xref: /openbmc/linux/drivers/usb/host/xhci.c (revision ee8a99bd)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 
34 #define DRIVER_AUTHOR "Sarah Sharp"
35 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
36 
37 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
38 static int link_quirk;
39 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
40 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
41 
42 /* TODO: copied from ehci-hcd.c - can this be refactored? */
43 /*
44  * xhci_handshake - spin reading hc until handshake completes or fails
45  * @ptr: address of hc register to be read
46  * @mask: bits to look at in result of read
47  * @done: value of those bits when handshake succeeds
48  * @usec: timeout in microseconds
49  *
50  * Returns negative errno, or zero on success
51  *
52  * Success happens when the "mask" bits have the specified value (hardware
53  * handshake done).  There are two failure modes:  "usec" have passed (major
54  * hardware flakeout), or the register reads as all-ones (hardware removed).
55  */
56 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
57 		      u32 mask, u32 done, int usec)
58 {
59 	u32	result;
60 
61 	do {
62 		result = xhci_readl(xhci, ptr);
63 		if (result == ~(u32)0)		/* card removed */
64 			return -ENODEV;
65 		result &= mask;
66 		if (result == done)
67 			return 0;
68 		udelay(1);
69 		usec--;
70 	} while (usec > 0);
71 	return -ETIMEDOUT;
72 }
73 
74 /*
75  * Disable interrupts and begin the xHCI halting process.
76  */
77 void xhci_quiesce(struct xhci_hcd *xhci)
78 {
79 	u32 halted;
80 	u32 cmd;
81 	u32 mask;
82 
83 	mask = ~(XHCI_IRQS);
84 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
85 	if (!halted)
86 		mask &= ~CMD_RUN;
87 
88 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
89 	cmd &= mask;
90 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
91 }
92 
93 /*
94  * Force HC into halt state.
95  *
96  * Disable any IRQs and clear the run/stop bit.
97  * HC will complete any current and actively pipelined transactions, and
98  * should halt within 16 ms of the run/stop bit being cleared.
99  * Read HC Halted bit in the status register to see when the HC is finished.
100  */
101 int xhci_halt(struct xhci_hcd *xhci)
102 {
103 	int ret;
104 	xhci_dbg(xhci, "// Halt the HC\n");
105 	xhci_quiesce(xhci);
106 
107 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
108 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
109 	if (!ret) {
110 		xhci->xhc_state |= XHCI_STATE_HALTED;
111 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112 	} else
113 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
114 				XHCI_MAX_HALT_USEC);
115 	return ret;
116 }
117 
118 /*
119  * Set the run bit and wait for the host to be running.
120  */
121 static int xhci_start(struct xhci_hcd *xhci)
122 {
123 	u32 temp;
124 	int ret;
125 
126 	temp = xhci_readl(xhci, &xhci->op_regs->command);
127 	temp |= (CMD_RUN);
128 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
129 			temp);
130 	xhci_writel(xhci, temp, &xhci->op_regs->command);
131 
132 	/*
133 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
134 	 * running.
135 	 */
136 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
137 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
138 	if (ret == -ETIMEDOUT)
139 		xhci_err(xhci, "Host took too long to start, "
140 				"waited %u microseconds.\n",
141 				XHCI_MAX_HALT_USEC);
142 	if (!ret)
143 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
144 	return ret;
145 }
146 
147 /*
148  * Reset a halted HC.
149  *
150  * This resets pipelines, timers, counters, state machines, etc.
151  * Transactions will be terminated immediately, and operational registers
152  * will be set to their defaults.
153  */
154 int xhci_reset(struct xhci_hcd *xhci)
155 {
156 	u32 command;
157 	u32 state;
158 	int ret, i;
159 
160 	state = xhci_readl(xhci, &xhci->op_regs->status);
161 	if ((state & STS_HALT) == 0) {
162 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
163 		return 0;
164 	}
165 
166 	xhci_dbg(xhci, "// Reset the HC\n");
167 	command = xhci_readl(xhci, &xhci->op_regs->command);
168 	command |= CMD_RESET;
169 	xhci_writel(xhci, command, &xhci->op_regs->command);
170 
171 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
172 			CMD_RESET, 0, 10 * 1000 * 1000);
173 	if (ret)
174 		return ret;
175 
176 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
177 	/*
178 	 * xHCI cannot write to any doorbells or operational registers other
179 	 * than status until the "Controller Not Ready" flag is cleared.
180 	 */
181 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
182 			STS_CNR, 0, 10 * 1000 * 1000);
183 
184 	for (i = 0; i < 2; ++i) {
185 		xhci->bus_state[i].port_c_suspend = 0;
186 		xhci->bus_state[i].suspended_ports = 0;
187 		xhci->bus_state[i].resuming_ports = 0;
188 	}
189 
190 	return ret;
191 }
192 
193 #ifdef CONFIG_PCI
194 static int xhci_free_msi(struct xhci_hcd *xhci)
195 {
196 	int i;
197 
198 	if (!xhci->msix_entries)
199 		return -EINVAL;
200 
201 	for (i = 0; i < xhci->msix_count; i++)
202 		if (xhci->msix_entries[i].vector)
203 			free_irq(xhci->msix_entries[i].vector,
204 					xhci_to_hcd(xhci));
205 	return 0;
206 }
207 
208 /*
209  * Set up MSI
210  */
211 static int xhci_setup_msi(struct xhci_hcd *xhci)
212 {
213 	int ret;
214 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
215 
216 	ret = pci_enable_msi(pdev);
217 	if (ret) {
218 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
219 		return ret;
220 	}
221 
222 	ret = request_irq(pdev->irq, xhci_msi_irq,
223 				0, "xhci_hcd", xhci_to_hcd(xhci));
224 	if (ret) {
225 		xhci_dbg(xhci, "disable MSI interrupt\n");
226 		pci_disable_msi(pdev);
227 	}
228 
229 	return ret;
230 }
231 
232 /*
233  * Free IRQs
234  * free all IRQs request
235  */
236 static void xhci_free_irq(struct xhci_hcd *xhci)
237 {
238 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
239 	int ret;
240 
241 	/* return if using legacy interrupt */
242 	if (xhci_to_hcd(xhci)->irq > 0)
243 		return;
244 
245 	ret = xhci_free_msi(xhci);
246 	if (!ret)
247 		return;
248 	if (pdev->irq > 0)
249 		free_irq(pdev->irq, xhci_to_hcd(xhci));
250 
251 	return;
252 }
253 
254 /*
255  * Set up MSI-X
256  */
257 static int xhci_setup_msix(struct xhci_hcd *xhci)
258 {
259 	int i, ret = 0;
260 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
261 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
262 
263 	/*
264 	 * calculate number of msi-x vectors supported.
265 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
266 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
267 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
268 	 *   Add additional 1 vector to ensure always available interrupt.
269 	 */
270 	xhci->msix_count = min(num_online_cpus() + 1,
271 				HCS_MAX_INTRS(xhci->hcs_params1));
272 
273 	xhci->msix_entries =
274 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
275 				GFP_KERNEL);
276 	if (!xhci->msix_entries) {
277 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
278 		return -ENOMEM;
279 	}
280 
281 	for (i = 0; i < xhci->msix_count; i++) {
282 		xhci->msix_entries[i].entry = i;
283 		xhci->msix_entries[i].vector = 0;
284 	}
285 
286 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
287 	if (ret) {
288 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
289 		goto free_entries;
290 	}
291 
292 	for (i = 0; i < xhci->msix_count; i++) {
293 		ret = request_irq(xhci->msix_entries[i].vector,
294 				xhci_msi_irq,
295 				0, "xhci_hcd", xhci_to_hcd(xhci));
296 		if (ret)
297 			goto disable_msix;
298 	}
299 
300 	hcd->msix_enabled = 1;
301 	return ret;
302 
303 disable_msix:
304 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
305 	xhci_free_irq(xhci);
306 	pci_disable_msix(pdev);
307 free_entries:
308 	kfree(xhci->msix_entries);
309 	xhci->msix_entries = NULL;
310 	return ret;
311 }
312 
313 /* Free any IRQs and disable MSI-X */
314 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
315 {
316 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
317 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
318 
319 	xhci_free_irq(xhci);
320 
321 	if (xhci->msix_entries) {
322 		pci_disable_msix(pdev);
323 		kfree(xhci->msix_entries);
324 		xhci->msix_entries = NULL;
325 	} else {
326 		pci_disable_msi(pdev);
327 	}
328 
329 	hcd->msix_enabled = 0;
330 	return;
331 }
332 
333 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
334 {
335 	int i;
336 
337 	if (xhci->msix_entries) {
338 		for (i = 0; i < xhci->msix_count; i++)
339 			synchronize_irq(xhci->msix_entries[i].vector);
340 	}
341 }
342 
343 static int xhci_try_enable_msi(struct usb_hcd *hcd)
344 {
345 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
346 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
347 	int ret;
348 
349 	/*
350 	 * Some Fresco Logic host controllers advertise MSI, but fail to
351 	 * generate interrupts.  Don't even try to enable MSI.
352 	 */
353 	if (xhci->quirks & XHCI_BROKEN_MSI)
354 		goto legacy_irq;
355 
356 	/* unregister the legacy interrupt */
357 	if (hcd->irq)
358 		free_irq(hcd->irq, hcd);
359 	hcd->irq = 0;
360 
361 	ret = xhci_setup_msix(xhci);
362 	if (ret)
363 		/* fall back to msi*/
364 		ret = xhci_setup_msi(xhci);
365 
366 	if (!ret)
367 		/* hcd->irq is 0, we have MSI */
368 		return 0;
369 
370 	if (!pdev->irq) {
371 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
372 		return -EINVAL;
373 	}
374 
375  legacy_irq:
376 	/* fall back to legacy interrupt*/
377 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
378 			hcd->irq_descr, hcd);
379 	if (ret) {
380 		xhci_err(xhci, "request interrupt %d failed\n",
381 				pdev->irq);
382 		return ret;
383 	}
384 	hcd->irq = pdev->irq;
385 	return 0;
386 }
387 
388 #else
389 
390 static int xhci_try_enable_msi(struct usb_hcd *hcd)
391 {
392 	return 0;
393 }
394 
395 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
396 {
397 }
398 
399 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
400 {
401 }
402 
403 #endif
404 
405 static void compliance_mode_recovery(unsigned long arg)
406 {
407 	struct xhci_hcd *xhci;
408 	struct usb_hcd *hcd;
409 	u32 temp;
410 	int i;
411 
412 	xhci = (struct xhci_hcd *)arg;
413 
414 	for (i = 0; i < xhci->num_usb3_ports; i++) {
415 		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
416 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
417 			/*
418 			 * Compliance Mode Detected. Letting USB Core
419 			 * handle the Warm Reset
420 			 */
421 			xhci_dbg(xhci, "Compliance mode detected->port %d\n",
422 					i + 1);
423 			xhci_dbg(xhci, "Attempting compliance mode recovery\n");
424 			hcd = xhci->shared_hcd;
425 
426 			if (hcd->state == HC_STATE_SUSPENDED)
427 				usb_hcd_resume_root_hub(hcd);
428 
429 			usb_hcd_poll_rh_status(hcd);
430 		}
431 	}
432 
433 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
434 		mod_timer(&xhci->comp_mode_recovery_timer,
435 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
436 }
437 
438 /*
439  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
440  * that causes ports behind that hardware to enter compliance mode sometimes.
441  * The quirk creates a timer that polls every 2 seconds the link state of
442  * each host controller's port and recovers it by issuing a Warm reset
443  * if Compliance mode is detected, otherwise the port will become "dead" (no
444  * device connections or disconnections will be detected anymore). Becasue no
445  * status event is generated when entering compliance mode (per xhci spec),
446  * this quirk is needed on systems that have the failing hardware installed.
447  */
448 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
449 {
450 	xhci->port_status_u0 = 0;
451 	init_timer(&xhci->comp_mode_recovery_timer);
452 
453 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
454 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
455 	xhci->comp_mode_recovery_timer.expires = jiffies +
456 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
457 
458 	set_timer_slack(&xhci->comp_mode_recovery_timer,
459 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
460 	add_timer(&xhci->comp_mode_recovery_timer);
461 	xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
462 }
463 
464 /*
465  * This function identifies the systems that have installed the SN65LVPE502CP
466  * USB3.0 re-driver and that need the Compliance Mode Quirk.
467  * Systems:
468  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
469  */
470 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
471 {
472 	const char *dmi_product_name, *dmi_sys_vendor;
473 
474 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
475 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
476 	if (!dmi_product_name || !dmi_sys_vendor)
477 		return false;
478 
479 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
480 		return false;
481 
482 	if (strstr(dmi_product_name, "Z420") ||
483 			strstr(dmi_product_name, "Z620") ||
484 			strstr(dmi_product_name, "Z820") ||
485 			strstr(dmi_product_name, "Z1 Workstation"))
486 		return true;
487 
488 	return false;
489 }
490 
491 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
492 {
493 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
494 }
495 
496 
497 /*
498  * Initialize memory for HCD and xHC (one-time init).
499  *
500  * Program the PAGESIZE register, initialize the device context array, create
501  * device contexts (?), set up a command ring segment (or two?), create event
502  * ring (one for now).
503  */
504 int xhci_init(struct usb_hcd *hcd)
505 {
506 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
507 	int retval = 0;
508 
509 	xhci_dbg(xhci, "xhci_init\n");
510 	spin_lock_init(&xhci->lock);
511 	if (xhci->hci_version == 0x95 && link_quirk) {
512 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
513 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
514 	} else {
515 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
516 	}
517 	retval = xhci_mem_init(xhci, GFP_KERNEL);
518 	xhci_dbg(xhci, "Finished xhci_init\n");
519 
520 	/* Initializing Compliance Mode Recovery Data If Needed */
521 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
522 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
523 		compliance_mode_recovery_timer_init(xhci);
524 	}
525 
526 	return retval;
527 }
528 
529 /*-------------------------------------------------------------------------*/
530 
531 
532 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
533 static void xhci_event_ring_work(unsigned long arg)
534 {
535 	unsigned long flags;
536 	int temp;
537 	u64 temp_64;
538 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
539 	int i, j;
540 
541 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
542 
543 	spin_lock_irqsave(&xhci->lock, flags);
544 	temp = xhci_readl(xhci, &xhci->op_regs->status);
545 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
546 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
547 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
548 		xhci_dbg(xhci, "HW died, polling stopped.\n");
549 		spin_unlock_irqrestore(&xhci->lock, flags);
550 		return;
551 	}
552 
553 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
554 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
555 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
556 	xhci->error_bitmask = 0;
557 	xhci_dbg(xhci, "Event ring:\n");
558 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
559 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
560 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
561 	temp_64 &= ~ERST_PTR_MASK;
562 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
563 	xhci_dbg(xhci, "Command ring:\n");
564 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
565 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
566 	xhci_dbg_cmd_ptrs(xhci);
567 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
568 		if (!xhci->devs[i])
569 			continue;
570 		for (j = 0; j < 31; ++j) {
571 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
572 		}
573 	}
574 	spin_unlock_irqrestore(&xhci->lock, flags);
575 
576 	if (!xhci->zombie)
577 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
578 	else
579 		xhci_dbg(xhci, "Quit polling the event ring.\n");
580 }
581 #endif
582 
583 static int xhci_run_finished(struct xhci_hcd *xhci)
584 {
585 	if (xhci_start(xhci)) {
586 		xhci_halt(xhci);
587 		return -ENODEV;
588 	}
589 	xhci->shared_hcd->state = HC_STATE_RUNNING;
590 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
591 
592 	if (xhci->quirks & XHCI_NEC_HOST)
593 		xhci_ring_cmd_db(xhci);
594 
595 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
596 	return 0;
597 }
598 
599 /*
600  * Start the HC after it was halted.
601  *
602  * This function is called by the USB core when the HC driver is added.
603  * Its opposite is xhci_stop().
604  *
605  * xhci_init() must be called once before this function can be called.
606  * Reset the HC, enable device slot contexts, program DCBAAP, and
607  * set command ring pointer and event ring pointer.
608  *
609  * Setup MSI-X vectors and enable interrupts.
610  */
611 int xhci_run(struct usb_hcd *hcd)
612 {
613 	u32 temp;
614 	u64 temp_64;
615 	int ret;
616 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
617 
618 	/* Start the xHCI host controller running only after the USB 2.0 roothub
619 	 * is setup.
620 	 */
621 
622 	hcd->uses_new_polling = 1;
623 	if (!usb_hcd_is_primary_hcd(hcd))
624 		return xhci_run_finished(xhci);
625 
626 	xhci_dbg(xhci, "xhci_run\n");
627 
628 	ret = xhci_try_enable_msi(hcd);
629 	if (ret)
630 		return ret;
631 
632 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
633 	init_timer(&xhci->event_ring_timer);
634 	xhci->event_ring_timer.data = (unsigned long) xhci;
635 	xhci->event_ring_timer.function = xhci_event_ring_work;
636 	/* Poll the event ring */
637 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
638 	xhci->zombie = 0;
639 	xhci_dbg(xhci, "Setting event ring polling timer\n");
640 	add_timer(&xhci->event_ring_timer);
641 #endif
642 
643 	xhci_dbg(xhci, "Command ring memory map follows:\n");
644 	xhci_debug_ring(xhci, xhci->cmd_ring);
645 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
646 	xhci_dbg_cmd_ptrs(xhci);
647 
648 	xhci_dbg(xhci, "ERST memory map follows:\n");
649 	xhci_dbg_erst(xhci, &xhci->erst);
650 	xhci_dbg(xhci, "Event ring:\n");
651 	xhci_debug_ring(xhci, xhci->event_ring);
652 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
653 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
654 	temp_64 &= ~ERST_PTR_MASK;
655 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
656 
657 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
658 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
659 	temp &= ~ER_IRQ_INTERVAL_MASK;
660 	temp |= (u32) 160;
661 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
662 
663 	/* Set the HCD state before we enable the irqs */
664 	temp = xhci_readl(xhci, &xhci->op_regs->command);
665 	temp |= (CMD_EIE);
666 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
667 			temp);
668 	xhci_writel(xhci, temp, &xhci->op_regs->command);
669 
670 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
671 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
672 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
673 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
674 			&xhci->ir_set->irq_pending);
675 	xhci_print_ir_set(xhci, 0);
676 
677 	if (xhci->quirks & XHCI_NEC_HOST)
678 		xhci_queue_vendor_command(xhci, 0, 0, 0,
679 				TRB_TYPE(TRB_NEC_GET_FW));
680 
681 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
682 	return 0;
683 }
684 
685 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
686 {
687 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
688 
689 	spin_lock_irq(&xhci->lock);
690 	xhci_halt(xhci);
691 
692 	/* The shared_hcd is going to be deallocated shortly (the USB core only
693 	 * calls this function when allocation fails in usb_add_hcd(), or
694 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
695 	 */
696 	xhci->shared_hcd = NULL;
697 	spin_unlock_irq(&xhci->lock);
698 }
699 
700 /*
701  * Stop xHCI driver.
702  *
703  * This function is called by the USB core when the HC driver is removed.
704  * Its opposite is xhci_run().
705  *
706  * Disable device contexts, disable IRQs, and quiesce the HC.
707  * Reset the HC, finish any completed transactions, and cleanup memory.
708  */
709 void xhci_stop(struct usb_hcd *hcd)
710 {
711 	u32 temp;
712 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
713 
714 	if (!usb_hcd_is_primary_hcd(hcd)) {
715 		xhci_only_stop_hcd(xhci->shared_hcd);
716 		return;
717 	}
718 
719 	spin_lock_irq(&xhci->lock);
720 	/* Make sure the xHC is halted for a USB3 roothub
721 	 * (xhci_stop() could be called as part of failed init).
722 	 */
723 	xhci_halt(xhci);
724 	xhci_reset(xhci);
725 	spin_unlock_irq(&xhci->lock);
726 
727 	xhci_cleanup_msix(xhci);
728 
729 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
730 	/* Tell the event ring poll function not to reschedule */
731 	xhci->zombie = 1;
732 	del_timer_sync(&xhci->event_ring_timer);
733 #endif
734 
735 	/* Deleting Compliance Mode Recovery Timer */
736 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
737 			(!(xhci_all_ports_seen_u0(xhci)))) {
738 		del_timer_sync(&xhci->comp_mode_recovery_timer);
739 		xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
740 				__func__);
741 	}
742 
743 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
744 		usb_amd_dev_put();
745 
746 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
747 	temp = xhci_readl(xhci, &xhci->op_regs->status);
748 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
749 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
750 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
751 			&xhci->ir_set->irq_pending);
752 	xhci_print_ir_set(xhci, 0);
753 
754 	xhci_dbg(xhci, "cleaning up memory\n");
755 	xhci_mem_cleanup(xhci);
756 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
757 		    xhci_readl(xhci, &xhci->op_regs->status));
758 }
759 
760 /*
761  * Shutdown HC (not bus-specific)
762  *
763  * This is called when the machine is rebooting or halting.  We assume that the
764  * machine will be powered off, and the HC's internal state will be reset.
765  * Don't bother to free memory.
766  *
767  * This will only ever be called with the main usb_hcd (the USB3 roothub).
768  */
769 void xhci_shutdown(struct usb_hcd *hcd)
770 {
771 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
772 
773 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
774 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
775 
776 	spin_lock_irq(&xhci->lock);
777 	xhci_halt(xhci);
778 	spin_unlock_irq(&xhci->lock);
779 
780 	xhci_cleanup_msix(xhci);
781 
782 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
783 		    xhci_readl(xhci, &xhci->op_regs->status));
784 }
785 
786 #ifdef CONFIG_PM
787 static void xhci_save_registers(struct xhci_hcd *xhci)
788 {
789 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
790 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
791 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
792 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
793 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
794 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
795 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
796 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
797 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
798 }
799 
800 static void xhci_restore_registers(struct xhci_hcd *xhci)
801 {
802 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
803 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
804 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
805 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
806 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
807 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
808 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
809 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
810 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
811 }
812 
813 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
814 {
815 	u64	val_64;
816 
817 	/* step 2: initialize command ring buffer */
818 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
819 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
820 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
821 				      xhci->cmd_ring->dequeue) &
822 		 (u64) ~CMD_RING_RSVD_BITS) |
823 		xhci->cmd_ring->cycle_state;
824 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
825 			(long unsigned long) val_64);
826 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
827 }
828 
829 /*
830  * The whole command ring must be cleared to zero when we suspend the host.
831  *
832  * The host doesn't save the command ring pointer in the suspend well, so we
833  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
834  * aligned, because of the reserved bits in the command ring dequeue pointer
835  * register.  Therefore, we can't just set the dequeue pointer back in the
836  * middle of the ring (TRBs are 16-byte aligned).
837  */
838 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
839 {
840 	struct xhci_ring *ring;
841 	struct xhci_segment *seg;
842 
843 	ring = xhci->cmd_ring;
844 	seg = ring->deq_seg;
845 	do {
846 		memset(seg->trbs, 0,
847 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
848 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
849 			cpu_to_le32(~TRB_CYCLE);
850 		seg = seg->next;
851 	} while (seg != ring->deq_seg);
852 
853 	/* Reset the software enqueue and dequeue pointers */
854 	ring->deq_seg = ring->first_seg;
855 	ring->dequeue = ring->first_seg->trbs;
856 	ring->enq_seg = ring->deq_seg;
857 	ring->enqueue = ring->dequeue;
858 
859 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
860 	/*
861 	 * Ring is now zeroed, so the HW should look for change of ownership
862 	 * when the cycle bit is set to 1.
863 	 */
864 	ring->cycle_state = 1;
865 
866 	/*
867 	 * Reset the hardware dequeue pointer.
868 	 * Yes, this will need to be re-written after resume, but we're paranoid
869 	 * and want to make sure the hardware doesn't access bogus memory
870 	 * because, say, the BIOS or an SMI started the host without changing
871 	 * the command ring pointers.
872 	 */
873 	xhci_set_cmd_ring_deq(xhci);
874 }
875 
876 /*
877  * Stop HC (not bus-specific)
878  *
879  * This is called when the machine transition into S3/S4 mode.
880  *
881  */
882 int xhci_suspend(struct xhci_hcd *xhci)
883 {
884 	int			rc = 0;
885 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
886 	u32			command;
887 
888 	if (hcd->state != HC_STATE_SUSPENDED ||
889 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
890 		return -EINVAL;
891 
892 	/* Don't poll the roothubs on bus suspend. */
893 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
894 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
895 	del_timer_sync(&hcd->rh_timer);
896 
897 	spin_lock_irq(&xhci->lock);
898 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
899 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
900 	/* step 1: stop endpoint */
901 	/* skipped assuming that port suspend has done */
902 
903 	/* step 2: clear Run/Stop bit */
904 	command = xhci_readl(xhci, &xhci->op_regs->command);
905 	command &= ~CMD_RUN;
906 	xhci_writel(xhci, command, &xhci->op_regs->command);
907 	if (xhci_handshake(xhci, &xhci->op_regs->status,
908 		      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
909 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
910 		spin_unlock_irq(&xhci->lock);
911 		return -ETIMEDOUT;
912 	}
913 	xhci_clear_command_ring(xhci);
914 
915 	/* step 3: save registers */
916 	xhci_save_registers(xhci);
917 
918 	/* step 4: set CSS flag */
919 	command = xhci_readl(xhci, &xhci->op_regs->command);
920 	command |= CMD_CSS;
921 	xhci_writel(xhci, command, &xhci->op_regs->command);
922 	if (xhci_handshake(xhci, &xhci->op_regs->status,
923 				STS_SAVE, 0, 10 * 1000)) {
924 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
925 		spin_unlock_irq(&xhci->lock);
926 		return -ETIMEDOUT;
927 	}
928 	spin_unlock_irq(&xhci->lock);
929 
930 	/*
931 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
932 	 * is about to be suspended.
933 	 */
934 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
935 			(!(xhci_all_ports_seen_u0(xhci)))) {
936 		del_timer_sync(&xhci->comp_mode_recovery_timer);
937 		xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
938 				__func__);
939 	}
940 
941 	/* step 5: remove core well power */
942 	/* synchronize irq when using MSI-X */
943 	xhci_msix_sync_irqs(xhci);
944 
945 	return rc;
946 }
947 
948 /*
949  * start xHC (not bus-specific)
950  *
951  * This is called when the machine transition from S3/S4 mode.
952  *
953  */
954 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
955 {
956 	u32			command, temp = 0;
957 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
958 	struct usb_hcd		*secondary_hcd;
959 	int			retval = 0;
960 	bool			comp_timer_running = false;
961 
962 	/* Wait a bit if either of the roothubs need to settle from the
963 	 * transition into bus suspend.
964 	 */
965 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
966 			time_before(jiffies,
967 				xhci->bus_state[1].next_statechange))
968 		msleep(100);
969 
970 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
971 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
972 
973 	spin_lock_irq(&xhci->lock);
974 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
975 		hibernated = true;
976 
977 	if (!hibernated) {
978 		/* step 1: restore register */
979 		xhci_restore_registers(xhci);
980 		/* step 2: initialize command ring buffer */
981 		xhci_set_cmd_ring_deq(xhci);
982 		/* step 3: restore state and start state*/
983 		/* step 3: set CRS flag */
984 		command = xhci_readl(xhci, &xhci->op_regs->command);
985 		command |= CMD_CRS;
986 		xhci_writel(xhci, command, &xhci->op_regs->command);
987 		if (xhci_handshake(xhci, &xhci->op_regs->status,
988 			      STS_RESTORE, 0, 10 * 1000)) {
989 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
990 			spin_unlock_irq(&xhci->lock);
991 			return -ETIMEDOUT;
992 		}
993 		temp = xhci_readl(xhci, &xhci->op_regs->status);
994 	}
995 
996 	/* If restore operation fails, re-initialize the HC during resume */
997 	if ((temp & STS_SRE) || hibernated) {
998 
999 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1000 				!(xhci_all_ports_seen_u0(xhci))) {
1001 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1002 			xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1003 		}
1004 
1005 		/* Let the USB core know _both_ roothubs lost power. */
1006 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1007 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1008 
1009 		xhci_dbg(xhci, "Stop HCD\n");
1010 		xhci_halt(xhci);
1011 		xhci_reset(xhci);
1012 		spin_unlock_irq(&xhci->lock);
1013 		xhci_cleanup_msix(xhci);
1014 
1015 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1016 		/* Tell the event ring poll function not to reschedule */
1017 		xhci->zombie = 1;
1018 		del_timer_sync(&xhci->event_ring_timer);
1019 #endif
1020 
1021 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1022 		temp = xhci_readl(xhci, &xhci->op_regs->status);
1023 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1024 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1025 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1026 				&xhci->ir_set->irq_pending);
1027 		xhci_print_ir_set(xhci, 0);
1028 
1029 		xhci_dbg(xhci, "cleaning up memory\n");
1030 		xhci_mem_cleanup(xhci);
1031 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1032 			    xhci_readl(xhci, &xhci->op_regs->status));
1033 
1034 		/* USB core calls the PCI reinit and start functions twice:
1035 		 * first with the primary HCD, and then with the secondary HCD.
1036 		 * If we don't do the same, the host will never be started.
1037 		 */
1038 		if (!usb_hcd_is_primary_hcd(hcd))
1039 			secondary_hcd = hcd;
1040 		else
1041 			secondary_hcd = xhci->shared_hcd;
1042 
1043 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1044 		retval = xhci_init(hcd->primary_hcd);
1045 		if (retval)
1046 			return retval;
1047 		comp_timer_running = true;
1048 
1049 		xhci_dbg(xhci, "Start the primary HCD\n");
1050 		retval = xhci_run(hcd->primary_hcd);
1051 		if (!retval) {
1052 			xhci_dbg(xhci, "Start the secondary HCD\n");
1053 			retval = xhci_run(secondary_hcd);
1054 		}
1055 		hcd->state = HC_STATE_SUSPENDED;
1056 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1057 		goto done;
1058 	}
1059 
1060 	/* step 4: set Run/Stop bit */
1061 	command = xhci_readl(xhci, &xhci->op_regs->command);
1062 	command |= CMD_RUN;
1063 	xhci_writel(xhci, command, &xhci->op_regs->command);
1064 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1065 		  0, 250 * 1000);
1066 
1067 	/* step 5: walk topology and initialize portsc,
1068 	 * portpmsc and portli
1069 	 */
1070 	/* this is done in bus_resume */
1071 
1072 	/* step 6: restart each of the previously
1073 	 * Running endpoints by ringing their doorbells
1074 	 */
1075 
1076 	spin_unlock_irq(&xhci->lock);
1077 
1078  done:
1079 	if (retval == 0) {
1080 		usb_hcd_resume_root_hub(hcd);
1081 		usb_hcd_resume_root_hub(xhci->shared_hcd);
1082 	}
1083 
1084 	/*
1085 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1086 	 * be re-initialized Always after a system resume. Ports are subject
1087 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1088 	 * ports have entered previously to U0 before system's suspension.
1089 	 */
1090 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1091 		compliance_mode_recovery_timer_init(xhci);
1092 
1093 	/* Re-enable port polling. */
1094 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1095 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1096 	usb_hcd_poll_rh_status(hcd);
1097 
1098 	return retval;
1099 }
1100 #endif	/* CONFIG_PM */
1101 
1102 /*-------------------------------------------------------------------------*/
1103 
1104 /**
1105  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1106  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1107  * value to right shift 1 for the bitmask.
1108  *
1109  * Index  = (epnum * 2) + direction - 1,
1110  * where direction = 0 for OUT, 1 for IN.
1111  * For control endpoints, the IN index is used (OUT index is unused), so
1112  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1113  */
1114 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1115 {
1116 	unsigned int index;
1117 	if (usb_endpoint_xfer_control(desc))
1118 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1119 	else
1120 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1121 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1122 	return index;
1123 }
1124 
1125 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1126  * address from the XHCI endpoint index.
1127  */
1128 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1129 {
1130 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1131 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1132 	return direction | number;
1133 }
1134 
1135 /* Find the flag for this endpoint (for use in the control context).  Use the
1136  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1137  * bit 1, etc.
1138  */
1139 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1140 {
1141 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1142 }
1143 
1144 /* Find the flag for this endpoint (for use in the control context).  Use the
1145  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1146  * bit 1, etc.
1147  */
1148 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1149 {
1150 	return 1 << (ep_index + 1);
1151 }
1152 
1153 /* Compute the last valid endpoint context index.  Basically, this is the
1154  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1155  * we find the most significant bit set in the added contexts flags.
1156  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1157  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1158  */
1159 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1160 {
1161 	return fls(added_ctxs) - 1;
1162 }
1163 
1164 /* Returns 1 if the arguments are OK;
1165  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1166  */
1167 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1168 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1169 		const char *func) {
1170 	struct xhci_hcd	*xhci;
1171 	struct xhci_virt_device	*virt_dev;
1172 
1173 	if (!hcd || (check_ep && !ep) || !udev) {
1174 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1175 				func);
1176 		return -EINVAL;
1177 	}
1178 	if (!udev->parent) {
1179 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1180 				func);
1181 		return 0;
1182 	}
1183 
1184 	xhci = hcd_to_xhci(hcd);
1185 	if (check_virt_dev) {
1186 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1187 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1188 						"device\n", func);
1189 			return -EINVAL;
1190 		}
1191 
1192 		virt_dev = xhci->devs[udev->slot_id];
1193 		if (virt_dev->udev != udev) {
1194 			printk(KERN_DEBUG "xHCI %s called with udev and "
1195 					  "virt_dev does not match\n", func);
1196 			return -EINVAL;
1197 		}
1198 	}
1199 
1200 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1201 		return -ENODEV;
1202 
1203 	return 1;
1204 }
1205 
1206 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1207 		struct usb_device *udev, struct xhci_command *command,
1208 		bool ctx_change, bool must_succeed);
1209 
1210 /*
1211  * Full speed devices may have a max packet size greater than 8 bytes, but the
1212  * USB core doesn't know that until it reads the first 8 bytes of the
1213  * descriptor.  If the usb_device's max packet size changes after that point,
1214  * we need to issue an evaluate context command and wait on it.
1215  */
1216 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1217 		unsigned int ep_index, struct urb *urb)
1218 {
1219 	struct xhci_container_ctx *in_ctx;
1220 	struct xhci_container_ctx *out_ctx;
1221 	struct xhci_input_control_ctx *ctrl_ctx;
1222 	struct xhci_ep_ctx *ep_ctx;
1223 	int max_packet_size;
1224 	int hw_max_packet_size;
1225 	int ret = 0;
1226 
1227 	out_ctx = xhci->devs[slot_id]->out_ctx;
1228 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1229 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1230 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1231 	if (hw_max_packet_size != max_packet_size) {
1232 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1233 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1234 				max_packet_size);
1235 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1236 				hw_max_packet_size);
1237 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1238 
1239 		/* Set up the input context flags for the command */
1240 		/* FIXME: This won't work if a non-default control endpoint
1241 		 * changes max packet sizes.
1242 		 */
1243 		in_ctx = xhci->devs[slot_id]->in_ctx;
1244 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1245 		if (!ctrl_ctx) {
1246 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1247 					__func__);
1248 			return -ENOMEM;
1249 		}
1250 		/* Set up the modified control endpoint 0 */
1251 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1252 				xhci->devs[slot_id]->out_ctx, ep_index);
1253 
1254 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1255 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1256 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1257 
1258 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1259 		ctrl_ctx->drop_flags = 0;
1260 
1261 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1262 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1263 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1264 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1265 
1266 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1267 				true, false);
1268 
1269 		/* Clean up the input context for later use by bandwidth
1270 		 * functions.
1271 		 */
1272 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1273 	}
1274 	return ret;
1275 }
1276 
1277 /*
1278  * non-error returns are a promise to giveback() the urb later
1279  * we drop ownership so next owner (or urb unlink) can get it
1280  */
1281 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1282 {
1283 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1284 	struct xhci_td *buffer;
1285 	unsigned long flags;
1286 	int ret = 0;
1287 	unsigned int slot_id, ep_index;
1288 	struct urb_priv	*urb_priv;
1289 	int size, i;
1290 
1291 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1292 					true, true, __func__) <= 0)
1293 		return -EINVAL;
1294 
1295 	slot_id = urb->dev->slot_id;
1296 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1297 
1298 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1299 		if (!in_interrupt())
1300 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1301 		ret = -ESHUTDOWN;
1302 		goto exit;
1303 	}
1304 
1305 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1306 		size = urb->number_of_packets;
1307 	else
1308 		size = 1;
1309 
1310 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1311 				  size * sizeof(struct xhci_td *), mem_flags);
1312 	if (!urb_priv)
1313 		return -ENOMEM;
1314 
1315 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1316 	if (!buffer) {
1317 		kfree(urb_priv);
1318 		return -ENOMEM;
1319 	}
1320 
1321 	for (i = 0; i < size; i++) {
1322 		urb_priv->td[i] = buffer;
1323 		buffer++;
1324 	}
1325 
1326 	urb_priv->length = size;
1327 	urb_priv->td_cnt = 0;
1328 	urb->hcpriv = urb_priv;
1329 
1330 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1331 		/* Check to see if the max packet size for the default control
1332 		 * endpoint changed during FS device enumeration
1333 		 */
1334 		if (urb->dev->speed == USB_SPEED_FULL) {
1335 			ret = xhci_check_maxpacket(xhci, slot_id,
1336 					ep_index, urb);
1337 			if (ret < 0) {
1338 				xhci_urb_free_priv(xhci, urb_priv);
1339 				urb->hcpriv = NULL;
1340 				return ret;
1341 			}
1342 		}
1343 
1344 		/* We have a spinlock and interrupts disabled, so we must pass
1345 		 * atomic context to this function, which may allocate memory.
1346 		 */
1347 		spin_lock_irqsave(&xhci->lock, flags);
1348 		if (xhci->xhc_state & XHCI_STATE_DYING)
1349 			goto dying;
1350 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1351 				slot_id, ep_index);
1352 		if (ret)
1353 			goto free_priv;
1354 		spin_unlock_irqrestore(&xhci->lock, flags);
1355 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1356 		spin_lock_irqsave(&xhci->lock, flags);
1357 		if (xhci->xhc_state & XHCI_STATE_DYING)
1358 			goto dying;
1359 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1360 				EP_GETTING_STREAMS) {
1361 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1362 					"is transitioning to using streams.\n");
1363 			ret = -EINVAL;
1364 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1365 				EP_GETTING_NO_STREAMS) {
1366 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1367 					"is transitioning to "
1368 					"not having streams.\n");
1369 			ret = -EINVAL;
1370 		} else {
1371 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1372 					slot_id, ep_index);
1373 		}
1374 		if (ret)
1375 			goto free_priv;
1376 		spin_unlock_irqrestore(&xhci->lock, flags);
1377 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1378 		spin_lock_irqsave(&xhci->lock, flags);
1379 		if (xhci->xhc_state & XHCI_STATE_DYING)
1380 			goto dying;
1381 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1382 				slot_id, ep_index);
1383 		if (ret)
1384 			goto free_priv;
1385 		spin_unlock_irqrestore(&xhci->lock, flags);
1386 	} else {
1387 		spin_lock_irqsave(&xhci->lock, flags);
1388 		if (xhci->xhc_state & XHCI_STATE_DYING)
1389 			goto dying;
1390 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1391 				slot_id, ep_index);
1392 		if (ret)
1393 			goto free_priv;
1394 		spin_unlock_irqrestore(&xhci->lock, flags);
1395 	}
1396 exit:
1397 	return ret;
1398 dying:
1399 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1400 			"non-responsive xHCI host.\n",
1401 			urb->ep->desc.bEndpointAddress, urb);
1402 	ret = -ESHUTDOWN;
1403 free_priv:
1404 	xhci_urb_free_priv(xhci, urb_priv);
1405 	urb->hcpriv = NULL;
1406 	spin_unlock_irqrestore(&xhci->lock, flags);
1407 	return ret;
1408 }
1409 
1410 /* Get the right ring for the given URB.
1411  * If the endpoint supports streams, boundary check the URB's stream ID.
1412  * If the endpoint doesn't support streams, return the singular endpoint ring.
1413  */
1414 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1415 		struct urb *urb)
1416 {
1417 	unsigned int slot_id;
1418 	unsigned int ep_index;
1419 	unsigned int stream_id;
1420 	struct xhci_virt_ep *ep;
1421 
1422 	slot_id = urb->dev->slot_id;
1423 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1424 	stream_id = urb->stream_id;
1425 	ep = &xhci->devs[slot_id]->eps[ep_index];
1426 	/* Common case: no streams */
1427 	if (!(ep->ep_state & EP_HAS_STREAMS))
1428 		return ep->ring;
1429 
1430 	if (stream_id == 0) {
1431 		xhci_warn(xhci,
1432 				"WARN: Slot ID %u, ep index %u has streams, "
1433 				"but URB has no stream ID.\n",
1434 				slot_id, ep_index);
1435 		return NULL;
1436 	}
1437 
1438 	if (stream_id < ep->stream_info->num_streams)
1439 		return ep->stream_info->stream_rings[stream_id];
1440 
1441 	xhci_warn(xhci,
1442 			"WARN: Slot ID %u, ep index %u has "
1443 			"stream IDs 1 to %u allocated, "
1444 			"but stream ID %u is requested.\n",
1445 			slot_id, ep_index,
1446 			ep->stream_info->num_streams - 1,
1447 			stream_id);
1448 	return NULL;
1449 }
1450 
1451 /*
1452  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1453  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1454  * should pick up where it left off in the TD, unless a Set Transfer Ring
1455  * Dequeue Pointer is issued.
1456  *
1457  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1458  * the ring.  Since the ring is a contiguous structure, they can't be physically
1459  * removed.  Instead, there are two options:
1460  *
1461  *  1) If the HC is in the middle of processing the URB to be canceled, we
1462  *     simply move the ring's dequeue pointer past those TRBs using the Set
1463  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1464  *     when drivers timeout on the last submitted URB and attempt to cancel.
1465  *
1466  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1467  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1468  *     HC will need to invalidate the any TRBs it has cached after the stop
1469  *     endpoint command, as noted in the xHCI 0.95 errata.
1470  *
1471  *  3) The TD may have completed by the time the Stop Endpoint Command
1472  *     completes, so software needs to handle that case too.
1473  *
1474  * This function should protect against the TD enqueueing code ringing the
1475  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1476  * It also needs to account for multiple cancellations on happening at the same
1477  * time for the same endpoint.
1478  *
1479  * Note that this function can be called in any context, or so says
1480  * usb_hcd_unlink_urb()
1481  */
1482 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1483 {
1484 	unsigned long flags;
1485 	int ret, i;
1486 	u32 temp;
1487 	struct xhci_hcd *xhci;
1488 	struct urb_priv	*urb_priv;
1489 	struct xhci_td *td;
1490 	unsigned int ep_index;
1491 	struct xhci_ring *ep_ring;
1492 	struct xhci_virt_ep *ep;
1493 
1494 	xhci = hcd_to_xhci(hcd);
1495 	spin_lock_irqsave(&xhci->lock, flags);
1496 	/* Make sure the URB hasn't completed or been unlinked already */
1497 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1498 	if (ret || !urb->hcpriv)
1499 		goto done;
1500 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1501 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1502 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1503 		urb_priv = urb->hcpriv;
1504 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1505 			td = urb_priv->td[i];
1506 			if (!list_empty(&td->td_list))
1507 				list_del_init(&td->td_list);
1508 			if (!list_empty(&td->cancelled_td_list))
1509 				list_del_init(&td->cancelled_td_list);
1510 		}
1511 
1512 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1513 		spin_unlock_irqrestore(&xhci->lock, flags);
1514 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1515 		xhci_urb_free_priv(xhci, urb_priv);
1516 		return ret;
1517 	}
1518 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1519 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1520 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1521 				"non-responsive xHCI host.\n",
1522 				urb->ep->desc.bEndpointAddress, urb);
1523 		/* Let the stop endpoint command watchdog timer (which set this
1524 		 * state) finish cleaning up the endpoint TD lists.  We must
1525 		 * have caught it in the middle of dropping a lock and giving
1526 		 * back an URB.
1527 		 */
1528 		goto done;
1529 	}
1530 
1531 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1532 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1533 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1534 	if (!ep_ring) {
1535 		ret = -EINVAL;
1536 		goto done;
1537 	}
1538 
1539 	urb_priv = urb->hcpriv;
1540 	i = urb_priv->td_cnt;
1541 	if (i < urb_priv->length)
1542 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1543 				"starting at offset 0x%llx\n",
1544 				urb, urb->dev->devpath,
1545 				urb->ep->desc.bEndpointAddress,
1546 				(unsigned long long) xhci_trb_virt_to_dma(
1547 					urb_priv->td[i]->start_seg,
1548 					urb_priv->td[i]->first_trb));
1549 
1550 	for (; i < urb_priv->length; i++) {
1551 		td = urb_priv->td[i];
1552 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1553 	}
1554 
1555 	/* Queue a stop endpoint command, but only if this is
1556 	 * the first cancellation to be handled.
1557 	 */
1558 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1559 		ep->ep_state |= EP_HALT_PENDING;
1560 		ep->stop_cmds_pending++;
1561 		ep->stop_cmd_timer.expires = jiffies +
1562 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1563 		add_timer(&ep->stop_cmd_timer);
1564 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1565 		xhci_ring_cmd_db(xhci);
1566 	}
1567 done:
1568 	spin_unlock_irqrestore(&xhci->lock, flags);
1569 	return ret;
1570 }
1571 
1572 /* Drop an endpoint from a new bandwidth configuration for this device.
1573  * Only one call to this function is allowed per endpoint before
1574  * check_bandwidth() or reset_bandwidth() must be called.
1575  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1576  * add the endpoint to the schedule with possibly new parameters denoted by a
1577  * different endpoint descriptor in usb_host_endpoint.
1578  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1579  * not allowed.
1580  *
1581  * The USB core will not allow URBs to be queued to an endpoint that is being
1582  * disabled, so there's no need for mutual exclusion to protect
1583  * the xhci->devs[slot_id] structure.
1584  */
1585 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1586 		struct usb_host_endpoint *ep)
1587 {
1588 	struct xhci_hcd *xhci;
1589 	struct xhci_container_ctx *in_ctx, *out_ctx;
1590 	struct xhci_input_control_ctx *ctrl_ctx;
1591 	struct xhci_slot_ctx *slot_ctx;
1592 	unsigned int last_ctx;
1593 	unsigned int ep_index;
1594 	struct xhci_ep_ctx *ep_ctx;
1595 	u32 drop_flag;
1596 	u32 new_add_flags, new_drop_flags, new_slot_info;
1597 	int ret;
1598 
1599 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1600 	if (ret <= 0)
1601 		return ret;
1602 	xhci = hcd_to_xhci(hcd);
1603 	if (xhci->xhc_state & XHCI_STATE_DYING)
1604 		return -ENODEV;
1605 
1606 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1607 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1608 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1609 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1610 				__func__, drop_flag);
1611 		return 0;
1612 	}
1613 
1614 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1615 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1616 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1617 	if (!ctrl_ctx) {
1618 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1619 				__func__);
1620 		return 0;
1621 	}
1622 
1623 	ep_index = xhci_get_endpoint_index(&ep->desc);
1624 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1625 	/* If the HC already knows the endpoint is disabled,
1626 	 * or the HCD has noted it is disabled, ignore this request
1627 	 */
1628 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1629 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1630 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1631 	    xhci_get_endpoint_flag(&ep->desc)) {
1632 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1633 				__func__, ep);
1634 		return 0;
1635 	}
1636 
1637 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1638 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1639 
1640 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1641 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1642 
1643 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1644 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1645 	/* Update the last valid endpoint context, if we deleted the last one */
1646 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1647 	    LAST_CTX(last_ctx)) {
1648 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1649 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1650 	}
1651 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1652 
1653 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1654 
1655 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1656 			(unsigned int) ep->desc.bEndpointAddress,
1657 			udev->slot_id,
1658 			(unsigned int) new_drop_flags,
1659 			(unsigned int) new_add_flags,
1660 			(unsigned int) new_slot_info);
1661 	return 0;
1662 }
1663 
1664 /* Add an endpoint to a new possible bandwidth configuration for this device.
1665  * Only one call to this function is allowed per endpoint before
1666  * check_bandwidth() or reset_bandwidth() must be called.
1667  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1668  * add the endpoint to the schedule with possibly new parameters denoted by a
1669  * different endpoint descriptor in usb_host_endpoint.
1670  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1671  * not allowed.
1672  *
1673  * The USB core will not allow URBs to be queued to an endpoint until the
1674  * configuration or alt setting is installed in the device, so there's no need
1675  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1676  */
1677 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1678 		struct usb_host_endpoint *ep)
1679 {
1680 	struct xhci_hcd *xhci;
1681 	struct xhci_container_ctx *in_ctx, *out_ctx;
1682 	unsigned int ep_index;
1683 	struct xhci_slot_ctx *slot_ctx;
1684 	struct xhci_input_control_ctx *ctrl_ctx;
1685 	u32 added_ctxs;
1686 	unsigned int last_ctx;
1687 	u32 new_add_flags, new_drop_flags, new_slot_info;
1688 	struct xhci_virt_device *virt_dev;
1689 	int ret = 0;
1690 
1691 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1692 	if (ret <= 0) {
1693 		/* So we won't queue a reset ep command for a root hub */
1694 		ep->hcpriv = NULL;
1695 		return ret;
1696 	}
1697 	xhci = hcd_to_xhci(hcd);
1698 	if (xhci->xhc_state & XHCI_STATE_DYING)
1699 		return -ENODEV;
1700 
1701 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1702 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1703 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1704 		/* FIXME when we have to issue an evaluate endpoint command to
1705 		 * deal with ep0 max packet size changing once we get the
1706 		 * descriptors
1707 		 */
1708 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1709 				__func__, added_ctxs);
1710 		return 0;
1711 	}
1712 
1713 	virt_dev = xhci->devs[udev->slot_id];
1714 	in_ctx = virt_dev->in_ctx;
1715 	out_ctx = virt_dev->out_ctx;
1716 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1717 	if (!ctrl_ctx) {
1718 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1719 				__func__);
1720 		return 0;
1721 	}
1722 
1723 	ep_index = xhci_get_endpoint_index(&ep->desc);
1724 	/* If this endpoint is already in use, and the upper layers are trying
1725 	 * to add it again without dropping it, reject the addition.
1726 	 */
1727 	if (virt_dev->eps[ep_index].ring &&
1728 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1729 				xhci_get_endpoint_flag(&ep->desc))) {
1730 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1731 				"without dropping it.\n",
1732 				(unsigned int) ep->desc.bEndpointAddress);
1733 		return -EINVAL;
1734 	}
1735 
1736 	/* If the HCD has already noted the endpoint is enabled,
1737 	 * ignore this request.
1738 	 */
1739 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1740 	    xhci_get_endpoint_flag(&ep->desc)) {
1741 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1742 				__func__, ep);
1743 		return 0;
1744 	}
1745 
1746 	/*
1747 	 * Configuration and alternate setting changes must be done in
1748 	 * process context, not interrupt context (or so documenation
1749 	 * for usb_set_interface() and usb_set_configuration() claim).
1750 	 */
1751 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1752 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1753 				__func__, ep->desc.bEndpointAddress);
1754 		return -ENOMEM;
1755 	}
1756 
1757 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1758 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1759 
1760 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1761 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1762 	 * this re-adds a new state for the endpoint from the new endpoint
1763 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1764 	 * drop flags alone.
1765 	 */
1766 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1767 
1768 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1769 	/* Update the last valid endpoint context, if we just added one past */
1770 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1771 	    LAST_CTX(last_ctx)) {
1772 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1773 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1774 	}
1775 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1776 
1777 	/* Store the usb_device pointer for later use */
1778 	ep->hcpriv = udev;
1779 
1780 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1781 			(unsigned int) ep->desc.bEndpointAddress,
1782 			udev->slot_id,
1783 			(unsigned int) new_drop_flags,
1784 			(unsigned int) new_add_flags,
1785 			(unsigned int) new_slot_info);
1786 	return 0;
1787 }
1788 
1789 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1790 {
1791 	struct xhci_input_control_ctx *ctrl_ctx;
1792 	struct xhci_ep_ctx *ep_ctx;
1793 	struct xhci_slot_ctx *slot_ctx;
1794 	int i;
1795 
1796 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1797 	if (!ctrl_ctx) {
1798 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1799 				__func__);
1800 		return;
1801 	}
1802 
1803 	/* When a device's add flag and drop flag are zero, any subsequent
1804 	 * configure endpoint command will leave that endpoint's state
1805 	 * untouched.  Make sure we don't leave any old state in the input
1806 	 * endpoint contexts.
1807 	 */
1808 	ctrl_ctx->drop_flags = 0;
1809 	ctrl_ctx->add_flags = 0;
1810 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1811 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1812 	/* Endpoint 0 is always valid */
1813 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1814 	for (i = 1; i < 31; ++i) {
1815 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1816 		ep_ctx->ep_info = 0;
1817 		ep_ctx->ep_info2 = 0;
1818 		ep_ctx->deq = 0;
1819 		ep_ctx->tx_info = 0;
1820 	}
1821 }
1822 
1823 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1824 		struct usb_device *udev, u32 *cmd_status)
1825 {
1826 	int ret;
1827 
1828 	switch (*cmd_status) {
1829 	case COMP_ENOMEM:
1830 		dev_warn(&udev->dev, "Not enough host controller resources "
1831 				"for new device state.\n");
1832 		ret = -ENOMEM;
1833 		/* FIXME: can we allocate more resources for the HC? */
1834 		break;
1835 	case COMP_BW_ERR:
1836 	case COMP_2ND_BW_ERR:
1837 		dev_warn(&udev->dev, "Not enough bandwidth "
1838 				"for new device state.\n");
1839 		ret = -ENOSPC;
1840 		/* FIXME: can we go back to the old state? */
1841 		break;
1842 	case COMP_TRB_ERR:
1843 		/* the HCD set up something wrong */
1844 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1845 				"add flag = 1, "
1846 				"and endpoint is not disabled.\n");
1847 		ret = -EINVAL;
1848 		break;
1849 	case COMP_DEV_ERR:
1850 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1851 				"configure command.\n");
1852 		ret = -ENODEV;
1853 		break;
1854 	case COMP_SUCCESS:
1855 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1856 		ret = 0;
1857 		break;
1858 	default:
1859 		xhci_err(xhci, "ERROR: unexpected command completion "
1860 				"code 0x%x.\n", *cmd_status);
1861 		ret = -EINVAL;
1862 		break;
1863 	}
1864 	return ret;
1865 }
1866 
1867 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1868 		struct usb_device *udev, u32 *cmd_status)
1869 {
1870 	int ret;
1871 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1872 
1873 	switch (*cmd_status) {
1874 	case COMP_EINVAL:
1875 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1876 				"context command.\n");
1877 		ret = -EINVAL;
1878 		break;
1879 	case COMP_EBADSLT:
1880 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1881 				"evaluate context command.\n");
1882 		ret = -EINVAL;
1883 		break;
1884 	case COMP_CTX_STATE:
1885 		dev_warn(&udev->dev, "WARN: invalid context state for "
1886 				"evaluate context command.\n");
1887 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1888 		ret = -EINVAL;
1889 		break;
1890 	case COMP_DEV_ERR:
1891 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1892 				"context command.\n");
1893 		ret = -ENODEV;
1894 		break;
1895 	case COMP_MEL_ERR:
1896 		/* Max Exit Latency too large error */
1897 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1898 		ret = -EINVAL;
1899 		break;
1900 	case COMP_SUCCESS:
1901 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1902 		ret = 0;
1903 		break;
1904 	default:
1905 		xhci_err(xhci, "ERROR: unexpected command completion "
1906 				"code 0x%x.\n", *cmd_status);
1907 		ret = -EINVAL;
1908 		break;
1909 	}
1910 	return ret;
1911 }
1912 
1913 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1914 		struct xhci_input_control_ctx *ctrl_ctx)
1915 {
1916 	u32 valid_add_flags;
1917 	u32 valid_drop_flags;
1918 
1919 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1920 	 * (bit 1).  The default control endpoint is added during the Address
1921 	 * Device command and is never removed until the slot is disabled.
1922 	 */
1923 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1924 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1925 
1926 	/* Use hweight32 to count the number of ones in the add flags, or
1927 	 * number of endpoints added.  Don't count endpoints that are changed
1928 	 * (both added and dropped).
1929 	 */
1930 	return hweight32(valid_add_flags) -
1931 		hweight32(valid_add_flags & valid_drop_flags);
1932 }
1933 
1934 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1935 		struct xhci_input_control_ctx *ctrl_ctx)
1936 {
1937 	u32 valid_add_flags;
1938 	u32 valid_drop_flags;
1939 
1940 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1941 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1942 
1943 	return hweight32(valid_drop_flags) -
1944 		hweight32(valid_add_flags & valid_drop_flags);
1945 }
1946 
1947 /*
1948  * We need to reserve the new number of endpoints before the configure endpoint
1949  * command completes.  We can't subtract the dropped endpoints from the number
1950  * of active endpoints until the command completes because we can oversubscribe
1951  * the host in this case:
1952  *
1953  *  - the first configure endpoint command drops more endpoints than it adds
1954  *  - a second configure endpoint command that adds more endpoints is queued
1955  *  - the first configure endpoint command fails, so the config is unchanged
1956  *  - the second command may succeed, even though there isn't enough resources
1957  *
1958  * Must be called with xhci->lock held.
1959  */
1960 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1961 		struct xhci_input_control_ctx *ctrl_ctx)
1962 {
1963 	u32 added_eps;
1964 
1965 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1966 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1967 		xhci_dbg(xhci, "Not enough ep ctxs: "
1968 				"%u active, need to add %u, limit is %u.\n",
1969 				xhci->num_active_eps, added_eps,
1970 				xhci->limit_active_eps);
1971 		return -ENOMEM;
1972 	}
1973 	xhci->num_active_eps += added_eps;
1974 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1975 			xhci->num_active_eps);
1976 	return 0;
1977 }
1978 
1979 /*
1980  * The configure endpoint was failed by the xHC for some other reason, so we
1981  * need to revert the resources that failed configuration would have used.
1982  *
1983  * Must be called with xhci->lock held.
1984  */
1985 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1986 		struct xhci_input_control_ctx *ctrl_ctx)
1987 {
1988 	u32 num_failed_eps;
1989 
1990 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1991 	xhci->num_active_eps -= num_failed_eps;
1992 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1993 			num_failed_eps,
1994 			xhci->num_active_eps);
1995 }
1996 
1997 /*
1998  * Now that the command has completed, clean up the active endpoint count by
1999  * subtracting out the endpoints that were dropped (but not changed).
2000  *
2001  * Must be called with xhci->lock held.
2002  */
2003 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2004 		struct xhci_input_control_ctx *ctrl_ctx)
2005 {
2006 	u32 num_dropped_eps;
2007 
2008 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2009 	xhci->num_active_eps -= num_dropped_eps;
2010 	if (num_dropped_eps)
2011 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
2012 				num_dropped_eps,
2013 				xhci->num_active_eps);
2014 }
2015 
2016 static unsigned int xhci_get_block_size(struct usb_device *udev)
2017 {
2018 	switch (udev->speed) {
2019 	case USB_SPEED_LOW:
2020 	case USB_SPEED_FULL:
2021 		return FS_BLOCK;
2022 	case USB_SPEED_HIGH:
2023 		return HS_BLOCK;
2024 	case USB_SPEED_SUPER:
2025 		return SS_BLOCK;
2026 	case USB_SPEED_UNKNOWN:
2027 	case USB_SPEED_WIRELESS:
2028 	default:
2029 		/* Should never happen */
2030 		return 1;
2031 	}
2032 }
2033 
2034 static unsigned int
2035 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2036 {
2037 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2038 		return LS_OVERHEAD;
2039 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2040 		return FS_OVERHEAD;
2041 	return HS_OVERHEAD;
2042 }
2043 
2044 /* If we are changing a LS/FS device under a HS hub,
2045  * make sure (if we are activating a new TT) that the HS bus has enough
2046  * bandwidth for this new TT.
2047  */
2048 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2049 		struct xhci_virt_device *virt_dev,
2050 		int old_active_eps)
2051 {
2052 	struct xhci_interval_bw_table *bw_table;
2053 	struct xhci_tt_bw_info *tt_info;
2054 
2055 	/* Find the bandwidth table for the root port this TT is attached to. */
2056 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2057 	tt_info = virt_dev->tt_info;
2058 	/* If this TT already had active endpoints, the bandwidth for this TT
2059 	 * has already been added.  Removing all periodic endpoints (and thus
2060 	 * making the TT enactive) will only decrease the bandwidth used.
2061 	 */
2062 	if (old_active_eps)
2063 		return 0;
2064 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2065 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2066 			return -ENOMEM;
2067 		return 0;
2068 	}
2069 	/* Not sure why we would have no new active endpoints...
2070 	 *
2071 	 * Maybe because of an Evaluate Context change for a hub update or a
2072 	 * control endpoint 0 max packet size change?
2073 	 * FIXME: skip the bandwidth calculation in that case.
2074 	 */
2075 	return 0;
2076 }
2077 
2078 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2079 		struct xhci_virt_device *virt_dev)
2080 {
2081 	unsigned int bw_reserved;
2082 
2083 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2084 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2085 		return -ENOMEM;
2086 
2087 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2088 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2089 		return -ENOMEM;
2090 
2091 	return 0;
2092 }
2093 
2094 /*
2095  * This algorithm is a very conservative estimate of the worst-case scheduling
2096  * scenario for any one interval.  The hardware dynamically schedules the
2097  * packets, so we can't tell which microframe could be the limiting factor in
2098  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2099  *
2100  * Obviously, we can't solve an NP complete problem to find the minimum worst
2101  * case scenario.  Instead, we come up with an estimate that is no less than
2102  * the worst case bandwidth used for any one microframe, but may be an
2103  * over-estimate.
2104  *
2105  * We walk the requirements for each endpoint by interval, starting with the
2106  * smallest interval, and place packets in the schedule where there is only one
2107  * possible way to schedule packets for that interval.  In order to simplify
2108  * this algorithm, we record the largest max packet size for each interval, and
2109  * assume all packets will be that size.
2110  *
2111  * For interval 0, we obviously must schedule all packets for each interval.
2112  * The bandwidth for interval 0 is just the amount of data to be transmitted
2113  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2114  * the number of packets).
2115  *
2116  * For interval 1, we have two possible microframes to schedule those packets
2117  * in.  For this algorithm, if we can schedule the same number of packets for
2118  * each possible scheduling opportunity (each microframe), we will do so.  The
2119  * remaining number of packets will be saved to be transmitted in the gaps in
2120  * the next interval's scheduling sequence.
2121  *
2122  * As we move those remaining packets to be scheduled with interval 2 packets,
2123  * we have to double the number of remaining packets to transmit.  This is
2124  * because the intervals are actually powers of 2, and we would be transmitting
2125  * the previous interval's packets twice in this interval.  We also have to be
2126  * sure that when we look at the largest max packet size for this interval, we
2127  * also look at the largest max packet size for the remaining packets and take
2128  * the greater of the two.
2129  *
2130  * The algorithm continues to evenly distribute packets in each scheduling
2131  * opportunity, and push the remaining packets out, until we get to the last
2132  * interval.  Then those packets and their associated overhead are just added
2133  * to the bandwidth used.
2134  */
2135 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2136 		struct xhci_virt_device *virt_dev,
2137 		int old_active_eps)
2138 {
2139 	unsigned int bw_reserved;
2140 	unsigned int max_bandwidth;
2141 	unsigned int bw_used;
2142 	unsigned int block_size;
2143 	struct xhci_interval_bw_table *bw_table;
2144 	unsigned int packet_size = 0;
2145 	unsigned int overhead = 0;
2146 	unsigned int packets_transmitted = 0;
2147 	unsigned int packets_remaining = 0;
2148 	unsigned int i;
2149 
2150 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2151 		return xhci_check_ss_bw(xhci, virt_dev);
2152 
2153 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2154 		max_bandwidth = HS_BW_LIMIT;
2155 		/* Convert percent of bus BW reserved to blocks reserved */
2156 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2157 	} else {
2158 		max_bandwidth = FS_BW_LIMIT;
2159 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2160 	}
2161 
2162 	bw_table = virt_dev->bw_table;
2163 	/* We need to translate the max packet size and max ESIT payloads into
2164 	 * the units the hardware uses.
2165 	 */
2166 	block_size = xhci_get_block_size(virt_dev->udev);
2167 
2168 	/* If we are manipulating a LS/FS device under a HS hub, double check
2169 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2170 	 */
2171 	if (virt_dev->tt_info) {
2172 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2173 				virt_dev->real_port);
2174 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2175 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2176 					"newly activated TT.\n");
2177 			return -ENOMEM;
2178 		}
2179 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2180 				virt_dev->tt_info->slot_id,
2181 				virt_dev->tt_info->ttport);
2182 	} else {
2183 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2184 				virt_dev->real_port);
2185 	}
2186 
2187 	/* Add in how much bandwidth will be used for interval zero, or the
2188 	 * rounded max ESIT payload + number of packets * largest overhead.
2189 	 */
2190 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2191 		bw_table->interval_bw[0].num_packets *
2192 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2193 
2194 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2195 		unsigned int bw_added;
2196 		unsigned int largest_mps;
2197 		unsigned int interval_overhead;
2198 
2199 		/*
2200 		 * How many packets could we transmit in this interval?
2201 		 * If packets didn't fit in the previous interval, we will need
2202 		 * to transmit that many packets twice within this interval.
2203 		 */
2204 		packets_remaining = 2 * packets_remaining +
2205 			bw_table->interval_bw[i].num_packets;
2206 
2207 		/* Find the largest max packet size of this or the previous
2208 		 * interval.
2209 		 */
2210 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2211 			largest_mps = 0;
2212 		else {
2213 			struct xhci_virt_ep *virt_ep;
2214 			struct list_head *ep_entry;
2215 
2216 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2217 			virt_ep = list_entry(ep_entry,
2218 					struct xhci_virt_ep, bw_endpoint_list);
2219 			/* Convert to blocks, rounding up */
2220 			largest_mps = DIV_ROUND_UP(
2221 					virt_ep->bw_info.max_packet_size,
2222 					block_size);
2223 		}
2224 		if (largest_mps > packet_size)
2225 			packet_size = largest_mps;
2226 
2227 		/* Use the larger overhead of this or the previous interval. */
2228 		interval_overhead = xhci_get_largest_overhead(
2229 				&bw_table->interval_bw[i]);
2230 		if (interval_overhead > overhead)
2231 			overhead = interval_overhead;
2232 
2233 		/* How many packets can we evenly distribute across
2234 		 * (1 << (i + 1)) possible scheduling opportunities?
2235 		 */
2236 		packets_transmitted = packets_remaining >> (i + 1);
2237 
2238 		/* Add in the bandwidth used for those scheduled packets */
2239 		bw_added = packets_transmitted * (overhead + packet_size);
2240 
2241 		/* How many packets do we have remaining to transmit? */
2242 		packets_remaining = packets_remaining % (1 << (i + 1));
2243 
2244 		/* What largest max packet size should those packets have? */
2245 		/* If we've transmitted all packets, don't carry over the
2246 		 * largest packet size.
2247 		 */
2248 		if (packets_remaining == 0) {
2249 			packet_size = 0;
2250 			overhead = 0;
2251 		} else if (packets_transmitted > 0) {
2252 			/* Otherwise if we do have remaining packets, and we've
2253 			 * scheduled some packets in this interval, take the
2254 			 * largest max packet size from endpoints with this
2255 			 * interval.
2256 			 */
2257 			packet_size = largest_mps;
2258 			overhead = interval_overhead;
2259 		}
2260 		/* Otherwise carry over packet_size and overhead from the last
2261 		 * time we had a remainder.
2262 		 */
2263 		bw_used += bw_added;
2264 		if (bw_used > max_bandwidth) {
2265 			xhci_warn(xhci, "Not enough bandwidth. "
2266 					"Proposed: %u, Max: %u\n",
2267 				bw_used, max_bandwidth);
2268 			return -ENOMEM;
2269 		}
2270 	}
2271 	/*
2272 	 * Ok, we know we have some packets left over after even-handedly
2273 	 * scheduling interval 15.  We don't know which microframes they will
2274 	 * fit into, so we over-schedule and say they will be scheduled every
2275 	 * microframe.
2276 	 */
2277 	if (packets_remaining > 0)
2278 		bw_used += overhead + packet_size;
2279 
2280 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2281 		unsigned int port_index = virt_dev->real_port - 1;
2282 
2283 		/* OK, we're manipulating a HS device attached to a
2284 		 * root port bandwidth domain.  Include the number of active TTs
2285 		 * in the bandwidth used.
2286 		 */
2287 		bw_used += TT_HS_OVERHEAD *
2288 			xhci->rh_bw[port_index].num_active_tts;
2289 	}
2290 
2291 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2292 		"Available: %u " "percent\n",
2293 		bw_used, max_bandwidth, bw_reserved,
2294 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2295 		max_bandwidth);
2296 
2297 	bw_used += bw_reserved;
2298 	if (bw_used > max_bandwidth) {
2299 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2300 				bw_used, max_bandwidth);
2301 		return -ENOMEM;
2302 	}
2303 
2304 	bw_table->bw_used = bw_used;
2305 	return 0;
2306 }
2307 
2308 static bool xhci_is_async_ep(unsigned int ep_type)
2309 {
2310 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2311 					ep_type != ISOC_IN_EP &&
2312 					ep_type != INT_IN_EP);
2313 }
2314 
2315 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2316 {
2317 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2318 }
2319 
2320 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2321 {
2322 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2323 
2324 	if (ep_bw->ep_interval == 0)
2325 		return SS_OVERHEAD_BURST +
2326 			(ep_bw->mult * ep_bw->num_packets *
2327 					(SS_OVERHEAD + mps));
2328 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2329 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2330 				1 << ep_bw->ep_interval);
2331 
2332 }
2333 
2334 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2335 		struct xhci_bw_info *ep_bw,
2336 		struct xhci_interval_bw_table *bw_table,
2337 		struct usb_device *udev,
2338 		struct xhci_virt_ep *virt_ep,
2339 		struct xhci_tt_bw_info *tt_info)
2340 {
2341 	struct xhci_interval_bw	*interval_bw;
2342 	int normalized_interval;
2343 
2344 	if (xhci_is_async_ep(ep_bw->type))
2345 		return;
2346 
2347 	if (udev->speed == USB_SPEED_SUPER) {
2348 		if (xhci_is_sync_in_ep(ep_bw->type))
2349 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2350 				xhci_get_ss_bw_consumed(ep_bw);
2351 		else
2352 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2353 				xhci_get_ss_bw_consumed(ep_bw);
2354 		return;
2355 	}
2356 
2357 	/* SuperSpeed endpoints never get added to intervals in the table, so
2358 	 * this check is only valid for HS/FS/LS devices.
2359 	 */
2360 	if (list_empty(&virt_ep->bw_endpoint_list))
2361 		return;
2362 	/* For LS/FS devices, we need to translate the interval expressed in
2363 	 * microframes to frames.
2364 	 */
2365 	if (udev->speed == USB_SPEED_HIGH)
2366 		normalized_interval = ep_bw->ep_interval;
2367 	else
2368 		normalized_interval = ep_bw->ep_interval - 3;
2369 
2370 	if (normalized_interval == 0)
2371 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2372 	interval_bw = &bw_table->interval_bw[normalized_interval];
2373 	interval_bw->num_packets -= ep_bw->num_packets;
2374 	switch (udev->speed) {
2375 	case USB_SPEED_LOW:
2376 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2377 		break;
2378 	case USB_SPEED_FULL:
2379 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2380 		break;
2381 	case USB_SPEED_HIGH:
2382 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2383 		break;
2384 	case USB_SPEED_SUPER:
2385 	case USB_SPEED_UNKNOWN:
2386 	case USB_SPEED_WIRELESS:
2387 		/* Should never happen because only LS/FS/HS endpoints will get
2388 		 * added to the endpoint list.
2389 		 */
2390 		return;
2391 	}
2392 	if (tt_info)
2393 		tt_info->active_eps -= 1;
2394 	list_del_init(&virt_ep->bw_endpoint_list);
2395 }
2396 
2397 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2398 		struct xhci_bw_info *ep_bw,
2399 		struct xhci_interval_bw_table *bw_table,
2400 		struct usb_device *udev,
2401 		struct xhci_virt_ep *virt_ep,
2402 		struct xhci_tt_bw_info *tt_info)
2403 {
2404 	struct xhci_interval_bw	*interval_bw;
2405 	struct xhci_virt_ep *smaller_ep;
2406 	int normalized_interval;
2407 
2408 	if (xhci_is_async_ep(ep_bw->type))
2409 		return;
2410 
2411 	if (udev->speed == USB_SPEED_SUPER) {
2412 		if (xhci_is_sync_in_ep(ep_bw->type))
2413 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2414 				xhci_get_ss_bw_consumed(ep_bw);
2415 		else
2416 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2417 				xhci_get_ss_bw_consumed(ep_bw);
2418 		return;
2419 	}
2420 
2421 	/* For LS/FS devices, we need to translate the interval expressed in
2422 	 * microframes to frames.
2423 	 */
2424 	if (udev->speed == USB_SPEED_HIGH)
2425 		normalized_interval = ep_bw->ep_interval;
2426 	else
2427 		normalized_interval = ep_bw->ep_interval - 3;
2428 
2429 	if (normalized_interval == 0)
2430 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2431 	interval_bw = &bw_table->interval_bw[normalized_interval];
2432 	interval_bw->num_packets += ep_bw->num_packets;
2433 	switch (udev->speed) {
2434 	case USB_SPEED_LOW:
2435 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2436 		break;
2437 	case USB_SPEED_FULL:
2438 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2439 		break;
2440 	case USB_SPEED_HIGH:
2441 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2442 		break;
2443 	case USB_SPEED_SUPER:
2444 	case USB_SPEED_UNKNOWN:
2445 	case USB_SPEED_WIRELESS:
2446 		/* Should never happen because only LS/FS/HS endpoints will get
2447 		 * added to the endpoint list.
2448 		 */
2449 		return;
2450 	}
2451 
2452 	if (tt_info)
2453 		tt_info->active_eps += 1;
2454 	/* Insert the endpoint into the list, largest max packet size first. */
2455 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2456 			bw_endpoint_list) {
2457 		if (ep_bw->max_packet_size >=
2458 				smaller_ep->bw_info.max_packet_size) {
2459 			/* Add the new ep before the smaller endpoint */
2460 			list_add_tail(&virt_ep->bw_endpoint_list,
2461 					&smaller_ep->bw_endpoint_list);
2462 			return;
2463 		}
2464 	}
2465 	/* Add the new endpoint at the end of the list. */
2466 	list_add_tail(&virt_ep->bw_endpoint_list,
2467 			&interval_bw->endpoints);
2468 }
2469 
2470 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2471 		struct xhci_virt_device *virt_dev,
2472 		int old_active_eps)
2473 {
2474 	struct xhci_root_port_bw_info *rh_bw_info;
2475 	if (!virt_dev->tt_info)
2476 		return;
2477 
2478 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2479 	if (old_active_eps == 0 &&
2480 				virt_dev->tt_info->active_eps != 0) {
2481 		rh_bw_info->num_active_tts += 1;
2482 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2483 	} else if (old_active_eps != 0 &&
2484 				virt_dev->tt_info->active_eps == 0) {
2485 		rh_bw_info->num_active_tts -= 1;
2486 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2487 	}
2488 }
2489 
2490 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2491 		struct xhci_virt_device *virt_dev,
2492 		struct xhci_container_ctx *in_ctx)
2493 {
2494 	struct xhci_bw_info ep_bw_info[31];
2495 	int i;
2496 	struct xhci_input_control_ctx *ctrl_ctx;
2497 	int old_active_eps = 0;
2498 
2499 	if (virt_dev->tt_info)
2500 		old_active_eps = virt_dev->tt_info->active_eps;
2501 
2502 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2503 	if (!ctrl_ctx) {
2504 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2505 				__func__);
2506 		return -ENOMEM;
2507 	}
2508 
2509 	for (i = 0; i < 31; i++) {
2510 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2511 			continue;
2512 
2513 		/* Make a copy of the BW info in case we need to revert this */
2514 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2515 				sizeof(ep_bw_info[i]));
2516 		/* Drop the endpoint from the interval table if the endpoint is
2517 		 * being dropped or changed.
2518 		 */
2519 		if (EP_IS_DROPPED(ctrl_ctx, i))
2520 			xhci_drop_ep_from_interval_table(xhci,
2521 					&virt_dev->eps[i].bw_info,
2522 					virt_dev->bw_table,
2523 					virt_dev->udev,
2524 					&virt_dev->eps[i],
2525 					virt_dev->tt_info);
2526 	}
2527 	/* Overwrite the information stored in the endpoints' bw_info */
2528 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2529 	for (i = 0; i < 31; i++) {
2530 		/* Add any changed or added endpoints to the interval table */
2531 		if (EP_IS_ADDED(ctrl_ctx, i))
2532 			xhci_add_ep_to_interval_table(xhci,
2533 					&virt_dev->eps[i].bw_info,
2534 					virt_dev->bw_table,
2535 					virt_dev->udev,
2536 					&virt_dev->eps[i],
2537 					virt_dev->tt_info);
2538 	}
2539 
2540 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2541 		/* Ok, this fits in the bandwidth we have.
2542 		 * Update the number of active TTs.
2543 		 */
2544 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2545 		return 0;
2546 	}
2547 
2548 	/* We don't have enough bandwidth for this, revert the stored info. */
2549 	for (i = 0; i < 31; i++) {
2550 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2551 			continue;
2552 
2553 		/* Drop the new copies of any added or changed endpoints from
2554 		 * the interval table.
2555 		 */
2556 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2557 			xhci_drop_ep_from_interval_table(xhci,
2558 					&virt_dev->eps[i].bw_info,
2559 					virt_dev->bw_table,
2560 					virt_dev->udev,
2561 					&virt_dev->eps[i],
2562 					virt_dev->tt_info);
2563 		}
2564 		/* Revert the endpoint back to its old information */
2565 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2566 				sizeof(ep_bw_info[i]));
2567 		/* Add any changed or dropped endpoints back into the table */
2568 		if (EP_IS_DROPPED(ctrl_ctx, i))
2569 			xhci_add_ep_to_interval_table(xhci,
2570 					&virt_dev->eps[i].bw_info,
2571 					virt_dev->bw_table,
2572 					virt_dev->udev,
2573 					&virt_dev->eps[i],
2574 					virt_dev->tt_info);
2575 	}
2576 	return -ENOMEM;
2577 }
2578 
2579 
2580 /* Issue a configure endpoint command or evaluate context command
2581  * and wait for it to finish.
2582  */
2583 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2584 		struct usb_device *udev,
2585 		struct xhci_command *command,
2586 		bool ctx_change, bool must_succeed)
2587 {
2588 	int ret;
2589 	int timeleft;
2590 	unsigned long flags;
2591 	struct xhci_container_ctx *in_ctx;
2592 	struct xhci_input_control_ctx *ctrl_ctx;
2593 	struct completion *cmd_completion;
2594 	u32 *cmd_status;
2595 	struct xhci_virt_device *virt_dev;
2596 	union xhci_trb *cmd_trb;
2597 
2598 	spin_lock_irqsave(&xhci->lock, flags);
2599 	virt_dev = xhci->devs[udev->slot_id];
2600 
2601 	if (command)
2602 		in_ctx = command->in_ctx;
2603 	else
2604 		in_ctx = virt_dev->in_ctx;
2605 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2606 	if (!ctrl_ctx) {
2607 		spin_unlock_irqrestore(&xhci->lock, flags);
2608 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2609 				__func__);
2610 		return -ENOMEM;
2611 	}
2612 
2613 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2614 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2615 		spin_unlock_irqrestore(&xhci->lock, flags);
2616 		xhci_warn(xhci, "Not enough host resources, "
2617 				"active endpoint contexts = %u\n",
2618 				xhci->num_active_eps);
2619 		return -ENOMEM;
2620 	}
2621 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2622 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2623 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2624 			xhci_free_host_resources(xhci, ctrl_ctx);
2625 		spin_unlock_irqrestore(&xhci->lock, flags);
2626 		xhci_warn(xhci, "Not enough bandwidth\n");
2627 		return -ENOMEM;
2628 	}
2629 
2630 	if (command) {
2631 		cmd_completion = command->completion;
2632 		cmd_status = &command->status;
2633 		command->command_trb = xhci->cmd_ring->enqueue;
2634 
2635 		/* Enqueue pointer can be left pointing to the link TRB,
2636 		 * we must handle that
2637 		 */
2638 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2639 			command->command_trb =
2640 				xhci->cmd_ring->enq_seg->next->trbs;
2641 
2642 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2643 	} else {
2644 		cmd_completion = &virt_dev->cmd_completion;
2645 		cmd_status = &virt_dev->cmd_status;
2646 	}
2647 	init_completion(cmd_completion);
2648 
2649 	cmd_trb = xhci->cmd_ring->dequeue;
2650 	if (!ctx_change)
2651 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2652 				udev->slot_id, must_succeed);
2653 	else
2654 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2655 				udev->slot_id, must_succeed);
2656 	if (ret < 0) {
2657 		if (command)
2658 			list_del(&command->cmd_list);
2659 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2660 			xhci_free_host_resources(xhci, ctrl_ctx);
2661 		spin_unlock_irqrestore(&xhci->lock, flags);
2662 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2663 		return -ENOMEM;
2664 	}
2665 	xhci_ring_cmd_db(xhci);
2666 	spin_unlock_irqrestore(&xhci->lock, flags);
2667 
2668 	/* Wait for the configure endpoint command to complete */
2669 	timeleft = wait_for_completion_interruptible_timeout(
2670 			cmd_completion,
2671 			XHCI_CMD_DEFAULT_TIMEOUT);
2672 	if (timeleft <= 0) {
2673 		xhci_warn(xhci, "%s while waiting for %s command\n",
2674 				timeleft == 0 ? "Timeout" : "Signal",
2675 				ctx_change == 0 ?
2676 					"configure endpoint" :
2677 					"evaluate context");
2678 		/* cancel the configure endpoint command */
2679 		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2680 		if (ret < 0)
2681 			return ret;
2682 		return -ETIME;
2683 	}
2684 
2685 	if (!ctx_change)
2686 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2687 	else
2688 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2689 
2690 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2691 		spin_lock_irqsave(&xhci->lock, flags);
2692 		/* If the command failed, remove the reserved resources.
2693 		 * Otherwise, clean up the estimate to include dropped eps.
2694 		 */
2695 		if (ret)
2696 			xhci_free_host_resources(xhci, ctrl_ctx);
2697 		else
2698 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2699 		spin_unlock_irqrestore(&xhci->lock, flags);
2700 	}
2701 	return ret;
2702 }
2703 
2704 /* Called after one or more calls to xhci_add_endpoint() or
2705  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2706  * to call xhci_reset_bandwidth().
2707  *
2708  * Since we are in the middle of changing either configuration or
2709  * installing a new alt setting, the USB core won't allow URBs to be
2710  * enqueued for any endpoint on the old config or interface.  Nothing
2711  * else should be touching the xhci->devs[slot_id] structure, so we
2712  * don't need to take the xhci->lock for manipulating that.
2713  */
2714 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2715 {
2716 	int i;
2717 	int ret = 0;
2718 	struct xhci_hcd *xhci;
2719 	struct xhci_virt_device	*virt_dev;
2720 	struct xhci_input_control_ctx *ctrl_ctx;
2721 	struct xhci_slot_ctx *slot_ctx;
2722 
2723 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2724 	if (ret <= 0)
2725 		return ret;
2726 	xhci = hcd_to_xhci(hcd);
2727 	if (xhci->xhc_state & XHCI_STATE_DYING)
2728 		return -ENODEV;
2729 
2730 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2731 	virt_dev = xhci->devs[udev->slot_id];
2732 
2733 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2734 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2735 	if (!ctrl_ctx) {
2736 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2737 				__func__);
2738 		return -ENOMEM;
2739 	}
2740 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2741 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2742 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2743 
2744 	/* Don't issue the command if there's no endpoints to update. */
2745 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2746 			ctrl_ctx->drop_flags == 0)
2747 		return 0;
2748 
2749 	xhci_dbg(xhci, "New Input Control Context:\n");
2750 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2751 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2752 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2753 
2754 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2755 			false, false);
2756 	if (ret) {
2757 		/* Callee should call reset_bandwidth() */
2758 		return ret;
2759 	}
2760 
2761 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2762 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2763 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2764 
2765 	/* Free any rings that were dropped, but not changed. */
2766 	for (i = 1; i < 31; ++i) {
2767 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2768 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2769 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2770 	}
2771 	xhci_zero_in_ctx(xhci, virt_dev);
2772 	/*
2773 	 * Install any rings for completely new endpoints or changed endpoints,
2774 	 * and free or cache any old rings from changed endpoints.
2775 	 */
2776 	for (i = 1; i < 31; ++i) {
2777 		if (!virt_dev->eps[i].new_ring)
2778 			continue;
2779 		/* Only cache or free the old ring if it exists.
2780 		 * It may not if this is the first add of an endpoint.
2781 		 */
2782 		if (virt_dev->eps[i].ring) {
2783 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2784 		}
2785 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2786 		virt_dev->eps[i].new_ring = NULL;
2787 	}
2788 
2789 	return ret;
2790 }
2791 
2792 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2793 {
2794 	struct xhci_hcd *xhci;
2795 	struct xhci_virt_device	*virt_dev;
2796 	int i, ret;
2797 
2798 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2799 	if (ret <= 0)
2800 		return;
2801 	xhci = hcd_to_xhci(hcd);
2802 
2803 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2804 	virt_dev = xhci->devs[udev->slot_id];
2805 	/* Free any rings allocated for added endpoints */
2806 	for (i = 0; i < 31; ++i) {
2807 		if (virt_dev->eps[i].new_ring) {
2808 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2809 			virt_dev->eps[i].new_ring = NULL;
2810 		}
2811 	}
2812 	xhci_zero_in_ctx(xhci, virt_dev);
2813 }
2814 
2815 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2816 		struct xhci_container_ctx *in_ctx,
2817 		struct xhci_container_ctx *out_ctx,
2818 		struct xhci_input_control_ctx *ctrl_ctx,
2819 		u32 add_flags, u32 drop_flags)
2820 {
2821 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2822 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2823 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2824 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2825 
2826 	xhci_dbg(xhci, "Input Context:\n");
2827 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2828 }
2829 
2830 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2831 		unsigned int slot_id, unsigned int ep_index,
2832 		struct xhci_dequeue_state *deq_state)
2833 {
2834 	struct xhci_input_control_ctx *ctrl_ctx;
2835 	struct xhci_container_ctx *in_ctx;
2836 	struct xhci_ep_ctx *ep_ctx;
2837 	u32 added_ctxs;
2838 	dma_addr_t addr;
2839 
2840 	in_ctx = xhci->devs[slot_id]->in_ctx;
2841 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2842 	if (!ctrl_ctx) {
2843 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2844 				__func__);
2845 		return;
2846 	}
2847 
2848 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2849 			xhci->devs[slot_id]->out_ctx, ep_index);
2850 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2851 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2852 			deq_state->new_deq_ptr);
2853 	if (addr == 0) {
2854 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2855 				"reset ep command\n");
2856 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2857 				deq_state->new_deq_seg,
2858 				deq_state->new_deq_ptr);
2859 		return;
2860 	}
2861 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2862 
2863 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2864 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2865 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2866 			added_ctxs, added_ctxs);
2867 }
2868 
2869 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2870 		struct usb_device *udev, unsigned int ep_index)
2871 {
2872 	struct xhci_dequeue_state deq_state;
2873 	struct xhci_virt_ep *ep;
2874 
2875 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2876 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2877 	/* We need to move the HW's dequeue pointer past this TD,
2878 	 * or it will attempt to resend it on the next doorbell ring.
2879 	 */
2880 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2881 			ep_index, ep->stopped_stream, ep->stopped_td,
2882 			&deq_state);
2883 
2884 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2885 	 * issue a configure endpoint command later.
2886 	 */
2887 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2888 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2889 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2890 				ep_index, ep->stopped_stream, &deq_state);
2891 	} else {
2892 		/* Better hope no one uses the input context between now and the
2893 		 * reset endpoint completion!
2894 		 * XXX: No idea how this hardware will react when stream rings
2895 		 * are enabled.
2896 		 */
2897 		xhci_dbg(xhci, "Setting up input context for "
2898 				"configure endpoint command\n");
2899 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2900 				ep_index, &deq_state);
2901 	}
2902 }
2903 
2904 /* Deal with stalled endpoints.  The core should have sent the control message
2905  * to clear the halt condition.  However, we need to make the xHCI hardware
2906  * reset its sequence number, since a device will expect a sequence number of
2907  * zero after the halt condition is cleared.
2908  * Context: in_interrupt
2909  */
2910 void xhci_endpoint_reset(struct usb_hcd *hcd,
2911 		struct usb_host_endpoint *ep)
2912 {
2913 	struct xhci_hcd *xhci;
2914 	struct usb_device *udev;
2915 	unsigned int ep_index;
2916 	unsigned long flags;
2917 	int ret;
2918 	struct xhci_virt_ep *virt_ep;
2919 
2920 	xhci = hcd_to_xhci(hcd);
2921 	udev = (struct usb_device *) ep->hcpriv;
2922 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2923 	 * with xhci_add_endpoint()
2924 	 */
2925 	if (!ep->hcpriv)
2926 		return;
2927 	ep_index = xhci_get_endpoint_index(&ep->desc);
2928 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2929 	if (!virt_ep->stopped_td) {
2930 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2931 				ep->desc.bEndpointAddress);
2932 		return;
2933 	}
2934 	if (usb_endpoint_xfer_control(&ep->desc)) {
2935 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2936 		return;
2937 	}
2938 
2939 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2940 	spin_lock_irqsave(&xhci->lock, flags);
2941 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2942 	/*
2943 	 * Can't change the ring dequeue pointer until it's transitioned to the
2944 	 * stopped state, which is only upon a successful reset endpoint
2945 	 * command.  Better hope that last command worked!
2946 	 */
2947 	if (!ret) {
2948 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2949 		kfree(virt_ep->stopped_td);
2950 		xhci_ring_cmd_db(xhci);
2951 	}
2952 	virt_ep->stopped_td = NULL;
2953 	virt_ep->stopped_trb = NULL;
2954 	virt_ep->stopped_stream = 0;
2955 	spin_unlock_irqrestore(&xhci->lock, flags);
2956 
2957 	if (ret)
2958 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2959 }
2960 
2961 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2962 		struct usb_device *udev, struct usb_host_endpoint *ep,
2963 		unsigned int slot_id)
2964 {
2965 	int ret;
2966 	unsigned int ep_index;
2967 	unsigned int ep_state;
2968 
2969 	if (!ep)
2970 		return -EINVAL;
2971 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2972 	if (ret <= 0)
2973 		return -EINVAL;
2974 	if (ep->ss_ep_comp.bmAttributes == 0) {
2975 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2976 				" descriptor for ep 0x%x does not support streams\n",
2977 				ep->desc.bEndpointAddress);
2978 		return -EINVAL;
2979 	}
2980 
2981 	ep_index = xhci_get_endpoint_index(&ep->desc);
2982 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2983 	if (ep_state & EP_HAS_STREAMS ||
2984 			ep_state & EP_GETTING_STREAMS) {
2985 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2986 				"already has streams set up.\n",
2987 				ep->desc.bEndpointAddress);
2988 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2989 				"dynamic stream context array reallocation.\n");
2990 		return -EINVAL;
2991 	}
2992 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2993 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2994 				"endpoint 0x%x; URBs are pending.\n",
2995 				ep->desc.bEndpointAddress);
2996 		return -EINVAL;
2997 	}
2998 	return 0;
2999 }
3000 
3001 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3002 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3003 {
3004 	unsigned int max_streams;
3005 
3006 	/* The stream context array size must be a power of two */
3007 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3008 	/*
3009 	 * Find out how many primary stream array entries the host controller
3010 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3011 	 * level page entries), but that's an optional feature for xHCI host
3012 	 * controllers. xHCs must support at least 4 stream IDs.
3013 	 */
3014 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3015 	if (*num_stream_ctxs > max_streams) {
3016 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3017 				max_streams);
3018 		*num_stream_ctxs = max_streams;
3019 		*num_streams = max_streams;
3020 	}
3021 }
3022 
3023 /* Returns an error code if one of the endpoint already has streams.
3024  * This does not change any data structures, it only checks and gathers
3025  * information.
3026  */
3027 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3028 		struct usb_device *udev,
3029 		struct usb_host_endpoint **eps, unsigned int num_eps,
3030 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3031 {
3032 	unsigned int max_streams;
3033 	unsigned int endpoint_flag;
3034 	int i;
3035 	int ret;
3036 
3037 	for (i = 0; i < num_eps; i++) {
3038 		ret = xhci_check_streams_endpoint(xhci, udev,
3039 				eps[i], udev->slot_id);
3040 		if (ret < 0)
3041 			return ret;
3042 
3043 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3044 		if (max_streams < (*num_streams - 1)) {
3045 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3046 					eps[i]->desc.bEndpointAddress,
3047 					max_streams);
3048 			*num_streams = max_streams+1;
3049 		}
3050 
3051 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3052 		if (*changed_ep_bitmask & endpoint_flag)
3053 			return -EINVAL;
3054 		*changed_ep_bitmask |= endpoint_flag;
3055 	}
3056 	return 0;
3057 }
3058 
3059 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3060 		struct usb_device *udev,
3061 		struct usb_host_endpoint **eps, unsigned int num_eps)
3062 {
3063 	u32 changed_ep_bitmask = 0;
3064 	unsigned int slot_id;
3065 	unsigned int ep_index;
3066 	unsigned int ep_state;
3067 	int i;
3068 
3069 	slot_id = udev->slot_id;
3070 	if (!xhci->devs[slot_id])
3071 		return 0;
3072 
3073 	for (i = 0; i < num_eps; i++) {
3074 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3075 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3076 		/* Are streams already being freed for the endpoint? */
3077 		if (ep_state & EP_GETTING_NO_STREAMS) {
3078 			xhci_warn(xhci, "WARN Can't disable streams for "
3079 					"endpoint 0x%x\n, "
3080 					"streams are being disabled already.",
3081 					eps[i]->desc.bEndpointAddress);
3082 			return 0;
3083 		}
3084 		/* Are there actually any streams to free? */
3085 		if (!(ep_state & EP_HAS_STREAMS) &&
3086 				!(ep_state & EP_GETTING_STREAMS)) {
3087 			xhci_warn(xhci, "WARN Can't disable streams for "
3088 					"endpoint 0x%x\n, "
3089 					"streams are already disabled!",
3090 					eps[i]->desc.bEndpointAddress);
3091 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3092 					"with non-streams endpoint\n");
3093 			return 0;
3094 		}
3095 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3096 	}
3097 	return changed_ep_bitmask;
3098 }
3099 
3100 /*
3101  * The USB device drivers use this function (though the HCD interface in USB
3102  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3103  * coordinate mass storage command queueing across multiple endpoints (basically
3104  * a stream ID == a task ID).
3105  *
3106  * Setting up streams involves allocating the same size stream context array
3107  * for each endpoint and issuing a configure endpoint command for all endpoints.
3108  *
3109  * Don't allow the call to succeed if one endpoint only supports one stream
3110  * (which means it doesn't support streams at all).
3111  *
3112  * Drivers may get less stream IDs than they asked for, if the host controller
3113  * hardware or endpoints claim they can't support the number of requested
3114  * stream IDs.
3115  */
3116 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3117 		struct usb_host_endpoint **eps, unsigned int num_eps,
3118 		unsigned int num_streams, gfp_t mem_flags)
3119 {
3120 	int i, ret;
3121 	struct xhci_hcd *xhci;
3122 	struct xhci_virt_device *vdev;
3123 	struct xhci_command *config_cmd;
3124 	struct xhci_input_control_ctx *ctrl_ctx;
3125 	unsigned int ep_index;
3126 	unsigned int num_stream_ctxs;
3127 	unsigned long flags;
3128 	u32 changed_ep_bitmask = 0;
3129 
3130 	if (!eps)
3131 		return -EINVAL;
3132 
3133 	/* Add one to the number of streams requested to account for
3134 	 * stream 0 that is reserved for xHCI usage.
3135 	 */
3136 	num_streams += 1;
3137 	xhci = hcd_to_xhci(hcd);
3138 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3139 			num_streams);
3140 
3141 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3142 	if (!config_cmd) {
3143 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3144 		return -ENOMEM;
3145 	}
3146 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3147 	if (!ctrl_ctx) {
3148 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3149 				__func__);
3150 		xhci_free_command(xhci, config_cmd);
3151 		return -ENOMEM;
3152 	}
3153 
3154 	/* Check to make sure all endpoints are not already configured for
3155 	 * streams.  While we're at it, find the maximum number of streams that
3156 	 * all the endpoints will support and check for duplicate endpoints.
3157 	 */
3158 	spin_lock_irqsave(&xhci->lock, flags);
3159 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3160 			num_eps, &num_streams, &changed_ep_bitmask);
3161 	if (ret < 0) {
3162 		xhci_free_command(xhci, config_cmd);
3163 		spin_unlock_irqrestore(&xhci->lock, flags);
3164 		return ret;
3165 	}
3166 	if (num_streams <= 1) {
3167 		xhci_warn(xhci, "WARN: endpoints can't handle "
3168 				"more than one stream.\n");
3169 		xhci_free_command(xhci, config_cmd);
3170 		spin_unlock_irqrestore(&xhci->lock, flags);
3171 		return -EINVAL;
3172 	}
3173 	vdev = xhci->devs[udev->slot_id];
3174 	/* Mark each endpoint as being in transition, so
3175 	 * xhci_urb_enqueue() will reject all URBs.
3176 	 */
3177 	for (i = 0; i < num_eps; i++) {
3178 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3179 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3180 	}
3181 	spin_unlock_irqrestore(&xhci->lock, flags);
3182 
3183 	/* Setup internal data structures and allocate HW data structures for
3184 	 * streams (but don't install the HW structures in the input context
3185 	 * until we're sure all memory allocation succeeded).
3186 	 */
3187 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3188 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3189 			num_stream_ctxs, num_streams);
3190 
3191 	for (i = 0; i < num_eps; i++) {
3192 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3193 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3194 				num_stream_ctxs,
3195 				num_streams, mem_flags);
3196 		if (!vdev->eps[ep_index].stream_info)
3197 			goto cleanup;
3198 		/* Set maxPstreams in endpoint context and update deq ptr to
3199 		 * point to stream context array. FIXME
3200 		 */
3201 	}
3202 
3203 	/* Set up the input context for a configure endpoint command. */
3204 	for (i = 0; i < num_eps; i++) {
3205 		struct xhci_ep_ctx *ep_ctx;
3206 
3207 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3208 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3209 
3210 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3211 				vdev->out_ctx, ep_index);
3212 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3213 				vdev->eps[ep_index].stream_info);
3214 	}
3215 	/* Tell the HW to drop its old copy of the endpoint context info
3216 	 * and add the updated copy from the input context.
3217 	 */
3218 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3219 			vdev->out_ctx, ctrl_ctx,
3220 			changed_ep_bitmask, changed_ep_bitmask);
3221 
3222 	/* Issue and wait for the configure endpoint command */
3223 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3224 			false, false);
3225 
3226 	/* xHC rejected the configure endpoint command for some reason, so we
3227 	 * leave the old ring intact and free our internal streams data
3228 	 * structure.
3229 	 */
3230 	if (ret < 0)
3231 		goto cleanup;
3232 
3233 	spin_lock_irqsave(&xhci->lock, flags);
3234 	for (i = 0; i < num_eps; i++) {
3235 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3236 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3237 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3238 			 udev->slot_id, ep_index);
3239 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3240 	}
3241 	xhci_free_command(xhci, config_cmd);
3242 	spin_unlock_irqrestore(&xhci->lock, flags);
3243 
3244 	/* Subtract 1 for stream 0, which drivers can't use */
3245 	return num_streams - 1;
3246 
3247 cleanup:
3248 	/* If it didn't work, free the streams! */
3249 	for (i = 0; i < num_eps; i++) {
3250 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3251 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3252 		vdev->eps[ep_index].stream_info = NULL;
3253 		/* FIXME Unset maxPstreams in endpoint context and
3254 		 * update deq ptr to point to normal string ring.
3255 		 */
3256 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3257 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3258 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3259 	}
3260 	xhci_free_command(xhci, config_cmd);
3261 	return -ENOMEM;
3262 }
3263 
3264 /* Transition the endpoint from using streams to being a "normal" endpoint
3265  * without streams.
3266  *
3267  * Modify the endpoint context state, submit a configure endpoint command,
3268  * and free all endpoint rings for streams if that completes successfully.
3269  */
3270 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3271 		struct usb_host_endpoint **eps, unsigned int num_eps,
3272 		gfp_t mem_flags)
3273 {
3274 	int i, ret;
3275 	struct xhci_hcd *xhci;
3276 	struct xhci_virt_device *vdev;
3277 	struct xhci_command *command;
3278 	struct xhci_input_control_ctx *ctrl_ctx;
3279 	unsigned int ep_index;
3280 	unsigned long flags;
3281 	u32 changed_ep_bitmask;
3282 
3283 	xhci = hcd_to_xhci(hcd);
3284 	vdev = xhci->devs[udev->slot_id];
3285 
3286 	/* Set up a configure endpoint command to remove the streams rings */
3287 	spin_lock_irqsave(&xhci->lock, flags);
3288 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3289 			udev, eps, num_eps);
3290 	if (changed_ep_bitmask == 0) {
3291 		spin_unlock_irqrestore(&xhci->lock, flags);
3292 		return -EINVAL;
3293 	}
3294 
3295 	/* Use the xhci_command structure from the first endpoint.  We may have
3296 	 * allocated too many, but the driver may call xhci_free_streams() for
3297 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3298 	 */
3299 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3300 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3301 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3302 	if (!ctrl_ctx) {
3303 		spin_unlock_irqrestore(&xhci->lock, flags);
3304 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3305 				__func__);
3306 		return -EINVAL;
3307 	}
3308 
3309 	for (i = 0; i < num_eps; i++) {
3310 		struct xhci_ep_ctx *ep_ctx;
3311 
3312 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3313 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3314 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3315 			EP_GETTING_NO_STREAMS;
3316 
3317 		xhci_endpoint_copy(xhci, command->in_ctx,
3318 				vdev->out_ctx, ep_index);
3319 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3320 				&vdev->eps[ep_index]);
3321 	}
3322 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3323 			vdev->out_ctx, ctrl_ctx,
3324 			changed_ep_bitmask, changed_ep_bitmask);
3325 	spin_unlock_irqrestore(&xhci->lock, flags);
3326 
3327 	/* Issue and wait for the configure endpoint command,
3328 	 * which must succeed.
3329 	 */
3330 	ret = xhci_configure_endpoint(xhci, udev, command,
3331 			false, true);
3332 
3333 	/* xHC rejected the configure endpoint command for some reason, so we
3334 	 * leave the streams rings intact.
3335 	 */
3336 	if (ret < 0)
3337 		return ret;
3338 
3339 	spin_lock_irqsave(&xhci->lock, flags);
3340 	for (i = 0; i < num_eps; i++) {
3341 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3342 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3343 		vdev->eps[ep_index].stream_info = NULL;
3344 		/* FIXME Unset maxPstreams in endpoint context and
3345 		 * update deq ptr to point to normal string ring.
3346 		 */
3347 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3348 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3349 	}
3350 	spin_unlock_irqrestore(&xhci->lock, flags);
3351 
3352 	return 0;
3353 }
3354 
3355 /*
3356  * Deletes endpoint resources for endpoints that were active before a Reset
3357  * Device command, or a Disable Slot command.  The Reset Device command leaves
3358  * the control endpoint intact, whereas the Disable Slot command deletes it.
3359  *
3360  * Must be called with xhci->lock held.
3361  */
3362 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3363 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3364 {
3365 	int i;
3366 	unsigned int num_dropped_eps = 0;
3367 	unsigned int drop_flags = 0;
3368 
3369 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3370 		if (virt_dev->eps[i].ring) {
3371 			drop_flags |= 1 << i;
3372 			num_dropped_eps++;
3373 		}
3374 	}
3375 	xhci->num_active_eps -= num_dropped_eps;
3376 	if (num_dropped_eps)
3377 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3378 				"%u now active.\n",
3379 				num_dropped_eps, drop_flags,
3380 				xhci->num_active_eps);
3381 }
3382 
3383 /*
3384  * This submits a Reset Device Command, which will set the device state to 0,
3385  * set the device address to 0, and disable all the endpoints except the default
3386  * control endpoint.  The USB core should come back and call
3387  * xhci_address_device(), and then re-set up the configuration.  If this is
3388  * called because of a usb_reset_and_verify_device(), then the old alternate
3389  * settings will be re-installed through the normal bandwidth allocation
3390  * functions.
3391  *
3392  * Wait for the Reset Device command to finish.  Remove all structures
3393  * associated with the endpoints that were disabled.  Clear the input device
3394  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3395  *
3396  * If the virt_dev to be reset does not exist or does not match the udev,
3397  * it means the device is lost, possibly due to the xHC restore error and
3398  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3399  * re-allocate the device.
3400  */
3401 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3402 {
3403 	int ret, i;
3404 	unsigned long flags;
3405 	struct xhci_hcd *xhci;
3406 	unsigned int slot_id;
3407 	struct xhci_virt_device *virt_dev;
3408 	struct xhci_command *reset_device_cmd;
3409 	int timeleft;
3410 	int last_freed_endpoint;
3411 	struct xhci_slot_ctx *slot_ctx;
3412 	int old_active_eps = 0;
3413 
3414 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3415 	if (ret <= 0)
3416 		return ret;
3417 	xhci = hcd_to_xhci(hcd);
3418 	slot_id = udev->slot_id;
3419 	virt_dev = xhci->devs[slot_id];
3420 	if (!virt_dev) {
3421 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3422 				"not exist. Re-allocate the device\n", slot_id);
3423 		ret = xhci_alloc_dev(hcd, udev);
3424 		if (ret == 1)
3425 			return 0;
3426 		else
3427 			return -EINVAL;
3428 	}
3429 
3430 	if (virt_dev->udev != udev) {
3431 		/* If the virt_dev and the udev does not match, this virt_dev
3432 		 * may belong to another udev.
3433 		 * Re-allocate the device.
3434 		 */
3435 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3436 				"not match the udev. Re-allocate the device\n",
3437 				slot_id);
3438 		ret = xhci_alloc_dev(hcd, udev);
3439 		if (ret == 1)
3440 			return 0;
3441 		else
3442 			return -EINVAL;
3443 	}
3444 
3445 	/* If device is not setup, there is no point in resetting it */
3446 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3447 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3448 						SLOT_STATE_DISABLED)
3449 		return 0;
3450 
3451 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3452 	/* Allocate the command structure that holds the struct completion.
3453 	 * Assume we're in process context, since the normal device reset
3454 	 * process has to wait for the device anyway.  Storage devices are
3455 	 * reset as part of error handling, so use GFP_NOIO instead of
3456 	 * GFP_KERNEL.
3457 	 */
3458 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3459 	if (!reset_device_cmd) {
3460 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3461 		return -ENOMEM;
3462 	}
3463 
3464 	/* Attempt to submit the Reset Device command to the command ring */
3465 	spin_lock_irqsave(&xhci->lock, flags);
3466 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3467 
3468 	/* Enqueue pointer can be left pointing to the link TRB,
3469 	 * we must handle that
3470 	 */
3471 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3472 		reset_device_cmd->command_trb =
3473 			xhci->cmd_ring->enq_seg->next->trbs;
3474 
3475 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3476 	ret = xhci_queue_reset_device(xhci, slot_id);
3477 	if (ret) {
3478 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3479 		list_del(&reset_device_cmd->cmd_list);
3480 		spin_unlock_irqrestore(&xhci->lock, flags);
3481 		goto command_cleanup;
3482 	}
3483 	xhci_ring_cmd_db(xhci);
3484 	spin_unlock_irqrestore(&xhci->lock, flags);
3485 
3486 	/* Wait for the Reset Device command to finish */
3487 	timeleft = wait_for_completion_interruptible_timeout(
3488 			reset_device_cmd->completion,
3489 			USB_CTRL_SET_TIMEOUT);
3490 	if (timeleft <= 0) {
3491 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3492 				timeleft == 0 ? "Timeout" : "Signal");
3493 		spin_lock_irqsave(&xhci->lock, flags);
3494 		/* The timeout might have raced with the event ring handler, so
3495 		 * only delete from the list if the item isn't poisoned.
3496 		 */
3497 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3498 			list_del(&reset_device_cmd->cmd_list);
3499 		spin_unlock_irqrestore(&xhci->lock, flags);
3500 		ret = -ETIME;
3501 		goto command_cleanup;
3502 	}
3503 
3504 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3505 	 * unless we tried to reset a slot ID that wasn't enabled,
3506 	 * or the device wasn't in the addressed or configured state.
3507 	 */
3508 	ret = reset_device_cmd->status;
3509 	switch (ret) {
3510 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3511 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3512 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3513 				slot_id,
3514 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3515 		xhci_info(xhci, "Not freeing device rings.\n");
3516 		/* Don't treat this as an error.  May change my mind later. */
3517 		ret = 0;
3518 		goto command_cleanup;
3519 	case COMP_SUCCESS:
3520 		xhci_dbg(xhci, "Successful reset device command.\n");
3521 		break;
3522 	default:
3523 		if (xhci_is_vendor_info_code(xhci, ret))
3524 			break;
3525 		xhci_warn(xhci, "Unknown completion code %u for "
3526 				"reset device command.\n", ret);
3527 		ret = -EINVAL;
3528 		goto command_cleanup;
3529 	}
3530 
3531 	/* Free up host controller endpoint resources */
3532 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3533 		spin_lock_irqsave(&xhci->lock, flags);
3534 		/* Don't delete the default control endpoint resources */
3535 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3536 		spin_unlock_irqrestore(&xhci->lock, flags);
3537 	}
3538 
3539 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3540 	last_freed_endpoint = 1;
3541 	for (i = 1; i < 31; ++i) {
3542 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3543 
3544 		if (ep->ep_state & EP_HAS_STREAMS) {
3545 			xhci_free_stream_info(xhci, ep->stream_info);
3546 			ep->stream_info = NULL;
3547 			ep->ep_state &= ~EP_HAS_STREAMS;
3548 		}
3549 
3550 		if (ep->ring) {
3551 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3552 			last_freed_endpoint = i;
3553 		}
3554 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3555 			xhci_drop_ep_from_interval_table(xhci,
3556 					&virt_dev->eps[i].bw_info,
3557 					virt_dev->bw_table,
3558 					udev,
3559 					&virt_dev->eps[i],
3560 					virt_dev->tt_info);
3561 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3562 	}
3563 	/* If necessary, update the number of active TTs on this root port */
3564 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3565 
3566 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3567 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3568 	ret = 0;
3569 
3570 command_cleanup:
3571 	xhci_free_command(xhci, reset_device_cmd);
3572 	return ret;
3573 }
3574 
3575 /*
3576  * At this point, the struct usb_device is about to go away, the device has
3577  * disconnected, and all traffic has been stopped and the endpoints have been
3578  * disabled.  Free any HC data structures associated with that device.
3579  */
3580 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3581 {
3582 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3583 	struct xhci_virt_device *virt_dev;
3584 	unsigned long flags;
3585 	u32 state;
3586 	int i, ret;
3587 
3588 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3589 	/* If the host is halted due to driver unload, we still need to free the
3590 	 * device.
3591 	 */
3592 	if (ret <= 0 && ret != -ENODEV)
3593 		return;
3594 
3595 	virt_dev = xhci->devs[udev->slot_id];
3596 
3597 	/* Stop any wayward timer functions (which may grab the lock) */
3598 	for (i = 0; i < 31; ++i) {
3599 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3600 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3601 	}
3602 
3603 	if (udev->usb2_hw_lpm_enabled) {
3604 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3605 		udev->usb2_hw_lpm_enabled = 0;
3606 	}
3607 
3608 	spin_lock_irqsave(&xhci->lock, flags);
3609 	/* Don't disable the slot if the host controller is dead. */
3610 	state = xhci_readl(xhci, &xhci->op_regs->status);
3611 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3612 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3613 		xhci_free_virt_device(xhci, udev->slot_id);
3614 		spin_unlock_irqrestore(&xhci->lock, flags);
3615 		return;
3616 	}
3617 
3618 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3619 		spin_unlock_irqrestore(&xhci->lock, flags);
3620 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3621 		return;
3622 	}
3623 	xhci_ring_cmd_db(xhci);
3624 	spin_unlock_irqrestore(&xhci->lock, flags);
3625 	/*
3626 	 * Event command completion handler will free any data structures
3627 	 * associated with the slot.  XXX Can free sleep?
3628 	 */
3629 }
3630 
3631 /*
3632  * Checks if we have enough host controller resources for the default control
3633  * endpoint.
3634  *
3635  * Must be called with xhci->lock held.
3636  */
3637 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3638 {
3639 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3640 		xhci_dbg(xhci, "Not enough ep ctxs: "
3641 				"%u active, need to add 1, limit is %u.\n",
3642 				xhci->num_active_eps, xhci->limit_active_eps);
3643 		return -ENOMEM;
3644 	}
3645 	xhci->num_active_eps += 1;
3646 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3647 			xhci->num_active_eps);
3648 	return 0;
3649 }
3650 
3651 
3652 /*
3653  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3654  * timed out, or allocating memory failed.  Returns 1 on success.
3655  */
3656 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3657 {
3658 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3659 	unsigned long flags;
3660 	int timeleft;
3661 	int ret;
3662 	union xhci_trb *cmd_trb;
3663 
3664 	spin_lock_irqsave(&xhci->lock, flags);
3665 	cmd_trb = xhci->cmd_ring->dequeue;
3666 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3667 	if (ret) {
3668 		spin_unlock_irqrestore(&xhci->lock, flags);
3669 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3670 		return 0;
3671 	}
3672 	xhci_ring_cmd_db(xhci);
3673 	spin_unlock_irqrestore(&xhci->lock, flags);
3674 
3675 	/* XXX: how much time for xHC slot assignment? */
3676 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3677 			XHCI_CMD_DEFAULT_TIMEOUT);
3678 	if (timeleft <= 0) {
3679 		xhci_warn(xhci, "%s while waiting for a slot\n",
3680 				timeleft == 0 ? "Timeout" : "Signal");
3681 		/* cancel the enable slot request */
3682 		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3683 	}
3684 
3685 	if (!xhci->slot_id) {
3686 		xhci_err(xhci, "Error while assigning device slot ID\n");
3687 		return 0;
3688 	}
3689 
3690 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3691 		spin_lock_irqsave(&xhci->lock, flags);
3692 		ret = xhci_reserve_host_control_ep_resources(xhci);
3693 		if (ret) {
3694 			spin_unlock_irqrestore(&xhci->lock, flags);
3695 			xhci_warn(xhci, "Not enough host resources, "
3696 					"active endpoint contexts = %u\n",
3697 					xhci->num_active_eps);
3698 			goto disable_slot;
3699 		}
3700 		spin_unlock_irqrestore(&xhci->lock, flags);
3701 	}
3702 	/* Use GFP_NOIO, since this function can be called from
3703 	 * xhci_discover_or_reset_device(), which may be called as part of
3704 	 * mass storage driver error handling.
3705 	 */
3706 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3707 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3708 		goto disable_slot;
3709 	}
3710 	udev->slot_id = xhci->slot_id;
3711 	/* Is this a LS or FS device under a HS hub? */
3712 	/* Hub or peripherial? */
3713 	return 1;
3714 
3715 disable_slot:
3716 	/* Disable slot, if we can do it without mem alloc */
3717 	spin_lock_irqsave(&xhci->lock, flags);
3718 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3719 		xhci_ring_cmd_db(xhci);
3720 	spin_unlock_irqrestore(&xhci->lock, flags);
3721 	return 0;
3722 }
3723 
3724 /*
3725  * Issue an Address Device command (which will issue a SetAddress request to
3726  * the device).
3727  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3728  * we should only issue and wait on one address command at the same time.
3729  *
3730  * We add one to the device address issued by the hardware because the USB core
3731  * uses address 1 for the root hubs (even though they're not really devices).
3732  */
3733 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3734 {
3735 	unsigned long flags;
3736 	int timeleft;
3737 	struct xhci_virt_device *virt_dev;
3738 	int ret = 0;
3739 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3740 	struct xhci_slot_ctx *slot_ctx;
3741 	struct xhci_input_control_ctx *ctrl_ctx;
3742 	u64 temp_64;
3743 	union xhci_trb *cmd_trb;
3744 
3745 	if (!udev->slot_id) {
3746 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3747 		return -EINVAL;
3748 	}
3749 
3750 	virt_dev = xhci->devs[udev->slot_id];
3751 
3752 	if (WARN_ON(!virt_dev)) {
3753 		/*
3754 		 * In plug/unplug torture test with an NEC controller,
3755 		 * a zero-dereference was observed once due to virt_dev = 0.
3756 		 * Print useful debug rather than crash if it is observed again!
3757 		 */
3758 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3759 			udev->slot_id);
3760 		return -EINVAL;
3761 	}
3762 
3763 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3764 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3765 	if (!ctrl_ctx) {
3766 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3767 				__func__);
3768 		return -EINVAL;
3769 	}
3770 	/*
3771 	 * If this is the first Set Address since device plug-in or
3772 	 * virt_device realloaction after a resume with an xHCI power loss,
3773 	 * then set up the slot context.
3774 	 */
3775 	if (!slot_ctx->dev_info)
3776 		xhci_setup_addressable_virt_dev(xhci, udev);
3777 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3778 	else
3779 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3780 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3781 	ctrl_ctx->drop_flags = 0;
3782 
3783 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3784 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3785 
3786 	spin_lock_irqsave(&xhci->lock, flags);
3787 	cmd_trb = xhci->cmd_ring->dequeue;
3788 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3789 					udev->slot_id);
3790 	if (ret) {
3791 		spin_unlock_irqrestore(&xhci->lock, flags);
3792 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3793 		return ret;
3794 	}
3795 	xhci_ring_cmd_db(xhci);
3796 	spin_unlock_irqrestore(&xhci->lock, flags);
3797 
3798 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3799 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3800 			XHCI_CMD_DEFAULT_TIMEOUT);
3801 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3802 	 * the SetAddress() "recovery interval" required by USB and aborting the
3803 	 * command on a timeout.
3804 	 */
3805 	if (timeleft <= 0) {
3806 		xhci_warn(xhci, "%s while waiting for address device command\n",
3807 				timeleft == 0 ? "Timeout" : "Signal");
3808 		/* cancel the address device command */
3809 		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3810 		if (ret < 0)
3811 			return ret;
3812 		return -ETIME;
3813 	}
3814 
3815 	switch (virt_dev->cmd_status) {
3816 	case COMP_CTX_STATE:
3817 	case COMP_EBADSLT:
3818 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3819 				udev->slot_id);
3820 		ret = -EINVAL;
3821 		break;
3822 	case COMP_TX_ERR:
3823 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3824 		ret = -EPROTO;
3825 		break;
3826 	case COMP_DEV_ERR:
3827 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3828 				"device command.\n");
3829 		ret = -ENODEV;
3830 		break;
3831 	case COMP_SUCCESS:
3832 		xhci_dbg(xhci, "Successful Address Device command\n");
3833 		break;
3834 	default:
3835 		xhci_err(xhci, "ERROR: unexpected command completion "
3836 				"code 0x%x.\n", virt_dev->cmd_status);
3837 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3838 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3839 		ret = -EINVAL;
3840 		break;
3841 	}
3842 	if (ret) {
3843 		return ret;
3844 	}
3845 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3846 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3847 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3848 		 udev->slot_id,
3849 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3850 		 (unsigned long long)
3851 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3852 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3853 			(unsigned long long)virt_dev->out_ctx->dma);
3854 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3855 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3856 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3857 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3858 	/*
3859 	 * USB core uses address 1 for the roothubs, so we add one to the
3860 	 * address given back to us by the HC.
3861 	 */
3862 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3863 	/* Use kernel assigned address for devices; store xHC assigned
3864 	 * address locally. */
3865 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3866 		+ 1;
3867 	/* Zero the input context control for later use */
3868 	ctrl_ctx->add_flags = 0;
3869 	ctrl_ctx->drop_flags = 0;
3870 
3871 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3872 
3873 	return 0;
3874 }
3875 
3876 /*
3877  * Transfer the port index into real index in the HW port status
3878  * registers. Caculate offset between the port's PORTSC register
3879  * and port status base. Divide the number of per port register
3880  * to get the real index. The raw port number bases 1.
3881  */
3882 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3883 {
3884 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3885 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3886 	__le32 __iomem *addr;
3887 	int raw_port;
3888 
3889 	if (hcd->speed != HCD_USB3)
3890 		addr = xhci->usb2_ports[port1 - 1];
3891 	else
3892 		addr = xhci->usb3_ports[port1 - 1];
3893 
3894 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3895 	return raw_port;
3896 }
3897 
3898 /*
3899  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3900  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3901  */
3902 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3903 			struct usb_device *udev, u16 max_exit_latency)
3904 {
3905 	struct xhci_virt_device *virt_dev;
3906 	struct xhci_command *command;
3907 	struct xhci_input_control_ctx *ctrl_ctx;
3908 	struct xhci_slot_ctx *slot_ctx;
3909 	unsigned long flags;
3910 	int ret;
3911 
3912 	spin_lock_irqsave(&xhci->lock, flags);
3913 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3914 		spin_unlock_irqrestore(&xhci->lock, flags);
3915 		return 0;
3916 	}
3917 
3918 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3919 	virt_dev = xhci->devs[udev->slot_id];
3920 	command = xhci->lpm_command;
3921 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3922 	if (!ctrl_ctx) {
3923 		spin_unlock_irqrestore(&xhci->lock, flags);
3924 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3925 				__func__);
3926 		return -ENOMEM;
3927 	}
3928 
3929 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3930 	spin_unlock_irqrestore(&xhci->lock, flags);
3931 
3932 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3933 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3934 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3935 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3936 
3937 	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
3938 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3939 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
3940 
3941 	/* Issue and wait for the evaluate context command. */
3942 	ret = xhci_configure_endpoint(xhci, udev, command,
3943 			true, true);
3944 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3945 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3946 
3947 	if (!ret) {
3948 		spin_lock_irqsave(&xhci->lock, flags);
3949 		virt_dev->current_mel = max_exit_latency;
3950 		spin_unlock_irqrestore(&xhci->lock, flags);
3951 	}
3952 	return ret;
3953 }
3954 
3955 #ifdef CONFIG_PM_RUNTIME
3956 
3957 /* BESL to HIRD Encoding array for USB2 LPM */
3958 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3959 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3960 
3961 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3962 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3963 					struct usb_device *udev)
3964 {
3965 	int u2del, besl, besl_host;
3966 	int besl_device = 0;
3967 	u32 field;
3968 
3969 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3970 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3971 
3972 	if (field & USB_BESL_SUPPORT) {
3973 		for (besl_host = 0; besl_host < 16; besl_host++) {
3974 			if (xhci_besl_encoding[besl_host] >= u2del)
3975 				break;
3976 		}
3977 		/* Use baseline BESL value as default */
3978 		if (field & USB_BESL_BASELINE_VALID)
3979 			besl_device = USB_GET_BESL_BASELINE(field);
3980 		else if (field & USB_BESL_DEEP_VALID)
3981 			besl_device = USB_GET_BESL_DEEP(field);
3982 	} else {
3983 		if (u2del <= 50)
3984 			besl_host = 0;
3985 		else
3986 			besl_host = (u2del - 51) / 75 + 1;
3987 	}
3988 
3989 	besl = besl_host + besl_device;
3990 	if (besl > 15)
3991 		besl = 15;
3992 
3993 	return besl;
3994 }
3995 
3996 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
3997 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
3998 {
3999 	u32 field;
4000 	int l1;
4001 	int besld = 0;
4002 	int hirdm = 0;
4003 
4004 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4005 
4006 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4007 	l1 = udev->l1_params.timeout / 256;
4008 
4009 	/* device has preferred BESLD */
4010 	if (field & USB_BESL_DEEP_VALID) {
4011 		besld = USB_GET_BESL_DEEP(field);
4012 		hirdm = 1;
4013 	}
4014 
4015 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4016 }
4017 
4018 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
4019 					struct usb_device *udev)
4020 {
4021 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4022 	struct dev_info	*dev_info;
4023 	__le32 __iomem	**port_array;
4024 	__le32 __iomem	*addr, *pm_addr;
4025 	u32		temp, dev_id;
4026 	unsigned int	port_num;
4027 	unsigned long	flags;
4028 	int		hird;
4029 	int		ret;
4030 
4031 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4032 			!udev->lpm_capable)
4033 		return -EINVAL;
4034 
4035 	/* we only support lpm for non-hub device connected to root hub yet */
4036 	if (!udev->parent || udev->parent->parent ||
4037 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4038 		return -EINVAL;
4039 
4040 	spin_lock_irqsave(&xhci->lock, flags);
4041 
4042 	/* Look for devices in lpm_failed_devs list */
4043 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
4044 			le16_to_cpu(udev->descriptor.idProduct);
4045 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
4046 		if (dev_info->dev_id == dev_id) {
4047 			ret = -EINVAL;
4048 			goto finish;
4049 		}
4050 	}
4051 
4052 	port_array = xhci->usb2_ports;
4053 	port_num = udev->portnum - 1;
4054 
4055 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
4056 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
4057 		ret = -EINVAL;
4058 		goto finish;
4059 	}
4060 
4061 	/*
4062 	 * Test USB 2.0 software LPM.
4063 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
4064 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
4065 	 * in the June 2011 errata release.
4066 	 */
4067 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
4068 	/*
4069 	 * Set L1 Device Slot and HIRD/BESL.
4070 	 * Check device's USB 2.0 extension descriptor to determine whether
4071 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
4072 	 */
4073 	pm_addr = port_array[port_num] + PORTPMSC;
4074 	hird = xhci_calculate_hird_besl(xhci, udev);
4075 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
4076 	xhci_writel(xhci, temp, pm_addr);
4077 
4078 	/* Set port link state to U2(L1) */
4079 	addr = port_array[port_num];
4080 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4081 
4082 	/* wait for ACK */
4083 	spin_unlock_irqrestore(&xhci->lock, flags);
4084 	msleep(10);
4085 	spin_lock_irqsave(&xhci->lock, flags);
4086 
4087 	/* Check L1 Status */
4088 	ret = xhci_handshake(xhci, pm_addr,
4089 			PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4090 	if (ret != -ETIMEDOUT) {
4091 		/* enter L1 successfully */
4092 		temp = xhci_readl(xhci, addr);
4093 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4094 				port_num, temp);
4095 		ret = 0;
4096 	} else {
4097 		temp = xhci_readl(xhci, pm_addr);
4098 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4099 				port_num, temp & PORT_L1S_MASK);
4100 		ret = -EINVAL;
4101 	}
4102 
4103 	/* Resume the port */
4104 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4105 
4106 	spin_unlock_irqrestore(&xhci->lock, flags);
4107 	msleep(10);
4108 	spin_lock_irqsave(&xhci->lock, flags);
4109 
4110 	/* Clear PLC */
4111 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4112 
4113 	/* Check PORTSC to make sure the device is in the right state */
4114 	if (!ret) {
4115 		temp = xhci_readl(xhci, addr);
4116 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
4117 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4118 				(temp & PORT_PLS_MASK) != XDEV_U0) {
4119 			xhci_dbg(xhci, "port L1 resume fail\n");
4120 			ret = -EINVAL;
4121 		}
4122 	}
4123 
4124 	if (ret) {
4125 		/* Insert dev to lpm_failed_devs list */
4126 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
4127 				"re-enumerate\n");
4128 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4129 		if (!dev_info) {
4130 			ret = -ENOMEM;
4131 			goto finish;
4132 		}
4133 		dev_info->dev_id = dev_id;
4134 		INIT_LIST_HEAD(&dev_info->list);
4135 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
4136 	} else {
4137 		xhci_ring_device(xhci, udev->slot_id);
4138 	}
4139 
4140 finish:
4141 	spin_unlock_irqrestore(&xhci->lock, flags);
4142 	return ret;
4143 }
4144 
4145 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4146 			struct usb_device *udev, int enable)
4147 {
4148 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4149 	__le32 __iomem	**port_array;
4150 	__le32 __iomem	*pm_addr, *hlpm_addr;
4151 	u32		pm_val, hlpm_val, field;
4152 	unsigned int	port_num;
4153 	unsigned long	flags;
4154 	int		hird, exit_latency;
4155 	int		ret;
4156 
4157 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4158 			!udev->lpm_capable)
4159 		return -EPERM;
4160 
4161 	if (!udev->parent || udev->parent->parent ||
4162 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4163 		return -EPERM;
4164 
4165 	if (udev->usb2_hw_lpm_capable != 1)
4166 		return -EPERM;
4167 
4168 	spin_lock_irqsave(&xhci->lock, flags);
4169 
4170 	port_array = xhci->usb2_ports;
4171 	port_num = udev->portnum - 1;
4172 	pm_addr = port_array[port_num] + PORTPMSC;
4173 	pm_val = xhci_readl(xhci, pm_addr);
4174 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4175 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4176 
4177 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4178 			enable ? "enable" : "disable", port_num);
4179 
4180 	if (enable) {
4181 		/* Host supports BESL timeout instead of HIRD */
4182 		if (udev->usb2_hw_lpm_besl_capable) {
4183 			/* if device doesn't have a preferred BESL value use a
4184 			 * default one which works with mixed HIRD and BESL
4185 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4186 			 */
4187 			if ((field & USB_BESL_SUPPORT) &&
4188 			    (field & USB_BESL_BASELINE_VALID))
4189 				hird = USB_GET_BESL_BASELINE(field);
4190 			else
4191 				hird = udev->l1_params.besl;
4192 
4193 			exit_latency = xhci_besl_encoding[hird];
4194 			spin_unlock_irqrestore(&xhci->lock, flags);
4195 
4196 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4197 			 * input context for link powermanagement evaluate
4198 			 * context commands. It is protected by hcd->bandwidth
4199 			 * mutex and is shared by all devices. We need to set
4200 			 * the max ext latency in USB 2 BESL LPM as well, so
4201 			 * use the same mutex and xhci_change_max_exit_latency()
4202 			 */
4203 			mutex_lock(hcd->bandwidth_mutex);
4204 			ret = xhci_change_max_exit_latency(xhci, udev,
4205 							   exit_latency);
4206 			mutex_unlock(hcd->bandwidth_mutex);
4207 
4208 			if (ret < 0)
4209 				return ret;
4210 			spin_lock_irqsave(&xhci->lock, flags);
4211 
4212 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4213 			xhci_writel(xhci, hlpm_val, hlpm_addr);
4214 			/* flush write */
4215 			xhci_readl(xhci, hlpm_addr);
4216 		} else {
4217 			hird = xhci_calculate_hird_besl(xhci, udev);
4218 		}
4219 
4220 		pm_val &= ~PORT_HIRD_MASK;
4221 		pm_val |= PORT_HIRD(hird) | PORT_RWE;
4222 		xhci_writel(xhci, pm_val, pm_addr);
4223 		pm_val = xhci_readl(xhci, pm_addr);
4224 		pm_val |= PORT_HLE;
4225 		xhci_writel(xhci, pm_val, pm_addr);
4226 		/* flush write */
4227 		xhci_readl(xhci, pm_addr);
4228 	} else {
4229 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4230 		xhci_writel(xhci, pm_val, pm_addr);
4231 		/* flush write */
4232 		xhci_readl(xhci, pm_addr);
4233 		if (udev->usb2_hw_lpm_besl_capable) {
4234 			spin_unlock_irqrestore(&xhci->lock, flags);
4235 			mutex_lock(hcd->bandwidth_mutex);
4236 			xhci_change_max_exit_latency(xhci, udev, 0);
4237 			mutex_unlock(hcd->bandwidth_mutex);
4238 			return 0;
4239 		}
4240 	}
4241 
4242 	spin_unlock_irqrestore(&xhci->lock, flags);
4243 	return 0;
4244 }
4245 
4246 /* check if a usb2 port supports a given extened capability protocol
4247  * only USB2 ports extended protocol capability values are cached.
4248  * Return 1 if capability is supported
4249  */
4250 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4251 					   unsigned capability)
4252 {
4253 	u32 port_offset, port_count;
4254 	int i;
4255 
4256 	for (i = 0; i < xhci->num_ext_caps; i++) {
4257 		if (xhci->ext_caps[i] & capability) {
4258 			/* port offsets starts at 1 */
4259 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4260 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4261 			if (port >= port_offset &&
4262 			    port < port_offset + port_count)
4263 				return 1;
4264 		}
4265 	}
4266 	return 0;
4267 }
4268 
4269 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4270 {
4271 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4272 	int		ret;
4273 	int		portnum = udev->portnum - 1;
4274 
4275 	ret = xhci_usb2_software_lpm_test(hcd, udev);
4276 	if (!ret) {
4277 		xhci_dbg(xhci, "software LPM test succeed\n");
4278 		if (xhci->hw_lpm_support == 1 &&
4279 		    xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4280 			udev->usb2_hw_lpm_capable = 1;
4281 			udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4282 			udev->l1_params.besl = XHCI_DEFAULT_BESL;
4283 			if (xhci_check_usb2_port_capability(xhci, portnum,
4284 							    XHCI_BLC))
4285 				udev->usb2_hw_lpm_besl_capable = 1;
4286 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4287 			if (!ret)
4288 				udev->usb2_hw_lpm_enabled = 1;
4289 		}
4290 	}
4291 
4292 	return 0;
4293 }
4294 
4295 #else
4296 
4297 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4298 				struct usb_device *udev, int enable)
4299 {
4300 	return 0;
4301 }
4302 
4303 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4304 {
4305 	return 0;
4306 }
4307 
4308 #endif /* CONFIG_PM_RUNTIME */
4309 
4310 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4311 
4312 #ifdef CONFIG_PM
4313 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4314 static unsigned long long xhci_service_interval_to_ns(
4315 		struct usb_endpoint_descriptor *desc)
4316 {
4317 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4318 }
4319 
4320 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4321 		enum usb3_link_state state)
4322 {
4323 	unsigned long long sel;
4324 	unsigned long long pel;
4325 	unsigned int max_sel_pel;
4326 	char *state_name;
4327 
4328 	switch (state) {
4329 	case USB3_LPM_U1:
4330 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4331 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4332 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4333 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4334 		state_name = "U1";
4335 		break;
4336 	case USB3_LPM_U2:
4337 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4338 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4339 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4340 		state_name = "U2";
4341 		break;
4342 	default:
4343 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4344 				__func__);
4345 		return USB3_LPM_DISABLED;
4346 	}
4347 
4348 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4349 		return USB3_LPM_DEVICE_INITIATED;
4350 
4351 	if (sel > max_sel_pel)
4352 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4353 				"due to long SEL %llu ms\n",
4354 				state_name, sel);
4355 	else
4356 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4357 				"due to long PEL %llu\n ms",
4358 				state_name, pel);
4359 	return USB3_LPM_DISABLED;
4360 }
4361 
4362 /* Returns the hub-encoded U1 timeout value.
4363  * The U1 timeout should be the maximum of the following values:
4364  *  - For control endpoints, U1 system exit latency (SEL) * 3
4365  *  - For bulk endpoints, U1 SEL * 5
4366  *  - For interrupt endpoints:
4367  *    - Notification EPs, U1 SEL * 3
4368  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4369  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4370  */
4371 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4372 		struct usb_endpoint_descriptor *desc)
4373 {
4374 	unsigned long long timeout_ns;
4375 	int ep_type;
4376 	int intr_type;
4377 
4378 	ep_type = usb_endpoint_type(desc);
4379 	switch (ep_type) {
4380 	case USB_ENDPOINT_XFER_CONTROL:
4381 		timeout_ns = udev->u1_params.sel * 3;
4382 		break;
4383 	case USB_ENDPOINT_XFER_BULK:
4384 		timeout_ns = udev->u1_params.sel * 5;
4385 		break;
4386 	case USB_ENDPOINT_XFER_INT:
4387 		intr_type = usb_endpoint_interrupt_type(desc);
4388 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4389 			timeout_ns = udev->u1_params.sel * 3;
4390 			break;
4391 		}
4392 		/* Otherwise the calculation is the same as isoc eps */
4393 	case USB_ENDPOINT_XFER_ISOC:
4394 		timeout_ns = xhci_service_interval_to_ns(desc);
4395 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4396 		if (timeout_ns < udev->u1_params.sel * 2)
4397 			timeout_ns = udev->u1_params.sel * 2;
4398 		break;
4399 	default:
4400 		return 0;
4401 	}
4402 
4403 	/* The U1 timeout is encoded in 1us intervals. */
4404 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4405 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4406 	if (timeout_ns == USB3_LPM_DISABLED)
4407 		timeout_ns++;
4408 
4409 	/* If the necessary timeout value is bigger than what we can set in the
4410 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4411 	 */
4412 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4413 		return timeout_ns;
4414 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4415 			"due to long timeout %llu ms\n", timeout_ns);
4416 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4417 }
4418 
4419 /* Returns the hub-encoded U2 timeout value.
4420  * The U2 timeout should be the maximum of:
4421  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4422  *  - largest bInterval of any active periodic endpoint (to avoid going
4423  *    into lower power link states between intervals).
4424  *  - the U2 Exit Latency of the device
4425  */
4426 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4427 		struct usb_endpoint_descriptor *desc)
4428 {
4429 	unsigned long long timeout_ns;
4430 	unsigned long long u2_del_ns;
4431 
4432 	timeout_ns = 10 * 1000 * 1000;
4433 
4434 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4435 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4436 		timeout_ns = xhci_service_interval_to_ns(desc);
4437 
4438 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4439 	if (u2_del_ns > timeout_ns)
4440 		timeout_ns = u2_del_ns;
4441 
4442 	/* The U2 timeout is encoded in 256us intervals */
4443 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4444 	/* If the necessary timeout value is bigger than what we can set in the
4445 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4446 	 */
4447 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4448 		return timeout_ns;
4449 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4450 			"due to long timeout %llu ms\n", timeout_ns);
4451 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4452 }
4453 
4454 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4455 		struct usb_device *udev,
4456 		struct usb_endpoint_descriptor *desc,
4457 		enum usb3_link_state state,
4458 		u16 *timeout)
4459 {
4460 	if (state == USB3_LPM_U1) {
4461 		if (xhci->quirks & XHCI_INTEL_HOST)
4462 			return xhci_calculate_intel_u1_timeout(udev, desc);
4463 	} else {
4464 		if (xhci->quirks & XHCI_INTEL_HOST)
4465 			return xhci_calculate_intel_u2_timeout(udev, desc);
4466 	}
4467 
4468 	return USB3_LPM_DISABLED;
4469 }
4470 
4471 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4472 		struct usb_device *udev,
4473 		struct usb_endpoint_descriptor *desc,
4474 		enum usb3_link_state state,
4475 		u16 *timeout)
4476 {
4477 	u16 alt_timeout;
4478 
4479 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4480 		desc, state, timeout);
4481 
4482 	/* If we found we can't enable hub-initiated LPM, or
4483 	 * the U1 or U2 exit latency was too high to allow
4484 	 * device-initiated LPM as well, just stop searching.
4485 	 */
4486 	if (alt_timeout == USB3_LPM_DISABLED ||
4487 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4488 		*timeout = alt_timeout;
4489 		return -E2BIG;
4490 	}
4491 	if (alt_timeout > *timeout)
4492 		*timeout = alt_timeout;
4493 	return 0;
4494 }
4495 
4496 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4497 		struct usb_device *udev,
4498 		struct usb_host_interface *alt,
4499 		enum usb3_link_state state,
4500 		u16 *timeout)
4501 {
4502 	int j;
4503 
4504 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4505 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4506 					&alt->endpoint[j].desc, state, timeout))
4507 			return -E2BIG;
4508 		continue;
4509 	}
4510 	return 0;
4511 }
4512 
4513 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4514 		enum usb3_link_state state)
4515 {
4516 	struct usb_device *parent;
4517 	unsigned int num_hubs;
4518 
4519 	if (state == USB3_LPM_U2)
4520 		return 0;
4521 
4522 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4523 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4524 			parent = parent->parent)
4525 		num_hubs++;
4526 
4527 	if (num_hubs < 2)
4528 		return 0;
4529 
4530 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4531 			" below second-tier hub.\n");
4532 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4533 			"to decrease power consumption.\n");
4534 	return -E2BIG;
4535 }
4536 
4537 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4538 		struct usb_device *udev,
4539 		enum usb3_link_state state)
4540 {
4541 	if (xhci->quirks & XHCI_INTEL_HOST)
4542 		return xhci_check_intel_tier_policy(udev, state);
4543 	return -EINVAL;
4544 }
4545 
4546 /* Returns the U1 or U2 timeout that should be enabled.
4547  * If the tier check or timeout setting functions return with a non-zero exit
4548  * code, that means the timeout value has been finalized and we shouldn't look
4549  * at any more endpoints.
4550  */
4551 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4552 			struct usb_device *udev, enum usb3_link_state state)
4553 {
4554 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4555 	struct usb_host_config *config;
4556 	char *state_name;
4557 	int i;
4558 	u16 timeout = USB3_LPM_DISABLED;
4559 
4560 	if (state == USB3_LPM_U1)
4561 		state_name = "U1";
4562 	else if (state == USB3_LPM_U2)
4563 		state_name = "U2";
4564 	else {
4565 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4566 				state);
4567 		return timeout;
4568 	}
4569 
4570 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4571 		return timeout;
4572 
4573 	/* Gather some information about the currently installed configuration
4574 	 * and alternate interface settings.
4575 	 */
4576 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4577 			state, &timeout))
4578 		return timeout;
4579 
4580 	config = udev->actconfig;
4581 	if (!config)
4582 		return timeout;
4583 
4584 	for (i = 0; i < USB_MAXINTERFACES; i++) {
4585 		struct usb_driver *driver;
4586 		struct usb_interface *intf = config->interface[i];
4587 
4588 		if (!intf)
4589 			continue;
4590 
4591 		/* Check if any currently bound drivers want hub-initiated LPM
4592 		 * disabled.
4593 		 */
4594 		if (intf->dev.driver) {
4595 			driver = to_usb_driver(intf->dev.driver);
4596 			if (driver && driver->disable_hub_initiated_lpm) {
4597 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4598 						"at request of driver %s\n",
4599 						state_name, driver->name);
4600 				return xhci_get_timeout_no_hub_lpm(udev, state);
4601 			}
4602 		}
4603 
4604 		/* Not sure how this could happen... */
4605 		if (!intf->cur_altsetting)
4606 			continue;
4607 
4608 		if (xhci_update_timeout_for_interface(xhci, udev,
4609 					intf->cur_altsetting,
4610 					state, &timeout))
4611 			return timeout;
4612 	}
4613 	return timeout;
4614 }
4615 
4616 static int calculate_max_exit_latency(struct usb_device *udev,
4617 		enum usb3_link_state state_changed,
4618 		u16 hub_encoded_timeout)
4619 {
4620 	unsigned long long u1_mel_us = 0;
4621 	unsigned long long u2_mel_us = 0;
4622 	unsigned long long mel_us = 0;
4623 	bool disabling_u1;
4624 	bool disabling_u2;
4625 	bool enabling_u1;
4626 	bool enabling_u2;
4627 
4628 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4629 			hub_encoded_timeout == USB3_LPM_DISABLED);
4630 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4631 			hub_encoded_timeout == USB3_LPM_DISABLED);
4632 
4633 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4634 			hub_encoded_timeout != USB3_LPM_DISABLED);
4635 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4636 			hub_encoded_timeout != USB3_LPM_DISABLED);
4637 
4638 	/* If U1 was already enabled and we're not disabling it,
4639 	 * or we're going to enable U1, account for the U1 max exit latency.
4640 	 */
4641 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4642 			enabling_u1)
4643 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4644 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4645 			enabling_u2)
4646 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4647 
4648 	if (u1_mel_us > u2_mel_us)
4649 		mel_us = u1_mel_us;
4650 	else
4651 		mel_us = u2_mel_us;
4652 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4653 	if (mel_us > MAX_EXIT) {
4654 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4655 				"is too big.\n", mel_us);
4656 		return -E2BIG;
4657 	}
4658 	return mel_us;
4659 }
4660 
4661 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4662 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4663 			struct usb_device *udev, enum usb3_link_state state)
4664 {
4665 	struct xhci_hcd	*xhci;
4666 	u16 hub_encoded_timeout;
4667 	int mel;
4668 	int ret;
4669 
4670 	xhci = hcd_to_xhci(hcd);
4671 	/* The LPM timeout values are pretty host-controller specific, so don't
4672 	 * enable hub-initiated timeouts unless the vendor has provided
4673 	 * information about their timeout algorithm.
4674 	 */
4675 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4676 			!xhci->devs[udev->slot_id])
4677 		return USB3_LPM_DISABLED;
4678 
4679 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4680 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4681 	if (mel < 0) {
4682 		/* Max Exit Latency is too big, disable LPM. */
4683 		hub_encoded_timeout = USB3_LPM_DISABLED;
4684 		mel = 0;
4685 	}
4686 
4687 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4688 	if (ret)
4689 		return ret;
4690 	return hub_encoded_timeout;
4691 }
4692 
4693 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4694 			struct usb_device *udev, enum usb3_link_state state)
4695 {
4696 	struct xhci_hcd	*xhci;
4697 	u16 mel;
4698 	int ret;
4699 
4700 	xhci = hcd_to_xhci(hcd);
4701 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4702 			!xhci->devs[udev->slot_id])
4703 		return 0;
4704 
4705 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4706 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4707 	if (ret)
4708 		return ret;
4709 	return 0;
4710 }
4711 #else /* CONFIG_PM */
4712 
4713 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4714 			struct usb_device *udev, enum usb3_link_state state)
4715 {
4716 	return USB3_LPM_DISABLED;
4717 }
4718 
4719 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4720 			struct usb_device *udev, enum usb3_link_state state)
4721 {
4722 	return 0;
4723 }
4724 #endif	/* CONFIG_PM */
4725 
4726 /*-------------------------------------------------------------------------*/
4727 
4728 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4729  * internal data structures for the device.
4730  */
4731 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4732 			struct usb_tt *tt, gfp_t mem_flags)
4733 {
4734 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4735 	struct xhci_virt_device *vdev;
4736 	struct xhci_command *config_cmd;
4737 	struct xhci_input_control_ctx *ctrl_ctx;
4738 	struct xhci_slot_ctx *slot_ctx;
4739 	unsigned long flags;
4740 	unsigned think_time;
4741 	int ret;
4742 
4743 	/* Ignore root hubs */
4744 	if (!hdev->parent)
4745 		return 0;
4746 
4747 	vdev = xhci->devs[hdev->slot_id];
4748 	if (!vdev) {
4749 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4750 		return -EINVAL;
4751 	}
4752 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4753 	if (!config_cmd) {
4754 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4755 		return -ENOMEM;
4756 	}
4757 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4758 	if (!ctrl_ctx) {
4759 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4760 				__func__);
4761 		xhci_free_command(xhci, config_cmd);
4762 		return -ENOMEM;
4763 	}
4764 
4765 	spin_lock_irqsave(&xhci->lock, flags);
4766 	if (hdev->speed == USB_SPEED_HIGH &&
4767 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4768 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4769 		xhci_free_command(xhci, config_cmd);
4770 		spin_unlock_irqrestore(&xhci->lock, flags);
4771 		return -ENOMEM;
4772 	}
4773 
4774 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4775 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4776 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4777 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4778 	if (tt->multi)
4779 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4780 	if (xhci->hci_version > 0x95) {
4781 		xhci_dbg(xhci, "xHCI version %x needs hub "
4782 				"TT think time and number of ports\n",
4783 				(unsigned int) xhci->hci_version);
4784 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4785 		/* Set TT think time - convert from ns to FS bit times.
4786 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4787 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4788 		 *
4789 		 * xHCI 1.0: this field shall be 0 if the device is not a
4790 		 * High-spped hub.
4791 		 */
4792 		think_time = tt->think_time;
4793 		if (think_time != 0)
4794 			think_time = (think_time / 666) - 1;
4795 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4796 			slot_ctx->tt_info |=
4797 				cpu_to_le32(TT_THINK_TIME(think_time));
4798 	} else {
4799 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4800 				"TT think time or number of ports\n",
4801 				(unsigned int) xhci->hci_version);
4802 	}
4803 	slot_ctx->dev_state = 0;
4804 	spin_unlock_irqrestore(&xhci->lock, flags);
4805 
4806 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4807 			(xhci->hci_version > 0x95) ?
4808 			"configure endpoint" : "evaluate context");
4809 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4810 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4811 
4812 	/* Issue and wait for the configure endpoint or
4813 	 * evaluate context command.
4814 	 */
4815 	if (xhci->hci_version > 0x95)
4816 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4817 				false, false);
4818 	else
4819 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4820 				true, false);
4821 
4822 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4823 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4824 
4825 	xhci_free_command(xhci, config_cmd);
4826 	return ret;
4827 }
4828 
4829 int xhci_get_frame(struct usb_hcd *hcd)
4830 {
4831 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4832 	/* EHCI mods by the periodic size.  Why? */
4833 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4834 }
4835 
4836 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4837 {
4838 	struct xhci_hcd		*xhci;
4839 	struct device		*dev = hcd->self.controller;
4840 	int			retval;
4841 	u32			temp;
4842 
4843 	/* Accept arbitrarily long scatter-gather lists */
4844 	hcd->self.sg_tablesize = ~0;
4845 	/* XHCI controllers don't stop the ep queue on short packets :| */
4846 	hcd->self.no_stop_on_short = 1;
4847 
4848 	if (usb_hcd_is_primary_hcd(hcd)) {
4849 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4850 		if (!xhci)
4851 			return -ENOMEM;
4852 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4853 		xhci->main_hcd = hcd;
4854 		/* Mark the first roothub as being USB 2.0.
4855 		 * The xHCI driver will register the USB 3.0 roothub.
4856 		 */
4857 		hcd->speed = HCD_USB2;
4858 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4859 		/*
4860 		 * USB 2.0 roothub under xHCI has an integrated TT,
4861 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4862 		 * companion controller.
4863 		 */
4864 		hcd->has_tt = 1;
4865 	} else {
4866 		/* xHCI private pointer was set in xhci_pci_probe for the second
4867 		 * registered roothub.
4868 		 */
4869 		xhci = hcd_to_xhci(hcd);
4870 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4871 		if (HCC_64BIT_ADDR(temp)) {
4872 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4873 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4874 		} else {
4875 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4876 		}
4877 		return 0;
4878 	}
4879 
4880 	xhci->cap_regs = hcd->regs;
4881 	xhci->op_regs = hcd->regs +
4882 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4883 	xhci->run_regs = hcd->regs +
4884 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4885 	/* Cache read-only capability registers */
4886 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4887 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4888 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4889 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4890 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4891 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4892 	xhci_print_registers(xhci);
4893 
4894 	get_quirks(dev, xhci);
4895 
4896 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4897 	 * success event after a short transfer. This quirk will ignore such
4898 	 * spurious event.
4899 	 */
4900 	if (xhci->hci_version > 0x96)
4901 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4902 
4903 	/* Make sure the HC is halted. */
4904 	retval = xhci_halt(xhci);
4905 	if (retval)
4906 		goto error;
4907 
4908 	xhci_dbg(xhci, "Resetting HCD\n");
4909 	/* Reset the internal HC memory state and registers. */
4910 	retval = xhci_reset(xhci);
4911 	if (retval)
4912 		goto error;
4913 	xhci_dbg(xhci, "Reset complete\n");
4914 
4915 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4916 	if (HCC_64BIT_ADDR(temp)) {
4917 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4918 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4919 	} else {
4920 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4921 	}
4922 
4923 	xhci_dbg(xhci, "Calling HCD init\n");
4924 	/* Initialize HCD and host controller data structures. */
4925 	retval = xhci_init(hcd);
4926 	if (retval)
4927 		goto error;
4928 	xhci_dbg(xhci, "Called HCD init\n");
4929 	return 0;
4930 error:
4931 	kfree(xhci);
4932 	return retval;
4933 }
4934 
4935 MODULE_DESCRIPTION(DRIVER_DESC);
4936 MODULE_AUTHOR(DRIVER_AUTHOR);
4937 MODULE_LICENSE("GPL");
4938 
4939 static int __init xhci_hcd_init(void)
4940 {
4941 	int retval;
4942 
4943 	retval = xhci_register_pci();
4944 	if (retval < 0) {
4945 		printk(KERN_DEBUG "Problem registering PCI driver.");
4946 		return retval;
4947 	}
4948 	retval = xhci_register_plat();
4949 	if (retval < 0) {
4950 		printk(KERN_DEBUG "Problem registering platform driver.");
4951 		goto unreg_pci;
4952 	}
4953 	/*
4954 	 * Check the compiler generated sizes of structures that must be laid
4955 	 * out in specific ways for hardware access.
4956 	 */
4957 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4958 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4959 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4960 	/* xhci_device_control has eight fields, and also
4961 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4962 	 */
4963 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4964 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4965 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4966 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4967 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4968 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4969 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4970 	return 0;
4971 unreg_pci:
4972 	xhci_unregister_pci();
4973 	return retval;
4974 }
4975 module_init(xhci_hcd_init);
4976 
4977 static void __exit xhci_hcd_cleanup(void)
4978 {
4979 	xhci_unregister_pci();
4980 	xhci_unregister_plat();
4981 }
4982 module_exit(xhci_hcd_cleanup);
4983