPOINT_XFER_INT:
1372 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1373 				slot_id, ep_index);
1374 		break;
1375 
1376 	case USB_ENDPOINT_XFER_ISOC:
1377 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1378 				slot_id, ep_index);
1379 	}
1380 
1381 	if (ret) {
1382 free_priv:
1383 		xhci_urb_free_priv(urb_priv);
1384 		urb->hcpriv = NULL;
1385 	}
1386 	spin_unlock_irqrestore(&xhci->lock, flags);
1387 	return ret;
1388 }
1389 
1390 /*
1391  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1392  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1393  * should pick up where it left off in the TD, unless a Set Transfer Ring
1394  * Dequeue Pointer is issued.
1395  *
1396  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1397  * the ring.  Since the ring is a contiguous structure, they can't be physically
1398  * removed.  Instead, there are two options:
1399  *
1400  *  1) If the HC is in the middle of processing the URB to be canceled, we
1401  *     simply move the ring's dequeue pointer past those TRBs using the Set
1402  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1403  *     when drivers timeout on the last submitted URB and attempt to cancel.
1404  *
1405  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1406  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1407  *     HC will need to invalidate the any TRBs it has cached after the stop
1408  *     endpoint command, as noted in the xHCI 0.95 errata.
1409  *
1410  *  3) The TD may have completed by the time the Stop Endpoint Command
1411  *     completes, so software needs to handle that case too.
1412  *
1413  * This function should protect against the TD enqueueing code ringing the
1414  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1415  * It also needs to account for multiple cancellations on happening at the same
1416  * time for the same endpoint.
1417  *
1418  * Note that this function can be called in any context, or so says
1419  * usb_hcd_unlink_urb()
1420  */
1421 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1422 {
1423 	unsigned long flags;
1424 	int ret, i;
1425 	u32 temp;
1426 	struct xhci_hcd *xhci;
1427 	struct urb_priv	*urb_priv;
1428 	struct xhci_td *td;
1429 	unsigned int ep_index;
1430 	struct xhci_ring *ep_ring;
1431 	struct xhci_virt_ep *ep;
1432 	struct xhci_command *command;
1433 	struct xhci_virt_device *vdev;
1434 
1435 	xhci = hcd_to_xhci(hcd);
1436 	spin_lock_irqsave(&xhci->lock, flags);
1437 
1438 	trace_xhci_urb_dequeue(urb);
1439 
1440 	/* Make sure the URB hasn't completed or been unlinked already */
1441 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1442 	if (ret)
1443 		goto done;
1444 
1445 	/* give back URB now if we can't queue it for cancel */
1446 	vdev = xhci->devs[urb->dev->slot_id];
1447 	urb_priv = urb->hcpriv;
1448 	if (!vdev || !urb_priv)
1449 		goto err_giveback;
1450 
1451 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1452 	ep = &vdev->eps[ep_index];
1453 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1454 	if (!ep || !ep_ring)
1455 		goto err_giveback;
1456 
1457 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1458 	temp = readl(&xhci->op_regs->status);
1459 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1460 		xhci_hc_died(xhci);
1461 		goto done;
1462 	}
1463 
1464 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1465 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1466 				"HC halted, freeing TD manually.");
1467 		for (i = urb_priv->num_tds_done;
1468 		     i < urb_priv->num_tds;
1469 		     i++) {
1470 			td = &urb_priv->td[i];
1471 			if (!list_empty(&td->td_list))
1472 				list_del_init(&td->td_list);
1473 			if (!list_empty(&td->cancelled_td_list))
1474 				list_del_init(&td->cancelled_td_list);
1475 		}
1476 		goto err_giveback;
1477 	}
1478 
1479 	i = urb_priv->num_tds_done;
1480 	if (i < urb_priv->num_tds)
1481 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1482 				"Cancel URB %p, dev %s, ep 0x%x, "
1483 				"starting at offset 0x%llx",
1484 				urb, urb->dev->devpath,
1485 				urb->ep->desc.bEndpointAddress,
1486 				(unsigned long long) xhci_trb_virt_to_dma(
1487 					urb_priv->td[i].start_seg,
1488 					urb_priv->td[i].first_trb));
1489 
1490 	for (; i < urb_priv->num_tds; i++) {
1491 		td = &urb_priv->td[i];
1492 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1493 	}
1494 
1495 	/* Queue a stop endpoint command, but only if this is
1496 	 * the first cancellation to be handled.
1497 	 */
1498 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1499 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1500 		if (!command) {
1501 			ret = -ENOMEM;
1502 			goto done;
1503 		}
1504 		ep->ep_state |= EP_STOP_CMD_PENDING;
1505 		ep->stop_cmd_timer.expires = jiffies +
1506 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1507 		add_timer(&ep->stop_cmd_timer);
1508 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1509 					 ep_index, 0);
1510 		xhci_ring_cmd_db(xhci);
1511 	}
1512 done:
1513 	spin_unlock_irqrestore(&xhci->lock, flags);
1514 	return ret;
1515 
1516 err_giveback:
1517 	if (urb_priv)
1518 		xhci_urb_free_priv(urb_priv);
1519 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1520 	spin_unlock_irqrestore(&xhci->lock, flags);
1521 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1522 	return ret;
1523 }
1524 
1525 /* Drop an endpoint from a new bandwidth configuration for this device.
1526  * Only one call to this function is allowed per endpoint before
1527  * check_bandwidth() or reset_bandwidth() must be called.
1528  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1529  * add the endpoint to the schedule with possibly new parameters denoted by a
1530  * different endpoint descriptor in usb_host_endpoint.
1531  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1532  * not allowed.
1533  *
1534  * The USB core will not allow URBs to be queued to an endpoint that is being
1535  * disabled, so there's no need for mutual exclusion to protect
1536  * the xhci->devs[slot_id] structure.
1537  */
1538 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1539 		struct usb_host_endpoint *ep)
1540 {
1541 	struct xhci_hcd *xhci;
1542 	struct xhci_container_ctx *in_ctx, *out_ctx;
1543 	struct xhci_input_control_ctx *ctrl_ctx;
1544 	unsigned int ep_index;
1545 	struct xhci_ep_ctx *ep_ctx;
1546 	u32 drop_flag;
1547 	u32 new_add_flags, new_drop_flags;
1548 	int ret;
1549 
1550 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1551 	if (ret <= 0)
1552 		return ret;
1553 	xhci = hcd_to_xhci(hcd);
1554 	if (xhci->xhc_state & XHCI_STATE_DYING)
1555 		return -ENODEV;
1556 
1557 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1558 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1559 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1560 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1561 				__func__, drop_flag);
1562 		return 0;
1563 	}
1564 
1565 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1566 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1567 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1568 	if (!ctrl_ctx) {
1569 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1570 				__func__);
1571 		return 0;
1572 	}
1573 
1574 	ep_index = xhci_get_endpoint_index(&ep->desc);
1575 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1576 	/* If the HC already knows the endpoint is disabled,
1577 	 * or the HCD has noted it is disabled, ignore this request
1578 	 */
1579 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1580 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1581 	    xhci_get_endpoint_flag(&ep->desc)) {
1582 		/* Do not warn when called after a usb_device_reset */
1583 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1584 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1585 				  __func__, ep);
1586 		return 0;
1587 	}
1588 
1589 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1590 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1591 
1592 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1593 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1594 
1595 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1596 
1597 	if (xhci->quirks & XHCI_MTK_HOST)
1598 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1599 
1600 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1601 			(unsigned int) ep->desc.bEndpointAddress,
1602 			udev->slot_id,
1603 			(unsigned int) new_drop_flags,
1604 			(unsigned int) new_add_flags);
1605 	return 0;
1606 }
1607 
1608 /* Add an endpoint to a new possible bandwidth configuration for this device.
1609  * Only one call to this function is allowed per endpoint before
1610  * check_bandwidth() or reset_bandwidth() must be called.
1611  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1612  * add the endpoint to the schedule with possibly new parameters denoted by a
1613  * different endpoint descriptor in usb_host_endpoint.
1614  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1615  * not allowed.
1616  *
1617  * The USB core will not allow URBs to be queued to an endpoint until the
1618  * configuration or alt setting is installed in the device, so there's no need
1619  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1620  */
1621 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1622 		struct usb_host_endpoint *ep)
1623 {
1624 	struct xhci_hcd *xhci;
1625 	struct xhci_container_ctx *in_ctx;
1626 	unsigned int ep_index;
1627 	struct xhci_input_control_ctx *ctrl_ctx;
1628 	u32 added_ctxs;
1629 	u32 new_add_flags, new_drop_flags;
1630 	struct xhci_virt_device *virt_dev;
1631 	int ret = 0;
1632 
1633 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1634 	if (ret <= 0) {
1635 		/* So we won't queue a reset ep command for a root hub */
1636 		ep->hcpriv = NULL;
1637 		return ret;
1638 	}
1639 	xhci = hcd_to_xhci(hcd);
1640 	if (xhci->xhc_state & XHCI_STATE_DYING)
1641 		return -ENODEV;
1642 
1643 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1644 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1645 		/* FIXME when we have to issue an evaluate endpoint command to
1646 		 * deal with ep0 max packet size changing once we get the
1647 		 * descriptors
1648 		 */
1649 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1650 				__func__, added_ctxs);
1651 		return 0;
1652 	}
1653 
1654 	virt_dev = xhci->devs[udev->slot_id];
1655 	in_ctx = virt_dev->in_ctx;
1656 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1657 	if (!ctrl_ctx) {
1658 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1659 				__func__);
1660 		return 0;
1661 	}
1662 
1663 	ep_index = xhci_get_endpoint_index(&ep->desc);
1664 	/* If this endpoint is already in use, and the upper layers are trying
1665 	 * to add it again without dropping it, reject the addition.
1666 	 */
1667 	if (virt_dev->eps[ep_index].ring &&
1668 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1669 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1670 				"without dropping it.\n",
1671 				(unsigned int) ep->desc.bEndpointAddress);
1672 		return -EINVAL;
1673 	}
1674 
1675 	/* If the HCD has already noted the endpoint is enabled,
1676 	 * ignore this request.
1677 	 */
1678 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1679 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1680 				__func__, ep);
1681 		return 0;
1682 	}
1683 
1684 	/*
1685 	 * Configuration and alternate setting changes must be done in
1686 	 * process context, not interrupt context (or so documenation
1687 	 * for usb_set_interface() and usb_set_configuration() claim).
1688 	 */
1689 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1690 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1691 				__func__, ep->desc.bEndpointAddress);
1692 		return -ENOMEM;
1693 	}
1694 
1695 	if (xhci->quirks & XHCI_MTK_HOST) {
1696 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1697 		if (ret < 0) {
1698 			xhci_free_or_cache_endpoint_ring(xhci,
1699 				virt_dev, ep_index);
1700 			return ret;
1701 		}
1702 	}
1703 
1704 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1705 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1706 
1707 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1708 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1709 	 * this re-adds a new state for the endpoint from the new endpoint
1710 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1711 	 * drop flags alone.
1712 	 */
1713 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1714 
1715 	/* Store the usb_device pointer for later use */
1716 	ep->hcpriv = udev;
1717 
1718 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1719 			(unsigned int) ep->desc.bEndpointAddress,
1720 			udev->slot_id,
1721 			(unsigned int) new_drop_flags,
1722 			(unsigned int) new_add_flags);
1723 	return 0;
1724 }
1725 
1726 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1727 {
1728 	struct xhci_input_control_ctx *ctrl_ctx;
1729 	struct xhci_ep_ctx *ep_ctx;
1730 	struct xhci_slot_ctx *slot_ctx;
1731 	int i;
1732 
1733 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1734 	if (!ctrl_ctx) {
1735 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1736 				__func__);
1737 		return;
1738 	}
1739 
1740 	/* When a device's add flag and drop flag are zero, any subsequent
1741 	 * configure endpoint command will leave that endpoint's state
1742 	 * untouched.  Make sure we don't leave any old state in the input
1743 	 * endpoint contexts.
1744 	 */
1745 	ctrl_ctx->drop_flags = 0;
1746 	ctrl_ctx->add_flags = 0;
1747 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1748 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1749 	/* Endpoint 0 is always valid */
1750 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1751 	for (i = 1; i < 31; i++) {
1752 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1753 		ep_ctx->ep_info = 0;
1754 		ep_ctx->ep_info2 = 0;
1755 		ep_ctx->deq = 0;
1756 		ep_ctx->tx_info = 0;
1757 	}
1758 }
1759 
1760 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1761 		struct usb_device *udev, u32 *cmd_status)
1762 {
1763 	int ret;
1764 
1765 	switch (*cmd_status) {
1766 	case COMP_COMMAND_ABORTED:
1767 	case COMP_COMMAND_RING_STOPPED:
1768 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1769 		ret = -ETIME;
1770 		break;
1771 	case COMP_RESOURCE_ERROR:
1772 		dev_warn(&udev->dev,
1773 			 "Not enough host controller resources for new device state.\n");
1774 		ret = -ENOMEM;
1775 		/* FIXME: can we allocate more resources for the HC? */
1776 		break;
1777 	case COMP_BANDWIDTH_ERROR:
1778 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1779 		dev_warn(&udev->dev,
1780 			 "Not enough bandwidth for new device state.\n");
1781 		ret = -ENOSPC;
1782 		/* FIXME: can we go back to the old state? */
1783 		break;
1784 	case COMP_TRB_ERROR:
1785 		/* the HCD set up something wrong */
1786 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1787 				"add flag = 1, "
1788 				"and endpoint is not disabled.\n");
1789 		ret = -EINVAL;
1790 		break;
1791 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1792 		dev_warn(&udev->dev,
1793 			 "ERROR: Incompatible device for endpoint configure command.\n");
1794 		ret = -ENODEV;
1795 		break;
1796 	case COMP_SUCCESS:
1797 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1798 				"Successful Endpoint Configure command");
1799 		ret = 0;
1800 		break;
1801 	default:
1802 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1803 				*cmd_status);
1804 		ret = -EINVAL;
1805 		break;
1806 	}
1807 	return ret;
1808 }
1809 
1810 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1811 		struct usb_device *udev, u32 *cmd_status)
1812 {
1813 	int ret;
1814 
1815 	switch (*cmd_status) {
1816 	case COMP_COMMAND_ABORTED:
1817 	case COMP_COMMAND_RING_STOPPED:
1818 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1819 		ret = -ETIME;
1820 		break;
1821 	case COMP_PARAMETER_ERROR:
1822 		dev_warn(&udev->dev,
1823 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1824 		ret = -EINVAL;
1825 		break;
1826 	case COMP_SLOT_NOT_ENABLED_ERROR:
1827 		dev_warn(&udev->dev,
1828 			"WARN: slot not enabled for evaluate context command.\n");
1829 		ret = -EINVAL;
1830 		break;
1831 	case COMP_CONTEXT_STATE_ERROR:
1832 		dev_warn(&udev->dev,
1833 			"WARN: invalid context state for evaluate context command.\n");
1834 		ret = -EINVAL;
1835 		break;
1836 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1837 		dev_warn(&udev->dev,
1838 			"ERROR: Incompatible device for evaluate context command.\n");
1839 		ret = -ENODEV;
1840 		break;
1841 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1842 		/* Max Exit Latency too large error */
1843 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1844 		ret = -EINVAL;
1845 		break;
1846 	case COMP_SUCCESS:
1847 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1848 				"Successful evaluate context command");
1849 		ret = 0;
1850 		break;
1851 	default:
1852 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1853 			*cmd_status);
1854 		ret = -EINVAL;
1855 		break;
1856 	}
1857 	return ret;
1858 }
1859 
1860 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1861 		struct xhci_input_control_ctx *ctrl_ctx)
1862 {
1863 	u32 valid_add_flags;
1864 	u32 valid_drop_flags;
1865 
1866 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1867 	 * (bit 1).  The default control endpoint is added during the Address
1868 	 * Device command and is never removed until the slot is disabled.
1869 	 */
1870 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1871 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1872 
1873 	/* Use hweight32 to count the number of ones in the add flags, or
1874 	 * number of endpoints added.  Don't count endpoints that are changed
1875 	 * (both added and dropped).
1876 	 */
1877 	return hweight32(valid_add_flags) -
1878 		hweight32(valid_add_flags & valid_drop_flags);
1879 }
1880 
1881 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1882 		struct xhci_input_control_ctx *ctrl_ctx)
1883 {
1884 	u32 valid_add_flags;
1885 	u32 valid_drop_flags;
1886 
1887 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1888 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1889 
1890 	return hweight32(valid_drop_flags) -
1891 		hweight32(valid_add_flags & valid_drop_flags);
1892 }
1893 
1894 /*
1895  * We need to reserve the new number of endpoints before the configure endpoint
1896  * command completes.  We can't subtract the dropped endpoints from the number
1897  * of active endpoints until the command completes because we can oversubscribe
1898  * the host in this case:
1899  *
1900  *  - the first configure endpoint command drops more endpoints than it adds
1901  *  - a second configure endpoint command that adds more endpoints is queued
1902  *  - the first configure endpoint command fails, so the config is unchanged
1903  *  - the second command may succeed, even though there isn't enough resources
1904  *
1905  * Must be called with xhci->lock held.
1906  */
1907 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1908 		struct xhci_input_control_ctx *ctrl_ctx)
1909 {
1910 	u32 added_eps;
1911 
1912 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1913 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1914 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1915 				"Not enough ep ctxs: "
1916 				"%u active, need to add %u, limit is %u.",
1917 				xhci->num_active_eps, added_eps,
1918 				xhci->limit_active_eps);
1919 		return -ENOMEM;
1920 	}
1921 	xhci->num_active_eps += added_eps;
1922 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1923 			"Adding %u ep ctxs, %u now active.", added_eps,
1924 			xhci->num_active_eps);
1925 	return 0;
1926 }
1927 
1928 /*
1929  * The configure endpoint was failed by the xHC for some other reason, so we
1930  * need to revert the resources that failed configuration would have used.
1931  *
1932  * Must be called with xhci->lock held.
1933  */
1934 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1935 		struct xhci_input_control_ctx *ctrl_ctx)
1936 {
1937 	u32 num_failed_eps;
1938 
1939 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1940 	xhci->num_active_eps -= num_failed_eps;
1941 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1942 			"Removing %u failed ep ctxs, %u now active.",
1943 			num_failed_eps,
1944 			xhci->num_active_eps);
1945 }
1946 
1947 /*
1948  * Now that the command has completed, clean up the active endpoint count by
1949  * subtracting out the endpoints that were dropped (but not changed).
1950  *
1951  * Must be called with xhci->lock held.
1952  */
1953 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1954 		struct xhci_input_control_ctx *ctrl_ctx)
1955 {
1956 	u32 num_dropped_eps;
1957 
1958 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1959 	xhci->num_active_eps -= num_dropped_eps;
1960 	if (num_dropped_eps)
1961 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1962 				"Removing %u dropped ep ctxs, %u now active.",
1963 				num_dropped_eps,
1964 				xhci->num_active_eps);
1965 }
1966 
1967 static unsigned int xhci_get_block_size(struct usb_device *udev)
1968 {
1969 	switch (udev->speed) {
1970 	case USB_SPEED_LOW:
1971 	case USB_SPEED_FULL:
1972 		return FS_BLOCK;
1973 	case USB_SPEED_HIGH:
1974 		return HS_BLOCK;
1975 	case USB_SPEED_SUPER:
1976 	case USB_SPEED_SUPER_PLUS:
1977 		return SS_BLOCK;
1978 	case USB_SPEED_UNKNOWN:
1979 	case USB_SPEED_WIRELESS:
1980 	default:
1981 		/* Should never happen */
1982 		return 1;
1983 	}
1984 }
1985 
1986 static unsigned int
1987 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1988 {
1989 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1990 		return LS_OVERHEAD;
1991 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1992 		return FS_OVERHEAD;
1993 	return HS_OVERHEAD;
1994 }
1995 
1996 /* If we are changing a LS/FS device under a HS hub,
1997  * make sure (if we are activating a new TT) that the HS bus has enough
1998  * bandwidth for this new TT.
1999  */
2000 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2001 		struct xhci_virt_device *virt_dev,
2002 		int old_active_eps)
2003 {
2004 	struct xhci_interval_bw_table *bw_table;
2005 	struct xhci_tt_bw_info *tt_info;
2006 
2007 	/* Find the bandwidth table for the root port this TT is attached to. */
2008 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2009 	tt_info = virt_dev->tt_info;
2010 	/* If this TT already had active endpoints, the bandwidth for this TT
2011 	 * has already been added.  Removing all periodic endpoints (and thus
2012 	 * making the TT enactive) will only decrease the bandwidth used.
2013 	 */
2014 	if (old_active_eps)
2015 		return 0;
2016 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2017 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2018 			return -ENOMEM;
2019 		return 0;
2020 	}
2021 	/* Not sure why we would have no new active endpoints...
2022 	 *
2023 	 * Maybe because of an Evaluate Context change for a hub update or a
2024 	 * control endpoint 0 max packet size change?
2025 	 * FIXME: skip the bandwidth calculation in that case.
2026 	 */
2027 	return 0;
2028 }
2029 
2030 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2031 		struct xhci_virt_device *virt_dev)
2032 {
2033 	unsigned int bw_reserved;
2034 
2035 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2036 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2037 		return -ENOMEM;
2038 
2039 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2040 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2041 		return -ENOMEM;
2042 
2043 	return 0;
2044 }
2045 
2046 /*
2047  * This algorithm is a very conservative estimate of the worst-case scheduling
2048  * scenario for any one interval.  The hardware dynamically schedules the
2049  * packets, so we can't tell which microframe could be the limiting factor in
2050  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2051  *
2052  * Obviously, we can't solve an NP complete problem to find the minimum worst
2053  * case scenario.  Instead, we come up with an estimate that is no less than
2054  * the worst case bandwidth used for any one microframe, but may be an
2055  * over-estimate.
2056  *
2057  * We walk the requirements for each endpoint by interval, starting with the
2058  * smallest interval, and place packets in the schedule where there is only one
2059  * possible way to schedule packets for that interval.  In order to simplify
2060  * this algorithm, we record the largest max packet size for each interval, and
2061  * assume all packets will be that size.
2062  *
2063  * For interval 0, we obviously must schedule all packets for each interval.
2064  * The bandwidth for interval 0 is just the amount of data to be transmitted
2065  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2066  * the number of packets).
2067  *
2068  * For interval 1, we have two possible microframes to schedule those packets
2069  * in.  For this algorithm, if we can schedule the same number of packets for
2070  * each possible scheduling opportunity (each microframe), we will do so.  The
2071  * remaining number of packets will be saved to be transmitted in the gaps in
2072  * the next interval's scheduling sequence.
2073  *
2074  * As we move those remaining packets to be scheduled with interval 2 packets,
2075  * we have to double the number of remaining packets to transmit.  This is
2076  * because the intervals are actually powers of 2, and we would be transmitting
2077  * the previous interval's packets twice in this interval.  We also have to be
2078  * sure that when we look at the largest max packet size for this interval, we
2079  * also look at the largest max packet size for the remaining packets and take
2080  * the greater of the two.
2081  *
2082  * The algorithm continues to evenly distribute packets in each scheduling
2083  * opportunity, and push the remaining packets out, until we get to the last
2084  * interval.  Then those packets and their associated overhead are just added
2085  * to the bandwidth used.
2086  */
2087 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2088 		struct xhci_virt_device *virt_dev,
2089 		int old_active_eps)
2090 {
2091 	unsigned int bw_reserved;
2092 	unsigned int max_bandwidth;
2093 	unsigned int bw_used;
2094 	unsigned int block_size;
2095 	struct xhci_interval_bw_table *bw_table;
2096 	unsigned int packet_size = 0;
2097 	unsigned int overhead = 0;
2098 	unsigned int packets_transmitted = 0;
2099 	unsigned int packets_remaining = 0;
2100 	unsigned int i;
2101 
2102 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2103 		return xhci_check_ss_bw(xhci, virt_dev);
2104 
2105 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2106 		max_bandwidth = HS_BW_LIMIT;
2107 		/* Convert percent of bus BW reserved to blocks reserved */
2108 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2109 	} else {
2110 		max_bandwidth = FS_BW_LIMIT;
2111 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2112 	}
2113 
2114 	bw_table = virt_dev->bw_table;
2115 	/* We need to translate the max packet size and max ESIT payloads into
2116 	 * the units the hardware uses.
2117 	 */
2118 	block_size = xhci_get_block_size(virt_dev->udev);
2119 
2120 	/* If we are manipulating a LS/FS device under a HS hub, double check
2121 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2122 	 */
2123 	if (virt_dev->tt_info) {
2124 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2125 				"Recalculating BW for rootport %u",
2126 				virt_dev->real_port);
2127 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2128 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2129 					"newly activated TT.\n");
2130 			return -ENOMEM;
2131 		}
2132 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2133 				"Recalculating BW for TT slot %u port %u",
2134 				virt_dev->tt_info->slot_id,
2135 				virt_dev->tt_info->ttport);
2136 	} else {
2137 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2138 				"Recalculating BW for rootport %u",
2139 				virt_dev->real_port);
2140 	}
2141 
2142 	/* Add in how much bandwidth will be used for interval zero, or the
2143 	 * rounded max ESIT payload + number of packets * largest overhead.
2144 	 */
2145 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2146 		bw_table->interval_bw[0].num_packets *
2147 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2148 
2149 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2150 		unsigned int bw_added;
2151 		unsigned int largest_mps;
2152 		unsigned int interval_overhead;
2153 
2154 		/*
2155 		 * How many packets could we transmit in this interval?
2156 		 * If packets didn't fit in the previous interval, we will need
2157 		 * to transmit that many packets twice within this interval.
2158 		 */
2159 		packets_remaining = 2 * packets_remaining +
2160 			bw_table->interval_bw[i].num_packets;
2161 
2162 		/* Find the largest max packet size of this or the previous
2163 		 * interval.
2164 		 */
2165 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2166 			largest_mps = 0;
2167 		else {
2168 			struct xhci_virt_ep *virt_ep;
2169 			struct list_head *ep_entry;
2170 
2171 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2172 			virt_ep = list_entry(ep_entry,
2173 					struct xhci_virt_ep, bw_endpoint_list);
2174 			/* Convert to blocks, rounding up */
2175 			largest_mps = DIV_ROUND_UP(
2176 					virt_ep->bw_info.max_packet_size,
2177 					block_size);
2178 		}
2179 		if (largest_mps > packet_size)
2180 			packet_size = largest_mps;
2181 
2182 		/* Use the larger overhead of this or the previous interval. */
2183 		interval_overhead = xhci_get_largest_overhead(
2184 				&bw_table->interval_bw[i]);
2185 		if (interval_overhead > overhead)
2186 			overhead = interval_overhead;
2187 
2188 		/* How many packets can we evenly distribute across
2189 		 * (1 << (i + 1)) possible scheduling opportunities?
2190 		 */
2191 		packets_transmitted = packets_remaining >> (i + 1);
2192 
2193 		/* Add in the bandwidth used for those scheduled packets */
2194 		bw_added = packets_transmitted * (overhead + packet_size);
2195 
2196 		/* How many packets do we have remaining to transmit? */
2197 		packets_remaining = packets_remaining % (1 << (i + 1));
2198 
2199 		/* What largest max packet size should those packets have? */
2200 		/* If we've transmitted all packets, don't carry over the
2201 		 * largest packet size.
2202 		 */
2203 		if (packets_remaining == 0) {
2204 			packet_size = 0;
2205 			overhead = 0;
2206 		} else if (packets_transmitted > 0) {
2207 			/* Otherwise if we do have remaining packets, and we've
2208 			 * scheduled some packets in this interval, take the
2209 			 * largest max packet size from endpoints with this
2210 			 * interval.
2211 			 */
2212 			packet_size = largest_mps;
2213 			overhead = interval_overhead;
2214 		}
2215 		/* Otherwise carry over packet_size and overhead from the last
2216 		 * time we had a remainder.
2217 		 */
2218 		bw_used += bw_added;
2219 		if (bw_used > max_bandwidth) {
2220 			xhci_warn(xhci, "Not enough bandwidth. "
2221 					"Proposed: %u, Max: %u\n",
2222 				bw_used, max_bandwidth);
2223 			return -ENOMEM;
2224 		}
2225 	}
2226 	/*
2227 	 * Ok, we know we have some packets left over after even-handedly
2228 	 * scheduling interval 15.  We don't know which microframes they will
2229 	 * fit into, so we over-schedule and say they will be scheduled every
2230 	 * microframe.
2231 	 */
2232 	if (packets_remaining > 0)
2233 		bw_used += overhead + packet_size;
2234 
2235 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2236 		unsigned int port_index = virt_dev->real_port - 1;
2237 
2238 		/* OK, we're manipulating a HS device attached to a
2239 		 * root port bandwidth domain.  Include the number of active TTs
2240 		 * in the bandwidth used.
2241 		 */
2242 		bw_used += TT_HS_OVERHEAD *
2243 			xhci->rh_bw[port_index].num_active_tts;
2244 	}
2245 
2246 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2248 		"Available: %u " "percent",
2249 		bw_used, max_bandwidth, bw_reserved,
2250 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2251 		max_bandwidth);
2252 
2253 	bw_used += bw_reserved;
2254 	if (bw_used > max_bandwidth) {
2255 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2256 				bw_used, max_bandwidth);
2257 		return -ENOMEM;
2258 	}
2259 
2260 	bw_table->bw_used = bw_used;
2261 	return 0;
2262 }
2263 
2264 static bool xhci_is_async_ep(unsigned int ep_type)
2265 {
2266 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2267 					ep_type != ISOC_IN_EP &&
2268 					ep_type != INT_IN_EP);
2269 }
2270 
2271 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2272 {
2273 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2274 }
2275 
2276 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2277 {
2278 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2279 
2280 	if (ep_bw->ep_interval == 0)
2281 		return SS_OVERHEAD_BURST +
2282 			(ep_bw->mult * ep_bw->num_packets *
2283 					(SS_OVERHEAD + mps));
2284 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2285 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2286 				1 << ep_bw->ep_interval);
2287 
2288 }
2289 
2290 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2291 		struct xhci_bw_info *ep_bw,
2292 		struct xhci_interval_bw_table *bw_table,
2293 		struct usb_device *udev,
2294 		struct xhci_virt_ep *virt_ep,
2295 		struct xhci_tt_bw_info *tt_info)
2296 {
2297 	struct xhci_interval_bw	*interval_bw;
2298 	int normalized_interval;
2299 
2300 	if (xhci_is_async_ep(ep_bw->type))
2301 		return;
2302 
2303 	if (udev->speed >= USB_SPEED_SUPER) {
2304 		if (xhci_is_sync_in_ep(ep_bw->type))
2305 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2306 				xhci_get_ss_bw_consumed(ep_bw);
2307 		else
2308 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2309 				xhci_get_ss_bw_consumed(ep_bw);
2310 		return;
2311 	}
2312 
2313 	/* SuperSpeed endpoints never get added to intervals in the table, so
2314 	 * this check is only valid for HS/FS/LS devices.
2315 	 */
2316 	if (list_empty(&virt_ep->bw_endpoint_list))
2317 		return;
2318 	/* For LS/FS devices, we need to translate the interval expressed in
2319 	 * microframes to frames.
2320 	 */
2321 	if (udev->speed == USB_SPEED_HIGH)
2322 		normalized_interval = ep_bw->ep_interval;
2323 	else
2324 		normalized_interval = ep_bw->ep_interval - 3;
2325 
2326 	if (normalized_interval == 0)
2327 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2328 	interval_bw = &bw_table->interval_bw[normalized_interval];
2329 	interval_bw->num_packets -= ep_bw->num_packets;
2330 	switch (udev->speed) {
2331 	case USB_SPEED_LOW:
2332 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2333 		break;
2334 	case USB_SPEED_FULL:
2335 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2336 		break;
2337 	case USB_SPEED_HIGH:
2338 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2339 		break;
2340 	case USB_SPEED_SUPER:
2341 	case USB_SPEED_SUPER_PLUS:
2342 	case USB_SPEED_UNKNOWN:
2343 	case USB_SPEED_WIRELESS:
2344 		/* Should never happen because only LS/FS/HS endpoints will get
2345 		 * added to the endpoint list.
2346 		 */
2347 		return;
2348 	}
2349 	if (tt_info)
2350 		tt_info->active_eps -= 1;
2351 	list_del_init(&virt_ep->bw_endpoint_list);
2352 }
2353 
2354 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2355 		struct xhci_bw_info *ep_bw,
2356 		struct xhci_interval_bw_table *bw_table,
2357 		struct usb_device *udev,
2358 		struct xhci_virt_ep *virt_ep,
2359 		struct xhci_tt_bw_info *tt_info)
2360 {
2361 	struct xhci_interval_bw	*interval_bw;
2362 	struct xhci_virt_ep *smaller_ep;
2363 	int normalized_interval;
2364 
2365 	if (xhci_is_async_ep(ep_bw->type))
2366 		return;
2367 
2368 	if (udev->speed == USB_SPEED_SUPER) {
2369 		if (xhci_is_sync_in_ep(ep_bw->type))
2370 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2371 				xhci_get_ss_bw_consumed(ep_bw);
2372 		else
2373 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2374 				xhci_get_ss_bw_consumed(ep_bw);
2375 		return;
2376 	}
2377 
2378 	/* For LS/FS devices, we need to translate the interval expressed in
2379 	 * microframes to frames.
2380 	 */
2381 	if (udev->speed == USB_SPEED_HIGH)
2382 		normalized_interval = ep_bw->ep_interval;
2383 	else
2384 		normalized_interval = ep_bw->ep_interval - 3;
2385 
2386 	if (normalized_interval == 0)
2387 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2388 	interval_bw = &bw_table->interval_bw[normalized_interval];
2389 	interval_bw->num_packets += ep_bw->num_packets;
2390 	switch (udev->speed) {
2391 	case USB_SPEED_LOW:
2392 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2393 		break;
2394 	case USB_SPEED_FULL:
2395 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2396 		break;
2397 	case USB_SPEED_HIGH:
2398 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2399 		break;
2400 	case USB_SPEED_SUPER:
2401 	case USB_SPEED_SUPER_PLUS:
2402 	case USB_SPEED_UNKNOWN:
2403 	case USB_SPEED_WIRELESS:
2404 		/* Should never happen because only LS/FS/HS endpoints will get
2405 		 * added to the endpoint list.
2406 		 */
2407 		return;
2408 	}
2409 
2410 	if (tt_info)
2411 		tt_info->active_eps += 1;
2412 	/* Insert the endpoint into the list, largest max packet size first. */
2413 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2414 			bw_endpoint_list) {
2415 		if (ep_bw->max_packet_size >=
2416 				smaller_ep->bw_info.max_packet_size) {
2417 			/* Add the new ep before the smaller endpoint */
2418 			list_add_tail(&virt_ep->bw_endpoint_list,
2419 					&smaller_ep->bw_endpoint_list);
2420 			return;
2421 		}
2422 	}
2423 	/* Add the new endpoint at the end of the list. */
2424 	list_add_tail(&virt_ep->bw_endpoint_list,
2425 			&interval_bw->endpoints);
2426 }
2427 
2428 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2429 		struct xhci_virt_device *virt_dev,
2430 		int old_active_eps)
2431 {
2432 	struct xhci_root_port_bw_info *rh_bw_info;
2433 	if (!virt_dev->tt_info)
2434 		return;
2435 
2436 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2437 	if (old_active_eps == 0 &&
2438 				virt_dev->tt_info->active_eps != 0) {
2439 		rh_bw_info->num_active_tts += 1;
2440 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2441 	} else if (old_active_eps != 0 &&
2442 				virt_dev->tt_info->active_eps == 0) {
2443 		rh_bw_info->num_active_tts -= 1;
2444 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2445 	}
2446 }
2447 
2448 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2449 		struct xhci_virt_device *virt_dev,
2450 		struct xhci_container_ctx *in_ctx)
2451 {
2452 	struct xhci_bw_info ep_bw_info[31];
2453 	int i;
2454 	struct xhci_input_control_ctx *ctrl_ctx;
2455 	int old_active_eps = 0;
2456 
2457 	if (virt_dev->tt_info)
2458 		old_active_eps = virt_dev->tt_info->active_eps;
2459 
2460 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2461 	if (!ctrl_ctx) {
2462 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2463 				__func__);
2464 		return -ENOMEM;
2465 	}
2466 
2467 	for (i = 0; i < 31; i++) {
2468 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2469 			continue;
2470 
2471 		/* Make a copy of the BW info in case we need to revert this */
2472 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2473 				sizeof(ep_bw_info[i]));
2474 		/* Drop the endpoint from the interval table if the endpoint is
2475 		 * being dropped or changed.
2476 		 */
2477 		if (EP_IS_DROPPED(ctrl_ctx, i))
2478 			xhci_drop_ep_from_interval_table(xhci,
2479 					&virt_dev->eps[i].bw_info,
2480 					virt_dev->bw_table,
2481 					virt_dev->udev,
2482 					&virt_dev->eps[i],
2483 					virt_dev->tt_info);
2484 	}
2485 	/* Overwrite the information stored in the endpoints' bw_info */
2486 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2487 	for (i = 0; i < 31; i++) {
2488 		/* Add any changed or added endpoints to the interval table */
2489 		if (EP_IS_ADDED(ctrl_ctx, i))
2490 			xhci_add_ep_to_interval_table(xhci,
2491 					&virt_dev->eps[i].bw_info,
2492 					virt_dev->bw_table,
2493 					virt_dev->udev,
2494 					&virt_dev->eps[i],
2495 					virt_dev->tt_info);
2496 	}
2497 
2498 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2499 		/* Ok, this fits in the bandwidth we have.
2500 		 * Update the number of active TTs.
2501 		 */
2502 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2503 		return 0;
2504 	}
2505 
2506 	/* We don't have enough bandwidth for this, revert the stored info. */
2507 	for (i = 0; i < 31; i++) {
2508 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2509 			continue;
2510 
2511 		/* Drop the new copies of any added or changed endpoints from
2512 		 * the interval table.
2513 		 */
2514 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2515 			xhci_drop_ep_from_interval_table(xhci,
2516 					&virt_dev->eps[i].bw_info,
2517 					virt_dev->bw_table,
2518 					virt_dev->udev,
2519 					&virt_dev->eps[i],
2520 					virt_dev->tt_info);
2521 		}
2522 		/* Revert the endpoint back to its old information */
2523 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2524 				sizeof(ep_bw_info[i]));
2525 		/* Add any changed or dropped endpoints back into the table */
2526 		if (EP_IS_DROPPED(ctrl_ctx, i))
2527 			xhci_add_ep_to_interval_table(xhci,
2528 					&virt_dev->eps[i].bw_info,
2529 					virt_dev->bw_table,
2530 					virt_dev->udev,
2531 					&virt_dev->eps[i],
2532 					virt_dev->tt_info);
2533 	}
2534 	return -ENOMEM;
2535 }
2536 
2537 
2538 /* Issue a configure endpoint command or evaluate context command
2539  * and wait for it to finish.
2540  */
2541 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2542 		struct usb_device *udev,
2543 		struct xhci_command *command,
2544 		bool ctx_change, bool must_succeed)
2545 {
2546 	int ret;
2547 	unsigned long flags;
2548 	struct xhci_input_control_ctx *ctrl_ctx;
2549 	struct xhci_virt_device *virt_dev;
2550 
2551 	if (!command)
2552 		return -EINVAL;
2553 
2554 	spin_lock_irqsave(&xhci->lock, flags);
2555 
2556 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2557 		spin_unlock_irqrestore(&xhci->lock, flags);
2558 		return -ESHUTDOWN;
2559 	}
2560 
2561 	virt_dev = xhci->devs[udev->slot_id];
2562 
2563 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2564 	if (!ctrl_ctx) {
2565 		spin_unlock_irqrestore(&xhci->lock, flags);
2566 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2567 				__func__);
2568 		return -ENOMEM;
2569 	}
2570 
2571 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2572 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2573 		spin_unlock_irqrestore(&xhci->lock, flags);
2574 		xhci_warn(xhci, "Not enough host resources, "
2575 				"active endpoint contexts = %u\n",
2576 				xhci->num_active_eps);
2577 		return -ENOMEM;
2578 	}
2579 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2580 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2581 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2582 			xhci_free_host_resources(xhci, ctrl_ctx);
2583 		spin_unlock_irqrestore(&xhci->lock, flags);
2584 		xhci_warn(xhci, "Not enough bandwidth\n");
2585 		return -ENOMEM;
2586 	}
2587 
2588 	if (!ctx_change)
2589 		ret = xhci_queue_configure_endpoint(xhci, command,
2590 				command->in_ctx->dma,
2591 				udev->slot_id, must_succeed);
2592 	else
2593 		ret = xhci_queue_evaluate_context(xhci, command,
2594 				command->in_ctx->dma,
2595 				udev->slot_id, must_succeed);
2596 	if (ret < 0) {
2597 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2598 			xhci_free_host_resources(xhci, ctrl_ctx);
2599 		spin_unlock_irqrestore(&xhci->lock, flags);
2600 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2601 				"FIXME allocate a new ring segment");
2602 		return -ENOMEM;
2603 	}
2604 	xhci_ring_cmd_db(xhci);
2605 	spin_unlock_irqrestore(&xhci->lock, flags);
2606 
2607 	/* Wait for the configure endpoint command to complete */
2608 	wait_for_completion(command->completion);
2609 
2610 	if (!ctx_change)
2611 		ret = xhci_configure_endpoint_result(xhci, udev,
2612 						     &command->status);
2613 	else
2614 		ret = xhci_evaluate_context_result(xhci, udev,
2615 						   &command->status);
2616 
2617 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2618 		spin_lock_irqsave(&xhci->lock, flags);
2619 		/* If the command failed, remove the reserved resources.
2620 		 * Otherwise, clean up the estimate to include dropped eps.
2621 		 */
2622 		if (ret)
2623 			xhci_free_host_resources(xhci, ctrl_ctx);
2624 		else
2625 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2626 		spin_unlock_irqrestore(&xhci->lock, flags);
2627 	}
2628 	return ret;
2629 }
2630 
2631 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2632 	struct xhci_virt_device *vdev, int i)
2633 {
2634 	struct xhci_virt_ep *ep = &vdev->eps[i];
2635 
2636 	if (ep->ep_state & EP_HAS_STREAMS) {
2637 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2638 				xhci_get_endpoint_address(i));
2639 		xhci_free_stream_info(xhci, ep->stream_info);
2640 		ep->stream_info = NULL;
2641 		ep->ep_state &= ~EP_HAS_STREAMS;
2642 	}
2643 }
2644 
2645 /* Called after one or more calls to xhci_add_endpoint() or
2646  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2647  * to call xhci_reset_bandwidth().
2648  *
2649  * Since we are in the middle of changing either configuration or
2650  * installing a new alt setting, the USB core won't allow URBs to be
2651  * enqueued for any endpoint on the old config or interface.  Nothing
2652  * else should be touching the xhci->devs[slot_id] structure, so we
2653  * don't need to take the xhci->lock for manipulating that.
2654  */
2655 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2656 {
2657 	int i;
2658 	int ret = 0;
2659 	struct xhci_hcd *xhci;
2660 	struct xhci_virt_device	*virt_dev;
2661 	struct xhci_input_control_ctx *ctrl_ctx;
2662 	struct xhci_slot_ctx *slot_ctx;
2663 	struct xhci_command *command;
2664 
2665 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2666 	if (ret <= 0)
2667 		return ret;
2668 	xhci = hcd_to_xhci(hcd);
2669 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2670 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2671 		return -ENODEV;
2672 
2673 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2674 	virt_dev = xhci->devs[udev->slot_id];
2675 
2676 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2677 	if (!command)
2678 		return -ENOMEM;
2679 
2680 	command->in_ctx = virt_dev->in_ctx;
2681 
2682 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2683 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2684 	if (!ctrl_ctx) {
2685 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2686 				__func__);
2687 		ret = -ENOMEM;
2688 		goto command_cleanup;
2689 	}
2690 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2691 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2692 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2693 
2694 	/* Don't issue the command if there's no endpoints to update. */
2695 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2696 	    ctrl_ctx->drop_flags == 0) {
2697 		ret = 0;
2698 		goto command_cleanup;
2699 	}
2700 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2701 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2702 	for (i = 31; i >= 1; i--) {
2703 		__le32 le32 = cpu_to_le32(BIT(i));
2704 
2705 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2706 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2707 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2708 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2709 			break;
2710 		}
2711 	}
2712 
2713 	ret = xhci_configure_endpoint(xhci, udev, command,
2714 			false, false);
2715 	if (ret)
2716 		/* Callee should call reset_bandwidth() */
2717 		goto command_cleanup;
2718 
2719 	/* Free any rings that were dropped, but not changed. */
2720 	for (i = 1; i < 31; i++) {
2721 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2722 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2723 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2724 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2725 		}
2726 	}
2727 	xhci_zero_in_ctx(xhci, virt_dev);
2728 	/*
2729 	 * Install any rings for completely new endpoints or changed endpoints,
2730 	 * and free or cache any old rings from changed endpoints.
2731 	 */
2732 	for (i = 1; i < 31; i++) {
2733 		if (!virt_dev->eps[i].new_ring)
2734 			continue;
2735 		/* Only cache or free the old ring if it exists.
2736 		 * It may not if this is the first add of an endpoint.
2737 		 */
2738 		if (virt_dev->eps[i].ring) {
2739 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2740 		}
2741 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2742 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2743 		virt_dev->eps[i].new_ring = NULL;
2744 	}
2745 command_cleanup:
2746 	kfree(command->completion);
2747 	kfree(command);
2748 
2749 	return ret;
2750 }
2751 
2752 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2753 {
2754 	struct xhci_hcd *xhci;
2755 	struct xhci_virt_device	*virt_dev;
2756 	int i, ret;
2757 
2758 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2759 	if (ret <= 0)
2760 		return;
2761 	xhci = hcd_to_xhci(hcd);
2762 
2763 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2764 	virt_dev = xhci->devs[udev->slot_id];
2765 	/* Free any rings allocated for added endpoints */
2766 	for (i = 0; i < 31; i++) {
2767 		if (virt_dev->eps[i].new_ring) {
2768 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2769 			virt_dev->eps[i].new_ring = NULL;
2770 		}
2771 	}
2772 	xhci_zero_in_ctx(xhci, virt_dev);
2773 }
2774 
2775 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2776 		struct xhci_container_ctx *in_ctx,
2777 		struct xhci_container_ctx *out_ctx,
2778 		struct xhci_input_control_ctx *ctrl_ctx,
2779 		u32 add_flags, u32 drop_flags)
2780 {
2781 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2782 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2783 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2784 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2785 }
2786 
2787 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2788 		unsigned int slot_id, unsigned int ep_index,
2789 		struct xhci_dequeue_state *deq_state)
2790 {
2791 	struct xhci_input_control_ctx *ctrl_ctx;
2792 	struct xhci_container_ctx *in_ctx;
2793 	struct xhci_ep_ctx *ep_ctx;
2794 	u32 added_ctxs;
2795 	dma_addr_t addr;
2796 
2797 	in_ctx = xhci->devs[slot_id]->in_ctx;
2798 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2799 	if (!ctrl_ctx) {
2800 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2801 				__func__);
2802 		return;
2803 	}
2804 
2805 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2806 			xhci->devs[slot_id]->out_ctx, ep_index);
2807 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2808 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2809 			deq_state->new_deq_ptr);
2810 	if (addr == 0) {
2811 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2812 				"reset ep command\n");
2813 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2814 				deq_state->new_deq_seg,
2815 				deq_state->new_deq_ptr);
2816 		return;
2817 	}
2818 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2819 
2820 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2821 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2822 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2823 			added_ctxs, added_ctxs);
2824 }
2825 
2826 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2827 			unsigned int ep_index, struct xhci_td *td)
2828 {
2829 	struct xhci_dequeue_state deq_state;
2830 	struct xhci_virt_ep *ep;
2831 	struct usb_device *udev = td->urb->dev;
2832 
2833 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2834 			"Cleaning up stalled endpoint ring");
2835 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2836 	/* We need to move the HW's dequeue pointer past this TD,
2837 	 * or it will attempt to resend it on the next doorbell ring.
2838 	 */
2839 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2840 			ep_index, ep->stopped_stream, td, &deq_state);
2841 
2842 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2843 		return;
2844 
2845 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2846 	 * issue a configure endpoint command later.
2847 	 */
2848 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2849 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2850 				"Queueing new dequeue state");
2851 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2852 				ep_index, ep->stopped_stream, &deq_state);
2853 	} else {
2854 		/* Better hope no one uses the input context between now and the
2855 		 * reset endpoint completion!
2856 		 * XXX: No idea how this hardware will react when stream rings
2857 		 * are enabled.
2858 		 */
2859 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2860 				"Setting up input context for "
2861 				"configure endpoint command");
2862 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2863 				ep_index, &deq_state);
2864 	}
2865 }
2866 
2867 /* Called when clearing halted device. The core should have sent the control
2868  * message to clear the device halt condition. The host side of the halt should
2869  * already be cleared with a reset endpoint command issued when the STALL tx
2870  * event was received.
2871  *
2872  * Context: in_interrupt
2873  */
2874 
2875 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2876 		struct usb_host_endpoint *ep)
2877 {
2878 	struct xhci_hcd *xhci;
2879 
2880 	xhci = hcd_to_xhci(hcd);
2881 
2882 	/*
2883 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2884 	 * The Reset Endpoint Command may only be issued to endpoints in the
2885 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2886 	 * Number of an endpoint that isn't in the Halted state, then software
2887 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2888 	 * for the target endpoint. that is in the Stopped state.
2889 	 */
2890 
2891 	/* For now just print debug to follow the situation */
2892 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2893 		 ep->desc.bEndpointAddress);
2894 }
2895 
2896 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2897 		struct usb_device *udev, struct usb_host_endpoint *ep,
2898 		unsigned int slot_id)
2899 {
2900 	int ret;
2901 	unsigned int ep_index;
2902 	unsigned int ep_state;
2903 
2904 	if (!ep)
2905 		return -EINVAL;
2906 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2907 	if (ret <= 0)
2908 		return -EINVAL;
2909 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2910 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2911 				" descriptor for ep 0x%x does not support streams\n",
2912 				ep->desc.bEndpointAddress);
2913 		return -EINVAL;
2914 	}
2915 
2916 	ep_index = xhci_get_endpoint_index(&ep->desc);
2917 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2918 	if (ep_state & EP_HAS_STREAMS ||
2919 			ep_state & EP_GETTING_STREAMS) {
2920 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2921 				"already has streams set up.\n",
2922 				ep->desc.bEndpointAddress);
2923 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2924 				"dynamic stream context array reallocation.\n");
2925 		return -EINVAL;
2926 	}
2927 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2928 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2929 				"endpoint 0x%x; URBs are pending.\n",
2930 				ep->desc.bEndpointAddress);
2931 		return -EINVAL;
2932 	}
2933 	return 0;
2934 }
2935 
2936 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2937 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2938 {
2939 	unsigned int max_streams;
2940 
2941 	/* The stream context array size must be a power of two */
2942 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2943 	/*
2944 	 * Find out how many primary stream array entries the host controller
2945 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2946 	 * level page entries), but that's an optional feature for xHCI host
2947 	 * controllers. xHCs must support at least 4 stream IDs.
2948 	 */
2949 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2950 	if (*num_stream_ctxs > max_streams) {
2951 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2952 				max_streams);
2953 		*num_stream_ctxs = max_streams;
2954 		*num_streams = max_streams;
2955 	}
2956 }
2957 
2958 /* Returns an error code if one of the endpoint already has streams.
2959  * This does not change any data structures, it only checks and gathers
2960  * information.
2961  */
2962 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2963 		struct usb_device *udev,
2964 		struct usb_host_endpoint **eps, unsigned int num_eps,
2965 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2966 {
2967 	unsigned int max_streams;
2968 	unsigned int endpoint_flag;
2969 	int i;
2970 	int ret;
2971 
2972 	for (i = 0; i < num_eps; i++) {
2973 		ret = xhci_check_streams_endpoint(xhci, udev,
2974 				eps[i], udev->slot_id);
2975 		if (ret < 0)
2976 			return ret;
2977 
2978 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2979 		if (max_streams < (*num_streams - 1)) {
2980 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2981 					eps[i]->desc.bEndpointAddress,
2982 					max_streams);
2983 			*num_streams = max_streams+1;
2984 		}
2985 
2986 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2987 		if (*changed_ep_bitmask & endpoint_flag)
2988 			return -EINVAL;
2989 		*changed_ep_bitmask |= endpoint_flag;
2990 	}
2991 	return 0;
2992 }
2993 
2994 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2995 		struct usb_device *udev,
2996 		struct usb_host_endpoint **eps, unsigned int num_eps)
2997 {
2998 	u32 changed_ep_bitmask = 0;
2999 	unsigned int slot_id;
3000 	unsigned int ep_index;
3001 	unsigned int ep_state;
3002 	int i;
3003 
3004 	slot_id = udev->slot_id;
3005 	if (!xhci->devs[slot_id])
3006 		return 0;
3007 
3008 	for (i = 0; i < num_eps; i++) {
3009 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3010 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3011 		/* Are streams already being freed for the endpoint? */
3012 		if (ep_state & EP_GETTING_NO_STREAMS) {
3013 			xhci_warn(xhci, "WARN Can't disable streams for "
3014 					"endpoint 0x%x, "
3015 					"streams are being disabled already\n",
3016 					eps[i]->desc.bEndpointAddress);
3017 			return 0;
3018 		}
3019 		/* Are there actually any streams to free? */
3020 		if (!(ep_state & EP_HAS_STREAMS) &&
3021 				!(ep_state & EP_GETTING_STREAMS)) {
3022 			xhci_warn(xhci, "WARN Can't disable streams for "
3023 					"endpoint 0x%x, "
3024 					"streams are already disabled!\n",
3025 					eps[i]->desc.bEndpointAddress);
3026 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3027 					"with non-streams endpoint\n");
3028 			return 0;
3029 		}
3030 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3031 	}
3032 	return changed_ep_bitmask;
3033 }
3034 
3035 /*
3036  * The USB device drivers use this function (through the HCD interface in USB
3037  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3038  * coordinate mass storage command queueing across multiple endpoints (basically
3039  * a stream ID == a task ID).
3040  *
3041  * Setting up streams involves allocating the same size stream context array
3042  * for each endpoint and issuing a configure endpoint command for all endpoints.
3043  *
3044  * Don't allow the call to succeed if one endpoint only supports one stream
3045  * (which means it doesn't support streams at all).
3046  *
3047  * Drivers may get less stream IDs than they asked for, if the host controller
3048  * hardware or endpoints claim they can't support the number of requested
3049  * stream IDs.
3050  */
3051 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3052 		struct usb_host_endpoint **eps, unsigned int num_eps,
3053 		unsigned int num_streams, gfp_t mem_flags)
3054 {
3055 	int i, ret;
3056 	struct xhci_hcd *xhci;
3057 	struct xhci_virt_device *vdev;
3058 	struct xhci_command *config_cmd;
3059 	struct xhci_input_control_ctx *ctrl_ctx;
3060 	unsigned int ep_index;
3061 	unsigned int num_stream_ctxs;
3062 	unsigned int max_packet;
3063 	unsigned long flags;
3064 	u32 changed_ep_bitmask = 0;
3065 
3066 	if (!eps)
3067 		return -EINVAL;
3068 
3069 	/* Add one to the number of streams requested to account for
3070 	 * stream 0 that is reserved for xHCI usage.
3071 	 */
3072 	num_streams += 1;
3073 	xhci = hcd_to_xhci(hcd);
3074 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3075 			num_streams);
3076 
3077 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3078 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3079 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3080 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3081 		return -ENOSYS;
3082 	}
3083 
3084 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3085 	if (!config_cmd)
3086 		return -ENOMEM;
3087 
3088 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3089 	if (!ctrl_ctx) {
3090 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3091 				__func__);
3092 		xhci_free_command(xhci, config_cmd);
3093 		return -ENOMEM;
3094 	}
3095 
3096 	/* Check to make sure all endpoints are not already configured for
3097 	 * streams.  While we're at it, find the maximum number of streams that
3098 	 * all the endpoints will support and check for duplicate endpoints.
3099 	 */
3100 	spin_lock_irqsave(&xhci->lock, flags);
3101 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3102 			num_eps, &num_streams, &changed_ep_bitmask);
3103 	if (ret < 0) {
3104 		xhci_free_command(xhci, config_cmd);
3105 		spin_unlock_irqrestore(&xhci->lock, flags);
3106 		return ret;
3107 	}
3108 	if (num_streams <= 1) {
3109 		xhci_warn(xhci, "WARN: endpoints can't handle "
3110 				"more than one stream.\n");
3111 		xhci_free_command(xhci, config_cmd);
3112 		spin_unlock_irqrestore(&xhci->lock, flags);
3113 		return -EINVAL;
3114 	}
3115 	vdev = xhci->devs[udev->slot_id];
3116 	/* Mark each endpoint as being in transition, so
3117 	 * xhci_urb_enqueue() will reject all URBs.
3118 	 */
3119 	for (i = 0; i < num_eps; i++) {
3120 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3121 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3122 	}
3123 	spin_unlock_irqrestore(&xhci->lock, flags);
3124 
3125 	/* Setup internal data structures and allocate HW data structures for
3126 	 * streams (but don't install the HW structures in the input context
3127 	 * until we're sure all memory allocation succeeded).
3128 	 */
3129 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3130 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3131 			num_stream_ctxs, num_streams);
3132 
3133 	for (i = 0; i < num_eps; i++) {
3134 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3135 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3136 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3137 				num_stream_ctxs,
3138 				num_streams,
3139 				max_packet, mem_flags);
3140 		if (!vdev->eps[ep_index].stream_info)
3141 			goto cleanup;
3142 		/* Set maxPstreams in endpoint context and update deq ptr to
3143 		 * point to stream context array. FIXME
3144 		 */
3145 	}
3146 
3147 	/* Set up the input context for a configure endpoint command. */
3148 	for (i = 0; i < num_eps; i++) {
3149 		struct xhci_ep_ctx *ep_ctx;
3150 
3151 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3152 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3153 
3154 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3155 				vdev->out_ctx, ep_index);
3156 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3157 				vdev->eps[ep_index].stream_info);
3158 	}
3159 	/* Tell the HW to drop its old copy of the endpoint context info
3160 	 * and add the updated copy from the input context.
3161 	 */
3162 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3163 			vdev->out_ctx, ctrl_ctx,
3164 			changed_ep_bitmask, changed_ep_bitmask);
3165 
3166 	/* Issue and wait for the configure endpoint command */
3167 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3168 			false, false);
3169 
3170 	/* xHC rejected the configure endpoint command for some reason, so we
3171 	 * leave the old ring intact and free our internal streams data
3172 	 * structure.
3173 	 */
3174 	if (ret < 0)
3175 		goto cleanup;
3176 
3177 	spin_lock_irqsave(&xhci->lock, flags);
3178 	for (i = 0; i < num_eps; i++) {
3179 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3180 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3181 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3182 			 udev->slot_id, ep_index);
3183 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3184 	}
3185 	xhci_free_command(xhci, config_cmd);
3186 	spin_unlock_irqrestore(&xhci->lock, flags);
3187 
3188 	/* Subtract 1 for stream 0, which drivers can't use */
3189 	return num_streams - 1;
3190 
3191 cleanup:
3192 	/* If it didn't work, free the streams! */
3193 	for (i = 0; i < num_eps; i++) {
3194 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3195 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3196 		vdev->eps[ep_index].stream_info = NULL;
3197 		/* FIXME Unset maxPstreams in endpoint context and
3198 		 * update deq ptr to point to normal string ring.
3199 		 */
3200 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3201 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3202 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3203 	}
3204 	xhci_free_command(xhci, config_cmd);
3205 	return -ENOMEM;
3206 }
3207 
3208 /* Transition the endpoint from using streams to being a "normal" endpoint
3209  * without streams.
3210  *
3211  * Modify the endpoint context state, submit a configure endpoint command,
3212  * and free all endpoint rings for streams if that completes successfully.
3213  */
3214 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3215 		struct usb_host_endpoint **eps, unsigned int num_eps,
3216 		gfp_t mem_flags)
3217 {
3218 	int i, ret;
3219 	struct xhci_hcd *xhci;
3220 	struct xhci_virt_device *vdev;
3221 	struct xhci_command *command;
3222 	struct xhci_input_control_ctx *ctrl_ctx;
3223 	unsigned int ep_index;
3224 	unsigned long flags;
3225 	u32 changed_ep_bitmask;
3226 
3227 	xhci = hcd_to_xhci(hcd);
3228 	vdev = xhci->devs[udev->slot_id];
3229 
3230 	/* Set up a configure endpoint command to remove the streams rings */
3231 	spin_lock_irqsave(&xhci->lock, flags);
3232 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3233 			udev, eps, num_eps);
3234 	if (changed_ep_bitmask == 0) {
3235 		spin_unlock_irqrestore(&xhci->lock, flags);
3236 		return -EINVAL;
3237 	}
3238 
3239 	/* Use the xhci_command structure from the first endpoint.  We may have
3240 	 * allocated too many, but the driver may call xhci_free_streams() for
3241 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3242 	 */
3243 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3244 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3245 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3246 	if (!ctrl_ctx) {
3247 		spin_unlock_irqrestore(&xhci->lock, flags);
3248 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3249 				__func__);
3250 		return -EINVAL;
3251 	}
3252 
3253 	for (i = 0; i < num_eps; i++) {
3254 		struct xhci_ep_ctx *ep_ctx;
3255 
3256 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3257 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3258 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3259 			EP_GETTING_NO_STREAMS;
3260 
3261 		xhci_endpoint_copy(xhci, command->in_ctx,
3262 				vdev->out_ctx, ep_index);
3263 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3264 				&vdev->eps[ep_index]);
3265 	}
3266 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3267 			vdev->out_ctx, ctrl_ctx,
3268 			changed_ep_bitmask, changed_ep_bitmask);
3269 	spin_unlock_irqrestore(&xhci->lock, flags);
3270 
3271 	/* Issue and wait for the configure endpoint command,
3272 	 * which must succeed.
3273 	 */
3274 	ret = xhci_configure_endpoint(xhci, udev, command,
3275 			false, true);
3276 
3277 	/* xHC rejected the configure endpoint command for some reason, so we
3278 	 * leave the streams rings intact.
3279 	 */
3280 	if (ret < 0)
3281 		return ret;
3282 
3283 	spin_lock_irqsave(&xhci->lock, flags);
3284 	for (i = 0; i < num_eps; i++) {
3285 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3286 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3287 		vdev->eps[ep_index].stream_info = NULL;
3288 		/* FIXME Unset maxPstreams in endpoint context and
3289 		 * update deq ptr to point to normal string ring.
3290 		 */
3291 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3292 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3293 	}
3294 	spin_unlock_irqrestore(&xhci->lock, flags);
3295 
3296 	return 0;
3297 }
3298 
3299 /*
3300  * Deletes endpoint resources for endpoints that were active before a Reset
3301  * Device command, or a Disable Slot command.  The Reset Device command leaves
3302  * the control endpoint intact, whereas the Disable Slot command deletes it.
3303  *
3304  * Must be called with xhci->lock held.
3305  */
3306 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3307 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3308 {
3309 	int i;
3310 	unsigned int num_dropped_eps = 0;
3311 	unsigned int drop_flags = 0;
3312 
3313 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3314 		if (virt_dev->eps[i].ring) {
3315 			drop_flags |= 1 << i;
3316 			num_dropped_eps++;
3317 		}
3318 	}
3319 	xhci->num_active_eps -= num_dropped_eps;
3320 	if (num_dropped_eps)
3321 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3322 				"Dropped %u ep ctxs, flags = 0x%x, "
3323 				"%u now active.",
3324 				num_dropped_eps, drop_flags,
3325 				xhci->num_active_eps);
3326 }
3327 
3328 /*
3329  * This submits a Reset Device Command, which will set the device state to 0,
3330  * set the device address to 0, and disable all the endpoints except the default
3331  * control endpoint.  The USB core should come back and call
3332  * xhci_address_device(), and then re-set up the configuration.  If this is
3333  * called because of a usb_reset_and_verify_device(), then the old alternate
3334  * settings will be re-installed through the normal bandwidth allocation
3335  * functions.
3336  *
3337  * Wait for the Reset Device command to finish.  Remove all structures
3338  * associated with the endpoints that were disabled.  Clear the input device
3339  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3340  *
3341  * If the virt_dev to be reset does not exist or does not match the udev,
3342  * it means the device is lost, possibly due to the xHC restore error and
3343  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3344  * re-allocate the device.
3345  */
3346 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3347 		struct usb_device *udev)
3348 {
3349 	int ret, i;
3350 	unsigned long flags;
3351 	struct xhci_hcd *xhci;
3352 	unsigned int slot_id;
3353 	struct xhci_virt_device *virt_dev;
3354 	struct xhci_command *reset_device_cmd;
3355 	int last_freed_endpoint;
3356 	struct xhci_slot_ctx *slot_ctx;
3357 	int old_active_eps = 0;
3358 
3359 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3360 	if (ret <= 0)
3361 		return ret;
3362 	xhci = hcd_to_xhci(hcd);
3363 	slot_id = udev->slot_id;
3364 	virt_dev = xhci->devs[slot_id];
3365 	if (!virt_dev) {
3366 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3367 				"not exist. Re-allocate the device\n", slot_id);
3368 		ret = xhci_alloc_dev(hcd, udev);
3369 		if (ret == 1)
3370 			return 0;
3371 		else
3372 			return -EINVAL;
3373 	}
3374 
3375 	if (virt_dev->tt_info)
3376 		old_active_eps = virt_dev->tt_info->active_eps;
3377 
3378 	if (virt_dev->udev != udev) {
3379 		/* If the virt_dev and the udev does not match, this virt_dev
3380 		 * may belong to another udev.
3381 		 * Re-allocate the device.
3382 		 */
3383 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3384 				"not match the udev. Re-allocate the device\n",
3385 				slot_id);
3386 		ret = xhci_alloc_dev(hcd, udev);
3387 		if (ret == 1)
3388 			return 0;
3389 		else
3390 			return -EINVAL;
3391 	}
3392 
3393 	/* If device is not setup, there is no point in resetting it */
3394 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3395 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3396 						SLOT_STATE_DISABLED)
3397 		return 0;
3398 
3399 	trace_xhci_discover_or_reset_device(slot_ctx);
3400 
3401 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3402 	/* Allocate the command structure that holds the struct completion.
3403 	 * Assume we're in process context, since the normal device reset
3404 	 * process has to wait for the device anyway.  Storage devices are
3405 	 * reset as part of error handling, so use GFP_NOIO instead of
3406 	 * GFP_KERNEL.
3407 	 */
3408 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3409 	if (!reset_device_cmd) {
3410 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3411 		return -ENOMEM;
3412 	}
3413 
3414 	/* Attempt to submit the Reset Device command to the command ring */
3415 	spin_lock_irqsave(&xhci->lock, flags);
3416 
3417 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3418 	if (ret) {
3419 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3420 		spin_unlock_irqrestore(&xhci->lock, flags);
3421 		goto command_cleanup;
3422 	}
3423 	xhci_ring_cmd_db(xhci);
3424 	spin_unlock_irqrestore(&xhci->lock, flags);
3425 
3426 	/* Wait for the Reset Device command to finish */
3427 	wait_for_completion(reset_device_cmd->completion);
3428 
3429 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3430 	 * unless we tried to reset a slot ID that wasn't enabled,
3431 	 * or the device wasn't in the addressed or configured state.
3432 	 */
3433 	ret = reset_device_cmd->status;
3434 	switch (ret) {
3435 	case COMP_COMMAND_ABORTED:
3436 	case COMP_COMMAND_RING_STOPPED:
3437 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3438 		ret = -ETIME;
3439 		goto command_cleanup;
3440 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3441 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3442 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3443 				slot_id,
3444 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3445 		xhci_dbg(xhci, "Not freeing device rings.\n");
3446 		/* Don't treat this as an error.  May change my mind later. */
3447 		ret = 0;
3448 		goto command_cleanup;
3449 	case COMP_SUCCESS:
3450 		xhci_dbg(xhci, "Successful reset device command.\n");
3451 		break;
3452 	default:
3453 		if (xhci_is_vendor_info_code(xhci, ret))
3454 			break;
3455 		xhci_warn(xhci, "Unknown completion code %u for "
3456 				"reset device command.\n", ret);
3457 		ret = -EINVAL;
3458 		goto command_cleanup;
3459 	}
3460 
3461 	/* Free up host controller endpoint resources */
3462 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3463 		spin_lock_irqsave(&xhci->lock, flags);
3464 		/* Don't delete the default control endpoint resources */
3465 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3466 		spin_unlock_irqrestore(&xhci->lock, flags);
3467 	}
3468 
3469 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3470 	last_freed_endpoint = 1;
3471 	for (i = 1; i < 31; i++) {
3472 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3473 
3474 		if (ep->ep_state & EP_HAS_STREAMS) {
3475 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3476 					xhci_get_endpoint_address(i));
3477 			xhci_free_stream_info(xhci, ep->stream_info);
3478 			ep->stream_info = NULL;
3479 			ep->ep_state &= ~EP_HAS_STREAMS;
3480 		}
3481 
3482 		if (ep->ring) {
3483 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3484 			last_freed_endpoint = i;
3485 		}
3486 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3487 			xhci_drop_ep_from_interval_table(xhci,
3488 					&virt_dev->eps[i].bw_info,
3489 					virt_dev->bw_table,
3490 					udev,
3491 					&virt_dev->eps[i],
3492 					virt_dev->tt_info);
3493 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3494 	}
3495 	/* If necessary, update the number of active TTs on this root port */
3496 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3497 	ret = 0;
3498 
3499 command_cleanup:
3500 	xhci_free_command(xhci, reset_device_cmd);
3501 	return ret;
3502 }
3503 
3504 /*
3505  * At this point, the struct usb_device is about to go away, the device has
3506  * disconnected, and all traffic has been stopped and the endpoints have been
3507  * disabled.  Free any HC data structures associated with that device.
3508  */
3509 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3510 {
3511 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3512 	struct xhci_virt_device *virt_dev;
3513 	struct xhci_slot_ctx *slot_ctx;
3514 	int i, ret;
3515 	struct xhci_command *command;
3516 
3517 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3518 	if (!command)
3519 		return;
3520 
3521 #ifndef CONFIG_USB_DEFAULT_PERSIST
3522 	/*
3523 	 * We called pm_runtime_get_noresume when the device was attached.
3524 	 * Decrement the counter here to allow controller to runtime suspend
3525 	 * if no devices remain.
3526 	 */
3527 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3528 		pm_runtime_put_noidle(hcd->self.controller);
3529 #endif
3530 
3531 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3532 	/* If the host is halted due to driver unload, we still need to free the
3533 	 * device.
3534 	 */
3535 	if (ret <= 0 && ret != -ENODEV) {
3536 		kfree(command);
3537 		return;
3538 	}
3539 
3540 	virt_dev = xhci->devs[udev->slot_id];
3541 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3542 	trace_xhci_free_dev(slot_ctx);
3543 
3544 	/* Stop any wayward timer functions (which may grab the lock) */
3545 	for (i = 0; i < 31; i++) {
3546 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3547 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3548 	}
3549 
3550 	xhci_disable_slot(xhci, command, udev->slot_id);
3551 	/*
3552 	 * Event command completion handler will free any data structures
3553 	 * associated with the slot.  XXX Can free sleep?
3554 	 */
3555 }
3556 
3557 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command,
3558 			u32 slot_id)
3559 {
3560 	unsigned long flags;
3561 	u32 state;
3562 	int ret = 0;
3563 	struct xhci_virt_device *virt_dev;
3564 
3565 	virt_dev = xhci->devs[slot_id];
3566 	if (!virt_dev)
3567 		return -EINVAL;
3568 	if (!command)
3569 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3570 	if (!command)
3571 		return -ENOMEM;
3572 
3573 	spin_lock_irqsave(&xhci->lock, flags);
3574 	/* Don't disable the slot if the host controller is dead. */
3575 	state = readl(&xhci->op_regs->status);
3576 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3577 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3578 		xhci_free_virt_device(xhci, slot_id);
3579 		spin_unlock_irqrestore(&xhci->lock, flags);
3580 		kfree(command);
3581 		return ret;
3582 	}
3583 
3584 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3585 				slot_id);
3586 	if (ret) {
3587 		spin_unlock_irqrestore(&xhci->lock, flags);
3588 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3589 		return ret;
3590 	}
3591 	xhci_ring_cmd_db(xhci);
3592 	spin_unlock_irqrestore(&xhci->lock, flags);
3593 	return ret;
3594 }
3595 
3596 /*
3597  * Checks if we have enough host controller resources for the default control
3598  * endpoint.
3599  *
3600  * Must be called with xhci->lock held.
3601  */
3602 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3603 {
3604 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3605 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3606 				"Not enough ep ctxs: "
3607 				"%u active, need to add 1, limit is %u.",
3608 				xhci->num_active_eps, xhci->limit_active_eps);
3609 		return -ENOMEM;
3610 	}
3611 	xhci->num_active_eps += 1;
3612 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3613 			"Adding 1 ep ctx, %u now active.",
3614 			xhci->num_active_eps);
3615 	return 0;
3616 }
3617 
3618 
3619 /*
3620  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3621  * timed out, or allocating memory failed.  Returns 1 on success.
3622  */
3623 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3624 {
3625 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3626 	struct xhci_virt_device *vdev;
3627 	struct xhci_slot_ctx *slot_ctx;
3628 	unsigned long flags;
3629 	int ret, slot_id;
3630 	struct xhci_command *command;
3631 
3632 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3633 	if (!command)
3634 		return 0;
3635 
3636 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3637 	mutex_lock(&xhci->mutex);
3638 	spin_lock_irqsave(&xhci->lock, flags);
3639 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3640 	if (ret) {
3641 		spin_unlock_irqrestore(&xhci->lock, flags);
3642 		mutex_unlock(&xhci->mutex);
3643 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3644 		xhci_free_command(xhci, command);
3645 		return 0;
3646 	}
3647 	xhci_ring_cmd_db(xhci);
3648 	spin_unlock_irqrestore(&xhci->lock, flags);
3649 
3650 	wait_for_completion(command->completion);
3651 	slot_id = command->slot_id;
3652 	mutex_unlock(&xhci->mutex);
3653 
3654 	if (!slot_id || command->status != COMP_SUCCESS) {
3655 		xhci_err(xhci, "Error while assigning device slot ID\n");
3656 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3657 				HCS_MAX_SLOTS(
3658 					readl(&xhci->cap_regs->hcs_params1)));
3659 		xhci_free_command(xhci, command);
3660 		return 0;
3661 	}
3662 
3663 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3664 		spin_lock_irqsave(&xhci->lock, flags);
3665 		ret = xhci_reserve_host_control_ep_resources(xhci);
3666 		if (ret) {
3667 			spin_unlock_irqrestore(&xhci->lock, flags);
3668 			xhci_warn(xhci, "Not enough host resources, "
3669 					"active endpoint contexts = %u\n",
3670 					xhci->num_active_eps);
3671 			goto disable_slot;
3672 		}
3673 		spin_unlock_irqrestore(&xhci->lock, flags);
3674 	}
3675 	/* Use GFP_NOIO, since this function can be called from
3676 	 * xhci_discover_or_reset_device(), which may be called as part of
3677 	 * mass storage driver error handling.
3678 	 */
3679 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3680 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3681 		goto disable_slot;
3682 	}
3683 	vdev = xhci->devs[slot_id];
3684 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3685 	trace_xhci_alloc_dev(slot_ctx);
3686 
3687 	udev->slot_id = slot_id;
3688 
3689 #ifndef CONFIG_USB_DEFAULT_PERSIST
3690 	/*
3691 	 * If resetting upon resume, we can't put the controller into runtime
3692 	 * suspend if there is a device attached.
3693 	 */
3694 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3695 		pm_runtime_get_noresume(hcd->self.controller);
3696 #endif
3697 
3698 
3699 	xhci_free_command(xhci, command);
3700 	/* Is this a LS or FS device under a HS hub? */
3701 	/* Hub or peripherial? */
3702 	return 1;
3703 
3704 disable_slot:
3705 	/* Disable slot, if we can do it without mem alloc */
3706 	kfree(command->completion);
3707 	command->completion = NULL;
3708 	command->status = 0;
3709 	return xhci_disable_slot(xhci, command, udev->slot_id);
3710 }
3711 
3712 /*
3713  * Issue an Address Device command and optionally send a corresponding
3714  * SetAddress request to the device.
3715  */
3716 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3717 			     enum xhci_setup_dev setup)
3718 {
3719 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3720 	unsigned long flags;
3721 	struct xhci_virt_device *virt_dev;
3722 	int ret = 0;
3723 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3724 	struct xhci_slot_ctx *slot_ctx;
3725 	struct xhci_input_control_ctx *ctrl_ctx;
3726 	u64 temp_64;
3727 	struct xhci_command *command = NULL;
3728 
3729 	mutex_lock(&xhci->mutex);
3730 
3731 	if (xhci->xhc_state) {	/* dying, removing or halted */
3732 		ret = -ESHUTDOWN;
3733 		goto out;
3734 	}
3735 
3736 	if (!udev->slot_id) {
3737 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3738 				"Bad Slot ID %d", udev->slot_id);
3739 		ret = -EINVAL;
3740 		goto out;
3741 	}
3742 
3743 	virt_dev = xhci->devs[udev->slot_id];
3744 
3745 	if (WARN_ON(!virt_dev)) {
3746 		/*
3747 		 * In plug/unplug torture test with an NEC controller,
3748 		 * a zero-dereference was observed once due to virt_dev = 0.
3749 		 * Print useful debug rather than crash if it is observed again!
3750 		 */
3751 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3752 			udev->slot_id);
3753 		ret = -EINVAL;
3754 		goto out;
3755 	}
3756 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3757 	trace_xhci_setup_device_slot(slot_ctx);
3758 
3759 	if (setup == SETUP_CONTEXT_ONLY) {
3760 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3761 		    SLOT_STATE_DEFAULT) {
3762 			xhci_dbg(xhci, "Slot already in default state\n");
3763 			goto out;
3764 		}
3765 	}
3766 
3767 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3768 	if (!command) {
3769 		ret = -ENOMEM;
3770 		goto out;
3771 	}
3772 
3773 	command->in_ctx = virt_dev->in_ctx;
3774 
3775 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3776 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3777 	if (!ctrl_ctx) {
3778 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3779 				__func__);
3780 		ret = -EINVAL;
3781 		goto out;
3782 	}
3783 	/*
3784 	 * If this is the first Set Address since device plug-in or
3785 	 * virt_device realloaction after a resume with an xHCI power loss,
3786 	 * then set up the slot context.
3787 	 */
3788 	if (!slot_ctx->dev_info)
3789 		xhci_setup_addressable_virt_dev(xhci, udev);
3790 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3791 	else
3792 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3793 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3794 	ctrl_ctx->drop_flags = 0;
3795 
3796 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3797 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3798 
3799 	spin_lock_irqsave(&xhci->lock, flags);
3800 	trace_xhci_setup_device(virt_dev);
3801 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3802 					udev->slot_id, setup);
3803 	if (ret) {
3804 		spin_unlock_irqrestore(&xhci->lock, flags);
3805 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3806 				"FIXME: allocate a command ring segment");
3807 		goto out;
3808 	}
3809 	xhci_ring_cmd_db(xhci);
3810 	spin_unlock_irqrestore(&xhci->lock, flags);
3811 
3812 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3813 	wait_for_completion(command->completion);
3814 
3815 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3816 	 * the SetAddress() "recovery interval" required by USB and aborting the
3817 	 * command on a timeout.
3818 	 */
3819 	switch (command->status) {
3820 	case COMP_COMMAND_ABORTED:
3821 	case COMP_COMMAND_RING_STOPPED:
3822 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3823 		ret = -ETIME;
3824 		break;
3825 	case COMP_CONTEXT_STATE_ERROR:
3826 	case COMP_SLOT_NOT_ENABLED_ERROR:
3827 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3828 			 act, udev->slot_id);
3829 		ret = -EINVAL;
3830 		break;
3831 	case COMP_USB_TRANSACTION_ERROR:
3832 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3833 		ret = -EPROTO;
3834 		break;
3835 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3836 		dev_warn(&udev->dev,
3837 			 "ERROR: Incompatible device for setup %s command\n", act);
3838 		ret = -ENODEV;
3839 		break;
3840 	case COMP_SUCCESS:
3841 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3842 			       "Successful setup %s command", act);
3843 		break;
3844 	default:
3845 		xhci_err(xhci,
3846 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3847 			 act, command->status);
3848 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3849 		ret = -EINVAL;
3850 		break;
3851 	}
3852 	if (ret)
3853 		goto out;
3854 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3855 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3856 			"Op regs DCBAA ptr = %#016llx", temp_64);
3857 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858 		"Slot ID %d dcbaa entry @%p = %#016llx",
3859 		udev->slot_id,
3860 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3861 		(unsigned long long)
3862 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3863 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3864 			"Output Context DMA address = %#08llx",
3865 			(unsigned long long)virt_dev->out_ctx->dma);
3866 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3867 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3868 	/*
3869 	 * USB core uses address 1 for the roothubs, so we add one to the
3870 	 * address given back to us by the HC.
3871 	 */
3872 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3873 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3874 	/* Zero the input context control for later use */
3875 	ctrl_ctx->add_flags = 0;
3876 	ctrl_ctx->drop_flags = 0;
3877 
3878 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3879 		       "Internal device address = %d",
3880 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3881 out:
3882 	mutex_unlock(&xhci->mutex);
3883 	if (command) {
3884 		kfree(command->completion);
3885 		kfree(command);
3886 	}
3887 	return ret;
3888 }
3889 
3890 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3891 {
3892 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3893 }
3894 
3895 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3896 {
3897 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3898 }
3899 
3900 /*
3901  * Transfer the port index into real index in the HW port status
3902  * registers. Caculate offset between the port's PORTSC register
3903  * and port status base. Divide the number of per port register
3904  * to get the real index. The raw port number bases 1.
3905  */
3906 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3907 {
3908 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3909 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3910 	__le32 __iomem *addr;
3911 	int raw_port;
3912 
3913 	if (hcd->speed < HCD_USB3)
3914 		addr = xhci->usb2_ports[port1 - 1];
3915 	else
3916 		addr = xhci->usb3_ports[port1 - 1];
3917 
3918 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3919 	return raw_port;
3920 }
3921 
3922 /*
3923  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3924  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3925  */
3926 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3927 			struct usb_device *udev, u16 max_exit_latency)
3928 {
3929 	struct xhci_virt_device *virt_dev;
3930 	struct xhci_command *command;
3931 	struct xhci_input_control_ctx *ctrl_ctx;
3932 	struct xhci_slot_ctx *slot_ctx;
3933 	unsigned long flags;
3934 	int ret;
3935 
3936 	spin_lock_irqsave(&xhci->lock, flags);
3937 
3938 	virt_dev = xhci->devs[udev->slot_id];
3939 
3940 	/*
3941 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3942 	 * xHC was re-initialized. Exit latency will be set later after
3943 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3944 	 */
3945 
3946 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3947 		spin_unlock_irqrestore(&xhci->lock, flags);
3948 		return 0;
3949 	}
3950 
3951 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3952 	command = xhci->lpm_command;
3953 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3954 	if (!ctrl_ctx) {
3955 		spin_unlock_irqrestore(&xhci->lock, flags);
3956 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3957 				__func__);
3958 		return -ENOMEM;
3959 	}
3960 
3961 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3962 	spin_unlock_irqrestore(&xhci->lock, flags);
3963 
3964 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3965 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3966 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3967 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3968 	slot_ctx->dev_state = 0;
3969 
3970 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3971 			"Set up evaluate context for LPM MEL change.");
3972 
3973 	/* Issue and wait for the evaluate context command. */
3974 	ret = xhci_configure_endpoint(xhci, udev, command,
3975 			true, true);
3976 
3977 	if (!ret) {
3978 		spin_lock_irqsave(&xhci->lock, flags);
3979 		virt_dev->current_mel = max_exit_latency;
3980 		spin_unlock_irqrestore(&xhci->lock, flags);
3981 	}
3982 	return ret;
3983 }
3984 
3985 #ifdef CONFIG_PM
3986 
3987 /* BESL to HIRD Encoding array for USB2 LPM */
3988 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3989 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3990 
3991 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3992 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3993 					struct usb_device *udev)
3994 {
3995 	int u2del, besl, besl_host;
3996 	int besl_device = 0;
3997 	u32 field;
3998 
3999 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4000 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4001 
4002 	if (field & USB_BESL_SUPPORT) {
4003 		for (besl_host = 0; besl_host < 16; besl_host++) {
4004 			if (xhci_besl_encoding[besl_host] >= u2del)
4005 				break;
4006 		}
4007 		/* Use baseline BESL value as default */
4008 		if (field & USB_BESL_BASELINE_VALID)
4009 			besl_device = USB_GET_BESL_BASELINE(field);
4010 		else if (field & USB_BESL_DEEP_VALID)
4011 			besl_device = USB_GET_BESL_DEEP(field);
4012 	} else {
4013 		if (u2del <= 50)
4014 			besl_host = 0;
4015 		else
4016 			besl_host = (u2del - 51) / 75 + 1;
4017 	}
4018 
4019 	besl = besl_host + besl_device;
4020 	if (besl > 15)
4021 		besl = 15;
4022 
4023 	return besl;
4024 }
4025 
4026 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4027 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4028 {
4029 	u32 field;
4030 	int l1;
4031 	int besld = 0;
4032 	int hirdm = 0;
4033 
4034 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4035 
4036 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4037 	l1 = udev->l1_params.timeout / 256;
4038 
4039 	/* device has preferred BESLD */
4040 	if (field & USB_BESL_DEEP_VALID) {
4041 		besld = USB_GET_BESL_DEEP(field);
4042 		hirdm = 1;
4043 	}
4044 
4045 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4046 }
4047 
4048 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4049 			struct usb_device *udev, int enable)
4050 {
4051 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4052 	__le32 __iomem	**port_array;
4053 	__le32 __iomem	*pm_addr, *hlpm_addr;
4054 	u32		pm_val, hlpm_val, field;
4055 	unsigned int	port_num;
4056 	unsigned long	flags;
4057 	int		hird, exit_latency;
4058 	int		ret;
4059 
4060 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4061 			!udev->lpm_capable)
4062 		return -EPERM;
4063 
4064 	if (!udev->parent || udev->parent->parent ||
4065 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4066 		return -EPERM;
4067 
4068 	if (udev->usb2_hw_lpm_capable != 1)
4069 		return -EPERM;
4070 
4071 	spin_lock_irqsave(&xhci->lock, flags);
4072 
4073 	port_array = xhci->usb2_ports;
4074 	port_num = udev->portnum - 1;
4075 	pm_addr = port_array[port_num] + PORTPMSC;
4076 	pm_val = readl(pm_addr);
4077 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4078 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4079 
4080 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4081 			enable ? "enable" : "disable", port_num + 1);
4082 
4083 	if (enable) {
4084 		/* Host supports BESL timeout instead of HIRD */
4085 		if (udev->usb2_hw_lpm_besl_capable) {
4086 			/* if device doesn't have a preferred BESL value use a
4087 			 * default one which works with mixed HIRD and BESL
4088 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4089 			 */
4090 			if ((field & USB_BESL_SUPPORT) &&
4091 			    (field & USB_BESL_BASELINE_VALID))
4092 				hird = USB_GET_BESL_BASELINE(field);
4093 			else
4094 				hird = udev->l1_params.besl;
4095 
4096 			exit_latency = xhci_besl_encoding[hird];
4097 			spin_unlock_irqrestore(&xhci->lock, flags);
4098 
4099 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4100 			 * input context for link powermanagement evaluate
4101 			 * context commands. It is protected by hcd->bandwidth
4102 			 * mutex and is shared by all devices. We need to set
4103 			 * the max ext latency in USB 2 BESL LPM as well, so
4104 			 * use the same mutex and xhci_change_max_exit_latency()
4105 			 */
4106 			mutex_lock(hcd->bandwidth_mutex);
4107 			ret = xhci_change_max_exit_latency(xhci, udev,
4108 							   exit_latency);
4109 			mutex_unlock(hcd->bandwidth_mutex);
4110 
4111 			if (ret < 0)
4112 				return ret;
4113 			spin_lock_irqsave(&xhci->lock, flags);
4114 
4115 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4116 			writel(hlpm_val, hlpm_addr);
4117 			/* flush write */
4118 			readl(hlpm_addr);
4119 		} else {
4120 			hird = xhci_calculate_hird_besl(xhci, udev);
4121 		}
4122 
4123 		pm_val &= ~PORT_HIRD_MASK;
4124 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4125 		writel(pm_val, pm_addr);
4126 		pm_val = readl(pm_addr);
4127 		pm_val |= PORT_HLE;
4128 		writel(pm_val, pm_addr);
4129 		/* flush write */
4130 		readl(pm_addr);
4131 	} else {
4132 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4133 		writel(pm_val, pm_addr);
4134 		/* flush write */
4135 		readl(pm_addr);
4136 		if (udev->usb2_hw_lpm_besl_capable) {
4137 			spin_unlock_irqrestore(&xhci->lock, flags);
4138 			mutex_lock(hcd->bandwidth_mutex);
4139 			xhci_change_max_exit_latency(xhci, udev, 0);
4140 			mutex_unlock(hcd->bandwidth_mutex);
4141 			return 0;
4142 		}
4143 	}
4144 
4145 	spin_unlock_irqrestore(&xhci->lock, flags);
4146 	return 0;
4147 }
4148 
4149 /* check if a usb2 port supports a given extened capability protocol
4150  * only USB2 ports extended protocol capability values are cached.
4151  * Return 1 if capability is supported
4152  */
4153 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4154 					   unsigned capability)
4155 {
4156 	u32 port_offset, port_count;
4157 	int i;
4158 
4159 	for (i = 0; i < xhci->num_ext_caps; i++) {
4160 		if (xhci->ext_caps[i] & capability) {
4161 			/* port offsets starts at 1 */
4162 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4163 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4164 			if (port >= port_offset &&
4165 			    port < port_offset + port_count)
4166 				return 1;
4167 		}
4168 	}
4169 	return 0;
4170 }
4171 
4172 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4173 {
4174 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4175 	int		portnum = udev->portnum - 1;
4176 
4177 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4178 			!udev->lpm_capable)
4179 		return 0;
4180 
4181 	/* we only support lpm for non-hub device connected to root hub yet */
4182 	if (!udev->parent || udev->parent->parent ||
4183 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4184 		return 0;
4185 
4186 	if (xhci->hw_lpm_support == 1 &&
4187 			xhci_check_usb2_port_capability(
4188 				xhci, portnum, XHCI_HLC)) {
4189 		udev->usb2_hw_lpm_capable = 1;
4190 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4191 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4192 		if (xhci_check_usb2_port_capability(xhci, portnum,
4193 					XHCI_BLC))
4194 			udev->usb2_hw_lpm_besl_capable = 1;
4195 	}
4196 
4197 	return 0;
4198 }
4199 
4200 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4201 
4202 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4203 static unsigned long long xhci_service_interval_to_ns(
4204 		struct usb_endpoint_descriptor *desc)
4205 {
4206 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4207 }
4208 
4209 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4210 		enum usb3_link_state state)
4211 {
4212 	unsigned long long sel;
4213 	unsigned long long pel;
4214 	unsigned int max_sel_pel;
4215 	char *state_name;
4216 
4217 	switch (state) {
4218 	case USB3_LPM_U1:
4219 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4220 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4221 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4222 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4223 		state_name = "U1";
4224 		break;
4225 	case USB3_LPM_U2:
4226 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4227 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4228 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4229 		state_name = "U2";
4230 		break;
4231 	default:
4232 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4233 				__func__);
4234 		return USB3_LPM_DISABLED;
4235 	}
4236 
4237 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4238 		return USB3_LPM_DEVICE_INITIATED;
4239 
4240 	if (sel > max_sel_pel)
4241 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4242 				"due to long SEL %llu ms\n",
4243 				state_name, sel);
4244 	else
4245 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4246 				"due to long PEL %llu ms\n",
4247 				state_name, pel);
4248 	return USB3_LPM_DISABLED;
4249 }
4250 
4251 /* The U1 timeout should be the maximum of the following values:
4252  *  - For control endpoints, U1 system exit latency (SEL) * 3
4253  *  - For bulk endpoints, U1 SEL * 5
4254  *  - For interrupt endpoints:
4255  *    - Notification EPs, U1 SEL * 3
4256  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4257  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4258  */
4259 static unsigned long long xhci_calculate_intel_u1_timeout(
4260 		struct usb_device *udev,
4261 		struct usb_endpoint_descriptor *desc)
4262 {
4263 	unsigned long long timeout_ns;
4264 	int ep_type;
4265 	int intr_type;
4266 
4267 	ep_type = usb_endpoint_type(desc);
4268 	switch (ep_type) {
4269 	case USB_ENDPOINT_XFER_CONTROL:
4270 		timeout_ns = udev->u1_params.sel * 3;
4271 		break;
4272 	case USB_ENDPOINT_XFER_BULK:
4273 		timeout_ns = udev->u1_params.sel * 5;
4274 		break;
4275 	case USB_ENDPOINT_XFER_INT:
4276 		intr_type = usb_endpoint_interrupt_type(desc);
4277 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4278 			timeout_ns = udev->u1_params.sel * 3;
4279 			break;
4280 		}
4281 		/* Otherwise the calculation is the same as isoc eps */
4282 	case USB_ENDPOINT_XFER_ISOC:
4283 		timeout_ns = xhci_service_interval_to_ns(desc);
4284 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4285 		if (timeout_ns < udev->u1_params.sel * 2)
4286 			timeout_ns = udev->u1_params.sel * 2;
4287 		break;
4288 	default:
4289 		return 0;
4290 	}
4291 
4292 	return timeout_ns;
4293 }
4294 
4295 /* Returns the hub-encoded U1 timeout value. */
4296 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4297 		struct usb_device *udev,
4298 		struct usb_endpoint_descriptor *desc)
4299 {
4300 	unsigned long long timeout_ns;
4301 
4302 	if (xhci->quirks & XHCI_INTEL_HOST)
4303 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4304 	else
4305 		timeout_ns = udev->u1_params.sel;
4306 
4307 	/* The U1 timeout is encoded in 1us intervals.
4308 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4309 	 */
4310 	if (timeout_ns == USB3_LPM_DISABLED)
4311 		timeout_ns = 1;
4312 	else
4313 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4314 
4315 	/* If the necessary timeout value is bigger than what we can set in the
4316 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4317 	 */
4318 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4319 		return timeout_ns;
4320 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4321 			"due to long timeout %llu ms\n", timeout_ns);
4322 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4323 }
4324 
4325 /* The U2 timeout should be the maximum of:
4326  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4327  *  - largest bInterval of any active periodic endpoint (to avoid going
4328  *    into lower power link states between intervals).
4329  *  - the U2 Exit Latency of the device
4330  */
4331 static unsigned long long xhci_calculate_intel_u2_timeout(
4332 		struct usb_device *udev,
4333 		struct usb_endpoint_descriptor *desc)
4334 {
4335 	unsigned long long timeout_ns;
4336 	unsigned long long u2_del_ns;
4337 
4338 	timeout_ns = 10 * 1000 * 1000;
4339 
4340 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4341 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4342 		timeout_ns = xhci_service_interval_to_ns(desc);
4343 
4344 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4345 	if (u2_del_ns > timeout_ns)
4346 		timeout_ns = u2_del_ns;
4347 
4348 	return timeout_ns;
4349 }
4350 
4351 /* Returns the hub-encoded U2 timeout value. */
4352 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4353 		struct usb_device *udev,
4354 		struct usb_endpoint_descriptor *desc)
4355 {
4356 	unsigned long long timeout_ns;
4357 
4358 	if (xhci->quirks & XHCI_INTEL_HOST)
4359 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4360 	else
4361 		timeout_ns = udev->u2_params.sel;
4362 
4363 	/* The U2 timeout is encoded in 256us intervals */
4364 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4365 	/* If the necessary timeout value is bigger than what we can set in the
4366 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4367 	 */
4368 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4369 		return timeout_ns;
4370 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4371 			"due to long timeout %llu ms\n", timeout_ns);
4372 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4373 }
4374 
4375 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4376 		struct usb_device *udev,
4377 		struct usb_endpoint_descriptor *desc,
4378 		enum usb3_link_state state,
4379 		u16 *timeout)
4380 {
4381 	if (state == USB3_LPM_U1)
4382 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4383 	else if (state == USB3_LPM_U2)
4384 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4385 
4386 	return USB3_LPM_DISABLED;
4387 }
4388 
4389 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4390 		struct usb_device *udev,
4391 		struct usb_endpoint_descriptor *desc,
4392 		enum usb3_link_state state,
4393 		u16 *timeout)
4394 {
4395 	u16 alt_timeout;
4396 
4397 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4398 		desc, state, timeout);
4399 
4400 	/* If we found we can't enable hub-initiated LPM, or
4401 	 * the U1 or U2 exit latency was too high to allow
4402 	 * device-initiated LPM as well, just stop searching.
4403 	 */
4404 	if (alt_timeout == USB3_LPM_DISABLED ||
4405 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4406 		*timeout = alt_timeout;
4407 		return -E2BIG;
4408 	}
4409 	if (alt_timeout > *timeout)
4410 		*timeout = alt_timeout;
4411 	return 0;
4412 }
4413 
4414 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4415 		struct usb_device *udev,
4416 		struct usb_host_interface *alt,
4417 		enum usb3_link_state state,
4418 		u16 *timeout)
4419 {
4420 	int j;
4421 
4422 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4423 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4424 					&alt->endpoint[j].desc, state, timeout))
4425 			return -E2BIG;
4426 		continue;
4427 	}
4428 	return 0;
4429 }
4430 
4431 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4432 		enum usb3_link_state state)
4433 {
4434 	struct usb_device *parent;
4435 	unsigned int num_hubs;
4436 
4437 	if (state == USB3_LPM_U2)
4438 		return 0;
4439 
4440 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4441 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4442 			parent = parent->parent)
4443 		num_hubs++;
4444 
4445 	if (num_hubs < 2)
4446 		return 0;
4447 
4448 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4449 			" below second-tier hub.\n");
4450 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4451 			"to decrease power consumption.\n");
4452 	return -E2BIG;
4453 }
4454 
4455 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4456 		struct usb_device *udev,
4457 		enum usb3_link_state state)
4458 {
4459 	if (xhci->quirks & XHCI_INTEL_HOST)
4460 		return xhci_check_intel_tier_policy(udev, state);
4461 	else
4462 		return 0;
4463 }
4464 
4465 /* Returns the U1 or U2 timeout that should be enabled.
4466  * If the tier check or timeout setting functions return with a non-zero exit
4467  * code, that means the timeout value has been finalized and we shouldn't look
4468  * at any more endpoints.
4469  */
4470 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4471 			struct usb_device *udev, enum usb3_link_state state)
4472 {
4473 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4474 	struct usb_host_config *config;
4475 	char *state_name;
4476 	int i;
4477 	u16 timeout = USB3_LPM_DISABLED;
4478 
4479 	if (state == USB3_LPM_U1)
4480 		state_name = "U1";
4481 	else if (state == USB3_LPM_U2)
4482 		state_name = "U2";
4483 	else {
4484 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4485 				state);
4486 		return timeout;
4487 	}
4488 
4489 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4490 		return timeout;
4491 
4492 	/* Gather some information about the currently installed configuration
4493 	 * and alternate interface settings.
4494 	 */
4495 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4496 			state, &timeout))
4497 		return timeout;
4498 
4499 	config = udev->actconfig;
4500 	if (!config)
4501 		return timeout;
4502 
4503 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4504 		struct usb_driver *driver;
4505 		struct usb_interface *intf = config->interface[i];
4506 
4507 		if (!intf)
4508 			continue;
4509 
4510 		/* Check if any currently bound drivers want hub-initiated LPM
4511 		 * disabled.
4512 		 */
4513 		if (intf->dev.driver) {
4514 			driver = to_usb_driver(intf->dev.driver);
4515 			if (driver && driver->disable_hub_initiated_lpm) {
4516 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4517 						"at request of driver %s\n",
4518 						state_name, driver->name);
4519 				return xhci_get_timeout_no_hub_lpm(udev, state);
4520 			}
4521 		}
4522 
4523 		/* Not sure how this could happen... */
4524 		if (!intf->cur_altsetting)
4525 			continue;
4526 
4527 		if (xhci_update_timeout_for_interface(xhci, udev,
4528 					intf->cur_altsetting,
4529 					state, &timeout))
4530 			return timeout;
4531 	}
4532 	return timeout;
4533 }
4534 
4535 static int calculate_max_exit_latency(struct usb_device *udev,
4536 		enum usb3_link_state state_changed,
4537 		u16 hub_encoded_timeout)
4538 {
4539 	unsigned long long u1_mel_us = 0;
4540 	unsigned long long u2_mel_us = 0;
4541 	unsigned long long mel_us = 0;
4542 	bool disabling_u1;
4543 	bool disabling_u2;
4544 	bool enabling_u1;
4545 	bool enabling_u2;
4546 
4547 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4548 			hub_encoded_timeout == USB3_LPM_DISABLED);
4549 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4550 			hub_encoded_timeout == USB3_LPM_DISABLED);
4551 
4552 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4553 			hub_encoded_timeout != USB3_LPM_DISABLED);
4554 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4555 			hub_encoded_timeout != USB3_LPM_DISABLED);
4556 
4557 	/* If U1 was already enabled and we're not disabling it,
4558 	 * or we're going to enable U1, account for the U1 max exit latency.
4559 	 */
4560 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4561 			enabling_u1)
4562 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4563 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4564 			enabling_u2)
4565 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4566 
4567 	if (u1_mel_us > u2_mel_us)
4568 		mel_us = u1_mel_us;
4569 	else
4570 		mel_us = u2_mel_us;
4571 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4572 	if (mel_us > MAX_EXIT) {
4573 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4574 				"is too big.\n", mel_us);
4575 		return -E2BIG;
4576 	}
4577 	return mel_us;
4578 }
4579 
4580 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4581 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4582 			struct usb_device *udev, enum usb3_link_state state)
4583 {
4584 	struct xhci_hcd	*xhci;
4585 	u16 hub_encoded_timeout;
4586 	int mel;
4587 	int ret;
4588 
4589 	xhci = hcd_to_xhci(hcd);
4590 	/* The LPM timeout values are pretty host-controller specific, so don't
4591 	 * enable hub-initiated timeouts unless the vendor has provided
4592 	 * information about their timeout algorithm.
4593 	 */
4594 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4595 			!xhci->devs[udev->slot_id])
4596 		return USB3_LPM_DISABLED;
4597 
4598 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4599 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4600 	if (mel < 0) {
4601 		/* Max Exit Latency is too big, disable LPM. */
4602 		hub_encoded_timeout = USB3_LPM_DISABLED;
4603 		mel = 0;
4604 	}
4605 
4606 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4607 	if (ret)
4608 		return ret;
4609 	return hub_encoded_timeout;
4610 }
4611 
4612 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4613 			struct usb_device *udev, enum usb3_link_state state)
4614 {
4615 	struct xhci_hcd	*xhci;
4616 	u16 mel;
4617 
4618 	xhci = hcd_to_xhci(hcd);
4619 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4620 			!xhci->devs[udev->slot_id])
4621 		return 0;
4622 
4623 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4624 	return xhci_change_max_exit_latency(xhci, udev, mel);
4625 }
4626 #else /* CONFIG_PM */
4627 
4628 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4629 				struct usb_device *udev, int enable)
4630 {
4631 	return 0;
4632 }
4633 
4634 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4635 {
4636 	return 0;
4637 }
4638 
4639 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4640 			struct usb_device *udev, enum usb3_link_state state)
4641 {
4642 	return USB3_LPM_DISABLED;
4643 }
4644 
4645 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4646 			struct usb_device *udev, enum usb3_link_state state)
4647 {
4648 	return 0;
4649 }
4650 #endif	/* CONFIG_PM */
4651 
4652 /*-------------------------------------------------------------------------*/
4653 
4654 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4655  * internal data structures for the device.
4656  */
4657 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4658 			struct usb_tt *tt, gfp_t mem_flags)
4659 {
4660 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4661 	struct xhci_virt_device *vdev;
4662 	struct xhci_command *config_cmd;
4663 	struct xhci_input_control_ctx *ctrl_ctx;
4664 	struct xhci_slot_ctx *slot_ctx;
4665 	unsigned long flags;
4666 	unsigned think_time;
4667 	int ret;
4668 
4669 	/* Ignore root hubs */
4670 	if (!hdev->parent)
4671 		return 0;
4672 
4673 	vdev = xhci->devs[hdev->slot_id];
4674 	if (!vdev) {
4675 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4676 		return -EINVAL;
4677 	}
4678 
4679 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4680 	if (!config_cmd)
4681 		return -ENOMEM;
4682 
4683 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4684 	if (!ctrl_ctx) {
4685 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4686 				__func__);
4687 		xhci_free_command(xhci, config_cmd);
4688 		return -ENOMEM;
4689 	}
4690 
4691 	spin_lock_irqsave(&xhci->lock, flags);
4692 	if (hdev->speed == USB_SPEED_HIGH &&
4693 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4694 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4695 		xhci_free_command(xhci, config_cmd);
4696 		spin_unlock_irqrestore(&xhci->lock, flags);
4697 		return -ENOMEM;
4698 	}
4699 
4700 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4701 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4702 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4703 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4704 	/*
4705 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4706 	 * but it may be already set to 1 when setup an xHCI virtual
4707 	 * device, so clear it anyway.
4708 	 */
4709 	if (tt->multi)
4710 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4711 	else if (hdev->speed == USB_SPEED_FULL)
4712 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4713 
4714 	if (xhci->hci_version > 0x95) {
4715 		xhci_dbg(xhci, "xHCI version %x needs hub "
4716 				"TT think time and number of ports\n",
4717 				(unsigned int) xhci->hci_version);
4718 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4719 		/* Set TT think time - convert from ns to FS bit times.
4720 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4721 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4722 		 *
4723 		 * xHCI 1.0: this field shall be 0 if the device is not a
4724 		 * High-spped hub.
4725 		 */
4726 		think_time = tt->think_time;
4727 		if (think_time != 0)
4728 			think_time = (think_time / 666) - 1;
4729 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4730 			slot_ctx->tt_info |=
4731 				cpu_to_le32(TT_THINK_TIME(think_time));
4732 	} else {
4733 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4734 				"TT think time or number of ports\n",
4735 				(unsigned int) xhci->hci_version);
4736 	}
4737 	slot_ctx->dev_state = 0;
4738 	spin_unlock_irqrestore(&xhci->lock, flags);
4739 
4740 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4741 			(xhci->hci_version > 0x95) ?
4742 			"configure endpoint" : "evaluate context");
4743 
4744 	/* Issue and wait for the configure endpoint or
4745 	 * evaluate context command.
4746 	 */
4747 	if (xhci->hci_version > 0x95)
4748 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4749 				false, false);
4750 	else
4751 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4752 				true, false);
4753 
4754 	xhci_free_command(xhci, config_cmd);
4755 	return ret;
4756 }
4757 
4758 static int xhci_get_frame(struct usb_hcd *hcd)
4759 {
4760 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4761 	/* EHCI mods by the periodic size.  Why? */
4762 	return readl(&xhci->run_regs->microframe_index) >> 3;
4763 }
4764 
4765 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4766 {
4767 	struct xhci_hcd		*xhci;
4768 	/*
4769 	 * TODO: Check with DWC3 clients for sysdev according to
4770 	 * quirks
4771 	 */
4772 	struct device		*dev = hcd->self.sysdev;
4773 	int			retval;
4774 
4775 	/* Accept arbitrarily long scatter-gather lists */
4776 	hcd->self.sg_tablesize = ~0;
4777 
4778 	/* support to build packet from discontinuous buffers */
4779 	hcd->self.no_sg_constraint = 1;
4780 
4781 	/* XHCI controllers don't stop the ep queue on short packets :| */
4782 	hcd->self.no_stop_on_short = 1;
4783 
4784 	xhci = hcd_to_xhci(hcd);
4785 
4786 	if (usb_hcd_is_primary_hcd(hcd)) {
4787 		xhci->main_hcd = hcd;
4788 		/* Mark the first roothub as being USB 2.0.
4789 		 * The xHCI driver will register the USB 3.0 roothub.
4790 		 */
4791 		hcd->speed = HCD_USB2;
4792 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4793 		/*
4794 		 * USB 2.0 roothub under xHCI has an integrated TT,
4795 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4796 		 * companion controller.
4797 		 */
4798 		hcd->has_tt = 1;
4799 	} else {
4800 		if (xhci->sbrn == 0x31) {
4801 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4802 			hcd->speed = HCD_USB31;
4803 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4804 		}
4805 		/* xHCI private pointer was set in xhci_pci_probe for the second
4806 		 * registered roothub.
4807 		 */
4808 		return 0;
4809 	}
4810 
4811 	mutex_init(&xhci->mutex);
4812 	xhci->cap_regs = hcd->regs;
4813 	xhci->op_regs = hcd->regs +
4814 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4815 	xhci->run_regs = hcd->regs +
4816 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4817 	/* Cache read-only capability registers */
4818 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4819 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4820 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4821 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4822 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4823 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4824 	if (xhci->hci_version > 0x100)
4825 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4826 	xhci_print_registers(xhci);
4827 
4828 	xhci->quirks |= quirks;
4829 
4830 	get_quirks(dev, xhci);
4831 
4832 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4833 	 * success event after a short transfer. This quirk will ignore such
4834 	 * spurious event.
4835 	 */
4836 	if (xhci->hci_version > 0x96)
4837 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4838 
4839 	/* Make sure the HC is halted. */
4840 	retval = xhci_halt(xhci);
4841 	if (retval)
4842 		return retval;
4843 
4844 	xhci_dbg(xhci, "Resetting HCD\n");
4845 	/* Reset the internal HC memory state and registers. */
4846 	retval = xhci_reset(xhci);
4847 	if (retval)
4848 		return retval;
4849 	xhci_dbg(xhci, "Reset complete\n");
4850 
4851 	/*
4852 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4853 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4854 	 * address memory pointers actually. So, this driver clears the AC64
4855 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4856 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4857 	 */
4858 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4859 		xhci->hcc_params &= ~BIT(0);
4860 
4861 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4862 	 * if xHC supports 64-bit addressing */
4863 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4864 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4865 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4866 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4867 	} else {
4868 		/*
4869 		 * This is to avoid error in cases where a 32-bit USB
4870 		 * controller is used on a 64-bit capable system.
4871 		 */
4872 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4873 		if (retval)
4874 			return retval;
4875 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4876 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4877 	}
4878 
4879 	xhci_dbg(xhci, "Calling HCD init\n");
4880 	/* Initialize HCD and host controller data structures. */
4881 	retval = xhci_init(hcd);
4882 	if (retval)
4883 		return retval;
4884 	xhci_dbg(xhci, "Called HCD init\n");
4885 
4886 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4887 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4888 
4889 	return 0;
4890 }
4891 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4892 
4893 static const struct hc_driver xhci_hc_driver = {
4894 	.description =		"xhci-hcd",
4895 	.product_desc =		"xHCI Host Controller",
4896 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4897 
4898 	/*
4899 	 * generic hardware linkage
4900 	 */
4901 	.irq =			xhci_irq,
4902 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4903 
4904 	/*
4905 	 * basic lifecycle operations
4906 	 */
4907 	.reset =		NULL, /* set in xhci_init_driver() */
4908 	.start =		xhci_run,
4909 	.stop =			xhci_stop,
4910 	.shutdown =		xhci_shutdown,
4911 
4912 	/*
4913 	 * managing i/o requests and associated device resources
4914 	 */
4915 	.urb_enqueue =		xhci_urb_enqueue,
4916 	.urb_dequeue =		xhci_urb_dequeue,
4917 	.alloc_dev =		xhci_alloc_dev,
4918 	.free_dev =		xhci_free_dev,
4919 	.alloc_streams =	xhci_alloc_streams,
4920 	.free_streams =		xhci_free_streams,
4921 	.add_endpoint =		xhci_add_endpoint,
4922 	.drop_endpoint =	xhci_drop_endpoint,
4923 	.endpoint_reset =	xhci_endpoint_reset,
4924 	.check_bandwidth =	xhci_check_bandwidth,
4925 	.reset_bandwidth =	xhci_reset_bandwidth,
4926 	.address_device =	xhci_address_device,
4927 	.enable_device =	xhci_enable_device,
4928 	.update_hub_device =	xhci_update_hub_device,
4929 	.reset_device =		xhci_discover_or_reset_device,
4930 
4931 	/*
4932 	 * scheduling support
4933 	 */
4934 	.get_frame_number =	xhci_get_frame,
4935 
4936 	/*
4937 	 * root hub support
4938 	 */
4939 	.hub_control =		xhci_hub_control,
4940 	.hub_status_data =	xhci_hub_status_data,
4941 	.bus_suspend =		xhci_bus_suspend,
4942 	.bus_resume =		xhci_bus_resume,
4943 
4944 	/*
4945 	 * call back when device connected and addressed
4946 	 */
4947 	.update_device =        xhci_update_device,
4948 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4949 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4950 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
4951 	.find_raw_port_number =	xhci_find_raw_port_number,
4952 };
4953 
4954 void xhci_init_driver(struct hc_driver *drv,
4955 		      const struct xhci_driver_overrides *over)
4956 {
4957 	BUG_ON(!over);
4958 
4959 	/* Copy the generic table to drv then apply the overrides */
4960 	*drv = xhci_hc_driver;
4961 
4962 	if (over) {
4963 		drv->hcd_priv_size += over->extra_priv_size;
4964 		if (over->reset)
4965 			drv->reset = over->reset;
4966 		if (over->start)
4967 			drv->start = over->start;
4968 	}
4969 }
4970 EXPORT_SYMBOL_GPL(xhci_init_driver);
4971 
4972 MODULE_DESCRIPTION(DRIVER_DESC);
4973 MODULE_AUTHOR(DRIVER_AUTHOR);
4974 MODULE_LICENSE("GPL");
4975 
4976 static int __init xhci_hcd_init(void)
4977 {
4978 	/*
4979 	 * Check the compiler generated sizes of structures that must be laid
4980 	 * out in specific ways for hardware access.
4981 	 */
4982 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4983 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4984 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4985 	/* xhci_device_control has eight fields, and also
4986 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4987 	 */
4988 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4989 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4990 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4991 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4992 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4993 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4994 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4995 
4996 	if (usb_disabled())
4997 		return -ENODEV;
4998 
4999 	return 0;
5000 }
5001 
5002 /*
5003  * If an init function is provided, an exit function must also be provided
5004  * to allow module unload.
5005  */
5006 static void __exit xhci_hcd_fini(void) { }
5007 
5008 module_init(xhci_hcd_init);
5009 module_exit(xhci_hcd_fini);
5010