1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 31 #include "xhci.h" 32 33 #define DRIVER_AUTHOR "Sarah Sharp" 34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 35 36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 37 static int link_quirk; 38 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 40 41 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 42 /* 43 * xhci_handshake - spin reading hc until handshake completes or fails 44 * @ptr: address of hc register to be read 45 * @mask: bits to look at in result of read 46 * @done: value of those bits when handshake succeeds 47 * @usec: timeout in microseconds 48 * 49 * Returns negative errno, or zero on success 50 * 51 * Success happens when the "mask" bits have the specified value (hardware 52 * handshake done). There are two failure modes: "usec" have passed (major 53 * hardware flakeout), or the register reads as all-ones (hardware removed). 54 */ 55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 56 u32 mask, u32 done, int usec) 57 { 58 u32 result; 59 60 do { 61 result = xhci_readl(xhci, ptr); 62 if (result == ~(u32)0) /* card removed */ 63 return -ENODEV; 64 result &= mask; 65 if (result == done) 66 return 0; 67 udelay(1); 68 usec--; 69 } while (usec > 0); 70 return -ETIMEDOUT; 71 } 72 73 /* 74 * Disable interrupts and begin the xHCI halting process. 75 */ 76 void xhci_quiesce(struct xhci_hcd *xhci) 77 { 78 u32 halted; 79 u32 cmd; 80 u32 mask; 81 82 mask = ~(XHCI_IRQS); 83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 84 if (!halted) 85 mask &= ~CMD_RUN; 86 87 cmd = xhci_readl(xhci, &xhci->op_regs->command); 88 cmd &= mask; 89 xhci_writel(xhci, cmd, &xhci->op_regs->command); 90 } 91 92 /* 93 * Force HC into halt state. 94 * 95 * Disable any IRQs and clear the run/stop bit. 96 * HC will complete any current and actively pipelined transactions, and 97 * should halt within 16 ms of the run/stop bit being cleared. 98 * Read HC Halted bit in the status register to see when the HC is finished. 99 */ 100 int xhci_halt(struct xhci_hcd *xhci) 101 { 102 int ret; 103 xhci_dbg(xhci, "// Halt the HC\n"); 104 xhci_quiesce(xhci); 105 106 ret = xhci_handshake(xhci, &xhci->op_regs->status, 107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 108 if (!ret) { 109 xhci->xhc_state |= XHCI_STATE_HALTED; 110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 111 } else 112 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 113 XHCI_MAX_HALT_USEC); 114 return ret; 115 } 116 117 /* 118 * Set the run bit and wait for the host to be running. 119 */ 120 static int xhci_start(struct xhci_hcd *xhci) 121 { 122 u32 temp; 123 int ret; 124 125 temp = xhci_readl(xhci, &xhci->op_regs->command); 126 temp |= (CMD_RUN); 127 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 128 temp); 129 xhci_writel(xhci, temp, &xhci->op_regs->command); 130 131 /* 132 * Wait for the HCHalted Status bit to be 0 to indicate the host is 133 * running. 134 */ 135 ret = xhci_handshake(xhci, &xhci->op_regs->status, 136 STS_HALT, 0, XHCI_MAX_HALT_USEC); 137 if (ret == -ETIMEDOUT) 138 xhci_err(xhci, "Host took too long to start, " 139 "waited %u microseconds.\n", 140 XHCI_MAX_HALT_USEC); 141 if (!ret) 142 xhci->xhc_state &= ~XHCI_STATE_HALTED; 143 return ret; 144 } 145 146 /* 147 * Reset a halted HC. 148 * 149 * This resets pipelines, timers, counters, state machines, etc. 150 * Transactions will be terminated immediately, and operational registers 151 * will be set to their defaults. 152 */ 153 int xhci_reset(struct xhci_hcd *xhci) 154 { 155 u32 command; 156 u32 state; 157 int ret, i; 158 159 state = xhci_readl(xhci, &xhci->op_regs->status); 160 if ((state & STS_HALT) == 0) { 161 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 162 return 0; 163 } 164 165 xhci_dbg(xhci, "// Reset the HC\n"); 166 command = xhci_readl(xhci, &xhci->op_regs->command); 167 command |= CMD_RESET; 168 xhci_writel(xhci, command, &xhci->op_regs->command); 169 170 ret = xhci_handshake(xhci, &xhci->op_regs->command, 171 CMD_RESET, 0, 10 * 1000 * 1000); 172 if (ret) 173 return ret; 174 175 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 176 /* 177 * xHCI cannot write to any doorbells or operational registers other 178 * than status until the "Controller Not Ready" flag is cleared. 179 */ 180 ret = xhci_handshake(xhci, &xhci->op_regs->status, 181 STS_CNR, 0, 10 * 1000 * 1000); 182 183 for (i = 0; i < 2; ++i) { 184 xhci->bus_state[i].port_c_suspend = 0; 185 xhci->bus_state[i].suspended_ports = 0; 186 xhci->bus_state[i].resuming_ports = 0; 187 } 188 189 return ret; 190 } 191 192 #ifdef CONFIG_PCI 193 static int xhci_free_msi(struct xhci_hcd *xhci) 194 { 195 int i; 196 197 if (!xhci->msix_entries) 198 return -EINVAL; 199 200 for (i = 0; i < xhci->msix_count; i++) 201 if (xhci->msix_entries[i].vector) 202 free_irq(xhci->msix_entries[i].vector, 203 xhci_to_hcd(xhci)); 204 return 0; 205 } 206 207 /* 208 * Set up MSI 209 */ 210 static int xhci_setup_msi(struct xhci_hcd *xhci) 211 { 212 int ret; 213 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 214 215 ret = pci_enable_msi(pdev); 216 if (ret) { 217 xhci_dbg(xhci, "failed to allocate MSI entry\n"); 218 return ret; 219 } 220 221 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 222 0, "xhci_hcd", xhci_to_hcd(xhci)); 223 if (ret) { 224 xhci_dbg(xhci, "disable MSI interrupt\n"); 225 pci_disable_msi(pdev); 226 } 227 228 return ret; 229 } 230 231 /* 232 * Free IRQs 233 * free all IRQs request 234 */ 235 static void xhci_free_irq(struct xhci_hcd *xhci) 236 { 237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 238 int ret; 239 240 /* return if using legacy interrupt */ 241 if (xhci_to_hcd(xhci)->irq > 0) 242 return; 243 244 ret = xhci_free_msi(xhci); 245 if (!ret) 246 return; 247 if (pdev->irq > 0) 248 free_irq(pdev->irq, xhci_to_hcd(xhci)); 249 250 return; 251 } 252 253 /* 254 * Set up MSI-X 255 */ 256 static int xhci_setup_msix(struct xhci_hcd *xhci) 257 { 258 int i, ret = 0; 259 struct usb_hcd *hcd = xhci_to_hcd(xhci); 260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 261 262 /* 263 * calculate number of msi-x vectors supported. 264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 265 * with max number of interrupters based on the xhci HCSPARAMS1. 266 * - num_online_cpus: maximum msi-x vectors per CPUs core. 267 * Add additional 1 vector to ensure always available interrupt. 268 */ 269 xhci->msix_count = min(num_online_cpus() + 1, 270 HCS_MAX_INTRS(xhci->hcs_params1)); 271 272 xhci->msix_entries = 273 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 274 GFP_KERNEL); 275 if (!xhci->msix_entries) { 276 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 277 return -ENOMEM; 278 } 279 280 for (i = 0; i < xhci->msix_count; i++) { 281 xhci->msix_entries[i].entry = i; 282 xhci->msix_entries[i].vector = 0; 283 } 284 285 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 286 if (ret) { 287 xhci_dbg(xhci, "Failed to enable MSI-X\n"); 288 goto free_entries; 289 } 290 291 for (i = 0; i < xhci->msix_count; i++) { 292 ret = request_irq(xhci->msix_entries[i].vector, 293 (irq_handler_t)xhci_msi_irq, 294 0, "xhci_hcd", xhci_to_hcd(xhci)); 295 if (ret) 296 goto disable_msix; 297 } 298 299 hcd->msix_enabled = 1; 300 return ret; 301 302 disable_msix: 303 xhci_dbg(xhci, "disable MSI-X interrupt\n"); 304 xhci_free_irq(xhci); 305 pci_disable_msix(pdev); 306 free_entries: 307 kfree(xhci->msix_entries); 308 xhci->msix_entries = NULL; 309 return ret; 310 } 311 312 /* Free any IRQs and disable MSI-X */ 313 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 314 { 315 struct usb_hcd *hcd = xhci_to_hcd(xhci); 316 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 317 318 xhci_free_irq(xhci); 319 320 if (xhci->msix_entries) { 321 pci_disable_msix(pdev); 322 kfree(xhci->msix_entries); 323 xhci->msix_entries = NULL; 324 } else { 325 pci_disable_msi(pdev); 326 } 327 328 hcd->msix_enabled = 0; 329 return; 330 } 331 332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 333 { 334 int i; 335 336 if (xhci->msix_entries) { 337 for (i = 0; i < xhci->msix_count; i++) 338 synchronize_irq(xhci->msix_entries[i].vector); 339 } 340 } 341 342 static int xhci_try_enable_msi(struct usb_hcd *hcd) 343 { 344 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 346 int ret; 347 348 /* 349 * Some Fresco Logic host controllers advertise MSI, but fail to 350 * generate interrupts. Don't even try to enable MSI. 351 */ 352 if (xhci->quirks & XHCI_BROKEN_MSI) 353 goto legacy_irq; 354 355 /* unregister the legacy interrupt */ 356 if (hcd->irq) 357 free_irq(hcd->irq, hcd); 358 hcd->irq = 0; 359 360 ret = xhci_setup_msix(xhci); 361 if (ret) 362 /* fall back to msi*/ 363 ret = xhci_setup_msi(xhci); 364 365 if (!ret) 366 /* hcd->irq is 0, we have MSI */ 367 return 0; 368 369 if (!pdev->irq) { 370 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 371 return -EINVAL; 372 } 373 374 legacy_irq: 375 /* fall back to legacy interrupt*/ 376 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 377 hcd->irq_descr, hcd); 378 if (ret) { 379 xhci_err(xhci, "request interrupt %d failed\n", 380 pdev->irq); 381 return ret; 382 } 383 hcd->irq = pdev->irq; 384 return 0; 385 } 386 387 #else 388 389 static int xhci_try_enable_msi(struct usb_hcd *hcd) 390 { 391 return 0; 392 } 393 394 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 395 { 396 } 397 398 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 399 { 400 } 401 402 #endif 403 404 static void compliance_mode_recovery(unsigned long arg) 405 { 406 struct xhci_hcd *xhci; 407 struct usb_hcd *hcd; 408 u32 temp; 409 int i; 410 411 xhci = (struct xhci_hcd *)arg; 412 413 for (i = 0; i < xhci->num_usb3_ports; i++) { 414 temp = xhci_readl(xhci, xhci->usb3_ports[i]); 415 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 416 /* 417 * Compliance Mode Detected. Letting USB Core 418 * handle the Warm Reset 419 */ 420 xhci_dbg(xhci, "Compliance mode detected->port %d\n", 421 i + 1); 422 xhci_dbg(xhci, "Attempting compliance mode recovery\n"); 423 hcd = xhci->shared_hcd; 424 425 if (hcd->state == HC_STATE_SUSPENDED) 426 usb_hcd_resume_root_hub(hcd); 427 428 usb_hcd_poll_rh_status(hcd); 429 } 430 } 431 432 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 433 mod_timer(&xhci->comp_mode_recovery_timer, 434 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 435 } 436 437 /* 438 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 439 * that causes ports behind that hardware to enter compliance mode sometimes. 440 * The quirk creates a timer that polls every 2 seconds the link state of 441 * each host controller's port and recovers it by issuing a Warm reset 442 * if Compliance mode is detected, otherwise the port will become "dead" (no 443 * device connections or disconnections will be detected anymore). Becasue no 444 * status event is generated when entering compliance mode (per xhci spec), 445 * this quirk is needed on systems that have the failing hardware installed. 446 */ 447 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 448 { 449 xhci->port_status_u0 = 0; 450 init_timer(&xhci->comp_mode_recovery_timer); 451 452 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 453 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 454 xhci->comp_mode_recovery_timer.expires = jiffies + 455 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 456 457 set_timer_slack(&xhci->comp_mode_recovery_timer, 458 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 459 add_timer(&xhci->comp_mode_recovery_timer); 460 xhci_dbg(xhci, "Compliance mode recovery timer initialized\n"); 461 } 462 463 /* 464 * This function identifies the systems that have installed the SN65LVPE502CP 465 * USB3.0 re-driver and that need the Compliance Mode Quirk. 466 * Systems: 467 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 468 */ 469 static bool compliance_mode_recovery_timer_quirk_check(void) 470 { 471 const char *dmi_product_name, *dmi_sys_vendor; 472 473 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 474 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 475 if (!dmi_product_name || !dmi_sys_vendor) 476 return false; 477 478 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 479 return false; 480 481 if (strstr(dmi_product_name, "Z420") || 482 strstr(dmi_product_name, "Z620") || 483 strstr(dmi_product_name, "Z820") || 484 strstr(dmi_product_name, "Z1 Workstation")) 485 return true; 486 487 return false; 488 } 489 490 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 491 { 492 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 493 } 494 495 496 /* 497 * Initialize memory for HCD and xHC (one-time init). 498 * 499 * Program the PAGESIZE register, initialize the device context array, create 500 * device contexts (?), set up a command ring segment (or two?), create event 501 * ring (one for now). 502 */ 503 int xhci_init(struct usb_hcd *hcd) 504 { 505 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 506 int retval = 0; 507 508 xhci_dbg(xhci, "xhci_init\n"); 509 spin_lock_init(&xhci->lock); 510 if (xhci->hci_version == 0x95 && link_quirk) { 511 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 512 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 513 } else { 514 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 515 } 516 retval = xhci_mem_init(xhci, GFP_KERNEL); 517 xhci_dbg(xhci, "Finished xhci_init\n"); 518 519 /* Initializing Compliance Mode Recovery Data If Needed */ 520 if (compliance_mode_recovery_timer_quirk_check()) { 521 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 522 compliance_mode_recovery_timer_init(xhci); 523 } 524 525 return retval; 526 } 527 528 /*-------------------------------------------------------------------------*/ 529 530 531 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 532 static void xhci_event_ring_work(unsigned long arg) 533 { 534 unsigned long flags; 535 int temp; 536 u64 temp_64; 537 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 538 int i, j; 539 540 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 541 542 spin_lock_irqsave(&xhci->lock, flags); 543 temp = xhci_readl(xhci, &xhci->op_regs->status); 544 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 545 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 546 (xhci->xhc_state & XHCI_STATE_HALTED)) { 547 xhci_dbg(xhci, "HW died, polling stopped.\n"); 548 spin_unlock_irqrestore(&xhci->lock, flags); 549 return; 550 } 551 552 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 553 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 554 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 555 xhci->error_bitmask = 0; 556 xhci_dbg(xhci, "Event ring:\n"); 557 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 558 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 559 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 560 temp_64 &= ~ERST_PTR_MASK; 561 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 562 xhci_dbg(xhci, "Command ring:\n"); 563 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 564 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 565 xhci_dbg_cmd_ptrs(xhci); 566 for (i = 0; i < MAX_HC_SLOTS; ++i) { 567 if (!xhci->devs[i]) 568 continue; 569 for (j = 0; j < 31; ++j) { 570 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 571 } 572 } 573 spin_unlock_irqrestore(&xhci->lock, flags); 574 575 if (!xhci->zombie) 576 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 577 else 578 xhci_dbg(xhci, "Quit polling the event ring.\n"); 579 } 580 #endif 581 582 static int xhci_run_finished(struct xhci_hcd *xhci) 583 { 584 if (xhci_start(xhci)) { 585 xhci_halt(xhci); 586 return -ENODEV; 587 } 588 xhci->shared_hcd->state = HC_STATE_RUNNING; 589 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 590 591 if (xhci->quirks & XHCI_NEC_HOST) 592 xhci_ring_cmd_db(xhci); 593 594 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); 595 return 0; 596 } 597 598 /* 599 * Start the HC after it was halted. 600 * 601 * This function is called by the USB core when the HC driver is added. 602 * Its opposite is xhci_stop(). 603 * 604 * xhci_init() must be called once before this function can be called. 605 * Reset the HC, enable device slot contexts, program DCBAAP, and 606 * set command ring pointer and event ring pointer. 607 * 608 * Setup MSI-X vectors and enable interrupts. 609 */ 610 int xhci_run(struct usb_hcd *hcd) 611 { 612 u32 temp; 613 u64 temp_64; 614 int ret; 615 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 616 617 /* Start the xHCI host controller running only after the USB 2.0 roothub 618 * is setup. 619 */ 620 621 hcd->uses_new_polling = 1; 622 if (!usb_hcd_is_primary_hcd(hcd)) 623 return xhci_run_finished(xhci); 624 625 xhci_dbg(xhci, "xhci_run\n"); 626 627 ret = xhci_try_enable_msi(hcd); 628 if (ret) 629 return ret; 630 631 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 632 init_timer(&xhci->event_ring_timer); 633 xhci->event_ring_timer.data = (unsigned long) xhci; 634 xhci->event_ring_timer.function = xhci_event_ring_work; 635 /* Poll the event ring */ 636 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 637 xhci->zombie = 0; 638 xhci_dbg(xhci, "Setting event ring polling timer\n"); 639 add_timer(&xhci->event_ring_timer); 640 #endif 641 642 xhci_dbg(xhci, "Command ring memory map follows:\n"); 643 xhci_debug_ring(xhci, xhci->cmd_ring); 644 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 645 xhci_dbg_cmd_ptrs(xhci); 646 647 xhci_dbg(xhci, "ERST memory map follows:\n"); 648 xhci_dbg_erst(xhci, &xhci->erst); 649 xhci_dbg(xhci, "Event ring:\n"); 650 xhci_debug_ring(xhci, xhci->event_ring); 651 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 652 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 653 temp_64 &= ~ERST_PTR_MASK; 654 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 655 656 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 657 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 658 temp &= ~ER_IRQ_INTERVAL_MASK; 659 temp |= (u32) 160; 660 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 661 662 /* Set the HCD state before we enable the irqs */ 663 temp = xhci_readl(xhci, &xhci->op_regs->command); 664 temp |= (CMD_EIE); 665 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 666 temp); 667 xhci_writel(xhci, temp, &xhci->op_regs->command); 668 669 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 670 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 671 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 672 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 673 &xhci->ir_set->irq_pending); 674 xhci_print_ir_set(xhci, 0); 675 676 if (xhci->quirks & XHCI_NEC_HOST) 677 xhci_queue_vendor_command(xhci, 0, 0, 0, 678 TRB_TYPE(TRB_NEC_GET_FW)); 679 680 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); 681 return 0; 682 } 683 684 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 685 { 686 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 687 688 spin_lock_irq(&xhci->lock); 689 xhci_halt(xhci); 690 691 /* The shared_hcd is going to be deallocated shortly (the USB core only 692 * calls this function when allocation fails in usb_add_hcd(), or 693 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 694 */ 695 xhci->shared_hcd = NULL; 696 spin_unlock_irq(&xhci->lock); 697 } 698 699 /* 700 * Stop xHCI driver. 701 * 702 * This function is called by the USB core when the HC driver is removed. 703 * Its opposite is xhci_run(). 704 * 705 * Disable device contexts, disable IRQs, and quiesce the HC. 706 * Reset the HC, finish any completed transactions, and cleanup memory. 707 */ 708 void xhci_stop(struct usb_hcd *hcd) 709 { 710 u32 temp; 711 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 712 713 if (!usb_hcd_is_primary_hcd(hcd)) { 714 xhci_only_stop_hcd(xhci->shared_hcd); 715 return; 716 } 717 718 spin_lock_irq(&xhci->lock); 719 /* Make sure the xHC is halted for a USB3 roothub 720 * (xhci_stop() could be called as part of failed init). 721 */ 722 xhci_halt(xhci); 723 xhci_reset(xhci); 724 spin_unlock_irq(&xhci->lock); 725 726 xhci_cleanup_msix(xhci); 727 728 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 729 /* Tell the event ring poll function not to reschedule */ 730 xhci->zombie = 1; 731 del_timer_sync(&xhci->event_ring_timer); 732 #endif 733 734 /* Deleting Compliance Mode Recovery Timer */ 735 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 736 (!(xhci_all_ports_seen_u0(xhci)))) { 737 del_timer_sync(&xhci->comp_mode_recovery_timer); 738 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n", 739 __func__); 740 } 741 742 if (xhci->quirks & XHCI_AMD_PLL_FIX) 743 usb_amd_dev_put(); 744 745 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 746 temp = xhci_readl(xhci, &xhci->op_regs->status); 747 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 748 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 749 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 750 &xhci->ir_set->irq_pending); 751 xhci_print_ir_set(xhci, 0); 752 753 xhci_dbg(xhci, "cleaning up memory\n"); 754 xhci_mem_cleanup(xhci); 755 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 756 xhci_readl(xhci, &xhci->op_regs->status)); 757 } 758 759 /* 760 * Shutdown HC (not bus-specific) 761 * 762 * This is called when the machine is rebooting or halting. We assume that the 763 * machine will be powered off, and the HC's internal state will be reset. 764 * Don't bother to free memory. 765 * 766 * This will only ever be called with the main usb_hcd (the USB3 roothub). 767 */ 768 void xhci_shutdown(struct usb_hcd *hcd) 769 { 770 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 771 772 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 773 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 774 775 spin_lock_irq(&xhci->lock); 776 xhci_halt(xhci); 777 spin_unlock_irq(&xhci->lock); 778 779 xhci_cleanup_msix(xhci); 780 781 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 782 xhci_readl(xhci, &xhci->op_regs->status)); 783 } 784 785 #ifdef CONFIG_PM 786 static void xhci_save_registers(struct xhci_hcd *xhci) 787 { 788 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 789 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 790 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 791 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 792 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 793 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 794 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 795 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 796 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 797 } 798 799 static void xhci_restore_registers(struct xhci_hcd *xhci) 800 { 801 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 802 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 803 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 804 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 805 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 806 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 807 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 808 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 809 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 810 } 811 812 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 813 { 814 u64 val_64; 815 816 /* step 2: initialize command ring buffer */ 817 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 818 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 819 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 820 xhci->cmd_ring->dequeue) & 821 (u64) ~CMD_RING_RSVD_BITS) | 822 xhci->cmd_ring->cycle_state; 823 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", 824 (long unsigned long) val_64); 825 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 826 } 827 828 /* 829 * The whole command ring must be cleared to zero when we suspend the host. 830 * 831 * The host doesn't save the command ring pointer in the suspend well, so we 832 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 833 * aligned, because of the reserved bits in the command ring dequeue pointer 834 * register. Therefore, we can't just set the dequeue pointer back in the 835 * middle of the ring (TRBs are 16-byte aligned). 836 */ 837 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 838 { 839 struct xhci_ring *ring; 840 struct xhci_segment *seg; 841 842 ring = xhci->cmd_ring; 843 seg = ring->deq_seg; 844 do { 845 memset(seg->trbs, 0, 846 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 847 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 848 cpu_to_le32(~TRB_CYCLE); 849 seg = seg->next; 850 } while (seg != ring->deq_seg); 851 852 /* Reset the software enqueue and dequeue pointers */ 853 ring->deq_seg = ring->first_seg; 854 ring->dequeue = ring->first_seg->trbs; 855 ring->enq_seg = ring->deq_seg; 856 ring->enqueue = ring->dequeue; 857 858 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 859 /* 860 * Ring is now zeroed, so the HW should look for change of ownership 861 * when the cycle bit is set to 1. 862 */ 863 ring->cycle_state = 1; 864 865 /* 866 * Reset the hardware dequeue pointer. 867 * Yes, this will need to be re-written after resume, but we're paranoid 868 * and want to make sure the hardware doesn't access bogus memory 869 * because, say, the BIOS or an SMI started the host without changing 870 * the command ring pointers. 871 */ 872 xhci_set_cmd_ring_deq(xhci); 873 } 874 875 /* 876 * Stop HC (not bus-specific) 877 * 878 * This is called when the machine transition into S3/S4 mode. 879 * 880 */ 881 int xhci_suspend(struct xhci_hcd *xhci) 882 { 883 int rc = 0; 884 struct usb_hcd *hcd = xhci_to_hcd(xhci); 885 u32 command; 886 887 if (hcd->state != HC_STATE_SUSPENDED || 888 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 889 return -EINVAL; 890 891 /* Don't poll the roothubs on bus suspend. */ 892 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 893 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 894 del_timer_sync(&hcd->rh_timer); 895 896 spin_lock_irq(&xhci->lock); 897 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 898 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 899 /* step 1: stop endpoint */ 900 /* skipped assuming that port suspend has done */ 901 902 /* step 2: clear Run/Stop bit */ 903 command = xhci_readl(xhci, &xhci->op_regs->command); 904 command &= ~CMD_RUN; 905 xhci_writel(xhci, command, &xhci->op_regs->command); 906 if (xhci_handshake(xhci, &xhci->op_regs->status, 907 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) { 908 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 909 spin_unlock_irq(&xhci->lock); 910 return -ETIMEDOUT; 911 } 912 xhci_clear_command_ring(xhci); 913 914 /* step 3: save registers */ 915 xhci_save_registers(xhci); 916 917 /* step 4: set CSS flag */ 918 command = xhci_readl(xhci, &xhci->op_regs->command); 919 command |= CMD_CSS; 920 xhci_writel(xhci, command, &xhci->op_regs->command); 921 if (xhci_handshake(xhci, &xhci->op_regs->status, 922 STS_SAVE, 0, 10 * 1000)) { 923 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 924 spin_unlock_irq(&xhci->lock); 925 return -ETIMEDOUT; 926 } 927 spin_unlock_irq(&xhci->lock); 928 929 /* 930 * Deleting Compliance Mode Recovery Timer because the xHCI Host 931 * is about to be suspended. 932 */ 933 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 934 (!(xhci_all_ports_seen_u0(xhci)))) { 935 del_timer_sync(&xhci->comp_mode_recovery_timer); 936 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n", 937 __func__); 938 } 939 940 /* step 5: remove core well power */ 941 /* synchronize irq when using MSI-X */ 942 xhci_msix_sync_irqs(xhci); 943 944 return rc; 945 } 946 947 /* 948 * start xHC (not bus-specific) 949 * 950 * This is called when the machine transition from S3/S4 mode. 951 * 952 */ 953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 954 { 955 u32 command, temp = 0; 956 struct usb_hcd *hcd = xhci_to_hcd(xhci); 957 struct usb_hcd *secondary_hcd; 958 int retval = 0; 959 960 /* Wait a bit if either of the roothubs need to settle from the 961 * transition into bus suspend. 962 */ 963 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 964 time_before(jiffies, 965 xhci->bus_state[1].next_statechange)) 966 msleep(100); 967 968 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 969 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 970 971 spin_lock_irq(&xhci->lock); 972 if (xhci->quirks & XHCI_RESET_ON_RESUME) 973 hibernated = true; 974 975 if (!hibernated) { 976 /* step 1: restore register */ 977 xhci_restore_registers(xhci); 978 /* step 2: initialize command ring buffer */ 979 xhci_set_cmd_ring_deq(xhci); 980 /* step 3: restore state and start state*/ 981 /* step 3: set CRS flag */ 982 command = xhci_readl(xhci, &xhci->op_regs->command); 983 command |= CMD_CRS; 984 xhci_writel(xhci, command, &xhci->op_regs->command); 985 if (xhci_handshake(xhci, &xhci->op_regs->status, 986 STS_RESTORE, 0, 10 * 1000)) { 987 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 988 spin_unlock_irq(&xhci->lock); 989 return -ETIMEDOUT; 990 } 991 temp = xhci_readl(xhci, &xhci->op_regs->status); 992 } 993 994 /* If restore operation fails, re-initialize the HC during resume */ 995 if ((temp & STS_SRE) || hibernated) { 996 /* Let the USB core know _both_ roothubs lost power. */ 997 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 998 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 999 1000 xhci_dbg(xhci, "Stop HCD\n"); 1001 xhci_halt(xhci); 1002 xhci_reset(xhci); 1003 spin_unlock_irq(&xhci->lock); 1004 xhci_cleanup_msix(xhci); 1005 1006 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 1007 /* Tell the event ring poll function not to reschedule */ 1008 xhci->zombie = 1; 1009 del_timer_sync(&xhci->event_ring_timer); 1010 #endif 1011 1012 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1013 temp = xhci_readl(xhci, &xhci->op_regs->status); 1014 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 1015 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 1016 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 1017 &xhci->ir_set->irq_pending); 1018 xhci_print_ir_set(xhci, 0); 1019 1020 xhci_dbg(xhci, "cleaning up memory\n"); 1021 xhci_mem_cleanup(xhci); 1022 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1023 xhci_readl(xhci, &xhci->op_regs->status)); 1024 1025 /* USB core calls the PCI reinit and start functions twice: 1026 * first with the primary HCD, and then with the secondary HCD. 1027 * If we don't do the same, the host will never be started. 1028 */ 1029 if (!usb_hcd_is_primary_hcd(hcd)) 1030 secondary_hcd = hcd; 1031 else 1032 secondary_hcd = xhci->shared_hcd; 1033 1034 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1035 retval = xhci_init(hcd->primary_hcd); 1036 if (retval) 1037 return retval; 1038 xhci_dbg(xhci, "Start the primary HCD\n"); 1039 retval = xhci_run(hcd->primary_hcd); 1040 if (!retval) { 1041 xhci_dbg(xhci, "Start the secondary HCD\n"); 1042 retval = xhci_run(secondary_hcd); 1043 } 1044 hcd->state = HC_STATE_SUSPENDED; 1045 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1046 goto done; 1047 } 1048 1049 /* step 4: set Run/Stop bit */ 1050 command = xhci_readl(xhci, &xhci->op_regs->command); 1051 command |= CMD_RUN; 1052 xhci_writel(xhci, command, &xhci->op_regs->command); 1053 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1054 0, 250 * 1000); 1055 1056 /* step 5: walk topology and initialize portsc, 1057 * portpmsc and portli 1058 */ 1059 /* this is done in bus_resume */ 1060 1061 /* step 6: restart each of the previously 1062 * Running endpoints by ringing their doorbells 1063 */ 1064 1065 spin_unlock_irq(&xhci->lock); 1066 1067 done: 1068 if (retval == 0) { 1069 usb_hcd_resume_root_hub(hcd); 1070 usb_hcd_resume_root_hub(xhci->shared_hcd); 1071 } 1072 1073 /* 1074 * If system is subject to the Quirk, Compliance Mode Timer needs to 1075 * be re-initialized Always after a system resume. Ports are subject 1076 * to suffer the Compliance Mode issue again. It doesn't matter if 1077 * ports have entered previously to U0 before system's suspension. 1078 */ 1079 if (xhci->quirks & XHCI_COMP_MODE_QUIRK) 1080 compliance_mode_recovery_timer_init(xhci); 1081 1082 /* Re-enable port polling. */ 1083 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1084 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1085 usb_hcd_poll_rh_status(hcd); 1086 1087 return retval; 1088 } 1089 #endif /* CONFIG_PM */ 1090 1091 /*-------------------------------------------------------------------------*/ 1092 1093 /** 1094 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1095 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1096 * value to right shift 1 for the bitmask. 1097 * 1098 * Index = (epnum * 2) + direction - 1, 1099 * where direction = 0 for OUT, 1 for IN. 1100 * For control endpoints, the IN index is used (OUT index is unused), so 1101 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1102 */ 1103 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1104 { 1105 unsigned int index; 1106 if (usb_endpoint_xfer_control(desc)) 1107 index = (unsigned int) (usb_endpoint_num(desc)*2); 1108 else 1109 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1110 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1111 return index; 1112 } 1113 1114 /* Find the flag for this endpoint (for use in the control context). Use the 1115 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1116 * bit 1, etc. 1117 */ 1118 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1119 { 1120 return 1 << (xhci_get_endpoint_index(desc) + 1); 1121 } 1122 1123 /* Find the flag for this endpoint (for use in the control context). Use the 1124 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1125 * bit 1, etc. 1126 */ 1127 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1128 { 1129 return 1 << (ep_index + 1); 1130 } 1131 1132 /* Compute the last valid endpoint context index. Basically, this is the 1133 * endpoint index plus one. For slot contexts with more than valid endpoint, 1134 * we find the most significant bit set in the added contexts flags. 1135 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1136 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1137 */ 1138 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1139 { 1140 return fls(added_ctxs) - 1; 1141 } 1142 1143 /* Returns 1 if the arguments are OK; 1144 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1145 */ 1146 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1147 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1148 const char *func) { 1149 struct xhci_hcd *xhci; 1150 struct xhci_virt_device *virt_dev; 1151 1152 if (!hcd || (check_ep && !ep) || !udev) { 1153 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 1154 func); 1155 return -EINVAL; 1156 } 1157 if (!udev->parent) { 1158 printk(KERN_DEBUG "xHCI %s called for root hub\n", 1159 func); 1160 return 0; 1161 } 1162 1163 xhci = hcd_to_xhci(hcd); 1164 if (xhci->xhc_state & XHCI_STATE_HALTED) 1165 return -ENODEV; 1166 1167 if (check_virt_dev) { 1168 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1169 printk(KERN_DEBUG "xHCI %s called with unaddressed " 1170 "device\n", func); 1171 return -EINVAL; 1172 } 1173 1174 virt_dev = xhci->devs[udev->slot_id]; 1175 if (virt_dev->udev != udev) { 1176 printk(KERN_DEBUG "xHCI %s called with udev and " 1177 "virt_dev does not match\n", func); 1178 return -EINVAL; 1179 } 1180 } 1181 1182 return 1; 1183 } 1184 1185 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1186 struct usb_device *udev, struct xhci_command *command, 1187 bool ctx_change, bool must_succeed); 1188 1189 /* 1190 * Full speed devices may have a max packet size greater than 8 bytes, but the 1191 * USB core doesn't know that until it reads the first 8 bytes of the 1192 * descriptor. If the usb_device's max packet size changes after that point, 1193 * we need to issue an evaluate context command and wait on it. 1194 */ 1195 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1196 unsigned int ep_index, struct urb *urb) 1197 { 1198 struct xhci_container_ctx *in_ctx; 1199 struct xhci_container_ctx *out_ctx; 1200 struct xhci_input_control_ctx *ctrl_ctx; 1201 struct xhci_ep_ctx *ep_ctx; 1202 int max_packet_size; 1203 int hw_max_packet_size; 1204 int ret = 0; 1205 1206 out_ctx = xhci->devs[slot_id]->out_ctx; 1207 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1208 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1209 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1210 if (hw_max_packet_size != max_packet_size) { 1211 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 1212 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 1213 max_packet_size); 1214 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 1215 hw_max_packet_size); 1216 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 1217 1218 /* Set up the modified control endpoint 0 */ 1219 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1220 xhci->devs[slot_id]->out_ctx, ep_index); 1221 in_ctx = xhci->devs[slot_id]->in_ctx; 1222 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1223 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1224 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1225 1226 /* Set up the input context flags for the command */ 1227 /* FIXME: This won't work if a non-default control endpoint 1228 * changes max packet sizes. 1229 */ 1230 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1231 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1232 ctrl_ctx->drop_flags = 0; 1233 1234 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1235 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1236 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1237 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1238 1239 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1240 true, false); 1241 1242 /* Clean up the input context for later use by bandwidth 1243 * functions. 1244 */ 1245 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1246 } 1247 return ret; 1248 } 1249 1250 /* 1251 * non-error returns are a promise to giveback() the urb later 1252 * we drop ownership so next owner (or urb unlink) can get it 1253 */ 1254 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1255 { 1256 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1257 struct xhci_td *buffer; 1258 unsigned long flags; 1259 int ret = 0; 1260 unsigned int slot_id, ep_index; 1261 struct urb_priv *urb_priv; 1262 int size, i; 1263 1264 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1265 true, true, __func__) <= 0) 1266 return -EINVAL; 1267 1268 slot_id = urb->dev->slot_id; 1269 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1270 1271 if (!HCD_HW_ACCESSIBLE(hcd)) { 1272 if (!in_interrupt()) 1273 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1274 ret = -ESHUTDOWN; 1275 goto exit; 1276 } 1277 1278 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1279 size = urb->number_of_packets; 1280 else 1281 size = 1; 1282 1283 urb_priv = kzalloc(sizeof(struct urb_priv) + 1284 size * sizeof(struct xhci_td *), mem_flags); 1285 if (!urb_priv) 1286 return -ENOMEM; 1287 1288 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1289 if (!buffer) { 1290 kfree(urb_priv); 1291 return -ENOMEM; 1292 } 1293 1294 for (i = 0; i < size; i++) { 1295 urb_priv->td[i] = buffer; 1296 buffer++; 1297 } 1298 1299 urb_priv->length = size; 1300 urb_priv->td_cnt = 0; 1301 urb->hcpriv = urb_priv; 1302 1303 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1304 /* Check to see if the max packet size for the default control 1305 * endpoint changed during FS device enumeration 1306 */ 1307 if (urb->dev->speed == USB_SPEED_FULL) { 1308 ret = xhci_check_maxpacket(xhci, slot_id, 1309 ep_index, urb); 1310 if (ret < 0) { 1311 xhci_urb_free_priv(xhci, urb_priv); 1312 urb->hcpriv = NULL; 1313 return ret; 1314 } 1315 } 1316 1317 /* We have a spinlock and interrupts disabled, so we must pass 1318 * atomic context to this function, which may allocate memory. 1319 */ 1320 spin_lock_irqsave(&xhci->lock, flags); 1321 if (xhci->xhc_state & XHCI_STATE_DYING) 1322 goto dying; 1323 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1324 slot_id, ep_index); 1325 if (ret) 1326 goto free_priv; 1327 spin_unlock_irqrestore(&xhci->lock, flags); 1328 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1329 spin_lock_irqsave(&xhci->lock, flags); 1330 if (xhci->xhc_state & XHCI_STATE_DYING) 1331 goto dying; 1332 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1333 EP_GETTING_STREAMS) { 1334 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1335 "is transitioning to using streams.\n"); 1336 ret = -EINVAL; 1337 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1338 EP_GETTING_NO_STREAMS) { 1339 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1340 "is transitioning to " 1341 "not having streams.\n"); 1342 ret = -EINVAL; 1343 } else { 1344 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1345 slot_id, ep_index); 1346 } 1347 if (ret) 1348 goto free_priv; 1349 spin_unlock_irqrestore(&xhci->lock, flags); 1350 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1351 spin_lock_irqsave(&xhci->lock, flags); 1352 if (xhci->xhc_state & XHCI_STATE_DYING) 1353 goto dying; 1354 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1355 slot_id, ep_index); 1356 if (ret) 1357 goto free_priv; 1358 spin_unlock_irqrestore(&xhci->lock, flags); 1359 } else { 1360 spin_lock_irqsave(&xhci->lock, flags); 1361 if (xhci->xhc_state & XHCI_STATE_DYING) 1362 goto dying; 1363 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1364 slot_id, ep_index); 1365 if (ret) 1366 goto free_priv; 1367 spin_unlock_irqrestore(&xhci->lock, flags); 1368 } 1369 exit: 1370 return ret; 1371 dying: 1372 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1373 "non-responsive xHCI host.\n", 1374 urb->ep->desc.bEndpointAddress, urb); 1375 ret = -ESHUTDOWN; 1376 free_priv: 1377 xhci_urb_free_priv(xhci, urb_priv); 1378 urb->hcpriv = NULL; 1379 spin_unlock_irqrestore(&xhci->lock, flags); 1380 return ret; 1381 } 1382 1383 /* Get the right ring for the given URB. 1384 * If the endpoint supports streams, boundary check the URB's stream ID. 1385 * If the endpoint doesn't support streams, return the singular endpoint ring. 1386 */ 1387 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1388 struct urb *urb) 1389 { 1390 unsigned int slot_id; 1391 unsigned int ep_index; 1392 unsigned int stream_id; 1393 struct xhci_virt_ep *ep; 1394 1395 slot_id = urb->dev->slot_id; 1396 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1397 stream_id = urb->stream_id; 1398 ep = &xhci->devs[slot_id]->eps[ep_index]; 1399 /* Common case: no streams */ 1400 if (!(ep->ep_state & EP_HAS_STREAMS)) 1401 return ep->ring; 1402 1403 if (stream_id == 0) { 1404 xhci_warn(xhci, 1405 "WARN: Slot ID %u, ep index %u has streams, " 1406 "but URB has no stream ID.\n", 1407 slot_id, ep_index); 1408 return NULL; 1409 } 1410 1411 if (stream_id < ep->stream_info->num_streams) 1412 return ep->stream_info->stream_rings[stream_id]; 1413 1414 xhci_warn(xhci, 1415 "WARN: Slot ID %u, ep index %u has " 1416 "stream IDs 1 to %u allocated, " 1417 "but stream ID %u is requested.\n", 1418 slot_id, ep_index, 1419 ep->stream_info->num_streams - 1, 1420 stream_id); 1421 return NULL; 1422 } 1423 1424 /* 1425 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1426 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1427 * should pick up where it left off in the TD, unless a Set Transfer Ring 1428 * Dequeue Pointer is issued. 1429 * 1430 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1431 * the ring. Since the ring is a contiguous structure, they can't be physically 1432 * removed. Instead, there are two options: 1433 * 1434 * 1) If the HC is in the middle of processing the URB to be canceled, we 1435 * simply move the ring's dequeue pointer past those TRBs using the Set 1436 * Transfer Ring Dequeue Pointer command. This will be the common case, 1437 * when drivers timeout on the last submitted URB and attempt to cancel. 1438 * 1439 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1440 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1441 * HC will need to invalidate the any TRBs it has cached after the stop 1442 * endpoint command, as noted in the xHCI 0.95 errata. 1443 * 1444 * 3) The TD may have completed by the time the Stop Endpoint Command 1445 * completes, so software needs to handle that case too. 1446 * 1447 * This function should protect against the TD enqueueing code ringing the 1448 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1449 * It also needs to account for multiple cancellations on happening at the same 1450 * time for the same endpoint. 1451 * 1452 * Note that this function can be called in any context, or so says 1453 * usb_hcd_unlink_urb() 1454 */ 1455 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1456 { 1457 unsigned long flags; 1458 int ret, i; 1459 u32 temp; 1460 struct xhci_hcd *xhci; 1461 struct urb_priv *urb_priv; 1462 struct xhci_td *td; 1463 unsigned int ep_index; 1464 struct xhci_ring *ep_ring; 1465 struct xhci_virt_ep *ep; 1466 1467 xhci = hcd_to_xhci(hcd); 1468 spin_lock_irqsave(&xhci->lock, flags); 1469 /* Make sure the URB hasn't completed or been unlinked already */ 1470 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1471 if (ret || !urb->hcpriv) 1472 goto done; 1473 temp = xhci_readl(xhci, &xhci->op_regs->status); 1474 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1475 xhci_dbg(xhci, "HW died, freeing TD.\n"); 1476 urb_priv = urb->hcpriv; 1477 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1478 td = urb_priv->td[i]; 1479 if (!list_empty(&td->td_list)) 1480 list_del_init(&td->td_list); 1481 if (!list_empty(&td->cancelled_td_list)) 1482 list_del_init(&td->cancelled_td_list); 1483 } 1484 1485 usb_hcd_unlink_urb_from_ep(hcd, urb); 1486 spin_unlock_irqrestore(&xhci->lock, flags); 1487 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1488 xhci_urb_free_priv(xhci, urb_priv); 1489 return ret; 1490 } 1491 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1492 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1493 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 1494 "non-responsive xHCI host.\n", 1495 urb->ep->desc.bEndpointAddress, urb); 1496 /* Let the stop endpoint command watchdog timer (which set this 1497 * state) finish cleaning up the endpoint TD lists. We must 1498 * have caught it in the middle of dropping a lock and giving 1499 * back an URB. 1500 */ 1501 goto done; 1502 } 1503 1504 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1505 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1506 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1507 if (!ep_ring) { 1508 ret = -EINVAL; 1509 goto done; 1510 } 1511 1512 urb_priv = urb->hcpriv; 1513 i = urb_priv->td_cnt; 1514 if (i < urb_priv->length) 1515 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, " 1516 "starting at offset 0x%llx\n", 1517 urb, urb->dev->devpath, 1518 urb->ep->desc.bEndpointAddress, 1519 (unsigned long long) xhci_trb_virt_to_dma( 1520 urb_priv->td[i]->start_seg, 1521 urb_priv->td[i]->first_trb)); 1522 1523 for (; i < urb_priv->length; i++) { 1524 td = urb_priv->td[i]; 1525 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1526 } 1527 1528 /* Queue a stop endpoint command, but only if this is 1529 * the first cancellation to be handled. 1530 */ 1531 if (!(ep->ep_state & EP_HALT_PENDING)) { 1532 ep->ep_state |= EP_HALT_PENDING; 1533 ep->stop_cmds_pending++; 1534 ep->stop_cmd_timer.expires = jiffies + 1535 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1536 add_timer(&ep->stop_cmd_timer); 1537 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1538 xhci_ring_cmd_db(xhci); 1539 } 1540 done: 1541 spin_unlock_irqrestore(&xhci->lock, flags); 1542 return ret; 1543 } 1544 1545 /* Drop an endpoint from a new bandwidth configuration for this device. 1546 * Only one call to this function is allowed per endpoint before 1547 * check_bandwidth() or reset_bandwidth() must be called. 1548 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1549 * add the endpoint to the schedule with possibly new parameters denoted by a 1550 * different endpoint descriptor in usb_host_endpoint. 1551 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1552 * not allowed. 1553 * 1554 * The USB core will not allow URBs to be queued to an endpoint that is being 1555 * disabled, so there's no need for mutual exclusion to protect 1556 * the xhci->devs[slot_id] structure. 1557 */ 1558 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1559 struct usb_host_endpoint *ep) 1560 { 1561 struct xhci_hcd *xhci; 1562 struct xhci_container_ctx *in_ctx, *out_ctx; 1563 struct xhci_input_control_ctx *ctrl_ctx; 1564 struct xhci_slot_ctx *slot_ctx; 1565 unsigned int last_ctx; 1566 unsigned int ep_index; 1567 struct xhci_ep_ctx *ep_ctx; 1568 u32 drop_flag; 1569 u32 new_add_flags, new_drop_flags, new_slot_info; 1570 int ret; 1571 1572 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1573 if (ret <= 0) 1574 return ret; 1575 xhci = hcd_to_xhci(hcd); 1576 if (xhci->xhc_state & XHCI_STATE_DYING) 1577 return -ENODEV; 1578 1579 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1580 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1581 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1582 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1583 __func__, drop_flag); 1584 return 0; 1585 } 1586 1587 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1588 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1589 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1590 ep_index = xhci_get_endpoint_index(&ep->desc); 1591 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1592 /* If the HC already knows the endpoint is disabled, 1593 * or the HCD has noted it is disabled, ignore this request 1594 */ 1595 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1596 cpu_to_le32(EP_STATE_DISABLED)) || 1597 le32_to_cpu(ctrl_ctx->drop_flags) & 1598 xhci_get_endpoint_flag(&ep->desc)) { 1599 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1600 __func__, ep); 1601 return 0; 1602 } 1603 1604 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1605 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1606 1607 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1608 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1609 1610 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1611 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1612 /* Update the last valid endpoint context, if we deleted the last one */ 1613 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1614 LAST_CTX(last_ctx)) { 1615 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1616 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1617 } 1618 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1619 1620 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1621 1622 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1623 (unsigned int) ep->desc.bEndpointAddress, 1624 udev->slot_id, 1625 (unsigned int) new_drop_flags, 1626 (unsigned int) new_add_flags, 1627 (unsigned int) new_slot_info); 1628 return 0; 1629 } 1630 1631 /* Add an endpoint to a new possible bandwidth configuration for this device. 1632 * Only one call to this function is allowed per endpoint before 1633 * check_bandwidth() or reset_bandwidth() must be called. 1634 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1635 * add the endpoint to the schedule with possibly new parameters denoted by a 1636 * different endpoint descriptor in usb_host_endpoint. 1637 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1638 * not allowed. 1639 * 1640 * The USB core will not allow URBs to be queued to an endpoint until the 1641 * configuration or alt setting is installed in the device, so there's no need 1642 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1643 */ 1644 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1645 struct usb_host_endpoint *ep) 1646 { 1647 struct xhci_hcd *xhci; 1648 struct xhci_container_ctx *in_ctx, *out_ctx; 1649 unsigned int ep_index; 1650 struct xhci_slot_ctx *slot_ctx; 1651 struct xhci_input_control_ctx *ctrl_ctx; 1652 u32 added_ctxs; 1653 unsigned int last_ctx; 1654 u32 new_add_flags, new_drop_flags, new_slot_info; 1655 struct xhci_virt_device *virt_dev; 1656 int ret = 0; 1657 1658 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1659 if (ret <= 0) { 1660 /* So we won't queue a reset ep command for a root hub */ 1661 ep->hcpriv = NULL; 1662 return ret; 1663 } 1664 xhci = hcd_to_xhci(hcd); 1665 if (xhci->xhc_state & XHCI_STATE_DYING) 1666 return -ENODEV; 1667 1668 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1669 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1670 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1671 /* FIXME when we have to issue an evaluate endpoint command to 1672 * deal with ep0 max packet size changing once we get the 1673 * descriptors 1674 */ 1675 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1676 __func__, added_ctxs); 1677 return 0; 1678 } 1679 1680 virt_dev = xhci->devs[udev->slot_id]; 1681 in_ctx = virt_dev->in_ctx; 1682 out_ctx = virt_dev->out_ctx; 1683 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1684 ep_index = xhci_get_endpoint_index(&ep->desc); 1685 1686 /* If this endpoint is already in use, and the upper layers are trying 1687 * to add it again without dropping it, reject the addition. 1688 */ 1689 if (virt_dev->eps[ep_index].ring && 1690 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1691 xhci_get_endpoint_flag(&ep->desc))) { 1692 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1693 "without dropping it.\n", 1694 (unsigned int) ep->desc.bEndpointAddress); 1695 return -EINVAL; 1696 } 1697 1698 /* If the HCD has already noted the endpoint is enabled, 1699 * ignore this request. 1700 */ 1701 if (le32_to_cpu(ctrl_ctx->add_flags) & 1702 xhci_get_endpoint_flag(&ep->desc)) { 1703 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1704 __func__, ep); 1705 return 0; 1706 } 1707 1708 /* 1709 * Configuration and alternate setting changes must be done in 1710 * process context, not interrupt context (or so documenation 1711 * for usb_set_interface() and usb_set_configuration() claim). 1712 */ 1713 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1714 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1715 __func__, ep->desc.bEndpointAddress); 1716 return -ENOMEM; 1717 } 1718 1719 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1720 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1721 1722 /* If xhci_endpoint_disable() was called for this endpoint, but the 1723 * xHC hasn't been notified yet through the check_bandwidth() call, 1724 * this re-adds a new state for the endpoint from the new endpoint 1725 * descriptors. We must drop and re-add this endpoint, so we leave the 1726 * drop flags alone. 1727 */ 1728 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1729 1730 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1731 /* Update the last valid endpoint context, if we just added one past */ 1732 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1733 LAST_CTX(last_ctx)) { 1734 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1735 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1736 } 1737 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1738 1739 /* Store the usb_device pointer for later use */ 1740 ep->hcpriv = udev; 1741 1742 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1743 (unsigned int) ep->desc.bEndpointAddress, 1744 udev->slot_id, 1745 (unsigned int) new_drop_flags, 1746 (unsigned int) new_add_flags, 1747 (unsigned int) new_slot_info); 1748 return 0; 1749 } 1750 1751 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1752 { 1753 struct xhci_input_control_ctx *ctrl_ctx; 1754 struct xhci_ep_ctx *ep_ctx; 1755 struct xhci_slot_ctx *slot_ctx; 1756 int i; 1757 1758 /* When a device's add flag and drop flag are zero, any subsequent 1759 * configure endpoint command will leave that endpoint's state 1760 * untouched. Make sure we don't leave any old state in the input 1761 * endpoint contexts. 1762 */ 1763 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1764 ctrl_ctx->drop_flags = 0; 1765 ctrl_ctx->add_flags = 0; 1766 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1767 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1768 /* Endpoint 0 is always valid */ 1769 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1770 for (i = 1; i < 31; ++i) { 1771 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1772 ep_ctx->ep_info = 0; 1773 ep_ctx->ep_info2 = 0; 1774 ep_ctx->deq = 0; 1775 ep_ctx->tx_info = 0; 1776 } 1777 } 1778 1779 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1780 struct usb_device *udev, u32 *cmd_status) 1781 { 1782 int ret; 1783 1784 switch (*cmd_status) { 1785 case COMP_ENOMEM: 1786 dev_warn(&udev->dev, "Not enough host controller resources " 1787 "for new device state.\n"); 1788 ret = -ENOMEM; 1789 /* FIXME: can we allocate more resources for the HC? */ 1790 break; 1791 case COMP_BW_ERR: 1792 case COMP_2ND_BW_ERR: 1793 dev_warn(&udev->dev, "Not enough bandwidth " 1794 "for new device state.\n"); 1795 ret = -ENOSPC; 1796 /* FIXME: can we go back to the old state? */ 1797 break; 1798 case COMP_TRB_ERR: 1799 /* the HCD set up something wrong */ 1800 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1801 "add flag = 1, " 1802 "and endpoint is not disabled.\n"); 1803 ret = -EINVAL; 1804 break; 1805 case COMP_DEV_ERR: 1806 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1807 "configure command.\n"); 1808 ret = -ENODEV; 1809 break; 1810 case COMP_SUCCESS: 1811 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1812 ret = 0; 1813 break; 1814 default: 1815 xhci_err(xhci, "ERROR: unexpected command completion " 1816 "code 0x%x.\n", *cmd_status); 1817 ret = -EINVAL; 1818 break; 1819 } 1820 return ret; 1821 } 1822 1823 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1824 struct usb_device *udev, u32 *cmd_status) 1825 { 1826 int ret; 1827 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1828 1829 switch (*cmd_status) { 1830 case COMP_EINVAL: 1831 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1832 "context command.\n"); 1833 ret = -EINVAL; 1834 break; 1835 case COMP_EBADSLT: 1836 dev_warn(&udev->dev, "WARN: slot not enabled for" 1837 "evaluate context command.\n"); 1838 ret = -EINVAL; 1839 break; 1840 case COMP_CTX_STATE: 1841 dev_warn(&udev->dev, "WARN: invalid context state for " 1842 "evaluate context command.\n"); 1843 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1844 ret = -EINVAL; 1845 break; 1846 case COMP_DEV_ERR: 1847 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1848 "context command.\n"); 1849 ret = -ENODEV; 1850 break; 1851 case COMP_MEL_ERR: 1852 /* Max Exit Latency too large error */ 1853 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1854 ret = -EINVAL; 1855 break; 1856 case COMP_SUCCESS: 1857 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1858 ret = 0; 1859 break; 1860 default: 1861 xhci_err(xhci, "ERROR: unexpected command completion " 1862 "code 0x%x.\n", *cmd_status); 1863 ret = -EINVAL; 1864 break; 1865 } 1866 return ret; 1867 } 1868 1869 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1870 struct xhci_container_ctx *in_ctx) 1871 { 1872 struct xhci_input_control_ctx *ctrl_ctx; 1873 u32 valid_add_flags; 1874 u32 valid_drop_flags; 1875 1876 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1877 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1878 * (bit 1). The default control endpoint is added during the Address 1879 * Device command and is never removed until the slot is disabled. 1880 */ 1881 valid_add_flags = ctrl_ctx->add_flags >> 2; 1882 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1883 1884 /* Use hweight32 to count the number of ones in the add flags, or 1885 * number of endpoints added. Don't count endpoints that are changed 1886 * (both added and dropped). 1887 */ 1888 return hweight32(valid_add_flags) - 1889 hweight32(valid_add_flags & valid_drop_flags); 1890 } 1891 1892 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1893 struct xhci_container_ctx *in_ctx) 1894 { 1895 struct xhci_input_control_ctx *ctrl_ctx; 1896 u32 valid_add_flags; 1897 u32 valid_drop_flags; 1898 1899 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1900 valid_add_flags = ctrl_ctx->add_flags >> 2; 1901 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1902 1903 return hweight32(valid_drop_flags) - 1904 hweight32(valid_add_flags & valid_drop_flags); 1905 } 1906 1907 /* 1908 * We need to reserve the new number of endpoints before the configure endpoint 1909 * command completes. We can't subtract the dropped endpoints from the number 1910 * of active endpoints until the command completes because we can oversubscribe 1911 * the host in this case: 1912 * 1913 * - the first configure endpoint command drops more endpoints than it adds 1914 * - a second configure endpoint command that adds more endpoints is queued 1915 * - the first configure endpoint command fails, so the config is unchanged 1916 * - the second command may succeed, even though there isn't enough resources 1917 * 1918 * Must be called with xhci->lock held. 1919 */ 1920 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1921 struct xhci_container_ctx *in_ctx) 1922 { 1923 u32 added_eps; 1924 1925 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1926 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1927 xhci_dbg(xhci, "Not enough ep ctxs: " 1928 "%u active, need to add %u, limit is %u.\n", 1929 xhci->num_active_eps, added_eps, 1930 xhci->limit_active_eps); 1931 return -ENOMEM; 1932 } 1933 xhci->num_active_eps += added_eps; 1934 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, 1935 xhci->num_active_eps); 1936 return 0; 1937 } 1938 1939 /* 1940 * The configure endpoint was failed by the xHC for some other reason, so we 1941 * need to revert the resources that failed configuration would have used. 1942 * 1943 * Must be called with xhci->lock held. 1944 */ 1945 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1946 struct xhci_container_ctx *in_ctx) 1947 { 1948 u32 num_failed_eps; 1949 1950 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1951 xhci->num_active_eps -= num_failed_eps; 1952 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", 1953 num_failed_eps, 1954 xhci->num_active_eps); 1955 } 1956 1957 /* 1958 * Now that the command has completed, clean up the active endpoint count by 1959 * subtracting out the endpoints that were dropped (but not changed). 1960 * 1961 * Must be called with xhci->lock held. 1962 */ 1963 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1964 struct xhci_container_ctx *in_ctx) 1965 { 1966 u32 num_dropped_eps; 1967 1968 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx); 1969 xhci->num_active_eps -= num_dropped_eps; 1970 if (num_dropped_eps) 1971 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", 1972 num_dropped_eps, 1973 xhci->num_active_eps); 1974 } 1975 1976 static unsigned int xhci_get_block_size(struct usb_device *udev) 1977 { 1978 switch (udev->speed) { 1979 case USB_SPEED_LOW: 1980 case USB_SPEED_FULL: 1981 return FS_BLOCK; 1982 case USB_SPEED_HIGH: 1983 return HS_BLOCK; 1984 case USB_SPEED_SUPER: 1985 return SS_BLOCK; 1986 case USB_SPEED_UNKNOWN: 1987 case USB_SPEED_WIRELESS: 1988 default: 1989 /* Should never happen */ 1990 return 1; 1991 } 1992 } 1993 1994 static unsigned int 1995 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1996 { 1997 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1998 return LS_OVERHEAD; 1999 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2000 return FS_OVERHEAD; 2001 return HS_OVERHEAD; 2002 } 2003 2004 /* If we are changing a LS/FS device under a HS hub, 2005 * make sure (if we are activating a new TT) that the HS bus has enough 2006 * bandwidth for this new TT. 2007 */ 2008 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2009 struct xhci_virt_device *virt_dev, 2010 int old_active_eps) 2011 { 2012 struct xhci_interval_bw_table *bw_table; 2013 struct xhci_tt_bw_info *tt_info; 2014 2015 /* Find the bandwidth table for the root port this TT is attached to. */ 2016 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2017 tt_info = virt_dev->tt_info; 2018 /* If this TT already had active endpoints, the bandwidth for this TT 2019 * has already been added. Removing all periodic endpoints (and thus 2020 * making the TT enactive) will only decrease the bandwidth used. 2021 */ 2022 if (old_active_eps) 2023 return 0; 2024 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2025 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2026 return -ENOMEM; 2027 return 0; 2028 } 2029 /* Not sure why we would have no new active endpoints... 2030 * 2031 * Maybe because of an Evaluate Context change for a hub update or a 2032 * control endpoint 0 max packet size change? 2033 * FIXME: skip the bandwidth calculation in that case. 2034 */ 2035 return 0; 2036 } 2037 2038 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2039 struct xhci_virt_device *virt_dev) 2040 { 2041 unsigned int bw_reserved; 2042 2043 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2044 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2045 return -ENOMEM; 2046 2047 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2048 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2049 return -ENOMEM; 2050 2051 return 0; 2052 } 2053 2054 /* 2055 * This algorithm is a very conservative estimate of the worst-case scheduling 2056 * scenario for any one interval. The hardware dynamically schedules the 2057 * packets, so we can't tell which microframe could be the limiting factor in 2058 * the bandwidth scheduling. This only takes into account periodic endpoints. 2059 * 2060 * Obviously, we can't solve an NP complete problem to find the minimum worst 2061 * case scenario. Instead, we come up with an estimate that is no less than 2062 * the worst case bandwidth used for any one microframe, but may be an 2063 * over-estimate. 2064 * 2065 * We walk the requirements for each endpoint by interval, starting with the 2066 * smallest interval, and place packets in the schedule where there is only one 2067 * possible way to schedule packets for that interval. In order to simplify 2068 * this algorithm, we record the largest max packet size for each interval, and 2069 * assume all packets will be that size. 2070 * 2071 * For interval 0, we obviously must schedule all packets for each interval. 2072 * The bandwidth for interval 0 is just the amount of data to be transmitted 2073 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2074 * the number of packets). 2075 * 2076 * For interval 1, we have two possible microframes to schedule those packets 2077 * in. For this algorithm, if we can schedule the same number of packets for 2078 * each possible scheduling opportunity (each microframe), we will do so. The 2079 * remaining number of packets will be saved to be transmitted in the gaps in 2080 * the next interval's scheduling sequence. 2081 * 2082 * As we move those remaining packets to be scheduled with interval 2 packets, 2083 * we have to double the number of remaining packets to transmit. This is 2084 * because the intervals are actually powers of 2, and we would be transmitting 2085 * the previous interval's packets twice in this interval. We also have to be 2086 * sure that when we look at the largest max packet size for this interval, we 2087 * also look at the largest max packet size for the remaining packets and take 2088 * the greater of the two. 2089 * 2090 * The algorithm continues to evenly distribute packets in each scheduling 2091 * opportunity, and push the remaining packets out, until we get to the last 2092 * interval. Then those packets and their associated overhead are just added 2093 * to the bandwidth used. 2094 */ 2095 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2096 struct xhci_virt_device *virt_dev, 2097 int old_active_eps) 2098 { 2099 unsigned int bw_reserved; 2100 unsigned int max_bandwidth; 2101 unsigned int bw_used; 2102 unsigned int block_size; 2103 struct xhci_interval_bw_table *bw_table; 2104 unsigned int packet_size = 0; 2105 unsigned int overhead = 0; 2106 unsigned int packets_transmitted = 0; 2107 unsigned int packets_remaining = 0; 2108 unsigned int i; 2109 2110 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2111 return xhci_check_ss_bw(xhci, virt_dev); 2112 2113 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2114 max_bandwidth = HS_BW_LIMIT; 2115 /* Convert percent of bus BW reserved to blocks reserved */ 2116 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2117 } else { 2118 max_bandwidth = FS_BW_LIMIT; 2119 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2120 } 2121 2122 bw_table = virt_dev->bw_table; 2123 /* We need to translate the max packet size and max ESIT payloads into 2124 * the units the hardware uses. 2125 */ 2126 block_size = xhci_get_block_size(virt_dev->udev); 2127 2128 /* If we are manipulating a LS/FS device under a HS hub, double check 2129 * that the HS bus has enough bandwidth if we are activing a new TT. 2130 */ 2131 if (virt_dev->tt_info) { 2132 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 2133 virt_dev->real_port); 2134 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2135 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2136 "newly activated TT.\n"); 2137 return -ENOMEM; 2138 } 2139 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", 2140 virt_dev->tt_info->slot_id, 2141 virt_dev->tt_info->ttport); 2142 } else { 2143 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 2144 virt_dev->real_port); 2145 } 2146 2147 /* Add in how much bandwidth will be used for interval zero, or the 2148 * rounded max ESIT payload + number of packets * largest overhead. 2149 */ 2150 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2151 bw_table->interval_bw[0].num_packets * 2152 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2153 2154 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2155 unsigned int bw_added; 2156 unsigned int largest_mps; 2157 unsigned int interval_overhead; 2158 2159 /* 2160 * How many packets could we transmit in this interval? 2161 * If packets didn't fit in the previous interval, we will need 2162 * to transmit that many packets twice within this interval. 2163 */ 2164 packets_remaining = 2 * packets_remaining + 2165 bw_table->interval_bw[i].num_packets; 2166 2167 /* Find the largest max packet size of this or the previous 2168 * interval. 2169 */ 2170 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2171 largest_mps = 0; 2172 else { 2173 struct xhci_virt_ep *virt_ep; 2174 struct list_head *ep_entry; 2175 2176 ep_entry = bw_table->interval_bw[i].endpoints.next; 2177 virt_ep = list_entry(ep_entry, 2178 struct xhci_virt_ep, bw_endpoint_list); 2179 /* Convert to blocks, rounding up */ 2180 largest_mps = DIV_ROUND_UP( 2181 virt_ep->bw_info.max_packet_size, 2182 block_size); 2183 } 2184 if (largest_mps > packet_size) 2185 packet_size = largest_mps; 2186 2187 /* Use the larger overhead of this or the previous interval. */ 2188 interval_overhead = xhci_get_largest_overhead( 2189 &bw_table->interval_bw[i]); 2190 if (interval_overhead > overhead) 2191 overhead = interval_overhead; 2192 2193 /* How many packets can we evenly distribute across 2194 * (1 << (i + 1)) possible scheduling opportunities? 2195 */ 2196 packets_transmitted = packets_remaining >> (i + 1); 2197 2198 /* Add in the bandwidth used for those scheduled packets */ 2199 bw_added = packets_transmitted * (overhead + packet_size); 2200 2201 /* How many packets do we have remaining to transmit? */ 2202 packets_remaining = packets_remaining % (1 << (i + 1)); 2203 2204 /* What largest max packet size should those packets have? */ 2205 /* If we've transmitted all packets, don't carry over the 2206 * largest packet size. 2207 */ 2208 if (packets_remaining == 0) { 2209 packet_size = 0; 2210 overhead = 0; 2211 } else if (packets_transmitted > 0) { 2212 /* Otherwise if we do have remaining packets, and we've 2213 * scheduled some packets in this interval, take the 2214 * largest max packet size from endpoints with this 2215 * interval. 2216 */ 2217 packet_size = largest_mps; 2218 overhead = interval_overhead; 2219 } 2220 /* Otherwise carry over packet_size and overhead from the last 2221 * time we had a remainder. 2222 */ 2223 bw_used += bw_added; 2224 if (bw_used > max_bandwidth) { 2225 xhci_warn(xhci, "Not enough bandwidth. " 2226 "Proposed: %u, Max: %u\n", 2227 bw_used, max_bandwidth); 2228 return -ENOMEM; 2229 } 2230 } 2231 /* 2232 * Ok, we know we have some packets left over after even-handedly 2233 * scheduling interval 15. We don't know which microframes they will 2234 * fit into, so we over-schedule and say they will be scheduled every 2235 * microframe. 2236 */ 2237 if (packets_remaining > 0) 2238 bw_used += overhead + packet_size; 2239 2240 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2241 unsigned int port_index = virt_dev->real_port - 1; 2242 2243 /* OK, we're manipulating a HS device attached to a 2244 * root port bandwidth domain. Include the number of active TTs 2245 * in the bandwidth used. 2246 */ 2247 bw_used += TT_HS_OVERHEAD * 2248 xhci->rh_bw[port_index].num_active_tts; 2249 } 2250 2251 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2252 "Available: %u " "percent\n", 2253 bw_used, max_bandwidth, bw_reserved, 2254 (max_bandwidth - bw_used - bw_reserved) * 100 / 2255 max_bandwidth); 2256 2257 bw_used += bw_reserved; 2258 if (bw_used > max_bandwidth) { 2259 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2260 bw_used, max_bandwidth); 2261 return -ENOMEM; 2262 } 2263 2264 bw_table->bw_used = bw_used; 2265 return 0; 2266 } 2267 2268 static bool xhci_is_async_ep(unsigned int ep_type) 2269 { 2270 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2271 ep_type != ISOC_IN_EP && 2272 ep_type != INT_IN_EP); 2273 } 2274 2275 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2276 { 2277 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2278 } 2279 2280 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2281 { 2282 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2283 2284 if (ep_bw->ep_interval == 0) 2285 return SS_OVERHEAD_BURST + 2286 (ep_bw->mult * ep_bw->num_packets * 2287 (SS_OVERHEAD + mps)); 2288 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2289 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2290 1 << ep_bw->ep_interval); 2291 2292 } 2293 2294 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2295 struct xhci_bw_info *ep_bw, 2296 struct xhci_interval_bw_table *bw_table, 2297 struct usb_device *udev, 2298 struct xhci_virt_ep *virt_ep, 2299 struct xhci_tt_bw_info *tt_info) 2300 { 2301 struct xhci_interval_bw *interval_bw; 2302 int normalized_interval; 2303 2304 if (xhci_is_async_ep(ep_bw->type)) 2305 return; 2306 2307 if (udev->speed == USB_SPEED_SUPER) { 2308 if (xhci_is_sync_in_ep(ep_bw->type)) 2309 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2310 xhci_get_ss_bw_consumed(ep_bw); 2311 else 2312 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2313 xhci_get_ss_bw_consumed(ep_bw); 2314 return; 2315 } 2316 2317 /* SuperSpeed endpoints never get added to intervals in the table, so 2318 * this check is only valid for HS/FS/LS devices. 2319 */ 2320 if (list_empty(&virt_ep->bw_endpoint_list)) 2321 return; 2322 /* For LS/FS devices, we need to translate the interval expressed in 2323 * microframes to frames. 2324 */ 2325 if (udev->speed == USB_SPEED_HIGH) 2326 normalized_interval = ep_bw->ep_interval; 2327 else 2328 normalized_interval = ep_bw->ep_interval - 3; 2329 2330 if (normalized_interval == 0) 2331 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2332 interval_bw = &bw_table->interval_bw[normalized_interval]; 2333 interval_bw->num_packets -= ep_bw->num_packets; 2334 switch (udev->speed) { 2335 case USB_SPEED_LOW: 2336 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2337 break; 2338 case USB_SPEED_FULL: 2339 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2340 break; 2341 case USB_SPEED_HIGH: 2342 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2343 break; 2344 case USB_SPEED_SUPER: 2345 case USB_SPEED_UNKNOWN: 2346 case USB_SPEED_WIRELESS: 2347 /* Should never happen because only LS/FS/HS endpoints will get 2348 * added to the endpoint list. 2349 */ 2350 return; 2351 } 2352 if (tt_info) 2353 tt_info->active_eps -= 1; 2354 list_del_init(&virt_ep->bw_endpoint_list); 2355 } 2356 2357 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2358 struct xhci_bw_info *ep_bw, 2359 struct xhci_interval_bw_table *bw_table, 2360 struct usb_device *udev, 2361 struct xhci_virt_ep *virt_ep, 2362 struct xhci_tt_bw_info *tt_info) 2363 { 2364 struct xhci_interval_bw *interval_bw; 2365 struct xhci_virt_ep *smaller_ep; 2366 int normalized_interval; 2367 2368 if (xhci_is_async_ep(ep_bw->type)) 2369 return; 2370 2371 if (udev->speed == USB_SPEED_SUPER) { 2372 if (xhci_is_sync_in_ep(ep_bw->type)) 2373 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2374 xhci_get_ss_bw_consumed(ep_bw); 2375 else 2376 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2377 xhci_get_ss_bw_consumed(ep_bw); 2378 return; 2379 } 2380 2381 /* For LS/FS devices, we need to translate the interval expressed in 2382 * microframes to frames. 2383 */ 2384 if (udev->speed == USB_SPEED_HIGH) 2385 normalized_interval = ep_bw->ep_interval; 2386 else 2387 normalized_interval = ep_bw->ep_interval - 3; 2388 2389 if (normalized_interval == 0) 2390 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2391 interval_bw = &bw_table->interval_bw[normalized_interval]; 2392 interval_bw->num_packets += ep_bw->num_packets; 2393 switch (udev->speed) { 2394 case USB_SPEED_LOW: 2395 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2396 break; 2397 case USB_SPEED_FULL: 2398 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2399 break; 2400 case USB_SPEED_HIGH: 2401 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2402 break; 2403 case USB_SPEED_SUPER: 2404 case USB_SPEED_UNKNOWN: 2405 case USB_SPEED_WIRELESS: 2406 /* Should never happen because only LS/FS/HS endpoints will get 2407 * added to the endpoint list. 2408 */ 2409 return; 2410 } 2411 2412 if (tt_info) 2413 tt_info->active_eps += 1; 2414 /* Insert the endpoint into the list, largest max packet size first. */ 2415 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2416 bw_endpoint_list) { 2417 if (ep_bw->max_packet_size >= 2418 smaller_ep->bw_info.max_packet_size) { 2419 /* Add the new ep before the smaller endpoint */ 2420 list_add_tail(&virt_ep->bw_endpoint_list, 2421 &smaller_ep->bw_endpoint_list); 2422 return; 2423 } 2424 } 2425 /* Add the new endpoint at the end of the list. */ 2426 list_add_tail(&virt_ep->bw_endpoint_list, 2427 &interval_bw->endpoints); 2428 } 2429 2430 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2431 struct xhci_virt_device *virt_dev, 2432 int old_active_eps) 2433 { 2434 struct xhci_root_port_bw_info *rh_bw_info; 2435 if (!virt_dev->tt_info) 2436 return; 2437 2438 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2439 if (old_active_eps == 0 && 2440 virt_dev->tt_info->active_eps != 0) { 2441 rh_bw_info->num_active_tts += 1; 2442 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2443 } else if (old_active_eps != 0 && 2444 virt_dev->tt_info->active_eps == 0) { 2445 rh_bw_info->num_active_tts -= 1; 2446 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2447 } 2448 } 2449 2450 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2451 struct xhci_virt_device *virt_dev, 2452 struct xhci_container_ctx *in_ctx) 2453 { 2454 struct xhci_bw_info ep_bw_info[31]; 2455 int i; 2456 struct xhci_input_control_ctx *ctrl_ctx; 2457 int old_active_eps = 0; 2458 2459 if (virt_dev->tt_info) 2460 old_active_eps = virt_dev->tt_info->active_eps; 2461 2462 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2463 2464 for (i = 0; i < 31; i++) { 2465 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2466 continue; 2467 2468 /* Make a copy of the BW info in case we need to revert this */ 2469 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2470 sizeof(ep_bw_info[i])); 2471 /* Drop the endpoint from the interval table if the endpoint is 2472 * being dropped or changed. 2473 */ 2474 if (EP_IS_DROPPED(ctrl_ctx, i)) 2475 xhci_drop_ep_from_interval_table(xhci, 2476 &virt_dev->eps[i].bw_info, 2477 virt_dev->bw_table, 2478 virt_dev->udev, 2479 &virt_dev->eps[i], 2480 virt_dev->tt_info); 2481 } 2482 /* Overwrite the information stored in the endpoints' bw_info */ 2483 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2484 for (i = 0; i < 31; i++) { 2485 /* Add any changed or added endpoints to the interval table */ 2486 if (EP_IS_ADDED(ctrl_ctx, i)) 2487 xhci_add_ep_to_interval_table(xhci, 2488 &virt_dev->eps[i].bw_info, 2489 virt_dev->bw_table, 2490 virt_dev->udev, 2491 &virt_dev->eps[i], 2492 virt_dev->tt_info); 2493 } 2494 2495 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2496 /* Ok, this fits in the bandwidth we have. 2497 * Update the number of active TTs. 2498 */ 2499 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2500 return 0; 2501 } 2502 2503 /* We don't have enough bandwidth for this, revert the stored info. */ 2504 for (i = 0; i < 31; i++) { 2505 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2506 continue; 2507 2508 /* Drop the new copies of any added or changed endpoints from 2509 * the interval table. 2510 */ 2511 if (EP_IS_ADDED(ctrl_ctx, i)) { 2512 xhci_drop_ep_from_interval_table(xhci, 2513 &virt_dev->eps[i].bw_info, 2514 virt_dev->bw_table, 2515 virt_dev->udev, 2516 &virt_dev->eps[i], 2517 virt_dev->tt_info); 2518 } 2519 /* Revert the endpoint back to its old information */ 2520 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2521 sizeof(ep_bw_info[i])); 2522 /* Add any changed or dropped endpoints back into the table */ 2523 if (EP_IS_DROPPED(ctrl_ctx, i)) 2524 xhci_add_ep_to_interval_table(xhci, 2525 &virt_dev->eps[i].bw_info, 2526 virt_dev->bw_table, 2527 virt_dev->udev, 2528 &virt_dev->eps[i], 2529 virt_dev->tt_info); 2530 } 2531 return -ENOMEM; 2532 } 2533 2534 2535 /* Issue a configure endpoint command or evaluate context command 2536 * and wait for it to finish. 2537 */ 2538 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2539 struct usb_device *udev, 2540 struct xhci_command *command, 2541 bool ctx_change, bool must_succeed) 2542 { 2543 int ret; 2544 int timeleft; 2545 unsigned long flags; 2546 struct xhci_container_ctx *in_ctx; 2547 struct completion *cmd_completion; 2548 u32 *cmd_status; 2549 struct xhci_virt_device *virt_dev; 2550 union xhci_trb *cmd_trb; 2551 2552 spin_lock_irqsave(&xhci->lock, flags); 2553 virt_dev = xhci->devs[udev->slot_id]; 2554 2555 if (command) 2556 in_ctx = command->in_ctx; 2557 else 2558 in_ctx = virt_dev->in_ctx; 2559 2560 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2561 xhci_reserve_host_resources(xhci, in_ctx)) { 2562 spin_unlock_irqrestore(&xhci->lock, flags); 2563 xhci_warn(xhci, "Not enough host resources, " 2564 "active endpoint contexts = %u\n", 2565 xhci->num_active_eps); 2566 return -ENOMEM; 2567 } 2568 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2569 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2570 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2571 xhci_free_host_resources(xhci, in_ctx); 2572 spin_unlock_irqrestore(&xhci->lock, flags); 2573 xhci_warn(xhci, "Not enough bandwidth\n"); 2574 return -ENOMEM; 2575 } 2576 2577 if (command) { 2578 cmd_completion = command->completion; 2579 cmd_status = &command->status; 2580 command->command_trb = xhci->cmd_ring->enqueue; 2581 2582 /* Enqueue pointer can be left pointing to the link TRB, 2583 * we must handle that 2584 */ 2585 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) 2586 command->command_trb = 2587 xhci->cmd_ring->enq_seg->next->trbs; 2588 2589 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2590 } else { 2591 cmd_completion = &virt_dev->cmd_completion; 2592 cmd_status = &virt_dev->cmd_status; 2593 } 2594 init_completion(cmd_completion); 2595 2596 cmd_trb = xhci->cmd_ring->dequeue; 2597 if (!ctx_change) 2598 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2599 udev->slot_id, must_succeed); 2600 else 2601 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2602 udev->slot_id, must_succeed); 2603 if (ret < 0) { 2604 if (command) 2605 list_del(&command->cmd_list); 2606 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2607 xhci_free_host_resources(xhci, in_ctx); 2608 spin_unlock_irqrestore(&xhci->lock, flags); 2609 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 2610 return -ENOMEM; 2611 } 2612 xhci_ring_cmd_db(xhci); 2613 spin_unlock_irqrestore(&xhci->lock, flags); 2614 2615 /* Wait for the configure endpoint command to complete */ 2616 timeleft = wait_for_completion_interruptible_timeout( 2617 cmd_completion, 2618 XHCI_CMD_DEFAULT_TIMEOUT); 2619 if (timeleft <= 0) { 2620 xhci_warn(xhci, "%s while waiting for %s command\n", 2621 timeleft == 0 ? "Timeout" : "Signal", 2622 ctx_change == 0 ? 2623 "configure endpoint" : 2624 "evaluate context"); 2625 /* cancel the configure endpoint command */ 2626 ret = xhci_cancel_cmd(xhci, command, cmd_trb); 2627 if (ret < 0) 2628 return ret; 2629 return -ETIME; 2630 } 2631 2632 if (!ctx_change) 2633 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2634 else 2635 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2636 2637 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2638 spin_lock_irqsave(&xhci->lock, flags); 2639 /* If the command failed, remove the reserved resources. 2640 * Otherwise, clean up the estimate to include dropped eps. 2641 */ 2642 if (ret) 2643 xhci_free_host_resources(xhci, in_ctx); 2644 else 2645 xhci_finish_resource_reservation(xhci, in_ctx); 2646 spin_unlock_irqrestore(&xhci->lock, flags); 2647 } 2648 return ret; 2649 } 2650 2651 /* Called after one or more calls to xhci_add_endpoint() or 2652 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2653 * to call xhci_reset_bandwidth(). 2654 * 2655 * Since we are in the middle of changing either configuration or 2656 * installing a new alt setting, the USB core won't allow URBs to be 2657 * enqueued for any endpoint on the old config or interface. Nothing 2658 * else should be touching the xhci->devs[slot_id] structure, so we 2659 * don't need to take the xhci->lock for manipulating that. 2660 */ 2661 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2662 { 2663 int i; 2664 int ret = 0; 2665 struct xhci_hcd *xhci; 2666 struct xhci_virt_device *virt_dev; 2667 struct xhci_input_control_ctx *ctrl_ctx; 2668 struct xhci_slot_ctx *slot_ctx; 2669 2670 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2671 if (ret <= 0) 2672 return ret; 2673 xhci = hcd_to_xhci(hcd); 2674 if (xhci->xhc_state & XHCI_STATE_DYING) 2675 return -ENODEV; 2676 2677 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2678 virt_dev = xhci->devs[udev->slot_id]; 2679 2680 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2681 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2682 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2683 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2684 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2685 2686 /* Don't issue the command if there's no endpoints to update. */ 2687 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2688 ctrl_ctx->drop_flags == 0) 2689 return 0; 2690 2691 xhci_dbg(xhci, "New Input Control Context:\n"); 2692 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2693 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2694 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2695 2696 ret = xhci_configure_endpoint(xhci, udev, NULL, 2697 false, false); 2698 if (ret) { 2699 /* Callee should call reset_bandwidth() */ 2700 return ret; 2701 } 2702 2703 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2704 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2705 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2706 2707 /* Free any rings that were dropped, but not changed. */ 2708 for (i = 1; i < 31; ++i) { 2709 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2710 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2711 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2712 } 2713 xhci_zero_in_ctx(xhci, virt_dev); 2714 /* 2715 * Install any rings for completely new endpoints or changed endpoints, 2716 * and free or cache any old rings from changed endpoints. 2717 */ 2718 for (i = 1; i < 31; ++i) { 2719 if (!virt_dev->eps[i].new_ring) 2720 continue; 2721 /* Only cache or free the old ring if it exists. 2722 * It may not if this is the first add of an endpoint. 2723 */ 2724 if (virt_dev->eps[i].ring) { 2725 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2726 } 2727 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2728 virt_dev->eps[i].new_ring = NULL; 2729 } 2730 2731 return ret; 2732 } 2733 2734 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2735 { 2736 struct xhci_hcd *xhci; 2737 struct xhci_virt_device *virt_dev; 2738 int i, ret; 2739 2740 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2741 if (ret <= 0) 2742 return; 2743 xhci = hcd_to_xhci(hcd); 2744 2745 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2746 virt_dev = xhci->devs[udev->slot_id]; 2747 /* Free any rings allocated for added endpoints */ 2748 for (i = 0; i < 31; ++i) { 2749 if (virt_dev->eps[i].new_ring) { 2750 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2751 virt_dev->eps[i].new_ring = NULL; 2752 } 2753 } 2754 xhci_zero_in_ctx(xhci, virt_dev); 2755 } 2756 2757 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2758 struct xhci_container_ctx *in_ctx, 2759 struct xhci_container_ctx *out_ctx, 2760 u32 add_flags, u32 drop_flags) 2761 { 2762 struct xhci_input_control_ctx *ctrl_ctx; 2763 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2764 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2765 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2766 xhci_slot_copy(xhci, in_ctx, out_ctx); 2767 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2768 2769 xhci_dbg(xhci, "Input Context:\n"); 2770 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2771 } 2772 2773 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2774 unsigned int slot_id, unsigned int ep_index, 2775 struct xhci_dequeue_state *deq_state) 2776 { 2777 struct xhci_container_ctx *in_ctx; 2778 struct xhci_ep_ctx *ep_ctx; 2779 u32 added_ctxs; 2780 dma_addr_t addr; 2781 2782 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2783 xhci->devs[slot_id]->out_ctx, ep_index); 2784 in_ctx = xhci->devs[slot_id]->in_ctx; 2785 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2786 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2787 deq_state->new_deq_ptr); 2788 if (addr == 0) { 2789 xhci_warn(xhci, "WARN Cannot submit config ep after " 2790 "reset ep command\n"); 2791 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2792 deq_state->new_deq_seg, 2793 deq_state->new_deq_ptr); 2794 return; 2795 } 2796 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2797 2798 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2799 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2800 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); 2801 } 2802 2803 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2804 struct usb_device *udev, unsigned int ep_index) 2805 { 2806 struct xhci_dequeue_state deq_state; 2807 struct xhci_virt_ep *ep; 2808 2809 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 2810 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2811 /* We need to move the HW's dequeue pointer past this TD, 2812 * or it will attempt to resend it on the next doorbell ring. 2813 */ 2814 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2815 ep_index, ep->stopped_stream, ep->stopped_td, 2816 &deq_state); 2817 2818 /* HW with the reset endpoint quirk will use the saved dequeue state to 2819 * issue a configure endpoint command later. 2820 */ 2821 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2822 xhci_dbg(xhci, "Queueing new dequeue state\n"); 2823 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2824 ep_index, ep->stopped_stream, &deq_state); 2825 } else { 2826 /* Better hope no one uses the input context between now and the 2827 * reset endpoint completion! 2828 * XXX: No idea how this hardware will react when stream rings 2829 * are enabled. 2830 */ 2831 xhci_dbg(xhci, "Setting up input context for " 2832 "configure endpoint command\n"); 2833 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2834 ep_index, &deq_state); 2835 } 2836 } 2837 2838 /* Deal with stalled endpoints. The core should have sent the control message 2839 * to clear the halt condition. However, we need to make the xHCI hardware 2840 * reset its sequence number, since a device will expect a sequence number of 2841 * zero after the halt condition is cleared. 2842 * Context: in_interrupt 2843 */ 2844 void xhci_endpoint_reset(struct usb_hcd *hcd, 2845 struct usb_host_endpoint *ep) 2846 { 2847 struct xhci_hcd *xhci; 2848 struct usb_device *udev; 2849 unsigned int ep_index; 2850 unsigned long flags; 2851 int ret; 2852 struct xhci_virt_ep *virt_ep; 2853 2854 xhci = hcd_to_xhci(hcd); 2855 udev = (struct usb_device *) ep->hcpriv; 2856 /* Called with a root hub endpoint (or an endpoint that wasn't added 2857 * with xhci_add_endpoint() 2858 */ 2859 if (!ep->hcpriv) 2860 return; 2861 ep_index = xhci_get_endpoint_index(&ep->desc); 2862 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2863 if (!virt_ep->stopped_td) { 2864 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 2865 ep->desc.bEndpointAddress); 2866 return; 2867 } 2868 if (usb_endpoint_xfer_control(&ep->desc)) { 2869 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 2870 return; 2871 } 2872 2873 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 2874 spin_lock_irqsave(&xhci->lock, flags); 2875 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2876 /* 2877 * Can't change the ring dequeue pointer until it's transitioned to the 2878 * stopped state, which is only upon a successful reset endpoint 2879 * command. Better hope that last command worked! 2880 */ 2881 if (!ret) { 2882 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2883 kfree(virt_ep->stopped_td); 2884 xhci_ring_cmd_db(xhci); 2885 } 2886 virt_ep->stopped_td = NULL; 2887 virt_ep->stopped_trb = NULL; 2888 virt_ep->stopped_stream = 0; 2889 spin_unlock_irqrestore(&xhci->lock, flags); 2890 2891 if (ret) 2892 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2893 } 2894 2895 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2896 struct usb_device *udev, struct usb_host_endpoint *ep, 2897 unsigned int slot_id) 2898 { 2899 int ret; 2900 unsigned int ep_index; 2901 unsigned int ep_state; 2902 2903 if (!ep) 2904 return -EINVAL; 2905 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2906 if (ret <= 0) 2907 return -EINVAL; 2908 if (ep->ss_ep_comp.bmAttributes == 0) { 2909 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2910 " descriptor for ep 0x%x does not support streams\n", 2911 ep->desc.bEndpointAddress); 2912 return -EINVAL; 2913 } 2914 2915 ep_index = xhci_get_endpoint_index(&ep->desc); 2916 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2917 if (ep_state & EP_HAS_STREAMS || 2918 ep_state & EP_GETTING_STREAMS) { 2919 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2920 "already has streams set up.\n", 2921 ep->desc.bEndpointAddress); 2922 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2923 "dynamic stream context array reallocation.\n"); 2924 return -EINVAL; 2925 } 2926 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2927 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2928 "endpoint 0x%x; URBs are pending.\n", 2929 ep->desc.bEndpointAddress); 2930 return -EINVAL; 2931 } 2932 return 0; 2933 } 2934 2935 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2936 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2937 { 2938 unsigned int max_streams; 2939 2940 /* The stream context array size must be a power of two */ 2941 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2942 /* 2943 * Find out how many primary stream array entries the host controller 2944 * supports. Later we may use secondary stream arrays (similar to 2nd 2945 * level page entries), but that's an optional feature for xHCI host 2946 * controllers. xHCs must support at least 4 stream IDs. 2947 */ 2948 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2949 if (*num_stream_ctxs > max_streams) { 2950 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2951 max_streams); 2952 *num_stream_ctxs = max_streams; 2953 *num_streams = max_streams; 2954 } 2955 } 2956 2957 /* Returns an error code if one of the endpoint already has streams. 2958 * This does not change any data structures, it only checks and gathers 2959 * information. 2960 */ 2961 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2962 struct usb_device *udev, 2963 struct usb_host_endpoint **eps, unsigned int num_eps, 2964 unsigned int *num_streams, u32 *changed_ep_bitmask) 2965 { 2966 unsigned int max_streams; 2967 unsigned int endpoint_flag; 2968 int i; 2969 int ret; 2970 2971 for (i = 0; i < num_eps; i++) { 2972 ret = xhci_check_streams_endpoint(xhci, udev, 2973 eps[i], udev->slot_id); 2974 if (ret < 0) 2975 return ret; 2976 2977 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2978 if (max_streams < (*num_streams - 1)) { 2979 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2980 eps[i]->desc.bEndpointAddress, 2981 max_streams); 2982 *num_streams = max_streams+1; 2983 } 2984 2985 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2986 if (*changed_ep_bitmask & endpoint_flag) 2987 return -EINVAL; 2988 *changed_ep_bitmask |= endpoint_flag; 2989 } 2990 return 0; 2991 } 2992 2993 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 2994 struct usb_device *udev, 2995 struct usb_host_endpoint **eps, unsigned int num_eps) 2996 { 2997 u32 changed_ep_bitmask = 0; 2998 unsigned int slot_id; 2999 unsigned int ep_index; 3000 unsigned int ep_state; 3001 int i; 3002 3003 slot_id = udev->slot_id; 3004 if (!xhci->devs[slot_id]) 3005 return 0; 3006 3007 for (i = 0; i < num_eps; i++) { 3008 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3009 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3010 /* Are streams already being freed for the endpoint? */ 3011 if (ep_state & EP_GETTING_NO_STREAMS) { 3012 xhci_warn(xhci, "WARN Can't disable streams for " 3013 "endpoint 0x%x\n, " 3014 "streams are being disabled already.", 3015 eps[i]->desc.bEndpointAddress); 3016 return 0; 3017 } 3018 /* Are there actually any streams to free? */ 3019 if (!(ep_state & EP_HAS_STREAMS) && 3020 !(ep_state & EP_GETTING_STREAMS)) { 3021 xhci_warn(xhci, "WARN Can't disable streams for " 3022 "endpoint 0x%x\n, " 3023 "streams are already disabled!", 3024 eps[i]->desc.bEndpointAddress); 3025 xhci_warn(xhci, "WARN xhci_free_streams() called " 3026 "with non-streams endpoint\n"); 3027 return 0; 3028 } 3029 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3030 } 3031 return changed_ep_bitmask; 3032 } 3033 3034 /* 3035 * The USB device drivers use this function (though the HCD interface in USB 3036 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3037 * coordinate mass storage command queueing across multiple endpoints (basically 3038 * a stream ID == a task ID). 3039 * 3040 * Setting up streams involves allocating the same size stream context array 3041 * for each endpoint and issuing a configure endpoint command for all endpoints. 3042 * 3043 * Don't allow the call to succeed if one endpoint only supports one stream 3044 * (which means it doesn't support streams at all). 3045 * 3046 * Drivers may get less stream IDs than they asked for, if the host controller 3047 * hardware or endpoints claim they can't support the number of requested 3048 * stream IDs. 3049 */ 3050 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3051 struct usb_host_endpoint **eps, unsigned int num_eps, 3052 unsigned int num_streams, gfp_t mem_flags) 3053 { 3054 int i, ret; 3055 struct xhci_hcd *xhci; 3056 struct xhci_virt_device *vdev; 3057 struct xhci_command *config_cmd; 3058 unsigned int ep_index; 3059 unsigned int num_stream_ctxs; 3060 unsigned long flags; 3061 u32 changed_ep_bitmask = 0; 3062 3063 if (!eps) 3064 return -EINVAL; 3065 3066 /* Add one to the number of streams requested to account for 3067 * stream 0 that is reserved for xHCI usage. 3068 */ 3069 num_streams += 1; 3070 xhci = hcd_to_xhci(hcd); 3071 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3072 num_streams); 3073 3074 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3075 if (!config_cmd) { 3076 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3077 return -ENOMEM; 3078 } 3079 3080 /* Check to make sure all endpoints are not already configured for 3081 * streams. While we're at it, find the maximum number of streams that 3082 * all the endpoints will support and check for duplicate endpoints. 3083 */ 3084 spin_lock_irqsave(&xhci->lock, flags); 3085 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3086 num_eps, &num_streams, &changed_ep_bitmask); 3087 if (ret < 0) { 3088 xhci_free_command(xhci, config_cmd); 3089 spin_unlock_irqrestore(&xhci->lock, flags); 3090 return ret; 3091 } 3092 if (num_streams <= 1) { 3093 xhci_warn(xhci, "WARN: endpoints can't handle " 3094 "more than one stream.\n"); 3095 xhci_free_command(xhci, config_cmd); 3096 spin_unlock_irqrestore(&xhci->lock, flags); 3097 return -EINVAL; 3098 } 3099 vdev = xhci->devs[udev->slot_id]; 3100 /* Mark each endpoint as being in transition, so 3101 * xhci_urb_enqueue() will reject all URBs. 3102 */ 3103 for (i = 0; i < num_eps; i++) { 3104 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3105 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3106 } 3107 spin_unlock_irqrestore(&xhci->lock, flags); 3108 3109 /* Setup internal data structures and allocate HW data structures for 3110 * streams (but don't install the HW structures in the input context 3111 * until we're sure all memory allocation succeeded). 3112 */ 3113 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3114 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3115 num_stream_ctxs, num_streams); 3116 3117 for (i = 0; i < num_eps; i++) { 3118 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3119 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3120 num_stream_ctxs, 3121 num_streams, mem_flags); 3122 if (!vdev->eps[ep_index].stream_info) 3123 goto cleanup; 3124 /* Set maxPstreams in endpoint context and update deq ptr to 3125 * point to stream context array. FIXME 3126 */ 3127 } 3128 3129 /* Set up the input context for a configure endpoint command. */ 3130 for (i = 0; i < num_eps; i++) { 3131 struct xhci_ep_ctx *ep_ctx; 3132 3133 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3134 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3135 3136 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3137 vdev->out_ctx, ep_index); 3138 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3139 vdev->eps[ep_index].stream_info); 3140 } 3141 /* Tell the HW to drop its old copy of the endpoint context info 3142 * and add the updated copy from the input context. 3143 */ 3144 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3145 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3146 3147 /* Issue and wait for the configure endpoint command */ 3148 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3149 false, false); 3150 3151 /* xHC rejected the configure endpoint command for some reason, so we 3152 * leave the old ring intact and free our internal streams data 3153 * structure. 3154 */ 3155 if (ret < 0) 3156 goto cleanup; 3157 3158 spin_lock_irqsave(&xhci->lock, flags); 3159 for (i = 0; i < num_eps; i++) { 3160 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3161 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3162 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3163 udev->slot_id, ep_index); 3164 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3165 } 3166 xhci_free_command(xhci, config_cmd); 3167 spin_unlock_irqrestore(&xhci->lock, flags); 3168 3169 /* Subtract 1 for stream 0, which drivers can't use */ 3170 return num_streams - 1; 3171 3172 cleanup: 3173 /* If it didn't work, free the streams! */ 3174 for (i = 0; i < num_eps; i++) { 3175 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3176 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3177 vdev->eps[ep_index].stream_info = NULL; 3178 /* FIXME Unset maxPstreams in endpoint context and 3179 * update deq ptr to point to normal string ring. 3180 */ 3181 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3182 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3183 xhci_endpoint_zero(xhci, vdev, eps[i]); 3184 } 3185 xhci_free_command(xhci, config_cmd); 3186 return -ENOMEM; 3187 } 3188 3189 /* Transition the endpoint from using streams to being a "normal" endpoint 3190 * without streams. 3191 * 3192 * Modify the endpoint context state, submit a configure endpoint command, 3193 * and free all endpoint rings for streams if that completes successfully. 3194 */ 3195 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3196 struct usb_host_endpoint **eps, unsigned int num_eps, 3197 gfp_t mem_flags) 3198 { 3199 int i, ret; 3200 struct xhci_hcd *xhci; 3201 struct xhci_virt_device *vdev; 3202 struct xhci_command *command; 3203 unsigned int ep_index; 3204 unsigned long flags; 3205 u32 changed_ep_bitmask; 3206 3207 xhci = hcd_to_xhci(hcd); 3208 vdev = xhci->devs[udev->slot_id]; 3209 3210 /* Set up a configure endpoint command to remove the streams rings */ 3211 spin_lock_irqsave(&xhci->lock, flags); 3212 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3213 udev, eps, num_eps); 3214 if (changed_ep_bitmask == 0) { 3215 spin_unlock_irqrestore(&xhci->lock, flags); 3216 return -EINVAL; 3217 } 3218 3219 /* Use the xhci_command structure from the first endpoint. We may have 3220 * allocated too many, but the driver may call xhci_free_streams() for 3221 * each endpoint it grouped into one call to xhci_alloc_streams(). 3222 */ 3223 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3224 command = vdev->eps[ep_index].stream_info->free_streams_command; 3225 for (i = 0; i < num_eps; i++) { 3226 struct xhci_ep_ctx *ep_ctx; 3227 3228 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3229 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3230 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3231 EP_GETTING_NO_STREAMS; 3232 3233 xhci_endpoint_copy(xhci, command->in_ctx, 3234 vdev->out_ctx, ep_index); 3235 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3236 &vdev->eps[ep_index]); 3237 } 3238 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3239 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3240 spin_unlock_irqrestore(&xhci->lock, flags); 3241 3242 /* Issue and wait for the configure endpoint command, 3243 * which must succeed. 3244 */ 3245 ret = xhci_configure_endpoint(xhci, udev, command, 3246 false, true); 3247 3248 /* xHC rejected the configure endpoint command for some reason, so we 3249 * leave the streams rings intact. 3250 */ 3251 if (ret < 0) 3252 return ret; 3253 3254 spin_lock_irqsave(&xhci->lock, flags); 3255 for (i = 0; i < num_eps; i++) { 3256 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3257 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3258 vdev->eps[ep_index].stream_info = NULL; 3259 /* FIXME Unset maxPstreams in endpoint context and 3260 * update deq ptr to point to normal string ring. 3261 */ 3262 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3263 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3264 } 3265 spin_unlock_irqrestore(&xhci->lock, flags); 3266 3267 return 0; 3268 } 3269 3270 /* 3271 * Deletes endpoint resources for endpoints that were active before a Reset 3272 * Device command, or a Disable Slot command. The Reset Device command leaves 3273 * the control endpoint intact, whereas the Disable Slot command deletes it. 3274 * 3275 * Must be called with xhci->lock held. 3276 */ 3277 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3278 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3279 { 3280 int i; 3281 unsigned int num_dropped_eps = 0; 3282 unsigned int drop_flags = 0; 3283 3284 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3285 if (virt_dev->eps[i].ring) { 3286 drop_flags |= 1 << i; 3287 num_dropped_eps++; 3288 } 3289 } 3290 xhci->num_active_eps -= num_dropped_eps; 3291 if (num_dropped_eps) 3292 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " 3293 "%u now active.\n", 3294 num_dropped_eps, drop_flags, 3295 xhci->num_active_eps); 3296 } 3297 3298 /* 3299 * This submits a Reset Device Command, which will set the device state to 0, 3300 * set the device address to 0, and disable all the endpoints except the default 3301 * control endpoint. The USB core should come back and call 3302 * xhci_address_device(), and then re-set up the configuration. If this is 3303 * called because of a usb_reset_and_verify_device(), then the old alternate 3304 * settings will be re-installed through the normal bandwidth allocation 3305 * functions. 3306 * 3307 * Wait for the Reset Device command to finish. Remove all structures 3308 * associated with the endpoints that were disabled. Clear the input device 3309 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3310 * 3311 * If the virt_dev to be reset does not exist or does not match the udev, 3312 * it means the device is lost, possibly due to the xHC restore error and 3313 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3314 * re-allocate the device. 3315 */ 3316 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3317 { 3318 int ret, i; 3319 unsigned long flags; 3320 struct xhci_hcd *xhci; 3321 unsigned int slot_id; 3322 struct xhci_virt_device *virt_dev; 3323 struct xhci_command *reset_device_cmd; 3324 int timeleft; 3325 int last_freed_endpoint; 3326 struct xhci_slot_ctx *slot_ctx; 3327 int old_active_eps = 0; 3328 3329 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3330 if (ret <= 0) 3331 return ret; 3332 xhci = hcd_to_xhci(hcd); 3333 slot_id = udev->slot_id; 3334 virt_dev = xhci->devs[slot_id]; 3335 if (!virt_dev) { 3336 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3337 "not exist. Re-allocate the device\n", slot_id); 3338 ret = xhci_alloc_dev(hcd, udev); 3339 if (ret == 1) 3340 return 0; 3341 else 3342 return -EINVAL; 3343 } 3344 3345 if (virt_dev->udev != udev) { 3346 /* If the virt_dev and the udev does not match, this virt_dev 3347 * may belong to another udev. 3348 * Re-allocate the device. 3349 */ 3350 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3351 "not match the udev. Re-allocate the device\n", 3352 slot_id); 3353 ret = xhci_alloc_dev(hcd, udev); 3354 if (ret == 1) 3355 return 0; 3356 else 3357 return -EINVAL; 3358 } 3359 3360 /* If device is not setup, there is no point in resetting it */ 3361 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3362 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3363 SLOT_STATE_DISABLED) 3364 return 0; 3365 3366 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3367 /* Allocate the command structure that holds the struct completion. 3368 * Assume we're in process context, since the normal device reset 3369 * process has to wait for the device anyway. Storage devices are 3370 * reset as part of error handling, so use GFP_NOIO instead of 3371 * GFP_KERNEL. 3372 */ 3373 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3374 if (!reset_device_cmd) { 3375 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3376 return -ENOMEM; 3377 } 3378 3379 /* Attempt to submit the Reset Device command to the command ring */ 3380 spin_lock_irqsave(&xhci->lock, flags); 3381 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 3382 3383 /* Enqueue pointer can be left pointing to the link TRB, 3384 * we must handle that 3385 */ 3386 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) 3387 reset_device_cmd->command_trb = 3388 xhci->cmd_ring->enq_seg->next->trbs; 3389 3390 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3391 ret = xhci_queue_reset_device(xhci, slot_id); 3392 if (ret) { 3393 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3394 list_del(&reset_device_cmd->cmd_list); 3395 spin_unlock_irqrestore(&xhci->lock, flags); 3396 goto command_cleanup; 3397 } 3398 xhci_ring_cmd_db(xhci); 3399 spin_unlock_irqrestore(&xhci->lock, flags); 3400 3401 /* Wait for the Reset Device command to finish */ 3402 timeleft = wait_for_completion_interruptible_timeout( 3403 reset_device_cmd->completion, 3404 USB_CTRL_SET_TIMEOUT); 3405 if (timeleft <= 0) { 3406 xhci_warn(xhci, "%s while waiting for reset device command\n", 3407 timeleft == 0 ? "Timeout" : "Signal"); 3408 spin_lock_irqsave(&xhci->lock, flags); 3409 /* The timeout might have raced with the event ring handler, so 3410 * only delete from the list if the item isn't poisoned. 3411 */ 3412 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3413 list_del(&reset_device_cmd->cmd_list); 3414 spin_unlock_irqrestore(&xhci->lock, flags); 3415 ret = -ETIME; 3416 goto command_cleanup; 3417 } 3418 3419 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3420 * unless we tried to reset a slot ID that wasn't enabled, 3421 * or the device wasn't in the addressed or configured state. 3422 */ 3423 ret = reset_device_cmd->status; 3424 switch (ret) { 3425 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3426 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3427 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 3428 slot_id, 3429 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3430 xhci_info(xhci, "Not freeing device rings.\n"); 3431 /* Don't treat this as an error. May change my mind later. */ 3432 ret = 0; 3433 goto command_cleanup; 3434 case COMP_SUCCESS: 3435 xhci_dbg(xhci, "Successful reset device command.\n"); 3436 break; 3437 default: 3438 if (xhci_is_vendor_info_code(xhci, ret)) 3439 break; 3440 xhci_warn(xhci, "Unknown completion code %u for " 3441 "reset device command.\n", ret); 3442 ret = -EINVAL; 3443 goto command_cleanup; 3444 } 3445 3446 /* Free up host controller endpoint resources */ 3447 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3448 spin_lock_irqsave(&xhci->lock, flags); 3449 /* Don't delete the default control endpoint resources */ 3450 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3451 spin_unlock_irqrestore(&xhci->lock, flags); 3452 } 3453 3454 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3455 last_freed_endpoint = 1; 3456 for (i = 1; i < 31; ++i) { 3457 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3458 3459 if (ep->ep_state & EP_HAS_STREAMS) { 3460 xhci_free_stream_info(xhci, ep->stream_info); 3461 ep->stream_info = NULL; 3462 ep->ep_state &= ~EP_HAS_STREAMS; 3463 } 3464 3465 if (ep->ring) { 3466 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3467 last_freed_endpoint = i; 3468 } 3469 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3470 xhci_drop_ep_from_interval_table(xhci, 3471 &virt_dev->eps[i].bw_info, 3472 virt_dev->bw_table, 3473 udev, 3474 &virt_dev->eps[i], 3475 virt_dev->tt_info); 3476 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3477 } 3478 /* If necessary, update the number of active TTs on this root port */ 3479 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3480 3481 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3482 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3483 ret = 0; 3484 3485 command_cleanup: 3486 xhci_free_command(xhci, reset_device_cmd); 3487 return ret; 3488 } 3489 3490 /* 3491 * At this point, the struct usb_device is about to go away, the device has 3492 * disconnected, and all traffic has been stopped and the endpoints have been 3493 * disabled. Free any HC data structures associated with that device. 3494 */ 3495 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3496 { 3497 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3498 struct xhci_virt_device *virt_dev; 3499 unsigned long flags; 3500 u32 state; 3501 int i, ret; 3502 3503 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3504 /* If the host is halted due to driver unload, we still need to free the 3505 * device. 3506 */ 3507 if (ret <= 0 && ret != -ENODEV) 3508 return; 3509 3510 virt_dev = xhci->devs[udev->slot_id]; 3511 3512 /* Stop any wayward timer functions (which may grab the lock) */ 3513 for (i = 0; i < 31; ++i) { 3514 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3515 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3516 } 3517 3518 if (udev->usb2_hw_lpm_enabled) { 3519 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3520 udev->usb2_hw_lpm_enabled = 0; 3521 } 3522 3523 spin_lock_irqsave(&xhci->lock, flags); 3524 /* Don't disable the slot if the host controller is dead. */ 3525 state = xhci_readl(xhci, &xhci->op_regs->status); 3526 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3527 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3528 xhci_free_virt_device(xhci, udev->slot_id); 3529 spin_unlock_irqrestore(&xhci->lock, flags); 3530 return; 3531 } 3532 3533 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3534 spin_unlock_irqrestore(&xhci->lock, flags); 3535 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3536 return; 3537 } 3538 xhci_ring_cmd_db(xhci); 3539 spin_unlock_irqrestore(&xhci->lock, flags); 3540 /* 3541 * Event command completion handler will free any data structures 3542 * associated with the slot. XXX Can free sleep? 3543 */ 3544 } 3545 3546 /* 3547 * Checks if we have enough host controller resources for the default control 3548 * endpoint. 3549 * 3550 * Must be called with xhci->lock held. 3551 */ 3552 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3553 { 3554 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3555 xhci_dbg(xhci, "Not enough ep ctxs: " 3556 "%u active, need to add 1, limit is %u.\n", 3557 xhci->num_active_eps, xhci->limit_active_eps); 3558 return -ENOMEM; 3559 } 3560 xhci->num_active_eps += 1; 3561 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", 3562 xhci->num_active_eps); 3563 return 0; 3564 } 3565 3566 3567 /* 3568 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3569 * timed out, or allocating memory failed. Returns 1 on success. 3570 */ 3571 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3572 { 3573 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3574 unsigned long flags; 3575 int timeleft; 3576 int ret; 3577 union xhci_trb *cmd_trb; 3578 3579 spin_lock_irqsave(&xhci->lock, flags); 3580 cmd_trb = xhci->cmd_ring->dequeue; 3581 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3582 if (ret) { 3583 spin_unlock_irqrestore(&xhci->lock, flags); 3584 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3585 return 0; 3586 } 3587 xhci_ring_cmd_db(xhci); 3588 spin_unlock_irqrestore(&xhci->lock, flags); 3589 3590 /* XXX: how much time for xHC slot assignment? */ 3591 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3592 XHCI_CMD_DEFAULT_TIMEOUT); 3593 if (timeleft <= 0) { 3594 xhci_warn(xhci, "%s while waiting for a slot\n", 3595 timeleft == 0 ? "Timeout" : "Signal"); 3596 /* cancel the enable slot request */ 3597 return xhci_cancel_cmd(xhci, NULL, cmd_trb); 3598 } 3599 3600 if (!xhci->slot_id) { 3601 xhci_err(xhci, "Error while assigning device slot ID\n"); 3602 return 0; 3603 } 3604 3605 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3606 spin_lock_irqsave(&xhci->lock, flags); 3607 ret = xhci_reserve_host_control_ep_resources(xhci); 3608 if (ret) { 3609 spin_unlock_irqrestore(&xhci->lock, flags); 3610 xhci_warn(xhci, "Not enough host resources, " 3611 "active endpoint contexts = %u\n", 3612 xhci->num_active_eps); 3613 goto disable_slot; 3614 } 3615 spin_unlock_irqrestore(&xhci->lock, flags); 3616 } 3617 /* Use GFP_NOIO, since this function can be called from 3618 * xhci_discover_or_reset_device(), which may be called as part of 3619 * mass storage driver error handling. 3620 */ 3621 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3622 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3623 goto disable_slot; 3624 } 3625 udev->slot_id = xhci->slot_id; 3626 /* Is this a LS or FS device under a HS hub? */ 3627 /* Hub or peripherial? */ 3628 return 1; 3629 3630 disable_slot: 3631 /* Disable slot, if we can do it without mem alloc */ 3632 spin_lock_irqsave(&xhci->lock, flags); 3633 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3634 xhci_ring_cmd_db(xhci); 3635 spin_unlock_irqrestore(&xhci->lock, flags); 3636 return 0; 3637 } 3638 3639 /* 3640 * Issue an Address Device command (which will issue a SetAddress request to 3641 * the device). 3642 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3643 * we should only issue and wait on one address command at the same time. 3644 * 3645 * We add one to the device address issued by the hardware because the USB core 3646 * uses address 1 for the root hubs (even though they're not really devices). 3647 */ 3648 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3649 { 3650 unsigned long flags; 3651 int timeleft; 3652 struct xhci_virt_device *virt_dev; 3653 int ret = 0; 3654 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3655 struct xhci_slot_ctx *slot_ctx; 3656 struct xhci_input_control_ctx *ctrl_ctx; 3657 u64 temp_64; 3658 union xhci_trb *cmd_trb; 3659 3660 if (!udev->slot_id) { 3661 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 3662 return -EINVAL; 3663 } 3664 3665 virt_dev = xhci->devs[udev->slot_id]; 3666 3667 if (WARN_ON(!virt_dev)) { 3668 /* 3669 * In plug/unplug torture test with an NEC controller, 3670 * a zero-dereference was observed once due to virt_dev = 0. 3671 * Print useful debug rather than crash if it is observed again! 3672 */ 3673 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3674 udev->slot_id); 3675 return -EINVAL; 3676 } 3677 3678 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3679 /* 3680 * If this is the first Set Address since device plug-in or 3681 * virt_device realloaction after a resume with an xHCI power loss, 3682 * then set up the slot context. 3683 */ 3684 if (!slot_ctx->dev_info) 3685 xhci_setup_addressable_virt_dev(xhci, udev); 3686 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3687 else 3688 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3689 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3690 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3691 ctrl_ctx->drop_flags = 0; 3692 3693 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3694 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3695 3696 spin_lock_irqsave(&xhci->lock, flags); 3697 cmd_trb = xhci->cmd_ring->dequeue; 3698 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3699 udev->slot_id); 3700 if (ret) { 3701 spin_unlock_irqrestore(&xhci->lock, flags); 3702 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3703 return ret; 3704 } 3705 xhci_ring_cmd_db(xhci); 3706 spin_unlock_irqrestore(&xhci->lock, flags); 3707 3708 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3709 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3710 XHCI_CMD_DEFAULT_TIMEOUT); 3711 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3712 * the SetAddress() "recovery interval" required by USB and aborting the 3713 * command on a timeout. 3714 */ 3715 if (timeleft <= 0) { 3716 xhci_warn(xhci, "%s while waiting for address device command\n", 3717 timeleft == 0 ? "Timeout" : "Signal"); 3718 /* cancel the address device command */ 3719 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb); 3720 if (ret < 0) 3721 return ret; 3722 return -ETIME; 3723 } 3724 3725 switch (virt_dev->cmd_status) { 3726 case COMP_CTX_STATE: 3727 case COMP_EBADSLT: 3728 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3729 udev->slot_id); 3730 ret = -EINVAL; 3731 break; 3732 case COMP_TX_ERR: 3733 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3734 ret = -EPROTO; 3735 break; 3736 case COMP_DEV_ERR: 3737 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3738 "device command.\n"); 3739 ret = -ENODEV; 3740 break; 3741 case COMP_SUCCESS: 3742 xhci_dbg(xhci, "Successful Address Device command\n"); 3743 break; 3744 default: 3745 xhci_err(xhci, "ERROR: unexpected command completion " 3746 "code 0x%x.\n", virt_dev->cmd_status); 3747 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3748 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3749 ret = -EINVAL; 3750 break; 3751 } 3752 if (ret) { 3753 return ret; 3754 } 3755 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3756 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 3757 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 3758 udev->slot_id, 3759 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3760 (unsigned long long) 3761 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3762 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 3763 (unsigned long long)virt_dev->out_ctx->dma); 3764 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3765 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3766 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3767 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3768 /* 3769 * USB core uses address 1 for the roothubs, so we add one to the 3770 * address given back to us by the HC. 3771 */ 3772 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3773 /* Use kernel assigned address for devices; store xHC assigned 3774 * address locally. */ 3775 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3776 + 1; 3777 /* Zero the input context control for later use */ 3778 ctrl_ctx->add_flags = 0; 3779 ctrl_ctx->drop_flags = 0; 3780 3781 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); 3782 3783 return 0; 3784 } 3785 3786 /* 3787 * Transfer the port index into real index in the HW port status 3788 * registers. Caculate offset between the port's PORTSC register 3789 * and port status base. Divide the number of per port register 3790 * to get the real index. The raw port number bases 1. 3791 */ 3792 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3793 { 3794 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3795 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3796 __le32 __iomem *addr; 3797 int raw_port; 3798 3799 if (hcd->speed != HCD_USB3) 3800 addr = xhci->usb2_ports[port1 - 1]; 3801 else 3802 addr = xhci->usb3_ports[port1 - 1]; 3803 3804 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3805 return raw_port; 3806 } 3807 3808 #ifdef CONFIG_PM_RUNTIME 3809 3810 /* BESL to HIRD Encoding array for USB2 LPM */ 3811 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3812 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3813 3814 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3815 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3816 struct usb_device *udev) 3817 { 3818 int u2del, besl, besl_host; 3819 int besl_device = 0; 3820 u32 field; 3821 3822 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3823 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3824 3825 if (field & USB_BESL_SUPPORT) { 3826 for (besl_host = 0; besl_host < 16; besl_host++) { 3827 if (xhci_besl_encoding[besl_host] >= u2del) 3828 break; 3829 } 3830 /* Use baseline BESL value as default */ 3831 if (field & USB_BESL_BASELINE_VALID) 3832 besl_device = USB_GET_BESL_BASELINE(field); 3833 else if (field & USB_BESL_DEEP_VALID) 3834 besl_device = USB_GET_BESL_DEEP(field); 3835 } else { 3836 if (u2del <= 50) 3837 besl_host = 0; 3838 else 3839 besl_host = (u2del - 51) / 75 + 1; 3840 } 3841 3842 besl = besl_host + besl_device; 3843 if (besl > 15) 3844 besl = 15; 3845 3846 return besl; 3847 } 3848 3849 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 3850 struct usb_device *udev) 3851 { 3852 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3853 struct dev_info *dev_info; 3854 __le32 __iomem **port_array; 3855 __le32 __iomem *addr, *pm_addr; 3856 u32 temp, dev_id; 3857 unsigned int port_num; 3858 unsigned long flags; 3859 int hird; 3860 int ret; 3861 3862 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 3863 !udev->lpm_capable) 3864 return -EINVAL; 3865 3866 /* we only support lpm for non-hub device connected to root hub yet */ 3867 if (!udev->parent || udev->parent->parent || 3868 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3869 return -EINVAL; 3870 3871 spin_lock_irqsave(&xhci->lock, flags); 3872 3873 /* Look for devices in lpm_failed_devs list */ 3874 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 3875 le16_to_cpu(udev->descriptor.idProduct); 3876 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 3877 if (dev_info->dev_id == dev_id) { 3878 ret = -EINVAL; 3879 goto finish; 3880 } 3881 } 3882 3883 port_array = xhci->usb2_ports; 3884 port_num = udev->portnum - 1; 3885 3886 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 3887 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 3888 ret = -EINVAL; 3889 goto finish; 3890 } 3891 3892 /* 3893 * Test USB 2.0 software LPM. 3894 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 3895 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 3896 * in the June 2011 errata release. 3897 */ 3898 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 3899 /* 3900 * Set L1 Device Slot and HIRD/BESL. 3901 * Check device's USB 2.0 extension descriptor to determine whether 3902 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 3903 */ 3904 pm_addr = port_array[port_num] + 1; 3905 hird = xhci_calculate_hird_besl(xhci, udev); 3906 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 3907 xhci_writel(xhci, temp, pm_addr); 3908 3909 /* Set port link state to U2(L1) */ 3910 addr = port_array[port_num]; 3911 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 3912 3913 /* wait for ACK */ 3914 spin_unlock_irqrestore(&xhci->lock, flags); 3915 msleep(10); 3916 spin_lock_irqsave(&xhci->lock, flags); 3917 3918 /* Check L1 Status */ 3919 ret = xhci_handshake(xhci, pm_addr, 3920 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 3921 if (ret != -ETIMEDOUT) { 3922 /* enter L1 successfully */ 3923 temp = xhci_readl(xhci, addr); 3924 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 3925 port_num, temp); 3926 ret = 0; 3927 } else { 3928 temp = xhci_readl(xhci, pm_addr); 3929 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 3930 port_num, temp & PORT_L1S_MASK); 3931 ret = -EINVAL; 3932 } 3933 3934 /* Resume the port */ 3935 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 3936 3937 spin_unlock_irqrestore(&xhci->lock, flags); 3938 msleep(10); 3939 spin_lock_irqsave(&xhci->lock, flags); 3940 3941 /* Clear PLC */ 3942 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 3943 3944 /* Check PORTSC to make sure the device is in the right state */ 3945 if (!ret) { 3946 temp = xhci_readl(xhci, addr); 3947 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 3948 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 3949 (temp & PORT_PLS_MASK) != XDEV_U0) { 3950 xhci_dbg(xhci, "port L1 resume fail\n"); 3951 ret = -EINVAL; 3952 } 3953 } 3954 3955 if (ret) { 3956 /* Insert dev to lpm_failed_devs list */ 3957 xhci_warn(xhci, "device LPM test failed, may disconnect and " 3958 "re-enumerate\n"); 3959 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 3960 if (!dev_info) { 3961 ret = -ENOMEM; 3962 goto finish; 3963 } 3964 dev_info->dev_id = dev_id; 3965 INIT_LIST_HEAD(&dev_info->list); 3966 list_add(&dev_info->list, &xhci->lpm_failed_devs); 3967 } else { 3968 xhci_ring_device(xhci, udev->slot_id); 3969 } 3970 3971 finish: 3972 spin_unlock_irqrestore(&xhci->lock, flags); 3973 return ret; 3974 } 3975 3976 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3977 struct usb_device *udev, int enable) 3978 { 3979 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3980 __le32 __iomem **port_array; 3981 __le32 __iomem *pm_addr; 3982 u32 temp; 3983 unsigned int port_num; 3984 unsigned long flags; 3985 int hird; 3986 3987 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 3988 !udev->lpm_capable) 3989 return -EPERM; 3990 3991 if (!udev->parent || udev->parent->parent || 3992 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3993 return -EPERM; 3994 3995 if (udev->usb2_hw_lpm_capable != 1) 3996 return -EPERM; 3997 3998 spin_lock_irqsave(&xhci->lock, flags); 3999 4000 port_array = xhci->usb2_ports; 4001 port_num = udev->portnum - 1; 4002 pm_addr = port_array[port_num] + 1; 4003 temp = xhci_readl(xhci, pm_addr); 4004 4005 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4006 enable ? "enable" : "disable", port_num); 4007 4008 hird = xhci_calculate_hird_besl(xhci, udev); 4009 4010 if (enable) { 4011 temp &= ~PORT_HIRD_MASK; 4012 temp |= PORT_HIRD(hird) | PORT_RWE; 4013 xhci_writel(xhci, temp, pm_addr); 4014 temp = xhci_readl(xhci, pm_addr); 4015 temp |= PORT_HLE; 4016 xhci_writel(xhci, temp, pm_addr); 4017 } else { 4018 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 4019 xhci_writel(xhci, temp, pm_addr); 4020 } 4021 4022 spin_unlock_irqrestore(&xhci->lock, flags); 4023 return 0; 4024 } 4025 4026 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4027 { 4028 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4029 int ret; 4030 4031 ret = xhci_usb2_software_lpm_test(hcd, udev); 4032 if (!ret) { 4033 xhci_dbg(xhci, "software LPM test succeed\n"); 4034 if (xhci->hw_lpm_support == 1) { 4035 udev->usb2_hw_lpm_capable = 1; 4036 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 4037 if (!ret) 4038 udev->usb2_hw_lpm_enabled = 1; 4039 } 4040 } 4041 4042 return 0; 4043 } 4044 4045 #else 4046 4047 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4048 struct usb_device *udev, int enable) 4049 { 4050 return 0; 4051 } 4052 4053 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4054 { 4055 return 0; 4056 } 4057 4058 #endif /* CONFIG_PM_RUNTIME */ 4059 4060 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4061 4062 #ifdef CONFIG_PM 4063 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4064 static unsigned long long xhci_service_interval_to_ns( 4065 struct usb_endpoint_descriptor *desc) 4066 { 4067 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4068 } 4069 4070 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4071 enum usb3_link_state state) 4072 { 4073 unsigned long long sel; 4074 unsigned long long pel; 4075 unsigned int max_sel_pel; 4076 char *state_name; 4077 4078 switch (state) { 4079 case USB3_LPM_U1: 4080 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4081 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4082 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4083 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4084 state_name = "U1"; 4085 break; 4086 case USB3_LPM_U2: 4087 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4088 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4089 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4090 state_name = "U2"; 4091 break; 4092 default: 4093 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4094 __func__); 4095 return USB3_LPM_DISABLED; 4096 } 4097 4098 if (sel <= max_sel_pel && pel <= max_sel_pel) 4099 return USB3_LPM_DEVICE_INITIATED; 4100 4101 if (sel > max_sel_pel) 4102 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4103 "due to long SEL %llu ms\n", 4104 state_name, sel); 4105 else 4106 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4107 "due to long PEL %llu\n ms", 4108 state_name, pel); 4109 return USB3_LPM_DISABLED; 4110 } 4111 4112 /* Returns the hub-encoded U1 timeout value. 4113 * The U1 timeout should be the maximum of the following values: 4114 * - For control endpoints, U1 system exit latency (SEL) * 3 4115 * - For bulk endpoints, U1 SEL * 5 4116 * - For interrupt endpoints: 4117 * - Notification EPs, U1 SEL * 3 4118 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4119 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4120 */ 4121 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 4122 struct usb_endpoint_descriptor *desc) 4123 { 4124 unsigned long long timeout_ns; 4125 int ep_type; 4126 int intr_type; 4127 4128 ep_type = usb_endpoint_type(desc); 4129 switch (ep_type) { 4130 case USB_ENDPOINT_XFER_CONTROL: 4131 timeout_ns = udev->u1_params.sel * 3; 4132 break; 4133 case USB_ENDPOINT_XFER_BULK: 4134 timeout_ns = udev->u1_params.sel * 5; 4135 break; 4136 case USB_ENDPOINT_XFER_INT: 4137 intr_type = usb_endpoint_interrupt_type(desc); 4138 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4139 timeout_ns = udev->u1_params.sel * 3; 4140 break; 4141 } 4142 /* Otherwise the calculation is the same as isoc eps */ 4143 case USB_ENDPOINT_XFER_ISOC: 4144 timeout_ns = xhci_service_interval_to_ns(desc); 4145 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4146 if (timeout_ns < udev->u1_params.sel * 2) 4147 timeout_ns = udev->u1_params.sel * 2; 4148 break; 4149 default: 4150 return 0; 4151 } 4152 4153 /* The U1 timeout is encoded in 1us intervals. */ 4154 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4155 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 4156 if (timeout_ns == USB3_LPM_DISABLED) 4157 timeout_ns++; 4158 4159 /* If the necessary timeout value is bigger than what we can set in the 4160 * USB 3.0 hub, we have to disable hub-initiated U1. 4161 */ 4162 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4163 return timeout_ns; 4164 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4165 "due to long timeout %llu ms\n", timeout_ns); 4166 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4167 } 4168 4169 /* Returns the hub-encoded U2 timeout value. 4170 * The U2 timeout should be the maximum of: 4171 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4172 * - largest bInterval of any active periodic endpoint (to avoid going 4173 * into lower power link states between intervals). 4174 * - the U2 Exit Latency of the device 4175 */ 4176 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 4177 struct usb_endpoint_descriptor *desc) 4178 { 4179 unsigned long long timeout_ns; 4180 unsigned long long u2_del_ns; 4181 4182 timeout_ns = 10 * 1000 * 1000; 4183 4184 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4185 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4186 timeout_ns = xhci_service_interval_to_ns(desc); 4187 4188 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4189 if (u2_del_ns > timeout_ns) 4190 timeout_ns = u2_del_ns; 4191 4192 /* The U2 timeout is encoded in 256us intervals */ 4193 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4194 /* If the necessary timeout value is bigger than what we can set in the 4195 * USB 3.0 hub, we have to disable hub-initiated U2. 4196 */ 4197 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4198 return timeout_ns; 4199 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4200 "due to long timeout %llu ms\n", timeout_ns); 4201 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4202 } 4203 4204 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4205 struct usb_device *udev, 4206 struct usb_endpoint_descriptor *desc, 4207 enum usb3_link_state state, 4208 u16 *timeout) 4209 { 4210 if (state == USB3_LPM_U1) { 4211 if (xhci->quirks & XHCI_INTEL_HOST) 4212 return xhci_calculate_intel_u1_timeout(udev, desc); 4213 } else { 4214 if (xhci->quirks & XHCI_INTEL_HOST) 4215 return xhci_calculate_intel_u2_timeout(udev, desc); 4216 } 4217 4218 return USB3_LPM_DISABLED; 4219 } 4220 4221 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4222 struct usb_device *udev, 4223 struct usb_endpoint_descriptor *desc, 4224 enum usb3_link_state state, 4225 u16 *timeout) 4226 { 4227 u16 alt_timeout; 4228 4229 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4230 desc, state, timeout); 4231 4232 /* If we found we can't enable hub-initiated LPM, or 4233 * the U1 or U2 exit latency was too high to allow 4234 * device-initiated LPM as well, just stop searching. 4235 */ 4236 if (alt_timeout == USB3_LPM_DISABLED || 4237 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4238 *timeout = alt_timeout; 4239 return -E2BIG; 4240 } 4241 if (alt_timeout > *timeout) 4242 *timeout = alt_timeout; 4243 return 0; 4244 } 4245 4246 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4247 struct usb_device *udev, 4248 struct usb_host_interface *alt, 4249 enum usb3_link_state state, 4250 u16 *timeout) 4251 { 4252 int j; 4253 4254 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4255 if (xhci_update_timeout_for_endpoint(xhci, udev, 4256 &alt->endpoint[j].desc, state, timeout)) 4257 return -E2BIG; 4258 continue; 4259 } 4260 return 0; 4261 } 4262 4263 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4264 enum usb3_link_state state) 4265 { 4266 struct usb_device *parent; 4267 unsigned int num_hubs; 4268 4269 if (state == USB3_LPM_U2) 4270 return 0; 4271 4272 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4273 for (parent = udev->parent, num_hubs = 0; parent->parent; 4274 parent = parent->parent) 4275 num_hubs++; 4276 4277 if (num_hubs < 2) 4278 return 0; 4279 4280 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4281 " below second-tier hub.\n"); 4282 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4283 "to decrease power consumption.\n"); 4284 return -E2BIG; 4285 } 4286 4287 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4288 struct usb_device *udev, 4289 enum usb3_link_state state) 4290 { 4291 if (xhci->quirks & XHCI_INTEL_HOST) 4292 return xhci_check_intel_tier_policy(udev, state); 4293 return -EINVAL; 4294 } 4295 4296 /* Returns the U1 or U2 timeout that should be enabled. 4297 * If the tier check or timeout setting functions return with a non-zero exit 4298 * code, that means the timeout value has been finalized and we shouldn't look 4299 * at any more endpoints. 4300 */ 4301 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4302 struct usb_device *udev, enum usb3_link_state state) 4303 { 4304 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4305 struct usb_host_config *config; 4306 char *state_name; 4307 int i; 4308 u16 timeout = USB3_LPM_DISABLED; 4309 4310 if (state == USB3_LPM_U1) 4311 state_name = "U1"; 4312 else if (state == USB3_LPM_U2) 4313 state_name = "U2"; 4314 else { 4315 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4316 state); 4317 return timeout; 4318 } 4319 4320 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4321 return timeout; 4322 4323 /* Gather some information about the currently installed configuration 4324 * and alternate interface settings. 4325 */ 4326 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4327 state, &timeout)) 4328 return timeout; 4329 4330 config = udev->actconfig; 4331 if (!config) 4332 return timeout; 4333 4334 for (i = 0; i < USB_MAXINTERFACES; i++) { 4335 struct usb_driver *driver; 4336 struct usb_interface *intf = config->interface[i]; 4337 4338 if (!intf) 4339 continue; 4340 4341 /* Check if any currently bound drivers want hub-initiated LPM 4342 * disabled. 4343 */ 4344 if (intf->dev.driver) { 4345 driver = to_usb_driver(intf->dev.driver); 4346 if (driver && driver->disable_hub_initiated_lpm) { 4347 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4348 "at request of driver %s\n", 4349 state_name, driver->name); 4350 return xhci_get_timeout_no_hub_lpm(udev, state); 4351 } 4352 } 4353 4354 /* Not sure how this could happen... */ 4355 if (!intf->cur_altsetting) 4356 continue; 4357 4358 if (xhci_update_timeout_for_interface(xhci, udev, 4359 intf->cur_altsetting, 4360 state, &timeout)) 4361 return timeout; 4362 } 4363 return timeout; 4364 } 4365 4366 /* 4367 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4368 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4369 */ 4370 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4371 struct usb_device *udev, u16 max_exit_latency) 4372 { 4373 struct xhci_virt_device *virt_dev; 4374 struct xhci_command *command; 4375 struct xhci_input_control_ctx *ctrl_ctx; 4376 struct xhci_slot_ctx *slot_ctx; 4377 unsigned long flags; 4378 int ret; 4379 4380 spin_lock_irqsave(&xhci->lock, flags); 4381 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 4382 spin_unlock_irqrestore(&xhci->lock, flags); 4383 return 0; 4384 } 4385 4386 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4387 virt_dev = xhci->devs[udev->slot_id]; 4388 command = xhci->lpm_command; 4389 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4390 spin_unlock_irqrestore(&xhci->lock, flags); 4391 4392 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 4393 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4394 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4395 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4396 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4397 4398 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n"); 4399 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4400 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4401 4402 /* Issue and wait for the evaluate context command. */ 4403 ret = xhci_configure_endpoint(xhci, udev, command, 4404 true, true); 4405 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4406 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4407 4408 if (!ret) { 4409 spin_lock_irqsave(&xhci->lock, flags); 4410 virt_dev->current_mel = max_exit_latency; 4411 spin_unlock_irqrestore(&xhci->lock, flags); 4412 } 4413 return ret; 4414 } 4415 4416 static int calculate_max_exit_latency(struct usb_device *udev, 4417 enum usb3_link_state state_changed, 4418 u16 hub_encoded_timeout) 4419 { 4420 unsigned long long u1_mel_us = 0; 4421 unsigned long long u2_mel_us = 0; 4422 unsigned long long mel_us = 0; 4423 bool disabling_u1; 4424 bool disabling_u2; 4425 bool enabling_u1; 4426 bool enabling_u2; 4427 4428 disabling_u1 = (state_changed == USB3_LPM_U1 && 4429 hub_encoded_timeout == USB3_LPM_DISABLED); 4430 disabling_u2 = (state_changed == USB3_LPM_U2 && 4431 hub_encoded_timeout == USB3_LPM_DISABLED); 4432 4433 enabling_u1 = (state_changed == USB3_LPM_U1 && 4434 hub_encoded_timeout != USB3_LPM_DISABLED); 4435 enabling_u2 = (state_changed == USB3_LPM_U2 && 4436 hub_encoded_timeout != USB3_LPM_DISABLED); 4437 4438 /* If U1 was already enabled and we're not disabling it, 4439 * or we're going to enable U1, account for the U1 max exit latency. 4440 */ 4441 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4442 enabling_u1) 4443 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4444 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4445 enabling_u2) 4446 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4447 4448 if (u1_mel_us > u2_mel_us) 4449 mel_us = u1_mel_us; 4450 else 4451 mel_us = u2_mel_us; 4452 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4453 if (mel_us > MAX_EXIT) { 4454 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4455 "is too big.\n", mel_us); 4456 return -E2BIG; 4457 } 4458 return mel_us; 4459 } 4460 4461 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4462 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4463 struct usb_device *udev, enum usb3_link_state state) 4464 { 4465 struct xhci_hcd *xhci; 4466 u16 hub_encoded_timeout; 4467 int mel; 4468 int ret; 4469 4470 xhci = hcd_to_xhci(hcd); 4471 /* The LPM timeout values are pretty host-controller specific, so don't 4472 * enable hub-initiated timeouts unless the vendor has provided 4473 * information about their timeout algorithm. 4474 */ 4475 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4476 !xhci->devs[udev->slot_id]) 4477 return USB3_LPM_DISABLED; 4478 4479 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4480 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4481 if (mel < 0) { 4482 /* Max Exit Latency is too big, disable LPM. */ 4483 hub_encoded_timeout = USB3_LPM_DISABLED; 4484 mel = 0; 4485 } 4486 4487 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4488 if (ret) 4489 return ret; 4490 return hub_encoded_timeout; 4491 } 4492 4493 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4494 struct usb_device *udev, enum usb3_link_state state) 4495 { 4496 struct xhci_hcd *xhci; 4497 u16 mel; 4498 int ret; 4499 4500 xhci = hcd_to_xhci(hcd); 4501 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4502 !xhci->devs[udev->slot_id]) 4503 return 0; 4504 4505 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4506 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4507 if (ret) 4508 return ret; 4509 return 0; 4510 } 4511 #else /* CONFIG_PM */ 4512 4513 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4514 struct usb_device *udev, enum usb3_link_state state) 4515 { 4516 return USB3_LPM_DISABLED; 4517 } 4518 4519 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4520 struct usb_device *udev, enum usb3_link_state state) 4521 { 4522 return 0; 4523 } 4524 #endif /* CONFIG_PM */ 4525 4526 /*-------------------------------------------------------------------------*/ 4527 4528 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4529 * internal data structures for the device. 4530 */ 4531 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4532 struct usb_tt *tt, gfp_t mem_flags) 4533 { 4534 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4535 struct xhci_virt_device *vdev; 4536 struct xhci_command *config_cmd; 4537 struct xhci_input_control_ctx *ctrl_ctx; 4538 struct xhci_slot_ctx *slot_ctx; 4539 unsigned long flags; 4540 unsigned think_time; 4541 int ret; 4542 4543 /* Ignore root hubs */ 4544 if (!hdev->parent) 4545 return 0; 4546 4547 vdev = xhci->devs[hdev->slot_id]; 4548 if (!vdev) { 4549 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4550 return -EINVAL; 4551 } 4552 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4553 if (!config_cmd) { 4554 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4555 return -ENOMEM; 4556 } 4557 4558 spin_lock_irqsave(&xhci->lock, flags); 4559 if (hdev->speed == USB_SPEED_HIGH && 4560 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4561 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4562 xhci_free_command(xhci, config_cmd); 4563 spin_unlock_irqrestore(&xhci->lock, flags); 4564 return -ENOMEM; 4565 } 4566 4567 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4568 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4569 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4570 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4571 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4572 if (tt->multi) 4573 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4574 if (xhci->hci_version > 0x95) { 4575 xhci_dbg(xhci, "xHCI version %x needs hub " 4576 "TT think time and number of ports\n", 4577 (unsigned int) xhci->hci_version); 4578 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4579 /* Set TT think time - convert from ns to FS bit times. 4580 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4581 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4582 * 4583 * xHCI 1.0: this field shall be 0 if the device is not a 4584 * High-spped hub. 4585 */ 4586 think_time = tt->think_time; 4587 if (think_time != 0) 4588 think_time = (think_time / 666) - 1; 4589 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4590 slot_ctx->tt_info |= 4591 cpu_to_le32(TT_THINK_TIME(think_time)); 4592 } else { 4593 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4594 "TT think time or number of ports\n", 4595 (unsigned int) xhci->hci_version); 4596 } 4597 slot_ctx->dev_state = 0; 4598 spin_unlock_irqrestore(&xhci->lock, flags); 4599 4600 xhci_dbg(xhci, "Set up %s for hub device.\n", 4601 (xhci->hci_version > 0x95) ? 4602 "configure endpoint" : "evaluate context"); 4603 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4604 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4605 4606 /* Issue and wait for the configure endpoint or 4607 * evaluate context command. 4608 */ 4609 if (xhci->hci_version > 0x95) 4610 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4611 false, false); 4612 else 4613 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4614 true, false); 4615 4616 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4617 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4618 4619 xhci_free_command(xhci, config_cmd); 4620 return ret; 4621 } 4622 4623 int xhci_get_frame(struct usb_hcd *hcd) 4624 { 4625 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4626 /* EHCI mods by the periodic size. Why? */ 4627 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 4628 } 4629 4630 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4631 { 4632 struct xhci_hcd *xhci; 4633 struct device *dev = hcd->self.controller; 4634 int retval; 4635 u32 temp; 4636 4637 /* Accept arbitrarily long scatter-gather lists */ 4638 hcd->self.sg_tablesize = ~0; 4639 /* XHCI controllers don't stop the ep queue on short packets :| */ 4640 hcd->self.no_stop_on_short = 1; 4641 4642 if (usb_hcd_is_primary_hcd(hcd)) { 4643 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4644 if (!xhci) 4645 return -ENOMEM; 4646 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4647 xhci->main_hcd = hcd; 4648 /* Mark the first roothub as being USB 2.0. 4649 * The xHCI driver will register the USB 3.0 roothub. 4650 */ 4651 hcd->speed = HCD_USB2; 4652 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4653 /* 4654 * USB 2.0 roothub under xHCI has an integrated TT, 4655 * (rate matching hub) as opposed to having an OHCI/UHCI 4656 * companion controller. 4657 */ 4658 hcd->has_tt = 1; 4659 } else { 4660 /* xHCI private pointer was set in xhci_pci_probe for the second 4661 * registered roothub. 4662 */ 4663 xhci = hcd_to_xhci(hcd); 4664 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4665 if (HCC_64BIT_ADDR(temp)) { 4666 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4667 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4668 } else { 4669 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4670 } 4671 return 0; 4672 } 4673 4674 xhci->cap_regs = hcd->regs; 4675 xhci->op_regs = hcd->regs + 4676 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 4677 xhci->run_regs = hcd->regs + 4678 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4679 /* Cache read-only capability registers */ 4680 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 4681 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 4682 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 4683 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 4684 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4685 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4686 xhci_print_registers(xhci); 4687 4688 get_quirks(dev, xhci); 4689 4690 /* Make sure the HC is halted. */ 4691 retval = xhci_halt(xhci); 4692 if (retval) 4693 goto error; 4694 4695 xhci_dbg(xhci, "Resetting HCD\n"); 4696 /* Reset the internal HC memory state and registers. */ 4697 retval = xhci_reset(xhci); 4698 if (retval) 4699 goto error; 4700 xhci_dbg(xhci, "Reset complete\n"); 4701 4702 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4703 if (HCC_64BIT_ADDR(temp)) { 4704 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4705 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4706 } else { 4707 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4708 } 4709 4710 xhci_dbg(xhci, "Calling HCD init\n"); 4711 /* Initialize HCD and host controller data structures. */ 4712 retval = xhci_init(hcd); 4713 if (retval) 4714 goto error; 4715 xhci_dbg(xhci, "Called HCD init\n"); 4716 return 0; 4717 error: 4718 kfree(xhci); 4719 return retval; 4720 } 4721 4722 MODULE_DESCRIPTION(DRIVER_DESC); 4723 MODULE_AUTHOR(DRIVER_AUTHOR); 4724 MODULE_LICENSE("GPL"); 4725 4726 static int __init xhci_hcd_init(void) 4727 { 4728 int retval; 4729 4730 retval = xhci_register_pci(); 4731 if (retval < 0) { 4732 printk(KERN_DEBUG "Problem registering PCI driver."); 4733 return retval; 4734 } 4735 retval = xhci_register_plat(); 4736 if (retval < 0) { 4737 printk(KERN_DEBUG "Problem registering platform driver."); 4738 goto unreg_pci; 4739 } 4740 /* 4741 * Check the compiler generated sizes of structures that must be laid 4742 * out in specific ways for hardware access. 4743 */ 4744 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4745 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4746 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4747 /* xhci_device_control has eight fields, and also 4748 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4749 */ 4750 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4751 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4752 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4753 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4754 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4755 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4756 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4757 return 0; 4758 unreg_pci: 4759 xhci_unregister_pci(); 4760 return retval; 4761 } 4762 module_init(xhci_hcd_init); 4763 4764 static void __exit xhci_hcd_cleanup(void) 4765 { 4766 xhci_unregister_pci(); 4767 xhci_unregister_plat(); 4768 } 4769 module_exit(xhci_hcd_cleanup); 4770