1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 34 #define DRIVER_AUTHOR "Sarah Sharp" 35 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 36 37 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 38 static int link_quirk; 39 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 40 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 41 42 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 43 /* 44 * xhci_handshake - spin reading hc until handshake completes or fails 45 * @ptr: address of hc register to be read 46 * @mask: bits to look at in result of read 47 * @done: value of those bits when handshake succeeds 48 * @usec: timeout in microseconds 49 * 50 * Returns negative errno, or zero on success 51 * 52 * Success happens when the "mask" bits have the specified value (hardware 53 * handshake done). There are two failure modes: "usec" have passed (major 54 * hardware flakeout), or the register reads as all-ones (hardware removed). 55 */ 56 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 57 u32 mask, u32 done, int usec) 58 { 59 u32 result; 60 61 do { 62 result = xhci_readl(xhci, ptr); 63 if (result == ~(u32)0) /* card removed */ 64 return -ENODEV; 65 result &= mask; 66 if (result == done) 67 return 0; 68 udelay(1); 69 usec--; 70 } while (usec > 0); 71 return -ETIMEDOUT; 72 } 73 74 /* 75 * Disable interrupts and begin the xHCI halting process. 76 */ 77 void xhci_quiesce(struct xhci_hcd *xhci) 78 { 79 u32 halted; 80 u32 cmd; 81 u32 mask; 82 83 mask = ~(XHCI_IRQS); 84 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 85 if (!halted) 86 mask &= ~CMD_RUN; 87 88 cmd = xhci_readl(xhci, &xhci->op_regs->command); 89 cmd &= mask; 90 xhci_writel(xhci, cmd, &xhci->op_regs->command); 91 } 92 93 /* 94 * Force HC into halt state. 95 * 96 * Disable any IRQs and clear the run/stop bit. 97 * HC will complete any current and actively pipelined transactions, and 98 * should halt within 16 ms of the run/stop bit being cleared. 99 * Read HC Halted bit in the status register to see when the HC is finished. 100 */ 101 int xhci_halt(struct xhci_hcd *xhci) 102 { 103 int ret; 104 xhci_dbg(xhci, "// Halt the HC\n"); 105 xhci_quiesce(xhci); 106 107 ret = xhci_handshake(xhci, &xhci->op_regs->status, 108 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 109 if (!ret) { 110 xhci->xhc_state |= XHCI_STATE_HALTED; 111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 112 } else 113 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 114 XHCI_MAX_HALT_USEC); 115 return ret; 116 } 117 118 /* 119 * Set the run bit and wait for the host to be running. 120 */ 121 static int xhci_start(struct xhci_hcd *xhci) 122 { 123 u32 temp; 124 int ret; 125 126 temp = xhci_readl(xhci, &xhci->op_regs->command); 127 temp |= (CMD_RUN); 128 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 129 temp); 130 xhci_writel(xhci, temp, &xhci->op_regs->command); 131 132 /* 133 * Wait for the HCHalted Status bit to be 0 to indicate the host is 134 * running. 135 */ 136 ret = xhci_handshake(xhci, &xhci->op_regs->status, 137 STS_HALT, 0, XHCI_MAX_HALT_USEC); 138 if (ret == -ETIMEDOUT) 139 xhci_err(xhci, "Host took too long to start, " 140 "waited %u microseconds.\n", 141 XHCI_MAX_HALT_USEC); 142 if (!ret) 143 xhci->xhc_state &= ~XHCI_STATE_HALTED; 144 return ret; 145 } 146 147 /* 148 * Reset a halted HC. 149 * 150 * This resets pipelines, timers, counters, state machines, etc. 151 * Transactions will be terminated immediately, and operational registers 152 * will be set to their defaults. 153 */ 154 int xhci_reset(struct xhci_hcd *xhci) 155 { 156 u32 command; 157 u32 state; 158 int ret, i; 159 160 state = xhci_readl(xhci, &xhci->op_regs->status); 161 if ((state & STS_HALT) == 0) { 162 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 163 return 0; 164 } 165 166 xhci_dbg(xhci, "// Reset the HC\n"); 167 command = xhci_readl(xhci, &xhci->op_regs->command); 168 command |= CMD_RESET; 169 xhci_writel(xhci, command, &xhci->op_regs->command); 170 171 ret = xhci_handshake(xhci, &xhci->op_regs->command, 172 CMD_RESET, 0, 10 * 1000 * 1000); 173 if (ret) 174 return ret; 175 176 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 177 /* 178 * xHCI cannot write to any doorbells or operational registers other 179 * than status until the "Controller Not Ready" flag is cleared. 180 */ 181 ret = xhci_handshake(xhci, &xhci->op_regs->status, 182 STS_CNR, 0, 10 * 1000 * 1000); 183 184 for (i = 0; i < 2; ++i) { 185 xhci->bus_state[i].port_c_suspend = 0; 186 xhci->bus_state[i].suspended_ports = 0; 187 xhci->bus_state[i].resuming_ports = 0; 188 } 189 190 return ret; 191 } 192 193 #ifdef CONFIG_PCI 194 static int xhci_free_msi(struct xhci_hcd *xhci) 195 { 196 int i; 197 198 if (!xhci->msix_entries) 199 return -EINVAL; 200 201 for (i = 0; i < xhci->msix_count; i++) 202 if (xhci->msix_entries[i].vector) 203 free_irq(xhci->msix_entries[i].vector, 204 xhci_to_hcd(xhci)); 205 return 0; 206 } 207 208 /* 209 * Set up MSI 210 */ 211 static int xhci_setup_msi(struct xhci_hcd *xhci) 212 { 213 int ret; 214 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 215 216 ret = pci_enable_msi(pdev); 217 if (ret) { 218 xhci_dbg(xhci, "failed to allocate MSI entry\n"); 219 return ret; 220 } 221 222 ret = request_irq(pdev->irq, xhci_msi_irq, 223 0, "xhci_hcd", xhci_to_hcd(xhci)); 224 if (ret) { 225 xhci_dbg(xhci, "disable MSI interrupt\n"); 226 pci_disable_msi(pdev); 227 } 228 229 return ret; 230 } 231 232 /* 233 * Free IRQs 234 * free all IRQs request 235 */ 236 static void xhci_free_irq(struct xhci_hcd *xhci) 237 { 238 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 239 int ret; 240 241 /* return if using legacy interrupt */ 242 if (xhci_to_hcd(xhci)->irq > 0) 243 return; 244 245 ret = xhci_free_msi(xhci); 246 if (!ret) 247 return; 248 if (pdev->irq > 0) 249 free_irq(pdev->irq, xhci_to_hcd(xhci)); 250 251 return; 252 } 253 254 /* 255 * Set up MSI-X 256 */ 257 static int xhci_setup_msix(struct xhci_hcd *xhci) 258 { 259 int i, ret = 0; 260 struct usb_hcd *hcd = xhci_to_hcd(xhci); 261 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 262 263 /* 264 * calculate number of msi-x vectors supported. 265 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 266 * with max number of interrupters based on the xhci HCSPARAMS1. 267 * - num_online_cpus: maximum msi-x vectors per CPUs core. 268 * Add additional 1 vector to ensure always available interrupt. 269 */ 270 xhci->msix_count = min(num_online_cpus() + 1, 271 HCS_MAX_INTRS(xhci->hcs_params1)); 272 273 xhci->msix_entries = 274 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 275 GFP_KERNEL); 276 if (!xhci->msix_entries) { 277 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 278 return -ENOMEM; 279 } 280 281 for (i = 0; i < xhci->msix_count; i++) { 282 xhci->msix_entries[i].entry = i; 283 xhci->msix_entries[i].vector = 0; 284 } 285 286 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 287 if (ret) { 288 xhci_dbg(xhci, "Failed to enable MSI-X\n"); 289 goto free_entries; 290 } 291 292 for (i = 0; i < xhci->msix_count; i++) { 293 ret = request_irq(xhci->msix_entries[i].vector, 294 xhci_msi_irq, 295 0, "xhci_hcd", xhci_to_hcd(xhci)); 296 if (ret) 297 goto disable_msix; 298 } 299 300 hcd->msix_enabled = 1; 301 return ret; 302 303 disable_msix: 304 xhci_dbg(xhci, "disable MSI-X interrupt\n"); 305 xhci_free_irq(xhci); 306 pci_disable_msix(pdev); 307 free_entries: 308 kfree(xhci->msix_entries); 309 xhci->msix_entries = NULL; 310 return ret; 311 } 312 313 /* Free any IRQs and disable MSI-X */ 314 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 315 { 316 struct usb_hcd *hcd = xhci_to_hcd(xhci); 317 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 318 319 xhci_free_irq(xhci); 320 321 if (xhci->msix_entries) { 322 pci_disable_msix(pdev); 323 kfree(xhci->msix_entries); 324 xhci->msix_entries = NULL; 325 } else { 326 pci_disable_msi(pdev); 327 } 328 329 hcd->msix_enabled = 0; 330 return; 331 } 332 333 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 334 { 335 int i; 336 337 if (xhci->msix_entries) { 338 for (i = 0; i < xhci->msix_count; i++) 339 synchronize_irq(xhci->msix_entries[i].vector); 340 } 341 } 342 343 static int xhci_try_enable_msi(struct usb_hcd *hcd) 344 { 345 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 346 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 347 int ret; 348 349 /* 350 * Some Fresco Logic host controllers advertise MSI, but fail to 351 * generate interrupts. Don't even try to enable MSI. 352 */ 353 if (xhci->quirks & XHCI_BROKEN_MSI) 354 goto legacy_irq; 355 356 /* unregister the legacy interrupt */ 357 if (hcd->irq) 358 free_irq(hcd->irq, hcd); 359 hcd->irq = 0; 360 361 ret = xhci_setup_msix(xhci); 362 if (ret) 363 /* fall back to msi*/ 364 ret = xhci_setup_msi(xhci); 365 366 if (!ret) 367 /* hcd->irq is 0, we have MSI */ 368 return 0; 369 370 if (!pdev->irq) { 371 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 372 return -EINVAL; 373 } 374 375 legacy_irq: 376 /* fall back to legacy interrupt*/ 377 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 378 hcd->irq_descr, hcd); 379 if (ret) { 380 xhci_err(xhci, "request interrupt %d failed\n", 381 pdev->irq); 382 return ret; 383 } 384 hcd->irq = pdev->irq; 385 return 0; 386 } 387 388 #else 389 390 static int xhci_try_enable_msi(struct usb_hcd *hcd) 391 { 392 return 0; 393 } 394 395 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 396 { 397 } 398 399 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 400 { 401 } 402 403 #endif 404 405 static void compliance_mode_recovery(unsigned long arg) 406 { 407 struct xhci_hcd *xhci; 408 struct usb_hcd *hcd; 409 u32 temp; 410 int i; 411 412 xhci = (struct xhci_hcd *)arg; 413 414 for (i = 0; i < xhci->num_usb3_ports; i++) { 415 temp = xhci_readl(xhci, xhci->usb3_ports[i]); 416 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 417 /* 418 * Compliance Mode Detected. Letting USB Core 419 * handle the Warm Reset 420 */ 421 xhci_dbg(xhci, "Compliance mode detected->port %d\n", 422 i + 1); 423 xhci_dbg(xhci, "Attempting compliance mode recovery\n"); 424 hcd = xhci->shared_hcd; 425 426 if (hcd->state == HC_STATE_SUSPENDED) 427 usb_hcd_resume_root_hub(hcd); 428 429 usb_hcd_poll_rh_status(hcd); 430 } 431 } 432 433 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 434 mod_timer(&xhci->comp_mode_recovery_timer, 435 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 436 } 437 438 /* 439 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 440 * that causes ports behind that hardware to enter compliance mode sometimes. 441 * The quirk creates a timer that polls every 2 seconds the link state of 442 * each host controller's port and recovers it by issuing a Warm reset 443 * if Compliance mode is detected, otherwise the port will become "dead" (no 444 * device connections or disconnections will be detected anymore). Becasue no 445 * status event is generated when entering compliance mode (per xhci spec), 446 * this quirk is needed on systems that have the failing hardware installed. 447 */ 448 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 449 { 450 xhci->port_status_u0 = 0; 451 init_timer(&xhci->comp_mode_recovery_timer); 452 453 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 454 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 455 xhci->comp_mode_recovery_timer.expires = jiffies + 456 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 457 458 set_timer_slack(&xhci->comp_mode_recovery_timer, 459 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 460 add_timer(&xhci->comp_mode_recovery_timer); 461 xhci_dbg(xhci, "Compliance mode recovery timer initialized\n"); 462 } 463 464 /* 465 * This function identifies the systems that have installed the SN65LVPE502CP 466 * USB3.0 re-driver and that need the Compliance Mode Quirk. 467 * Systems: 468 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 469 */ 470 bool xhci_compliance_mode_recovery_timer_quirk_check(void) 471 { 472 const char *dmi_product_name, *dmi_sys_vendor; 473 474 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 475 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 476 if (!dmi_product_name || !dmi_sys_vendor) 477 return false; 478 479 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 480 return false; 481 482 if (strstr(dmi_product_name, "Z420") || 483 strstr(dmi_product_name, "Z620") || 484 strstr(dmi_product_name, "Z820") || 485 strstr(dmi_product_name, "Z1 Workstation")) 486 return true; 487 488 return false; 489 } 490 491 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 492 { 493 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 494 } 495 496 497 /* 498 * Initialize memory for HCD and xHC (one-time init). 499 * 500 * Program the PAGESIZE register, initialize the device context array, create 501 * device contexts (?), set up a command ring segment (or two?), create event 502 * ring (one for now). 503 */ 504 int xhci_init(struct usb_hcd *hcd) 505 { 506 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 507 int retval = 0; 508 509 xhci_dbg(xhci, "xhci_init\n"); 510 spin_lock_init(&xhci->lock); 511 if (xhci->hci_version == 0x95 && link_quirk) { 512 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 513 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 514 } else { 515 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 516 } 517 retval = xhci_mem_init(xhci, GFP_KERNEL); 518 xhci_dbg(xhci, "Finished xhci_init\n"); 519 520 /* Initializing Compliance Mode Recovery Data If Needed */ 521 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 522 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 523 compliance_mode_recovery_timer_init(xhci); 524 } 525 526 return retval; 527 } 528 529 /*-------------------------------------------------------------------------*/ 530 531 532 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 533 static void xhci_event_ring_work(unsigned long arg) 534 { 535 unsigned long flags; 536 int temp; 537 u64 temp_64; 538 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 539 int i, j; 540 541 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 542 543 spin_lock_irqsave(&xhci->lock, flags); 544 temp = xhci_readl(xhci, &xhci->op_regs->status); 545 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 546 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 547 (xhci->xhc_state & XHCI_STATE_HALTED)) { 548 xhci_dbg(xhci, "HW died, polling stopped.\n"); 549 spin_unlock_irqrestore(&xhci->lock, flags); 550 return; 551 } 552 553 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 554 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 555 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 556 xhci->error_bitmask = 0; 557 xhci_dbg(xhci, "Event ring:\n"); 558 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 559 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 560 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 561 temp_64 &= ~ERST_PTR_MASK; 562 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 563 xhci_dbg(xhci, "Command ring:\n"); 564 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 565 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 566 xhci_dbg_cmd_ptrs(xhci); 567 for (i = 0; i < MAX_HC_SLOTS; ++i) { 568 if (!xhci->devs[i]) 569 continue; 570 for (j = 0; j < 31; ++j) { 571 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 572 } 573 } 574 spin_unlock_irqrestore(&xhci->lock, flags); 575 576 if (!xhci->zombie) 577 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 578 else 579 xhci_dbg(xhci, "Quit polling the event ring.\n"); 580 } 581 #endif 582 583 static int xhci_run_finished(struct xhci_hcd *xhci) 584 { 585 if (xhci_start(xhci)) { 586 xhci_halt(xhci); 587 return -ENODEV; 588 } 589 xhci->shared_hcd->state = HC_STATE_RUNNING; 590 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 591 592 if (xhci->quirks & XHCI_NEC_HOST) 593 xhci_ring_cmd_db(xhci); 594 595 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); 596 return 0; 597 } 598 599 /* 600 * Start the HC after it was halted. 601 * 602 * This function is called by the USB core when the HC driver is added. 603 * Its opposite is xhci_stop(). 604 * 605 * xhci_init() must be called once before this function can be called. 606 * Reset the HC, enable device slot contexts, program DCBAAP, and 607 * set command ring pointer and event ring pointer. 608 * 609 * Setup MSI-X vectors and enable interrupts. 610 */ 611 int xhci_run(struct usb_hcd *hcd) 612 { 613 u32 temp; 614 u64 temp_64; 615 int ret; 616 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 617 618 /* Start the xHCI host controller running only after the USB 2.0 roothub 619 * is setup. 620 */ 621 622 hcd->uses_new_polling = 1; 623 if (!usb_hcd_is_primary_hcd(hcd)) 624 return xhci_run_finished(xhci); 625 626 xhci_dbg(xhci, "xhci_run\n"); 627 628 ret = xhci_try_enable_msi(hcd); 629 if (ret) 630 return ret; 631 632 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 633 init_timer(&xhci->event_ring_timer); 634 xhci->event_ring_timer.data = (unsigned long) xhci; 635 xhci->event_ring_timer.function = xhci_event_ring_work; 636 /* Poll the event ring */ 637 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 638 xhci->zombie = 0; 639 xhci_dbg(xhci, "Setting event ring polling timer\n"); 640 add_timer(&xhci->event_ring_timer); 641 #endif 642 643 xhci_dbg(xhci, "Command ring memory map follows:\n"); 644 xhci_debug_ring(xhci, xhci->cmd_ring); 645 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 646 xhci_dbg_cmd_ptrs(xhci); 647 648 xhci_dbg(xhci, "ERST memory map follows:\n"); 649 xhci_dbg_erst(xhci, &xhci->erst); 650 xhci_dbg(xhci, "Event ring:\n"); 651 xhci_debug_ring(xhci, xhci->event_ring); 652 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 653 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 654 temp_64 &= ~ERST_PTR_MASK; 655 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 656 657 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 658 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 659 temp &= ~ER_IRQ_INTERVAL_MASK; 660 temp |= (u32) 160; 661 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 662 663 /* Set the HCD state before we enable the irqs */ 664 temp = xhci_readl(xhci, &xhci->op_regs->command); 665 temp |= (CMD_EIE); 666 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 667 temp); 668 xhci_writel(xhci, temp, &xhci->op_regs->command); 669 670 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 671 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 672 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 673 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 674 &xhci->ir_set->irq_pending); 675 xhci_print_ir_set(xhci, 0); 676 677 if (xhci->quirks & XHCI_NEC_HOST) 678 xhci_queue_vendor_command(xhci, 0, 0, 0, 679 TRB_TYPE(TRB_NEC_GET_FW)); 680 681 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); 682 return 0; 683 } 684 685 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 686 { 687 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 688 689 spin_lock_irq(&xhci->lock); 690 xhci_halt(xhci); 691 692 /* The shared_hcd is going to be deallocated shortly (the USB core only 693 * calls this function when allocation fails in usb_add_hcd(), or 694 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 695 */ 696 xhci->shared_hcd = NULL; 697 spin_unlock_irq(&xhci->lock); 698 } 699 700 /* 701 * Stop xHCI driver. 702 * 703 * This function is called by the USB core when the HC driver is removed. 704 * Its opposite is xhci_run(). 705 * 706 * Disable device contexts, disable IRQs, and quiesce the HC. 707 * Reset the HC, finish any completed transactions, and cleanup memory. 708 */ 709 void xhci_stop(struct usb_hcd *hcd) 710 { 711 u32 temp; 712 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 713 714 if (!usb_hcd_is_primary_hcd(hcd)) { 715 xhci_only_stop_hcd(xhci->shared_hcd); 716 return; 717 } 718 719 spin_lock_irq(&xhci->lock); 720 /* Make sure the xHC is halted for a USB3 roothub 721 * (xhci_stop() could be called as part of failed init). 722 */ 723 xhci_halt(xhci); 724 xhci_reset(xhci); 725 spin_unlock_irq(&xhci->lock); 726 727 xhci_cleanup_msix(xhci); 728 729 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 730 /* Tell the event ring poll function not to reschedule */ 731 xhci->zombie = 1; 732 del_timer_sync(&xhci->event_ring_timer); 733 #endif 734 735 /* Deleting Compliance Mode Recovery Timer */ 736 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 737 (!(xhci_all_ports_seen_u0(xhci)))) { 738 del_timer_sync(&xhci->comp_mode_recovery_timer); 739 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n", 740 __func__); 741 } 742 743 if (xhci->quirks & XHCI_AMD_PLL_FIX) 744 usb_amd_dev_put(); 745 746 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 747 temp = xhci_readl(xhci, &xhci->op_regs->status); 748 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 749 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 750 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 751 &xhci->ir_set->irq_pending); 752 xhci_print_ir_set(xhci, 0); 753 754 xhci_dbg(xhci, "cleaning up memory\n"); 755 xhci_mem_cleanup(xhci); 756 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 757 xhci_readl(xhci, &xhci->op_regs->status)); 758 } 759 760 /* 761 * Shutdown HC (not bus-specific) 762 * 763 * This is called when the machine is rebooting or halting. We assume that the 764 * machine will be powered off, and the HC's internal state will be reset. 765 * Don't bother to free memory. 766 * 767 * This will only ever be called with the main usb_hcd (the USB3 roothub). 768 */ 769 void xhci_shutdown(struct usb_hcd *hcd) 770 { 771 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 772 773 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 774 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 775 776 spin_lock_irq(&xhci->lock); 777 xhci_halt(xhci); 778 spin_unlock_irq(&xhci->lock); 779 780 xhci_cleanup_msix(xhci); 781 782 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 783 xhci_readl(xhci, &xhci->op_regs->status)); 784 } 785 786 #ifdef CONFIG_PM 787 static void xhci_save_registers(struct xhci_hcd *xhci) 788 { 789 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 790 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 791 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 792 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 793 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 794 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 795 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 796 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 797 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 798 } 799 800 static void xhci_restore_registers(struct xhci_hcd *xhci) 801 { 802 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 803 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 804 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 805 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 806 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 807 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 808 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 809 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 810 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 811 } 812 813 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 814 { 815 u64 val_64; 816 817 /* step 2: initialize command ring buffer */ 818 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 819 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 820 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 821 xhci->cmd_ring->dequeue) & 822 (u64) ~CMD_RING_RSVD_BITS) | 823 xhci->cmd_ring->cycle_state; 824 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", 825 (long unsigned long) val_64); 826 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 827 } 828 829 /* 830 * The whole command ring must be cleared to zero when we suspend the host. 831 * 832 * The host doesn't save the command ring pointer in the suspend well, so we 833 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 834 * aligned, because of the reserved bits in the command ring dequeue pointer 835 * register. Therefore, we can't just set the dequeue pointer back in the 836 * middle of the ring (TRBs are 16-byte aligned). 837 */ 838 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 839 { 840 struct xhci_ring *ring; 841 struct xhci_segment *seg; 842 843 ring = xhci->cmd_ring; 844 seg = ring->deq_seg; 845 do { 846 memset(seg->trbs, 0, 847 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 848 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 849 cpu_to_le32(~TRB_CYCLE); 850 seg = seg->next; 851 } while (seg != ring->deq_seg); 852 853 /* Reset the software enqueue and dequeue pointers */ 854 ring->deq_seg = ring->first_seg; 855 ring->dequeue = ring->first_seg->trbs; 856 ring->enq_seg = ring->deq_seg; 857 ring->enqueue = ring->dequeue; 858 859 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 860 /* 861 * Ring is now zeroed, so the HW should look for change of ownership 862 * when the cycle bit is set to 1. 863 */ 864 ring->cycle_state = 1; 865 866 /* 867 * Reset the hardware dequeue pointer. 868 * Yes, this will need to be re-written after resume, but we're paranoid 869 * and want to make sure the hardware doesn't access bogus memory 870 * because, say, the BIOS or an SMI started the host without changing 871 * the command ring pointers. 872 */ 873 xhci_set_cmd_ring_deq(xhci); 874 } 875 876 /* 877 * Stop HC (not bus-specific) 878 * 879 * This is called when the machine transition into S3/S4 mode. 880 * 881 */ 882 int xhci_suspend(struct xhci_hcd *xhci) 883 { 884 int rc = 0; 885 struct usb_hcd *hcd = xhci_to_hcd(xhci); 886 u32 command; 887 888 if (hcd->state != HC_STATE_SUSPENDED || 889 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 890 return -EINVAL; 891 892 /* Don't poll the roothubs on bus suspend. */ 893 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 894 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 895 del_timer_sync(&hcd->rh_timer); 896 897 spin_lock_irq(&xhci->lock); 898 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 899 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 900 /* step 1: stop endpoint */ 901 /* skipped assuming that port suspend has done */ 902 903 /* step 2: clear Run/Stop bit */ 904 command = xhci_readl(xhci, &xhci->op_regs->command); 905 command &= ~CMD_RUN; 906 xhci_writel(xhci, command, &xhci->op_regs->command); 907 if (xhci_handshake(xhci, &xhci->op_regs->status, 908 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) { 909 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 910 spin_unlock_irq(&xhci->lock); 911 return -ETIMEDOUT; 912 } 913 xhci_clear_command_ring(xhci); 914 915 /* step 3: save registers */ 916 xhci_save_registers(xhci); 917 918 /* step 4: set CSS flag */ 919 command = xhci_readl(xhci, &xhci->op_regs->command); 920 command |= CMD_CSS; 921 xhci_writel(xhci, command, &xhci->op_regs->command); 922 if (xhci_handshake(xhci, &xhci->op_regs->status, 923 STS_SAVE, 0, 10 * 1000)) { 924 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 925 spin_unlock_irq(&xhci->lock); 926 return -ETIMEDOUT; 927 } 928 spin_unlock_irq(&xhci->lock); 929 930 /* 931 * Deleting Compliance Mode Recovery Timer because the xHCI Host 932 * is about to be suspended. 933 */ 934 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 935 (!(xhci_all_ports_seen_u0(xhci)))) { 936 del_timer_sync(&xhci->comp_mode_recovery_timer); 937 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n", 938 __func__); 939 } 940 941 /* step 5: remove core well power */ 942 /* synchronize irq when using MSI-X */ 943 xhci_msix_sync_irqs(xhci); 944 945 return rc; 946 } 947 948 /* 949 * start xHC (not bus-specific) 950 * 951 * This is called when the machine transition from S3/S4 mode. 952 * 953 */ 954 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 955 { 956 u32 command, temp = 0; 957 struct usb_hcd *hcd = xhci_to_hcd(xhci); 958 struct usb_hcd *secondary_hcd; 959 int retval = 0; 960 bool comp_timer_running = false; 961 962 /* Wait a bit if either of the roothubs need to settle from the 963 * transition into bus suspend. 964 */ 965 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 966 time_before(jiffies, 967 xhci->bus_state[1].next_statechange)) 968 msleep(100); 969 970 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 971 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 972 973 spin_lock_irq(&xhci->lock); 974 if (xhci->quirks & XHCI_RESET_ON_RESUME) 975 hibernated = true; 976 977 if (!hibernated) { 978 /* step 1: restore register */ 979 xhci_restore_registers(xhci); 980 /* step 2: initialize command ring buffer */ 981 xhci_set_cmd_ring_deq(xhci); 982 /* step 3: restore state and start state*/ 983 /* step 3: set CRS flag */ 984 command = xhci_readl(xhci, &xhci->op_regs->command); 985 command |= CMD_CRS; 986 xhci_writel(xhci, command, &xhci->op_regs->command); 987 if (xhci_handshake(xhci, &xhci->op_regs->status, 988 STS_RESTORE, 0, 10 * 1000)) { 989 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 990 spin_unlock_irq(&xhci->lock); 991 return -ETIMEDOUT; 992 } 993 temp = xhci_readl(xhci, &xhci->op_regs->status); 994 } 995 996 /* If restore operation fails, re-initialize the HC during resume */ 997 if ((temp & STS_SRE) || hibernated) { 998 999 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1000 !(xhci_all_ports_seen_u0(xhci))) { 1001 del_timer_sync(&xhci->comp_mode_recovery_timer); 1002 xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n"); 1003 } 1004 1005 /* Let the USB core know _both_ roothubs lost power. */ 1006 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1007 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1008 1009 xhci_dbg(xhci, "Stop HCD\n"); 1010 xhci_halt(xhci); 1011 xhci_reset(xhci); 1012 spin_unlock_irq(&xhci->lock); 1013 xhci_cleanup_msix(xhci); 1014 1015 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 1016 /* Tell the event ring poll function not to reschedule */ 1017 xhci->zombie = 1; 1018 del_timer_sync(&xhci->event_ring_timer); 1019 #endif 1020 1021 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1022 temp = xhci_readl(xhci, &xhci->op_regs->status); 1023 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 1024 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 1025 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 1026 &xhci->ir_set->irq_pending); 1027 xhci_print_ir_set(xhci, 0); 1028 1029 xhci_dbg(xhci, "cleaning up memory\n"); 1030 xhci_mem_cleanup(xhci); 1031 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1032 xhci_readl(xhci, &xhci->op_regs->status)); 1033 1034 /* USB core calls the PCI reinit and start functions twice: 1035 * first with the primary HCD, and then with the secondary HCD. 1036 * If we don't do the same, the host will never be started. 1037 */ 1038 if (!usb_hcd_is_primary_hcd(hcd)) 1039 secondary_hcd = hcd; 1040 else 1041 secondary_hcd = xhci->shared_hcd; 1042 1043 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1044 retval = xhci_init(hcd->primary_hcd); 1045 if (retval) 1046 return retval; 1047 comp_timer_running = true; 1048 1049 xhci_dbg(xhci, "Start the primary HCD\n"); 1050 retval = xhci_run(hcd->primary_hcd); 1051 if (!retval) { 1052 xhci_dbg(xhci, "Start the secondary HCD\n"); 1053 retval = xhci_run(secondary_hcd); 1054 } 1055 hcd->state = HC_STATE_SUSPENDED; 1056 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1057 goto done; 1058 } 1059 1060 /* step 4: set Run/Stop bit */ 1061 command = xhci_readl(xhci, &xhci->op_regs->command); 1062 command |= CMD_RUN; 1063 xhci_writel(xhci, command, &xhci->op_regs->command); 1064 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1065 0, 250 * 1000); 1066 1067 /* step 5: walk topology and initialize portsc, 1068 * portpmsc and portli 1069 */ 1070 /* this is done in bus_resume */ 1071 1072 /* step 6: restart each of the previously 1073 * Running endpoints by ringing their doorbells 1074 */ 1075 1076 spin_unlock_irq(&xhci->lock); 1077 1078 done: 1079 if (retval == 0) { 1080 usb_hcd_resume_root_hub(hcd); 1081 usb_hcd_resume_root_hub(xhci->shared_hcd); 1082 } 1083 1084 /* 1085 * If system is subject to the Quirk, Compliance Mode Timer needs to 1086 * be re-initialized Always after a system resume. Ports are subject 1087 * to suffer the Compliance Mode issue again. It doesn't matter if 1088 * ports have entered previously to U0 before system's suspension. 1089 */ 1090 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1091 compliance_mode_recovery_timer_init(xhci); 1092 1093 /* Re-enable port polling. */ 1094 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1095 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1096 usb_hcd_poll_rh_status(hcd); 1097 1098 return retval; 1099 } 1100 #endif /* CONFIG_PM */ 1101 1102 /*-------------------------------------------------------------------------*/ 1103 1104 /** 1105 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1106 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1107 * value to right shift 1 for the bitmask. 1108 * 1109 * Index = (epnum * 2) + direction - 1, 1110 * where direction = 0 for OUT, 1 for IN. 1111 * For control endpoints, the IN index is used (OUT index is unused), so 1112 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1113 */ 1114 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1115 { 1116 unsigned int index; 1117 if (usb_endpoint_xfer_control(desc)) 1118 index = (unsigned int) (usb_endpoint_num(desc)*2); 1119 else 1120 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1121 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1122 return index; 1123 } 1124 1125 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1126 * address from the XHCI endpoint index. 1127 */ 1128 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1129 { 1130 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1131 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1132 return direction | number; 1133 } 1134 1135 /* Find the flag for this endpoint (for use in the control context). Use the 1136 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1137 * bit 1, etc. 1138 */ 1139 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1140 { 1141 return 1 << (xhci_get_endpoint_index(desc) + 1); 1142 } 1143 1144 /* Find the flag for this endpoint (for use in the control context). Use the 1145 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1146 * bit 1, etc. 1147 */ 1148 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1149 { 1150 return 1 << (ep_index + 1); 1151 } 1152 1153 /* Compute the last valid endpoint context index. Basically, this is the 1154 * endpoint index plus one. For slot contexts with more than valid endpoint, 1155 * we find the most significant bit set in the added contexts flags. 1156 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1157 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1158 */ 1159 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1160 { 1161 return fls(added_ctxs) - 1; 1162 } 1163 1164 /* Returns 1 if the arguments are OK; 1165 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1166 */ 1167 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1168 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1169 const char *func) { 1170 struct xhci_hcd *xhci; 1171 struct xhci_virt_device *virt_dev; 1172 1173 if (!hcd || (check_ep && !ep) || !udev) { 1174 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 1175 func); 1176 return -EINVAL; 1177 } 1178 if (!udev->parent) { 1179 printk(KERN_DEBUG "xHCI %s called for root hub\n", 1180 func); 1181 return 0; 1182 } 1183 1184 xhci = hcd_to_xhci(hcd); 1185 if (check_virt_dev) { 1186 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1187 printk(KERN_DEBUG "xHCI %s called with unaddressed " 1188 "device\n", func); 1189 return -EINVAL; 1190 } 1191 1192 virt_dev = xhci->devs[udev->slot_id]; 1193 if (virt_dev->udev != udev) { 1194 printk(KERN_DEBUG "xHCI %s called with udev and " 1195 "virt_dev does not match\n", func); 1196 return -EINVAL; 1197 } 1198 } 1199 1200 if (xhci->xhc_state & XHCI_STATE_HALTED) 1201 return -ENODEV; 1202 1203 return 1; 1204 } 1205 1206 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1207 struct usb_device *udev, struct xhci_command *command, 1208 bool ctx_change, bool must_succeed); 1209 1210 /* 1211 * Full speed devices may have a max packet size greater than 8 bytes, but the 1212 * USB core doesn't know that until it reads the first 8 bytes of the 1213 * descriptor. If the usb_device's max packet size changes after that point, 1214 * we need to issue an evaluate context command and wait on it. 1215 */ 1216 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1217 unsigned int ep_index, struct urb *urb) 1218 { 1219 struct xhci_container_ctx *in_ctx; 1220 struct xhci_container_ctx *out_ctx; 1221 struct xhci_input_control_ctx *ctrl_ctx; 1222 struct xhci_ep_ctx *ep_ctx; 1223 int max_packet_size; 1224 int hw_max_packet_size; 1225 int ret = 0; 1226 1227 out_ctx = xhci->devs[slot_id]->out_ctx; 1228 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1229 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1230 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1231 if (hw_max_packet_size != max_packet_size) { 1232 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 1233 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 1234 max_packet_size); 1235 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 1236 hw_max_packet_size); 1237 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 1238 1239 /* Set up the input context flags for the command */ 1240 /* FIXME: This won't work if a non-default control endpoint 1241 * changes max packet sizes. 1242 */ 1243 in_ctx = xhci->devs[slot_id]->in_ctx; 1244 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1245 if (!ctrl_ctx) { 1246 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1247 __func__); 1248 return -ENOMEM; 1249 } 1250 /* Set up the modified control endpoint 0 */ 1251 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1252 xhci->devs[slot_id]->out_ctx, ep_index); 1253 1254 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1255 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1256 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1257 1258 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1259 ctrl_ctx->drop_flags = 0; 1260 1261 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1262 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1263 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1264 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1265 1266 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1267 true, false); 1268 1269 /* Clean up the input context for later use by bandwidth 1270 * functions. 1271 */ 1272 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1273 } 1274 return ret; 1275 } 1276 1277 /* 1278 * non-error returns are a promise to giveback() the urb later 1279 * we drop ownership so next owner (or urb unlink) can get it 1280 */ 1281 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1282 { 1283 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1284 struct xhci_td *buffer; 1285 unsigned long flags; 1286 int ret = 0; 1287 unsigned int slot_id, ep_index; 1288 struct urb_priv *urb_priv; 1289 int size, i; 1290 1291 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1292 true, true, __func__) <= 0) 1293 return -EINVAL; 1294 1295 slot_id = urb->dev->slot_id; 1296 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1297 1298 if (!HCD_HW_ACCESSIBLE(hcd)) { 1299 if (!in_interrupt()) 1300 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1301 ret = -ESHUTDOWN; 1302 goto exit; 1303 } 1304 1305 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1306 size = urb->number_of_packets; 1307 else 1308 size = 1; 1309 1310 urb_priv = kzalloc(sizeof(struct urb_priv) + 1311 size * sizeof(struct xhci_td *), mem_flags); 1312 if (!urb_priv) 1313 return -ENOMEM; 1314 1315 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1316 if (!buffer) { 1317 kfree(urb_priv); 1318 return -ENOMEM; 1319 } 1320 1321 for (i = 0; i < size; i++) { 1322 urb_priv->td[i] = buffer; 1323 buffer++; 1324 } 1325 1326 urb_priv->length = size; 1327 urb_priv->td_cnt = 0; 1328 urb->hcpriv = urb_priv; 1329 1330 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1331 /* Check to see if the max packet size for the default control 1332 * endpoint changed during FS device enumeration 1333 */ 1334 if (urb->dev->speed == USB_SPEED_FULL) { 1335 ret = xhci_check_maxpacket(xhci, slot_id, 1336 ep_index, urb); 1337 if (ret < 0) { 1338 xhci_urb_free_priv(xhci, urb_priv); 1339 urb->hcpriv = NULL; 1340 return ret; 1341 } 1342 } 1343 1344 /* We have a spinlock and interrupts disabled, so we must pass 1345 * atomic context to this function, which may allocate memory. 1346 */ 1347 spin_lock_irqsave(&xhci->lock, flags); 1348 if (xhci->xhc_state & XHCI_STATE_DYING) 1349 goto dying; 1350 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1351 slot_id, ep_index); 1352 if (ret) 1353 goto free_priv; 1354 spin_unlock_irqrestore(&xhci->lock, flags); 1355 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1356 spin_lock_irqsave(&xhci->lock, flags); 1357 if (xhci->xhc_state & XHCI_STATE_DYING) 1358 goto dying; 1359 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1360 EP_GETTING_STREAMS) { 1361 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1362 "is transitioning to using streams.\n"); 1363 ret = -EINVAL; 1364 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1365 EP_GETTING_NO_STREAMS) { 1366 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1367 "is transitioning to " 1368 "not having streams.\n"); 1369 ret = -EINVAL; 1370 } else { 1371 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1372 slot_id, ep_index); 1373 } 1374 if (ret) 1375 goto free_priv; 1376 spin_unlock_irqrestore(&xhci->lock, flags); 1377 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1378 spin_lock_irqsave(&xhci->lock, flags); 1379 if (xhci->xhc_state & XHCI_STATE_DYING) 1380 goto dying; 1381 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1382 slot_id, ep_index); 1383 if (ret) 1384 goto free_priv; 1385 spin_unlock_irqrestore(&xhci->lock, flags); 1386 } else { 1387 spin_lock_irqsave(&xhci->lock, flags); 1388 if (xhci->xhc_state & XHCI_STATE_DYING) 1389 goto dying; 1390 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1391 slot_id, ep_index); 1392 if (ret) 1393 goto free_priv; 1394 spin_unlock_irqrestore(&xhci->lock, flags); 1395 } 1396 exit: 1397 return ret; 1398 dying: 1399 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1400 "non-responsive xHCI host.\n", 1401 urb->ep->desc.bEndpointAddress, urb); 1402 ret = -ESHUTDOWN; 1403 free_priv: 1404 xhci_urb_free_priv(xhci, urb_priv); 1405 urb->hcpriv = NULL; 1406 spin_unlock_irqrestore(&xhci->lock, flags); 1407 return ret; 1408 } 1409 1410 /* Get the right ring for the given URB. 1411 * If the endpoint supports streams, boundary check the URB's stream ID. 1412 * If the endpoint doesn't support streams, return the singular endpoint ring. 1413 */ 1414 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1415 struct urb *urb) 1416 { 1417 unsigned int slot_id; 1418 unsigned int ep_index; 1419 unsigned int stream_id; 1420 struct xhci_virt_ep *ep; 1421 1422 slot_id = urb->dev->slot_id; 1423 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1424 stream_id = urb->stream_id; 1425 ep = &xhci->devs[slot_id]->eps[ep_index]; 1426 /* Common case: no streams */ 1427 if (!(ep->ep_state & EP_HAS_STREAMS)) 1428 return ep->ring; 1429 1430 if (stream_id == 0) { 1431 xhci_warn(xhci, 1432 "WARN: Slot ID %u, ep index %u has streams, " 1433 "but URB has no stream ID.\n", 1434 slot_id, ep_index); 1435 return NULL; 1436 } 1437 1438 if (stream_id < ep->stream_info->num_streams) 1439 return ep->stream_info->stream_rings[stream_id]; 1440 1441 xhci_warn(xhci, 1442 "WARN: Slot ID %u, ep index %u has " 1443 "stream IDs 1 to %u allocated, " 1444 "but stream ID %u is requested.\n", 1445 slot_id, ep_index, 1446 ep->stream_info->num_streams - 1, 1447 stream_id); 1448 return NULL; 1449 } 1450 1451 /* 1452 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1453 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1454 * should pick up where it left off in the TD, unless a Set Transfer Ring 1455 * Dequeue Pointer is issued. 1456 * 1457 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1458 * the ring. Since the ring is a contiguous structure, they can't be physically 1459 * removed. Instead, there are two options: 1460 * 1461 * 1) If the HC is in the middle of processing the URB to be canceled, we 1462 * simply move the ring's dequeue pointer past those TRBs using the Set 1463 * Transfer Ring Dequeue Pointer command. This will be the common case, 1464 * when drivers timeout on the last submitted URB and attempt to cancel. 1465 * 1466 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1467 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1468 * HC will need to invalidate the any TRBs it has cached after the stop 1469 * endpoint command, as noted in the xHCI 0.95 errata. 1470 * 1471 * 3) The TD may have completed by the time the Stop Endpoint Command 1472 * completes, so software needs to handle that case too. 1473 * 1474 * This function should protect against the TD enqueueing code ringing the 1475 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1476 * It also needs to account for multiple cancellations on happening at the same 1477 * time for the same endpoint. 1478 * 1479 * Note that this function can be called in any context, or so says 1480 * usb_hcd_unlink_urb() 1481 */ 1482 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1483 { 1484 unsigned long flags; 1485 int ret, i; 1486 u32 temp; 1487 struct xhci_hcd *xhci; 1488 struct urb_priv *urb_priv; 1489 struct xhci_td *td; 1490 unsigned int ep_index; 1491 struct xhci_ring *ep_ring; 1492 struct xhci_virt_ep *ep; 1493 1494 xhci = hcd_to_xhci(hcd); 1495 spin_lock_irqsave(&xhci->lock, flags); 1496 /* Make sure the URB hasn't completed or been unlinked already */ 1497 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1498 if (ret || !urb->hcpriv) 1499 goto done; 1500 temp = xhci_readl(xhci, &xhci->op_regs->status); 1501 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1502 xhci_dbg(xhci, "HW died, freeing TD.\n"); 1503 urb_priv = urb->hcpriv; 1504 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1505 td = urb_priv->td[i]; 1506 if (!list_empty(&td->td_list)) 1507 list_del_init(&td->td_list); 1508 if (!list_empty(&td->cancelled_td_list)) 1509 list_del_init(&td->cancelled_td_list); 1510 } 1511 1512 usb_hcd_unlink_urb_from_ep(hcd, urb); 1513 spin_unlock_irqrestore(&xhci->lock, flags); 1514 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1515 xhci_urb_free_priv(xhci, urb_priv); 1516 return ret; 1517 } 1518 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1519 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1520 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 1521 "non-responsive xHCI host.\n", 1522 urb->ep->desc.bEndpointAddress, urb); 1523 /* Let the stop endpoint command watchdog timer (which set this 1524 * state) finish cleaning up the endpoint TD lists. We must 1525 * have caught it in the middle of dropping a lock and giving 1526 * back an URB. 1527 */ 1528 goto done; 1529 } 1530 1531 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1532 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1533 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1534 if (!ep_ring) { 1535 ret = -EINVAL; 1536 goto done; 1537 } 1538 1539 urb_priv = urb->hcpriv; 1540 i = urb_priv->td_cnt; 1541 if (i < urb_priv->length) 1542 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, " 1543 "starting at offset 0x%llx\n", 1544 urb, urb->dev->devpath, 1545 urb->ep->desc.bEndpointAddress, 1546 (unsigned long long) xhci_trb_virt_to_dma( 1547 urb_priv->td[i]->start_seg, 1548 urb_priv->td[i]->first_trb)); 1549 1550 for (; i < urb_priv->length; i++) { 1551 td = urb_priv->td[i]; 1552 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1553 } 1554 1555 /* Queue a stop endpoint command, but only if this is 1556 * the first cancellation to be handled. 1557 */ 1558 if (!(ep->ep_state & EP_HALT_PENDING)) { 1559 ep->ep_state |= EP_HALT_PENDING; 1560 ep->stop_cmds_pending++; 1561 ep->stop_cmd_timer.expires = jiffies + 1562 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1563 add_timer(&ep->stop_cmd_timer); 1564 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1565 xhci_ring_cmd_db(xhci); 1566 } 1567 done: 1568 spin_unlock_irqrestore(&xhci->lock, flags); 1569 return ret; 1570 } 1571 1572 /* Drop an endpoint from a new bandwidth configuration for this device. 1573 * Only one call to this function is allowed per endpoint before 1574 * check_bandwidth() or reset_bandwidth() must be called. 1575 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1576 * add the endpoint to the schedule with possibly new parameters denoted by a 1577 * different endpoint descriptor in usb_host_endpoint. 1578 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1579 * not allowed. 1580 * 1581 * The USB core will not allow URBs to be queued to an endpoint that is being 1582 * disabled, so there's no need for mutual exclusion to protect 1583 * the xhci->devs[slot_id] structure. 1584 */ 1585 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1586 struct usb_host_endpoint *ep) 1587 { 1588 struct xhci_hcd *xhci; 1589 struct xhci_container_ctx *in_ctx, *out_ctx; 1590 struct xhci_input_control_ctx *ctrl_ctx; 1591 struct xhci_slot_ctx *slot_ctx; 1592 unsigned int last_ctx; 1593 unsigned int ep_index; 1594 struct xhci_ep_ctx *ep_ctx; 1595 u32 drop_flag; 1596 u32 new_add_flags, new_drop_flags, new_slot_info; 1597 int ret; 1598 1599 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1600 if (ret <= 0) 1601 return ret; 1602 xhci = hcd_to_xhci(hcd); 1603 if (xhci->xhc_state & XHCI_STATE_DYING) 1604 return -ENODEV; 1605 1606 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1607 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1608 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1609 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1610 __func__, drop_flag); 1611 return 0; 1612 } 1613 1614 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1615 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1616 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1617 if (!ctrl_ctx) { 1618 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1619 __func__); 1620 return 0; 1621 } 1622 1623 ep_index = xhci_get_endpoint_index(&ep->desc); 1624 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1625 /* If the HC already knows the endpoint is disabled, 1626 * or the HCD has noted it is disabled, ignore this request 1627 */ 1628 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1629 cpu_to_le32(EP_STATE_DISABLED)) || 1630 le32_to_cpu(ctrl_ctx->drop_flags) & 1631 xhci_get_endpoint_flag(&ep->desc)) { 1632 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1633 __func__, ep); 1634 return 0; 1635 } 1636 1637 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1638 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1639 1640 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1641 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1642 1643 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1644 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1645 /* Update the last valid endpoint context, if we deleted the last one */ 1646 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1647 LAST_CTX(last_ctx)) { 1648 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1649 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1650 } 1651 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1652 1653 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1654 1655 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1656 (unsigned int) ep->desc.bEndpointAddress, 1657 udev->slot_id, 1658 (unsigned int) new_drop_flags, 1659 (unsigned int) new_add_flags, 1660 (unsigned int) new_slot_info); 1661 return 0; 1662 } 1663 1664 /* Add an endpoint to a new possible bandwidth configuration for this device. 1665 * Only one call to this function is allowed per endpoint before 1666 * check_bandwidth() or reset_bandwidth() must be called. 1667 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1668 * add the endpoint to the schedule with possibly new parameters denoted by a 1669 * different endpoint descriptor in usb_host_endpoint. 1670 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1671 * not allowed. 1672 * 1673 * The USB core will not allow URBs to be queued to an endpoint until the 1674 * configuration or alt setting is installed in the device, so there's no need 1675 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1676 */ 1677 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1678 struct usb_host_endpoint *ep) 1679 { 1680 struct xhci_hcd *xhci; 1681 struct xhci_container_ctx *in_ctx, *out_ctx; 1682 unsigned int ep_index; 1683 struct xhci_slot_ctx *slot_ctx; 1684 struct xhci_input_control_ctx *ctrl_ctx; 1685 u32 added_ctxs; 1686 unsigned int last_ctx; 1687 u32 new_add_flags, new_drop_flags, new_slot_info; 1688 struct xhci_virt_device *virt_dev; 1689 int ret = 0; 1690 1691 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1692 if (ret <= 0) { 1693 /* So we won't queue a reset ep command for a root hub */ 1694 ep->hcpriv = NULL; 1695 return ret; 1696 } 1697 xhci = hcd_to_xhci(hcd); 1698 if (xhci->xhc_state & XHCI_STATE_DYING) 1699 return -ENODEV; 1700 1701 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1702 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1703 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1704 /* FIXME when we have to issue an evaluate endpoint command to 1705 * deal with ep0 max packet size changing once we get the 1706 * descriptors 1707 */ 1708 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1709 __func__, added_ctxs); 1710 return 0; 1711 } 1712 1713 virt_dev = xhci->devs[udev->slot_id]; 1714 in_ctx = virt_dev->in_ctx; 1715 out_ctx = virt_dev->out_ctx; 1716 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1717 if (!ctrl_ctx) { 1718 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1719 __func__); 1720 return 0; 1721 } 1722 1723 ep_index = xhci_get_endpoint_index(&ep->desc); 1724 /* If this endpoint is already in use, and the upper layers are trying 1725 * to add it again without dropping it, reject the addition. 1726 */ 1727 if (virt_dev->eps[ep_index].ring && 1728 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1729 xhci_get_endpoint_flag(&ep->desc))) { 1730 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1731 "without dropping it.\n", 1732 (unsigned int) ep->desc.bEndpointAddress); 1733 return -EINVAL; 1734 } 1735 1736 /* If the HCD has already noted the endpoint is enabled, 1737 * ignore this request. 1738 */ 1739 if (le32_to_cpu(ctrl_ctx->add_flags) & 1740 xhci_get_endpoint_flag(&ep->desc)) { 1741 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1742 __func__, ep); 1743 return 0; 1744 } 1745 1746 /* 1747 * Configuration and alternate setting changes must be done in 1748 * process context, not interrupt context (or so documenation 1749 * for usb_set_interface() and usb_set_configuration() claim). 1750 */ 1751 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1752 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1753 __func__, ep->desc.bEndpointAddress); 1754 return -ENOMEM; 1755 } 1756 1757 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1758 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1759 1760 /* If xhci_endpoint_disable() was called for this endpoint, but the 1761 * xHC hasn't been notified yet through the check_bandwidth() call, 1762 * this re-adds a new state for the endpoint from the new endpoint 1763 * descriptors. We must drop and re-add this endpoint, so we leave the 1764 * drop flags alone. 1765 */ 1766 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1767 1768 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1769 /* Update the last valid endpoint context, if we just added one past */ 1770 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1771 LAST_CTX(last_ctx)) { 1772 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1773 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1774 } 1775 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1776 1777 /* Store the usb_device pointer for later use */ 1778 ep->hcpriv = udev; 1779 1780 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1781 (unsigned int) ep->desc.bEndpointAddress, 1782 udev->slot_id, 1783 (unsigned int) new_drop_flags, 1784 (unsigned int) new_add_flags, 1785 (unsigned int) new_slot_info); 1786 return 0; 1787 } 1788 1789 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1790 { 1791 struct xhci_input_control_ctx *ctrl_ctx; 1792 struct xhci_ep_ctx *ep_ctx; 1793 struct xhci_slot_ctx *slot_ctx; 1794 int i; 1795 1796 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1797 if (!ctrl_ctx) { 1798 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1799 __func__); 1800 return; 1801 } 1802 1803 /* When a device's add flag and drop flag are zero, any subsequent 1804 * configure endpoint command will leave that endpoint's state 1805 * untouched. Make sure we don't leave any old state in the input 1806 * endpoint contexts. 1807 */ 1808 ctrl_ctx->drop_flags = 0; 1809 ctrl_ctx->add_flags = 0; 1810 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1811 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1812 /* Endpoint 0 is always valid */ 1813 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1814 for (i = 1; i < 31; ++i) { 1815 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1816 ep_ctx->ep_info = 0; 1817 ep_ctx->ep_info2 = 0; 1818 ep_ctx->deq = 0; 1819 ep_ctx->tx_info = 0; 1820 } 1821 } 1822 1823 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1824 struct usb_device *udev, u32 *cmd_status) 1825 { 1826 int ret; 1827 1828 switch (*cmd_status) { 1829 case COMP_ENOMEM: 1830 dev_warn(&udev->dev, "Not enough host controller resources " 1831 "for new device state.\n"); 1832 ret = -ENOMEM; 1833 /* FIXME: can we allocate more resources for the HC? */ 1834 break; 1835 case COMP_BW_ERR: 1836 case COMP_2ND_BW_ERR: 1837 dev_warn(&udev->dev, "Not enough bandwidth " 1838 "for new device state.\n"); 1839 ret = -ENOSPC; 1840 /* FIXME: can we go back to the old state? */ 1841 break; 1842 case COMP_TRB_ERR: 1843 /* the HCD set up something wrong */ 1844 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1845 "add flag = 1, " 1846 "and endpoint is not disabled.\n"); 1847 ret = -EINVAL; 1848 break; 1849 case COMP_DEV_ERR: 1850 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1851 "configure command.\n"); 1852 ret = -ENODEV; 1853 break; 1854 case COMP_SUCCESS: 1855 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1856 ret = 0; 1857 break; 1858 default: 1859 xhci_err(xhci, "ERROR: unexpected command completion " 1860 "code 0x%x.\n", *cmd_status); 1861 ret = -EINVAL; 1862 break; 1863 } 1864 return ret; 1865 } 1866 1867 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1868 struct usb_device *udev, u32 *cmd_status) 1869 { 1870 int ret; 1871 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1872 1873 switch (*cmd_status) { 1874 case COMP_EINVAL: 1875 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1876 "context command.\n"); 1877 ret = -EINVAL; 1878 break; 1879 case COMP_EBADSLT: 1880 dev_warn(&udev->dev, "WARN: slot not enabled for" 1881 "evaluate context command.\n"); 1882 ret = -EINVAL; 1883 break; 1884 case COMP_CTX_STATE: 1885 dev_warn(&udev->dev, "WARN: invalid context state for " 1886 "evaluate context command.\n"); 1887 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1888 ret = -EINVAL; 1889 break; 1890 case COMP_DEV_ERR: 1891 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1892 "context command.\n"); 1893 ret = -ENODEV; 1894 break; 1895 case COMP_MEL_ERR: 1896 /* Max Exit Latency too large error */ 1897 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1898 ret = -EINVAL; 1899 break; 1900 case COMP_SUCCESS: 1901 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1902 ret = 0; 1903 break; 1904 default: 1905 xhci_err(xhci, "ERROR: unexpected command completion " 1906 "code 0x%x.\n", *cmd_status); 1907 ret = -EINVAL; 1908 break; 1909 } 1910 return ret; 1911 } 1912 1913 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1914 struct xhci_input_control_ctx *ctrl_ctx) 1915 { 1916 u32 valid_add_flags; 1917 u32 valid_drop_flags; 1918 1919 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1920 * (bit 1). The default control endpoint is added during the Address 1921 * Device command and is never removed until the slot is disabled. 1922 */ 1923 valid_add_flags = ctrl_ctx->add_flags >> 2; 1924 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1925 1926 /* Use hweight32 to count the number of ones in the add flags, or 1927 * number of endpoints added. Don't count endpoints that are changed 1928 * (both added and dropped). 1929 */ 1930 return hweight32(valid_add_flags) - 1931 hweight32(valid_add_flags & valid_drop_flags); 1932 } 1933 1934 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1935 struct xhci_input_control_ctx *ctrl_ctx) 1936 { 1937 u32 valid_add_flags; 1938 u32 valid_drop_flags; 1939 1940 valid_add_flags = ctrl_ctx->add_flags >> 2; 1941 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1942 1943 return hweight32(valid_drop_flags) - 1944 hweight32(valid_add_flags & valid_drop_flags); 1945 } 1946 1947 /* 1948 * We need to reserve the new number of endpoints before the configure endpoint 1949 * command completes. We can't subtract the dropped endpoints from the number 1950 * of active endpoints until the command completes because we can oversubscribe 1951 * the host in this case: 1952 * 1953 * - the first configure endpoint command drops more endpoints than it adds 1954 * - a second configure endpoint command that adds more endpoints is queued 1955 * - the first configure endpoint command fails, so the config is unchanged 1956 * - the second command may succeed, even though there isn't enough resources 1957 * 1958 * Must be called with xhci->lock held. 1959 */ 1960 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1961 struct xhci_input_control_ctx *ctrl_ctx) 1962 { 1963 u32 added_eps; 1964 1965 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1966 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1967 xhci_dbg(xhci, "Not enough ep ctxs: " 1968 "%u active, need to add %u, limit is %u.\n", 1969 xhci->num_active_eps, added_eps, 1970 xhci->limit_active_eps); 1971 return -ENOMEM; 1972 } 1973 xhci->num_active_eps += added_eps; 1974 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, 1975 xhci->num_active_eps); 1976 return 0; 1977 } 1978 1979 /* 1980 * The configure endpoint was failed by the xHC for some other reason, so we 1981 * need to revert the resources that failed configuration would have used. 1982 * 1983 * Must be called with xhci->lock held. 1984 */ 1985 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1986 struct xhci_input_control_ctx *ctrl_ctx) 1987 { 1988 u32 num_failed_eps; 1989 1990 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1991 xhci->num_active_eps -= num_failed_eps; 1992 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", 1993 num_failed_eps, 1994 xhci->num_active_eps); 1995 } 1996 1997 /* 1998 * Now that the command has completed, clean up the active endpoint count by 1999 * subtracting out the endpoints that were dropped (but not changed). 2000 * 2001 * Must be called with xhci->lock held. 2002 */ 2003 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2004 struct xhci_input_control_ctx *ctrl_ctx) 2005 { 2006 u32 num_dropped_eps; 2007 2008 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2009 xhci->num_active_eps -= num_dropped_eps; 2010 if (num_dropped_eps) 2011 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", 2012 num_dropped_eps, 2013 xhci->num_active_eps); 2014 } 2015 2016 static unsigned int xhci_get_block_size(struct usb_device *udev) 2017 { 2018 switch (udev->speed) { 2019 case USB_SPEED_LOW: 2020 case USB_SPEED_FULL: 2021 return FS_BLOCK; 2022 case USB_SPEED_HIGH: 2023 return HS_BLOCK; 2024 case USB_SPEED_SUPER: 2025 return SS_BLOCK; 2026 case USB_SPEED_UNKNOWN: 2027 case USB_SPEED_WIRELESS: 2028 default: 2029 /* Should never happen */ 2030 return 1; 2031 } 2032 } 2033 2034 static unsigned int 2035 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2036 { 2037 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2038 return LS_OVERHEAD; 2039 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2040 return FS_OVERHEAD; 2041 return HS_OVERHEAD; 2042 } 2043 2044 /* If we are changing a LS/FS device under a HS hub, 2045 * make sure (if we are activating a new TT) that the HS bus has enough 2046 * bandwidth for this new TT. 2047 */ 2048 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2049 struct xhci_virt_device *virt_dev, 2050 int old_active_eps) 2051 { 2052 struct xhci_interval_bw_table *bw_table; 2053 struct xhci_tt_bw_info *tt_info; 2054 2055 /* Find the bandwidth table for the root port this TT is attached to. */ 2056 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2057 tt_info = virt_dev->tt_info; 2058 /* If this TT already had active endpoints, the bandwidth for this TT 2059 * has already been added. Removing all periodic endpoints (and thus 2060 * making the TT enactive) will only decrease the bandwidth used. 2061 */ 2062 if (old_active_eps) 2063 return 0; 2064 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2065 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2066 return -ENOMEM; 2067 return 0; 2068 } 2069 /* Not sure why we would have no new active endpoints... 2070 * 2071 * Maybe because of an Evaluate Context change for a hub update or a 2072 * control endpoint 0 max packet size change? 2073 * FIXME: skip the bandwidth calculation in that case. 2074 */ 2075 return 0; 2076 } 2077 2078 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2079 struct xhci_virt_device *virt_dev) 2080 { 2081 unsigned int bw_reserved; 2082 2083 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2084 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2085 return -ENOMEM; 2086 2087 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2088 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2089 return -ENOMEM; 2090 2091 return 0; 2092 } 2093 2094 /* 2095 * This algorithm is a very conservative estimate of the worst-case scheduling 2096 * scenario for any one interval. The hardware dynamically schedules the 2097 * packets, so we can't tell which microframe could be the limiting factor in 2098 * the bandwidth scheduling. This only takes into account periodic endpoints. 2099 * 2100 * Obviously, we can't solve an NP complete problem to find the minimum worst 2101 * case scenario. Instead, we come up with an estimate that is no less than 2102 * the worst case bandwidth used for any one microframe, but may be an 2103 * over-estimate. 2104 * 2105 * We walk the requirements for each endpoint by interval, starting with the 2106 * smallest interval, and place packets in the schedule where there is only one 2107 * possible way to schedule packets for that interval. In order to simplify 2108 * this algorithm, we record the largest max packet size for each interval, and 2109 * assume all packets will be that size. 2110 * 2111 * For interval 0, we obviously must schedule all packets for each interval. 2112 * The bandwidth for interval 0 is just the amount of data to be transmitted 2113 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2114 * the number of packets). 2115 * 2116 * For interval 1, we have two possible microframes to schedule those packets 2117 * in. For this algorithm, if we can schedule the same number of packets for 2118 * each possible scheduling opportunity (each microframe), we will do so. The 2119 * remaining number of packets will be saved to be transmitted in the gaps in 2120 * the next interval's scheduling sequence. 2121 * 2122 * As we move those remaining packets to be scheduled with interval 2 packets, 2123 * we have to double the number of remaining packets to transmit. This is 2124 * because the intervals are actually powers of 2, and we would be transmitting 2125 * the previous interval's packets twice in this interval. We also have to be 2126 * sure that when we look at the largest max packet size for this interval, we 2127 * also look at the largest max packet size for the remaining packets and take 2128 * the greater of the two. 2129 * 2130 * The algorithm continues to evenly distribute packets in each scheduling 2131 * opportunity, and push the remaining packets out, until we get to the last 2132 * interval. Then those packets and their associated overhead are just added 2133 * to the bandwidth used. 2134 */ 2135 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2136 struct xhci_virt_device *virt_dev, 2137 int old_active_eps) 2138 { 2139 unsigned int bw_reserved; 2140 unsigned int max_bandwidth; 2141 unsigned int bw_used; 2142 unsigned int block_size; 2143 struct xhci_interval_bw_table *bw_table; 2144 unsigned int packet_size = 0; 2145 unsigned int overhead = 0; 2146 unsigned int packets_transmitted = 0; 2147 unsigned int packets_remaining = 0; 2148 unsigned int i; 2149 2150 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2151 return xhci_check_ss_bw(xhci, virt_dev); 2152 2153 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2154 max_bandwidth = HS_BW_LIMIT; 2155 /* Convert percent of bus BW reserved to blocks reserved */ 2156 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2157 } else { 2158 max_bandwidth = FS_BW_LIMIT; 2159 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2160 } 2161 2162 bw_table = virt_dev->bw_table; 2163 /* We need to translate the max packet size and max ESIT payloads into 2164 * the units the hardware uses. 2165 */ 2166 block_size = xhci_get_block_size(virt_dev->udev); 2167 2168 /* If we are manipulating a LS/FS device under a HS hub, double check 2169 * that the HS bus has enough bandwidth if we are activing a new TT. 2170 */ 2171 if (virt_dev->tt_info) { 2172 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 2173 virt_dev->real_port); 2174 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2175 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2176 "newly activated TT.\n"); 2177 return -ENOMEM; 2178 } 2179 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", 2180 virt_dev->tt_info->slot_id, 2181 virt_dev->tt_info->ttport); 2182 } else { 2183 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 2184 virt_dev->real_port); 2185 } 2186 2187 /* Add in how much bandwidth will be used for interval zero, or the 2188 * rounded max ESIT payload + number of packets * largest overhead. 2189 */ 2190 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2191 bw_table->interval_bw[0].num_packets * 2192 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2193 2194 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2195 unsigned int bw_added; 2196 unsigned int largest_mps; 2197 unsigned int interval_overhead; 2198 2199 /* 2200 * How many packets could we transmit in this interval? 2201 * If packets didn't fit in the previous interval, we will need 2202 * to transmit that many packets twice within this interval. 2203 */ 2204 packets_remaining = 2 * packets_remaining + 2205 bw_table->interval_bw[i].num_packets; 2206 2207 /* Find the largest max packet size of this or the previous 2208 * interval. 2209 */ 2210 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2211 largest_mps = 0; 2212 else { 2213 struct xhci_virt_ep *virt_ep; 2214 struct list_head *ep_entry; 2215 2216 ep_entry = bw_table->interval_bw[i].endpoints.next; 2217 virt_ep = list_entry(ep_entry, 2218 struct xhci_virt_ep, bw_endpoint_list); 2219 /* Convert to blocks, rounding up */ 2220 largest_mps = DIV_ROUND_UP( 2221 virt_ep->bw_info.max_packet_size, 2222 block_size); 2223 } 2224 if (largest_mps > packet_size) 2225 packet_size = largest_mps; 2226 2227 /* Use the larger overhead of this or the previous interval. */ 2228 interval_overhead = xhci_get_largest_overhead( 2229 &bw_table->interval_bw[i]); 2230 if (interval_overhead > overhead) 2231 overhead = interval_overhead; 2232 2233 /* How many packets can we evenly distribute across 2234 * (1 << (i + 1)) possible scheduling opportunities? 2235 */ 2236 packets_transmitted = packets_remaining >> (i + 1); 2237 2238 /* Add in the bandwidth used for those scheduled packets */ 2239 bw_added = packets_transmitted * (overhead + packet_size); 2240 2241 /* How many packets do we have remaining to transmit? */ 2242 packets_remaining = packets_remaining % (1 << (i + 1)); 2243 2244 /* What largest max packet size should those packets have? */ 2245 /* If we've transmitted all packets, don't carry over the 2246 * largest packet size. 2247 */ 2248 if (packets_remaining == 0) { 2249 packet_size = 0; 2250 overhead = 0; 2251 } else if (packets_transmitted > 0) { 2252 /* Otherwise if we do have remaining packets, and we've 2253 * scheduled some packets in this interval, take the 2254 * largest max packet size from endpoints with this 2255 * interval. 2256 */ 2257 packet_size = largest_mps; 2258 overhead = interval_overhead; 2259 } 2260 /* Otherwise carry over packet_size and overhead from the last 2261 * time we had a remainder. 2262 */ 2263 bw_used += bw_added; 2264 if (bw_used > max_bandwidth) { 2265 xhci_warn(xhci, "Not enough bandwidth. " 2266 "Proposed: %u, Max: %u\n", 2267 bw_used, max_bandwidth); 2268 return -ENOMEM; 2269 } 2270 } 2271 /* 2272 * Ok, we know we have some packets left over after even-handedly 2273 * scheduling interval 15. We don't know which microframes they will 2274 * fit into, so we over-schedule and say they will be scheduled every 2275 * microframe. 2276 */ 2277 if (packets_remaining > 0) 2278 bw_used += overhead + packet_size; 2279 2280 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2281 unsigned int port_index = virt_dev->real_port - 1; 2282 2283 /* OK, we're manipulating a HS device attached to a 2284 * root port bandwidth domain. Include the number of active TTs 2285 * in the bandwidth used. 2286 */ 2287 bw_used += TT_HS_OVERHEAD * 2288 xhci->rh_bw[port_index].num_active_tts; 2289 } 2290 2291 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2292 "Available: %u " "percent\n", 2293 bw_used, max_bandwidth, bw_reserved, 2294 (max_bandwidth - bw_used - bw_reserved) * 100 / 2295 max_bandwidth); 2296 2297 bw_used += bw_reserved; 2298 if (bw_used > max_bandwidth) { 2299 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2300 bw_used, max_bandwidth); 2301 return -ENOMEM; 2302 } 2303 2304 bw_table->bw_used = bw_used; 2305 return 0; 2306 } 2307 2308 static bool xhci_is_async_ep(unsigned int ep_type) 2309 { 2310 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2311 ep_type != ISOC_IN_EP && 2312 ep_type != INT_IN_EP); 2313 } 2314 2315 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2316 { 2317 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2318 } 2319 2320 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2321 { 2322 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2323 2324 if (ep_bw->ep_interval == 0) 2325 return SS_OVERHEAD_BURST + 2326 (ep_bw->mult * ep_bw->num_packets * 2327 (SS_OVERHEAD + mps)); 2328 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2329 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2330 1 << ep_bw->ep_interval); 2331 2332 } 2333 2334 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2335 struct xhci_bw_info *ep_bw, 2336 struct xhci_interval_bw_table *bw_table, 2337 struct usb_device *udev, 2338 struct xhci_virt_ep *virt_ep, 2339 struct xhci_tt_bw_info *tt_info) 2340 { 2341 struct xhci_interval_bw *interval_bw; 2342 int normalized_interval; 2343 2344 if (xhci_is_async_ep(ep_bw->type)) 2345 return; 2346 2347 if (udev->speed == USB_SPEED_SUPER) { 2348 if (xhci_is_sync_in_ep(ep_bw->type)) 2349 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2350 xhci_get_ss_bw_consumed(ep_bw); 2351 else 2352 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2353 xhci_get_ss_bw_consumed(ep_bw); 2354 return; 2355 } 2356 2357 /* SuperSpeed endpoints never get added to intervals in the table, so 2358 * this check is only valid for HS/FS/LS devices. 2359 */ 2360 if (list_empty(&virt_ep->bw_endpoint_list)) 2361 return; 2362 /* For LS/FS devices, we need to translate the interval expressed in 2363 * microframes to frames. 2364 */ 2365 if (udev->speed == USB_SPEED_HIGH) 2366 normalized_interval = ep_bw->ep_interval; 2367 else 2368 normalized_interval = ep_bw->ep_interval - 3; 2369 2370 if (normalized_interval == 0) 2371 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2372 interval_bw = &bw_table->interval_bw[normalized_interval]; 2373 interval_bw->num_packets -= ep_bw->num_packets; 2374 switch (udev->speed) { 2375 case USB_SPEED_LOW: 2376 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2377 break; 2378 case USB_SPEED_FULL: 2379 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2380 break; 2381 case USB_SPEED_HIGH: 2382 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2383 break; 2384 case USB_SPEED_SUPER: 2385 case USB_SPEED_UNKNOWN: 2386 case USB_SPEED_WIRELESS: 2387 /* Should never happen because only LS/FS/HS endpoints will get 2388 * added to the endpoint list. 2389 */ 2390 return; 2391 } 2392 if (tt_info) 2393 tt_info->active_eps -= 1; 2394 list_del_init(&virt_ep->bw_endpoint_list); 2395 } 2396 2397 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2398 struct xhci_bw_info *ep_bw, 2399 struct xhci_interval_bw_table *bw_table, 2400 struct usb_device *udev, 2401 struct xhci_virt_ep *virt_ep, 2402 struct xhci_tt_bw_info *tt_info) 2403 { 2404 struct xhci_interval_bw *interval_bw; 2405 struct xhci_virt_ep *smaller_ep; 2406 int normalized_interval; 2407 2408 if (xhci_is_async_ep(ep_bw->type)) 2409 return; 2410 2411 if (udev->speed == USB_SPEED_SUPER) { 2412 if (xhci_is_sync_in_ep(ep_bw->type)) 2413 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2414 xhci_get_ss_bw_consumed(ep_bw); 2415 else 2416 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2417 xhci_get_ss_bw_consumed(ep_bw); 2418 return; 2419 } 2420 2421 /* For LS/FS devices, we need to translate the interval expressed in 2422 * microframes to frames. 2423 */ 2424 if (udev->speed == USB_SPEED_HIGH) 2425 normalized_interval = ep_bw->ep_interval; 2426 else 2427 normalized_interval = ep_bw->ep_interval - 3; 2428 2429 if (normalized_interval == 0) 2430 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2431 interval_bw = &bw_table->interval_bw[normalized_interval]; 2432 interval_bw->num_packets += ep_bw->num_packets; 2433 switch (udev->speed) { 2434 case USB_SPEED_LOW: 2435 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2436 break; 2437 case USB_SPEED_FULL: 2438 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2439 break; 2440 case USB_SPEED_HIGH: 2441 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2442 break; 2443 case USB_SPEED_SUPER: 2444 case USB_SPEED_UNKNOWN: 2445 case USB_SPEED_WIRELESS: 2446 /* Should never happen because only LS/FS/HS endpoints will get 2447 * added to the endpoint list. 2448 */ 2449 return; 2450 } 2451 2452 if (tt_info) 2453 tt_info->active_eps += 1; 2454 /* Insert the endpoint into the list, largest max packet size first. */ 2455 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2456 bw_endpoint_list) { 2457 if (ep_bw->max_packet_size >= 2458 smaller_ep->bw_info.max_packet_size) { 2459 /* Add the new ep before the smaller endpoint */ 2460 list_add_tail(&virt_ep->bw_endpoint_list, 2461 &smaller_ep->bw_endpoint_list); 2462 return; 2463 } 2464 } 2465 /* Add the new endpoint at the end of the list. */ 2466 list_add_tail(&virt_ep->bw_endpoint_list, 2467 &interval_bw->endpoints); 2468 } 2469 2470 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2471 struct xhci_virt_device *virt_dev, 2472 int old_active_eps) 2473 { 2474 struct xhci_root_port_bw_info *rh_bw_info; 2475 if (!virt_dev->tt_info) 2476 return; 2477 2478 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2479 if (old_active_eps == 0 && 2480 virt_dev->tt_info->active_eps != 0) { 2481 rh_bw_info->num_active_tts += 1; 2482 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2483 } else if (old_active_eps != 0 && 2484 virt_dev->tt_info->active_eps == 0) { 2485 rh_bw_info->num_active_tts -= 1; 2486 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2487 } 2488 } 2489 2490 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2491 struct xhci_virt_device *virt_dev, 2492 struct xhci_container_ctx *in_ctx) 2493 { 2494 struct xhci_bw_info ep_bw_info[31]; 2495 int i; 2496 struct xhci_input_control_ctx *ctrl_ctx; 2497 int old_active_eps = 0; 2498 2499 if (virt_dev->tt_info) 2500 old_active_eps = virt_dev->tt_info->active_eps; 2501 2502 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2503 if (!ctrl_ctx) { 2504 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2505 __func__); 2506 return -ENOMEM; 2507 } 2508 2509 for (i = 0; i < 31; i++) { 2510 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2511 continue; 2512 2513 /* Make a copy of the BW info in case we need to revert this */ 2514 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2515 sizeof(ep_bw_info[i])); 2516 /* Drop the endpoint from the interval table if the endpoint is 2517 * being dropped or changed. 2518 */ 2519 if (EP_IS_DROPPED(ctrl_ctx, i)) 2520 xhci_drop_ep_from_interval_table(xhci, 2521 &virt_dev->eps[i].bw_info, 2522 virt_dev->bw_table, 2523 virt_dev->udev, 2524 &virt_dev->eps[i], 2525 virt_dev->tt_info); 2526 } 2527 /* Overwrite the information stored in the endpoints' bw_info */ 2528 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2529 for (i = 0; i < 31; i++) { 2530 /* Add any changed or added endpoints to the interval table */ 2531 if (EP_IS_ADDED(ctrl_ctx, i)) 2532 xhci_add_ep_to_interval_table(xhci, 2533 &virt_dev->eps[i].bw_info, 2534 virt_dev->bw_table, 2535 virt_dev->udev, 2536 &virt_dev->eps[i], 2537 virt_dev->tt_info); 2538 } 2539 2540 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2541 /* Ok, this fits in the bandwidth we have. 2542 * Update the number of active TTs. 2543 */ 2544 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2545 return 0; 2546 } 2547 2548 /* We don't have enough bandwidth for this, revert the stored info. */ 2549 for (i = 0; i < 31; i++) { 2550 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2551 continue; 2552 2553 /* Drop the new copies of any added or changed endpoints from 2554 * the interval table. 2555 */ 2556 if (EP_IS_ADDED(ctrl_ctx, i)) { 2557 xhci_drop_ep_from_interval_table(xhci, 2558 &virt_dev->eps[i].bw_info, 2559 virt_dev->bw_table, 2560 virt_dev->udev, 2561 &virt_dev->eps[i], 2562 virt_dev->tt_info); 2563 } 2564 /* Revert the endpoint back to its old information */ 2565 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2566 sizeof(ep_bw_info[i])); 2567 /* Add any changed or dropped endpoints back into the table */ 2568 if (EP_IS_DROPPED(ctrl_ctx, i)) 2569 xhci_add_ep_to_interval_table(xhci, 2570 &virt_dev->eps[i].bw_info, 2571 virt_dev->bw_table, 2572 virt_dev->udev, 2573 &virt_dev->eps[i], 2574 virt_dev->tt_info); 2575 } 2576 return -ENOMEM; 2577 } 2578 2579 2580 /* Issue a configure endpoint command or evaluate context command 2581 * and wait for it to finish. 2582 */ 2583 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2584 struct usb_device *udev, 2585 struct xhci_command *command, 2586 bool ctx_change, bool must_succeed) 2587 { 2588 int ret; 2589 int timeleft; 2590 unsigned long flags; 2591 struct xhci_container_ctx *in_ctx; 2592 struct xhci_input_control_ctx *ctrl_ctx; 2593 struct completion *cmd_completion; 2594 u32 *cmd_status; 2595 struct xhci_virt_device *virt_dev; 2596 union xhci_trb *cmd_trb; 2597 2598 spin_lock_irqsave(&xhci->lock, flags); 2599 virt_dev = xhci->devs[udev->slot_id]; 2600 2601 if (command) 2602 in_ctx = command->in_ctx; 2603 else 2604 in_ctx = virt_dev->in_ctx; 2605 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2606 if (!ctrl_ctx) { 2607 spin_unlock_irqrestore(&xhci->lock, flags); 2608 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2609 __func__); 2610 return -ENOMEM; 2611 } 2612 2613 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2614 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2615 spin_unlock_irqrestore(&xhci->lock, flags); 2616 xhci_warn(xhci, "Not enough host resources, " 2617 "active endpoint contexts = %u\n", 2618 xhci->num_active_eps); 2619 return -ENOMEM; 2620 } 2621 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2622 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2623 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2624 xhci_free_host_resources(xhci, ctrl_ctx); 2625 spin_unlock_irqrestore(&xhci->lock, flags); 2626 xhci_warn(xhci, "Not enough bandwidth\n"); 2627 return -ENOMEM; 2628 } 2629 2630 if (command) { 2631 cmd_completion = command->completion; 2632 cmd_status = &command->status; 2633 command->command_trb = xhci->cmd_ring->enqueue; 2634 2635 /* Enqueue pointer can be left pointing to the link TRB, 2636 * we must handle that 2637 */ 2638 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) 2639 command->command_trb = 2640 xhci->cmd_ring->enq_seg->next->trbs; 2641 2642 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2643 } else { 2644 cmd_completion = &virt_dev->cmd_completion; 2645 cmd_status = &virt_dev->cmd_status; 2646 } 2647 init_completion(cmd_completion); 2648 2649 cmd_trb = xhci->cmd_ring->dequeue; 2650 if (!ctx_change) 2651 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2652 udev->slot_id, must_succeed); 2653 else 2654 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2655 udev->slot_id, must_succeed); 2656 if (ret < 0) { 2657 if (command) 2658 list_del(&command->cmd_list); 2659 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2660 xhci_free_host_resources(xhci, ctrl_ctx); 2661 spin_unlock_irqrestore(&xhci->lock, flags); 2662 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 2663 return -ENOMEM; 2664 } 2665 xhci_ring_cmd_db(xhci); 2666 spin_unlock_irqrestore(&xhci->lock, flags); 2667 2668 /* Wait for the configure endpoint command to complete */ 2669 timeleft = wait_for_completion_interruptible_timeout( 2670 cmd_completion, 2671 XHCI_CMD_DEFAULT_TIMEOUT); 2672 if (timeleft <= 0) { 2673 xhci_warn(xhci, "%s while waiting for %s command\n", 2674 timeleft == 0 ? "Timeout" : "Signal", 2675 ctx_change == 0 ? 2676 "configure endpoint" : 2677 "evaluate context"); 2678 /* cancel the configure endpoint command */ 2679 ret = xhci_cancel_cmd(xhci, command, cmd_trb); 2680 if (ret < 0) 2681 return ret; 2682 return -ETIME; 2683 } 2684 2685 if (!ctx_change) 2686 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2687 else 2688 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2689 2690 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2691 spin_lock_irqsave(&xhci->lock, flags); 2692 /* If the command failed, remove the reserved resources. 2693 * Otherwise, clean up the estimate to include dropped eps. 2694 */ 2695 if (ret) 2696 xhci_free_host_resources(xhci, ctrl_ctx); 2697 else 2698 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2699 spin_unlock_irqrestore(&xhci->lock, flags); 2700 } 2701 return ret; 2702 } 2703 2704 /* Called after one or more calls to xhci_add_endpoint() or 2705 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2706 * to call xhci_reset_bandwidth(). 2707 * 2708 * Since we are in the middle of changing either configuration or 2709 * installing a new alt setting, the USB core won't allow URBs to be 2710 * enqueued for any endpoint on the old config or interface. Nothing 2711 * else should be touching the xhci->devs[slot_id] structure, so we 2712 * don't need to take the xhci->lock for manipulating that. 2713 */ 2714 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2715 { 2716 int i; 2717 int ret = 0; 2718 struct xhci_hcd *xhci; 2719 struct xhci_virt_device *virt_dev; 2720 struct xhci_input_control_ctx *ctrl_ctx; 2721 struct xhci_slot_ctx *slot_ctx; 2722 2723 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2724 if (ret <= 0) 2725 return ret; 2726 xhci = hcd_to_xhci(hcd); 2727 if (xhci->xhc_state & XHCI_STATE_DYING) 2728 return -ENODEV; 2729 2730 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2731 virt_dev = xhci->devs[udev->slot_id]; 2732 2733 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2734 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2735 if (!ctrl_ctx) { 2736 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2737 __func__); 2738 return -ENOMEM; 2739 } 2740 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2741 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2742 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2743 2744 /* Don't issue the command if there's no endpoints to update. */ 2745 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2746 ctrl_ctx->drop_flags == 0) 2747 return 0; 2748 2749 xhci_dbg(xhci, "New Input Control Context:\n"); 2750 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2751 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2752 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2753 2754 ret = xhci_configure_endpoint(xhci, udev, NULL, 2755 false, false); 2756 if (ret) { 2757 /* Callee should call reset_bandwidth() */ 2758 return ret; 2759 } 2760 2761 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2762 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2763 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2764 2765 /* Free any rings that were dropped, but not changed. */ 2766 for (i = 1; i < 31; ++i) { 2767 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2768 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2769 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2770 } 2771 xhci_zero_in_ctx(xhci, virt_dev); 2772 /* 2773 * Install any rings for completely new endpoints or changed endpoints, 2774 * and free or cache any old rings from changed endpoints. 2775 */ 2776 for (i = 1; i < 31; ++i) { 2777 if (!virt_dev->eps[i].new_ring) 2778 continue; 2779 /* Only cache or free the old ring if it exists. 2780 * It may not if this is the first add of an endpoint. 2781 */ 2782 if (virt_dev->eps[i].ring) { 2783 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2784 } 2785 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2786 virt_dev->eps[i].new_ring = NULL; 2787 } 2788 2789 return ret; 2790 } 2791 2792 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2793 { 2794 struct xhci_hcd *xhci; 2795 struct xhci_virt_device *virt_dev; 2796 int i, ret; 2797 2798 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2799 if (ret <= 0) 2800 return; 2801 xhci = hcd_to_xhci(hcd); 2802 2803 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2804 virt_dev = xhci->devs[udev->slot_id]; 2805 /* Free any rings allocated for added endpoints */ 2806 for (i = 0; i < 31; ++i) { 2807 if (virt_dev->eps[i].new_ring) { 2808 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2809 virt_dev->eps[i].new_ring = NULL; 2810 } 2811 } 2812 xhci_zero_in_ctx(xhci, virt_dev); 2813 } 2814 2815 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2816 struct xhci_container_ctx *in_ctx, 2817 struct xhci_container_ctx *out_ctx, 2818 struct xhci_input_control_ctx *ctrl_ctx, 2819 u32 add_flags, u32 drop_flags) 2820 { 2821 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2822 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2823 xhci_slot_copy(xhci, in_ctx, out_ctx); 2824 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2825 2826 xhci_dbg(xhci, "Input Context:\n"); 2827 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2828 } 2829 2830 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2831 unsigned int slot_id, unsigned int ep_index, 2832 struct xhci_dequeue_state *deq_state) 2833 { 2834 struct xhci_input_control_ctx *ctrl_ctx; 2835 struct xhci_container_ctx *in_ctx; 2836 struct xhci_ep_ctx *ep_ctx; 2837 u32 added_ctxs; 2838 dma_addr_t addr; 2839 2840 in_ctx = xhci->devs[slot_id]->in_ctx; 2841 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2842 if (!ctrl_ctx) { 2843 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2844 __func__); 2845 return; 2846 } 2847 2848 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2849 xhci->devs[slot_id]->out_ctx, ep_index); 2850 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2851 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2852 deq_state->new_deq_ptr); 2853 if (addr == 0) { 2854 xhci_warn(xhci, "WARN Cannot submit config ep after " 2855 "reset ep command\n"); 2856 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2857 deq_state->new_deq_seg, 2858 deq_state->new_deq_ptr); 2859 return; 2860 } 2861 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2862 2863 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2864 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2865 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2866 added_ctxs, added_ctxs); 2867 } 2868 2869 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2870 struct usb_device *udev, unsigned int ep_index) 2871 { 2872 struct xhci_dequeue_state deq_state; 2873 struct xhci_virt_ep *ep; 2874 2875 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 2876 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2877 /* We need to move the HW's dequeue pointer past this TD, 2878 * or it will attempt to resend it on the next doorbell ring. 2879 */ 2880 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2881 ep_index, ep->stopped_stream, ep->stopped_td, 2882 &deq_state); 2883 2884 /* HW with the reset endpoint quirk will use the saved dequeue state to 2885 * issue a configure endpoint command later. 2886 */ 2887 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2888 xhci_dbg(xhci, "Queueing new dequeue state\n"); 2889 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2890 ep_index, ep->stopped_stream, &deq_state); 2891 } else { 2892 /* Better hope no one uses the input context between now and the 2893 * reset endpoint completion! 2894 * XXX: No idea how this hardware will react when stream rings 2895 * are enabled. 2896 */ 2897 xhci_dbg(xhci, "Setting up input context for " 2898 "configure endpoint command\n"); 2899 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2900 ep_index, &deq_state); 2901 } 2902 } 2903 2904 /* Deal with stalled endpoints. The core should have sent the control message 2905 * to clear the halt condition. However, we need to make the xHCI hardware 2906 * reset its sequence number, since a device will expect a sequence number of 2907 * zero after the halt condition is cleared. 2908 * Context: in_interrupt 2909 */ 2910 void xhci_endpoint_reset(struct usb_hcd *hcd, 2911 struct usb_host_endpoint *ep) 2912 { 2913 struct xhci_hcd *xhci; 2914 struct usb_device *udev; 2915 unsigned int ep_index; 2916 unsigned long flags; 2917 int ret; 2918 struct xhci_virt_ep *virt_ep; 2919 2920 xhci = hcd_to_xhci(hcd); 2921 udev = (struct usb_device *) ep->hcpriv; 2922 /* Called with a root hub endpoint (or an endpoint that wasn't added 2923 * with xhci_add_endpoint() 2924 */ 2925 if (!ep->hcpriv) 2926 return; 2927 ep_index = xhci_get_endpoint_index(&ep->desc); 2928 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2929 if (!virt_ep->stopped_td) { 2930 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 2931 ep->desc.bEndpointAddress); 2932 return; 2933 } 2934 if (usb_endpoint_xfer_control(&ep->desc)) { 2935 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 2936 return; 2937 } 2938 2939 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 2940 spin_lock_irqsave(&xhci->lock, flags); 2941 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2942 /* 2943 * Can't change the ring dequeue pointer until it's transitioned to the 2944 * stopped state, which is only upon a successful reset endpoint 2945 * command. Better hope that last command worked! 2946 */ 2947 if (!ret) { 2948 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2949 kfree(virt_ep->stopped_td); 2950 xhci_ring_cmd_db(xhci); 2951 } 2952 virt_ep->stopped_td = NULL; 2953 virt_ep->stopped_trb = NULL; 2954 virt_ep->stopped_stream = 0; 2955 spin_unlock_irqrestore(&xhci->lock, flags); 2956 2957 if (ret) 2958 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2959 } 2960 2961 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2962 struct usb_device *udev, struct usb_host_endpoint *ep, 2963 unsigned int slot_id) 2964 { 2965 int ret; 2966 unsigned int ep_index; 2967 unsigned int ep_state; 2968 2969 if (!ep) 2970 return -EINVAL; 2971 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2972 if (ret <= 0) 2973 return -EINVAL; 2974 if (ep->ss_ep_comp.bmAttributes == 0) { 2975 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2976 " descriptor for ep 0x%x does not support streams\n", 2977 ep->desc.bEndpointAddress); 2978 return -EINVAL; 2979 } 2980 2981 ep_index = xhci_get_endpoint_index(&ep->desc); 2982 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2983 if (ep_state & EP_HAS_STREAMS || 2984 ep_state & EP_GETTING_STREAMS) { 2985 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2986 "already has streams set up.\n", 2987 ep->desc.bEndpointAddress); 2988 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2989 "dynamic stream context array reallocation.\n"); 2990 return -EINVAL; 2991 } 2992 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2993 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2994 "endpoint 0x%x; URBs are pending.\n", 2995 ep->desc.bEndpointAddress); 2996 return -EINVAL; 2997 } 2998 return 0; 2999 } 3000 3001 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3002 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3003 { 3004 unsigned int max_streams; 3005 3006 /* The stream context array size must be a power of two */ 3007 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3008 /* 3009 * Find out how many primary stream array entries the host controller 3010 * supports. Later we may use secondary stream arrays (similar to 2nd 3011 * level page entries), but that's an optional feature for xHCI host 3012 * controllers. xHCs must support at least 4 stream IDs. 3013 */ 3014 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3015 if (*num_stream_ctxs > max_streams) { 3016 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3017 max_streams); 3018 *num_stream_ctxs = max_streams; 3019 *num_streams = max_streams; 3020 } 3021 } 3022 3023 /* Returns an error code if one of the endpoint already has streams. 3024 * This does not change any data structures, it only checks and gathers 3025 * information. 3026 */ 3027 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3028 struct usb_device *udev, 3029 struct usb_host_endpoint **eps, unsigned int num_eps, 3030 unsigned int *num_streams, u32 *changed_ep_bitmask) 3031 { 3032 unsigned int max_streams; 3033 unsigned int endpoint_flag; 3034 int i; 3035 int ret; 3036 3037 for (i = 0; i < num_eps; i++) { 3038 ret = xhci_check_streams_endpoint(xhci, udev, 3039 eps[i], udev->slot_id); 3040 if (ret < 0) 3041 return ret; 3042 3043 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3044 if (max_streams < (*num_streams - 1)) { 3045 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3046 eps[i]->desc.bEndpointAddress, 3047 max_streams); 3048 *num_streams = max_streams+1; 3049 } 3050 3051 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3052 if (*changed_ep_bitmask & endpoint_flag) 3053 return -EINVAL; 3054 *changed_ep_bitmask |= endpoint_flag; 3055 } 3056 return 0; 3057 } 3058 3059 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3060 struct usb_device *udev, 3061 struct usb_host_endpoint **eps, unsigned int num_eps) 3062 { 3063 u32 changed_ep_bitmask = 0; 3064 unsigned int slot_id; 3065 unsigned int ep_index; 3066 unsigned int ep_state; 3067 int i; 3068 3069 slot_id = udev->slot_id; 3070 if (!xhci->devs[slot_id]) 3071 return 0; 3072 3073 for (i = 0; i < num_eps; i++) { 3074 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3075 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3076 /* Are streams already being freed for the endpoint? */ 3077 if (ep_state & EP_GETTING_NO_STREAMS) { 3078 xhci_warn(xhci, "WARN Can't disable streams for " 3079 "endpoint 0x%x\n, " 3080 "streams are being disabled already.", 3081 eps[i]->desc.bEndpointAddress); 3082 return 0; 3083 } 3084 /* Are there actually any streams to free? */ 3085 if (!(ep_state & EP_HAS_STREAMS) && 3086 !(ep_state & EP_GETTING_STREAMS)) { 3087 xhci_warn(xhci, "WARN Can't disable streams for " 3088 "endpoint 0x%x\n, " 3089 "streams are already disabled!", 3090 eps[i]->desc.bEndpointAddress); 3091 xhci_warn(xhci, "WARN xhci_free_streams() called " 3092 "with non-streams endpoint\n"); 3093 return 0; 3094 } 3095 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3096 } 3097 return changed_ep_bitmask; 3098 } 3099 3100 /* 3101 * The USB device drivers use this function (though the HCD interface in USB 3102 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3103 * coordinate mass storage command queueing across multiple endpoints (basically 3104 * a stream ID == a task ID). 3105 * 3106 * Setting up streams involves allocating the same size stream context array 3107 * for each endpoint and issuing a configure endpoint command for all endpoints. 3108 * 3109 * Don't allow the call to succeed if one endpoint only supports one stream 3110 * (which means it doesn't support streams at all). 3111 * 3112 * Drivers may get less stream IDs than they asked for, if the host controller 3113 * hardware or endpoints claim they can't support the number of requested 3114 * stream IDs. 3115 */ 3116 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3117 struct usb_host_endpoint **eps, unsigned int num_eps, 3118 unsigned int num_streams, gfp_t mem_flags) 3119 { 3120 int i, ret; 3121 struct xhci_hcd *xhci; 3122 struct xhci_virt_device *vdev; 3123 struct xhci_command *config_cmd; 3124 struct xhci_input_control_ctx *ctrl_ctx; 3125 unsigned int ep_index; 3126 unsigned int num_stream_ctxs; 3127 unsigned long flags; 3128 u32 changed_ep_bitmask = 0; 3129 3130 if (!eps) 3131 return -EINVAL; 3132 3133 /* Add one to the number of streams requested to account for 3134 * stream 0 that is reserved for xHCI usage. 3135 */ 3136 num_streams += 1; 3137 xhci = hcd_to_xhci(hcd); 3138 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3139 num_streams); 3140 3141 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3142 if (!config_cmd) { 3143 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3144 return -ENOMEM; 3145 } 3146 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3147 if (!ctrl_ctx) { 3148 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3149 __func__); 3150 xhci_free_command(xhci, config_cmd); 3151 return -ENOMEM; 3152 } 3153 3154 /* Check to make sure all endpoints are not already configured for 3155 * streams. While we're at it, find the maximum number of streams that 3156 * all the endpoints will support and check for duplicate endpoints. 3157 */ 3158 spin_lock_irqsave(&xhci->lock, flags); 3159 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3160 num_eps, &num_streams, &changed_ep_bitmask); 3161 if (ret < 0) { 3162 xhci_free_command(xhci, config_cmd); 3163 spin_unlock_irqrestore(&xhci->lock, flags); 3164 return ret; 3165 } 3166 if (num_streams <= 1) { 3167 xhci_warn(xhci, "WARN: endpoints can't handle " 3168 "more than one stream.\n"); 3169 xhci_free_command(xhci, config_cmd); 3170 spin_unlock_irqrestore(&xhci->lock, flags); 3171 return -EINVAL; 3172 } 3173 vdev = xhci->devs[udev->slot_id]; 3174 /* Mark each endpoint as being in transition, so 3175 * xhci_urb_enqueue() will reject all URBs. 3176 */ 3177 for (i = 0; i < num_eps; i++) { 3178 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3179 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3180 } 3181 spin_unlock_irqrestore(&xhci->lock, flags); 3182 3183 /* Setup internal data structures and allocate HW data structures for 3184 * streams (but don't install the HW structures in the input context 3185 * until we're sure all memory allocation succeeded). 3186 */ 3187 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3188 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3189 num_stream_ctxs, num_streams); 3190 3191 for (i = 0; i < num_eps; i++) { 3192 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3193 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3194 num_stream_ctxs, 3195 num_streams, mem_flags); 3196 if (!vdev->eps[ep_index].stream_info) 3197 goto cleanup; 3198 /* Set maxPstreams in endpoint context and update deq ptr to 3199 * point to stream context array. FIXME 3200 */ 3201 } 3202 3203 /* Set up the input context for a configure endpoint command. */ 3204 for (i = 0; i < num_eps; i++) { 3205 struct xhci_ep_ctx *ep_ctx; 3206 3207 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3208 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3209 3210 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3211 vdev->out_ctx, ep_index); 3212 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3213 vdev->eps[ep_index].stream_info); 3214 } 3215 /* Tell the HW to drop its old copy of the endpoint context info 3216 * and add the updated copy from the input context. 3217 */ 3218 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3219 vdev->out_ctx, ctrl_ctx, 3220 changed_ep_bitmask, changed_ep_bitmask); 3221 3222 /* Issue and wait for the configure endpoint command */ 3223 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3224 false, false); 3225 3226 /* xHC rejected the configure endpoint command for some reason, so we 3227 * leave the old ring intact and free our internal streams data 3228 * structure. 3229 */ 3230 if (ret < 0) 3231 goto cleanup; 3232 3233 spin_lock_irqsave(&xhci->lock, flags); 3234 for (i = 0; i < num_eps; i++) { 3235 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3236 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3237 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3238 udev->slot_id, ep_index); 3239 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3240 } 3241 xhci_free_command(xhci, config_cmd); 3242 spin_unlock_irqrestore(&xhci->lock, flags); 3243 3244 /* Subtract 1 for stream 0, which drivers can't use */ 3245 return num_streams - 1; 3246 3247 cleanup: 3248 /* If it didn't work, free the streams! */ 3249 for (i = 0; i < num_eps; i++) { 3250 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3251 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3252 vdev->eps[ep_index].stream_info = NULL; 3253 /* FIXME Unset maxPstreams in endpoint context and 3254 * update deq ptr to point to normal string ring. 3255 */ 3256 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3257 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3258 xhci_endpoint_zero(xhci, vdev, eps[i]); 3259 } 3260 xhci_free_command(xhci, config_cmd); 3261 return -ENOMEM; 3262 } 3263 3264 /* Transition the endpoint from using streams to being a "normal" endpoint 3265 * without streams. 3266 * 3267 * Modify the endpoint context state, submit a configure endpoint command, 3268 * and free all endpoint rings for streams if that completes successfully. 3269 */ 3270 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3271 struct usb_host_endpoint **eps, unsigned int num_eps, 3272 gfp_t mem_flags) 3273 { 3274 int i, ret; 3275 struct xhci_hcd *xhci; 3276 struct xhci_virt_device *vdev; 3277 struct xhci_command *command; 3278 struct xhci_input_control_ctx *ctrl_ctx; 3279 unsigned int ep_index; 3280 unsigned long flags; 3281 u32 changed_ep_bitmask; 3282 3283 xhci = hcd_to_xhci(hcd); 3284 vdev = xhci->devs[udev->slot_id]; 3285 3286 /* Set up a configure endpoint command to remove the streams rings */ 3287 spin_lock_irqsave(&xhci->lock, flags); 3288 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3289 udev, eps, num_eps); 3290 if (changed_ep_bitmask == 0) { 3291 spin_unlock_irqrestore(&xhci->lock, flags); 3292 return -EINVAL; 3293 } 3294 3295 /* Use the xhci_command structure from the first endpoint. We may have 3296 * allocated too many, but the driver may call xhci_free_streams() for 3297 * each endpoint it grouped into one call to xhci_alloc_streams(). 3298 */ 3299 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3300 command = vdev->eps[ep_index].stream_info->free_streams_command; 3301 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3302 if (!ctrl_ctx) { 3303 spin_unlock_irqrestore(&xhci->lock, flags); 3304 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3305 __func__); 3306 return -EINVAL; 3307 } 3308 3309 for (i = 0; i < num_eps; i++) { 3310 struct xhci_ep_ctx *ep_ctx; 3311 3312 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3313 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3314 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3315 EP_GETTING_NO_STREAMS; 3316 3317 xhci_endpoint_copy(xhci, command->in_ctx, 3318 vdev->out_ctx, ep_index); 3319 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3320 &vdev->eps[ep_index]); 3321 } 3322 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3323 vdev->out_ctx, ctrl_ctx, 3324 changed_ep_bitmask, changed_ep_bitmask); 3325 spin_unlock_irqrestore(&xhci->lock, flags); 3326 3327 /* Issue and wait for the configure endpoint command, 3328 * which must succeed. 3329 */ 3330 ret = xhci_configure_endpoint(xhci, udev, command, 3331 false, true); 3332 3333 /* xHC rejected the configure endpoint command for some reason, so we 3334 * leave the streams rings intact. 3335 */ 3336 if (ret < 0) 3337 return ret; 3338 3339 spin_lock_irqsave(&xhci->lock, flags); 3340 for (i = 0; i < num_eps; i++) { 3341 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3342 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3343 vdev->eps[ep_index].stream_info = NULL; 3344 /* FIXME Unset maxPstreams in endpoint context and 3345 * update deq ptr to point to normal string ring. 3346 */ 3347 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3348 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3349 } 3350 spin_unlock_irqrestore(&xhci->lock, flags); 3351 3352 return 0; 3353 } 3354 3355 /* 3356 * Deletes endpoint resources for endpoints that were active before a Reset 3357 * Device command, or a Disable Slot command. The Reset Device command leaves 3358 * the control endpoint intact, whereas the Disable Slot command deletes it. 3359 * 3360 * Must be called with xhci->lock held. 3361 */ 3362 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3363 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3364 { 3365 int i; 3366 unsigned int num_dropped_eps = 0; 3367 unsigned int drop_flags = 0; 3368 3369 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3370 if (virt_dev->eps[i].ring) { 3371 drop_flags |= 1 << i; 3372 num_dropped_eps++; 3373 } 3374 } 3375 xhci->num_active_eps -= num_dropped_eps; 3376 if (num_dropped_eps) 3377 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " 3378 "%u now active.\n", 3379 num_dropped_eps, drop_flags, 3380 xhci->num_active_eps); 3381 } 3382 3383 /* 3384 * This submits a Reset Device Command, which will set the device state to 0, 3385 * set the device address to 0, and disable all the endpoints except the default 3386 * control endpoint. The USB core should come back and call 3387 * xhci_address_device(), and then re-set up the configuration. If this is 3388 * called because of a usb_reset_and_verify_device(), then the old alternate 3389 * settings will be re-installed through the normal bandwidth allocation 3390 * functions. 3391 * 3392 * Wait for the Reset Device command to finish. Remove all structures 3393 * associated with the endpoints that were disabled. Clear the input device 3394 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3395 * 3396 * If the virt_dev to be reset does not exist or does not match the udev, 3397 * it means the device is lost, possibly due to the xHC restore error and 3398 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3399 * re-allocate the device. 3400 */ 3401 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3402 { 3403 int ret, i; 3404 unsigned long flags; 3405 struct xhci_hcd *xhci; 3406 unsigned int slot_id; 3407 struct xhci_virt_device *virt_dev; 3408 struct xhci_command *reset_device_cmd; 3409 int timeleft; 3410 int last_freed_endpoint; 3411 struct xhci_slot_ctx *slot_ctx; 3412 int old_active_eps = 0; 3413 3414 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3415 if (ret <= 0) 3416 return ret; 3417 xhci = hcd_to_xhci(hcd); 3418 slot_id = udev->slot_id; 3419 virt_dev = xhci->devs[slot_id]; 3420 if (!virt_dev) { 3421 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3422 "not exist. Re-allocate the device\n", slot_id); 3423 ret = xhci_alloc_dev(hcd, udev); 3424 if (ret == 1) 3425 return 0; 3426 else 3427 return -EINVAL; 3428 } 3429 3430 if (virt_dev->udev != udev) { 3431 /* If the virt_dev and the udev does not match, this virt_dev 3432 * may belong to another udev. 3433 * Re-allocate the device. 3434 */ 3435 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3436 "not match the udev. Re-allocate the device\n", 3437 slot_id); 3438 ret = xhci_alloc_dev(hcd, udev); 3439 if (ret == 1) 3440 return 0; 3441 else 3442 return -EINVAL; 3443 } 3444 3445 /* If device is not setup, there is no point in resetting it */ 3446 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3447 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3448 SLOT_STATE_DISABLED) 3449 return 0; 3450 3451 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3452 /* Allocate the command structure that holds the struct completion. 3453 * Assume we're in process context, since the normal device reset 3454 * process has to wait for the device anyway. Storage devices are 3455 * reset as part of error handling, so use GFP_NOIO instead of 3456 * GFP_KERNEL. 3457 */ 3458 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3459 if (!reset_device_cmd) { 3460 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3461 return -ENOMEM; 3462 } 3463 3464 /* Attempt to submit the Reset Device command to the command ring */ 3465 spin_lock_irqsave(&xhci->lock, flags); 3466 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 3467 3468 /* Enqueue pointer can be left pointing to the link TRB, 3469 * we must handle that 3470 */ 3471 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) 3472 reset_device_cmd->command_trb = 3473 xhci->cmd_ring->enq_seg->next->trbs; 3474 3475 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3476 ret = xhci_queue_reset_device(xhci, slot_id); 3477 if (ret) { 3478 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3479 list_del(&reset_device_cmd->cmd_list); 3480 spin_unlock_irqrestore(&xhci->lock, flags); 3481 goto command_cleanup; 3482 } 3483 xhci_ring_cmd_db(xhci); 3484 spin_unlock_irqrestore(&xhci->lock, flags); 3485 3486 /* Wait for the Reset Device command to finish */ 3487 timeleft = wait_for_completion_interruptible_timeout( 3488 reset_device_cmd->completion, 3489 USB_CTRL_SET_TIMEOUT); 3490 if (timeleft <= 0) { 3491 xhci_warn(xhci, "%s while waiting for reset device command\n", 3492 timeleft == 0 ? "Timeout" : "Signal"); 3493 spin_lock_irqsave(&xhci->lock, flags); 3494 /* The timeout might have raced with the event ring handler, so 3495 * only delete from the list if the item isn't poisoned. 3496 */ 3497 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3498 list_del(&reset_device_cmd->cmd_list); 3499 spin_unlock_irqrestore(&xhci->lock, flags); 3500 ret = -ETIME; 3501 goto command_cleanup; 3502 } 3503 3504 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3505 * unless we tried to reset a slot ID that wasn't enabled, 3506 * or the device wasn't in the addressed or configured state. 3507 */ 3508 ret = reset_device_cmd->status; 3509 switch (ret) { 3510 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3511 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3512 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 3513 slot_id, 3514 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3515 xhci_info(xhci, "Not freeing device rings.\n"); 3516 /* Don't treat this as an error. May change my mind later. */ 3517 ret = 0; 3518 goto command_cleanup; 3519 case COMP_SUCCESS: 3520 xhci_dbg(xhci, "Successful reset device command.\n"); 3521 break; 3522 default: 3523 if (xhci_is_vendor_info_code(xhci, ret)) 3524 break; 3525 xhci_warn(xhci, "Unknown completion code %u for " 3526 "reset device command.\n", ret); 3527 ret = -EINVAL; 3528 goto command_cleanup; 3529 } 3530 3531 /* Free up host controller endpoint resources */ 3532 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3533 spin_lock_irqsave(&xhci->lock, flags); 3534 /* Don't delete the default control endpoint resources */ 3535 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3536 spin_unlock_irqrestore(&xhci->lock, flags); 3537 } 3538 3539 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3540 last_freed_endpoint = 1; 3541 for (i = 1; i < 31; ++i) { 3542 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3543 3544 if (ep->ep_state & EP_HAS_STREAMS) { 3545 xhci_free_stream_info(xhci, ep->stream_info); 3546 ep->stream_info = NULL; 3547 ep->ep_state &= ~EP_HAS_STREAMS; 3548 } 3549 3550 if (ep->ring) { 3551 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3552 last_freed_endpoint = i; 3553 } 3554 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3555 xhci_drop_ep_from_interval_table(xhci, 3556 &virt_dev->eps[i].bw_info, 3557 virt_dev->bw_table, 3558 udev, 3559 &virt_dev->eps[i], 3560 virt_dev->tt_info); 3561 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3562 } 3563 /* If necessary, update the number of active TTs on this root port */ 3564 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3565 3566 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3567 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3568 ret = 0; 3569 3570 command_cleanup: 3571 xhci_free_command(xhci, reset_device_cmd); 3572 return ret; 3573 } 3574 3575 /* 3576 * At this point, the struct usb_device is about to go away, the device has 3577 * disconnected, and all traffic has been stopped and the endpoints have been 3578 * disabled. Free any HC data structures associated with that device. 3579 */ 3580 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3581 { 3582 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3583 struct xhci_virt_device *virt_dev; 3584 unsigned long flags; 3585 u32 state; 3586 int i, ret; 3587 3588 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3589 /* If the host is halted due to driver unload, we still need to free the 3590 * device. 3591 */ 3592 if (ret <= 0 && ret != -ENODEV) 3593 return; 3594 3595 virt_dev = xhci->devs[udev->slot_id]; 3596 3597 /* Stop any wayward timer functions (which may grab the lock) */ 3598 for (i = 0; i < 31; ++i) { 3599 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3600 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3601 } 3602 3603 if (udev->usb2_hw_lpm_enabled) { 3604 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3605 udev->usb2_hw_lpm_enabled = 0; 3606 } 3607 3608 spin_lock_irqsave(&xhci->lock, flags); 3609 /* Don't disable the slot if the host controller is dead. */ 3610 state = xhci_readl(xhci, &xhci->op_regs->status); 3611 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3612 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3613 xhci_free_virt_device(xhci, udev->slot_id); 3614 spin_unlock_irqrestore(&xhci->lock, flags); 3615 return; 3616 } 3617 3618 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3619 spin_unlock_irqrestore(&xhci->lock, flags); 3620 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3621 return; 3622 } 3623 xhci_ring_cmd_db(xhci); 3624 spin_unlock_irqrestore(&xhci->lock, flags); 3625 /* 3626 * Event command completion handler will free any data structures 3627 * associated with the slot. XXX Can free sleep? 3628 */ 3629 } 3630 3631 /* 3632 * Checks if we have enough host controller resources for the default control 3633 * endpoint. 3634 * 3635 * Must be called with xhci->lock held. 3636 */ 3637 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3638 { 3639 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3640 xhci_dbg(xhci, "Not enough ep ctxs: " 3641 "%u active, need to add 1, limit is %u.\n", 3642 xhci->num_active_eps, xhci->limit_active_eps); 3643 return -ENOMEM; 3644 } 3645 xhci->num_active_eps += 1; 3646 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", 3647 xhci->num_active_eps); 3648 return 0; 3649 } 3650 3651 3652 /* 3653 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3654 * timed out, or allocating memory failed. Returns 1 on success. 3655 */ 3656 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3657 { 3658 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3659 unsigned long flags; 3660 int timeleft; 3661 int ret; 3662 union xhci_trb *cmd_trb; 3663 3664 spin_lock_irqsave(&xhci->lock, flags); 3665 cmd_trb = xhci->cmd_ring->dequeue; 3666 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3667 if (ret) { 3668 spin_unlock_irqrestore(&xhci->lock, flags); 3669 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3670 return 0; 3671 } 3672 xhci_ring_cmd_db(xhci); 3673 spin_unlock_irqrestore(&xhci->lock, flags); 3674 3675 /* XXX: how much time for xHC slot assignment? */ 3676 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3677 XHCI_CMD_DEFAULT_TIMEOUT); 3678 if (timeleft <= 0) { 3679 xhci_warn(xhci, "%s while waiting for a slot\n", 3680 timeleft == 0 ? "Timeout" : "Signal"); 3681 /* cancel the enable slot request */ 3682 return xhci_cancel_cmd(xhci, NULL, cmd_trb); 3683 } 3684 3685 if (!xhci->slot_id) { 3686 xhci_err(xhci, "Error while assigning device slot ID\n"); 3687 return 0; 3688 } 3689 3690 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3691 spin_lock_irqsave(&xhci->lock, flags); 3692 ret = xhci_reserve_host_control_ep_resources(xhci); 3693 if (ret) { 3694 spin_unlock_irqrestore(&xhci->lock, flags); 3695 xhci_warn(xhci, "Not enough host resources, " 3696 "active endpoint contexts = %u\n", 3697 xhci->num_active_eps); 3698 goto disable_slot; 3699 } 3700 spin_unlock_irqrestore(&xhci->lock, flags); 3701 } 3702 /* Use GFP_NOIO, since this function can be called from 3703 * xhci_discover_or_reset_device(), which may be called as part of 3704 * mass storage driver error handling. 3705 */ 3706 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3707 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3708 goto disable_slot; 3709 } 3710 udev->slot_id = xhci->slot_id; 3711 /* Is this a LS or FS device under a HS hub? */ 3712 /* Hub or peripherial? */ 3713 return 1; 3714 3715 disable_slot: 3716 /* Disable slot, if we can do it without mem alloc */ 3717 spin_lock_irqsave(&xhci->lock, flags); 3718 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3719 xhci_ring_cmd_db(xhci); 3720 spin_unlock_irqrestore(&xhci->lock, flags); 3721 return 0; 3722 } 3723 3724 /* 3725 * Issue an Address Device command (which will issue a SetAddress request to 3726 * the device). 3727 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3728 * we should only issue and wait on one address command at the same time. 3729 * 3730 * We add one to the device address issued by the hardware because the USB core 3731 * uses address 1 for the root hubs (even though they're not really devices). 3732 */ 3733 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3734 { 3735 unsigned long flags; 3736 int timeleft; 3737 struct xhci_virt_device *virt_dev; 3738 int ret = 0; 3739 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3740 struct xhci_slot_ctx *slot_ctx; 3741 struct xhci_input_control_ctx *ctrl_ctx; 3742 u64 temp_64; 3743 union xhci_trb *cmd_trb; 3744 3745 if (!udev->slot_id) { 3746 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 3747 return -EINVAL; 3748 } 3749 3750 virt_dev = xhci->devs[udev->slot_id]; 3751 3752 if (WARN_ON(!virt_dev)) { 3753 /* 3754 * In plug/unplug torture test with an NEC controller, 3755 * a zero-dereference was observed once due to virt_dev = 0. 3756 * Print useful debug rather than crash if it is observed again! 3757 */ 3758 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3759 udev->slot_id); 3760 return -EINVAL; 3761 } 3762 3763 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3764 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3765 if (!ctrl_ctx) { 3766 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3767 __func__); 3768 return -EINVAL; 3769 } 3770 /* 3771 * If this is the first Set Address since device plug-in or 3772 * virt_device realloaction after a resume with an xHCI power loss, 3773 * then set up the slot context. 3774 */ 3775 if (!slot_ctx->dev_info) 3776 xhci_setup_addressable_virt_dev(xhci, udev); 3777 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3778 else 3779 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3780 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3781 ctrl_ctx->drop_flags = 0; 3782 3783 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3784 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3785 3786 spin_lock_irqsave(&xhci->lock, flags); 3787 cmd_trb = xhci->cmd_ring->dequeue; 3788 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3789 udev->slot_id); 3790 if (ret) { 3791 spin_unlock_irqrestore(&xhci->lock, flags); 3792 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3793 return ret; 3794 } 3795 xhci_ring_cmd_db(xhci); 3796 spin_unlock_irqrestore(&xhci->lock, flags); 3797 3798 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3799 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3800 XHCI_CMD_DEFAULT_TIMEOUT); 3801 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3802 * the SetAddress() "recovery interval" required by USB and aborting the 3803 * command on a timeout. 3804 */ 3805 if (timeleft <= 0) { 3806 xhci_warn(xhci, "%s while waiting for address device command\n", 3807 timeleft == 0 ? "Timeout" : "Signal"); 3808 /* cancel the address device command */ 3809 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb); 3810 if (ret < 0) 3811 return ret; 3812 return -ETIME; 3813 } 3814 3815 switch (virt_dev->cmd_status) { 3816 case COMP_CTX_STATE: 3817 case COMP_EBADSLT: 3818 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3819 udev->slot_id); 3820 ret = -EINVAL; 3821 break; 3822 case COMP_TX_ERR: 3823 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3824 ret = -EPROTO; 3825 break; 3826 case COMP_DEV_ERR: 3827 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3828 "device command.\n"); 3829 ret = -ENODEV; 3830 break; 3831 case COMP_SUCCESS: 3832 xhci_dbg(xhci, "Successful Address Device command\n"); 3833 break; 3834 default: 3835 xhci_err(xhci, "ERROR: unexpected command completion " 3836 "code 0x%x.\n", virt_dev->cmd_status); 3837 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3838 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3839 ret = -EINVAL; 3840 break; 3841 } 3842 if (ret) { 3843 return ret; 3844 } 3845 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3846 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 3847 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 3848 udev->slot_id, 3849 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3850 (unsigned long long) 3851 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3852 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 3853 (unsigned long long)virt_dev->out_ctx->dma); 3854 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3855 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3856 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3857 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3858 /* 3859 * USB core uses address 1 for the roothubs, so we add one to the 3860 * address given back to us by the HC. 3861 */ 3862 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3863 /* Use kernel assigned address for devices; store xHC assigned 3864 * address locally. */ 3865 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3866 + 1; 3867 /* Zero the input context control for later use */ 3868 ctrl_ctx->add_flags = 0; 3869 ctrl_ctx->drop_flags = 0; 3870 3871 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); 3872 3873 return 0; 3874 } 3875 3876 /* 3877 * Transfer the port index into real index in the HW port status 3878 * registers. Caculate offset between the port's PORTSC register 3879 * and port status base. Divide the number of per port register 3880 * to get the real index. The raw port number bases 1. 3881 */ 3882 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3883 { 3884 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3885 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3886 __le32 __iomem *addr; 3887 int raw_port; 3888 3889 if (hcd->speed != HCD_USB3) 3890 addr = xhci->usb2_ports[port1 - 1]; 3891 else 3892 addr = xhci->usb3_ports[port1 - 1]; 3893 3894 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3895 return raw_port; 3896 } 3897 3898 /* 3899 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3900 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3901 */ 3902 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3903 struct usb_device *udev, u16 max_exit_latency) 3904 { 3905 struct xhci_virt_device *virt_dev; 3906 struct xhci_command *command; 3907 struct xhci_input_control_ctx *ctrl_ctx; 3908 struct xhci_slot_ctx *slot_ctx; 3909 unsigned long flags; 3910 int ret; 3911 3912 spin_lock_irqsave(&xhci->lock, flags); 3913 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 3914 spin_unlock_irqrestore(&xhci->lock, flags); 3915 return 0; 3916 } 3917 3918 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3919 virt_dev = xhci->devs[udev->slot_id]; 3920 command = xhci->lpm_command; 3921 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3922 if (!ctrl_ctx) { 3923 spin_unlock_irqrestore(&xhci->lock, flags); 3924 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3925 __func__); 3926 return -ENOMEM; 3927 } 3928 3929 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3930 spin_unlock_irqrestore(&xhci->lock, flags); 3931 3932 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3933 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3934 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3935 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3936 3937 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n"); 3938 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 3939 xhci_dbg_ctx(xhci, command->in_ctx, 0); 3940 3941 /* Issue and wait for the evaluate context command. */ 3942 ret = xhci_configure_endpoint(xhci, udev, command, 3943 true, true); 3944 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 3945 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 3946 3947 if (!ret) { 3948 spin_lock_irqsave(&xhci->lock, flags); 3949 virt_dev->current_mel = max_exit_latency; 3950 spin_unlock_irqrestore(&xhci->lock, flags); 3951 } 3952 return ret; 3953 } 3954 3955 #ifdef CONFIG_PM_RUNTIME 3956 3957 /* BESL to HIRD Encoding array for USB2 LPM */ 3958 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3959 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3960 3961 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3962 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3963 struct usb_device *udev) 3964 { 3965 int u2del, besl, besl_host; 3966 int besl_device = 0; 3967 u32 field; 3968 3969 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3970 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3971 3972 if (field & USB_BESL_SUPPORT) { 3973 for (besl_host = 0; besl_host < 16; besl_host++) { 3974 if (xhci_besl_encoding[besl_host] >= u2del) 3975 break; 3976 } 3977 /* Use baseline BESL value as default */ 3978 if (field & USB_BESL_BASELINE_VALID) 3979 besl_device = USB_GET_BESL_BASELINE(field); 3980 else if (field & USB_BESL_DEEP_VALID) 3981 besl_device = USB_GET_BESL_DEEP(field); 3982 } else { 3983 if (u2del <= 50) 3984 besl_host = 0; 3985 else 3986 besl_host = (u2del - 51) / 75 + 1; 3987 } 3988 3989 besl = besl_host + besl_device; 3990 if (besl > 15) 3991 besl = 15; 3992 3993 return besl; 3994 } 3995 3996 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 3997 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 3998 { 3999 u32 field; 4000 int l1; 4001 int besld = 0; 4002 int hirdm = 0; 4003 4004 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4005 4006 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4007 l1 = udev->l1_params.timeout / 256; 4008 4009 /* device has preferred BESLD */ 4010 if (field & USB_BESL_DEEP_VALID) { 4011 besld = USB_GET_BESL_DEEP(field); 4012 hirdm = 1; 4013 } 4014 4015 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4016 } 4017 4018 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 4019 struct usb_device *udev) 4020 { 4021 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4022 struct dev_info *dev_info; 4023 __le32 __iomem **port_array; 4024 __le32 __iomem *addr, *pm_addr; 4025 u32 temp, dev_id; 4026 unsigned int port_num; 4027 unsigned long flags; 4028 int hird; 4029 int ret; 4030 4031 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4032 !udev->lpm_capable) 4033 return -EINVAL; 4034 4035 /* we only support lpm for non-hub device connected to root hub yet */ 4036 if (!udev->parent || udev->parent->parent || 4037 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4038 return -EINVAL; 4039 4040 spin_lock_irqsave(&xhci->lock, flags); 4041 4042 /* Look for devices in lpm_failed_devs list */ 4043 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 4044 le16_to_cpu(udev->descriptor.idProduct); 4045 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 4046 if (dev_info->dev_id == dev_id) { 4047 ret = -EINVAL; 4048 goto finish; 4049 } 4050 } 4051 4052 port_array = xhci->usb2_ports; 4053 port_num = udev->portnum - 1; 4054 4055 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 4056 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 4057 ret = -EINVAL; 4058 goto finish; 4059 } 4060 4061 /* 4062 * Test USB 2.0 software LPM. 4063 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 4064 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 4065 * in the June 2011 errata release. 4066 */ 4067 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 4068 /* 4069 * Set L1 Device Slot and HIRD/BESL. 4070 * Check device's USB 2.0 extension descriptor to determine whether 4071 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 4072 */ 4073 pm_addr = port_array[port_num] + PORTPMSC; 4074 hird = xhci_calculate_hird_besl(xhci, udev); 4075 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 4076 xhci_writel(xhci, temp, pm_addr); 4077 4078 /* Set port link state to U2(L1) */ 4079 addr = port_array[port_num]; 4080 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 4081 4082 /* wait for ACK */ 4083 spin_unlock_irqrestore(&xhci->lock, flags); 4084 msleep(10); 4085 spin_lock_irqsave(&xhci->lock, flags); 4086 4087 /* Check L1 Status */ 4088 ret = xhci_handshake(xhci, pm_addr, 4089 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 4090 if (ret != -ETIMEDOUT) { 4091 /* enter L1 successfully */ 4092 temp = xhci_readl(xhci, addr); 4093 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 4094 port_num, temp); 4095 ret = 0; 4096 } else { 4097 temp = xhci_readl(xhci, pm_addr); 4098 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 4099 port_num, temp & PORT_L1S_MASK); 4100 ret = -EINVAL; 4101 } 4102 4103 /* Resume the port */ 4104 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 4105 4106 spin_unlock_irqrestore(&xhci->lock, flags); 4107 msleep(10); 4108 spin_lock_irqsave(&xhci->lock, flags); 4109 4110 /* Clear PLC */ 4111 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 4112 4113 /* Check PORTSC to make sure the device is in the right state */ 4114 if (!ret) { 4115 temp = xhci_readl(xhci, addr); 4116 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 4117 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 4118 (temp & PORT_PLS_MASK) != XDEV_U0) { 4119 xhci_dbg(xhci, "port L1 resume fail\n"); 4120 ret = -EINVAL; 4121 } 4122 } 4123 4124 if (ret) { 4125 /* Insert dev to lpm_failed_devs list */ 4126 xhci_warn(xhci, "device LPM test failed, may disconnect and " 4127 "re-enumerate\n"); 4128 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 4129 if (!dev_info) { 4130 ret = -ENOMEM; 4131 goto finish; 4132 } 4133 dev_info->dev_id = dev_id; 4134 INIT_LIST_HEAD(&dev_info->list); 4135 list_add(&dev_info->list, &xhci->lpm_failed_devs); 4136 } else { 4137 xhci_ring_device(xhci, udev->slot_id); 4138 } 4139 4140 finish: 4141 spin_unlock_irqrestore(&xhci->lock, flags); 4142 return ret; 4143 } 4144 4145 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4146 struct usb_device *udev, int enable) 4147 { 4148 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4149 __le32 __iomem **port_array; 4150 __le32 __iomem *pm_addr, *hlpm_addr; 4151 u32 pm_val, hlpm_val, field; 4152 unsigned int port_num; 4153 unsigned long flags; 4154 int hird, exit_latency; 4155 int ret; 4156 4157 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4158 !udev->lpm_capable) 4159 return -EPERM; 4160 4161 if (!udev->parent || udev->parent->parent || 4162 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4163 return -EPERM; 4164 4165 if (udev->usb2_hw_lpm_capable != 1) 4166 return -EPERM; 4167 4168 spin_lock_irqsave(&xhci->lock, flags); 4169 4170 port_array = xhci->usb2_ports; 4171 port_num = udev->portnum - 1; 4172 pm_addr = port_array[port_num] + PORTPMSC; 4173 pm_val = xhci_readl(xhci, pm_addr); 4174 hlpm_addr = port_array[port_num] + PORTHLPMC; 4175 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4176 4177 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4178 enable ? "enable" : "disable", port_num); 4179 4180 if (enable) { 4181 /* Host supports BESL timeout instead of HIRD */ 4182 if (udev->usb2_hw_lpm_besl_capable) { 4183 /* if device doesn't have a preferred BESL value use a 4184 * default one which works with mixed HIRD and BESL 4185 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4186 */ 4187 if ((field & USB_BESL_SUPPORT) && 4188 (field & USB_BESL_BASELINE_VALID)) 4189 hird = USB_GET_BESL_BASELINE(field); 4190 else 4191 hird = udev->l1_params.besl; 4192 4193 exit_latency = xhci_besl_encoding[hird]; 4194 spin_unlock_irqrestore(&xhci->lock, flags); 4195 4196 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4197 * input context for link powermanagement evaluate 4198 * context commands. It is protected by hcd->bandwidth 4199 * mutex and is shared by all devices. We need to set 4200 * the max ext latency in USB 2 BESL LPM as well, so 4201 * use the same mutex and xhci_change_max_exit_latency() 4202 */ 4203 mutex_lock(hcd->bandwidth_mutex); 4204 ret = xhci_change_max_exit_latency(xhci, udev, 4205 exit_latency); 4206 mutex_unlock(hcd->bandwidth_mutex); 4207 4208 if (ret < 0) 4209 return ret; 4210 spin_lock_irqsave(&xhci->lock, flags); 4211 4212 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4213 xhci_writel(xhci, hlpm_val, hlpm_addr); 4214 /* flush write */ 4215 xhci_readl(xhci, hlpm_addr); 4216 } else { 4217 hird = xhci_calculate_hird_besl(xhci, udev); 4218 } 4219 4220 pm_val &= ~PORT_HIRD_MASK; 4221 pm_val |= PORT_HIRD(hird) | PORT_RWE; 4222 xhci_writel(xhci, pm_val, pm_addr); 4223 pm_val = xhci_readl(xhci, pm_addr); 4224 pm_val |= PORT_HLE; 4225 xhci_writel(xhci, pm_val, pm_addr); 4226 /* flush write */ 4227 xhci_readl(xhci, pm_addr); 4228 } else { 4229 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 4230 xhci_writel(xhci, pm_val, pm_addr); 4231 /* flush write */ 4232 xhci_readl(xhci, pm_addr); 4233 if (udev->usb2_hw_lpm_besl_capable) { 4234 spin_unlock_irqrestore(&xhci->lock, flags); 4235 mutex_lock(hcd->bandwidth_mutex); 4236 xhci_change_max_exit_latency(xhci, udev, 0); 4237 mutex_unlock(hcd->bandwidth_mutex); 4238 return 0; 4239 } 4240 } 4241 4242 spin_unlock_irqrestore(&xhci->lock, flags); 4243 return 0; 4244 } 4245 4246 /* check if a usb2 port supports a given extened capability protocol 4247 * only USB2 ports extended protocol capability values are cached. 4248 * Return 1 if capability is supported 4249 */ 4250 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4251 unsigned capability) 4252 { 4253 u32 port_offset, port_count; 4254 int i; 4255 4256 for (i = 0; i < xhci->num_ext_caps; i++) { 4257 if (xhci->ext_caps[i] & capability) { 4258 /* port offsets starts at 1 */ 4259 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4260 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4261 if (port >= port_offset && 4262 port < port_offset + port_count) 4263 return 1; 4264 } 4265 } 4266 return 0; 4267 } 4268 4269 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4270 { 4271 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4272 int ret; 4273 int portnum = udev->portnum - 1; 4274 4275 ret = xhci_usb2_software_lpm_test(hcd, udev); 4276 if (!ret) { 4277 xhci_dbg(xhci, "software LPM test succeed\n"); 4278 if (xhci->hw_lpm_support == 1 && 4279 xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) { 4280 udev->usb2_hw_lpm_capable = 1; 4281 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4282 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4283 if (xhci_check_usb2_port_capability(xhci, portnum, 4284 XHCI_BLC)) 4285 udev->usb2_hw_lpm_besl_capable = 1; 4286 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 4287 if (!ret) 4288 udev->usb2_hw_lpm_enabled = 1; 4289 } 4290 } 4291 4292 return 0; 4293 } 4294 4295 #else 4296 4297 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4298 struct usb_device *udev, int enable) 4299 { 4300 return 0; 4301 } 4302 4303 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4304 { 4305 return 0; 4306 } 4307 4308 #endif /* CONFIG_PM_RUNTIME */ 4309 4310 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4311 4312 #ifdef CONFIG_PM 4313 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4314 static unsigned long long xhci_service_interval_to_ns( 4315 struct usb_endpoint_descriptor *desc) 4316 { 4317 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4318 } 4319 4320 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4321 enum usb3_link_state state) 4322 { 4323 unsigned long long sel; 4324 unsigned long long pel; 4325 unsigned int max_sel_pel; 4326 char *state_name; 4327 4328 switch (state) { 4329 case USB3_LPM_U1: 4330 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4331 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4332 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4333 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4334 state_name = "U1"; 4335 break; 4336 case USB3_LPM_U2: 4337 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4338 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4339 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4340 state_name = "U2"; 4341 break; 4342 default: 4343 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4344 __func__); 4345 return USB3_LPM_DISABLED; 4346 } 4347 4348 if (sel <= max_sel_pel && pel <= max_sel_pel) 4349 return USB3_LPM_DEVICE_INITIATED; 4350 4351 if (sel > max_sel_pel) 4352 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4353 "due to long SEL %llu ms\n", 4354 state_name, sel); 4355 else 4356 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4357 "due to long PEL %llu\n ms", 4358 state_name, pel); 4359 return USB3_LPM_DISABLED; 4360 } 4361 4362 /* Returns the hub-encoded U1 timeout value. 4363 * The U1 timeout should be the maximum of the following values: 4364 * - For control endpoints, U1 system exit latency (SEL) * 3 4365 * - For bulk endpoints, U1 SEL * 5 4366 * - For interrupt endpoints: 4367 * - Notification EPs, U1 SEL * 3 4368 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4369 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4370 */ 4371 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 4372 struct usb_endpoint_descriptor *desc) 4373 { 4374 unsigned long long timeout_ns; 4375 int ep_type; 4376 int intr_type; 4377 4378 ep_type = usb_endpoint_type(desc); 4379 switch (ep_type) { 4380 case USB_ENDPOINT_XFER_CONTROL: 4381 timeout_ns = udev->u1_params.sel * 3; 4382 break; 4383 case USB_ENDPOINT_XFER_BULK: 4384 timeout_ns = udev->u1_params.sel * 5; 4385 break; 4386 case USB_ENDPOINT_XFER_INT: 4387 intr_type = usb_endpoint_interrupt_type(desc); 4388 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4389 timeout_ns = udev->u1_params.sel * 3; 4390 break; 4391 } 4392 /* Otherwise the calculation is the same as isoc eps */ 4393 case USB_ENDPOINT_XFER_ISOC: 4394 timeout_ns = xhci_service_interval_to_ns(desc); 4395 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4396 if (timeout_ns < udev->u1_params.sel * 2) 4397 timeout_ns = udev->u1_params.sel * 2; 4398 break; 4399 default: 4400 return 0; 4401 } 4402 4403 /* The U1 timeout is encoded in 1us intervals. */ 4404 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4405 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 4406 if (timeout_ns == USB3_LPM_DISABLED) 4407 timeout_ns++; 4408 4409 /* If the necessary timeout value is bigger than what we can set in the 4410 * USB 3.0 hub, we have to disable hub-initiated U1. 4411 */ 4412 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4413 return timeout_ns; 4414 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4415 "due to long timeout %llu ms\n", timeout_ns); 4416 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4417 } 4418 4419 /* Returns the hub-encoded U2 timeout value. 4420 * The U2 timeout should be the maximum of: 4421 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4422 * - largest bInterval of any active periodic endpoint (to avoid going 4423 * into lower power link states between intervals). 4424 * - the U2 Exit Latency of the device 4425 */ 4426 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 4427 struct usb_endpoint_descriptor *desc) 4428 { 4429 unsigned long long timeout_ns; 4430 unsigned long long u2_del_ns; 4431 4432 timeout_ns = 10 * 1000 * 1000; 4433 4434 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4435 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4436 timeout_ns = xhci_service_interval_to_ns(desc); 4437 4438 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4439 if (u2_del_ns > timeout_ns) 4440 timeout_ns = u2_del_ns; 4441 4442 /* The U2 timeout is encoded in 256us intervals */ 4443 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4444 /* If the necessary timeout value is bigger than what we can set in the 4445 * USB 3.0 hub, we have to disable hub-initiated U2. 4446 */ 4447 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4448 return timeout_ns; 4449 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4450 "due to long timeout %llu ms\n", timeout_ns); 4451 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4452 } 4453 4454 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4455 struct usb_device *udev, 4456 struct usb_endpoint_descriptor *desc, 4457 enum usb3_link_state state, 4458 u16 *timeout) 4459 { 4460 if (state == USB3_LPM_U1) { 4461 if (xhci->quirks & XHCI_INTEL_HOST) 4462 return xhci_calculate_intel_u1_timeout(udev, desc); 4463 } else { 4464 if (xhci->quirks & XHCI_INTEL_HOST) 4465 return xhci_calculate_intel_u2_timeout(udev, desc); 4466 } 4467 4468 return USB3_LPM_DISABLED; 4469 } 4470 4471 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4472 struct usb_device *udev, 4473 struct usb_endpoint_descriptor *desc, 4474 enum usb3_link_state state, 4475 u16 *timeout) 4476 { 4477 u16 alt_timeout; 4478 4479 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4480 desc, state, timeout); 4481 4482 /* If we found we can't enable hub-initiated LPM, or 4483 * the U1 or U2 exit latency was too high to allow 4484 * device-initiated LPM as well, just stop searching. 4485 */ 4486 if (alt_timeout == USB3_LPM_DISABLED || 4487 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4488 *timeout = alt_timeout; 4489 return -E2BIG; 4490 } 4491 if (alt_timeout > *timeout) 4492 *timeout = alt_timeout; 4493 return 0; 4494 } 4495 4496 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4497 struct usb_device *udev, 4498 struct usb_host_interface *alt, 4499 enum usb3_link_state state, 4500 u16 *timeout) 4501 { 4502 int j; 4503 4504 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4505 if (xhci_update_timeout_for_endpoint(xhci, udev, 4506 &alt->endpoint[j].desc, state, timeout)) 4507 return -E2BIG; 4508 continue; 4509 } 4510 return 0; 4511 } 4512 4513 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4514 enum usb3_link_state state) 4515 { 4516 struct usb_device *parent; 4517 unsigned int num_hubs; 4518 4519 if (state == USB3_LPM_U2) 4520 return 0; 4521 4522 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4523 for (parent = udev->parent, num_hubs = 0; parent->parent; 4524 parent = parent->parent) 4525 num_hubs++; 4526 4527 if (num_hubs < 2) 4528 return 0; 4529 4530 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4531 " below second-tier hub.\n"); 4532 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4533 "to decrease power consumption.\n"); 4534 return -E2BIG; 4535 } 4536 4537 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4538 struct usb_device *udev, 4539 enum usb3_link_state state) 4540 { 4541 if (xhci->quirks & XHCI_INTEL_HOST) 4542 return xhci_check_intel_tier_policy(udev, state); 4543 return -EINVAL; 4544 } 4545 4546 /* Returns the U1 or U2 timeout that should be enabled. 4547 * If the tier check or timeout setting functions return with a non-zero exit 4548 * code, that means the timeout value has been finalized and we shouldn't look 4549 * at any more endpoints. 4550 */ 4551 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4552 struct usb_device *udev, enum usb3_link_state state) 4553 { 4554 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4555 struct usb_host_config *config; 4556 char *state_name; 4557 int i; 4558 u16 timeout = USB3_LPM_DISABLED; 4559 4560 if (state == USB3_LPM_U1) 4561 state_name = "U1"; 4562 else if (state == USB3_LPM_U2) 4563 state_name = "U2"; 4564 else { 4565 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4566 state); 4567 return timeout; 4568 } 4569 4570 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4571 return timeout; 4572 4573 /* Gather some information about the currently installed configuration 4574 * and alternate interface settings. 4575 */ 4576 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4577 state, &timeout)) 4578 return timeout; 4579 4580 config = udev->actconfig; 4581 if (!config) 4582 return timeout; 4583 4584 for (i = 0; i < USB_MAXINTERFACES; i++) { 4585 struct usb_driver *driver; 4586 struct usb_interface *intf = config->interface[i]; 4587 4588 if (!intf) 4589 continue; 4590 4591 /* Check if any currently bound drivers want hub-initiated LPM 4592 * disabled. 4593 */ 4594 if (intf->dev.driver) { 4595 driver = to_usb_driver(intf->dev.driver); 4596 if (driver && driver->disable_hub_initiated_lpm) { 4597 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4598 "at request of driver %s\n", 4599 state_name, driver->name); 4600 return xhci_get_timeout_no_hub_lpm(udev, state); 4601 } 4602 } 4603 4604 /* Not sure how this could happen... */ 4605 if (!intf->cur_altsetting) 4606 continue; 4607 4608 if (xhci_update_timeout_for_interface(xhci, udev, 4609 intf->cur_altsetting, 4610 state, &timeout)) 4611 return timeout; 4612 } 4613 return timeout; 4614 } 4615 4616 static int calculate_max_exit_latency(struct usb_device *udev, 4617 enum usb3_link_state state_changed, 4618 u16 hub_encoded_timeout) 4619 { 4620 unsigned long long u1_mel_us = 0; 4621 unsigned long long u2_mel_us = 0; 4622 unsigned long long mel_us = 0; 4623 bool disabling_u1; 4624 bool disabling_u2; 4625 bool enabling_u1; 4626 bool enabling_u2; 4627 4628 disabling_u1 = (state_changed == USB3_LPM_U1 && 4629 hub_encoded_timeout == USB3_LPM_DISABLED); 4630 disabling_u2 = (state_changed == USB3_LPM_U2 && 4631 hub_encoded_timeout == USB3_LPM_DISABLED); 4632 4633 enabling_u1 = (state_changed == USB3_LPM_U1 && 4634 hub_encoded_timeout != USB3_LPM_DISABLED); 4635 enabling_u2 = (state_changed == USB3_LPM_U2 && 4636 hub_encoded_timeout != USB3_LPM_DISABLED); 4637 4638 /* If U1 was already enabled and we're not disabling it, 4639 * or we're going to enable U1, account for the U1 max exit latency. 4640 */ 4641 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4642 enabling_u1) 4643 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4644 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4645 enabling_u2) 4646 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4647 4648 if (u1_mel_us > u2_mel_us) 4649 mel_us = u1_mel_us; 4650 else 4651 mel_us = u2_mel_us; 4652 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4653 if (mel_us > MAX_EXIT) { 4654 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4655 "is too big.\n", mel_us); 4656 return -E2BIG; 4657 } 4658 return mel_us; 4659 } 4660 4661 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4662 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4663 struct usb_device *udev, enum usb3_link_state state) 4664 { 4665 struct xhci_hcd *xhci; 4666 u16 hub_encoded_timeout; 4667 int mel; 4668 int ret; 4669 4670 xhci = hcd_to_xhci(hcd); 4671 /* The LPM timeout values are pretty host-controller specific, so don't 4672 * enable hub-initiated timeouts unless the vendor has provided 4673 * information about their timeout algorithm. 4674 */ 4675 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4676 !xhci->devs[udev->slot_id]) 4677 return USB3_LPM_DISABLED; 4678 4679 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4680 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4681 if (mel < 0) { 4682 /* Max Exit Latency is too big, disable LPM. */ 4683 hub_encoded_timeout = USB3_LPM_DISABLED; 4684 mel = 0; 4685 } 4686 4687 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4688 if (ret) 4689 return ret; 4690 return hub_encoded_timeout; 4691 } 4692 4693 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4694 struct usb_device *udev, enum usb3_link_state state) 4695 { 4696 struct xhci_hcd *xhci; 4697 u16 mel; 4698 int ret; 4699 4700 xhci = hcd_to_xhci(hcd); 4701 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4702 !xhci->devs[udev->slot_id]) 4703 return 0; 4704 4705 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4706 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4707 if (ret) 4708 return ret; 4709 return 0; 4710 } 4711 #else /* CONFIG_PM */ 4712 4713 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4714 struct usb_device *udev, enum usb3_link_state state) 4715 { 4716 return USB3_LPM_DISABLED; 4717 } 4718 4719 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4720 struct usb_device *udev, enum usb3_link_state state) 4721 { 4722 return 0; 4723 } 4724 #endif /* CONFIG_PM */ 4725 4726 /*-------------------------------------------------------------------------*/ 4727 4728 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4729 * internal data structures for the device. 4730 */ 4731 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4732 struct usb_tt *tt, gfp_t mem_flags) 4733 { 4734 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4735 struct xhci_virt_device *vdev; 4736 struct xhci_command *config_cmd; 4737 struct xhci_input_control_ctx *ctrl_ctx; 4738 struct xhci_slot_ctx *slot_ctx; 4739 unsigned long flags; 4740 unsigned think_time; 4741 int ret; 4742 4743 /* Ignore root hubs */ 4744 if (!hdev->parent) 4745 return 0; 4746 4747 vdev = xhci->devs[hdev->slot_id]; 4748 if (!vdev) { 4749 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4750 return -EINVAL; 4751 } 4752 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4753 if (!config_cmd) { 4754 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4755 return -ENOMEM; 4756 } 4757 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4758 if (!ctrl_ctx) { 4759 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4760 __func__); 4761 xhci_free_command(xhci, config_cmd); 4762 return -ENOMEM; 4763 } 4764 4765 spin_lock_irqsave(&xhci->lock, flags); 4766 if (hdev->speed == USB_SPEED_HIGH && 4767 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4768 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4769 xhci_free_command(xhci, config_cmd); 4770 spin_unlock_irqrestore(&xhci->lock, flags); 4771 return -ENOMEM; 4772 } 4773 4774 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4775 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4776 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4777 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4778 if (tt->multi) 4779 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4780 if (xhci->hci_version > 0x95) { 4781 xhci_dbg(xhci, "xHCI version %x needs hub " 4782 "TT think time and number of ports\n", 4783 (unsigned int) xhci->hci_version); 4784 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4785 /* Set TT think time - convert from ns to FS bit times. 4786 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4787 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4788 * 4789 * xHCI 1.0: this field shall be 0 if the device is not a 4790 * High-spped hub. 4791 */ 4792 think_time = tt->think_time; 4793 if (think_time != 0) 4794 think_time = (think_time / 666) - 1; 4795 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4796 slot_ctx->tt_info |= 4797 cpu_to_le32(TT_THINK_TIME(think_time)); 4798 } else { 4799 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4800 "TT think time or number of ports\n", 4801 (unsigned int) xhci->hci_version); 4802 } 4803 slot_ctx->dev_state = 0; 4804 spin_unlock_irqrestore(&xhci->lock, flags); 4805 4806 xhci_dbg(xhci, "Set up %s for hub device.\n", 4807 (xhci->hci_version > 0x95) ? 4808 "configure endpoint" : "evaluate context"); 4809 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4810 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4811 4812 /* Issue and wait for the configure endpoint or 4813 * evaluate context command. 4814 */ 4815 if (xhci->hci_version > 0x95) 4816 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4817 false, false); 4818 else 4819 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4820 true, false); 4821 4822 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4823 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4824 4825 xhci_free_command(xhci, config_cmd); 4826 return ret; 4827 } 4828 4829 int xhci_get_frame(struct usb_hcd *hcd) 4830 { 4831 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4832 /* EHCI mods by the periodic size. Why? */ 4833 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 4834 } 4835 4836 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4837 { 4838 struct xhci_hcd *xhci; 4839 struct device *dev = hcd->self.controller; 4840 int retval; 4841 u32 temp; 4842 4843 /* Accept arbitrarily long scatter-gather lists */ 4844 hcd->self.sg_tablesize = ~0; 4845 /* XHCI controllers don't stop the ep queue on short packets :| */ 4846 hcd->self.no_stop_on_short = 1; 4847 4848 if (usb_hcd_is_primary_hcd(hcd)) { 4849 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4850 if (!xhci) 4851 return -ENOMEM; 4852 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4853 xhci->main_hcd = hcd; 4854 /* Mark the first roothub as being USB 2.0. 4855 * The xHCI driver will register the USB 3.0 roothub. 4856 */ 4857 hcd->speed = HCD_USB2; 4858 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4859 /* 4860 * USB 2.0 roothub under xHCI has an integrated TT, 4861 * (rate matching hub) as opposed to having an OHCI/UHCI 4862 * companion controller. 4863 */ 4864 hcd->has_tt = 1; 4865 } else { 4866 /* xHCI private pointer was set in xhci_pci_probe for the second 4867 * registered roothub. 4868 */ 4869 xhci = hcd_to_xhci(hcd); 4870 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4871 if (HCC_64BIT_ADDR(temp)) { 4872 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4873 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4874 } else { 4875 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4876 } 4877 return 0; 4878 } 4879 4880 xhci->cap_regs = hcd->regs; 4881 xhci->op_regs = hcd->regs + 4882 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 4883 xhci->run_regs = hcd->regs + 4884 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4885 /* Cache read-only capability registers */ 4886 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 4887 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 4888 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 4889 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 4890 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4891 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4892 xhci_print_registers(xhci); 4893 4894 get_quirks(dev, xhci); 4895 4896 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4897 * success event after a short transfer. This quirk will ignore such 4898 * spurious event. 4899 */ 4900 if (xhci->hci_version > 0x96) 4901 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4902 4903 /* Make sure the HC is halted. */ 4904 retval = xhci_halt(xhci); 4905 if (retval) 4906 goto error; 4907 4908 xhci_dbg(xhci, "Resetting HCD\n"); 4909 /* Reset the internal HC memory state and registers. */ 4910 retval = xhci_reset(xhci); 4911 if (retval) 4912 goto error; 4913 xhci_dbg(xhci, "Reset complete\n"); 4914 4915 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4916 if (HCC_64BIT_ADDR(temp)) { 4917 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4918 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4919 } else { 4920 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4921 } 4922 4923 xhci_dbg(xhci, "Calling HCD init\n"); 4924 /* Initialize HCD and host controller data structures. */ 4925 retval = xhci_init(hcd); 4926 if (retval) 4927 goto error; 4928 xhci_dbg(xhci, "Called HCD init\n"); 4929 return 0; 4930 error: 4931 kfree(xhci); 4932 return retval; 4933 } 4934 4935 MODULE_DESCRIPTION(DRIVER_DESC); 4936 MODULE_AUTHOR(DRIVER_AUTHOR); 4937 MODULE_LICENSE("GPL"); 4938 4939 static int __init xhci_hcd_init(void) 4940 { 4941 int retval; 4942 4943 retval = xhci_register_pci(); 4944 if (retval < 0) { 4945 printk(KERN_DEBUG "Problem registering PCI driver."); 4946 return retval; 4947 } 4948 retval = xhci_register_plat(); 4949 if (retval < 0) { 4950 printk(KERN_DEBUG "Problem registering platform driver."); 4951 goto unreg_pci; 4952 } 4953 /* 4954 * Check the compiler generated sizes of structures that must be laid 4955 * out in specific ways for hardware access. 4956 */ 4957 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4958 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4959 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4960 /* xhci_device_control has eight fields, and also 4961 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4962 */ 4963 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4964 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4965 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4966 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4967 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4968 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4969 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4970 return 0; 4971 unreg_pci: 4972 xhci_unregister_pci(); 4973 return retval; 4974 } 4975 module_init(xhci_hcd_init); 4976 4977 static void __exit xhci_hcd_cleanup(void) 4978 { 4979 xhci_unregister_pci(); 4980 xhci_unregister_plat(); 4981 } 4982 module_exit(xhci_hcd_cleanup); 4983