xref: /openbmc/linux/drivers/usb/host/xhci.c (revision e2aa5e65)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69 {
70 	u32	result;
71 	int	ret;
72 
73 	ret = readl_poll_timeout_atomic(ptr, result,
74 					(result & mask) == done ||
75 					result == U32_MAX,
76 					1, usec);
77 	if (result == U32_MAX)		/* card removed */
78 		return -ENODEV;
79 
80 	return ret;
81 }
82 
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 	u32 halted;
89 	u32 cmd;
90 	u32 mask;
91 
92 	mask = ~(XHCI_IRQS);
93 	halted = readl(&xhci->op_regs->status) & STS_HALT;
94 	if (!halted)
95 		mask &= ~CMD_RUN;
96 
97 	cmd = readl(&xhci->op_regs->command);
98 	cmd &= mask;
99 	writel(cmd, &xhci->op_regs->command);
100 }
101 
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 	int ret;
113 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114 	xhci_quiesce(xhci);
115 
116 	ret = xhci_handshake(&xhci->op_regs->status,
117 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118 	if (ret) {
119 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
120 		return ret;
121 	}
122 	xhci->xhc_state |= XHCI_STATE_HALTED;
123 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124 	return ret;
125 }
126 
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132 	u32 temp;
133 	int ret;
134 
135 	temp = readl(&xhci->op_regs->command);
136 	temp |= (CMD_RUN);
137 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138 			temp);
139 	writel(temp, &xhci->op_regs->command);
140 
141 	/*
142 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
143 	 * running.
144 	 */
145 	ret = xhci_handshake(&xhci->op_regs->status,
146 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
147 	if (ret == -ETIMEDOUT)
148 		xhci_err(xhci, "Host took too long to start, "
149 				"waited %u microseconds.\n",
150 				XHCI_MAX_HALT_USEC);
151 	if (!ret)
152 		/* clear state flags. Including dying, halted or removing */
153 		xhci->xhc_state = 0;
154 
155 	return ret;
156 }
157 
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167 	u32 command;
168 	u32 state;
169 	int ret;
170 
171 	state = readl(&xhci->op_regs->status);
172 
173 	if (state == ~(u32)0) {
174 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
175 		return -ENODEV;
176 	}
177 
178 	if ((state & STS_HALT) == 0) {
179 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180 		return 0;
181 	}
182 
183 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184 	command = readl(&xhci->op_regs->command);
185 	command |= CMD_RESET;
186 	writel(command, &xhci->op_regs->command);
187 
188 	/* Existing Intel xHCI controllers require a delay of 1 mS,
189 	 * after setting the CMD_RESET bit, and before accessing any
190 	 * HC registers. This allows the HC to complete the
191 	 * reset operation and be ready for HC register access.
192 	 * Without this delay, the subsequent HC register access,
193 	 * may result in a system hang very rarely.
194 	 */
195 	if (xhci->quirks & XHCI_INTEL_HOST)
196 		udelay(1000);
197 
198 	ret = xhci_handshake(&xhci->op_regs->command,
199 			CMD_RESET, 0, 10 * 1000 * 1000);
200 	if (ret)
201 		return ret;
202 
203 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205 
206 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207 			 "Wait for controller to be ready for doorbell rings");
208 	/*
209 	 * xHCI cannot write to any doorbells or operational registers other
210 	 * than status until the "Controller Not Ready" flag is cleared.
211 	 */
212 	ret = xhci_handshake(&xhci->op_regs->status,
213 			STS_CNR, 0, 10 * 1000 * 1000);
214 
215 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
217 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
218 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
220 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
221 
222 	return ret;
223 }
224 
225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226 {
227 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228 	int err, i;
229 	u64 val;
230 	u32 intrs;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270 		      ARRAY_SIZE(xhci->run_regs->ir_set));
271 
272 	for (i = 0; i < intrs; i++) {
273 		struct xhci_intr_reg __iomem *ir;
274 
275 		ir = &xhci->run_regs->ir_set[i];
276 		val = xhci_read_64(xhci, &ir->erst_base);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_base);
279 		val= xhci_read_64(xhci, &ir->erst_dequeue);
280 		if (upper_32_bits(val))
281 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
282 	}
283 
284 	/* Wait for the fault to appear. It will be cleared on reset */
285 	err = xhci_handshake(&xhci->op_regs->status,
286 			     STS_FATAL, STS_FATAL,
287 			     XHCI_MAX_HALT_USEC);
288 	if (!err)
289 		xhci_info(xhci, "Fault detected\n");
290 }
291 
292 #ifdef CONFIG_USB_PCI
293 /*
294  * Set up MSI
295  */
296 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 {
298 	int ret;
299 	/*
300 	 * TODO:Check with MSI Soc for sysdev
301 	 */
302 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303 
304 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305 	if (ret < 0) {
306 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307 				"failed to allocate MSI entry");
308 		return ret;
309 	}
310 
311 	ret = request_irq(pdev->irq, xhci_msi_irq,
312 				0, "xhci_hcd", xhci_to_hcd(xhci));
313 	if (ret) {
314 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 				"disable MSI interrupt");
316 		pci_free_irq_vectors(pdev);
317 	}
318 
319 	return ret;
320 }
321 
322 /*
323  * Set up MSI-X
324  */
325 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 {
327 	int i, ret = 0;
328 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
329 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330 
331 	/*
332 	 * calculate number of msi-x vectors supported.
333 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
335 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
336 	 *   Add additional 1 vector to ensure always available interrupt.
337 	 */
338 	xhci->msix_count = min(num_online_cpus() + 1,
339 				HCS_MAX_INTRS(xhci->hcs_params1));
340 
341 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342 			PCI_IRQ_MSIX);
343 	if (ret < 0) {
344 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345 				"Failed to enable MSI-X");
346 		return ret;
347 	}
348 
349 	for (i = 0; i < xhci->msix_count; i++) {
350 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351 				"xhci_hcd", xhci_to_hcd(xhci));
352 		if (ret)
353 			goto disable_msix;
354 	}
355 
356 	hcd->msix_enabled = 1;
357 	return ret;
358 
359 disable_msix:
360 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361 	while (--i >= 0)
362 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363 	pci_free_irq_vectors(pdev);
364 	return ret;
365 }
366 
367 /* Free any IRQs and disable MSI-X */
368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 {
370 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
371 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372 
373 	if (xhci->quirks & XHCI_PLAT)
374 		return;
375 
376 	/* return if using legacy interrupt */
377 	if (hcd->irq > 0)
378 		return;
379 
380 	if (hcd->msix_enabled) {
381 		int i;
382 
383 		for (i = 0; i < xhci->msix_count; i++)
384 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385 	} else {
386 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387 	}
388 
389 	pci_free_irq_vectors(pdev);
390 	hcd->msix_enabled = 0;
391 }
392 
393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
396 
397 	if (hcd->msix_enabled) {
398 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399 		int i;
400 
401 		for (i = 0; i < xhci->msix_count; i++)
402 			synchronize_irq(pci_irq_vector(pdev, i));
403 	}
404 }
405 
406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 {
408 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409 	struct pci_dev  *pdev;
410 	int ret;
411 
412 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
413 	if (xhci->quirks & XHCI_PLAT)
414 		return 0;
415 
416 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417 	/*
418 	 * Some Fresco Logic host controllers advertise MSI, but fail to
419 	 * generate interrupts.  Don't even try to enable MSI.
420 	 */
421 	if (xhci->quirks & XHCI_BROKEN_MSI)
422 		goto legacy_irq;
423 
424 	/* unregister the legacy interrupt */
425 	if (hcd->irq)
426 		free_irq(hcd->irq, hcd);
427 	hcd->irq = 0;
428 
429 	ret = xhci_setup_msix(xhci);
430 	if (ret)
431 		/* fall back to msi*/
432 		ret = xhci_setup_msi(xhci);
433 
434 	if (!ret) {
435 		hcd->msi_enabled = 1;
436 		return 0;
437 	}
438 
439 	if (!pdev->irq) {
440 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441 		return -EINVAL;
442 	}
443 
444  legacy_irq:
445 	if (!strlen(hcd->irq_descr))
446 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447 			 hcd->driver->description, hcd->self.busnum);
448 
449 	/* fall back to legacy interrupt*/
450 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451 			hcd->irq_descr, hcd);
452 	if (ret) {
453 		xhci_err(xhci, "request interrupt %d failed\n",
454 				pdev->irq);
455 		return ret;
456 	}
457 	hcd->irq = pdev->irq;
458 	return 0;
459 }
460 
461 #else
462 
463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 {
465 	return 0;
466 }
467 
468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 {
470 }
471 
472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 {
474 }
475 
476 #endif
477 
478 static void compliance_mode_recovery(struct timer_list *t)
479 {
480 	struct xhci_hcd *xhci;
481 	struct usb_hcd *hcd;
482 	struct xhci_hub *rhub;
483 	u32 temp;
484 	int i;
485 
486 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487 	rhub = &xhci->usb3_rhub;
488 
489 	for (i = 0; i < rhub->num_ports; i++) {
490 		temp = readl(rhub->ports[i]->addr);
491 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492 			/*
493 			 * Compliance Mode Detected. Letting USB Core
494 			 * handle the Warm Reset
495 			 */
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Compliance mode detected->port %d",
498 					i + 1);
499 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500 					"Attempting compliance mode recovery");
501 			hcd = xhci->shared_hcd;
502 
503 			if (hcd->state == HC_STATE_SUSPENDED)
504 				usb_hcd_resume_root_hub(hcd);
505 
506 			usb_hcd_poll_rh_status(hcd);
507 		}
508 	}
509 
510 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511 		mod_timer(&xhci->comp_mode_recovery_timer,
512 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 }
514 
515 /*
516  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517  * that causes ports behind that hardware to enter compliance mode sometimes.
518  * The quirk creates a timer that polls every 2 seconds the link state of
519  * each host controller's port and recovers it by issuing a Warm reset
520  * if Compliance mode is detected, otherwise the port will become "dead" (no
521  * device connections or disconnections will be detected anymore). Becasue no
522  * status event is generated when entering compliance mode (per xhci spec),
523  * this quirk is needed on systems that have the failing hardware installed.
524  */
525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 {
527 	xhci->port_status_u0 = 0;
528 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529 		    0);
530 	xhci->comp_mode_recovery_timer.expires = jiffies +
531 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532 
533 	add_timer(&xhci->comp_mode_recovery_timer);
534 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535 			"Compliance mode recovery timer initialized");
536 }
537 
538 /*
539  * This function identifies the systems that have installed the SN65LVPE502CP
540  * USB3.0 re-driver and that need the Compliance Mode Quirk.
541  * Systems:
542  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543  */
544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 {
546 	const char *dmi_product_name, *dmi_sys_vendor;
547 
548 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550 	if (!dmi_product_name || !dmi_sys_vendor)
551 		return false;
552 
553 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554 		return false;
555 
556 	if (strstr(dmi_product_name, "Z420") ||
557 			strstr(dmi_product_name, "Z620") ||
558 			strstr(dmi_product_name, "Z820") ||
559 			strstr(dmi_product_name, "Z1 Workstation"))
560 		return true;
561 
562 	return false;
563 }
564 
565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 {
567 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568 }
569 
570 
571 /*
572  * Initialize memory for HCD and xHC (one-time init).
573  *
574  * Program the PAGESIZE register, initialize the device context array, create
575  * device contexts (?), set up a command ring segment (or two?), create event
576  * ring (one for now).
577  */
578 static int xhci_init(struct usb_hcd *hcd)
579 {
580 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581 	int retval = 0;
582 
583 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584 	spin_lock_init(&xhci->lock);
585 	if (xhci->hci_version == 0x95 && link_quirk) {
586 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587 				"QUIRK: Not clearing Link TRB chain bits.");
588 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589 	} else {
590 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591 				"xHCI doesn't need link TRB QUIRK");
592 	}
593 	retval = xhci_mem_init(xhci, GFP_KERNEL);
594 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595 
596 	/* Initializing Compliance Mode Recovery Data If Needed */
597 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599 		compliance_mode_recovery_timer_init(xhci);
600 	}
601 
602 	return retval;
603 }
604 
605 /*-------------------------------------------------------------------------*/
606 
607 
608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610 	if (xhci_start(xhci)) {
611 		xhci_halt(xhci);
612 		return -ENODEV;
613 	}
614 	xhci->shared_hcd->state = HC_STATE_RUNNING;
615 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616 
617 	if (xhci->quirks & XHCI_NEC_HOST)
618 		xhci_ring_cmd_db(xhci);
619 
620 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 			"Finished xhci_run for USB3 roothub");
622 	return 0;
623 }
624 
625 /*
626  * Start the HC after it was halted.
627  *
628  * This function is called by the USB core when the HC driver is added.
629  * Its opposite is xhci_stop().
630  *
631  * xhci_init() must be called once before this function can be called.
632  * Reset the HC, enable device slot contexts, program DCBAAP, and
633  * set command ring pointer and event ring pointer.
634  *
635  * Setup MSI-X vectors and enable interrupts.
636  */
637 int xhci_run(struct usb_hcd *hcd)
638 {
639 	u32 temp;
640 	u64 temp_64;
641 	int ret;
642 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643 
644 	/* Start the xHCI host controller running only after the USB 2.0 roothub
645 	 * is setup.
646 	 */
647 
648 	hcd->uses_new_polling = 1;
649 	if (!usb_hcd_is_primary_hcd(hcd))
650 		return xhci_run_finished(xhci);
651 
652 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653 
654 	ret = xhci_try_enable_msi(hcd);
655 	if (ret)
656 		return ret;
657 
658 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659 	temp_64 &= ~ERST_PTR_MASK;
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662 
663 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 			"// Set the interrupt modulation register");
665 	temp = readl(&xhci->ir_set->irq_control);
666 	temp &= ~ER_IRQ_INTERVAL_MASK;
667 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668 	writel(temp, &xhci->ir_set->irq_control);
669 
670 	/* Set the HCD state before we enable the irqs */
671 	temp = readl(&xhci->op_regs->command);
672 	temp |= (CMD_EIE);
673 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674 			"// Enable interrupts, cmd = 0x%x.", temp);
675 	writel(temp, &xhci->op_regs->command);
676 
677 	temp = readl(&xhci->ir_set->irq_pending);
678 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682 
683 	if (xhci->quirks & XHCI_NEC_HOST) {
684 		struct xhci_command *command;
685 
686 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687 		if (!command)
688 			return -ENOMEM;
689 
690 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691 				TRB_TYPE(TRB_NEC_GET_FW));
692 		if (ret)
693 			xhci_free_command(xhci, command);
694 	}
695 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696 			"Finished xhci_run for USB2 roothub");
697 
698 	xhci_dbc_init(xhci);
699 
700 	xhci_debugfs_init(xhci);
701 
702 	return 0;
703 }
704 EXPORT_SYMBOL_GPL(xhci_run);
705 
706 /*
707  * Stop xHCI driver.
708  *
709  * This function is called by the USB core when the HC driver is removed.
710  * Its opposite is xhci_run().
711  *
712  * Disable device contexts, disable IRQs, and quiesce the HC.
713  * Reset the HC, finish any completed transactions, and cleanup memory.
714  */
715 static void xhci_stop(struct usb_hcd *hcd)
716 {
717 	u32 temp;
718 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
719 
720 	mutex_lock(&xhci->mutex);
721 
722 	/* Only halt host and free memory after both hcds are removed */
723 	if (!usb_hcd_is_primary_hcd(hcd)) {
724 		mutex_unlock(&xhci->mutex);
725 		return;
726 	}
727 
728 	xhci_dbc_exit(xhci);
729 
730 	spin_lock_irq(&xhci->lock);
731 	xhci->xhc_state |= XHCI_STATE_HALTED;
732 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
733 	xhci_halt(xhci);
734 	xhci_reset(xhci);
735 	spin_unlock_irq(&xhci->lock);
736 
737 	xhci_cleanup_msix(xhci);
738 
739 	/* Deleting Compliance Mode Recovery Timer */
740 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741 			(!(xhci_all_ports_seen_u0(xhci)))) {
742 		del_timer_sync(&xhci->comp_mode_recovery_timer);
743 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
744 				"%s: compliance mode recovery timer deleted",
745 				__func__);
746 	}
747 
748 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
749 		usb_amd_dev_put();
750 
751 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752 			"// Disabling event ring interrupts");
753 	temp = readl(&xhci->op_regs->status);
754 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
755 	temp = readl(&xhci->ir_set->irq_pending);
756 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
757 
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
759 	xhci_mem_cleanup(xhci);
760 	xhci_debugfs_exit(xhci);
761 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762 			"xhci_stop completed - status = %x",
763 			readl(&xhci->op_regs->status));
764 	mutex_unlock(&xhci->mutex);
765 }
766 
767 /*
768  * Shutdown HC (not bus-specific)
769  *
770  * This is called when the machine is rebooting or halting.  We assume that the
771  * machine will be powered off, and the HC's internal state will be reset.
772  * Don't bother to free memory.
773  *
774  * This will only ever be called with the main usb_hcd (the USB3 roothub).
775  */
776 void xhci_shutdown(struct usb_hcd *hcd)
777 {
778 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
779 
780 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782 
783 	spin_lock_irq(&xhci->lock);
784 	xhci_halt(xhci);
785 	/* Workaround for spurious wakeups at shutdown with HSW */
786 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
787 		xhci_reset(xhci);
788 	spin_unlock_irq(&xhci->lock);
789 
790 	xhci_cleanup_msix(xhci);
791 
792 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793 			"xhci_shutdown completed - status = %x",
794 			readl(&xhci->op_regs->status));
795 }
796 EXPORT_SYMBOL_GPL(xhci_shutdown);
797 
798 #ifdef CONFIG_PM
799 static void xhci_save_registers(struct xhci_hcd *xhci)
800 {
801 	xhci->s3.command = readl(&xhci->op_regs->command);
802 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810 }
811 
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
813 {
814 	writel(xhci->s3.command, &xhci->op_regs->command);
815 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823 }
824 
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826 {
827 	u64	val_64;
828 
829 	/* step 2: initialize command ring buffer */
830 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833 				      xhci->cmd_ring->dequeue) &
834 		 (u64) ~CMD_RING_RSVD_BITS) |
835 		xhci->cmd_ring->cycle_state;
836 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837 			"// Setting command ring address to 0x%llx",
838 			(long unsigned long) val_64);
839 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 }
841 
842 /*
843  * The whole command ring must be cleared to zero when we suspend the host.
844  *
845  * The host doesn't save the command ring pointer in the suspend well, so we
846  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
847  * aligned, because of the reserved bits in the command ring dequeue pointer
848  * register.  Therefore, we can't just set the dequeue pointer back in the
849  * middle of the ring (TRBs are 16-byte aligned).
850  */
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853 	struct xhci_ring *ring;
854 	struct xhci_segment *seg;
855 
856 	ring = xhci->cmd_ring;
857 	seg = ring->deq_seg;
858 	do {
859 		memset(seg->trbs, 0,
860 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862 			cpu_to_le32(~TRB_CYCLE);
863 		seg = seg->next;
864 	} while (seg != ring->deq_seg);
865 
866 	/* Reset the software enqueue and dequeue pointers */
867 	ring->deq_seg = ring->first_seg;
868 	ring->dequeue = ring->first_seg->trbs;
869 	ring->enq_seg = ring->deq_seg;
870 	ring->enqueue = ring->dequeue;
871 
872 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873 	/*
874 	 * Ring is now zeroed, so the HW should look for change of ownership
875 	 * when the cycle bit is set to 1.
876 	 */
877 	ring->cycle_state = 1;
878 
879 	/*
880 	 * Reset the hardware dequeue pointer.
881 	 * Yes, this will need to be re-written after resume, but we're paranoid
882 	 * and want to make sure the hardware doesn't access bogus memory
883 	 * because, say, the BIOS or an SMI started the host without changing
884 	 * the command ring pointers.
885 	 */
886 	xhci_set_cmd_ring_deq(xhci);
887 }
888 
889 /*
890  * Disable port wake bits if do_wakeup is not set.
891  *
892  * Also clear a possible internal port wake state left hanging for ports that
893  * detected termination but never successfully enumerated (trained to 0U).
894  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
895  * at enumeration clears this wake, force one here as well for unconnected ports
896  */
897 
898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
899 				       struct xhci_hub *rhub,
900 				       bool do_wakeup)
901 {
902 	unsigned long flags;
903 	u32 t1, t2, portsc;
904 	int i;
905 
906 	spin_lock_irqsave(&xhci->lock, flags);
907 
908 	for (i = 0; i < rhub->num_ports; i++) {
909 		portsc = readl(rhub->ports[i]->addr);
910 		t1 = xhci_port_state_to_neutral(portsc);
911 		t2 = t1;
912 
913 		/* clear wake bits if do_wake is not set */
914 		if (!do_wakeup)
915 			t2 &= ~PORT_WAKE_BITS;
916 
917 		/* Don't touch csc bit if connected or connect change is set */
918 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
919 			t2 |= PORT_CSC;
920 
921 		if (t1 != t2) {
922 			writel(t2, rhub->ports[i]->addr);
923 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
924 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
925 		}
926 	}
927 	spin_unlock_irqrestore(&xhci->lock, flags);
928 }
929 
930 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
931 {
932 	struct xhci_port	**ports;
933 	int			port_index;
934 	u32			status;
935 	u32			portsc;
936 
937 	status = readl(&xhci->op_regs->status);
938 	if (status & STS_EINT)
939 		return true;
940 	/*
941 	 * Checking STS_EINT is not enough as there is a lag between a change
942 	 * bit being set and the Port Status Change Event that it generated
943 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
944 	 */
945 
946 	port_index = xhci->usb2_rhub.num_ports;
947 	ports = xhci->usb2_rhub.ports;
948 	while (port_index--) {
949 		portsc = readl(ports[port_index]->addr);
950 		if (portsc & PORT_CHANGE_MASK ||
951 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
952 			return true;
953 	}
954 	port_index = xhci->usb3_rhub.num_ports;
955 	ports = xhci->usb3_rhub.ports;
956 	while (port_index--) {
957 		portsc = readl(ports[port_index]->addr);
958 		if (portsc & PORT_CHANGE_MASK ||
959 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
960 			return true;
961 	}
962 	return false;
963 }
964 
965 /*
966  * Stop HC (not bus-specific)
967  *
968  * This is called when the machine transition into S3/S4 mode.
969  *
970  */
971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
972 {
973 	int			rc = 0;
974 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
975 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
976 	u32			command;
977 	u32			res;
978 
979 	if (!hcd->state)
980 		return 0;
981 
982 	if (hcd->state != HC_STATE_SUSPENDED ||
983 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
984 		return -EINVAL;
985 
986 	/* Clear root port wake on bits if wakeup not allowed. */
987 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
988 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
989 
990 	if (!HCD_HW_ACCESSIBLE(hcd))
991 		return 0;
992 
993 	xhci_dbc_suspend(xhci);
994 
995 	/* Don't poll the roothubs on bus suspend. */
996 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
997 		 __func__, hcd->self.busnum);
998 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
999 	del_timer_sync(&hcd->rh_timer);
1000 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1002 
1003 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004 		usleep_range(1000, 1500);
1005 
1006 	spin_lock_irq(&xhci->lock);
1007 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009 	/* step 1: stop endpoint */
1010 	/* skipped assuming that port suspend has done */
1011 
1012 	/* step 2: clear Run/Stop bit */
1013 	command = readl(&xhci->op_regs->command);
1014 	command &= ~CMD_RUN;
1015 	writel(command, &xhci->op_regs->command);
1016 
1017 	/* Some chips from Fresco Logic need an extraordinary delay */
1018 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1019 
1020 	if (xhci_handshake(&xhci->op_regs->status,
1021 		      STS_HALT, STS_HALT, delay)) {
1022 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023 		spin_unlock_irq(&xhci->lock);
1024 		return -ETIMEDOUT;
1025 	}
1026 	xhci_clear_command_ring(xhci);
1027 
1028 	/* step 3: save registers */
1029 	xhci_save_registers(xhci);
1030 
1031 	/* step 4: set CSS flag */
1032 	command = readl(&xhci->op_regs->command);
1033 	command |= CMD_CSS;
1034 	writel(command, &xhci->op_regs->command);
1035 	xhci->broken_suspend = 0;
1036 	if (xhci_handshake(&xhci->op_regs->status,
1037 				STS_SAVE, 0, 20 * 1000)) {
1038 	/*
1039 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1040 	 * SSS bit of USBSTS and when driver tries to poll
1041 	 * to see if the xHC clears BIT(8) which never happens
1042 	 * and driver assumes that controller is not responding
1043 	 * and times out. To workaround this, its good to check
1044 	 * if SRE and HCE bits are not set (as per xhci
1045 	 * Section 5.4.2) and bypass the timeout.
1046 	 */
1047 		res = readl(&xhci->op_regs->status);
1048 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049 		    (((res & STS_SRE) == 0) &&
1050 				((res & STS_HCE) == 0))) {
1051 			xhci->broken_suspend = 1;
1052 		} else {
1053 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054 			spin_unlock_irq(&xhci->lock);
1055 			return -ETIMEDOUT;
1056 		}
1057 	}
1058 	spin_unlock_irq(&xhci->lock);
1059 
1060 	/*
1061 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062 	 * is about to be suspended.
1063 	 */
1064 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065 			(!(xhci_all_ports_seen_u0(xhci)))) {
1066 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1067 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068 				"%s: compliance mode recovery timer deleted",
1069 				__func__);
1070 	}
1071 
1072 	/* step 5: remove core well power */
1073 	/* synchronize irq when using MSI-X */
1074 	xhci_msix_sync_irqs(xhci);
1075 
1076 	return rc;
1077 }
1078 EXPORT_SYMBOL_GPL(xhci_suspend);
1079 
1080 /*
1081  * start xHC (not bus-specific)
1082  *
1083  * This is called when the machine transition from S3/S4 mode.
1084  *
1085  */
1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1087 {
1088 	u32			command, temp = 0;
1089 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1090 	struct usb_hcd		*secondary_hcd;
1091 	int			retval = 0;
1092 	bool			comp_timer_running = false;
1093 	bool			pending_portevent = false;
1094 
1095 	if (!hcd->state)
1096 		return 0;
1097 
1098 	/* Wait a bit if either of the roothubs need to settle from the
1099 	 * transition into bus suspend.
1100 	 */
1101 
1102 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1103 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1104 		msleep(100);
1105 
1106 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1107 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1108 
1109 	spin_lock_irq(&xhci->lock);
1110 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1111 		hibernated = true;
1112 
1113 	if (!hibernated) {
1114 		/*
1115 		 * Some controllers might lose power during suspend, so wait
1116 		 * for controller not ready bit to clear, just as in xHC init.
1117 		 */
1118 		retval = xhci_handshake(&xhci->op_regs->status,
1119 					STS_CNR, 0, 10 * 1000 * 1000);
1120 		if (retval) {
1121 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1122 				  retval);
1123 			spin_unlock_irq(&xhci->lock);
1124 			return retval;
1125 		}
1126 		/* step 1: restore register */
1127 		xhci_restore_registers(xhci);
1128 		/* step 2: initialize command ring buffer */
1129 		xhci_set_cmd_ring_deq(xhci);
1130 		/* step 3: restore state and start state*/
1131 		/* step 3: set CRS flag */
1132 		command = readl(&xhci->op_regs->command);
1133 		command |= CMD_CRS;
1134 		writel(command, &xhci->op_regs->command);
1135 		/*
1136 		 * Some controllers take up to 55+ ms to complete the controller
1137 		 * restore so setting the timeout to 100ms. Xhci specification
1138 		 * doesn't mention any timeout value.
1139 		 */
1140 		if (xhci_handshake(&xhci->op_regs->status,
1141 			      STS_RESTORE, 0, 100 * 1000)) {
1142 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1143 			spin_unlock_irq(&xhci->lock);
1144 			return -ETIMEDOUT;
1145 		}
1146 		temp = readl(&xhci->op_regs->status);
1147 	}
1148 
1149 	/* If restore operation fails, re-initialize the HC during resume */
1150 	if ((temp & STS_SRE) || hibernated) {
1151 
1152 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1153 				!(xhci_all_ports_seen_u0(xhci))) {
1154 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1155 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1156 				"Compliance Mode Recovery Timer deleted!");
1157 		}
1158 
1159 		/* Let the USB core know _both_ roothubs lost power. */
1160 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1161 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1162 
1163 		xhci_dbg(xhci, "Stop HCD\n");
1164 		xhci_halt(xhci);
1165 		xhci_zero_64b_regs(xhci);
1166 		retval = xhci_reset(xhci);
1167 		spin_unlock_irq(&xhci->lock);
1168 		if (retval)
1169 			return retval;
1170 		xhci_cleanup_msix(xhci);
1171 
1172 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1173 		temp = readl(&xhci->op_regs->status);
1174 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1175 		temp = readl(&xhci->ir_set->irq_pending);
1176 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1177 
1178 		xhci_dbg(xhci, "cleaning up memory\n");
1179 		xhci_mem_cleanup(xhci);
1180 		xhci_debugfs_exit(xhci);
1181 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1182 			    readl(&xhci->op_regs->status));
1183 
1184 		/* USB core calls the PCI reinit and start functions twice:
1185 		 * first with the primary HCD, and then with the secondary HCD.
1186 		 * If we don't do the same, the host will never be started.
1187 		 */
1188 		if (!usb_hcd_is_primary_hcd(hcd))
1189 			secondary_hcd = hcd;
1190 		else
1191 			secondary_hcd = xhci->shared_hcd;
1192 
1193 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1194 		retval = xhci_init(hcd->primary_hcd);
1195 		if (retval)
1196 			return retval;
1197 		comp_timer_running = true;
1198 
1199 		xhci_dbg(xhci, "Start the primary HCD\n");
1200 		retval = xhci_run(hcd->primary_hcd);
1201 		if (!retval) {
1202 			xhci_dbg(xhci, "Start the secondary HCD\n");
1203 			retval = xhci_run(secondary_hcd);
1204 		}
1205 		hcd->state = HC_STATE_SUSPENDED;
1206 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1207 		goto done;
1208 	}
1209 
1210 	/* step 4: set Run/Stop bit */
1211 	command = readl(&xhci->op_regs->command);
1212 	command |= CMD_RUN;
1213 	writel(command, &xhci->op_regs->command);
1214 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1215 		  0, 250 * 1000);
1216 
1217 	/* step 5: walk topology and initialize portsc,
1218 	 * portpmsc and portli
1219 	 */
1220 	/* this is done in bus_resume */
1221 
1222 	/* step 6: restart each of the previously
1223 	 * Running endpoints by ringing their doorbells
1224 	 */
1225 
1226 	spin_unlock_irq(&xhci->lock);
1227 
1228 	xhci_dbc_resume(xhci);
1229 
1230  done:
1231 	if (retval == 0) {
1232 		/*
1233 		 * Resume roothubs only if there are pending events.
1234 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1235 		 * the first wake signalling failed, give it that chance.
1236 		 */
1237 		pending_portevent = xhci_pending_portevent(xhci);
1238 		if (!pending_portevent) {
1239 			msleep(120);
1240 			pending_portevent = xhci_pending_portevent(xhci);
1241 		}
1242 
1243 		if (pending_portevent) {
1244 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1245 			usb_hcd_resume_root_hub(hcd);
1246 		}
1247 	}
1248 	/*
1249 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1250 	 * be re-initialized Always after a system resume. Ports are subject
1251 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1252 	 * ports have entered previously to U0 before system's suspension.
1253 	 */
1254 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1255 		compliance_mode_recovery_timer_init(xhci);
1256 
1257 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1258 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1259 
1260 	/* Re-enable port polling. */
1261 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1262 		 __func__, hcd->self.busnum);
1263 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1264 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1265 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1266 	usb_hcd_poll_rh_status(hcd);
1267 
1268 	return retval;
1269 }
1270 EXPORT_SYMBOL_GPL(xhci_resume);
1271 #endif	/* CONFIG_PM */
1272 
1273 /*-------------------------------------------------------------------------*/
1274 
1275 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1276 {
1277 	void *temp;
1278 	int ret = 0;
1279 	unsigned int buf_len;
1280 	enum dma_data_direction dir;
1281 
1282 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1283 	buf_len = urb->transfer_buffer_length;
1284 
1285 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1286 			    dev_to_node(hcd->self.sysdev));
1287 
1288 	if (usb_urb_dir_out(urb))
1289 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1290 				   temp, buf_len, 0);
1291 
1292 	urb->transfer_buffer = temp;
1293 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1294 					   urb->transfer_buffer,
1295 					   urb->transfer_buffer_length,
1296 					   dir);
1297 
1298 	if (dma_mapping_error(hcd->self.sysdev,
1299 			      urb->transfer_dma)) {
1300 		ret = -EAGAIN;
1301 		kfree(temp);
1302 	} else {
1303 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1304 	}
1305 
1306 	return ret;
1307 }
1308 
1309 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1310 					  struct urb *urb)
1311 {
1312 	bool ret = false;
1313 	unsigned int i;
1314 	unsigned int len = 0;
1315 	unsigned int trb_size;
1316 	unsigned int max_pkt;
1317 	struct scatterlist *sg;
1318 	struct scatterlist *tail_sg;
1319 
1320 	tail_sg = urb->sg;
1321 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1322 
1323 	if (!urb->num_sgs)
1324 		return ret;
1325 
1326 	if (urb->dev->speed >= USB_SPEED_SUPER)
1327 		trb_size = TRB_CACHE_SIZE_SS;
1328 	else
1329 		trb_size = TRB_CACHE_SIZE_HS;
1330 
1331 	if (urb->transfer_buffer_length != 0 &&
1332 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1333 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1334 			len = len + sg->length;
1335 			if (i > trb_size - 2) {
1336 				len = len - tail_sg->length;
1337 				if (len < max_pkt) {
1338 					ret = true;
1339 					break;
1340 				}
1341 
1342 				tail_sg = sg_next(tail_sg);
1343 			}
1344 		}
1345 	}
1346 	return ret;
1347 }
1348 
1349 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1350 {
1351 	unsigned int len;
1352 	unsigned int buf_len;
1353 	enum dma_data_direction dir;
1354 
1355 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1356 
1357 	buf_len = urb->transfer_buffer_length;
1358 
1359 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1360 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1361 		dma_unmap_single(hcd->self.sysdev,
1362 				 urb->transfer_dma,
1363 				 urb->transfer_buffer_length,
1364 				 dir);
1365 
1366 	if (usb_urb_dir_in(urb)) {
1367 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1368 					   urb->transfer_buffer,
1369 					   buf_len,
1370 					   0);
1371 		if (len != buf_len) {
1372 			xhci_dbg(hcd_to_xhci(hcd),
1373 				 "Copy from tmp buf to urb sg list failed\n");
1374 			urb->actual_length = len;
1375 		}
1376 	}
1377 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1378 	kfree(urb->transfer_buffer);
1379 	urb->transfer_buffer = NULL;
1380 }
1381 
1382 /*
1383  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1384  * we'll copy the actual data into the TRB address register. This is limited to
1385  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1386  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1387  */
1388 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1389 				gfp_t mem_flags)
1390 {
1391 	struct xhci_hcd *xhci;
1392 
1393 	xhci = hcd_to_xhci(hcd);
1394 
1395 	if (xhci_urb_suitable_for_idt(urb))
1396 		return 0;
1397 
1398 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1399 		if (xhci_urb_temp_buffer_required(hcd, urb))
1400 			return xhci_map_temp_buffer(hcd, urb);
1401 	}
1402 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1403 }
1404 
1405 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1406 {
1407 	struct xhci_hcd *xhci;
1408 	bool unmap_temp_buf = false;
1409 
1410 	xhci = hcd_to_xhci(hcd);
1411 
1412 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1413 		unmap_temp_buf = true;
1414 
1415 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1416 		xhci_unmap_temp_buf(hcd, urb);
1417 	else
1418 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1419 }
1420 
1421 /**
1422  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1423  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1424  * value to right shift 1 for the bitmask.
1425  *
1426  * Index  = (epnum * 2) + direction - 1,
1427  * where direction = 0 for OUT, 1 for IN.
1428  * For control endpoints, the IN index is used (OUT index is unused), so
1429  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1430  */
1431 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1432 {
1433 	unsigned int index;
1434 	if (usb_endpoint_xfer_control(desc))
1435 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1436 	else
1437 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1438 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1439 	return index;
1440 }
1441 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1442 
1443 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1444  * address from the XHCI endpoint index.
1445  */
1446 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1447 {
1448 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1449 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1450 	return direction | number;
1451 }
1452 
1453 /* Find the flag for this endpoint (for use in the control context).  Use the
1454  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1455  * bit 1, etc.
1456  */
1457 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1458 {
1459 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1460 }
1461 
1462 /* Compute the last valid endpoint context index.  Basically, this is the
1463  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1464  * we find the most significant bit set in the added contexts flags.
1465  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1466  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1467  */
1468 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1469 {
1470 	return fls(added_ctxs) - 1;
1471 }
1472 
1473 /* Returns 1 if the arguments are OK;
1474  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1475  */
1476 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1477 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1478 		const char *func) {
1479 	struct xhci_hcd	*xhci;
1480 	struct xhci_virt_device	*virt_dev;
1481 
1482 	if (!hcd || (check_ep && !ep) || !udev) {
1483 		pr_debug("xHCI %s called with invalid args\n", func);
1484 		return -EINVAL;
1485 	}
1486 	if (!udev->parent) {
1487 		pr_debug("xHCI %s called for root hub\n", func);
1488 		return 0;
1489 	}
1490 
1491 	xhci = hcd_to_xhci(hcd);
1492 	if (check_virt_dev) {
1493 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1494 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1495 					func);
1496 			return -EINVAL;
1497 		}
1498 
1499 		virt_dev = xhci->devs[udev->slot_id];
1500 		if (virt_dev->udev != udev) {
1501 			xhci_dbg(xhci, "xHCI %s called with udev and "
1502 					  "virt_dev does not match\n", func);
1503 			return -EINVAL;
1504 		}
1505 	}
1506 
1507 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1508 		return -ENODEV;
1509 
1510 	return 1;
1511 }
1512 
1513 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1514 		struct usb_device *udev, struct xhci_command *command,
1515 		bool ctx_change, bool must_succeed);
1516 
1517 /*
1518  * Full speed devices may have a max packet size greater than 8 bytes, but the
1519  * USB core doesn't know that until it reads the first 8 bytes of the
1520  * descriptor.  If the usb_device's max packet size changes after that point,
1521  * we need to issue an evaluate context command and wait on it.
1522  */
1523 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1524 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1525 {
1526 	struct xhci_container_ctx *out_ctx;
1527 	struct xhci_input_control_ctx *ctrl_ctx;
1528 	struct xhci_ep_ctx *ep_ctx;
1529 	struct xhci_command *command;
1530 	int max_packet_size;
1531 	int hw_max_packet_size;
1532 	int ret = 0;
1533 
1534 	out_ctx = xhci->devs[slot_id]->out_ctx;
1535 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1536 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1537 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1538 	if (hw_max_packet_size != max_packet_size) {
1539 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1540 				"Max Packet Size for ep 0 changed.");
1541 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1542 				"Max packet size in usb_device = %d",
1543 				max_packet_size);
1544 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1545 				"Max packet size in xHCI HW = %d",
1546 				hw_max_packet_size);
1547 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1548 				"Issuing evaluate context command.");
1549 
1550 		/* Set up the input context flags for the command */
1551 		/* FIXME: This won't work if a non-default control endpoint
1552 		 * changes max packet sizes.
1553 		 */
1554 
1555 		command = xhci_alloc_command(xhci, true, mem_flags);
1556 		if (!command)
1557 			return -ENOMEM;
1558 
1559 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1560 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1561 		if (!ctrl_ctx) {
1562 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1563 					__func__);
1564 			ret = -ENOMEM;
1565 			goto command_cleanup;
1566 		}
1567 		/* Set up the modified control endpoint 0 */
1568 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1569 				xhci->devs[slot_id]->out_ctx, ep_index);
1570 
1571 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1572 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1573 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1574 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1575 
1576 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1577 		ctrl_ctx->drop_flags = 0;
1578 
1579 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1580 				true, false);
1581 
1582 		/* Clean up the input context for later use by bandwidth
1583 		 * functions.
1584 		 */
1585 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1586 command_cleanup:
1587 		kfree(command->completion);
1588 		kfree(command);
1589 	}
1590 	return ret;
1591 }
1592 
1593 /*
1594  * non-error returns are a promise to giveback() the urb later
1595  * we drop ownership so next owner (or urb unlink) can get it
1596  */
1597 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1598 {
1599 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1600 	unsigned long flags;
1601 	int ret = 0;
1602 	unsigned int slot_id, ep_index;
1603 	unsigned int *ep_state;
1604 	struct urb_priv	*urb_priv;
1605 	int num_tds;
1606 
1607 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1608 					true, true, __func__) <= 0)
1609 		return -EINVAL;
1610 
1611 	slot_id = urb->dev->slot_id;
1612 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1613 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1614 
1615 	if (!HCD_HW_ACCESSIBLE(hcd))
1616 		return -ESHUTDOWN;
1617 
1618 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1619 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1620 		return -ENODEV;
1621 	}
1622 
1623 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1624 		num_tds = urb->number_of_packets;
1625 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1626 	    urb->transfer_buffer_length > 0 &&
1627 	    urb->transfer_flags & URB_ZERO_PACKET &&
1628 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1629 		num_tds = 2;
1630 	else
1631 		num_tds = 1;
1632 
1633 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1634 	if (!urb_priv)
1635 		return -ENOMEM;
1636 
1637 	urb_priv->num_tds = num_tds;
1638 	urb_priv->num_tds_done = 0;
1639 	urb->hcpriv = urb_priv;
1640 
1641 	trace_xhci_urb_enqueue(urb);
1642 
1643 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1644 		/* Check to see if the max packet size for the default control
1645 		 * endpoint changed during FS device enumeration
1646 		 */
1647 		if (urb->dev->speed == USB_SPEED_FULL) {
1648 			ret = xhci_check_maxpacket(xhci, slot_id,
1649 					ep_index, urb, mem_flags);
1650 			if (ret < 0) {
1651 				xhci_urb_free_priv(urb_priv);
1652 				urb->hcpriv = NULL;
1653 				return ret;
1654 			}
1655 		}
1656 	}
1657 
1658 	spin_lock_irqsave(&xhci->lock, flags);
1659 
1660 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1661 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1662 			 urb->ep->desc.bEndpointAddress, urb);
1663 		ret = -ESHUTDOWN;
1664 		goto free_priv;
1665 	}
1666 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1667 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1668 			  *ep_state);
1669 		ret = -EINVAL;
1670 		goto free_priv;
1671 	}
1672 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1673 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1674 		ret = -EINVAL;
1675 		goto free_priv;
1676 	}
1677 
1678 	switch (usb_endpoint_type(&urb->ep->desc)) {
1679 
1680 	case USB_ENDPOINT_XFER_CONTROL:
1681 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1682 					 slot_id, ep_index);
1683 		break;
1684 	case USB_ENDPOINT_XFER_BULK:
1685 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1686 					 slot_id, ep_index);
1687 		break;
1688 	case USB_ENDPOINT_XFER_INT:
1689 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1690 				slot_id, ep_index);
1691 		break;
1692 	case USB_ENDPOINT_XFER_ISOC:
1693 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1694 				slot_id, ep_index);
1695 	}
1696 
1697 	if (ret) {
1698 free_priv:
1699 		xhci_urb_free_priv(urb_priv);
1700 		urb->hcpriv = NULL;
1701 	}
1702 	spin_unlock_irqrestore(&xhci->lock, flags);
1703 	return ret;
1704 }
1705 
1706 /*
1707  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1708  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1709  * should pick up where it left off in the TD, unless a Set Transfer Ring
1710  * Dequeue Pointer is issued.
1711  *
1712  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1713  * the ring.  Since the ring is a contiguous structure, they can't be physically
1714  * removed.  Instead, there are two options:
1715  *
1716  *  1) If the HC is in the middle of processing the URB to be canceled, we
1717  *     simply move the ring's dequeue pointer past those TRBs using the Set
1718  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1719  *     when drivers timeout on the last submitted URB and attempt to cancel.
1720  *
1721  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1722  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1723  *     HC will need to invalidate the any TRBs it has cached after the stop
1724  *     endpoint command, as noted in the xHCI 0.95 errata.
1725  *
1726  *  3) The TD may have completed by the time the Stop Endpoint Command
1727  *     completes, so software needs to handle that case too.
1728  *
1729  * This function should protect against the TD enqueueing code ringing the
1730  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1731  * It also needs to account for multiple cancellations on happening at the same
1732  * time for the same endpoint.
1733  *
1734  * Note that this function can be called in any context, or so says
1735  * usb_hcd_unlink_urb()
1736  */
1737 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1738 {
1739 	unsigned long flags;
1740 	int ret, i;
1741 	u32 temp;
1742 	struct xhci_hcd *xhci;
1743 	struct urb_priv	*urb_priv;
1744 	struct xhci_td *td;
1745 	unsigned int ep_index;
1746 	struct xhci_ring *ep_ring;
1747 	struct xhci_virt_ep *ep;
1748 	struct xhci_command *command;
1749 	struct xhci_virt_device *vdev;
1750 
1751 	xhci = hcd_to_xhci(hcd);
1752 	spin_lock_irqsave(&xhci->lock, flags);
1753 
1754 	trace_xhci_urb_dequeue(urb);
1755 
1756 	/* Make sure the URB hasn't completed or been unlinked already */
1757 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1758 	if (ret)
1759 		goto done;
1760 
1761 	/* give back URB now if we can't queue it for cancel */
1762 	vdev = xhci->devs[urb->dev->slot_id];
1763 	urb_priv = urb->hcpriv;
1764 	if (!vdev || !urb_priv)
1765 		goto err_giveback;
1766 
1767 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1768 	ep = &vdev->eps[ep_index];
1769 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1770 	if (!ep || !ep_ring)
1771 		goto err_giveback;
1772 
1773 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1774 	temp = readl(&xhci->op_regs->status);
1775 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1776 		xhci_hc_died(xhci);
1777 		goto done;
1778 	}
1779 
1780 	/*
1781 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1782 	 * make sure none of the ring related pointers in this URB private data
1783 	 * are touched, such as td_list, otherwise we overwrite freed data
1784 	 */
1785 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1786 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1787 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1788 			td = &urb_priv->td[i];
1789 			if (!list_empty(&td->cancelled_td_list))
1790 				list_del_init(&td->cancelled_td_list);
1791 		}
1792 		goto err_giveback;
1793 	}
1794 
1795 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1796 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1797 				"HC halted, freeing TD manually.");
1798 		for (i = urb_priv->num_tds_done;
1799 		     i < urb_priv->num_tds;
1800 		     i++) {
1801 			td = &urb_priv->td[i];
1802 			if (!list_empty(&td->td_list))
1803 				list_del_init(&td->td_list);
1804 			if (!list_empty(&td->cancelled_td_list))
1805 				list_del_init(&td->cancelled_td_list);
1806 		}
1807 		goto err_giveback;
1808 	}
1809 
1810 	i = urb_priv->num_tds_done;
1811 	if (i < urb_priv->num_tds)
1812 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1813 				"Cancel URB %p, dev %s, ep 0x%x, "
1814 				"starting at offset 0x%llx",
1815 				urb, urb->dev->devpath,
1816 				urb->ep->desc.bEndpointAddress,
1817 				(unsigned long long) xhci_trb_virt_to_dma(
1818 					urb_priv->td[i].start_seg,
1819 					urb_priv->td[i].first_trb));
1820 
1821 	for (; i < urb_priv->num_tds; i++) {
1822 		td = &urb_priv->td[i];
1823 		/* TD can already be on cancelled list if ep halted on it */
1824 		if (list_empty(&td->cancelled_td_list)) {
1825 			td->cancel_status = TD_DIRTY;
1826 			list_add_tail(&td->cancelled_td_list,
1827 				      &ep->cancelled_td_list);
1828 		}
1829 	}
1830 
1831 	/* Queue a stop endpoint command, but only if this is
1832 	 * the first cancellation to be handled.
1833 	 */
1834 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1835 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1836 		if (!command) {
1837 			ret = -ENOMEM;
1838 			goto done;
1839 		}
1840 		ep->ep_state |= EP_STOP_CMD_PENDING;
1841 		ep->stop_cmd_timer.expires = jiffies +
1842 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1843 		add_timer(&ep->stop_cmd_timer);
1844 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1845 					 ep_index, 0);
1846 		xhci_ring_cmd_db(xhci);
1847 	}
1848 done:
1849 	spin_unlock_irqrestore(&xhci->lock, flags);
1850 	return ret;
1851 
1852 err_giveback:
1853 	if (urb_priv)
1854 		xhci_urb_free_priv(urb_priv);
1855 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1856 	spin_unlock_irqrestore(&xhci->lock, flags);
1857 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1858 	return ret;
1859 }
1860 
1861 /* Drop an endpoint from a new bandwidth configuration for this device.
1862  * Only one call to this function is allowed per endpoint before
1863  * check_bandwidth() or reset_bandwidth() must be called.
1864  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1865  * add the endpoint to the schedule with possibly new parameters denoted by a
1866  * different endpoint descriptor in usb_host_endpoint.
1867  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1868  * not allowed.
1869  *
1870  * The USB core will not allow URBs to be queued to an endpoint that is being
1871  * disabled, so there's no need for mutual exclusion to protect
1872  * the xhci->devs[slot_id] structure.
1873  */
1874 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1875 		       struct usb_host_endpoint *ep)
1876 {
1877 	struct xhci_hcd *xhci;
1878 	struct xhci_container_ctx *in_ctx, *out_ctx;
1879 	struct xhci_input_control_ctx *ctrl_ctx;
1880 	unsigned int ep_index;
1881 	struct xhci_ep_ctx *ep_ctx;
1882 	u32 drop_flag;
1883 	u32 new_add_flags, new_drop_flags;
1884 	int ret;
1885 
1886 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1887 	if (ret <= 0)
1888 		return ret;
1889 	xhci = hcd_to_xhci(hcd);
1890 	if (xhci->xhc_state & XHCI_STATE_DYING)
1891 		return -ENODEV;
1892 
1893 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1894 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1895 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1896 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1897 				__func__, drop_flag);
1898 		return 0;
1899 	}
1900 
1901 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1902 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1903 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1904 	if (!ctrl_ctx) {
1905 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1906 				__func__);
1907 		return 0;
1908 	}
1909 
1910 	ep_index = xhci_get_endpoint_index(&ep->desc);
1911 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1912 	/* If the HC already knows the endpoint is disabled,
1913 	 * or the HCD has noted it is disabled, ignore this request
1914 	 */
1915 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1916 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1917 	    xhci_get_endpoint_flag(&ep->desc)) {
1918 		/* Do not warn when called after a usb_device_reset */
1919 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1920 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1921 				  __func__, ep);
1922 		return 0;
1923 	}
1924 
1925 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1926 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1927 
1928 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1929 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1930 
1931 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1932 
1933 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1934 
1935 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1936 			(unsigned int) ep->desc.bEndpointAddress,
1937 			udev->slot_id,
1938 			(unsigned int) new_drop_flags,
1939 			(unsigned int) new_add_flags);
1940 	return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1943 
1944 /* Add an endpoint to a new possible bandwidth configuration for this device.
1945  * Only one call to this function is allowed per endpoint before
1946  * check_bandwidth() or reset_bandwidth() must be called.
1947  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1948  * add the endpoint to the schedule with possibly new parameters denoted by a
1949  * different endpoint descriptor in usb_host_endpoint.
1950  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1951  * not allowed.
1952  *
1953  * The USB core will not allow URBs to be queued to an endpoint until the
1954  * configuration or alt setting is installed in the device, so there's no need
1955  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1956  */
1957 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1958 		      struct usb_host_endpoint *ep)
1959 {
1960 	struct xhci_hcd *xhci;
1961 	struct xhci_container_ctx *in_ctx;
1962 	unsigned int ep_index;
1963 	struct xhci_input_control_ctx *ctrl_ctx;
1964 	struct xhci_ep_ctx *ep_ctx;
1965 	u32 added_ctxs;
1966 	u32 new_add_flags, new_drop_flags;
1967 	struct xhci_virt_device *virt_dev;
1968 	int ret = 0;
1969 
1970 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1971 	if (ret <= 0) {
1972 		/* So we won't queue a reset ep command for a root hub */
1973 		ep->hcpriv = NULL;
1974 		return ret;
1975 	}
1976 	xhci = hcd_to_xhci(hcd);
1977 	if (xhci->xhc_state & XHCI_STATE_DYING)
1978 		return -ENODEV;
1979 
1980 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1981 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1982 		/* FIXME when we have to issue an evaluate endpoint command to
1983 		 * deal with ep0 max packet size changing once we get the
1984 		 * descriptors
1985 		 */
1986 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1987 				__func__, added_ctxs);
1988 		return 0;
1989 	}
1990 
1991 	virt_dev = xhci->devs[udev->slot_id];
1992 	in_ctx = virt_dev->in_ctx;
1993 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1994 	if (!ctrl_ctx) {
1995 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1996 				__func__);
1997 		return 0;
1998 	}
1999 
2000 	ep_index = xhci_get_endpoint_index(&ep->desc);
2001 	/* If this endpoint is already in use, and the upper layers are trying
2002 	 * to add it again without dropping it, reject the addition.
2003 	 */
2004 	if (virt_dev->eps[ep_index].ring &&
2005 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2006 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2007 				"without dropping it.\n",
2008 				(unsigned int) ep->desc.bEndpointAddress);
2009 		return -EINVAL;
2010 	}
2011 
2012 	/* If the HCD has already noted the endpoint is enabled,
2013 	 * ignore this request.
2014 	 */
2015 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2016 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2017 				__func__, ep);
2018 		return 0;
2019 	}
2020 
2021 	/*
2022 	 * Configuration and alternate setting changes must be done in
2023 	 * process context, not interrupt context (or so documenation
2024 	 * for usb_set_interface() and usb_set_configuration() claim).
2025 	 */
2026 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2027 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2028 				__func__, ep->desc.bEndpointAddress);
2029 		return -ENOMEM;
2030 	}
2031 
2032 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2033 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2034 
2035 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2036 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2037 	 * this re-adds a new state for the endpoint from the new endpoint
2038 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2039 	 * drop flags alone.
2040 	 */
2041 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2042 
2043 	/* Store the usb_device pointer for later use */
2044 	ep->hcpriv = udev;
2045 
2046 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2047 	trace_xhci_add_endpoint(ep_ctx);
2048 
2049 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2050 			(unsigned int) ep->desc.bEndpointAddress,
2051 			udev->slot_id,
2052 			(unsigned int) new_drop_flags,
2053 			(unsigned int) new_add_flags);
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2057 
2058 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2059 {
2060 	struct xhci_input_control_ctx *ctrl_ctx;
2061 	struct xhci_ep_ctx *ep_ctx;
2062 	struct xhci_slot_ctx *slot_ctx;
2063 	int i;
2064 
2065 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2066 	if (!ctrl_ctx) {
2067 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2068 				__func__);
2069 		return;
2070 	}
2071 
2072 	/* When a device's add flag and drop flag are zero, any subsequent
2073 	 * configure endpoint command will leave that endpoint's state
2074 	 * untouched.  Make sure we don't leave any old state in the input
2075 	 * endpoint contexts.
2076 	 */
2077 	ctrl_ctx->drop_flags = 0;
2078 	ctrl_ctx->add_flags = 0;
2079 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2080 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2081 	/* Endpoint 0 is always valid */
2082 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2083 	for (i = 1; i < 31; i++) {
2084 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2085 		ep_ctx->ep_info = 0;
2086 		ep_ctx->ep_info2 = 0;
2087 		ep_ctx->deq = 0;
2088 		ep_ctx->tx_info = 0;
2089 	}
2090 }
2091 
2092 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2093 		struct usb_device *udev, u32 *cmd_status)
2094 {
2095 	int ret;
2096 
2097 	switch (*cmd_status) {
2098 	case COMP_COMMAND_ABORTED:
2099 	case COMP_COMMAND_RING_STOPPED:
2100 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2101 		ret = -ETIME;
2102 		break;
2103 	case COMP_RESOURCE_ERROR:
2104 		dev_warn(&udev->dev,
2105 			 "Not enough host controller resources for new device state.\n");
2106 		ret = -ENOMEM;
2107 		/* FIXME: can we allocate more resources for the HC? */
2108 		break;
2109 	case COMP_BANDWIDTH_ERROR:
2110 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2111 		dev_warn(&udev->dev,
2112 			 "Not enough bandwidth for new device state.\n");
2113 		ret = -ENOSPC;
2114 		/* FIXME: can we go back to the old state? */
2115 		break;
2116 	case COMP_TRB_ERROR:
2117 		/* the HCD set up something wrong */
2118 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2119 				"add flag = 1, "
2120 				"and endpoint is not disabled.\n");
2121 		ret = -EINVAL;
2122 		break;
2123 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2124 		dev_warn(&udev->dev,
2125 			 "ERROR: Incompatible device for endpoint configure command.\n");
2126 		ret = -ENODEV;
2127 		break;
2128 	case COMP_SUCCESS:
2129 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2130 				"Successful Endpoint Configure command");
2131 		ret = 0;
2132 		break;
2133 	default:
2134 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2135 				*cmd_status);
2136 		ret = -EINVAL;
2137 		break;
2138 	}
2139 	return ret;
2140 }
2141 
2142 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2143 		struct usb_device *udev, u32 *cmd_status)
2144 {
2145 	int ret;
2146 
2147 	switch (*cmd_status) {
2148 	case COMP_COMMAND_ABORTED:
2149 	case COMP_COMMAND_RING_STOPPED:
2150 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2151 		ret = -ETIME;
2152 		break;
2153 	case COMP_PARAMETER_ERROR:
2154 		dev_warn(&udev->dev,
2155 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2156 		ret = -EINVAL;
2157 		break;
2158 	case COMP_SLOT_NOT_ENABLED_ERROR:
2159 		dev_warn(&udev->dev,
2160 			"WARN: slot not enabled for evaluate context command.\n");
2161 		ret = -EINVAL;
2162 		break;
2163 	case COMP_CONTEXT_STATE_ERROR:
2164 		dev_warn(&udev->dev,
2165 			"WARN: invalid context state for evaluate context command.\n");
2166 		ret = -EINVAL;
2167 		break;
2168 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2169 		dev_warn(&udev->dev,
2170 			"ERROR: Incompatible device for evaluate context command.\n");
2171 		ret = -ENODEV;
2172 		break;
2173 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2174 		/* Max Exit Latency too large error */
2175 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2176 		ret = -EINVAL;
2177 		break;
2178 	case COMP_SUCCESS:
2179 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2180 				"Successful evaluate context command");
2181 		ret = 0;
2182 		break;
2183 	default:
2184 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2185 			*cmd_status);
2186 		ret = -EINVAL;
2187 		break;
2188 	}
2189 	return ret;
2190 }
2191 
2192 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2193 		struct xhci_input_control_ctx *ctrl_ctx)
2194 {
2195 	u32 valid_add_flags;
2196 	u32 valid_drop_flags;
2197 
2198 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2199 	 * (bit 1).  The default control endpoint is added during the Address
2200 	 * Device command and is never removed until the slot is disabled.
2201 	 */
2202 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2203 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2204 
2205 	/* Use hweight32 to count the number of ones in the add flags, or
2206 	 * number of endpoints added.  Don't count endpoints that are changed
2207 	 * (both added and dropped).
2208 	 */
2209 	return hweight32(valid_add_flags) -
2210 		hweight32(valid_add_flags & valid_drop_flags);
2211 }
2212 
2213 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2214 		struct xhci_input_control_ctx *ctrl_ctx)
2215 {
2216 	u32 valid_add_flags;
2217 	u32 valid_drop_flags;
2218 
2219 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2220 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2221 
2222 	return hweight32(valid_drop_flags) -
2223 		hweight32(valid_add_flags & valid_drop_flags);
2224 }
2225 
2226 /*
2227  * We need to reserve the new number of endpoints before the configure endpoint
2228  * command completes.  We can't subtract the dropped endpoints from the number
2229  * of active endpoints until the command completes because we can oversubscribe
2230  * the host in this case:
2231  *
2232  *  - the first configure endpoint command drops more endpoints than it adds
2233  *  - a second configure endpoint command that adds more endpoints is queued
2234  *  - the first configure endpoint command fails, so the config is unchanged
2235  *  - the second command may succeed, even though there isn't enough resources
2236  *
2237  * Must be called with xhci->lock held.
2238  */
2239 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2240 		struct xhci_input_control_ctx *ctrl_ctx)
2241 {
2242 	u32 added_eps;
2243 
2244 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2245 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2246 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247 				"Not enough ep ctxs: "
2248 				"%u active, need to add %u, limit is %u.",
2249 				xhci->num_active_eps, added_eps,
2250 				xhci->limit_active_eps);
2251 		return -ENOMEM;
2252 	}
2253 	xhci->num_active_eps += added_eps;
2254 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2255 			"Adding %u ep ctxs, %u now active.", added_eps,
2256 			xhci->num_active_eps);
2257 	return 0;
2258 }
2259 
2260 /*
2261  * The configure endpoint was failed by the xHC for some other reason, so we
2262  * need to revert the resources that failed configuration would have used.
2263  *
2264  * Must be called with xhci->lock held.
2265  */
2266 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2267 		struct xhci_input_control_ctx *ctrl_ctx)
2268 {
2269 	u32 num_failed_eps;
2270 
2271 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2272 	xhci->num_active_eps -= num_failed_eps;
2273 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2274 			"Removing %u failed ep ctxs, %u now active.",
2275 			num_failed_eps,
2276 			xhci->num_active_eps);
2277 }
2278 
2279 /*
2280  * Now that the command has completed, clean up the active endpoint count by
2281  * subtracting out the endpoints that were dropped (but not changed).
2282  *
2283  * Must be called with xhci->lock held.
2284  */
2285 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2286 		struct xhci_input_control_ctx *ctrl_ctx)
2287 {
2288 	u32 num_dropped_eps;
2289 
2290 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2291 	xhci->num_active_eps -= num_dropped_eps;
2292 	if (num_dropped_eps)
2293 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2294 				"Removing %u dropped ep ctxs, %u now active.",
2295 				num_dropped_eps,
2296 				xhci->num_active_eps);
2297 }
2298 
2299 static unsigned int xhci_get_block_size(struct usb_device *udev)
2300 {
2301 	switch (udev->speed) {
2302 	case USB_SPEED_LOW:
2303 	case USB_SPEED_FULL:
2304 		return FS_BLOCK;
2305 	case USB_SPEED_HIGH:
2306 		return HS_BLOCK;
2307 	case USB_SPEED_SUPER:
2308 	case USB_SPEED_SUPER_PLUS:
2309 		return SS_BLOCK;
2310 	case USB_SPEED_UNKNOWN:
2311 	case USB_SPEED_WIRELESS:
2312 	default:
2313 		/* Should never happen */
2314 		return 1;
2315 	}
2316 }
2317 
2318 static unsigned int
2319 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2320 {
2321 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2322 		return LS_OVERHEAD;
2323 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2324 		return FS_OVERHEAD;
2325 	return HS_OVERHEAD;
2326 }
2327 
2328 /* If we are changing a LS/FS device under a HS hub,
2329  * make sure (if we are activating a new TT) that the HS bus has enough
2330  * bandwidth for this new TT.
2331  */
2332 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2333 		struct xhci_virt_device *virt_dev,
2334 		int old_active_eps)
2335 {
2336 	struct xhci_interval_bw_table *bw_table;
2337 	struct xhci_tt_bw_info *tt_info;
2338 
2339 	/* Find the bandwidth table for the root port this TT is attached to. */
2340 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2341 	tt_info = virt_dev->tt_info;
2342 	/* If this TT already had active endpoints, the bandwidth for this TT
2343 	 * has already been added.  Removing all periodic endpoints (and thus
2344 	 * making the TT enactive) will only decrease the bandwidth used.
2345 	 */
2346 	if (old_active_eps)
2347 		return 0;
2348 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2349 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2350 			return -ENOMEM;
2351 		return 0;
2352 	}
2353 	/* Not sure why we would have no new active endpoints...
2354 	 *
2355 	 * Maybe because of an Evaluate Context change for a hub update or a
2356 	 * control endpoint 0 max packet size change?
2357 	 * FIXME: skip the bandwidth calculation in that case.
2358 	 */
2359 	return 0;
2360 }
2361 
2362 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2363 		struct xhci_virt_device *virt_dev)
2364 {
2365 	unsigned int bw_reserved;
2366 
2367 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2368 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2369 		return -ENOMEM;
2370 
2371 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2372 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2373 		return -ENOMEM;
2374 
2375 	return 0;
2376 }
2377 
2378 /*
2379  * This algorithm is a very conservative estimate of the worst-case scheduling
2380  * scenario for any one interval.  The hardware dynamically schedules the
2381  * packets, so we can't tell which microframe could be the limiting factor in
2382  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2383  *
2384  * Obviously, we can't solve an NP complete problem to find the minimum worst
2385  * case scenario.  Instead, we come up with an estimate that is no less than
2386  * the worst case bandwidth used for any one microframe, but may be an
2387  * over-estimate.
2388  *
2389  * We walk the requirements for each endpoint by interval, starting with the
2390  * smallest interval, and place packets in the schedule where there is only one
2391  * possible way to schedule packets for that interval.  In order to simplify
2392  * this algorithm, we record the largest max packet size for each interval, and
2393  * assume all packets will be that size.
2394  *
2395  * For interval 0, we obviously must schedule all packets for each interval.
2396  * The bandwidth for interval 0 is just the amount of data to be transmitted
2397  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2398  * the number of packets).
2399  *
2400  * For interval 1, we have two possible microframes to schedule those packets
2401  * in.  For this algorithm, if we can schedule the same number of packets for
2402  * each possible scheduling opportunity (each microframe), we will do so.  The
2403  * remaining number of packets will be saved to be transmitted in the gaps in
2404  * the next interval's scheduling sequence.
2405  *
2406  * As we move those remaining packets to be scheduled with interval 2 packets,
2407  * we have to double the number of remaining packets to transmit.  This is
2408  * because the intervals are actually powers of 2, and we would be transmitting
2409  * the previous interval's packets twice in this interval.  We also have to be
2410  * sure that when we look at the largest max packet size for this interval, we
2411  * also look at the largest max packet size for the remaining packets and take
2412  * the greater of the two.
2413  *
2414  * The algorithm continues to evenly distribute packets in each scheduling
2415  * opportunity, and push the remaining packets out, until we get to the last
2416  * interval.  Then those packets and their associated overhead are just added
2417  * to the bandwidth used.
2418  */
2419 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2420 		struct xhci_virt_device *virt_dev,
2421 		int old_active_eps)
2422 {
2423 	unsigned int bw_reserved;
2424 	unsigned int max_bandwidth;
2425 	unsigned int bw_used;
2426 	unsigned int block_size;
2427 	struct xhci_interval_bw_table *bw_table;
2428 	unsigned int packet_size = 0;
2429 	unsigned int overhead = 0;
2430 	unsigned int packets_transmitted = 0;
2431 	unsigned int packets_remaining = 0;
2432 	unsigned int i;
2433 
2434 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2435 		return xhci_check_ss_bw(xhci, virt_dev);
2436 
2437 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2438 		max_bandwidth = HS_BW_LIMIT;
2439 		/* Convert percent of bus BW reserved to blocks reserved */
2440 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2441 	} else {
2442 		max_bandwidth = FS_BW_LIMIT;
2443 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2444 	}
2445 
2446 	bw_table = virt_dev->bw_table;
2447 	/* We need to translate the max packet size and max ESIT payloads into
2448 	 * the units the hardware uses.
2449 	 */
2450 	block_size = xhci_get_block_size(virt_dev->udev);
2451 
2452 	/* If we are manipulating a LS/FS device under a HS hub, double check
2453 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2454 	 */
2455 	if (virt_dev->tt_info) {
2456 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2457 				"Recalculating BW for rootport %u",
2458 				virt_dev->real_port);
2459 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2460 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2461 					"newly activated TT.\n");
2462 			return -ENOMEM;
2463 		}
2464 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2465 				"Recalculating BW for TT slot %u port %u",
2466 				virt_dev->tt_info->slot_id,
2467 				virt_dev->tt_info->ttport);
2468 	} else {
2469 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2470 				"Recalculating BW for rootport %u",
2471 				virt_dev->real_port);
2472 	}
2473 
2474 	/* Add in how much bandwidth will be used for interval zero, or the
2475 	 * rounded max ESIT payload + number of packets * largest overhead.
2476 	 */
2477 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2478 		bw_table->interval_bw[0].num_packets *
2479 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2480 
2481 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2482 		unsigned int bw_added;
2483 		unsigned int largest_mps;
2484 		unsigned int interval_overhead;
2485 
2486 		/*
2487 		 * How many packets could we transmit in this interval?
2488 		 * If packets didn't fit in the previous interval, we will need
2489 		 * to transmit that many packets twice within this interval.
2490 		 */
2491 		packets_remaining = 2 * packets_remaining +
2492 			bw_table->interval_bw[i].num_packets;
2493 
2494 		/* Find the largest max packet size of this or the previous
2495 		 * interval.
2496 		 */
2497 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2498 			largest_mps = 0;
2499 		else {
2500 			struct xhci_virt_ep *virt_ep;
2501 			struct list_head *ep_entry;
2502 
2503 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2504 			virt_ep = list_entry(ep_entry,
2505 					struct xhci_virt_ep, bw_endpoint_list);
2506 			/* Convert to blocks, rounding up */
2507 			largest_mps = DIV_ROUND_UP(
2508 					virt_ep->bw_info.max_packet_size,
2509 					block_size);
2510 		}
2511 		if (largest_mps > packet_size)
2512 			packet_size = largest_mps;
2513 
2514 		/* Use the larger overhead of this or the previous interval. */
2515 		interval_overhead = xhci_get_largest_overhead(
2516 				&bw_table->interval_bw[i]);
2517 		if (interval_overhead > overhead)
2518 			overhead = interval_overhead;
2519 
2520 		/* How many packets can we evenly distribute across
2521 		 * (1 << (i + 1)) possible scheduling opportunities?
2522 		 */
2523 		packets_transmitted = packets_remaining >> (i + 1);
2524 
2525 		/* Add in the bandwidth used for those scheduled packets */
2526 		bw_added = packets_transmitted * (overhead + packet_size);
2527 
2528 		/* How many packets do we have remaining to transmit? */
2529 		packets_remaining = packets_remaining % (1 << (i + 1));
2530 
2531 		/* What largest max packet size should those packets have? */
2532 		/* If we've transmitted all packets, don't carry over the
2533 		 * largest packet size.
2534 		 */
2535 		if (packets_remaining == 0) {
2536 			packet_size = 0;
2537 			overhead = 0;
2538 		} else if (packets_transmitted > 0) {
2539 			/* Otherwise if we do have remaining packets, and we've
2540 			 * scheduled some packets in this interval, take the
2541 			 * largest max packet size from endpoints with this
2542 			 * interval.
2543 			 */
2544 			packet_size = largest_mps;
2545 			overhead = interval_overhead;
2546 		}
2547 		/* Otherwise carry over packet_size and overhead from the last
2548 		 * time we had a remainder.
2549 		 */
2550 		bw_used += bw_added;
2551 		if (bw_used > max_bandwidth) {
2552 			xhci_warn(xhci, "Not enough bandwidth. "
2553 					"Proposed: %u, Max: %u\n",
2554 				bw_used, max_bandwidth);
2555 			return -ENOMEM;
2556 		}
2557 	}
2558 	/*
2559 	 * Ok, we know we have some packets left over after even-handedly
2560 	 * scheduling interval 15.  We don't know which microframes they will
2561 	 * fit into, so we over-schedule and say they will be scheduled every
2562 	 * microframe.
2563 	 */
2564 	if (packets_remaining > 0)
2565 		bw_used += overhead + packet_size;
2566 
2567 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2568 		unsigned int port_index = virt_dev->real_port - 1;
2569 
2570 		/* OK, we're manipulating a HS device attached to a
2571 		 * root port bandwidth domain.  Include the number of active TTs
2572 		 * in the bandwidth used.
2573 		 */
2574 		bw_used += TT_HS_OVERHEAD *
2575 			xhci->rh_bw[port_index].num_active_tts;
2576 	}
2577 
2578 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2579 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2580 		"Available: %u " "percent",
2581 		bw_used, max_bandwidth, bw_reserved,
2582 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2583 		max_bandwidth);
2584 
2585 	bw_used += bw_reserved;
2586 	if (bw_used > max_bandwidth) {
2587 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2588 				bw_used, max_bandwidth);
2589 		return -ENOMEM;
2590 	}
2591 
2592 	bw_table->bw_used = bw_used;
2593 	return 0;
2594 }
2595 
2596 static bool xhci_is_async_ep(unsigned int ep_type)
2597 {
2598 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2599 					ep_type != ISOC_IN_EP &&
2600 					ep_type != INT_IN_EP);
2601 }
2602 
2603 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2604 {
2605 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2606 }
2607 
2608 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2609 {
2610 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2611 
2612 	if (ep_bw->ep_interval == 0)
2613 		return SS_OVERHEAD_BURST +
2614 			(ep_bw->mult * ep_bw->num_packets *
2615 					(SS_OVERHEAD + mps));
2616 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2617 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2618 				1 << ep_bw->ep_interval);
2619 
2620 }
2621 
2622 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2623 		struct xhci_bw_info *ep_bw,
2624 		struct xhci_interval_bw_table *bw_table,
2625 		struct usb_device *udev,
2626 		struct xhci_virt_ep *virt_ep,
2627 		struct xhci_tt_bw_info *tt_info)
2628 {
2629 	struct xhci_interval_bw	*interval_bw;
2630 	int normalized_interval;
2631 
2632 	if (xhci_is_async_ep(ep_bw->type))
2633 		return;
2634 
2635 	if (udev->speed >= USB_SPEED_SUPER) {
2636 		if (xhci_is_sync_in_ep(ep_bw->type))
2637 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2638 				xhci_get_ss_bw_consumed(ep_bw);
2639 		else
2640 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2641 				xhci_get_ss_bw_consumed(ep_bw);
2642 		return;
2643 	}
2644 
2645 	/* SuperSpeed endpoints never get added to intervals in the table, so
2646 	 * this check is only valid for HS/FS/LS devices.
2647 	 */
2648 	if (list_empty(&virt_ep->bw_endpoint_list))
2649 		return;
2650 	/* For LS/FS devices, we need to translate the interval expressed in
2651 	 * microframes to frames.
2652 	 */
2653 	if (udev->speed == USB_SPEED_HIGH)
2654 		normalized_interval = ep_bw->ep_interval;
2655 	else
2656 		normalized_interval = ep_bw->ep_interval - 3;
2657 
2658 	if (normalized_interval == 0)
2659 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2660 	interval_bw = &bw_table->interval_bw[normalized_interval];
2661 	interval_bw->num_packets -= ep_bw->num_packets;
2662 	switch (udev->speed) {
2663 	case USB_SPEED_LOW:
2664 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2665 		break;
2666 	case USB_SPEED_FULL:
2667 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2668 		break;
2669 	case USB_SPEED_HIGH:
2670 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2671 		break;
2672 	case USB_SPEED_SUPER:
2673 	case USB_SPEED_SUPER_PLUS:
2674 	case USB_SPEED_UNKNOWN:
2675 	case USB_SPEED_WIRELESS:
2676 		/* Should never happen because only LS/FS/HS endpoints will get
2677 		 * added to the endpoint list.
2678 		 */
2679 		return;
2680 	}
2681 	if (tt_info)
2682 		tt_info->active_eps -= 1;
2683 	list_del_init(&virt_ep->bw_endpoint_list);
2684 }
2685 
2686 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2687 		struct xhci_bw_info *ep_bw,
2688 		struct xhci_interval_bw_table *bw_table,
2689 		struct usb_device *udev,
2690 		struct xhci_virt_ep *virt_ep,
2691 		struct xhci_tt_bw_info *tt_info)
2692 {
2693 	struct xhci_interval_bw	*interval_bw;
2694 	struct xhci_virt_ep *smaller_ep;
2695 	int normalized_interval;
2696 
2697 	if (xhci_is_async_ep(ep_bw->type))
2698 		return;
2699 
2700 	if (udev->speed == USB_SPEED_SUPER) {
2701 		if (xhci_is_sync_in_ep(ep_bw->type))
2702 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2703 				xhci_get_ss_bw_consumed(ep_bw);
2704 		else
2705 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2706 				xhci_get_ss_bw_consumed(ep_bw);
2707 		return;
2708 	}
2709 
2710 	/* For LS/FS devices, we need to translate the interval expressed in
2711 	 * microframes to frames.
2712 	 */
2713 	if (udev->speed == USB_SPEED_HIGH)
2714 		normalized_interval = ep_bw->ep_interval;
2715 	else
2716 		normalized_interval = ep_bw->ep_interval - 3;
2717 
2718 	if (normalized_interval == 0)
2719 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2720 	interval_bw = &bw_table->interval_bw[normalized_interval];
2721 	interval_bw->num_packets += ep_bw->num_packets;
2722 	switch (udev->speed) {
2723 	case USB_SPEED_LOW:
2724 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2725 		break;
2726 	case USB_SPEED_FULL:
2727 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2728 		break;
2729 	case USB_SPEED_HIGH:
2730 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2731 		break;
2732 	case USB_SPEED_SUPER:
2733 	case USB_SPEED_SUPER_PLUS:
2734 	case USB_SPEED_UNKNOWN:
2735 	case USB_SPEED_WIRELESS:
2736 		/* Should never happen because only LS/FS/HS endpoints will get
2737 		 * added to the endpoint list.
2738 		 */
2739 		return;
2740 	}
2741 
2742 	if (tt_info)
2743 		tt_info->active_eps += 1;
2744 	/* Insert the endpoint into the list, largest max packet size first. */
2745 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2746 			bw_endpoint_list) {
2747 		if (ep_bw->max_packet_size >=
2748 				smaller_ep->bw_info.max_packet_size) {
2749 			/* Add the new ep before the smaller endpoint */
2750 			list_add_tail(&virt_ep->bw_endpoint_list,
2751 					&smaller_ep->bw_endpoint_list);
2752 			return;
2753 		}
2754 	}
2755 	/* Add the new endpoint at the end of the list. */
2756 	list_add_tail(&virt_ep->bw_endpoint_list,
2757 			&interval_bw->endpoints);
2758 }
2759 
2760 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2761 		struct xhci_virt_device *virt_dev,
2762 		int old_active_eps)
2763 {
2764 	struct xhci_root_port_bw_info *rh_bw_info;
2765 	if (!virt_dev->tt_info)
2766 		return;
2767 
2768 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2769 	if (old_active_eps == 0 &&
2770 				virt_dev->tt_info->active_eps != 0) {
2771 		rh_bw_info->num_active_tts += 1;
2772 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2773 	} else if (old_active_eps != 0 &&
2774 				virt_dev->tt_info->active_eps == 0) {
2775 		rh_bw_info->num_active_tts -= 1;
2776 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2777 	}
2778 }
2779 
2780 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2781 		struct xhci_virt_device *virt_dev,
2782 		struct xhci_container_ctx *in_ctx)
2783 {
2784 	struct xhci_bw_info ep_bw_info[31];
2785 	int i;
2786 	struct xhci_input_control_ctx *ctrl_ctx;
2787 	int old_active_eps = 0;
2788 
2789 	if (virt_dev->tt_info)
2790 		old_active_eps = virt_dev->tt_info->active_eps;
2791 
2792 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2793 	if (!ctrl_ctx) {
2794 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2795 				__func__);
2796 		return -ENOMEM;
2797 	}
2798 
2799 	for (i = 0; i < 31; i++) {
2800 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2801 			continue;
2802 
2803 		/* Make a copy of the BW info in case we need to revert this */
2804 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2805 				sizeof(ep_bw_info[i]));
2806 		/* Drop the endpoint from the interval table if the endpoint is
2807 		 * being dropped or changed.
2808 		 */
2809 		if (EP_IS_DROPPED(ctrl_ctx, i))
2810 			xhci_drop_ep_from_interval_table(xhci,
2811 					&virt_dev->eps[i].bw_info,
2812 					virt_dev->bw_table,
2813 					virt_dev->udev,
2814 					&virt_dev->eps[i],
2815 					virt_dev->tt_info);
2816 	}
2817 	/* Overwrite the information stored in the endpoints' bw_info */
2818 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2819 	for (i = 0; i < 31; i++) {
2820 		/* Add any changed or added endpoints to the interval table */
2821 		if (EP_IS_ADDED(ctrl_ctx, i))
2822 			xhci_add_ep_to_interval_table(xhci,
2823 					&virt_dev->eps[i].bw_info,
2824 					virt_dev->bw_table,
2825 					virt_dev->udev,
2826 					&virt_dev->eps[i],
2827 					virt_dev->tt_info);
2828 	}
2829 
2830 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2831 		/* Ok, this fits in the bandwidth we have.
2832 		 * Update the number of active TTs.
2833 		 */
2834 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2835 		return 0;
2836 	}
2837 
2838 	/* We don't have enough bandwidth for this, revert the stored info. */
2839 	for (i = 0; i < 31; i++) {
2840 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2841 			continue;
2842 
2843 		/* Drop the new copies of any added or changed endpoints from
2844 		 * the interval table.
2845 		 */
2846 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2847 			xhci_drop_ep_from_interval_table(xhci,
2848 					&virt_dev->eps[i].bw_info,
2849 					virt_dev->bw_table,
2850 					virt_dev->udev,
2851 					&virt_dev->eps[i],
2852 					virt_dev->tt_info);
2853 		}
2854 		/* Revert the endpoint back to its old information */
2855 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2856 				sizeof(ep_bw_info[i]));
2857 		/* Add any changed or dropped endpoints back into the table */
2858 		if (EP_IS_DROPPED(ctrl_ctx, i))
2859 			xhci_add_ep_to_interval_table(xhci,
2860 					&virt_dev->eps[i].bw_info,
2861 					virt_dev->bw_table,
2862 					virt_dev->udev,
2863 					&virt_dev->eps[i],
2864 					virt_dev->tt_info);
2865 	}
2866 	return -ENOMEM;
2867 }
2868 
2869 
2870 /* Issue a configure endpoint command or evaluate context command
2871  * and wait for it to finish.
2872  */
2873 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2874 		struct usb_device *udev,
2875 		struct xhci_command *command,
2876 		bool ctx_change, bool must_succeed)
2877 {
2878 	int ret;
2879 	unsigned long flags;
2880 	struct xhci_input_control_ctx *ctrl_ctx;
2881 	struct xhci_virt_device *virt_dev;
2882 	struct xhci_slot_ctx *slot_ctx;
2883 
2884 	if (!command)
2885 		return -EINVAL;
2886 
2887 	spin_lock_irqsave(&xhci->lock, flags);
2888 
2889 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2890 		spin_unlock_irqrestore(&xhci->lock, flags);
2891 		return -ESHUTDOWN;
2892 	}
2893 
2894 	virt_dev = xhci->devs[udev->slot_id];
2895 
2896 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2897 	if (!ctrl_ctx) {
2898 		spin_unlock_irqrestore(&xhci->lock, flags);
2899 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2900 				__func__);
2901 		return -ENOMEM;
2902 	}
2903 
2904 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2905 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2906 		spin_unlock_irqrestore(&xhci->lock, flags);
2907 		xhci_warn(xhci, "Not enough host resources, "
2908 				"active endpoint contexts = %u\n",
2909 				xhci->num_active_eps);
2910 		return -ENOMEM;
2911 	}
2912 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2913 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2914 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2915 			xhci_free_host_resources(xhci, ctrl_ctx);
2916 		spin_unlock_irqrestore(&xhci->lock, flags);
2917 		xhci_warn(xhci, "Not enough bandwidth\n");
2918 		return -ENOMEM;
2919 	}
2920 
2921 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2922 
2923 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2924 	trace_xhci_configure_endpoint(slot_ctx);
2925 
2926 	if (!ctx_change)
2927 		ret = xhci_queue_configure_endpoint(xhci, command,
2928 				command->in_ctx->dma,
2929 				udev->slot_id, must_succeed);
2930 	else
2931 		ret = xhci_queue_evaluate_context(xhci, command,
2932 				command->in_ctx->dma,
2933 				udev->slot_id, must_succeed);
2934 	if (ret < 0) {
2935 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2936 			xhci_free_host_resources(xhci, ctrl_ctx);
2937 		spin_unlock_irqrestore(&xhci->lock, flags);
2938 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2939 				"FIXME allocate a new ring segment");
2940 		return -ENOMEM;
2941 	}
2942 	xhci_ring_cmd_db(xhci);
2943 	spin_unlock_irqrestore(&xhci->lock, flags);
2944 
2945 	/* Wait for the configure endpoint command to complete */
2946 	wait_for_completion(command->completion);
2947 
2948 	if (!ctx_change)
2949 		ret = xhci_configure_endpoint_result(xhci, udev,
2950 						     &command->status);
2951 	else
2952 		ret = xhci_evaluate_context_result(xhci, udev,
2953 						   &command->status);
2954 
2955 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2956 		spin_lock_irqsave(&xhci->lock, flags);
2957 		/* If the command failed, remove the reserved resources.
2958 		 * Otherwise, clean up the estimate to include dropped eps.
2959 		 */
2960 		if (ret)
2961 			xhci_free_host_resources(xhci, ctrl_ctx);
2962 		else
2963 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2964 		spin_unlock_irqrestore(&xhci->lock, flags);
2965 	}
2966 	return ret;
2967 }
2968 
2969 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2970 	struct xhci_virt_device *vdev, int i)
2971 {
2972 	struct xhci_virt_ep *ep = &vdev->eps[i];
2973 
2974 	if (ep->ep_state & EP_HAS_STREAMS) {
2975 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2976 				xhci_get_endpoint_address(i));
2977 		xhci_free_stream_info(xhci, ep->stream_info);
2978 		ep->stream_info = NULL;
2979 		ep->ep_state &= ~EP_HAS_STREAMS;
2980 	}
2981 }
2982 
2983 /* Called after one or more calls to xhci_add_endpoint() or
2984  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2985  * to call xhci_reset_bandwidth().
2986  *
2987  * Since we are in the middle of changing either configuration or
2988  * installing a new alt setting, the USB core won't allow URBs to be
2989  * enqueued for any endpoint on the old config or interface.  Nothing
2990  * else should be touching the xhci->devs[slot_id] structure, so we
2991  * don't need to take the xhci->lock for manipulating that.
2992  */
2993 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2994 {
2995 	int i;
2996 	int ret = 0;
2997 	struct xhci_hcd *xhci;
2998 	struct xhci_virt_device	*virt_dev;
2999 	struct xhci_input_control_ctx *ctrl_ctx;
3000 	struct xhci_slot_ctx *slot_ctx;
3001 	struct xhci_command *command;
3002 
3003 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3004 	if (ret <= 0)
3005 		return ret;
3006 	xhci = hcd_to_xhci(hcd);
3007 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3008 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3009 		return -ENODEV;
3010 
3011 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3012 	virt_dev = xhci->devs[udev->slot_id];
3013 
3014 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3015 	if (!command)
3016 		return -ENOMEM;
3017 
3018 	command->in_ctx = virt_dev->in_ctx;
3019 
3020 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3021 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3022 	if (!ctrl_ctx) {
3023 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3024 				__func__);
3025 		ret = -ENOMEM;
3026 		goto command_cleanup;
3027 	}
3028 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3029 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3030 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3031 
3032 	/* Don't issue the command if there's no endpoints to update. */
3033 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3034 	    ctrl_ctx->drop_flags == 0) {
3035 		ret = 0;
3036 		goto command_cleanup;
3037 	}
3038 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3039 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3040 	for (i = 31; i >= 1; i--) {
3041 		__le32 le32 = cpu_to_le32(BIT(i));
3042 
3043 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3044 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3045 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3046 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3047 			break;
3048 		}
3049 	}
3050 
3051 	ret = xhci_configure_endpoint(xhci, udev, command,
3052 			false, false);
3053 	if (ret)
3054 		/* Callee should call reset_bandwidth() */
3055 		goto command_cleanup;
3056 
3057 	/* Free any rings that were dropped, but not changed. */
3058 	for (i = 1; i < 31; i++) {
3059 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3060 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3061 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3062 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3063 		}
3064 	}
3065 	xhci_zero_in_ctx(xhci, virt_dev);
3066 	/*
3067 	 * Install any rings for completely new endpoints or changed endpoints,
3068 	 * and free any old rings from changed endpoints.
3069 	 */
3070 	for (i = 1; i < 31; i++) {
3071 		if (!virt_dev->eps[i].new_ring)
3072 			continue;
3073 		/* Only free the old ring if it exists.
3074 		 * It may not if this is the first add of an endpoint.
3075 		 */
3076 		if (virt_dev->eps[i].ring) {
3077 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3078 		}
3079 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3080 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3081 		virt_dev->eps[i].new_ring = NULL;
3082 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3083 	}
3084 command_cleanup:
3085 	kfree(command->completion);
3086 	kfree(command);
3087 
3088 	return ret;
3089 }
3090 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3091 
3092 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3093 {
3094 	struct xhci_hcd *xhci;
3095 	struct xhci_virt_device	*virt_dev;
3096 	int i, ret;
3097 
3098 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3099 	if (ret <= 0)
3100 		return;
3101 	xhci = hcd_to_xhci(hcd);
3102 
3103 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3104 	virt_dev = xhci->devs[udev->slot_id];
3105 	/* Free any rings allocated for added endpoints */
3106 	for (i = 0; i < 31; i++) {
3107 		if (virt_dev->eps[i].new_ring) {
3108 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3109 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3110 			virt_dev->eps[i].new_ring = NULL;
3111 		}
3112 	}
3113 	xhci_zero_in_ctx(xhci, virt_dev);
3114 }
3115 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3116 
3117 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3118 		struct xhci_container_ctx *in_ctx,
3119 		struct xhci_container_ctx *out_ctx,
3120 		struct xhci_input_control_ctx *ctrl_ctx,
3121 		u32 add_flags, u32 drop_flags)
3122 {
3123 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3124 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3125 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3126 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3127 }
3128 
3129 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3130 				  struct usb_host_endpoint *host_ep)
3131 {
3132 	struct xhci_hcd		*xhci;
3133 	struct xhci_virt_device	*vdev;
3134 	struct xhci_virt_ep	*ep;
3135 	struct usb_device	*udev;
3136 	unsigned long		flags;
3137 	unsigned int		ep_index;
3138 
3139 	xhci = hcd_to_xhci(hcd);
3140 rescan:
3141 	spin_lock_irqsave(&xhci->lock, flags);
3142 
3143 	udev = (struct usb_device *)host_ep->hcpriv;
3144 	if (!udev || !udev->slot_id)
3145 		goto done;
3146 
3147 	vdev = xhci->devs[udev->slot_id];
3148 	if (!vdev)
3149 		goto done;
3150 
3151 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3152 	ep = &vdev->eps[ep_index];
3153 	if (!ep)
3154 		goto done;
3155 
3156 	/* wait for hub_tt_work to finish clearing hub TT */
3157 	if (ep->ep_state & EP_CLEARING_TT) {
3158 		spin_unlock_irqrestore(&xhci->lock, flags);
3159 		schedule_timeout_uninterruptible(1);
3160 		goto rescan;
3161 	}
3162 
3163 	if (ep->ep_state)
3164 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3165 			 ep->ep_state);
3166 done:
3167 	host_ep->hcpriv = NULL;
3168 	spin_unlock_irqrestore(&xhci->lock, flags);
3169 }
3170 
3171 /*
3172  * Called after usb core issues a clear halt control message.
3173  * The host side of the halt should already be cleared by a reset endpoint
3174  * command issued when the STALL event was received.
3175  *
3176  * The reset endpoint command may only be issued to endpoints in the halted
3177  * state. For software that wishes to reset the data toggle or sequence number
3178  * of an endpoint that isn't in the halted state this function will issue a
3179  * configure endpoint command with the Drop and Add bits set for the target
3180  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3181  */
3182 
3183 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3184 		struct usb_host_endpoint *host_ep)
3185 {
3186 	struct xhci_hcd *xhci;
3187 	struct usb_device *udev;
3188 	struct xhci_virt_device *vdev;
3189 	struct xhci_virt_ep *ep;
3190 	struct xhci_input_control_ctx *ctrl_ctx;
3191 	struct xhci_command *stop_cmd, *cfg_cmd;
3192 	unsigned int ep_index;
3193 	unsigned long flags;
3194 	u32 ep_flag;
3195 	int err;
3196 
3197 	xhci = hcd_to_xhci(hcd);
3198 	if (!host_ep->hcpriv)
3199 		return;
3200 	udev = (struct usb_device *) host_ep->hcpriv;
3201 	vdev = xhci->devs[udev->slot_id];
3202 
3203 	/*
3204 	 * vdev may be lost due to xHC restore error and re-initialization
3205 	 * during S3/S4 resume. A new vdev will be allocated later by
3206 	 * xhci_discover_or_reset_device()
3207 	 */
3208 	if (!udev->slot_id || !vdev)
3209 		return;
3210 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3211 	ep = &vdev->eps[ep_index];
3212 	if (!ep)
3213 		return;
3214 
3215 	/* Bail out if toggle is already being cleared by a endpoint reset */
3216 	spin_lock_irqsave(&xhci->lock, flags);
3217 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3218 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3219 		spin_unlock_irqrestore(&xhci->lock, flags);
3220 		return;
3221 	}
3222 	spin_unlock_irqrestore(&xhci->lock, flags);
3223 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3224 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3225 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3226 		return;
3227 
3228 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3229 
3230 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3231 		return;
3232 
3233 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3234 	if (!stop_cmd)
3235 		return;
3236 
3237 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3238 	if (!cfg_cmd)
3239 		goto cleanup;
3240 
3241 	spin_lock_irqsave(&xhci->lock, flags);
3242 
3243 	/* block queuing new trbs and ringing ep doorbell */
3244 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3245 
3246 	/*
3247 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3248 	 * Driver is required to synchronously cancel all transfer request.
3249 	 * Stop the endpoint to force xHC to update the output context
3250 	 */
3251 
3252 	if (!list_empty(&ep->ring->td_list)) {
3253 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3254 		spin_unlock_irqrestore(&xhci->lock, flags);
3255 		xhci_free_command(xhci, cfg_cmd);
3256 		goto cleanup;
3257 	}
3258 
3259 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3260 					ep_index, 0);
3261 	if (err < 0) {
3262 		spin_unlock_irqrestore(&xhci->lock, flags);
3263 		xhci_free_command(xhci, cfg_cmd);
3264 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3265 				__func__, err);
3266 		goto cleanup;
3267 	}
3268 
3269 	xhci_ring_cmd_db(xhci);
3270 	spin_unlock_irqrestore(&xhci->lock, flags);
3271 
3272 	wait_for_completion(stop_cmd->completion);
3273 
3274 	spin_lock_irqsave(&xhci->lock, flags);
3275 
3276 	/* config ep command clears toggle if add and drop ep flags are set */
3277 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3278 	if (!ctrl_ctx) {
3279 		spin_unlock_irqrestore(&xhci->lock, flags);
3280 		xhci_free_command(xhci, cfg_cmd);
3281 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3282 				__func__);
3283 		goto cleanup;
3284 	}
3285 
3286 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3287 					   ctrl_ctx, ep_flag, ep_flag);
3288 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3289 
3290 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3291 				      udev->slot_id, false);
3292 	if (err < 0) {
3293 		spin_unlock_irqrestore(&xhci->lock, flags);
3294 		xhci_free_command(xhci, cfg_cmd);
3295 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3296 				__func__, err);
3297 		goto cleanup;
3298 	}
3299 
3300 	xhci_ring_cmd_db(xhci);
3301 	spin_unlock_irqrestore(&xhci->lock, flags);
3302 
3303 	wait_for_completion(cfg_cmd->completion);
3304 
3305 	xhci_free_command(xhci, cfg_cmd);
3306 cleanup:
3307 	xhci_free_command(xhci, stop_cmd);
3308 	spin_lock_irqsave(&xhci->lock, flags);
3309 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3310 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3311 	spin_unlock_irqrestore(&xhci->lock, flags);
3312 }
3313 
3314 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3315 		struct usb_device *udev, struct usb_host_endpoint *ep,
3316 		unsigned int slot_id)
3317 {
3318 	int ret;
3319 	unsigned int ep_index;
3320 	unsigned int ep_state;
3321 
3322 	if (!ep)
3323 		return -EINVAL;
3324 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3325 	if (ret <= 0)
3326 		return -EINVAL;
3327 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3328 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3329 				" descriptor for ep 0x%x does not support streams\n",
3330 				ep->desc.bEndpointAddress);
3331 		return -EINVAL;
3332 	}
3333 
3334 	ep_index = xhci_get_endpoint_index(&ep->desc);
3335 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3336 	if (ep_state & EP_HAS_STREAMS ||
3337 			ep_state & EP_GETTING_STREAMS) {
3338 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3339 				"already has streams set up.\n",
3340 				ep->desc.bEndpointAddress);
3341 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3342 				"dynamic stream context array reallocation.\n");
3343 		return -EINVAL;
3344 	}
3345 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3346 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3347 				"endpoint 0x%x; URBs are pending.\n",
3348 				ep->desc.bEndpointAddress);
3349 		return -EINVAL;
3350 	}
3351 	return 0;
3352 }
3353 
3354 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3355 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3356 {
3357 	unsigned int max_streams;
3358 
3359 	/* The stream context array size must be a power of two */
3360 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3361 	/*
3362 	 * Find out how many primary stream array entries the host controller
3363 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3364 	 * level page entries), but that's an optional feature for xHCI host
3365 	 * controllers. xHCs must support at least 4 stream IDs.
3366 	 */
3367 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3368 	if (*num_stream_ctxs > max_streams) {
3369 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3370 				max_streams);
3371 		*num_stream_ctxs = max_streams;
3372 		*num_streams = max_streams;
3373 	}
3374 }
3375 
3376 /* Returns an error code if one of the endpoint already has streams.
3377  * This does not change any data structures, it only checks and gathers
3378  * information.
3379  */
3380 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3381 		struct usb_device *udev,
3382 		struct usb_host_endpoint **eps, unsigned int num_eps,
3383 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3384 {
3385 	unsigned int max_streams;
3386 	unsigned int endpoint_flag;
3387 	int i;
3388 	int ret;
3389 
3390 	for (i = 0; i < num_eps; i++) {
3391 		ret = xhci_check_streams_endpoint(xhci, udev,
3392 				eps[i], udev->slot_id);
3393 		if (ret < 0)
3394 			return ret;
3395 
3396 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3397 		if (max_streams < (*num_streams - 1)) {
3398 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3399 					eps[i]->desc.bEndpointAddress,
3400 					max_streams);
3401 			*num_streams = max_streams+1;
3402 		}
3403 
3404 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3405 		if (*changed_ep_bitmask & endpoint_flag)
3406 			return -EINVAL;
3407 		*changed_ep_bitmask |= endpoint_flag;
3408 	}
3409 	return 0;
3410 }
3411 
3412 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3413 		struct usb_device *udev,
3414 		struct usb_host_endpoint **eps, unsigned int num_eps)
3415 {
3416 	u32 changed_ep_bitmask = 0;
3417 	unsigned int slot_id;
3418 	unsigned int ep_index;
3419 	unsigned int ep_state;
3420 	int i;
3421 
3422 	slot_id = udev->slot_id;
3423 	if (!xhci->devs[slot_id])
3424 		return 0;
3425 
3426 	for (i = 0; i < num_eps; i++) {
3427 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3428 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3429 		/* Are streams already being freed for the endpoint? */
3430 		if (ep_state & EP_GETTING_NO_STREAMS) {
3431 			xhci_warn(xhci, "WARN Can't disable streams for "
3432 					"endpoint 0x%x, "
3433 					"streams are being disabled already\n",
3434 					eps[i]->desc.bEndpointAddress);
3435 			return 0;
3436 		}
3437 		/* Are there actually any streams to free? */
3438 		if (!(ep_state & EP_HAS_STREAMS) &&
3439 				!(ep_state & EP_GETTING_STREAMS)) {
3440 			xhci_warn(xhci, "WARN Can't disable streams for "
3441 					"endpoint 0x%x, "
3442 					"streams are already disabled!\n",
3443 					eps[i]->desc.bEndpointAddress);
3444 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3445 					"with non-streams endpoint\n");
3446 			return 0;
3447 		}
3448 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3449 	}
3450 	return changed_ep_bitmask;
3451 }
3452 
3453 /*
3454  * The USB device drivers use this function (through the HCD interface in USB
3455  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3456  * coordinate mass storage command queueing across multiple endpoints (basically
3457  * a stream ID == a task ID).
3458  *
3459  * Setting up streams involves allocating the same size stream context array
3460  * for each endpoint and issuing a configure endpoint command for all endpoints.
3461  *
3462  * Don't allow the call to succeed if one endpoint only supports one stream
3463  * (which means it doesn't support streams at all).
3464  *
3465  * Drivers may get less stream IDs than they asked for, if the host controller
3466  * hardware or endpoints claim they can't support the number of requested
3467  * stream IDs.
3468  */
3469 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3470 		struct usb_host_endpoint **eps, unsigned int num_eps,
3471 		unsigned int num_streams, gfp_t mem_flags)
3472 {
3473 	int i, ret;
3474 	struct xhci_hcd *xhci;
3475 	struct xhci_virt_device *vdev;
3476 	struct xhci_command *config_cmd;
3477 	struct xhci_input_control_ctx *ctrl_ctx;
3478 	unsigned int ep_index;
3479 	unsigned int num_stream_ctxs;
3480 	unsigned int max_packet;
3481 	unsigned long flags;
3482 	u32 changed_ep_bitmask = 0;
3483 
3484 	if (!eps)
3485 		return -EINVAL;
3486 
3487 	/* Add one to the number of streams requested to account for
3488 	 * stream 0 that is reserved for xHCI usage.
3489 	 */
3490 	num_streams += 1;
3491 	xhci = hcd_to_xhci(hcd);
3492 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3493 			num_streams);
3494 
3495 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3496 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3497 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3498 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3499 		return -ENOSYS;
3500 	}
3501 
3502 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3503 	if (!config_cmd)
3504 		return -ENOMEM;
3505 
3506 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3507 	if (!ctrl_ctx) {
3508 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3509 				__func__);
3510 		xhci_free_command(xhci, config_cmd);
3511 		return -ENOMEM;
3512 	}
3513 
3514 	/* Check to make sure all endpoints are not already configured for
3515 	 * streams.  While we're at it, find the maximum number of streams that
3516 	 * all the endpoints will support and check for duplicate endpoints.
3517 	 */
3518 	spin_lock_irqsave(&xhci->lock, flags);
3519 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3520 			num_eps, &num_streams, &changed_ep_bitmask);
3521 	if (ret < 0) {
3522 		xhci_free_command(xhci, config_cmd);
3523 		spin_unlock_irqrestore(&xhci->lock, flags);
3524 		return ret;
3525 	}
3526 	if (num_streams <= 1) {
3527 		xhci_warn(xhci, "WARN: endpoints can't handle "
3528 				"more than one stream.\n");
3529 		xhci_free_command(xhci, config_cmd);
3530 		spin_unlock_irqrestore(&xhci->lock, flags);
3531 		return -EINVAL;
3532 	}
3533 	vdev = xhci->devs[udev->slot_id];
3534 	/* Mark each endpoint as being in transition, so
3535 	 * xhci_urb_enqueue() will reject all URBs.
3536 	 */
3537 	for (i = 0; i < num_eps; i++) {
3538 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3539 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3540 	}
3541 	spin_unlock_irqrestore(&xhci->lock, flags);
3542 
3543 	/* Setup internal data structures and allocate HW data structures for
3544 	 * streams (but don't install the HW structures in the input context
3545 	 * until we're sure all memory allocation succeeded).
3546 	 */
3547 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3548 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3549 			num_stream_ctxs, num_streams);
3550 
3551 	for (i = 0; i < num_eps; i++) {
3552 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3553 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3554 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3555 				num_stream_ctxs,
3556 				num_streams,
3557 				max_packet, mem_flags);
3558 		if (!vdev->eps[ep_index].stream_info)
3559 			goto cleanup;
3560 		/* Set maxPstreams in endpoint context and update deq ptr to
3561 		 * point to stream context array. FIXME
3562 		 */
3563 	}
3564 
3565 	/* Set up the input context for a configure endpoint command. */
3566 	for (i = 0; i < num_eps; i++) {
3567 		struct xhci_ep_ctx *ep_ctx;
3568 
3569 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3570 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3571 
3572 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3573 				vdev->out_ctx, ep_index);
3574 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3575 				vdev->eps[ep_index].stream_info);
3576 	}
3577 	/* Tell the HW to drop its old copy of the endpoint context info
3578 	 * and add the updated copy from the input context.
3579 	 */
3580 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3581 			vdev->out_ctx, ctrl_ctx,
3582 			changed_ep_bitmask, changed_ep_bitmask);
3583 
3584 	/* Issue and wait for the configure endpoint command */
3585 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3586 			false, false);
3587 
3588 	/* xHC rejected the configure endpoint command for some reason, so we
3589 	 * leave the old ring intact and free our internal streams data
3590 	 * structure.
3591 	 */
3592 	if (ret < 0)
3593 		goto cleanup;
3594 
3595 	spin_lock_irqsave(&xhci->lock, flags);
3596 	for (i = 0; i < num_eps; i++) {
3597 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3598 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3599 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3600 			 udev->slot_id, ep_index);
3601 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3602 	}
3603 	xhci_free_command(xhci, config_cmd);
3604 	spin_unlock_irqrestore(&xhci->lock, flags);
3605 
3606 	for (i = 0; i < num_eps; i++) {
3607 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3608 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3609 	}
3610 	/* Subtract 1 for stream 0, which drivers can't use */
3611 	return num_streams - 1;
3612 
3613 cleanup:
3614 	/* If it didn't work, free the streams! */
3615 	for (i = 0; i < num_eps; i++) {
3616 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3617 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3618 		vdev->eps[ep_index].stream_info = NULL;
3619 		/* FIXME Unset maxPstreams in endpoint context and
3620 		 * update deq ptr to point to normal string ring.
3621 		 */
3622 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3623 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3624 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3625 	}
3626 	xhci_free_command(xhci, config_cmd);
3627 	return -ENOMEM;
3628 }
3629 
3630 /* Transition the endpoint from using streams to being a "normal" endpoint
3631  * without streams.
3632  *
3633  * Modify the endpoint context state, submit a configure endpoint command,
3634  * and free all endpoint rings for streams if that completes successfully.
3635  */
3636 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3637 		struct usb_host_endpoint **eps, unsigned int num_eps,
3638 		gfp_t mem_flags)
3639 {
3640 	int i, ret;
3641 	struct xhci_hcd *xhci;
3642 	struct xhci_virt_device *vdev;
3643 	struct xhci_command *command;
3644 	struct xhci_input_control_ctx *ctrl_ctx;
3645 	unsigned int ep_index;
3646 	unsigned long flags;
3647 	u32 changed_ep_bitmask;
3648 
3649 	xhci = hcd_to_xhci(hcd);
3650 	vdev = xhci->devs[udev->slot_id];
3651 
3652 	/* Set up a configure endpoint command to remove the streams rings */
3653 	spin_lock_irqsave(&xhci->lock, flags);
3654 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3655 			udev, eps, num_eps);
3656 	if (changed_ep_bitmask == 0) {
3657 		spin_unlock_irqrestore(&xhci->lock, flags);
3658 		return -EINVAL;
3659 	}
3660 
3661 	/* Use the xhci_command structure from the first endpoint.  We may have
3662 	 * allocated too many, but the driver may call xhci_free_streams() for
3663 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3664 	 */
3665 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3666 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3667 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3668 	if (!ctrl_ctx) {
3669 		spin_unlock_irqrestore(&xhci->lock, flags);
3670 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3671 				__func__);
3672 		return -EINVAL;
3673 	}
3674 
3675 	for (i = 0; i < num_eps; i++) {
3676 		struct xhci_ep_ctx *ep_ctx;
3677 
3678 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3679 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3680 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3681 			EP_GETTING_NO_STREAMS;
3682 
3683 		xhci_endpoint_copy(xhci, command->in_ctx,
3684 				vdev->out_ctx, ep_index);
3685 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3686 				&vdev->eps[ep_index]);
3687 	}
3688 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3689 			vdev->out_ctx, ctrl_ctx,
3690 			changed_ep_bitmask, changed_ep_bitmask);
3691 	spin_unlock_irqrestore(&xhci->lock, flags);
3692 
3693 	/* Issue and wait for the configure endpoint command,
3694 	 * which must succeed.
3695 	 */
3696 	ret = xhci_configure_endpoint(xhci, udev, command,
3697 			false, true);
3698 
3699 	/* xHC rejected the configure endpoint command for some reason, so we
3700 	 * leave the streams rings intact.
3701 	 */
3702 	if (ret < 0)
3703 		return ret;
3704 
3705 	spin_lock_irqsave(&xhci->lock, flags);
3706 	for (i = 0; i < num_eps; i++) {
3707 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3708 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3709 		vdev->eps[ep_index].stream_info = NULL;
3710 		/* FIXME Unset maxPstreams in endpoint context and
3711 		 * update deq ptr to point to normal string ring.
3712 		 */
3713 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3714 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3715 	}
3716 	spin_unlock_irqrestore(&xhci->lock, flags);
3717 
3718 	return 0;
3719 }
3720 
3721 /*
3722  * Deletes endpoint resources for endpoints that were active before a Reset
3723  * Device command, or a Disable Slot command.  The Reset Device command leaves
3724  * the control endpoint intact, whereas the Disable Slot command deletes it.
3725  *
3726  * Must be called with xhci->lock held.
3727  */
3728 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3729 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3730 {
3731 	int i;
3732 	unsigned int num_dropped_eps = 0;
3733 	unsigned int drop_flags = 0;
3734 
3735 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3736 		if (virt_dev->eps[i].ring) {
3737 			drop_flags |= 1 << i;
3738 			num_dropped_eps++;
3739 		}
3740 	}
3741 	xhci->num_active_eps -= num_dropped_eps;
3742 	if (num_dropped_eps)
3743 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3744 				"Dropped %u ep ctxs, flags = 0x%x, "
3745 				"%u now active.",
3746 				num_dropped_eps, drop_flags,
3747 				xhci->num_active_eps);
3748 }
3749 
3750 /*
3751  * This submits a Reset Device Command, which will set the device state to 0,
3752  * set the device address to 0, and disable all the endpoints except the default
3753  * control endpoint.  The USB core should come back and call
3754  * xhci_address_device(), and then re-set up the configuration.  If this is
3755  * called because of a usb_reset_and_verify_device(), then the old alternate
3756  * settings will be re-installed through the normal bandwidth allocation
3757  * functions.
3758  *
3759  * Wait for the Reset Device command to finish.  Remove all structures
3760  * associated with the endpoints that were disabled.  Clear the input device
3761  * structure? Reset the control endpoint 0 max packet size?
3762  *
3763  * If the virt_dev to be reset does not exist or does not match the udev,
3764  * it means the device is lost, possibly due to the xHC restore error and
3765  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3766  * re-allocate the device.
3767  */
3768 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3769 		struct usb_device *udev)
3770 {
3771 	int ret, i;
3772 	unsigned long flags;
3773 	struct xhci_hcd *xhci;
3774 	unsigned int slot_id;
3775 	struct xhci_virt_device *virt_dev;
3776 	struct xhci_command *reset_device_cmd;
3777 	struct xhci_slot_ctx *slot_ctx;
3778 	int old_active_eps = 0;
3779 
3780 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3781 	if (ret <= 0)
3782 		return ret;
3783 	xhci = hcd_to_xhci(hcd);
3784 	slot_id = udev->slot_id;
3785 	virt_dev = xhci->devs[slot_id];
3786 	if (!virt_dev) {
3787 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3788 				"not exist. Re-allocate the device\n", slot_id);
3789 		ret = xhci_alloc_dev(hcd, udev);
3790 		if (ret == 1)
3791 			return 0;
3792 		else
3793 			return -EINVAL;
3794 	}
3795 
3796 	if (virt_dev->tt_info)
3797 		old_active_eps = virt_dev->tt_info->active_eps;
3798 
3799 	if (virt_dev->udev != udev) {
3800 		/* If the virt_dev and the udev does not match, this virt_dev
3801 		 * may belong to another udev.
3802 		 * Re-allocate the device.
3803 		 */
3804 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3805 				"not match the udev. Re-allocate the device\n",
3806 				slot_id);
3807 		ret = xhci_alloc_dev(hcd, udev);
3808 		if (ret == 1)
3809 			return 0;
3810 		else
3811 			return -EINVAL;
3812 	}
3813 
3814 	/* If device is not setup, there is no point in resetting it */
3815 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3816 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3817 						SLOT_STATE_DISABLED)
3818 		return 0;
3819 
3820 	trace_xhci_discover_or_reset_device(slot_ctx);
3821 
3822 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3823 	/* Allocate the command structure that holds the struct completion.
3824 	 * Assume we're in process context, since the normal device reset
3825 	 * process has to wait for the device anyway.  Storage devices are
3826 	 * reset as part of error handling, so use GFP_NOIO instead of
3827 	 * GFP_KERNEL.
3828 	 */
3829 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3830 	if (!reset_device_cmd) {
3831 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3832 		return -ENOMEM;
3833 	}
3834 
3835 	/* Attempt to submit the Reset Device command to the command ring */
3836 	spin_lock_irqsave(&xhci->lock, flags);
3837 
3838 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3839 	if (ret) {
3840 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3841 		spin_unlock_irqrestore(&xhci->lock, flags);
3842 		goto command_cleanup;
3843 	}
3844 	xhci_ring_cmd_db(xhci);
3845 	spin_unlock_irqrestore(&xhci->lock, flags);
3846 
3847 	/* Wait for the Reset Device command to finish */
3848 	wait_for_completion(reset_device_cmd->completion);
3849 
3850 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3851 	 * unless we tried to reset a slot ID that wasn't enabled,
3852 	 * or the device wasn't in the addressed or configured state.
3853 	 */
3854 	ret = reset_device_cmd->status;
3855 	switch (ret) {
3856 	case COMP_COMMAND_ABORTED:
3857 	case COMP_COMMAND_RING_STOPPED:
3858 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3859 		ret = -ETIME;
3860 		goto command_cleanup;
3861 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3862 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3863 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3864 				slot_id,
3865 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3866 		xhci_dbg(xhci, "Not freeing device rings.\n");
3867 		/* Don't treat this as an error.  May change my mind later. */
3868 		ret = 0;
3869 		goto command_cleanup;
3870 	case COMP_SUCCESS:
3871 		xhci_dbg(xhci, "Successful reset device command.\n");
3872 		break;
3873 	default:
3874 		if (xhci_is_vendor_info_code(xhci, ret))
3875 			break;
3876 		xhci_warn(xhci, "Unknown completion code %u for "
3877 				"reset device command.\n", ret);
3878 		ret = -EINVAL;
3879 		goto command_cleanup;
3880 	}
3881 
3882 	/* Free up host controller endpoint resources */
3883 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3884 		spin_lock_irqsave(&xhci->lock, flags);
3885 		/* Don't delete the default control endpoint resources */
3886 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3887 		spin_unlock_irqrestore(&xhci->lock, flags);
3888 	}
3889 
3890 	/* Everything but endpoint 0 is disabled, so free the rings. */
3891 	for (i = 1; i < 31; i++) {
3892 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3893 
3894 		if (ep->ep_state & EP_HAS_STREAMS) {
3895 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3896 					xhci_get_endpoint_address(i));
3897 			xhci_free_stream_info(xhci, ep->stream_info);
3898 			ep->stream_info = NULL;
3899 			ep->ep_state &= ~EP_HAS_STREAMS;
3900 		}
3901 
3902 		if (ep->ring) {
3903 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3904 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3905 		}
3906 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3907 			xhci_drop_ep_from_interval_table(xhci,
3908 					&virt_dev->eps[i].bw_info,
3909 					virt_dev->bw_table,
3910 					udev,
3911 					&virt_dev->eps[i],
3912 					virt_dev->tt_info);
3913 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3914 	}
3915 	/* If necessary, update the number of active TTs on this root port */
3916 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3917 	virt_dev->flags = 0;
3918 	ret = 0;
3919 
3920 command_cleanup:
3921 	xhci_free_command(xhci, reset_device_cmd);
3922 	return ret;
3923 }
3924 
3925 /*
3926  * At this point, the struct usb_device is about to go away, the device has
3927  * disconnected, and all traffic has been stopped and the endpoints have been
3928  * disabled.  Free any HC data structures associated with that device.
3929  */
3930 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3931 {
3932 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3933 	struct xhci_virt_device *virt_dev;
3934 	struct xhci_slot_ctx *slot_ctx;
3935 	int i, ret;
3936 
3937 	/*
3938 	 * We called pm_runtime_get_noresume when the device was attached.
3939 	 * Decrement the counter here to allow controller to runtime suspend
3940 	 * if no devices remain.
3941 	 */
3942 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3943 		pm_runtime_put_noidle(hcd->self.controller);
3944 
3945 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3946 	/* If the host is halted due to driver unload, we still need to free the
3947 	 * device.
3948 	 */
3949 	if (ret <= 0 && ret != -ENODEV)
3950 		return;
3951 
3952 	virt_dev = xhci->devs[udev->slot_id];
3953 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3954 	trace_xhci_free_dev(slot_ctx);
3955 
3956 	/* Stop any wayward timer functions (which may grab the lock) */
3957 	for (i = 0; i < 31; i++) {
3958 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3959 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3960 	}
3961 	virt_dev->udev = NULL;
3962 	xhci_disable_slot(xhci, udev->slot_id);
3963 	xhci_free_virt_device(xhci, udev->slot_id);
3964 }
3965 
3966 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3967 {
3968 	struct xhci_command *command;
3969 	unsigned long flags;
3970 	u32 state;
3971 	int ret = 0;
3972 
3973 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3974 	if (!command)
3975 		return -ENOMEM;
3976 
3977 	xhci_debugfs_remove_slot(xhci, slot_id);
3978 
3979 	spin_lock_irqsave(&xhci->lock, flags);
3980 	/* Don't disable the slot if the host controller is dead. */
3981 	state = readl(&xhci->op_regs->status);
3982 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3983 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3984 		spin_unlock_irqrestore(&xhci->lock, flags);
3985 		kfree(command);
3986 		return -ENODEV;
3987 	}
3988 
3989 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3990 				slot_id);
3991 	if (ret) {
3992 		spin_unlock_irqrestore(&xhci->lock, flags);
3993 		kfree(command);
3994 		return ret;
3995 	}
3996 	xhci_ring_cmd_db(xhci);
3997 	spin_unlock_irqrestore(&xhci->lock, flags);
3998 
3999 	wait_for_completion(command->completion);
4000 
4001 	if (command->status != COMP_SUCCESS)
4002 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4003 			  slot_id, command->status);
4004 
4005 	xhci_free_command(xhci, command);
4006 
4007 	return ret;
4008 }
4009 
4010 /*
4011  * Checks if we have enough host controller resources for the default control
4012  * endpoint.
4013  *
4014  * Must be called with xhci->lock held.
4015  */
4016 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4017 {
4018 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4019 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4020 				"Not enough ep ctxs: "
4021 				"%u active, need to add 1, limit is %u.",
4022 				xhci->num_active_eps, xhci->limit_active_eps);
4023 		return -ENOMEM;
4024 	}
4025 	xhci->num_active_eps += 1;
4026 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4027 			"Adding 1 ep ctx, %u now active.",
4028 			xhci->num_active_eps);
4029 	return 0;
4030 }
4031 
4032 
4033 /*
4034  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4035  * timed out, or allocating memory failed.  Returns 1 on success.
4036  */
4037 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4038 {
4039 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4040 	struct xhci_virt_device *vdev;
4041 	struct xhci_slot_ctx *slot_ctx;
4042 	unsigned long flags;
4043 	int ret, slot_id;
4044 	struct xhci_command *command;
4045 
4046 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4047 	if (!command)
4048 		return 0;
4049 
4050 	spin_lock_irqsave(&xhci->lock, flags);
4051 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4052 	if (ret) {
4053 		spin_unlock_irqrestore(&xhci->lock, flags);
4054 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4055 		xhci_free_command(xhci, command);
4056 		return 0;
4057 	}
4058 	xhci_ring_cmd_db(xhci);
4059 	spin_unlock_irqrestore(&xhci->lock, flags);
4060 
4061 	wait_for_completion(command->completion);
4062 	slot_id = command->slot_id;
4063 
4064 	if (!slot_id || command->status != COMP_SUCCESS) {
4065 		xhci_err(xhci, "Error while assigning device slot ID\n");
4066 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4067 				HCS_MAX_SLOTS(
4068 					readl(&xhci->cap_regs->hcs_params1)));
4069 		xhci_free_command(xhci, command);
4070 		return 0;
4071 	}
4072 
4073 	xhci_free_command(xhci, command);
4074 
4075 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4076 		spin_lock_irqsave(&xhci->lock, flags);
4077 		ret = xhci_reserve_host_control_ep_resources(xhci);
4078 		if (ret) {
4079 			spin_unlock_irqrestore(&xhci->lock, flags);
4080 			xhci_warn(xhci, "Not enough host resources, "
4081 					"active endpoint contexts = %u\n",
4082 					xhci->num_active_eps);
4083 			goto disable_slot;
4084 		}
4085 		spin_unlock_irqrestore(&xhci->lock, flags);
4086 	}
4087 	/* Use GFP_NOIO, since this function can be called from
4088 	 * xhci_discover_or_reset_device(), which may be called as part of
4089 	 * mass storage driver error handling.
4090 	 */
4091 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4092 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4093 		goto disable_slot;
4094 	}
4095 	vdev = xhci->devs[slot_id];
4096 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4097 	trace_xhci_alloc_dev(slot_ctx);
4098 
4099 	udev->slot_id = slot_id;
4100 
4101 	xhci_debugfs_create_slot(xhci, slot_id);
4102 
4103 	/*
4104 	 * If resetting upon resume, we can't put the controller into runtime
4105 	 * suspend if there is a device attached.
4106 	 */
4107 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4108 		pm_runtime_get_noresume(hcd->self.controller);
4109 
4110 	/* Is this a LS or FS device under a HS hub? */
4111 	/* Hub or peripherial? */
4112 	return 1;
4113 
4114 disable_slot:
4115 	xhci_disable_slot(xhci, udev->slot_id);
4116 	xhci_free_virt_device(xhci, udev->slot_id);
4117 
4118 	return 0;
4119 }
4120 
4121 /*
4122  * Issue an Address Device command and optionally send a corresponding
4123  * SetAddress request to the device.
4124  */
4125 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4126 			     enum xhci_setup_dev setup)
4127 {
4128 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4129 	unsigned long flags;
4130 	struct xhci_virt_device *virt_dev;
4131 	int ret = 0;
4132 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4133 	struct xhci_slot_ctx *slot_ctx;
4134 	struct xhci_input_control_ctx *ctrl_ctx;
4135 	u64 temp_64;
4136 	struct xhci_command *command = NULL;
4137 
4138 	mutex_lock(&xhci->mutex);
4139 
4140 	if (xhci->xhc_state) {	/* dying, removing or halted */
4141 		ret = -ESHUTDOWN;
4142 		goto out;
4143 	}
4144 
4145 	if (!udev->slot_id) {
4146 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4147 				"Bad Slot ID %d", udev->slot_id);
4148 		ret = -EINVAL;
4149 		goto out;
4150 	}
4151 
4152 	virt_dev = xhci->devs[udev->slot_id];
4153 
4154 	if (WARN_ON(!virt_dev)) {
4155 		/*
4156 		 * In plug/unplug torture test with an NEC controller,
4157 		 * a zero-dereference was observed once due to virt_dev = 0.
4158 		 * Print useful debug rather than crash if it is observed again!
4159 		 */
4160 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4161 			udev->slot_id);
4162 		ret = -EINVAL;
4163 		goto out;
4164 	}
4165 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4166 	trace_xhci_setup_device_slot(slot_ctx);
4167 
4168 	if (setup == SETUP_CONTEXT_ONLY) {
4169 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4170 		    SLOT_STATE_DEFAULT) {
4171 			xhci_dbg(xhci, "Slot already in default state\n");
4172 			goto out;
4173 		}
4174 	}
4175 
4176 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4177 	if (!command) {
4178 		ret = -ENOMEM;
4179 		goto out;
4180 	}
4181 
4182 	command->in_ctx = virt_dev->in_ctx;
4183 
4184 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4185 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4186 	if (!ctrl_ctx) {
4187 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4188 				__func__);
4189 		ret = -EINVAL;
4190 		goto out;
4191 	}
4192 	/*
4193 	 * If this is the first Set Address since device plug-in or
4194 	 * virt_device realloaction after a resume with an xHCI power loss,
4195 	 * then set up the slot context.
4196 	 */
4197 	if (!slot_ctx->dev_info)
4198 		xhci_setup_addressable_virt_dev(xhci, udev);
4199 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4200 	else
4201 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4202 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4203 	ctrl_ctx->drop_flags = 0;
4204 
4205 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4206 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4207 
4208 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4209 	spin_lock_irqsave(&xhci->lock, flags);
4210 	trace_xhci_setup_device(virt_dev);
4211 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4212 					udev->slot_id, setup);
4213 	if (ret) {
4214 		spin_unlock_irqrestore(&xhci->lock, flags);
4215 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4216 				"FIXME: allocate a command ring segment");
4217 		goto out;
4218 	}
4219 	xhci_ring_cmd_db(xhci);
4220 	spin_unlock_irqrestore(&xhci->lock, flags);
4221 
4222 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4223 	wait_for_completion(command->completion);
4224 
4225 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4226 	 * the SetAddress() "recovery interval" required by USB and aborting the
4227 	 * command on a timeout.
4228 	 */
4229 	switch (command->status) {
4230 	case COMP_COMMAND_ABORTED:
4231 	case COMP_COMMAND_RING_STOPPED:
4232 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4233 		ret = -ETIME;
4234 		break;
4235 	case COMP_CONTEXT_STATE_ERROR:
4236 	case COMP_SLOT_NOT_ENABLED_ERROR:
4237 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4238 			 act, udev->slot_id);
4239 		ret = -EINVAL;
4240 		break;
4241 	case COMP_USB_TRANSACTION_ERROR:
4242 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4243 
4244 		mutex_unlock(&xhci->mutex);
4245 		ret = xhci_disable_slot(xhci, udev->slot_id);
4246 		xhci_free_virt_device(xhci, udev->slot_id);
4247 		if (!ret)
4248 			xhci_alloc_dev(hcd, udev);
4249 		kfree(command->completion);
4250 		kfree(command);
4251 		return -EPROTO;
4252 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4253 		dev_warn(&udev->dev,
4254 			 "ERROR: Incompatible device for setup %s command\n", act);
4255 		ret = -ENODEV;
4256 		break;
4257 	case COMP_SUCCESS:
4258 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4259 			       "Successful setup %s command", act);
4260 		break;
4261 	default:
4262 		xhci_err(xhci,
4263 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4264 			 act, command->status);
4265 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4266 		ret = -EINVAL;
4267 		break;
4268 	}
4269 	if (ret)
4270 		goto out;
4271 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4272 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4273 			"Op regs DCBAA ptr = %#016llx", temp_64);
4274 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4275 		"Slot ID %d dcbaa entry @%p = %#016llx",
4276 		udev->slot_id,
4277 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4278 		(unsigned long long)
4279 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4280 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4281 			"Output Context DMA address = %#08llx",
4282 			(unsigned long long)virt_dev->out_ctx->dma);
4283 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4284 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4285 	/*
4286 	 * USB core uses address 1 for the roothubs, so we add one to the
4287 	 * address given back to us by the HC.
4288 	 */
4289 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4290 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4291 	/* Zero the input context control for later use */
4292 	ctrl_ctx->add_flags = 0;
4293 	ctrl_ctx->drop_flags = 0;
4294 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4295 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4296 
4297 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4298 		       "Internal device address = %d",
4299 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4300 out:
4301 	mutex_unlock(&xhci->mutex);
4302 	if (command) {
4303 		kfree(command->completion);
4304 		kfree(command);
4305 	}
4306 	return ret;
4307 }
4308 
4309 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4310 {
4311 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4312 }
4313 
4314 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4315 {
4316 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4317 }
4318 
4319 /*
4320  * Transfer the port index into real index in the HW port status
4321  * registers. Caculate offset between the port's PORTSC register
4322  * and port status base. Divide the number of per port register
4323  * to get the real index. The raw port number bases 1.
4324  */
4325 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4326 {
4327 	struct xhci_hub *rhub;
4328 
4329 	rhub = xhci_get_rhub(hcd);
4330 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4331 }
4332 
4333 /*
4334  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4335  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4336  */
4337 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4338 			struct usb_device *udev, u16 max_exit_latency)
4339 {
4340 	struct xhci_virt_device *virt_dev;
4341 	struct xhci_command *command;
4342 	struct xhci_input_control_ctx *ctrl_ctx;
4343 	struct xhci_slot_ctx *slot_ctx;
4344 	unsigned long flags;
4345 	int ret;
4346 
4347 	spin_lock_irqsave(&xhci->lock, flags);
4348 
4349 	virt_dev = xhci->devs[udev->slot_id];
4350 
4351 	/*
4352 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4353 	 * xHC was re-initialized. Exit latency will be set later after
4354 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4355 	 */
4356 
4357 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4358 		spin_unlock_irqrestore(&xhci->lock, flags);
4359 		return 0;
4360 	}
4361 
4362 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4363 	command = xhci->lpm_command;
4364 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4365 	if (!ctrl_ctx) {
4366 		spin_unlock_irqrestore(&xhci->lock, flags);
4367 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4368 				__func__);
4369 		return -ENOMEM;
4370 	}
4371 
4372 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4373 	spin_unlock_irqrestore(&xhci->lock, flags);
4374 
4375 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4376 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4377 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4378 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4379 	slot_ctx->dev_state = 0;
4380 
4381 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4382 			"Set up evaluate context for LPM MEL change.");
4383 
4384 	/* Issue and wait for the evaluate context command. */
4385 	ret = xhci_configure_endpoint(xhci, udev, command,
4386 			true, true);
4387 
4388 	if (!ret) {
4389 		spin_lock_irqsave(&xhci->lock, flags);
4390 		virt_dev->current_mel = max_exit_latency;
4391 		spin_unlock_irqrestore(&xhci->lock, flags);
4392 	}
4393 	return ret;
4394 }
4395 
4396 #ifdef CONFIG_PM
4397 
4398 /* BESL to HIRD Encoding array for USB2 LPM */
4399 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4400 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4401 
4402 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4403 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4404 					struct usb_device *udev)
4405 {
4406 	int u2del, besl, besl_host;
4407 	int besl_device = 0;
4408 	u32 field;
4409 
4410 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4411 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4412 
4413 	if (field & USB_BESL_SUPPORT) {
4414 		for (besl_host = 0; besl_host < 16; besl_host++) {
4415 			if (xhci_besl_encoding[besl_host] >= u2del)
4416 				break;
4417 		}
4418 		/* Use baseline BESL value as default */
4419 		if (field & USB_BESL_BASELINE_VALID)
4420 			besl_device = USB_GET_BESL_BASELINE(field);
4421 		else if (field & USB_BESL_DEEP_VALID)
4422 			besl_device = USB_GET_BESL_DEEP(field);
4423 	} else {
4424 		if (u2del <= 50)
4425 			besl_host = 0;
4426 		else
4427 			besl_host = (u2del - 51) / 75 + 1;
4428 	}
4429 
4430 	besl = besl_host + besl_device;
4431 	if (besl > 15)
4432 		besl = 15;
4433 
4434 	return besl;
4435 }
4436 
4437 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4438 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4439 {
4440 	u32 field;
4441 	int l1;
4442 	int besld = 0;
4443 	int hirdm = 0;
4444 
4445 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4446 
4447 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4448 	l1 = udev->l1_params.timeout / 256;
4449 
4450 	/* device has preferred BESLD */
4451 	if (field & USB_BESL_DEEP_VALID) {
4452 		besld = USB_GET_BESL_DEEP(field);
4453 		hirdm = 1;
4454 	}
4455 
4456 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4457 }
4458 
4459 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4460 			struct usb_device *udev, int enable)
4461 {
4462 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4463 	struct xhci_port **ports;
4464 	__le32 __iomem	*pm_addr, *hlpm_addr;
4465 	u32		pm_val, hlpm_val, field;
4466 	unsigned int	port_num;
4467 	unsigned long	flags;
4468 	int		hird, exit_latency;
4469 	int		ret;
4470 
4471 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4472 		return -EPERM;
4473 
4474 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4475 			!udev->lpm_capable)
4476 		return -EPERM;
4477 
4478 	if (!udev->parent || udev->parent->parent ||
4479 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4480 		return -EPERM;
4481 
4482 	if (udev->usb2_hw_lpm_capable != 1)
4483 		return -EPERM;
4484 
4485 	spin_lock_irqsave(&xhci->lock, flags);
4486 
4487 	ports = xhci->usb2_rhub.ports;
4488 	port_num = udev->portnum - 1;
4489 	pm_addr = ports[port_num]->addr + PORTPMSC;
4490 	pm_val = readl(pm_addr);
4491 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4492 
4493 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4494 			enable ? "enable" : "disable", port_num + 1);
4495 
4496 	if (enable) {
4497 		/* Host supports BESL timeout instead of HIRD */
4498 		if (udev->usb2_hw_lpm_besl_capable) {
4499 			/* if device doesn't have a preferred BESL value use a
4500 			 * default one which works with mixed HIRD and BESL
4501 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4502 			 */
4503 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4504 			if ((field & USB_BESL_SUPPORT) &&
4505 			    (field & USB_BESL_BASELINE_VALID))
4506 				hird = USB_GET_BESL_BASELINE(field);
4507 			else
4508 				hird = udev->l1_params.besl;
4509 
4510 			exit_latency = xhci_besl_encoding[hird];
4511 			spin_unlock_irqrestore(&xhci->lock, flags);
4512 
4513 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4514 			 * input context for link powermanagement evaluate
4515 			 * context commands. It is protected by hcd->bandwidth
4516 			 * mutex and is shared by all devices. We need to set
4517 			 * the max ext latency in USB 2 BESL LPM as well, so
4518 			 * use the same mutex and xhci_change_max_exit_latency()
4519 			 */
4520 			mutex_lock(hcd->bandwidth_mutex);
4521 			ret = xhci_change_max_exit_latency(xhci, udev,
4522 							   exit_latency);
4523 			mutex_unlock(hcd->bandwidth_mutex);
4524 
4525 			if (ret < 0)
4526 				return ret;
4527 			spin_lock_irqsave(&xhci->lock, flags);
4528 
4529 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4530 			writel(hlpm_val, hlpm_addr);
4531 			/* flush write */
4532 			readl(hlpm_addr);
4533 		} else {
4534 			hird = xhci_calculate_hird_besl(xhci, udev);
4535 		}
4536 
4537 		pm_val &= ~PORT_HIRD_MASK;
4538 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4539 		writel(pm_val, pm_addr);
4540 		pm_val = readl(pm_addr);
4541 		pm_val |= PORT_HLE;
4542 		writel(pm_val, pm_addr);
4543 		/* flush write */
4544 		readl(pm_addr);
4545 	} else {
4546 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4547 		writel(pm_val, pm_addr);
4548 		/* flush write */
4549 		readl(pm_addr);
4550 		if (udev->usb2_hw_lpm_besl_capable) {
4551 			spin_unlock_irqrestore(&xhci->lock, flags);
4552 			mutex_lock(hcd->bandwidth_mutex);
4553 			xhci_change_max_exit_latency(xhci, udev, 0);
4554 			mutex_unlock(hcd->bandwidth_mutex);
4555 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4556 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4557 					   100, 10000);
4558 			return 0;
4559 		}
4560 	}
4561 
4562 	spin_unlock_irqrestore(&xhci->lock, flags);
4563 	return 0;
4564 }
4565 
4566 /* check if a usb2 port supports a given extened capability protocol
4567  * only USB2 ports extended protocol capability values are cached.
4568  * Return 1 if capability is supported
4569  */
4570 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4571 					   unsigned capability)
4572 {
4573 	u32 port_offset, port_count;
4574 	int i;
4575 
4576 	for (i = 0; i < xhci->num_ext_caps; i++) {
4577 		if (xhci->ext_caps[i] & capability) {
4578 			/* port offsets starts at 1 */
4579 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4580 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4581 			if (port >= port_offset &&
4582 			    port < port_offset + port_count)
4583 				return 1;
4584 		}
4585 	}
4586 	return 0;
4587 }
4588 
4589 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4590 {
4591 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4592 	int		portnum = udev->portnum - 1;
4593 
4594 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4595 		return 0;
4596 
4597 	/* we only support lpm for non-hub device connected to root hub yet */
4598 	if (!udev->parent || udev->parent->parent ||
4599 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4600 		return 0;
4601 
4602 	if (xhci->hw_lpm_support == 1 &&
4603 			xhci_check_usb2_port_capability(
4604 				xhci, portnum, XHCI_HLC)) {
4605 		udev->usb2_hw_lpm_capable = 1;
4606 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4607 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4608 		if (xhci_check_usb2_port_capability(xhci, portnum,
4609 					XHCI_BLC))
4610 			udev->usb2_hw_lpm_besl_capable = 1;
4611 	}
4612 
4613 	return 0;
4614 }
4615 
4616 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4617 
4618 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4619 static unsigned long long xhci_service_interval_to_ns(
4620 		struct usb_endpoint_descriptor *desc)
4621 {
4622 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4623 }
4624 
4625 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4626 		enum usb3_link_state state)
4627 {
4628 	unsigned long long sel;
4629 	unsigned long long pel;
4630 	unsigned int max_sel_pel;
4631 	char *state_name;
4632 
4633 	switch (state) {
4634 	case USB3_LPM_U1:
4635 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4636 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4637 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4638 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4639 		state_name = "U1";
4640 		break;
4641 	case USB3_LPM_U2:
4642 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4643 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4644 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4645 		state_name = "U2";
4646 		break;
4647 	default:
4648 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4649 				__func__);
4650 		return USB3_LPM_DISABLED;
4651 	}
4652 
4653 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4654 		return USB3_LPM_DEVICE_INITIATED;
4655 
4656 	if (sel > max_sel_pel)
4657 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4658 				"due to long SEL %llu ms\n",
4659 				state_name, sel);
4660 	else
4661 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4662 				"due to long PEL %llu ms\n",
4663 				state_name, pel);
4664 	return USB3_LPM_DISABLED;
4665 }
4666 
4667 /* The U1 timeout should be the maximum of the following values:
4668  *  - For control endpoints, U1 system exit latency (SEL) * 3
4669  *  - For bulk endpoints, U1 SEL * 5
4670  *  - For interrupt endpoints:
4671  *    - Notification EPs, U1 SEL * 3
4672  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4673  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4674  */
4675 static unsigned long long xhci_calculate_intel_u1_timeout(
4676 		struct usb_device *udev,
4677 		struct usb_endpoint_descriptor *desc)
4678 {
4679 	unsigned long long timeout_ns;
4680 	int ep_type;
4681 	int intr_type;
4682 
4683 	ep_type = usb_endpoint_type(desc);
4684 	switch (ep_type) {
4685 	case USB_ENDPOINT_XFER_CONTROL:
4686 		timeout_ns = udev->u1_params.sel * 3;
4687 		break;
4688 	case USB_ENDPOINT_XFER_BULK:
4689 		timeout_ns = udev->u1_params.sel * 5;
4690 		break;
4691 	case USB_ENDPOINT_XFER_INT:
4692 		intr_type = usb_endpoint_interrupt_type(desc);
4693 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4694 			timeout_ns = udev->u1_params.sel * 3;
4695 			break;
4696 		}
4697 		/* Otherwise the calculation is the same as isoc eps */
4698 		fallthrough;
4699 	case USB_ENDPOINT_XFER_ISOC:
4700 		timeout_ns = xhci_service_interval_to_ns(desc);
4701 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4702 		if (timeout_ns < udev->u1_params.sel * 2)
4703 			timeout_ns = udev->u1_params.sel * 2;
4704 		break;
4705 	default:
4706 		return 0;
4707 	}
4708 
4709 	return timeout_ns;
4710 }
4711 
4712 /* Returns the hub-encoded U1 timeout value. */
4713 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4714 		struct usb_device *udev,
4715 		struct usb_endpoint_descriptor *desc)
4716 {
4717 	unsigned long long timeout_ns;
4718 
4719 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4720 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4721 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4722 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4723 			return USB3_LPM_DISABLED;
4724 		}
4725 	}
4726 
4727 	if (xhci->quirks & XHCI_INTEL_HOST)
4728 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4729 	else
4730 		timeout_ns = udev->u1_params.sel;
4731 
4732 	/* The U1 timeout is encoded in 1us intervals.
4733 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4734 	 */
4735 	if (timeout_ns == USB3_LPM_DISABLED)
4736 		timeout_ns = 1;
4737 	else
4738 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4739 
4740 	/* If the necessary timeout value is bigger than what we can set in the
4741 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4742 	 */
4743 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4744 		return timeout_ns;
4745 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4746 			"due to long timeout %llu ms\n", timeout_ns);
4747 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4748 }
4749 
4750 /* The U2 timeout should be the maximum of:
4751  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4752  *  - largest bInterval of any active periodic endpoint (to avoid going
4753  *    into lower power link states between intervals).
4754  *  - the U2 Exit Latency of the device
4755  */
4756 static unsigned long long xhci_calculate_intel_u2_timeout(
4757 		struct usb_device *udev,
4758 		struct usb_endpoint_descriptor *desc)
4759 {
4760 	unsigned long long timeout_ns;
4761 	unsigned long long u2_del_ns;
4762 
4763 	timeout_ns = 10 * 1000 * 1000;
4764 
4765 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4766 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4767 		timeout_ns = xhci_service_interval_to_ns(desc);
4768 
4769 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4770 	if (u2_del_ns > timeout_ns)
4771 		timeout_ns = u2_del_ns;
4772 
4773 	return timeout_ns;
4774 }
4775 
4776 /* Returns the hub-encoded U2 timeout value. */
4777 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4778 		struct usb_device *udev,
4779 		struct usb_endpoint_descriptor *desc)
4780 {
4781 	unsigned long long timeout_ns;
4782 
4783 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4784 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4785 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4786 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4787 			return USB3_LPM_DISABLED;
4788 		}
4789 	}
4790 
4791 	if (xhci->quirks & XHCI_INTEL_HOST)
4792 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4793 	else
4794 		timeout_ns = udev->u2_params.sel;
4795 
4796 	/* The U2 timeout is encoded in 256us intervals */
4797 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4798 	/* If the necessary timeout value is bigger than what we can set in the
4799 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4800 	 */
4801 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4802 		return timeout_ns;
4803 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4804 			"due to long timeout %llu ms\n", timeout_ns);
4805 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4806 }
4807 
4808 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4809 		struct usb_device *udev,
4810 		struct usb_endpoint_descriptor *desc,
4811 		enum usb3_link_state state,
4812 		u16 *timeout)
4813 {
4814 	if (state == USB3_LPM_U1)
4815 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4816 	else if (state == USB3_LPM_U2)
4817 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4818 
4819 	return USB3_LPM_DISABLED;
4820 }
4821 
4822 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4823 		struct usb_device *udev,
4824 		struct usb_endpoint_descriptor *desc,
4825 		enum usb3_link_state state,
4826 		u16 *timeout)
4827 {
4828 	u16 alt_timeout;
4829 
4830 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4831 		desc, state, timeout);
4832 
4833 	/* If we found we can't enable hub-initiated LPM, and
4834 	 * the U1 or U2 exit latency was too high to allow
4835 	 * device-initiated LPM as well, then we will disable LPM
4836 	 * for this device, so stop searching any further.
4837 	 */
4838 	if (alt_timeout == USB3_LPM_DISABLED) {
4839 		*timeout = alt_timeout;
4840 		return -E2BIG;
4841 	}
4842 	if (alt_timeout > *timeout)
4843 		*timeout = alt_timeout;
4844 	return 0;
4845 }
4846 
4847 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4848 		struct usb_device *udev,
4849 		struct usb_host_interface *alt,
4850 		enum usb3_link_state state,
4851 		u16 *timeout)
4852 {
4853 	int j;
4854 
4855 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4856 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4857 					&alt->endpoint[j].desc, state, timeout))
4858 			return -E2BIG;
4859 	}
4860 	return 0;
4861 }
4862 
4863 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4864 		enum usb3_link_state state)
4865 {
4866 	struct usb_device *parent;
4867 	unsigned int num_hubs;
4868 
4869 	if (state == USB3_LPM_U2)
4870 		return 0;
4871 
4872 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4873 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4874 			parent = parent->parent)
4875 		num_hubs++;
4876 
4877 	if (num_hubs < 2)
4878 		return 0;
4879 
4880 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4881 			" below second-tier hub.\n");
4882 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4883 			"to decrease power consumption.\n");
4884 	return -E2BIG;
4885 }
4886 
4887 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4888 		struct usb_device *udev,
4889 		enum usb3_link_state state)
4890 {
4891 	if (xhci->quirks & XHCI_INTEL_HOST)
4892 		return xhci_check_intel_tier_policy(udev, state);
4893 	else
4894 		return 0;
4895 }
4896 
4897 /* Returns the U1 or U2 timeout that should be enabled.
4898  * If the tier check or timeout setting functions return with a non-zero exit
4899  * code, that means the timeout value has been finalized and we shouldn't look
4900  * at any more endpoints.
4901  */
4902 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4903 			struct usb_device *udev, enum usb3_link_state state)
4904 {
4905 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4906 	struct usb_host_config *config;
4907 	char *state_name;
4908 	int i;
4909 	u16 timeout = USB3_LPM_DISABLED;
4910 
4911 	if (state == USB3_LPM_U1)
4912 		state_name = "U1";
4913 	else if (state == USB3_LPM_U2)
4914 		state_name = "U2";
4915 	else {
4916 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4917 				state);
4918 		return timeout;
4919 	}
4920 
4921 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4922 		return timeout;
4923 
4924 	/* Gather some information about the currently installed configuration
4925 	 * and alternate interface settings.
4926 	 */
4927 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4928 			state, &timeout))
4929 		return timeout;
4930 
4931 	config = udev->actconfig;
4932 	if (!config)
4933 		return timeout;
4934 
4935 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4936 		struct usb_driver *driver;
4937 		struct usb_interface *intf = config->interface[i];
4938 
4939 		if (!intf)
4940 			continue;
4941 
4942 		/* Check if any currently bound drivers want hub-initiated LPM
4943 		 * disabled.
4944 		 */
4945 		if (intf->dev.driver) {
4946 			driver = to_usb_driver(intf->dev.driver);
4947 			if (driver && driver->disable_hub_initiated_lpm) {
4948 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4949 					state_name, driver->name);
4950 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4951 								      state);
4952 				if (timeout == USB3_LPM_DISABLED)
4953 					return timeout;
4954 			}
4955 		}
4956 
4957 		/* Not sure how this could happen... */
4958 		if (!intf->cur_altsetting)
4959 			continue;
4960 
4961 		if (xhci_update_timeout_for_interface(xhci, udev,
4962 					intf->cur_altsetting,
4963 					state, &timeout))
4964 			return timeout;
4965 	}
4966 	return timeout;
4967 }
4968 
4969 static int calculate_max_exit_latency(struct usb_device *udev,
4970 		enum usb3_link_state state_changed,
4971 		u16 hub_encoded_timeout)
4972 {
4973 	unsigned long long u1_mel_us = 0;
4974 	unsigned long long u2_mel_us = 0;
4975 	unsigned long long mel_us = 0;
4976 	bool disabling_u1;
4977 	bool disabling_u2;
4978 	bool enabling_u1;
4979 	bool enabling_u2;
4980 
4981 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4982 			hub_encoded_timeout == USB3_LPM_DISABLED);
4983 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4984 			hub_encoded_timeout == USB3_LPM_DISABLED);
4985 
4986 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4987 			hub_encoded_timeout != USB3_LPM_DISABLED);
4988 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4989 			hub_encoded_timeout != USB3_LPM_DISABLED);
4990 
4991 	/* If U1 was already enabled and we're not disabling it,
4992 	 * or we're going to enable U1, account for the U1 max exit latency.
4993 	 */
4994 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4995 			enabling_u1)
4996 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4997 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4998 			enabling_u2)
4999 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5000 
5001 	mel_us = max(u1_mel_us, u2_mel_us);
5002 
5003 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5004 	if (mel_us > MAX_EXIT) {
5005 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5006 				"is too big.\n", mel_us);
5007 		return -E2BIG;
5008 	}
5009 	return mel_us;
5010 }
5011 
5012 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5013 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5014 			struct usb_device *udev, enum usb3_link_state state)
5015 {
5016 	struct xhci_hcd	*xhci;
5017 	u16 hub_encoded_timeout;
5018 	int mel;
5019 	int ret;
5020 
5021 	xhci = hcd_to_xhci(hcd);
5022 	/* The LPM timeout values are pretty host-controller specific, so don't
5023 	 * enable hub-initiated timeouts unless the vendor has provided
5024 	 * information about their timeout algorithm.
5025 	 */
5026 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5027 			!xhci->devs[udev->slot_id])
5028 		return USB3_LPM_DISABLED;
5029 
5030 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5031 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5032 	if (mel < 0) {
5033 		/* Max Exit Latency is too big, disable LPM. */
5034 		hub_encoded_timeout = USB3_LPM_DISABLED;
5035 		mel = 0;
5036 	}
5037 
5038 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5039 	if (ret)
5040 		return ret;
5041 	return hub_encoded_timeout;
5042 }
5043 
5044 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5045 			struct usb_device *udev, enum usb3_link_state state)
5046 {
5047 	struct xhci_hcd	*xhci;
5048 	u16 mel;
5049 
5050 	xhci = hcd_to_xhci(hcd);
5051 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5052 			!xhci->devs[udev->slot_id])
5053 		return 0;
5054 
5055 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5056 	return xhci_change_max_exit_latency(xhci, udev, mel);
5057 }
5058 #else /* CONFIG_PM */
5059 
5060 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5061 				struct usb_device *udev, int enable)
5062 {
5063 	return 0;
5064 }
5065 
5066 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5067 {
5068 	return 0;
5069 }
5070 
5071 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5072 			struct usb_device *udev, enum usb3_link_state state)
5073 {
5074 	return USB3_LPM_DISABLED;
5075 }
5076 
5077 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5078 			struct usb_device *udev, enum usb3_link_state state)
5079 {
5080 	return 0;
5081 }
5082 #endif	/* CONFIG_PM */
5083 
5084 /*-------------------------------------------------------------------------*/
5085 
5086 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5087  * internal data structures for the device.
5088  */
5089 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5090 			struct usb_tt *tt, gfp_t mem_flags)
5091 {
5092 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5093 	struct xhci_virt_device *vdev;
5094 	struct xhci_command *config_cmd;
5095 	struct xhci_input_control_ctx *ctrl_ctx;
5096 	struct xhci_slot_ctx *slot_ctx;
5097 	unsigned long flags;
5098 	unsigned think_time;
5099 	int ret;
5100 
5101 	/* Ignore root hubs */
5102 	if (!hdev->parent)
5103 		return 0;
5104 
5105 	vdev = xhci->devs[hdev->slot_id];
5106 	if (!vdev) {
5107 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5108 		return -EINVAL;
5109 	}
5110 
5111 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5112 	if (!config_cmd)
5113 		return -ENOMEM;
5114 
5115 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5116 	if (!ctrl_ctx) {
5117 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5118 				__func__);
5119 		xhci_free_command(xhci, config_cmd);
5120 		return -ENOMEM;
5121 	}
5122 
5123 	spin_lock_irqsave(&xhci->lock, flags);
5124 	if (hdev->speed == USB_SPEED_HIGH &&
5125 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5126 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5127 		xhci_free_command(xhci, config_cmd);
5128 		spin_unlock_irqrestore(&xhci->lock, flags);
5129 		return -ENOMEM;
5130 	}
5131 
5132 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5133 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5134 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5135 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5136 	/*
5137 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5138 	 * but it may be already set to 1 when setup an xHCI virtual
5139 	 * device, so clear it anyway.
5140 	 */
5141 	if (tt->multi)
5142 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5143 	else if (hdev->speed == USB_SPEED_FULL)
5144 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5145 
5146 	if (xhci->hci_version > 0x95) {
5147 		xhci_dbg(xhci, "xHCI version %x needs hub "
5148 				"TT think time and number of ports\n",
5149 				(unsigned int) xhci->hci_version);
5150 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5151 		/* Set TT think time - convert from ns to FS bit times.
5152 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5153 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5154 		 *
5155 		 * xHCI 1.0: this field shall be 0 if the device is not a
5156 		 * High-spped hub.
5157 		 */
5158 		think_time = tt->think_time;
5159 		if (think_time != 0)
5160 			think_time = (think_time / 666) - 1;
5161 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5162 			slot_ctx->tt_info |=
5163 				cpu_to_le32(TT_THINK_TIME(think_time));
5164 	} else {
5165 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5166 				"TT think time or number of ports\n",
5167 				(unsigned int) xhci->hci_version);
5168 	}
5169 	slot_ctx->dev_state = 0;
5170 	spin_unlock_irqrestore(&xhci->lock, flags);
5171 
5172 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5173 			(xhci->hci_version > 0x95) ?
5174 			"configure endpoint" : "evaluate context");
5175 
5176 	/* Issue and wait for the configure endpoint or
5177 	 * evaluate context command.
5178 	 */
5179 	if (xhci->hci_version > 0x95)
5180 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5181 				false, false);
5182 	else
5183 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5184 				true, false);
5185 
5186 	xhci_free_command(xhci, config_cmd);
5187 	return ret;
5188 }
5189 
5190 static int xhci_get_frame(struct usb_hcd *hcd)
5191 {
5192 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5193 	/* EHCI mods by the periodic size.  Why? */
5194 	return readl(&xhci->run_regs->microframe_index) >> 3;
5195 }
5196 
5197 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5198 {
5199 	struct xhci_hcd		*xhci;
5200 	/*
5201 	 * TODO: Check with DWC3 clients for sysdev according to
5202 	 * quirks
5203 	 */
5204 	struct device		*dev = hcd->self.sysdev;
5205 	unsigned int		minor_rev;
5206 	int			retval;
5207 
5208 	/* Accept arbitrarily long scatter-gather lists */
5209 	hcd->self.sg_tablesize = ~0;
5210 
5211 	/* support to build packet from discontinuous buffers */
5212 	hcd->self.no_sg_constraint = 1;
5213 
5214 	/* XHCI controllers don't stop the ep queue on short packets :| */
5215 	hcd->self.no_stop_on_short = 1;
5216 
5217 	xhci = hcd_to_xhci(hcd);
5218 
5219 	if (usb_hcd_is_primary_hcd(hcd)) {
5220 		xhci->main_hcd = hcd;
5221 		xhci->usb2_rhub.hcd = hcd;
5222 		/* Mark the first roothub as being USB 2.0.
5223 		 * The xHCI driver will register the USB 3.0 roothub.
5224 		 */
5225 		hcd->speed = HCD_USB2;
5226 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5227 		/*
5228 		 * USB 2.0 roothub under xHCI has an integrated TT,
5229 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5230 		 * companion controller.
5231 		 */
5232 		hcd->has_tt = 1;
5233 	} else {
5234 		/*
5235 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5236 		 * should return 0x31 for sbrn, or that the minor revision
5237 		 * is a two digit BCD containig minor and sub-minor numbers.
5238 		 * This was later clarified in xHCI 1.2.
5239 		 *
5240 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5241 		 * minor revision set to 0x1 instead of 0x10.
5242 		 */
5243 		if (xhci->usb3_rhub.min_rev == 0x1)
5244 			minor_rev = 1;
5245 		else
5246 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5247 
5248 		switch (minor_rev) {
5249 		case 2:
5250 			hcd->speed = HCD_USB32;
5251 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5252 			hcd->self.root_hub->rx_lanes = 2;
5253 			hcd->self.root_hub->tx_lanes = 2;
5254 			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5255 			break;
5256 		case 1:
5257 			hcd->speed = HCD_USB31;
5258 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5259 			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5260 			break;
5261 		}
5262 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5263 			  minor_rev,
5264 			  minor_rev ? "Enhanced " : "");
5265 
5266 		xhci->usb3_rhub.hcd = hcd;
5267 		/* xHCI private pointer was set in xhci_pci_probe for the second
5268 		 * registered roothub.
5269 		 */
5270 		return 0;
5271 	}
5272 
5273 	mutex_init(&xhci->mutex);
5274 	xhci->cap_regs = hcd->regs;
5275 	xhci->op_regs = hcd->regs +
5276 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5277 	xhci->run_regs = hcd->regs +
5278 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5279 	/* Cache read-only capability registers */
5280 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5281 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5282 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5283 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5284 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5285 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5286 	if (xhci->hci_version > 0x100)
5287 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5288 
5289 	xhci->quirks |= quirks;
5290 
5291 	get_quirks(dev, xhci);
5292 
5293 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5294 	 * success event after a short transfer. This quirk will ignore such
5295 	 * spurious event.
5296 	 */
5297 	if (xhci->hci_version > 0x96)
5298 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5299 
5300 	/* Make sure the HC is halted. */
5301 	retval = xhci_halt(xhci);
5302 	if (retval)
5303 		return retval;
5304 
5305 	xhci_zero_64b_regs(xhci);
5306 
5307 	xhci_dbg(xhci, "Resetting HCD\n");
5308 	/* Reset the internal HC memory state and registers. */
5309 	retval = xhci_reset(xhci);
5310 	if (retval)
5311 		return retval;
5312 	xhci_dbg(xhci, "Reset complete\n");
5313 
5314 	/*
5315 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5316 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5317 	 * address memory pointers actually. So, this driver clears the AC64
5318 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5319 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5320 	 */
5321 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5322 		xhci->hcc_params &= ~BIT(0);
5323 
5324 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5325 	 * if xHC supports 64-bit addressing */
5326 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5327 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5328 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5329 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5330 	} else {
5331 		/*
5332 		 * This is to avoid error in cases where a 32-bit USB
5333 		 * controller is used on a 64-bit capable system.
5334 		 */
5335 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5336 		if (retval)
5337 			return retval;
5338 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5339 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5340 	}
5341 
5342 	xhci_dbg(xhci, "Calling HCD init\n");
5343 	/* Initialize HCD and host controller data structures. */
5344 	retval = xhci_init(hcd);
5345 	if (retval)
5346 		return retval;
5347 	xhci_dbg(xhci, "Called HCD init\n");
5348 
5349 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5350 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5351 
5352 	return 0;
5353 }
5354 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5355 
5356 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5357 		struct usb_host_endpoint *ep)
5358 {
5359 	struct xhci_hcd *xhci;
5360 	struct usb_device *udev;
5361 	unsigned int slot_id;
5362 	unsigned int ep_index;
5363 	unsigned long flags;
5364 
5365 	xhci = hcd_to_xhci(hcd);
5366 
5367 	spin_lock_irqsave(&xhci->lock, flags);
5368 	udev = (struct usb_device *)ep->hcpriv;
5369 	slot_id = udev->slot_id;
5370 	ep_index = xhci_get_endpoint_index(&ep->desc);
5371 
5372 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5373 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5374 	spin_unlock_irqrestore(&xhci->lock, flags);
5375 }
5376 
5377 static const struct hc_driver xhci_hc_driver = {
5378 	.description =		"xhci-hcd",
5379 	.product_desc =		"xHCI Host Controller",
5380 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5381 
5382 	/*
5383 	 * generic hardware linkage
5384 	 */
5385 	.irq =			xhci_irq,
5386 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5387 				HCD_BH,
5388 
5389 	/*
5390 	 * basic lifecycle operations
5391 	 */
5392 	.reset =		NULL, /* set in xhci_init_driver() */
5393 	.start =		xhci_run,
5394 	.stop =			xhci_stop,
5395 	.shutdown =		xhci_shutdown,
5396 
5397 	/*
5398 	 * managing i/o requests and associated device resources
5399 	 */
5400 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5401 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5402 	.urb_enqueue =		xhci_urb_enqueue,
5403 	.urb_dequeue =		xhci_urb_dequeue,
5404 	.alloc_dev =		xhci_alloc_dev,
5405 	.free_dev =		xhci_free_dev,
5406 	.alloc_streams =	xhci_alloc_streams,
5407 	.free_streams =		xhci_free_streams,
5408 	.add_endpoint =		xhci_add_endpoint,
5409 	.drop_endpoint =	xhci_drop_endpoint,
5410 	.endpoint_disable =	xhci_endpoint_disable,
5411 	.endpoint_reset =	xhci_endpoint_reset,
5412 	.check_bandwidth =	xhci_check_bandwidth,
5413 	.reset_bandwidth =	xhci_reset_bandwidth,
5414 	.address_device =	xhci_address_device,
5415 	.enable_device =	xhci_enable_device,
5416 	.update_hub_device =	xhci_update_hub_device,
5417 	.reset_device =		xhci_discover_or_reset_device,
5418 
5419 	/*
5420 	 * scheduling support
5421 	 */
5422 	.get_frame_number =	xhci_get_frame,
5423 
5424 	/*
5425 	 * root hub support
5426 	 */
5427 	.hub_control =		xhci_hub_control,
5428 	.hub_status_data =	xhci_hub_status_data,
5429 	.bus_suspend =		xhci_bus_suspend,
5430 	.bus_resume =		xhci_bus_resume,
5431 	.get_resuming_ports =	xhci_get_resuming_ports,
5432 
5433 	/*
5434 	 * call back when device connected and addressed
5435 	 */
5436 	.update_device =        xhci_update_device,
5437 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5438 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5439 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5440 	.find_raw_port_number =	xhci_find_raw_port_number,
5441 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5442 };
5443 
5444 void xhci_init_driver(struct hc_driver *drv,
5445 		      const struct xhci_driver_overrides *over)
5446 {
5447 	BUG_ON(!over);
5448 
5449 	/* Copy the generic table to drv then apply the overrides */
5450 	*drv = xhci_hc_driver;
5451 
5452 	if (over) {
5453 		drv->hcd_priv_size += over->extra_priv_size;
5454 		if (over->reset)
5455 			drv->reset = over->reset;
5456 		if (over->start)
5457 			drv->start = over->start;
5458 		if (over->add_endpoint)
5459 			drv->add_endpoint = over->add_endpoint;
5460 		if (over->drop_endpoint)
5461 			drv->drop_endpoint = over->drop_endpoint;
5462 		if (over->check_bandwidth)
5463 			drv->check_bandwidth = over->check_bandwidth;
5464 		if (over->reset_bandwidth)
5465 			drv->reset_bandwidth = over->reset_bandwidth;
5466 	}
5467 }
5468 EXPORT_SYMBOL_GPL(xhci_init_driver);
5469 
5470 MODULE_DESCRIPTION(DRIVER_DESC);
5471 MODULE_AUTHOR(DRIVER_AUTHOR);
5472 MODULE_LICENSE("GPL");
5473 
5474 static int __init xhci_hcd_init(void)
5475 {
5476 	/*
5477 	 * Check the compiler generated sizes of structures that must be laid
5478 	 * out in specific ways for hardware access.
5479 	 */
5480 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5481 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5482 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5483 	/* xhci_device_control has eight fields, and also
5484 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5485 	 */
5486 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5487 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5488 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5489 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5490 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5491 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5492 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5493 
5494 	if (usb_disabled())
5495 		return -ENODEV;
5496 
5497 	xhci_debugfs_create_root();
5498 
5499 	return 0;
5500 }
5501 
5502 /*
5503  * If an init function is provided, an exit function must also be provided
5504  * to allow module unload.
5505  */
5506 static void __exit xhci_hcd_fini(void)
5507 {
5508 	xhci_debugfs_remove_root();
5509 }
5510 
5511 module_init(xhci_hcd_init);
5512 module_exit(xhci_hcd_fini);
5513