xref: /openbmc/linux/drivers/usb/host/xhci.c (revision dfeab63a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70 	u32	result;
71 	int	ret;
72 
73 	ret = readl_poll_timeout_atomic(ptr, result,
74 					(result & mask) == done ||
75 					result == U32_MAX,
76 					1, timeout_us);
77 	if (result == U32_MAX)		/* card removed */
78 		return -ENODEV;
79 
80 	return ret;
81 }
82 
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 	u32 halted;
89 	u32 cmd;
90 	u32 mask;
91 
92 	mask = ~(XHCI_IRQS);
93 	halted = readl(&xhci->op_regs->status) & STS_HALT;
94 	if (!halted)
95 		mask &= ~CMD_RUN;
96 
97 	cmd = readl(&xhci->op_regs->command);
98 	cmd &= mask;
99 	writel(cmd, &xhci->op_regs->command);
100 }
101 
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 	int ret;
113 
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 
124 	xhci->xhc_state |= XHCI_STATE_HALTED;
125 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126 
127 	return ret;
128 }
129 
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 	u32 temp;
136 	int ret;
137 
138 	temp = readl(&xhci->op_regs->command);
139 	temp |= (CMD_RUN);
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 			temp);
142 	writel(temp, &xhci->op_regs->command);
143 
144 	/*
145 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 	 * running.
147 	 */
148 	ret = xhci_handshake(&xhci->op_regs->status,
149 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 	if (ret == -ETIMEDOUT)
151 		xhci_err(xhci, "Host took too long to start, "
152 				"waited %u microseconds.\n",
153 				XHCI_MAX_HALT_USEC);
154 	if (!ret)
155 		/* clear state flags. Including dying, halted or removing */
156 		xhci->xhc_state = 0;
157 
158 	return ret;
159 }
160 
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
169 {
170 	u32 command;
171 	u32 state;
172 	int ret;
173 
174 	state = readl(&xhci->op_regs->status);
175 
176 	if (state == ~(u32)0) {
177 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
178 		return -ENODEV;
179 	}
180 
181 	if ((state & STS_HALT) == 0) {
182 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183 		return 0;
184 	}
185 
186 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187 	command = readl(&xhci->op_regs->command);
188 	command |= CMD_RESET;
189 	writel(command, &xhci->op_regs->command);
190 
191 	/* Existing Intel xHCI controllers require a delay of 1 mS,
192 	 * after setting the CMD_RESET bit, and before accessing any
193 	 * HC registers. This allows the HC to complete the
194 	 * reset operation and be ready for HC register access.
195 	 * Without this delay, the subsequent HC register access,
196 	 * may result in a system hang very rarely.
197 	 */
198 	if (xhci->quirks & XHCI_INTEL_HOST)
199 		udelay(1000);
200 
201 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
202 	if (ret)
203 		return ret;
204 
205 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
206 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
207 
208 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
209 			 "Wait for controller to be ready for doorbell rings");
210 	/*
211 	 * xHCI cannot write to any doorbells or operational registers other
212 	 * than status until the "Controller Not Ready" flag is cleared.
213 	 */
214 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 	u32 intrs;
232 
233 	/*
234 	 * Some Renesas controllers get into a weird state if they are
235 	 * reset while programmed with 64bit addresses (they will preserve
236 	 * the top half of the address in internal, non visible
237 	 * registers). You end up with half the address coming from the
238 	 * kernel, and the other half coming from the firmware. Also,
239 	 * changing the programming leads to extra accesses even if the
240 	 * controller is supposed to be halted. The controller ends up with
241 	 * a fatal fault, and is then ripe for being properly reset.
242 	 *
243 	 * Special care is taken to only apply this if the device is behind
244 	 * an iommu. Doing anything when there is no iommu is definitely
245 	 * unsafe...
246 	 */
247 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
248 		return;
249 
250 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251 
252 	/* Clear HSEIE so that faults do not get signaled */
253 	val = readl(&xhci->op_regs->command);
254 	val &= ~CMD_HSEIE;
255 	writel(val, &xhci->op_regs->command);
256 
257 	/* Clear HSE (aka FATAL) */
258 	val = readl(&xhci->op_regs->status);
259 	val |= STS_FATAL;
260 	writel(val, &xhci->op_regs->status);
261 
262 	/* Now zero the registers, and brace for impact */
263 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264 	if (upper_32_bits(val))
265 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267 	if (upper_32_bits(val))
268 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269 
270 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
271 		      ARRAY_SIZE(xhci->run_regs->ir_set));
272 
273 	for (i = 0; i < intrs; i++) {
274 		struct xhci_intr_reg __iomem *ir;
275 
276 		ir = &xhci->run_regs->ir_set[i];
277 		val = xhci_read_64(xhci, &ir->erst_base);
278 		if (upper_32_bits(val))
279 			xhci_write_64(xhci, 0, &ir->erst_base);
280 		val= xhci_read_64(xhci, &ir->erst_dequeue);
281 		if (upper_32_bits(val))
282 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
283 	}
284 
285 	/* Wait for the fault to appear. It will be cleared on reset */
286 	err = xhci_handshake(&xhci->op_regs->status,
287 			     STS_FATAL, STS_FATAL,
288 			     XHCI_MAX_HALT_USEC);
289 	if (!err)
290 		xhci_info(xhci, "Fault detected\n");
291 }
292 
293 #ifdef CONFIG_USB_PCI
294 /*
295  * Set up MSI
296  */
297 static int xhci_setup_msi(struct xhci_hcd *xhci)
298 {
299 	int ret;
300 	/*
301 	 * TODO:Check with MSI Soc for sysdev
302 	 */
303 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304 
305 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
306 	if (ret < 0) {
307 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
308 				"failed to allocate MSI entry");
309 		return ret;
310 	}
311 
312 	ret = request_irq(pdev->irq, xhci_msi_irq,
313 				0, "xhci_hcd", xhci_to_hcd(xhci));
314 	if (ret) {
315 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
316 				"disable MSI interrupt");
317 		pci_free_irq_vectors(pdev);
318 	}
319 
320 	return ret;
321 }
322 
323 /*
324  * Set up MSI-X
325  */
326 static int xhci_setup_msix(struct xhci_hcd *xhci)
327 {
328 	int i, ret;
329 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
330 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
331 
332 	/*
333 	 * calculate number of msi-x vectors supported.
334 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
335 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
336 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
337 	 *   Add additional 1 vector to ensure always available interrupt.
338 	 */
339 	xhci->msix_count = min(num_online_cpus() + 1,
340 				HCS_MAX_INTRS(xhci->hcs_params1));
341 
342 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
343 			PCI_IRQ_MSIX);
344 	if (ret < 0) {
345 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
346 				"Failed to enable MSI-X");
347 		return ret;
348 	}
349 
350 	for (i = 0; i < xhci->msix_count; i++) {
351 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
352 				"xhci_hcd", xhci_to_hcd(xhci));
353 		if (ret)
354 			goto disable_msix;
355 	}
356 
357 	hcd->msix_enabled = 1;
358 	return ret;
359 
360 disable_msix:
361 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
362 	while (--i >= 0)
363 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
364 	pci_free_irq_vectors(pdev);
365 	return ret;
366 }
367 
368 /* Free any IRQs and disable MSI-X */
369 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
370 {
371 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
372 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
373 
374 	if (xhci->quirks & XHCI_PLAT)
375 		return;
376 
377 	/* return if using legacy interrupt */
378 	if (hcd->irq > 0)
379 		return;
380 
381 	if (hcd->msix_enabled) {
382 		int i;
383 
384 		for (i = 0; i < xhci->msix_count; i++)
385 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
386 	} else {
387 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
388 	}
389 
390 	pci_free_irq_vectors(pdev);
391 	hcd->msix_enabled = 0;
392 }
393 
394 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
395 {
396 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
397 
398 	if (hcd->msix_enabled) {
399 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
400 		int i;
401 
402 		for (i = 0; i < xhci->msix_count; i++)
403 			synchronize_irq(pci_irq_vector(pdev, i));
404 	}
405 }
406 
407 static int xhci_try_enable_msi(struct usb_hcd *hcd)
408 {
409 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
410 	struct pci_dev  *pdev;
411 	int ret;
412 
413 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
414 	if (xhci->quirks & XHCI_PLAT)
415 		return 0;
416 
417 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418 	/*
419 	 * Some Fresco Logic host controllers advertise MSI, but fail to
420 	 * generate interrupts.  Don't even try to enable MSI.
421 	 */
422 	if (xhci->quirks & XHCI_BROKEN_MSI)
423 		goto legacy_irq;
424 
425 	/* unregister the legacy interrupt */
426 	if (hcd->irq)
427 		free_irq(hcd->irq, hcd);
428 	hcd->irq = 0;
429 
430 	ret = xhci_setup_msix(xhci);
431 	if (ret)
432 		/* fall back to msi*/
433 		ret = xhci_setup_msi(xhci);
434 
435 	if (!ret) {
436 		hcd->msi_enabled = 1;
437 		return 0;
438 	}
439 
440 	if (!pdev->irq) {
441 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
442 		return -EINVAL;
443 	}
444 
445  legacy_irq:
446 	if (!strlen(hcd->irq_descr))
447 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
448 			 hcd->driver->description, hcd->self.busnum);
449 
450 	/* fall back to legacy interrupt*/
451 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
452 			hcd->irq_descr, hcd);
453 	if (ret) {
454 		xhci_err(xhci, "request interrupt %d failed\n",
455 				pdev->irq);
456 		return ret;
457 	}
458 	hcd->irq = pdev->irq;
459 	return 0;
460 }
461 
462 #else
463 
464 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
465 {
466 	return 0;
467 }
468 
469 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
470 {
471 }
472 
473 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
474 {
475 }
476 
477 #endif
478 
479 static void compliance_mode_recovery(struct timer_list *t)
480 {
481 	struct xhci_hcd *xhci;
482 	struct usb_hcd *hcd;
483 	struct xhci_hub *rhub;
484 	u32 temp;
485 	int i;
486 
487 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
488 	rhub = &xhci->usb3_rhub;
489 	hcd = rhub->hcd;
490 
491 	if (!hcd)
492 		return;
493 
494 	for (i = 0; i < rhub->num_ports; i++) {
495 		temp = readl(rhub->ports[i]->addr);
496 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
497 			/*
498 			 * Compliance Mode Detected. Letting USB Core
499 			 * handle the Warm Reset
500 			 */
501 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
502 					"Compliance mode detected->port %d",
503 					i + 1);
504 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
505 					"Attempting compliance mode recovery");
506 
507 			if (hcd->state == HC_STATE_SUSPENDED)
508 				usb_hcd_resume_root_hub(hcd);
509 
510 			usb_hcd_poll_rh_status(hcd);
511 		}
512 	}
513 
514 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
515 		mod_timer(&xhci->comp_mode_recovery_timer,
516 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
517 }
518 
519 /*
520  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
521  * that causes ports behind that hardware to enter compliance mode sometimes.
522  * The quirk creates a timer that polls every 2 seconds the link state of
523  * each host controller's port and recovers it by issuing a Warm reset
524  * if Compliance mode is detected, otherwise the port will become "dead" (no
525  * device connections or disconnections will be detected anymore). Becasue no
526  * status event is generated when entering compliance mode (per xhci spec),
527  * this quirk is needed on systems that have the failing hardware installed.
528  */
529 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
530 {
531 	xhci->port_status_u0 = 0;
532 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
533 		    0);
534 	xhci->comp_mode_recovery_timer.expires = jiffies +
535 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
536 
537 	add_timer(&xhci->comp_mode_recovery_timer);
538 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
539 			"Compliance mode recovery timer initialized");
540 }
541 
542 /*
543  * This function identifies the systems that have installed the SN65LVPE502CP
544  * USB3.0 re-driver and that need the Compliance Mode Quirk.
545  * Systems:
546  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
547  */
548 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
549 {
550 	const char *dmi_product_name, *dmi_sys_vendor;
551 
552 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
553 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
554 	if (!dmi_product_name || !dmi_sys_vendor)
555 		return false;
556 
557 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
558 		return false;
559 
560 	if (strstr(dmi_product_name, "Z420") ||
561 			strstr(dmi_product_name, "Z620") ||
562 			strstr(dmi_product_name, "Z820") ||
563 			strstr(dmi_product_name, "Z1 Workstation"))
564 		return true;
565 
566 	return false;
567 }
568 
569 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
570 {
571 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
572 }
573 
574 
575 /*
576  * Initialize memory for HCD and xHC (one-time init).
577  *
578  * Program the PAGESIZE register, initialize the device context array, create
579  * device contexts (?), set up a command ring segment (or two?), create event
580  * ring (one for now).
581  */
582 static int xhci_init(struct usb_hcd *hcd)
583 {
584 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
585 	int retval;
586 
587 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
588 	spin_lock_init(&xhci->lock);
589 	if (xhci->hci_version == 0x95 && link_quirk) {
590 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
591 				"QUIRK: Not clearing Link TRB chain bits.");
592 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
593 	} else {
594 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
595 				"xHCI doesn't need link TRB QUIRK");
596 	}
597 	retval = xhci_mem_init(xhci, GFP_KERNEL);
598 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
599 
600 	/* Initializing Compliance Mode Recovery Data If Needed */
601 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
602 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
603 		compliance_mode_recovery_timer_init(xhci);
604 	}
605 
606 	return retval;
607 }
608 
609 /*-------------------------------------------------------------------------*/
610 
611 
612 static int xhci_run_finished(struct xhci_hcd *xhci)
613 {
614 	if (xhci_start(xhci)) {
615 		xhci_halt(xhci);
616 		return -ENODEV;
617 	}
618 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
619 
620 	if (xhci->quirks & XHCI_NEC_HOST)
621 		xhci_ring_cmd_db(xhci);
622 
623 	return 0;
624 }
625 
626 /*
627  * Start the HC after it was halted.
628  *
629  * This function is called by the USB core when the HC driver is added.
630  * Its opposite is xhci_stop().
631  *
632  * xhci_init() must be called once before this function can be called.
633  * Reset the HC, enable device slot contexts, program DCBAAP, and
634  * set command ring pointer and event ring pointer.
635  *
636  * Setup MSI-X vectors and enable interrupts.
637  */
638 int xhci_run(struct usb_hcd *hcd)
639 {
640 	u32 temp;
641 	u64 temp_64;
642 	int ret;
643 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644 
645 	/* Start the xHCI host controller running only after the USB 2.0 roothub
646 	 * is setup.
647 	 */
648 
649 	hcd->uses_new_polling = 1;
650 	if (!usb_hcd_is_primary_hcd(hcd))
651 		return xhci_run_finished(xhci);
652 
653 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
654 
655 	ret = xhci_try_enable_msi(hcd);
656 	if (ret)
657 		return ret;
658 
659 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
660 	temp_64 &= ~ERST_PTR_MASK;
661 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
663 
664 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
665 			"// Set the interrupt modulation register");
666 	temp = readl(&xhci->ir_set->irq_control);
667 	temp &= ~ER_IRQ_INTERVAL_MASK;
668 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
669 	writel(temp, &xhci->ir_set->irq_control);
670 
671 	/* Set the HCD state before we enable the irqs */
672 	temp = readl(&xhci->op_regs->command);
673 	temp |= (CMD_EIE);
674 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
675 			"// Enable interrupts, cmd = 0x%x.", temp);
676 	writel(temp, &xhci->op_regs->command);
677 
678 	temp = readl(&xhci->ir_set->irq_pending);
679 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
681 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
682 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
683 
684 	if (xhci->quirks & XHCI_NEC_HOST) {
685 		struct xhci_command *command;
686 
687 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
688 		if (!command)
689 			return -ENOMEM;
690 
691 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
692 				TRB_TYPE(TRB_NEC_GET_FW));
693 		if (ret)
694 			xhci_free_command(xhci, command);
695 	}
696 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
697 			"Finished %s for main hcd", __func__);
698 
699 	xhci_create_dbc_dev(xhci);
700 
701 	xhci_debugfs_init(xhci);
702 
703 	if (xhci_has_one_roothub(xhci))
704 		return xhci_run_finished(xhci);
705 
706 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
707 
708 	return 0;
709 }
710 EXPORT_SYMBOL_GPL(xhci_run);
711 
712 /*
713  * Stop xHCI driver.
714  *
715  * This function is called by the USB core when the HC driver is removed.
716  * Its opposite is xhci_run().
717  *
718  * Disable device contexts, disable IRQs, and quiesce the HC.
719  * Reset the HC, finish any completed transactions, and cleanup memory.
720  */
721 static void xhci_stop(struct usb_hcd *hcd)
722 {
723 	u32 temp;
724 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
725 
726 	mutex_lock(&xhci->mutex);
727 
728 	/* Only halt host and free memory after both hcds are removed */
729 	if (!usb_hcd_is_primary_hcd(hcd)) {
730 		mutex_unlock(&xhci->mutex);
731 		return;
732 	}
733 
734 	xhci_remove_dbc_dev(xhci);
735 
736 	spin_lock_irq(&xhci->lock);
737 	xhci->xhc_state |= XHCI_STATE_HALTED;
738 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
739 	xhci_halt(xhci);
740 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
741 	spin_unlock_irq(&xhci->lock);
742 
743 	xhci_cleanup_msix(xhci);
744 
745 	/* Deleting Compliance Mode Recovery Timer */
746 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
747 			(!(xhci_all_ports_seen_u0(xhci)))) {
748 		del_timer_sync(&xhci->comp_mode_recovery_timer);
749 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
750 				"%s: compliance mode recovery timer deleted",
751 				__func__);
752 	}
753 
754 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
755 		usb_amd_dev_put();
756 
757 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758 			"// Disabling event ring interrupts");
759 	temp = readl(&xhci->op_regs->status);
760 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
761 	temp = readl(&xhci->ir_set->irq_pending);
762 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
763 
764 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
765 	xhci_mem_cleanup(xhci);
766 	xhci_debugfs_exit(xhci);
767 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
768 			"xhci_stop completed - status = %x",
769 			readl(&xhci->op_regs->status));
770 	mutex_unlock(&xhci->mutex);
771 }
772 
773 /*
774  * Shutdown HC (not bus-specific)
775  *
776  * This is called when the machine is rebooting or halting.  We assume that the
777  * machine will be powered off, and the HC's internal state will be reset.
778  * Don't bother to free memory.
779  *
780  * This will only ever be called with the main usb_hcd (the USB3 roothub).
781  */
782 void xhci_shutdown(struct usb_hcd *hcd)
783 {
784 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
785 
786 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
787 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
788 
789 	/* Don't poll the roothubs after shutdown. */
790 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
791 			__func__, hcd->self.busnum);
792 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
793 	del_timer_sync(&hcd->rh_timer);
794 
795 	if (xhci->shared_hcd) {
796 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
797 		del_timer_sync(&xhci->shared_hcd->rh_timer);
798 	}
799 
800 	spin_lock_irq(&xhci->lock);
801 	xhci_halt(xhci);
802 	/* Workaround for spurious wakeups at shutdown with HSW */
803 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
804 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
805 	spin_unlock_irq(&xhci->lock);
806 
807 	xhci_cleanup_msix(xhci);
808 
809 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
810 			"xhci_shutdown completed - status = %x",
811 			readl(&xhci->op_regs->status));
812 }
813 EXPORT_SYMBOL_GPL(xhci_shutdown);
814 
815 #ifdef CONFIG_PM
816 static void xhci_save_registers(struct xhci_hcd *xhci)
817 {
818 	xhci->s3.command = readl(&xhci->op_regs->command);
819 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
820 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
821 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
822 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
823 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
824 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
825 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
826 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
827 }
828 
829 static void xhci_restore_registers(struct xhci_hcd *xhci)
830 {
831 	writel(xhci->s3.command, &xhci->op_regs->command);
832 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
833 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
834 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
835 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
836 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
837 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
838 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
839 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
840 }
841 
842 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
843 {
844 	u64	val_64;
845 
846 	/* step 2: initialize command ring buffer */
847 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
848 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
849 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
850 				      xhci->cmd_ring->dequeue) &
851 		 (u64) ~CMD_RING_RSVD_BITS) |
852 		xhci->cmd_ring->cycle_state;
853 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
854 			"// Setting command ring address to 0x%llx",
855 			(long unsigned long) val_64);
856 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
857 }
858 
859 /*
860  * The whole command ring must be cleared to zero when we suspend the host.
861  *
862  * The host doesn't save the command ring pointer in the suspend well, so we
863  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
864  * aligned, because of the reserved bits in the command ring dequeue pointer
865  * register.  Therefore, we can't just set the dequeue pointer back in the
866  * middle of the ring (TRBs are 16-byte aligned).
867  */
868 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
869 {
870 	struct xhci_ring *ring;
871 	struct xhci_segment *seg;
872 
873 	ring = xhci->cmd_ring;
874 	seg = ring->deq_seg;
875 	do {
876 		memset(seg->trbs, 0,
877 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
878 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
879 			cpu_to_le32(~TRB_CYCLE);
880 		seg = seg->next;
881 	} while (seg != ring->deq_seg);
882 
883 	/* Reset the software enqueue and dequeue pointers */
884 	ring->deq_seg = ring->first_seg;
885 	ring->dequeue = ring->first_seg->trbs;
886 	ring->enq_seg = ring->deq_seg;
887 	ring->enqueue = ring->dequeue;
888 
889 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
890 	/*
891 	 * Ring is now zeroed, so the HW should look for change of ownership
892 	 * when the cycle bit is set to 1.
893 	 */
894 	ring->cycle_state = 1;
895 
896 	/*
897 	 * Reset the hardware dequeue pointer.
898 	 * Yes, this will need to be re-written after resume, but we're paranoid
899 	 * and want to make sure the hardware doesn't access bogus memory
900 	 * because, say, the BIOS or an SMI started the host without changing
901 	 * the command ring pointers.
902 	 */
903 	xhci_set_cmd_ring_deq(xhci);
904 }
905 
906 /*
907  * Disable port wake bits if do_wakeup is not set.
908  *
909  * Also clear a possible internal port wake state left hanging for ports that
910  * detected termination but never successfully enumerated (trained to 0U).
911  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
912  * at enumeration clears this wake, force one here as well for unconnected ports
913  */
914 
915 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
916 				       struct xhci_hub *rhub,
917 				       bool do_wakeup)
918 {
919 	unsigned long flags;
920 	u32 t1, t2, portsc;
921 	int i;
922 
923 	spin_lock_irqsave(&xhci->lock, flags);
924 
925 	for (i = 0; i < rhub->num_ports; i++) {
926 		portsc = readl(rhub->ports[i]->addr);
927 		t1 = xhci_port_state_to_neutral(portsc);
928 		t2 = t1;
929 
930 		/* clear wake bits if do_wake is not set */
931 		if (!do_wakeup)
932 			t2 &= ~PORT_WAKE_BITS;
933 
934 		/* Don't touch csc bit if connected or connect change is set */
935 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
936 			t2 |= PORT_CSC;
937 
938 		if (t1 != t2) {
939 			writel(t2, rhub->ports[i]->addr);
940 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
941 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
942 		}
943 	}
944 	spin_unlock_irqrestore(&xhci->lock, flags);
945 }
946 
947 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
948 {
949 	struct xhci_port	**ports;
950 	int			port_index;
951 	u32			status;
952 	u32			portsc;
953 
954 	status = readl(&xhci->op_regs->status);
955 	if (status & STS_EINT)
956 		return true;
957 	/*
958 	 * Checking STS_EINT is not enough as there is a lag between a change
959 	 * bit being set and the Port Status Change Event that it generated
960 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
961 	 */
962 
963 	port_index = xhci->usb2_rhub.num_ports;
964 	ports = xhci->usb2_rhub.ports;
965 	while (port_index--) {
966 		portsc = readl(ports[port_index]->addr);
967 		if (portsc & PORT_CHANGE_MASK ||
968 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
969 			return true;
970 	}
971 	port_index = xhci->usb3_rhub.num_ports;
972 	ports = xhci->usb3_rhub.ports;
973 	while (port_index--) {
974 		portsc = readl(ports[port_index]->addr);
975 		if (portsc & PORT_CHANGE_MASK ||
976 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
977 			return true;
978 	}
979 	return false;
980 }
981 
982 /*
983  * Stop HC (not bus-specific)
984  *
985  * This is called when the machine transition into S3/S4 mode.
986  *
987  */
988 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
989 {
990 	int			rc = 0;
991 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
992 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
993 	u32			command;
994 	u32			res;
995 
996 	if (!hcd->state)
997 		return 0;
998 
999 	if (hcd->state != HC_STATE_SUSPENDED ||
1000 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1001 		return -EINVAL;
1002 
1003 	/* Clear root port wake on bits if wakeup not allowed. */
1004 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1005 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1006 
1007 	if (!HCD_HW_ACCESSIBLE(hcd))
1008 		return 0;
1009 
1010 	xhci_dbc_suspend(xhci);
1011 
1012 	/* Don't poll the roothubs on bus suspend. */
1013 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1014 		 __func__, hcd->self.busnum);
1015 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1016 	del_timer_sync(&hcd->rh_timer);
1017 	if (xhci->shared_hcd) {
1018 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1019 		del_timer_sync(&xhci->shared_hcd->rh_timer);
1020 	}
1021 
1022 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1023 		usleep_range(1000, 1500);
1024 
1025 	spin_lock_irq(&xhci->lock);
1026 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1027 	if (xhci->shared_hcd)
1028 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1029 	/* step 1: stop endpoint */
1030 	/* skipped assuming that port suspend has done */
1031 
1032 	/* step 2: clear Run/Stop bit */
1033 	command = readl(&xhci->op_regs->command);
1034 	command &= ~CMD_RUN;
1035 	writel(command, &xhci->op_regs->command);
1036 
1037 	/* Some chips from Fresco Logic need an extraordinary delay */
1038 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1039 
1040 	if (xhci_handshake(&xhci->op_regs->status,
1041 		      STS_HALT, STS_HALT, delay)) {
1042 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1043 		spin_unlock_irq(&xhci->lock);
1044 		return -ETIMEDOUT;
1045 	}
1046 	xhci_clear_command_ring(xhci);
1047 
1048 	/* step 3: save registers */
1049 	xhci_save_registers(xhci);
1050 
1051 	/* step 4: set CSS flag */
1052 	command = readl(&xhci->op_regs->command);
1053 	command |= CMD_CSS;
1054 	writel(command, &xhci->op_regs->command);
1055 	xhci->broken_suspend = 0;
1056 	if (xhci_handshake(&xhci->op_regs->status,
1057 				STS_SAVE, 0, 20 * 1000)) {
1058 	/*
1059 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1060 	 * SSS bit of USBSTS and when driver tries to poll
1061 	 * to see if the xHC clears BIT(8) which never happens
1062 	 * and driver assumes that controller is not responding
1063 	 * and times out. To workaround this, its good to check
1064 	 * if SRE and HCE bits are not set (as per xhci
1065 	 * Section 5.4.2) and bypass the timeout.
1066 	 */
1067 		res = readl(&xhci->op_regs->status);
1068 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1069 		    (((res & STS_SRE) == 0) &&
1070 				((res & STS_HCE) == 0))) {
1071 			xhci->broken_suspend = 1;
1072 		} else {
1073 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1074 			spin_unlock_irq(&xhci->lock);
1075 			return -ETIMEDOUT;
1076 		}
1077 	}
1078 	spin_unlock_irq(&xhci->lock);
1079 
1080 	/*
1081 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1082 	 * is about to be suspended.
1083 	 */
1084 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1085 			(!(xhci_all_ports_seen_u0(xhci)))) {
1086 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1087 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1088 				"%s: compliance mode recovery timer deleted",
1089 				__func__);
1090 	}
1091 
1092 	/* step 5: remove core well power */
1093 	/* synchronize irq when using MSI-X */
1094 	xhci_msix_sync_irqs(xhci);
1095 
1096 	return rc;
1097 }
1098 EXPORT_SYMBOL_GPL(xhci_suspend);
1099 
1100 /*
1101  * start xHC (not bus-specific)
1102  *
1103  * This is called when the machine transition from S3/S4 mode.
1104  *
1105  */
1106 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1107 {
1108 	u32			command, temp = 0;
1109 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1110 	struct usb_hcd		*secondary_hcd;
1111 	int			retval = 0;
1112 	bool			comp_timer_running = false;
1113 	bool			pending_portevent = false;
1114 	bool			reinit_xhc = false;
1115 
1116 	if (!hcd->state)
1117 		return 0;
1118 
1119 	/* Wait a bit if either of the roothubs need to settle from the
1120 	 * transition into bus suspend.
1121 	 */
1122 
1123 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1124 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1125 		msleep(100);
1126 
1127 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1128 	if (xhci->shared_hcd)
1129 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1130 
1131 	spin_lock_irq(&xhci->lock);
1132 
1133 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1134 		reinit_xhc = true;
1135 
1136 	if (!reinit_xhc) {
1137 		/*
1138 		 * Some controllers might lose power during suspend, so wait
1139 		 * for controller not ready bit to clear, just as in xHC init.
1140 		 */
1141 		retval = xhci_handshake(&xhci->op_regs->status,
1142 					STS_CNR, 0, 10 * 1000 * 1000);
1143 		if (retval) {
1144 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1145 				  retval);
1146 			spin_unlock_irq(&xhci->lock);
1147 			return retval;
1148 		}
1149 		/* step 1: restore register */
1150 		xhci_restore_registers(xhci);
1151 		/* step 2: initialize command ring buffer */
1152 		xhci_set_cmd_ring_deq(xhci);
1153 		/* step 3: restore state and start state*/
1154 		/* step 3: set CRS flag */
1155 		command = readl(&xhci->op_regs->command);
1156 		command |= CMD_CRS;
1157 		writel(command, &xhci->op_regs->command);
1158 		/*
1159 		 * Some controllers take up to 55+ ms to complete the controller
1160 		 * restore so setting the timeout to 100ms. Xhci specification
1161 		 * doesn't mention any timeout value.
1162 		 */
1163 		if (xhci_handshake(&xhci->op_regs->status,
1164 			      STS_RESTORE, 0, 100 * 1000)) {
1165 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1166 			spin_unlock_irq(&xhci->lock);
1167 			return -ETIMEDOUT;
1168 		}
1169 	}
1170 
1171 	temp = readl(&xhci->op_regs->status);
1172 
1173 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1174 	if (temp & (STS_SRE | STS_HCE)) {
1175 		reinit_xhc = true;
1176 		xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1177 	}
1178 
1179 	if (reinit_xhc) {
1180 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1181 				!(xhci_all_ports_seen_u0(xhci))) {
1182 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1183 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1184 				"Compliance Mode Recovery Timer deleted!");
1185 		}
1186 
1187 		/* Let the USB core know _both_ roothubs lost power. */
1188 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1189 		if (xhci->shared_hcd)
1190 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1191 
1192 		xhci_dbg(xhci, "Stop HCD\n");
1193 		xhci_halt(xhci);
1194 		xhci_zero_64b_regs(xhci);
1195 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1196 		spin_unlock_irq(&xhci->lock);
1197 		if (retval)
1198 			return retval;
1199 		xhci_cleanup_msix(xhci);
1200 
1201 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1202 		temp = readl(&xhci->op_regs->status);
1203 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1204 		temp = readl(&xhci->ir_set->irq_pending);
1205 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1206 
1207 		xhci_dbg(xhci, "cleaning up memory\n");
1208 		xhci_mem_cleanup(xhci);
1209 		xhci_debugfs_exit(xhci);
1210 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1211 			    readl(&xhci->op_regs->status));
1212 
1213 		/* USB core calls the PCI reinit and start functions twice:
1214 		 * first with the primary HCD, and then with the secondary HCD.
1215 		 * If we don't do the same, the host will never be started.
1216 		 */
1217 		if (!usb_hcd_is_primary_hcd(hcd))
1218 			secondary_hcd = hcd;
1219 		else
1220 			secondary_hcd = xhci->shared_hcd;
1221 
1222 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1223 		retval = xhci_init(hcd->primary_hcd);
1224 		if (retval)
1225 			return retval;
1226 		comp_timer_running = true;
1227 
1228 		xhci_dbg(xhci, "Start the primary HCD\n");
1229 		retval = xhci_run(hcd->primary_hcd);
1230 		if (!retval && secondary_hcd) {
1231 			xhci_dbg(xhci, "Start the secondary HCD\n");
1232 			retval = xhci_run(secondary_hcd);
1233 		}
1234 		hcd->state = HC_STATE_SUSPENDED;
1235 		if (xhci->shared_hcd)
1236 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1237 		goto done;
1238 	}
1239 
1240 	/* step 4: set Run/Stop bit */
1241 	command = readl(&xhci->op_regs->command);
1242 	command |= CMD_RUN;
1243 	writel(command, &xhci->op_regs->command);
1244 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1245 		  0, 250 * 1000);
1246 
1247 	/* step 5: walk topology and initialize portsc,
1248 	 * portpmsc and portli
1249 	 */
1250 	/* this is done in bus_resume */
1251 
1252 	/* step 6: restart each of the previously
1253 	 * Running endpoints by ringing their doorbells
1254 	 */
1255 
1256 	spin_unlock_irq(&xhci->lock);
1257 
1258 	xhci_dbc_resume(xhci);
1259 
1260  done:
1261 	if (retval == 0) {
1262 		/*
1263 		 * Resume roothubs only if there are pending events.
1264 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1265 		 * the first wake signalling failed, give it that chance.
1266 		 */
1267 		pending_portevent = xhci_pending_portevent(xhci);
1268 		if (!pending_portevent) {
1269 			msleep(120);
1270 			pending_portevent = xhci_pending_portevent(xhci);
1271 		}
1272 
1273 		if (pending_portevent) {
1274 			if (xhci->shared_hcd)
1275 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1276 			usb_hcd_resume_root_hub(hcd);
1277 		}
1278 	}
1279 	/*
1280 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1281 	 * be re-initialized Always after a system resume. Ports are subject
1282 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1283 	 * ports have entered previously to U0 before system's suspension.
1284 	 */
1285 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1286 		compliance_mode_recovery_timer_init(xhci);
1287 
1288 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1289 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1290 
1291 	/* Re-enable port polling. */
1292 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1293 		 __func__, hcd->self.busnum);
1294 	if (xhci->shared_hcd) {
1295 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1296 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1297 	}
1298 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1299 	usb_hcd_poll_rh_status(hcd);
1300 
1301 	return retval;
1302 }
1303 EXPORT_SYMBOL_GPL(xhci_resume);
1304 #endif	/* CONFIG_PM */
1305 
1306 /*-------------------------------------------------------------------------*/
1307 
1308 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1309 {
1310 	void *temp;
1311 	int ret = 0;
1312 	unsigned int buf_len;
1313 	enum dma_data_direction dir;
1314 
1315 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1316 	buf_len = urb->transfer_buffer_length;
1317 
1318 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1319 			    dev_to_node(hcd->self.sysdev));
1320 
1321 	if (usb_urb_dir_out(urb))
1322 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1323 				   temp, buf_len, 0);
1324 
1325 	urb->transfer_buffer = temp;
1326 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1327 					   urb->transfer_buffer,
1328 					   urb->transfer_buffer_length,
1329 					   dir);
1330 
1331 	if (dma_mapping_error(hcd->self.sysdev,
1332 			      urb->transfer_dma)) {
1333 		ret = -EAGAIN;
1334 		kfree(temp);
1335 	} else {
1336 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1337 	}
1338 
1339 	return ret;
1340 }
1341 
1342 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1343 					  struct urb *urb)
1344 {
1345 	bool ret = false;
1346 	unsigned int i;
1347 	unsigned int len = 0;
1348 	unsigned int trb_size;
1349 	unsigned int max_pkt;
1350 	struct scatterlist *sg;
1351 	struct scatterlist *tail_sg;
1352 
1353 	tail_sg = urb->sg;
1354 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1355 
1356 	if (!urb->num_sgs)
1357 		return ret;
1358 
1359 	if (urb->dev->speed >= USB_SPEED_SUPER)
1360 		trb_size = TRB_CACHE_SIZE_SS;
1361 	else
1362 		trb_size = TRB_CACHE_SIZE_HS;
1363 
1364 	if (urb->transfer_buffer_length != 0 &&
1365 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1366 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1367 			len = len + sg->length;
1368 			if (i > trb_size - 2) {
1369 				len = len - tail_sg->length;
1370 				if (len < max_pkt) {
1371 					ret = true;
1372 					break;
1373 				}
1374 
1375 				tail_sg = sg_next(tail_sg);
1376 			}
1377 		}
1378 	}
1379 	return ret;
1380 }
1381 
1382 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1383 {
1384 	unsigned int len;
1385 	unsigned int buf_len;
1386 	enum dma_data_direction dir;
1387 
1388 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1389 
1390 	buf_len = urb->transfer_buffer_length;
1391 
1392 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1393 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1394 		dma_unmap_single(hcd->self.sysdev,
1395 				 urb->transfer_dma,
1396 				 urb->transfer_buffer_length,
1397 				 dir);
1398 
1399 	if (usb_urb_dir_in(urb)) {
1400 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1401 					   urb->transfer_buffer,
1402 					   buf_len,
1403 					   0);
1404 		if (len != buf_len) {
1405 			xhci_dbg(hcd_to_xhci(hcd),
1406 				 "Copy from tmp buf to urb sg list failed\n");
1407 			urb->actual_length = len;
1408 		}
1409 	}
1410 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1411 	kfree(urb->transfer_buffer);
1412 	urb->transfer_buffer = NULL;
1413 }
1414 
1415 /*
1416  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1417  * we'll copy the actual data into the TRB address register. This is limited to
1418  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1419  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1420  */
1421 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1422 				gfp_t mem_flags)
1423 {
1424 	struct xhci_hcd *xhci;
1425 
1426 	xhci = hcd_to_xhci(hcd);
1427 
1428 	if (xhci_urb_suitable_for_idt(urb))
1429 		return 0;
1430 
1431 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1432 		if (xhci_urb_temp_buffer_required(hcd, urb))
1433 			return xhci_map_temp_buffer(hcd, urb);
1434 	}
1435 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1436 }
1437 
1438 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1439 {
1440 	struct xhci_hcd *xhci;
1441 	bool unmap_temp_buf = false;
1442 
1443 	xhci = hcd_to_xhci(hcd);
1444 
1445 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1446 		unmap_temp_buf = true;
1447 
1448 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1449 		xhci_unmap_temp_buf(hcd, urb);
1450 	else
1451 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1452 }
1453 
1454 /**
1455  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1456  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1457  * value to right shift 1 for the bitmask.
1458  *
1459  * Index  = (epnum * 2) + direction - 1,
1460  * where direction = 0 for OUT, 1 for IN.
1461  * For control endpoints, the IN index is used (OUT index is unused), so
1462  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1463  */
1464 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1465 {
1466 	unsigned int index;
1467 	if (usb_endpoint_xfer_control(desc))
1468 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1469 	else
1470 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1471 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1472 	return index;
1473 }
1474 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1475 
1476 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1477  * address from the XHCI endpoint index.
1478  */
1479 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1480 {
1481 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1482 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1483 	return direction | number;
1484 }
1485 
1486 /* Find the flag for this endpoint (for use in the control context).  Use the
1487  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1488  * bit 1, etc.
1489  */
1490 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1491 {
1492 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1493 }
1494 
1495 /* Compute the last valid endpoint context index.  Basically, this is the
1496  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1497  * we find the most significant bit set in the added contexts flags.
1498  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1499  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1500  */
1501 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1502 {
1503 	return fls(added_ctxs) - 1;
1504 }
1505 
1506 /* Returns 1 if the arguments are OK;
1507  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1508  */
1509 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1510 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1511 		const char *func) {
1512 	struct xhci_hcd	*xhci;
1513 	struct xhci_virt_device	*virt_dev;
1514 
1515 	if (!hcd || (check_ep && !ep) || !udev) {
1516 		pr_debug("xHCI %s called with invalid args\n", func);
1517 		return -EINVAL;
1518 	}
1519 	if (!udev->parent) {
1520 		pr_debug("xHCI %s called for root hub\n", func);
1521 		return 0;
1522 	}
1523 
1524 	xhci = hcd_to_xhci(hcd);
1525 	if (check_virt_dev) {
1526 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1527 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1528 					func);
1529 			return -EINVAL;
1530 		}
1531 
1532 		virt_dev = xhci->devs[udev->slot_id];
1533 		if (virt_dev->udev != udev) {
1534 			xhci_dbg(xhci, "xHCI %s called with udev and "
1535 					  "virt_dev does not match\n", func);
1536 			return -EINVAL;
1537 		}
1538 	}
1539 
1540 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1541 		return -ENODEV;
1542 
1543 	return 1;
1544 }
1545 
1546 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1547 		struct usb_device *udev, struct xhci_command *command,
1548 		bool ctx_change, bool must_succeed);
1549 
1550 /*
1551  * Full speed devices may have a max packet size greater than 8 bytes, but the
1552  * USB core doesn't know that until it reads the first 8 bytes of the
1553  * descriptor.  If the usb_device's max packet size changes after that point,
1554  * we need to issue an evaluate context command and wait on it.
1555  */
1556 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1557 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1558 {
1559 	struct xhci_container_ctx *out_ctx;
1560 	struct xhci_input_control_ctx *ctrl_ctx;
1561 	struct xhci_ep_ctx *ep_ctx;
1562 	struct xhci_command *command;
1563 	int max_packet_size;
1564 	int hw_max_packet_size;
1565 	int ret = 0;
1566 
1567 	out_ctx = xhci->devs[slot_id]->out_ctx;
1568 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1569 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1570 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1571 	if (hw_max_packet_size != max_packet_size) {
1572 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1573 				"Max Packet Size for ep 0 changed.");
1574 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1575 				"Max packet size in usb_device = %d",
1576 				max_packet_size);
1577 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1578 				"Max packet size in xHCI HW = %d",
1579 				hw_max_packet_size);
1580 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1581 				"Issuing evaluate context command.");
1582 
1583 		/* Set up the input context flags for the command */
1584 		/* FIXME: This won't work if a non-default control endpoint
1585 		 * changes max packet sizes.
1586 		 */
1587 
1588 		command = xhci_alloc_command(xhci, true, mem_flags);
1589 		if (!command)
1590 			return -ENOMEM;
1591 
1592 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1593 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1594 		if (!ctrl_ctx) {
1595 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1596 					__func__);
1597 			ret = -ENOMEM;
1598 			goto command_cleanup;
1599 		}
1600 		/* Set up the modified control endpoint 0 */
1601 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1602 				xhci->devs[slot_id]->out_ctx, ep_index);
1603 
1604 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1605 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1606 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1607 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1608 
1609 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1610 		ctrl_ctx->drop_flags = 0;
1611 
1612 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1613 				true, false);
1614 
1615 		/* Clean up the input context for later use by bandwidth
1616 		 * functions.
1617 		 */
1618 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1619 command_cleanup:
1620 		kfree(command->completion);
1621 		kfree(command);
1622 	}
1623 	return ret;
1624 }
1625 
1626 /*
1627  * non-error returns are a promise to giveback() the urb later
1628  * we drop ownership so next owner (or urb unlink) can get it
1629  */
1630 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1631 {
1632 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1633 	unsigned long flags;
1634 	int ret = 0;
1635 	unsigned int slot_id, ep_index;
1636 	unsigned int *ep_state;
1637 	struct urb_priv	*urb_priv;
1638 	int num_tds;
1639 
1640 	if (!urb)
1641 		return -EINVAL;
1642 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1643 					true, true, __func__);
1644 	if (ret <= 0)
1645 		return ret ? ret : -EINVAL;
1646 
1647 	slot_id = urb->dev->slot_id;
1648 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1649 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1650 
1651 	if (!HCD_HW_ACCESSIBLE(hcd))
1652 		return -ESHUTDOWN;
1653 
1654 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1655 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1656 		return -ENODEV;
1657 	}
1658 
1659 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1660 		num_tds = urb->number_of_packets;
1661 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1662 	    urb->transfer_buffer_length > 0 &&
1663 	    urb->transfer_flags & URB_ZERO_PACKET &&
1664 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1665 		num_tds = 2;
1666 	else
1667 		num_tds = 1;
1668 
1669 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1670 	if (!urb_priv)
1671 		return -ENOMEM;
1672 
1673 	urb_priv->num_tds = num_tds;
1674 	urb_priv->num_tds_done = 0;
1675 	urb->hcpriv = urb_priv;
1676 
1677 	trace_xhci_urb_enqueue(urb);
1678 
1679 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1680 		/* Check to see if the max packet size for the default control
1681 		 * endpoint changed during FS device enumeration
1682 		 */
1683 		if (urb->dev->speed == USB_SPEED_FULL) {
1684 			ret = xhci_check_maxpacket(xhci, slot_id,
1685 					ep_index, urb, mem_flags);
1686 			if (ret < 0) {
1687 				xhci_urb_free_priv(urb_priv);
1688 				urb->hcpriv = NULL;
1689 				return ret;
1690 			}
1691 		}
1692 	}
1693 
1694 	spin_lock_irqsave(&xhci->lock, flags);
1695 
1696 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1697 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1698 			 urb->ep->desc.bEndpointAddress, urb);
1699 		ret = -ESHUTDOWN;
1700 		goto free_priv;
1701 	}
1702 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1703 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1704 			  *ep_state);
1705 		ret = -EINVAL;
1706 		goto free_priv;
1707 	}
1708 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1709 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1710 		ret = -EINVAL;
1711 		goto free_priv;
1712 	}
1713 
1714 	switch (usb_endpoint_type(&urb->ep->desc)) {
1715 
1716 	case USB_ENDPOINT_XFER_CONTROL:
1717 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1718 					 slot_id, ep_index);
1719 		break;
1720 	case USB_ENDPOINT_XFER_BULK:
1721 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1722 					 slot_id, ep_index);
1723 		break;
1724 	case USB_ENDPOINT_XFER_INT:
1725 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1726 				slot_id, ep_index);
1727 		break;
1728 	case USB_ENDPOINT_XFER_ISOC:
1729 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1730 				slot_id, ep_index);
1731 	}
1732 
1733 	if (ret) {
1734 free_priv:
1735 		xhci_urb_free_priv(urb_priv);
1736 		urb->hcpriv = NULL;
1737 	}
1738 	spin_unlock_irqrestore(&xhci->lock, flags);
1739 	return ret;
1740 }
1741 
1742 /*
1743  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1744  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1745  * should pick up where it left off in the TD, unless a Set Transfer Ring
1746  * Dequeue Pointer is issued.
1747  *
1748  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1749  * the ring.  Since the ring is a contiguous structure, they can't be physically
1750  * removed.  Instead, there are two options:
1751  *
1752  *  1) If the HC is in the middle of processing the URB to be canceled, we
1753  *     simply move the ring's dequeue pointer past those TRBs using the Set
1754  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1755  *     when drivers timeout on the last submitted URB and attempt to cancel.
1756  *
1757  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1758  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1759  *     HC will need to invalidate the any TRBs it has cached after the stop
1760  *     endpoint command, as noted in the xHCI 0.95 errata.
1761  *
1762  *  3) The TD may have completed by the time the Stop Endpoint Command
1763  *     completes, so software needs to handle that case too.
1764  *
1765  * This function should protect against the TD enqueueing code ringing the
1766  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1767  * It also needs to account for multiple cancellations on happening at the same
1768  * time for the same endpoint.
1769  *
1770  * Note that this function can be called in any context, or so says
1771  * usb_hcd_unlink_urb()
1772  */
1773 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1774 {
1775 	unsigned long flags;
1776 	int ret, i;
1777 	u32 temp;
1778 	struct xhci_hcd *xhci;
1779 	struct urb_priv	*urb_priv;
1780 	struct xhci_td *td;
1781 	unsigned int ep_index;
1782 	struct xhci_ring *ep_ring;
1783 	struct xhci_virt_ep *ep;
1784 	struct xhci_command *command;
1785 	struct xhci_virt_device *vdev;
1786 
1787 	xhci = hcd_to_xhci(hcd);
1788 	spin_lock_irqsave(&xhci->lock, flags);
1789 
1790 	trace_xhci_urb_dequeue(urb);
1791 
1792 	/* Make sure the URB hasn't completed or been unlinked already */
1793 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1794 	if (ret)
1795 		goto done;
1796 
1797 	/* give back URB now if we can't queue it for cancel */
1798 	vdev = xhci->devs[urb->dev->slot_id];
1799 	urb_priv = urb->hcpriv;
1800 	if (!vdev || !urb_priv)
1801 		goto err_giveback;
1802 
1803 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1804 	ep = &vdev->eps[ep_index];
1805 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1806 	if (!ep || !ep_ring)
1807 		goto err_giveback;
1808 
1809 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1810 	temp = readl(&xhci->op_regs->status);
1811 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1812 		xhci_hc_died(xhci);
1813 		goto done;
1814 	}
1815 
1816 	/*
1817 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1818 	 * make sure none of the ring related pointers in this URB private data
1819 	 * are touched, such as td_list, otherwise we overwrite freed data
1820 	 */
1821 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1822 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1823 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1824 			td = &urb_priv->td[i];
1825 			if (!list_empty(&td->cancelled_td_list))
1826 				list_del_init(&td->cancelled_td_list);
1827 		}
1828 		goto err_giveback;
1829 	}
1830 
1831 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1832 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1833 				"HC halted, freeing TD manually.");
1834 		for (i = urb_priv->num_tds_done;
1835 		     i < urb_priv->num_tds;
1836 		     i++) {
1837 			td = &urb_priv->td[i];
1838 			if (!list_empty(&td->td_list))
1839 				list_del_init(&td->td_list);
1840 			if (!list_empty(&td->cancelled_td_list))
1841 				list_del_init(&td->cancelled_td_list);
1842 		}
1843 		goto err_giveback;
1844 	}
1845 
1846 	i = urb_priv->num_tds_done;
1847 	if (i < urb_priv->num_tds)
1848 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1849 				"Cancel URB %p, dev %s, ep 0x%x, "
1850 				"starting at offset 0x%llx",
1851 				urb, urb->dev->devpath,
1852 				urb->ep->desc.bEndpointAddress,
1853 				(unsigned long long) xhci_trb_virt_to_dma(
1854 					urb_priv->td[i].start_seg,
1855 					urb_priv->td[i].first_trb));
1856 
1857 	for (; i < urb_priv->num_tds; i++) {
1858 		td = &urb_priv->td[i];
1859 		/* TD can already be on cancelled list if ep halted on it */
1860 		if (list_empty(&td->cancelled_td_list)) {
1861 			td->cancel_status = TD_DIRTY;
1862 			list_add_tail(&td->cancelled_td_list,
1863 				      &ep->cancelled_td_list);
1864 		}
1865 	}
1866 
1867 	/* Queue a stop endpoint command, but only if this is
1868 	 * the first cancellation to be handled.
1869 	 */
1870 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1871 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1872 		if (!command) {
1873 			ret = -ENOMEM;
1874 			goto done;
1875 		}
1876 		ep->ep_state |= EP_STOP_CMD_PENDING;
1877 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1878 					 ep_index, 0);
1879 		xhci_ring_cmd_db(xhci);
1880 	}
1881 done:
1882 	spin_unlock_irqrestore(&xhci->lock, flags);
1883 	return ret;
1884 
1885 err_giveback:
1886 	if (urb_priv)
1887 		xhci_urb_free_priv(urb_priv);
1888 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1889 	spin_unlock_irqrestore(&xhci->lock, flags);
1890 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1891 	return ret;
1892 }
1893 
1894 /* Drop an endpoint from a new bandwidth configuration for this device.
1895  * Only one call to this function is allowed per endpoint before
1896  * check_bandwidth() or reset_bandwidth() must be called.
1897  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1898  * add the endpoint to the schedule with possibly new parameters denoted by a
1899  * different endpoint descriptor in usb_host_endpoint.
1900  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1901  * not allowed.
1902  *
1903  * The USB core will not allow URBs to be queued to an endpoint that is being
1904  * disabled, so there's no need for mutual exclusion to protect
1905  * the xhci->devs[slot_id] structure.
1906  */
1907 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1908 		       struct usb_host_endpoint *ep)
1909 {
1910 	struct xhci_hcd *xhci;
1911 	struct xhci_container_ctx *in_ctx, *out_ctx;
1912 	struct xhci_input_control_ctx *ctrl_ctx;
1913 	unsigned int ep_index;
1914 	struct xhci_ep_ctx *ep_ctx;
1915 	u32 drop_flag;
1916 	u32 new_add_flags, new_drop_flags;
1917 	int ret;
1918 
1919 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1920 	if (ret <= 0)
1921 		return ret;
1922 	xhci = hcd_to_xhci(hcd);
1923 	if (xhci->xhc_state & XHCI_STATE_DYING)
1924 		return -ENODEV;
1925 
1926 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1927 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1928 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1929 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1930 				__func__, drop_flag);
1931 		return 0;
1932 	}
1933 
1934 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1935 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1936 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1937 	if (!ctrl_ctx) {
1938 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1939 				__func__);
1940 		return 0;
1941 	}
1942 
1943 	ep_index = xhci_get_endpoint_index(&ep->desc);
1944 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1945 	/* If the HC already knows the endpoint is disabled,
1946 	 * or the HCD has noted it is disabled, ignore this request
1947 	 */
1948 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1949 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1950 	    xhci_get_endpoint_flag(&ep->desc)) {
1951 		/* Do not warn when called after a usb_device_reset */
1952 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1953 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1954 				  __func__, ep);
1955 		return 0;
1956 	}
1957 
1958 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1959 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1960 
1961 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1962 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1963 
1964 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1965 
1966 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1967 
1968 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1969 			(unsigned int) ep->desc.bEndpointAddress,
1970 			udev->slot_id,
1971 			(unsigned int) new_drop_flags,
1972 			(unsigned int) new_add_flags);
1973 	return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1976 
1977 /* Add an endpoint to a new possible bandwidth configuration for this device.
1978  * Only one call to this function is allowed per endpoint before
1979  * check_bandwidth() or reset_bandwidth() must be called.
1980  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1981  * add the endpoint to the schedule with possibly new parameters denoted by a
1982  * different endpoint descriptor in usb_host_endpoint.
1983  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1984  * not allowed.
1985  *
1986  * The USB core will not allow URBs to be queued to an endpoint until the
1987  * configuration or alt setting is installed in the device, so there's no need
1988  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1989  */
1990 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1991 		      struct usb_host_endpoint *ep)
1992 {
1993 	struct xhci_hcd *xhci;
1994 	struct xhci_container_ctx *in_ctx;
1995 	unsigned int ep_index;
1996 	struct xhci_input_control_ctx *ctrl_ctx;
1997 	struct xhci_ep_ctx *ep_ctx;
1998 	u32 added_ctxs;
1999 	u32 new_add_flags, new_drop_flags;
2000 	struct xhci_virt_device *virt_dev;
2001 	int ret = 0;
2002 
2003 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2004 	if (ret <= 0) {
2005 		/* So we won't queue a reset ep command for a root hub */
2006 		ep->hcpriv = NULL;
2007 		return ret;
2008 	}
2009 	xhci = hcd_to_xhci(hcd);
2010 	if (xhci->xhc_state & XHCI_STATE_DYING)
2011 		return -ENODEV;
2012 
2013 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2014 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2015 		/* FIXME when we have to issue an evaluate endpoint command to
2016 		 * deal with ep0 max packet size changing once we get the
2017 		 * descriptors
2018 		 */
2019 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2020 				__func__, added_ctxs);
2021 		return 0;
2022 	}
2023 
2024 	virt_dev = xhci->devs[udev->slot_id];
2025 	in_ctx = virt_dev->in_ctx;
2026 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2027 	if (!ctrl_ctx) {
2028 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2029 				__func__);
2030 		return 0;
2031 	}
2032 
2033 	ep_index = xhci_get_endpoint_index(&ep->desc);
2034 	/* If this endpoint is already in use, and the upper layers are trying
2035 	 * to add it again without dropping it, reject the addition.
2036 	 */
2037 	if (virt_dev->eps[ep_index].ring &&
2038 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2039 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2040 				"without dropping it.\n",
2041 				(unsigned int) ep->desc.bEndpointAddress);
2042 		return -EINVAL;
2043 	}
2044 
2045 	/* If the HCD has already noted the endpoint is enabled,
2046 	 * ignore this request.
2047 	 */
2048 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2049 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2050 				__func__, ep);
2051 		return 0;
2052 	}
2053 
2054 	/*
2055 	 * Configuration and alternate setting changes must be done in
2056 	 * process context, not interrupt context (or so documenation
2057 	 * for usb_set_interface() and usb_set_configuration() claim).
2058 	 */
2059 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2060 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2061 				__func__, ep->desc.bEndpointAddress);
2062 		return -ENOMEM;
2063 	}
2064 
2065 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2066 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2067 
2068 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2069 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2070 	 * this re-adds a new state for the endpoint from the new endpoint
2071 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2072 	 * drop flags alone.
2073 	 */
2074 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2075 
2076 	/* Store the usb_device pointer for later use */
2077 	ep->hcpriv = udev;
2078 
2079 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2080 	trace_xhci_add_endpoint(ep_ctx);
2081 
2082 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2083 			(unsigned int) ep->desc.bEndpointAddress,
2084 			udev->slot_id,
2085 			(unsigned int) new_drop_flags,
2086 			(unsigned int) new_add_flags);
2087 	return 0;
2088 }
2089 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2090 
2091 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2092 {
2093 	struct xhci_input_control_ctx *ctrl_ctx;
2094 	struct xhci_ep_ctx *ep_ctx;
2095 	struct xhci_slot_ctx *slot_ctx;
2096 	int i;
2097 
2098 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2099 	if (!ctrl_ctx) {
2100 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2101 				__func__);
2102 		return;
2103 	}
2104 
2105 	/* When a device's add flag and drop flag are zero, any subsequent
2106 	 * configure endpoint command will leave that endpoint's state
2107 	 * untouched.  Make sure we don't leave any old state in the input
2108 	 * endpoint contexts.
2109 	 */
2110 	ctrl_ctx->drop_flags = 0;
2111 	ctrl_ctx->add_flags = 0;
2112 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2113 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2114 	/* Endpoint 0 is always valid */
2115 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2116 	for (i = 1; i < 31; i++) {
2117 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2118 		ep_ctx->ep_info = 0;
2119 		ep_ctx->ep_info2 = 0;
2120 		ep_ctx->deq = 0;
2121 		ep_ctx->tx_info = 0;
2122 	}
2123 }
2124 
2125 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2126 		struct usb_device *udev, u32 *cmd_status)
2127 {
2128 	int ret;
2129 
2130 	switch (*cmd_status) {
2131 	case COMP_COMMAND_ABORTED:
2132 	case COMP_COMMAND_RING_STOPPED:
2133 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2134 		ret = -ETIME;
2135 		break;
2136 	case COMP_RESOURCE_ERROR:
2137 		dev_warn(&udev->dev,
2138 			 "Not enough host controller resources for new device state.\n");
2139 		ret = -ENOMEM;
2140 		/* FIXME: can we allocate more resources for the HC? */
2141 		break;
2142 	case COMP_BANDWIDTH_ERROR:
2143 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2144 		dev_warn(&udev->dev,
2145 			 "Not enough bandwidth for new device state.\n");
2146 		ret = -ENOSPC;
2147 		/* FIXME: can we go back to the old state? */
2148 		break;
2149 	case COMP_TRB_ERROR:
2150 		/* the HCD set up something wrong */
2151 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2152 				"add flag = 1, "
2153 				"and endpoint is not disabled.\n");
2154 		ret = -EINVAL;
2155 		break;
2156 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2157 		dev_warn(&udev->dev,
2158 			 "ERROR: Incompatible device for endpoint configure command.\n");
2159 		ret = -ENODEV;
2160 		break;
2161 	case COMP_SUCCESS:
2162 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2163 				"Successful Endpoint Configure command");
2164 		ret = 0;
2165 		break;
2166 	default:
2167 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2168 				*cmd_status);
2169 		ret = -EINVAL;
2170 		break;
2171 	}
2172 	return ret;
2173 }
2174 
2175 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2176 		struct usb_device *udev, u32 *cmd_status)
2177 {
2178 	int ret;
2179 
2180 	switch (*cmd_status) {
2181 	case COMP_COMMAND_ABORTED:
2182 	case COMP_COMMAND_RING_STOPPED:
2183 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2184 		ret = -ETIME;
2185 		break;
2186 	case COMP_PARAMETER_ERROR:
2187 		dev_warn(&udev->dev,
2188 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2189 		ret = -EINVAL;
2190 		break;
2191 	case COMP_SLOT_NOT_ENABLED_ERROR:
2192 		dev_warn(&udev->dev,
2193 			"WARN: slot not enabled for evaluate context command.\n");
2194 		ret = -EINVAL;
2195 		break;
2196 	case COMP_CONTEXT_STATE_ERROR:
2197 		dev_warn(&udev->dev,
2198 			"WARN: invalid context state for evaluate context command.\n");
2199 		ret = -EINVAL;
2200 		break;
2201 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2202 		dev_warn(&udev->dev,
2203 			"ERROR: Incompatible device for evaluate context command.\n");
2204 		ret = -ENODEV;
2205 		break;
2206 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2207 		/* Max Exit Latency too large error */
2208 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2209 		ret = -EINVAL;
2210 		break;
2211 	case COMP_SUCCESS:
2212 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2213 				"Successful evaluate context command");
2214 		ret = 0;
2215 		break;
2216 	default:
2217 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2218 			*cmd_status);
2219 		ret = -EINVAL;
2220 		break;
2221 	}
2222 	return ret;
2223 }
2224 
2225 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2226 		struct xhci_input_control_ctx *ctrl_ctx)
2227 {
2228 	u32 valid_add_flags;
2229 	u32 valid_drop_flags;
2230 
2231 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2232 	 * (bit 1).  The default control endpoint is added during the Address
2233 	 * Device command and is never removed until the slot is disabled.
2234 	 */
2235 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2236 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2237 
2238 	/* Use hweight32 to count the number of ones in the add flags, or
2239 	 * number of endpoints added.  Don't count endpoints that are changed
2240 	 * (both added and dropped).
2241 	 */
2242 	return hweight32(valid_add_flags) -
2243 		hweight32(valid_add_flags & valid_drop_flags);
2244 }
2245 
2246 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2247 		struct xhci_input_control_ctx *ctrl_ctx)
2248 {
2249 	u32 valid_add_flags;
2250 	u32 valid_drop_flags;
2251 
2252 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2253 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2254 
2255 	return hweight32(valid_drop_flags) -
2256 		hweight32(valid_add_flags & valid_drop_flags);
2257 }
2258 
2259 /*
2260  * We need to reserve the new number of endpoints before the configure endpoint
2261  * command completes.  We can't subtract the dropped endpoints from the number
2262  * of active endpoints until the command completes because we can oversubscribe
2263  * the host in this case:
2264  *
2265  *  - the first configure endpoint command drops more endpoints than it adds
2266  *  - a second configure endpoint command that adds more endpoints is queued
2267  *  - the first configure endpoint command fails, so the config is unchanged
2268  *  - the second command may succeed, even though there isn't enough resources
2269  *
2270  * Must be called with xhci->lock held.
2271  */
2272 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2273 		struct xhci_input_control_ctx *ctrl_ctx)
2274 {
2275 	u32 added_eps;
2276 
2277 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2278 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2279 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2280 				"Not enough ep ctxs: "
2281 				"%u active, need to add %u, limit is %u.",
2282 				xhci->num_active_eps, added_eps,
2283 				xhci->limit_active_eps);
2284 		return -ENOMEM;
2285 	}
2286 	xhci->num_active_eps += added_eps;
2287 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2288 			"Adding %u ep ctxs, %u now active.", added_eps,
2289 			xhci->num_active_eps);
2290 	return 0;
2291 }
2292 
2293 /*
2294  * The configure endpoint was failed by the xHC for some other reason, so we
2295  * need to revert the resources that failed configuration would have used.
2296  *
2297  * Must be called with xhci->lock held.
2298  */
2299 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2300 		struct xhci_input_control_ctx *ctrl_ctx)
2301 {
2302 	u32 num_failed_eps;
2303 
2304 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2305 	xhci->num_active_eps -= num_failed_eps;
2306 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2307 			"Removing %u failed ep ctxs, %u now active.",
2308 			num_failed_eps,
2309 			xhci->num_active_eps);
2310 }
2311 
2312 /*
2313  * Now that the command has completed, clean up the active endpoint count by
2314  * subtracting out the endpoints that were dropped (but not changed).
2315  *
2316  * Must be called with xhci->lock held.
2317  */
2318 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2319 		struct xhci_input_control_ctx *ctrl_ctx)
2320 {
2321 	u32 num_dropped_eps;
2322 
2323 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2324 	xhci->num_active_eps -= num_dropped_eps;
2325 	if (num_dropped_eps)
2326 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2327 				"Removing %u dropped ep ctxs, %u now active.",
2328 				num_dropped_eps,
2329 				xhci->num_active_eps);
2330 }
2331 
2332 static unsigned int xhci_get_block_size(struct usb_device *udev)
2333 {
2334 	switch (udev->speed) {
2335 	case USB_SPEED_LOW:
2336 	case USB_SPEED_FULL:
2337 		return FS_BLOCK;
2338 	case USB_SPEED_HIGH:
2339 		return HS_BLOCK;
2340 	case USB_SPEED_SUPER:
2341 	case USB_SPEED_SUPER_PLUS:
2342 		return SS_BLOCK;
2343 	case USB_SPEED_UNKNOWN:
2344 	case USB_SPEED_WIRELESS:
2345 	default:
2346 		/* Should never happen */
2347 		return 1;
2348 	}
2349 }
2350 
2351 static unsigned int
2352 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2353 {
2354 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2355 		return LS_OVERHEAD;
2356 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2357 		return FS_OVERHEAD;
2358 	return HS_OVERHEAD;
2359 }
2360 
2361 /* If we are changing a LS/FS device under a HS hub,
2362  * make sure (if we are activating a new TT) that the HS bus has enough
2363  * bandwidth for this new TT.
2364  */
2365 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2366 		struct xhci_virt_device *virt_dev,
2367 		int old_active_eps)
2368 {
2369 	struct xhci_interval_bw_table *bw_table;
2370 	struct xhci_tt_bw_info *tt_info;
2371 
2372 	/* Find the bandwidth table for the root port this TT is attached to. */
2373 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2374 	tt_info = virt_dev->tt_info;
2375 	/* If this TT already had active endpoints, the bandwidth for this TT
2376 	 * has already been added.  Removing all periodic endpoints (and thus
2377 	 * making the TT enactive) will only decrease the bandwidth used.
2378 	 */
2379 	if (old_active_eps)
2380 		return 0;
2381 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2382 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2383 			return -ENOMEM;
2384 		return 0;
2385 	}
2386 	/* Not sure why we would have no new active endpoints...
2387 	 *
2388 	 * Maybe because of an Evaluate Context change for a hub update or a
2389 	 * control endpoint 0 max packet size change?
2390 	 * FIXME: skip the bandwidth calculation in that case.
2391 	 */
2392 	return 0;
2393 }
2394 
2395 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2396 		struct xhci_virt_device *virt_dev)
2397 {
2398 	unsigned int bw_reserved;
2399 
2400 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2401 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2402 		return -ENOMEM;
2403 
2404 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2405 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2406 		return -ENOMEM;
2407 
2408 	return 0;
2409 }
2410 
2411 /*
2412  * This algorithm is a very conservative estimate of the worst-case scheduling
2413  * scenario for any one interval.  The hardware dynamically schedules the
2414  * packets, so we can't tell which microframe could be the limiting factor in
2415  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2416  *
2417  * Obviously, we can't solve an NP complete problem to find the minimum worst
2418  * case scenario.  Instead, we come up with an estimate that is no less than
2419  * the worst case bandwidth used for any one microframe, but may be an
2420  * over-estimate.
2421  *
2422  * We walk the requirements for each endpoint by interval, starting with the
2423  * smallest interval, and place packets in the schedule where there is only one
2424  * possible way to schedule packets for that interval.  In order to simplify
2425  * this algorithm, we record the largest max packet size for each interval, and
2426  * assume all packets will be that size.
2427  *
2428  * For interval 0, we obviously must schedule all packets for each interval.
2429  * The bandwidth for interval 0 is just the amount of data to be transmitted
2430  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2431  * the number of packets).
2432  *
2433  * For interval 1, we have two possible microframes to schedule those packets
2434  * in.  For this algorithm, if we can schedule the same number of packets for
2435  * each possible scheduling opportunity (each microframe), we will do so.  The
2436  * remaining number of packets will be saved to be transmitted in the gaps in
2437  * the next interval's scheduling sequence.
2438  *
2439  * As we move those remaining packets to be scheduled with interval 2 packets,
2440  * we have to double the number of remaining packets to transmit.  This is
2441  * because the intervals are actually powers of 2, and we would be transmitting
2442  * the previous interval's packets twice in this interval.  We also have to be
2443  * sure that when we look at the largest max packet size for this interval, we
2444  * also look at the largest max packet size for the remaining packets and take
2445  * the greater of the two.
2446  *
2447  * The algorithm continues to evenly distribute packets in each scheduling
2448  * opportunity, and push the remaining packets out, until we get to the last
2449  * interval.  Then those packets and their associated overhead are just added
2450  * to the bandwidth used.
2451  */
2452 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2453 		struct xhci_virt_device *virt_dev,
2454 		int old_active_eps)
2455 {
2456 	unsigned int bw_reserved;
2457 	unsigned int max_bandwidth;
2458 	unsigned int bw_used;
2459 	unsigned int block_size;
2460 	struct xhci_interval_bw_table *bw_table;
2461 	unsigned int packet_size = 0;
2462 	unsigned int overhead = 0;
2463 	unsigned int packets_transmitted = 0;
2464 	unsigned int packets_remaining = 0;
2465 	unsigned int i;
2466 
2467 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2468 		return xhci_check_ss_bw(xhci, virt_dev);
2469 
2470 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2471 		max_bandwidth = HS_BW_LIMIT;
2472 		/* Convert percent of bus BW reserved to blocks reserved */
2473 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2474 	} else {
2475 		max_bandwidth = FS_BW_LIMIT;
2476 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2477 	}
2478 
2479 	bw_table = virt_dev->bw_table;
2480 	/* We need to translate the max packet size and max ESIT payloads into
2481 	 * the units the hardware uses.
2482 	 */
2483 	block_size = xhci_get_block_size(virt_dev->udev);
2484 
2485 	/* If we are manipulating a LS/FS device under a HS hub, double check
2486 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2487 	 */
2488 	if (virt_dev->tt_info) {
2489 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2490 				"Recalculating BW for rootport %u",
2491 				virt_dev->real_port);
2492 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2493 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2494 					"newly activated TT.\n");
2495 			return -ENOMEM;
2496 		}
2497 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2498 				"Recalculating BW for TT slot %u port %u",
2499 				virt_dev->tt_info->slot_id,
2500 				virt_dev->tt_info->ttport);
2501 	} else {
2502 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503 				"Recalculating BW for rootport %u",
2504 				virt_dev->real_port);
2505 	}
2506 
2507 	/* Add in how much bandwidth will be used for interval zero, or the
2508 	 * rounded max ESIT payload + number of packets * largest overhead.
2509 	 */
2510 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2511 		bw_table->interval_bw[0].num_packets *
2512 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2513 
2514 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2515 		unsigned int bw_added;
2516 		unsigned int largest_mps;
2517 		unsigned int interval_overhead;
2518 
2519 		/*
2520 		 * How many packets could we transmit in this interval?
2521 		 * If packets didn't fit in the previous interval, we will need
2522 		 * to transmit that many packets twice within this interval.
2523 		 */
2524 		packets_remaining = 2 * packets_remaining +
2525 			bw_table->interval_bw[i].num_packets;
2526 
2527 		/* Find the largest max packet size of this or the previous
2528 		 * interval.
2529 		 */
2530 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2531 			largest_mps = 0;
2532 		else {
2533 			struct xhci_virt_ep *virt_ep;
2534 			struct list_head *ep_entry;
2535 
2536 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2537 			virt_ep = list_entry(ep_entry,
2538 					struct xhci_virt_ep, bw_endpoint_list);
2539 			/* Convert to blocks, rounding up */
2540 			largest_mps = DIV_ROUND_UP(
2541 					virt_ep->bw_info.max_packet_size,
2542 					block_size);
2543 		}
2544 		if (largest_mps > packet_size)
2545 			packet_size = largest_mps;
2546 
2547 		/* Use the larger overhead of this or the previous interval. */
2548 		interval_overhead = xhci_get_largest_overhead(
2549 				&bw_table->interval_bw[i]);
2550 		if (interval_overhead > overhead)
2551 			overhead = interval_overhead;
2552 
2553 		/* How many packets can we evenly distribute across
2554 		 * (1 << (i + 1)) possible scheduling opportunities?
2555 		 */
2556 		packets_transmitted = packets_remaining >> (i + 1);
2557 
2558 		/* Add in the bandwidth used for those scheduled packets */
2559 		bw_added = packets_transmitted * (overhead + packet_size);
2560 
2561 		/* How many packets do we have remaining to transmit? */
2562 		packets_remaining = packets_remaining % (1 << (i + 1));
2563 
2564 		/* What largest max packet size should those packets have? */
2565 		/* If we've transmitted all packets, don't carry over the
2566 		 * largest packet size.
2567 		 */
2568 		if (packets_remaining == 0) {
2569 			packet_size = 0;
2570 			overhead = 0;
2571 		} else if (packets_transmitted > 0) {
2572 			/* Otherwise if we do have remaining packets, and we've
2573 			 * scheduled some packets in this interval, take the
2574 			 * largest max packet size from endpoints with this
2575 			 * interval.
2576 			 */
2577 			packet_size = largest_mps;
2578 			overhead = interval_overhead;
2579 		}
2580 		/* Otherwise carry over packet_size and overhead from the last
2581 		 * time we had a remainder.
2582 		 */
2583 		bw_used += bw_added;
2584 		if (bw_used > max_bandwidth) {
2585 			xhci_warn(xhci, "Not enough bandwidth. "
2586 					"Proposed: %u, Max: %u\n",
2587 				bw_used, max_bandwidth);
2588 			return -ENOMEM;
2589 		}
2590 	}
2591 	/*
2592 	 * Ok, we know we have some packets left over after even-handedly
2593 	 * scheduling interval 15.  We don't know which microframes they will
2594 	 * fit into, so we over-schedule and say they will be scheduled every
2595 	 * microframe.
2596 	 */
2597 	if (packets_remaining > 0)
2598 		bw_used += overhead + packet_size;
2599 
2600 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2601 		unsigned int port_index = virt_dev->real_port - 1;
2602 
2603 		/* OK, we're manipulating a HS device attached to a
2604 		 * root port bandwidth domain.  Include the number of active TTs
2605 		 * in the bandwidth used.
2606 		 */
2607 		bw_used += TT_HS_OVERHEAD *
2608 			xhci->rh_bw[port_index].num_active_tts;
2609 	}
2610 
2611 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2612 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2613 		"Available: %u " "percent",
2614 		bw_used, max_bandwidth, bw_reserved,
2615 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2616 		max_bandwidth);
2617 
2618 	bw_used += bw_reserved;
2619 	if (bw_used > max_bandwidth) {
2620 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2621 				bw_used, max_bandwidth);
2622 		return -ENOMEM;
2623 	}
2624 
2625 	bw_table->bw_used = bw_used;
2626 	return 0;
2627 }
2628 
2629 static bool xhci_is_async_ep(unsigned int ep_type)
2630 {
2631 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2632 					ep_type != ISOC_IN_EP &&
2633 					ep_type != INT_IN_EP);
2634 }
2635 
2636 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2637 {
2638 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2639 }
2640 
2641 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2642 {
2643 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2644 
2645 	if (ep_bw->ep_interval == 0)
2646 		return SS_OVERHEAD_BURST +
2647 			(ep_bw->mult * ep_bw->num_packets *
2648 					(SS_OVERHEAD + mps));
2649 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2650 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2651 				1 << ep_bw->ep_interval);
2652 
2653 }
2654 
2655 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2656 		struct xhci_bw_info *ep_bw,
2657 		struct xhci_interval_bw_table *bw_table,
2658 		struct usb_device *udev,
2659 		struct xhci_virt_ep *virt_ep,
2660 		struct xhci_tt_bw_info *tt_info)
2661 {
2662 	struct xhci_interval_bw	*interval_bw;
2663 	int normalized_interval;
2664 
2665 	if (xhci_is_async_ep(ep_bw->type))
2666 		return;
2667 
2668 	if (udev->speed >= USB_SPEED_SUPER) {
2669 		if (xhci_is_sync_in_ep(ep_bw->type))
2670 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2671 				xhci_get_ss_bw_consumed(ep_bw);
2672 		else
2673 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2674 				xhci_get_ss_bw_consumed(ep_bw);
2675 		return;
2676 	}
2677 
2678 	/* SuperSpeed endpoints never get added to intervals in the table, so
2679 	 * this check is only valid for HS/FS/LS devices.
2680 	 */
2681 	if (list_empty(&virt_ep->bw_endpoint_list))
2682 		return;
2683 	/* For LS/FS devices, we need to translate the interval expressed in
2684 	 * microframes to frames.
2685 	 */
2686 	if (udev->speed == USB_SPEED_HIGH)
2687 		normalized_interval = ep_bw->ep_interval;
2688 	else
2689 		normalized_interval = ep_bw->ep_interval - 3;
2690 
2691 	if (normalized_interval == 0)
2692 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2693 	interval_bw = &bw_table->interval_bw[normalized_interval];
2694 	interval_bw->num_packets -= ep_bw->num_packets;
2695 	switch (udev->speed) {
2696 	case USB_SPEED_LOW:
2697 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2698 		break;
2699 	case USB_SPEED_FULL:
2700 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2701 		break;
2702 	case USB_SPEED_HIGH:
2703 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2704 		break;
2705 	case USB_SPEED_SUPER:
2706 	case USB_SPEED_SUPER_PLUS:
2707 	case USB_SPEED_UNKNOWN:
2708 	case USB_SPEED_WIRELESS:
2709 		/* Should never happen because only LS/FS/HS endpoints will get
2710 		 * added to the endpoint list.
2711 		 */
2712 		return;
2713 	}
2714 	if (tt_info)
2715 		tt_info->active_eps -= 1;
2716 	list_del_init(&virt_ep->bw_endpoint_list);
2717 }
2718 
2719 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2720 		struct xhci_bw_info *ep_bw,
2721 		struct xhci_interval_bw_table *bw_table,
2722 		struct usb_device *udev,
2723 		struct xhci_virt_ep *virt_ep,
2724 		struct xhci_tt_bw_info *tt_info)
2725 {
2726 	struct xhci_interval_bw	*interval_bw;
2727 	struct xhci_virt_ep *smaller_ep;
2728 	int normalized_interval;
2729 
2730 	if (xhci_is_async_ep(ep_bw->type))
2731 		return;
2732 
2733 	if (udev->speed == USB_SPEED_SUPER) {
2734 		if (xhci_is_sync_in_ep(ep_bw->type))
2735 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2736 				xhci_get_ss_bw_consumed(ep_bw);
2737 		else
2738 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2739 				xhci_get_ss_bw_consumed(ep_bw);
2740 		return;
2741 	}
2742 
2743 	/* For LS/FS devices, we need to translate the interval expressed in
2744 	 * microframes to frames.
2745 	 */
2746 	if (udev->speed == USB_SPEED_HIGH)
2747 		normalized_interval = ep_bw->ep_interval;
2748 	else
2749 		normalized_interval = ep_bw->ep_interval - 3;
2750 
2751 	if (normalized_interval == 0)
2752 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2753 	interval_bw = &bw_table->interval_bw[normalized_interval];
2754 	interval_bw->num_packets += ep_bw->num_packets;
2755 	switch (udev->speed) {
2756 	case USB_SPEED_LOW:
2757 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2758 		break;
2759 	case USB_SPEED_FULL:
2760 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2761 		break;
2762 	case USB_SPEED_HIGH:
2763 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2764 		break;
2765 	case USB_SPEED_SUPER:
2766 	case USB_SPEED_SUPER_PLUS:
2767 	case USB_SPEED_UNKNOWN:
2768 	case USB_SPEED_WIRELESS:
2769 		/* Should never happen because only LS/FS/HS endpoints will get
2770 		 * added to the endpoint list.
2771 		 */
2772 		return;
2773 	}
2774 
2775 	if (tt_info)
2776 		tt_info->active_eps += 1;
2777 	/* Insert the endpoint into the list, largest max packet size first. */
2778 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2779 			bw_endpoint_list) {
2780 		if (ep_bw->max_packet_size >=
2781 				smaller_ep->bw_info.max_packet_size) {
2782 			/* Add the new ep before the smaller endpoint */
2783 			list_add_tail(&virt_ep->bw_endpoint_list,
2784 					&smaller_ep->bw_endpoint_list);
2785 			return;
2786 		}
2787 	}
2788 	/* Add the new endpoint at the end of the list. */
2789 	list_add_tail(&virt_ep->bw_endpoint_list,
2790 			&interval_bw->endpoints);
2791 }
2792 
2793 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2794 		struct xhci_virt_device *virt_dev,
2795 		int old_active_eps)
2796 {
2797 	struct xhci_root_port_bw_info *rh_bw_info;
2798 	if (!virt_dev->tt_info)
2799 		return;
2800 
2801 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2802 	if (old_active_eps == 0 &&
2803 				virt_dev->tt_info->active_eps != 0) {
2804 		rh_bw_info->num_active_tts += 1;
2805 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2806 	} else if (old_active_eps != 0 &&
2807 				virt_dev->tt_info->active_eps == 0) {
2808 		rh_bw_info->num_active_tts -= 1;
2809 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2810 	}
2811 }
2812 
2813 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2814 		struct xhci_virt_device *virt_dev,
2815 		struct xhci_container_ctx *in_ctx)
2816 {
2817 	struct xhci_bw_info ep_bw_info[31];
2818 	int i;
2819 	struct xhci_input_control_ctx *ctrl_ctx;
2820 	int old_active_eps = 0;
2821 
2822 	if (virt_dev->tt_info)
2823 		old_active_eps = virt_dev->tt_info->active_eps;
2824 
2825 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2826 	if (!ctrl_ctx) {
2827 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2828 				__func__);
2829 		return -ENOMEM;
2830 	}
2831 
2832 	for (i = 0; i < 31; i++) {
2833 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2834 			continue;
2835 
2836 		/* Make a copy of the BW info in case we need to revert this */
2837 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2838 				sizeof(ep_bw_info[i]));
2839 		/* Drop the endpoint from the interval table if the endpoint is
2840 		 * being dropped or changed.
2841 		 */
2842 		if (EP_IS_DROPPED(ctrl_ctx, i))
2843 			xhci_drop_ep_from_interval_table(xhci,
2844 					&virt_dev->eps[i].bw_info,
2845 					virt_dev->bw_table,
2846 					virt_dev->udev,
2847 					&virt_dev->eps[i],
2848 					virt_dev->tt_info);
2849 	}
2850 	/* Overwrite the information stored in the endpoints' bw_info */
2851 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2852 	for (i = 0; i < 31; i++) {
2853 		/* Add any changed or added endpoints to the interval table */
2854 		if (EP_IS_ADDED(ctrl_ctx, i))
2855 			xhci_add_ep_to_interval_table(xhci,
2856 					&virt_dev->eps[i].bw_info,
2857 					virt_dev->bw_table,
2858 					virt_dev->udev,
2859 					&virt_dev->eps[i],
2860 					virt_dev->tt_info);
2861 	}
2862 
2863 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2864 		/* Ok, this fits in the bandwidth we have.
2865 		 * Update the number of active TTs.
2866 		 */
2867 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2868 		return 0;
2869 	}
2870 
2871 	/* We don't have enough bandwidth for this, revert the stored info. */
2872 	for (i = 0; i < 31; i++) {
2873 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2874 			continue;
2875 
2876 		/* Drop the new copies of any added or changed endpoints from
2877 		 * the interval table.
2878 		 */
2879 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2880 			xhci_drop_ep_from_interval_table(xhci,
2881 					&virt_dev->eps[i].bw_info,
2882 					virt_dev->bw_table,
2883 					virt_dev->udev,
2884 					&virt_dev->eps[i],
2885 					virt_dev->tt_info);
2886 		}
2887 		/* Revert the endpoint back to its old information */
2888 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2889 				sizeof(ep_bw_info[i]));
2890 		/* Add any changed or dropped endpoints back into the table */
2891 		if (EP_IS_DROPPED(ctrl_ctx, i))
2892 			xhci_add_ep_to_interval_table(xhci,
2893 					&virt_dev->eps[i].bw_info,
2894 					virt_dev->bw_table,
2895 					virt_dev->udev,
2896 					&virt_dev->eps[i],
2897 					virt_dev->tt_info);
2898 	}
2899 	return -ENOMEM;
2900 }
2901 
2902 
2903 /* Issue a configure endpoint command or evaluate context command
2904  * and wait for it to finish.
2905  */
2906 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2907 		struct usb_device *udev,
2908 		struct xhci_command *command,
2909 		bool ctx_change, bool must_succeed)
2910 {
2911 	int ret;
2912 	unsigned long flags;
2913 	struct xhci_input_control_ctx *ctrl_ctx;
2914 	struct xhci_virt_device *virt_dev;
2915 	struct xhci_slot_ctx *slot_ctx;
2916 
2917 	if (!command)
2918 		return -EINVAL;
2919 
2920 	spin_lock_irqsave(&xhci->lock, flags);
2921 
2922 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2923 		spin_unlock_irqrestore(&xhci->lock, flags);
2924 		return -ESHUTDOWN;
2925 	}
2926 
2927 	virt_dev = xhci->devs[udev->slot_id];
2928 
2929 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2930 	if (!ctrl_ctx) {
2931 		spin_unlock_irqrestore(&xhci->lock, flags);
2932 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2933 				__func__);
2934 		return -ENOMEM;
2935 	}
2936 
2937 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2938 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2939 		spin_unlock_irqrestore(&xhci->lock, flags);
2940 		xhci_warn(xhci, "Not enough host resources, "
2941 				"active endpoint contexts = %u\n",
2942 				xhci->num_active_eps);
2943 		return -ENOMEM;
2944 	}
2945 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2946 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2947 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2948 			xhci_free_host_resources(xhci, ctrl_ctx);
2949 		spin_unlock_irqrestore(&xhci->lock, flags);
2950 		xhci_warn(xhci, "Not enough bandwidth\n");
2951 		return -ENOMEM;
2952 	}
2953 
2954 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2955 
2956 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2957 	trace_xhci_configure_endpoint(slot_ctx);
2958 
2959 	if (!ctx_change)
2960 		ret = xhci_queue_configure_endpoint(xhci, command,
2961 				command->in_ctx->dma,
2962 				udev->slot_id, must_succeed);
2963 	else
2964 		ret = xhci_queue_evaluate_context(xhci, command,
2965 				command->in_ctx->dma,
2966 				udev->slot_id, must_succeed);
2967 	if (ret < 0) {
2968 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2969 			xhci_free_host_resources(xhci, ctrl_ctx);
2970 		spin_unlock_irqrestore(&xhci->lock, flags);
2971 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2972 				"FIXME allocate a new ring segment");
2973 		return -ENOMEM;
2974 	}
2975 	xhci_ring_cmd_db(xhci);
2976 	spin_unlock_irqrestore(&xhci->lock, flags);
2977 
2978 	/* Wait for the configure endpoint command to complete */
2979 	wait_for_completion(command->completion);
2980 
2981 	if (!ctx_change)
2982 		ret = xhci_configure_endpoint_result(xhci, udev,
2983 						     &command->status);
2984 	else
2985 		ret = xhci_evaluate_context_result(xhci, udev,
2986 						   &command->status);
2987 
2988 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2989 		spin_lock_irqsave(&xhci->lock, flags);
2990 		/* If the command failed, remove the reserved resources.
2991 		 * Otherwise, clean up the estimate to include dropped eps.
2992 		 */
2993 		if (ret)
2994 			xhci_free_host_resources(xhci, ctrl_ctx);
2995 		else
2996 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2997 		spin_unlock_irqrestore(&xhci->lock, flags);
2998 	}
2999 	return ret;
3000 }
3001 
3002 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3003 	struct xhci_virt_device *vdev, int i)
3004 {
3005 	struct xhci_virt_ep *ep = &vdev->eps[i];
3006 
3007 	if (ep->ep_state & EP_HAS_STREAMS) {
3008 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3009 				xhci_get_endpoint_address(i));
3010 		xhci_free_stream_info(xhci, ep->stream_info);
3011 		ep->stream_info = NULL;
3012 		ep->ep_state &= ~EP_HAS_STREAMS;
3013 	}
3014 }
3015 
3016 /* Called after one or more calls to xhci_add_endpoint() or
3017  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3018  * to call xhci_reset_bandwidth().
3019  *
3020  * Since we are in the middle of changing either configuration or
3021  * installing a new alt setting, the USB core won't allow URBs to be
3022  * enqueued for any endpoint on the old config or interface.  Nothing
3023  * else should be touching the xhci->devs[slot_id] structure, so we
3024  * don't need to take the xhci->lock for manipulating that.
3025  */
3026 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3027 {
3028 	int i;
3029 	int ret = 0;
3030 	struct xhci_hcd *xhci;
3031 	struct xhci_virt_device	*virt_dev;
3032 	struct xhci_input_control_ctx *ctrl_ctx;
3033 	struct xhci_slot_ctx *slot_ctx;
3034 	struct xhci_command *command;
3035 
3036 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3037 	if (ret <= 0)
3038 		return ret;
3039 	xhci = hcd_to_xhci(hcd);
3040 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3041 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3042 		return -ENODEV;
3043 
3044 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3045 	virt_dev = xhci->devs[udev->slot_id];
3046 
3047 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3048 	if (!command)
3049 		return -ENOMEM;
3050 
3051 	command->in_ctx = virt_dev->in_ctx;
3052 
3053 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3054 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3055 	if (!ctrl_ctx) {
3056 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3057 				__func__);
3058 		ret = -ENOMEM;
3059 		goto command_cleanup;
3060 	}
3061 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3062 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3063 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3064 
3065 	/* Don't issue the command if there's no endpoints to update. */
3066 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3067 	    ctrl_ctx->drop_flags == 0) {
3068 		ret = 0;
3069 		goto command_cleanup;
3070 	}
3071 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3072 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3073 	for (i = 31; i >= 1; i--) {
3074 		__le32 le32 = cpu_to_le32(BIT(i));
3075 
3076 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3077 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3078 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3079 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3080 			break;
3081 		}
3082 	}
3083 
3084 	ret = xhci_configure_endpoint(xhci, udev, command,
3085 			false, false);
3086 	if (ret)
3087 		/* Callee should call reset_bandwidth() */
3088 		goto command_cleanup;
3089 
3090 	/* Free any rings that were dropped, but not changed. */
3091 	for (i = 1; i < 31; i++) {
3092 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3093 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3094 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3095 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3096 		}
3097 	}
3098 	xhci_zero_in_ctx(xhci, virt_dev);
3099 	/*
3100 	 * Install any rings for completely new endpoints or changed endpoints,
3101 	 * and free any old rings from changed endpoints.
3102 	 */
3103 	for (i = 1; i < 31; i++) {
3104 		if (!virt_dev->eps[i].new_ring)
3105 			continue;
3106 		/* Only free the old ring if it exists.
3107 		 * It may not if this is the first add of an endpoint.
3108 		 */
3109 		if (virt_dev->eps[i].ring) {
3110 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3111 		}
3112 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3113 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3114 		virt_dev->eps[i].new_ring = NULL;
3115 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3116 	}
3117 command_cleanup:
3118 	kfree(command->completion);
3119 	kfree(command);
3120 
3121 	return ret;
3122 }
3123 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3124 
3125 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3126 {
3127 	struct xhci_hcd *xhci;
3128 	struct xhci_virt_device	*virt_dev;
3129 	int i, ret;
3130 
3131 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3132 	if (ret <= 0)
3133 		return;
3134 	xhci = hcd_to_xhci(hcd);
3135 
3136 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3137 	virt_dev = xhci->devs[udev->slot_id];
3138 	/* Free any rings allocated for added endpoints */
3139 	for (i = 0; i < 31; i++) {
3140 		if (virt_dev->eps[i].new_ring) {
3141 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3142 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3143 			virt_dev->eps[i].new_ring = NULL;
3144 		}
3145 	}
3146 	xhci_zero_in_ctx(xhci, virt_dev);
3147 }
3148 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3149 
3150 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3151 		struct xhci_container_ctx *in_ctx,
3152 		struct xhci_container_ctx *out_ctx,
3153 		struct xhci_input_control_ctx *ctrl_ctx,
3154 		u32 add_flags, u32 drop_flags)
3155 {
3156 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3157 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3158 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3159 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3160 }
3161 
3162 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3163 				  struct usb_host_endpoint *host_ep)
3164 {
3165 	struct xhci_hcd		*xhci;
3166 	struct xhci_virt_device	*vdev;
3167 	struct xhci_virt_ep	*ep;
3168 	struct usb_device	*udev;
3169 	unsigned long		flags;
3170 	unsigned int		ep_index;
3171 
3172 	xhci = hcd_to_xhci(hcd);
3173 rescan:
3174 	spin_lock_irqsave(&xhci->lock, flags);
3175 
3176 	udev = (struct usb_device *)host_ep->hcpriv;
3177 	if (!udev || !udev->slot_id)
3178 		goto done;
3179 
3180 	vdev = xhci->devs[udev->slot_id];
3181 	if (!vdev)
3182 		goto done;
3183 
3184 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3185 	ep = &vdev->eps[ep_index];
3186 
3187 	/* wait for hub_tt_work to finish clearing hub TT */
3188 	if (ep->ep_state & EP_CLEARING_TT) {
3189 		spin_unlock_irqrestore(&xhci->lock, flags);
3190 		schedule_timeout_uninterruptible(1);
3191 		goto rescan;
3192 	}
3193 
3194 	if (ep->ep_state)
3195 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3196 			 ep->ep_state);
3197 done:
3198 	host_ep->hcpriv = NULL;
3199 	spin_unlock_irqrestore(&xhci->lock, flags);
3200 }
3201 
3202 /*
3203  * Called after usb core issues a clear halt control message.
3204  * The host side of the halt should already be cleared by a reset endpoint
3205  * command issued when the STALL event was received.
3206  *
3207  * The reset endpoint command may only be issued to endpoints in the halted
3208  * state. For software that wishes to reset the data toggle or sequence number
3209  * of an endpoint that isn't in the halted state this function will issue a
3210  * configure endpoint command with the Drop and Add bits set for the target
3211  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3212  */
3213 
3214 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3215 		struct usb_host_endpoint *host_ep)
3216 {
3217 	struct xhci_hcd *xhci;
3218 	struct usb_device *udev;
3219 	struct xhci_virt_device *vdev;
3220 	struct xhci_virt_ep *ep;
3221 	struct xhci_input_control_ctx *ctrl_ctx;
3222 	struct xhci_command *stop_cmd, *cfg_cmd;
3223 	unsigned int ep_index;
3224 	unsigned long flags;
3225 	u32 ep_flag;
3226 	int err;
3227 
3228 	xhci = hcd_to_xhci(hcd);
3229 	if (!host_ep->hcpriv)
3230 		return;
3231 	udev = (struct usb_device *) host_ep->hcpriv;
3232 	vdev = xhci->devs[udev->slot_id];
3233 
3234 	/*
3235 	 * vdev may be lost due to xHC restore error and re-initialization
3236 	 * during S3/S4 resume. A new vdev will be allocated later by
3237 	 * xhci_discover_or_reset_device()
3238 	 */
3239 	if (!udev->slot_id || !vdev)
3240 		return;
3241 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3242 	ep = &vdev->eps[ep_index];
3243 
3244 	/* Bail out if toggle is already being cleared by a endpoint reset */
3245 	spin_lock_irqsave(&xhci->lock, flags);
3246 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3247 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3248 		spin_unlock_irqrestore(&xhci->lock, flags);
3249 		return;
3250 	}
3251 	spin_unlock_irqrestore(&xhci->lock, flags);
3252 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3253 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3254 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3255 		return;
3256 
3257 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3258 
3259 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3260 		return;
3261 
3262 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3263 	if (!stop_cmd)
3264 		return;
3265 
3266 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3267 	if (!cfg_cmd)
3268 		goto cleanup;
3269 
3270 	spin_lock_irqsave(&xhci->lock, flags);
3271 
3272 	/* block queuing new trbs and ringing ep doorbell */
3273 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3274 
3275 	/*
3276 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3277 	 * Driver is required to synchronously cancel all transfer request.
3278 	 * Stop the endpoint to force xHC to update the output context
3279 	 */
3280 
3281 	if (!list_empty(&ep->ring->td_list)) {
3282 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3283 		spin_unlock_irqrestore(&xhci->lock, flags);
3284 		xhci_free_command(xhci, cfg_cmd);
3285 		goto cleanup;
3286 	}
3287 
3288 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3289 					ep_index, 0);
3290 	if (err < 0) {
3291 		spin_unlock_irqrestore(&xhci->lock, flags);
3292 		xhci_free_command(xhci, cfg_cmd);
3293 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3294 				__func__, err);
3295 		goto cleanup;
3296 	}
3297 
3298 	xhci_ring_cmd_db(xhci);
3299 	spin_unlock_irqrestore(&xhci->lock, flags);
3300 
3301 	wait_for_completion(stop_cmd->completion);
3302 
3303 	spin_lock_irqsave(&xhci->lock, flags);
3304 
3305 	/* config ep command clears toggle if add and drop ep flags are set */
3306 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3307 	if (!ctrl_ctx) {
3308 		spin_unlock_irqrestore(&xhci->lock, flags);
3309 		xhci_free_command(xhci, cfg_cmd);
3310 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3311 				__func__);
3312 		goto cleanup;
3313 	}
3314 
3315 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3316 					   ctrl_ctx, ep_flag, ep_flag);
3317 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3318 
3319 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3320 				      udev->slot_id, false);
3321 	if (err < 0) {
3322 		spin_unlock_irqrestore(&xhci->lock, flags);
3323 		xhci_free_command(xhci, cfg_cmd);
3324 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3325 				__func__, err);
3326 		goto cleanup;
3327 	}
3328 
3329 	xhci_ring_cmd_db(xhci);
3330 	spin_unlock_irqrestore(&xhci->lock, flags);
3331 
3332 	wait_for_completion(cfg_cmd->completion);
3333 
3334 	xhci_free_command(xhci, cfg_cmd);
3335 cleanup:
3336 	xhci_free_command(xhci, stop_cmd);
3337 	spin_lock_irqsave(&xhci->lock, flags);
3338 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3339 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3340 	spin_unlock_irqrestore(&xhci->lock, flags);
3341 }
3342 
3343 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3344 		struct usb_device *udev, struct usb_host_endpoint *ep,
3345 		unsigned int slot_id)
3346 {
3347 	int ret;
3348 	unsigned int ep_index;
3349 	unsigned int ep_state;
3350 
3351 	if (!ep)
3352 		return -EINVAL;
3353 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3354 	if (ret <= 0)
3355 		return ret ? ret : -EINVAL;
3356 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3357 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3358 				" descriptor for ep 0x%x does not support streams\n",
3359 				ep->desc.bEndpointAddress);
3360 		return -EINVAL;
3361 	}
3362 
3363 	ep_index = xhci_get_endpoint_index(&ep->desc);
3364 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3365 	if (ep_state & EP_HAS_STREAMS ||
3366 			ep_state & EP_GETTING_STREAMS) {
3367 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3368 				"already has streams set up.\n",
3369 				ep->desc.bEndpointAddress);
3370 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3371 				"dynamic stream context array reallocation.\n");
3372 		return -EINVAL;
3373 	}
3374 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3375 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3376 				"endpoint 0x%x; URBs are pending.\n",
3377 				ep->desc.bEndpointAddress);
3378 		return -EINVAL;
3379 	}
3380 	return 0;
3381 }
3382 
3383 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3384 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3385 {
3386 	unsigned int max_streams;
3387 
3388 	/* The stream context array size must be a power of two */
3389 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3390 	/*
3391 	 * Find out how many primary stream array entries the host controller
3392 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3393 	 * level page entries), but that's an optional feature for xHCI host
3394 	 * controllers. xHCs must support at least 4 stream IDs.
3395 	 */
3396 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3397 	if (*num_stream_ctxs > max_streams) {
3398 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3399 				max_streams);
3400 		*num_stream_ctxs = max_streams;
3401 		*num_streams = max_streams;
3402 	}
3403 }
3404 
3405 /* Returns an error code if one of the endpoint already has streams.
3406  * This does not change any data structures, it only checks and gathers
3407  * information.
3408  */
3409 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3410 		struct usb_device *udev,
3411 		struct usb_host_endpoint **eps, unsigned int num_eps,
3412 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3413 {
3414 	unsigned int max_streams;
3415 	unsigned int endpoint_flag;
3416 	int i;
3417 	int ret;
3418 
3419 	for (i = 0; i < num_eps; i++) {
3420 		ret = xhci_check_streams_endpoint(xhci, udev,
3421 				eps[i], udev->slot_id);
3422 		if (ret < 0)
3423 			return ret;
3424 
3425 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3426 		if (max_streams < (*num_streams - 1)) {
3427 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3428 					eps[i]->desc.bEndpointAddress,
3429 					max_streams);
3430 			*num_streams = max_streams+1;
3431 		}
3432 
3433 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3434 		if (*changed_ep_bitmask & endpoint_flag)
3435 			return -EINVAL;
3436 		*changed_ep_bitmask |= endpoint_flag;
3437 	}
3438 	return 0;
3439 }
3440 
3441 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3442 		struct usb_device *udev,
3443 		struct usb_host_endpoint **eps, unsigned int num_eps)
3444 {
3445 	u32 changed_ep_bitmask = 0;
3446 	unsigned int slot_id;
3447 	unsigned int ep_index;
3448 	unsigned int ep_state;
3449 	int i;
3450 
3451 	slot_id = udev->slot_id;
3452 	if (!xhci->devs[slot_id])
3453 		return 0;
3454 
3455 	for (i = 0; i < num_eps; i++) {
3456 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3457 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3458 		/* Are streams already being freed for the endpoint? */
3459 		if (ep_state & EP_GETTING_NO_STREAMS) {
3460 			xhci_warn(xhci, "WARN Can't disable streams for "
3461 					"endpoint 0x%x, "
3462 					"streams are being disabled already\n",
3463 					eps[i]->desc.bEndpointAddress);
3464 			return 0;
3465 		}
3466 		/* Are there actually any streams to free? */
3467 		if (!(ep_state & EP_HAS_STREAMS) &&
3468 				!(ep_state & EP_GETTING_STREAMS)) {
3469 			xhci_warn(xhci, "WARN Can't disable streams for "
3470 					"endpoint 0x%x, "
3471 					"streams are already disabled!\n",
3472 					eps[i]->desc.bEndpointAddress);
3473 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3474 					"with non-streams endpoint\n");
3475 			return 0;
3476 		}
3477 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3478 	}
3479 	return changed_ep_bitmask;
3480 }
3481 
3482 /*
3483  * The USB device drivers use this function (through the HCD interface in USB
3484  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3485  * coordinate mass storage command queueing across multiple endpoints (basically
3486  * a stream ID == a task ID).
3487  *
3488  * Setting up streams involves allocating the same size stream context array
3489  * for each endpoint and issuing a configure endpoint command for all endpoints.
3490  *
3491  * Don't allow the call to succeed if one endpoint only supports one stream
3492  * (which means it doesn't support streams at all).
3493  *
3494  * Drivers may get less stream IDs than they asked for, if the host controller
3495  * hardware or endpoints claim they can't support the number of requested
3496  * stream IDs.
3497  */
3498 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3499 		struct usb_host_endpoint **eps, unsigned int num_eps,
3500 		unsigned int num_streams, gfp_t mem_flags)
3501 {
3502 	int i, ret;
3503 	struct xhci_hcd *xhci;
3504 	struct xhci_virt_device *vdev;
3505 	struct xhci_command *config_cmd;
3506 	struct xhci_input_control_ctx *ctrl_ctx;
3507 	unsigned int ep_index;
3508 	unsigned int num_stream_ctxs;
3509 	unsigned int max_packet;
3510 	unsigned long flags;
3511 	u32 changed_ep_bitmask = 0;
3512 
3513 	if (!eps)
3514 		return -EINVAL;
3515 
3516 	/* Add one to the number of streams requested to account for
3517 	 * stream 0 that is reserved for xHCI usage.
3518 	 */
3519 	num_streams += 1;
3520 	xhci = hcd_to_xhci(hcd);
3521 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3522 			num_streams);
3523 
3524 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3525 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3526 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3527 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3528 		return -ENOSYS;
3529 	}
3530 
3531 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3532 	if (!config_cmd)
3533 		return -ENOMEM;
3534 
3535 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3536 	if (!ctrl_ctx) {
3537 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3538 				__func__);
3539 		xhci_free_command(xhci, config_cmd);
3540 		return -ENOMEM;
3541 	}
3542 
3543 	/* Check to make sure all endpoints are not already configured for
3544 	 * streams.  While we're at it, find the maximum number of streams that
3545 	 * all the endpoints will support and check for duplicate endpoints.
3546 	 */
3547 	spin_lock_irqsave(&xhci->lock, flags);
3548 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3549 			num_eps, &num_streams, &changed_ep_bitmask);
3550 	if (ret < 0) {
3551 		xhci_free_command(xhci, config_cmd);
3552 		spin_unlock_irqrestore(&xhci->lock, flags);
3553 		return ret;
3554 	}
3555 	if (num_streams <= 1) {
3556 		xhci_warn(xhci, "WARN: endpoints can't handle "
3557 				"more than one stream.\n");
3558 		xhci_free_command(xhci, config_cmd);
3559 		spin_unlock_irqrestore(&xhci->lock, flags);
3560 		return -EINVAL;
3561 	}
3562 	vdev = xhci->devs[udev->slot_id];
3563 	/* Mark each endpoint as being in transition, so
3564 	 * xhci_urb_enqueue() will reject all URBs.
3565 	 */
3566 	for (i = 0; i < num_eps; i++) {
3567 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3568 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3569 	}
3570 	spin_unlock_irqrestore(&xhci->lock, flags);
3571 
3572 	/* Setup internal data structures and allocate HW data structures for
3573 	 * streams (but don't install the HW structures in the input context
3574 	 * until we're sure all memory allocation succeeded).
3575 	 */
3576 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3577 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3578 			num_stream_ctxs, num_streams);
3579 
3580 	for (i = 0; i < num_eps; i++) {
3581 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3582 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3583 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3584 				num_stream_ctxs,
3585 				num_streams,
3586 				max_packet, mem_flags);
3587 		if (!vdev->eps[ep_index].stream_info)
3588 			goto cleanup;
3589 		/* Set maxPstreams in endpoint context and update deq ptr to
3590 		 * point to stream context array. FIXME
3591 		 */
3592 	}
3593 
3594 	/* Set up the input context for a configure endpoint command. */
3595 	for (i = 0; i < num_eps; i++) {
3596 		struct xhci_ep_ctx *ep_ctx;
3597 
3598 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3599 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3600 
3601 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3602 				vdev->out_ctx, ep_index);
3603 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3604 				vdev->eps[ep_index].stream_info);
3605 	}
3606 	/* Tell the HW to drop its old copy of the endpoint context info
3607 	 * and add the updated copy from the input context.
3608 	 */
3609 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3610 			vdev->out_ctx, ctrl_ctx,
3611 			changed_ep_bitmask, changed_ep_bitmask);
3612 
3613 	/* Issue and wait for the configure endpoint command */
3614 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3615 			false, false);
3616 
3617 	/* xHC rejected the configure endpoint command for some reason, so we
3618 	 * leave the old ring intact and free our internal streams data
3619 	 * structure.
3620 	 */
3621 	if (ret < 0)
3622 		goto cleanup;
3623 
3624 	spin_lock_irqsave(&xhci->lock, flags);
3625 	for (i = 0; i < num_eps; i++) {
3626 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3627 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3628 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3629 			 udev->slot_id, ep_index);
3630 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3631 	}
3632 	xhci_free_command(xhci, config_cmd);
3633 	spin_unlock_irqrestore(&xhci->lock, flags);
3634 
3635 	for (i = 0; i < num_eps; i++) {
3636 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3637 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3638 	}
3639 	/* Subtract 1 for stream 0, which drivers can't use */
3640 	return num_streams - 1;
3641 
3642 cleanup:
3643 	/* If it didn't work, free the streams! */
3644 	for (i = 0; i < num_eps; i++) {
3645 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3646 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3647 		vdev->eps[ep_index].stream_info = NULL;
3648 		/* FIXME Unset maxPstreams in endpoint context and
3649 		 * update deq ptr to point to normal string ring.
3650 		 */
3651 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3652 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3653 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3654 	}
3655 	xhci_free_command(xhci, config_cmd);
3656 	return -ENOMEM;
3657 }
3658 
3659 /* Transition the endpoint from using streams to being a "normal" endpoint
3660  * without streams.
3661  *
3662  * Modify the endpoint context state, submit a configure endpoint command,
3663  * and free all endpoint rings for streams if that completes successfully.
3664  */
3665 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3666 		struct usb_host_endpoint **eps, unsigned int num_eps,
3667 		gfp_t mem_flags)
3668 {
3669 	int i, ret;
3670 	struct xhci_hcd *xhci;
3671 	struct xhci_virt_device *vdev;
3672 	struct xhci_command *command;
3673 	struct xhci_input_control_ctx *ctrl_ctx;
3674 	unsigned int ep_index;
3675 	unsigned long flags;
3676 	u32 changed_ep_bitmask;
3677 
3678 	xhci = hcd_to_xhci(hcd);
3679 	vdev = xhci->devs[udev->slot_id];
3680 
3681 	/* Set up a configure endpoint command to remove the streams rings */
3682 	spin_lock_irqsave(&xhci->lock, flags);
3683 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3684 			udev, eps, num_eps);
3685 	if (changed_ep_bitmask == 0) {
3686 		spin_unlock_irqrestore(&xhci->lock, flags);
3687 		return -EINVAL;
3688 	}
3689 
3690 	/* Use the xhci_command structure from the first endpoint.  We may have
3691 	 * allocated too many, but the driver may call xhci_free_streams() for
3692 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3693 	 */
3694 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3695 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3696 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3697 	if (!ctrl_ctx) {
3698 		spin_unlock_irqrestore(&xhci->lock, flags);
3699 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3700 				__func__);
3701 		return -EINVAL;
3702 	}
3703 
3704 	for (i = 0; i < num_eps; i++) {
3705 		struct xhci_ep_ctx *ep_ctx;
3706 
3707 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3708 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3709 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3710 			EP_GETTING_NO_STREAMS;
3711 
3712 		xhci_endpoint_copy(xhci, command->in_ctx,
3713 				vdev->out_ctx, ep_index);
3714 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3715 				&vdev->eps[ep_index]);
3716 	}
3717 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3718 			vdev->out_ctx, ctrl_ctx,
3719 			changed_ep_bitmask, changed_ep_bitmask);
3720 	spin_unlock_irqrestore(&xhci->lock, flags);
3721 
3722 	/* Issue and wait for the configure endpoint command,
3723 	 * which must succeed.
3724 	 */
3725 	ret = xhci_configure_endpoint(xhci, udev, command,
3726 			false, true);
3727 
3728 	/* xHC rejected the configure endpoint command for some reason, so we
3729 	 * leave the streams rings intact.
3730 	 */
3731 	if (ret < 0)
3732 		return ret;
3733 
3734 	spin_lock_irqsave(&xhci->lock, flags);
3735 	for (i = 0; i < num_eps; i++) {
3736 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3737 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3738 		vdev->eps[ep_index].stream_info = NULL;
3739 		/* FIXME Unset maxPstreams in endpoint context and
3740 		 * update deq ptr to point to normal string ring.
3741 		 */
3742 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3743 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3744 	}
3745 	spin_unlock_irqrestore(&xhci->lock, flags);
3746 
3747 	return 0;
3748 }
3749 
3750 /*
3751  * Deletes endpoint resources for endpoints that were active before a Reset
3752  * Device command, or a Disable Slot command.  The Reset Device command leaves
3753  * the control endpoint intact, whereas the Disable Slot command deletes it.
3754  *
3755  * Must be called with xhci->lock held.
3756  */
3757 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3758 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3759 {
3760 	int i;
3761 	unsigned int num_dropped_eps = 0;
3762 	unsigned int drop_flags = 0;
3763 
3764 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3765 		if (virt_dev->eps[i].ring) {
3766 			drop_flags |= 1 << i;
3767 			num_dropped_eps++;
3768 		}
3769 	}
3770 	xhci->num_active_eps -= num_dropped_eps;
3771 	if (num_dropped_eps)
3772 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3773 				"Dropped %u ep ctxs, flags = 0x%x, "
3774 				"%u now active.",
3775 				num_dropped_eps, drop_flags,
3776 				xhci->num_active_eps);
3777 }
3778 
3779 /*
3780  * This submits a Reset Device Command, which will set the device state to 0,
3781  * set the device address to 0, and disable all the endpoints except the default
3782  * control endpoint.  The USB core should come back and call
3783  * xhci_address_device(), and then re-set up the configuration.  If this is
3784  * called because of a usb_reset_and_verify_device(), then the old alternate
3785  * settings will be re-installed through the normal bandwidth allocation
3786  * functions.
3787  *
3788  * Wait for the Reset Device command to finish.  Remove all structures
3789  * associated with the endpoints that were disabled.  Clear the input device
3790  * structure? Reset the control endpoint 0 max packet size?
3791  *
3792  * If the virt_dev to be reset does not exist or does not match the udev,
3793  * it means the device is lost, possibly due to the xHC restore error and
3794  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3795  * re-allocate the device.
3796  */
3797 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3798 		struct usb_device *udev)
3799 {
3800 	int ret, i;
3801 	unsigned long flags;
3802 	struct xhci_hcd *xhci;
3803 	unsigned int slot_id;
3804 	struct xhci_virt_device *virt_dev;
3805 	struct xhci_command *reset_device_cmd;
3806 	struct xhci_slot_ctx *slot_ctx;
3807 	int old_active_eps = 0;
3808 
3809 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3810 	if (ret <= 0)
3811 		return ret;
3812 	xhci = hcd_to_xhci(hcd);
3813 	slot_id = udev->slot_id;
3814 	virt_dev = xhci->devs[slot_id];
3815 	if (!virt_dev) {
3816 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3817 				"not exist. Re-allocate the device\n", slot_id);
3818 		ret = xhci_alloc_dev(hcd, udev);
3819 		if (ret == 1)
3820 			return 0;
3821 		else
3822 			return -EINVAL;
3823 	}
3824 
3825 	if (virt_dev->tt_info)
3826 		old_active_eps = virt_dev->tt_info->active_eps;
3827 
3828 	if (virt_dev->udev != udev) {
3829 		/* If the virt_dev and the udev does not match, this virt_dev
3830 		 * may belong to another udev.
3831 		 * Re-allocate the device.
3832 		 */
3833 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3834 				"not match the udev. Re-allocate the device\n",
3835 				slot_id);
3836 		ret = xhci_alloc_dev(hcd, udev);
3837 		if (ret == 1)
3838 			return 0;
3839 		else
3840 			return -EINVAL;
3841 	}
3842 
3843 	/* If device is not setup, there is no point in resetting it */
3844 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3845 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3846 						SLOT_STATE_DISABLED)
3847 		return 0;
3848 
3849 	trace_xhci_discover_or_reset_device(slot_ctx);
3850 
3851 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3852 	/* Allocate the command structure that holds the struct completion.
3853 	 * Assume we're in process context, since the normal device reset
3854 	 * process has to wait for the device anyway.  Storage devices are
3855 	 * reset as part of error handling, so use GFP_NOIO instead of
3856 	 * GFP_KERNEL.
3857 	 */
3858 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3859 	if (!reset_device_cmd) {
3860 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3861 		return -ENOMEM;
3862 	}
3863 
3864 	/* Attempt to submit the Reset Device command to the command ring */
3865 	spin_lock_irqsave(&xhci->lock, flags);
3866 
3867 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3868 	if (ret) {
3869 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3870 		spin_unlock_irqrestore(&xhci->lock, flags);
3871 		goto command_cleanup;
3872 	}
3873 	xhci_ring_cmd_db(xhci);
3874 	spin_unlock_irqrestore(&xhci->lock, flags);
3875 
3876 	/* Wait for the Reset Device command to finish */
3877 	wait_for_completion(reset_device_cmd->completion);
3878 
3879 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3880 	 * unless we tried to reset a slot ID that wasn't enabled,
3881 	 * or the device wasn't in the addressed or configured state.
3882 	 */
3883 	ret = reset_device_cmd->status;
3884 	switch (ret) {
3885 	case COMP_COMMAND_ABORTED:
3886 	case COMP_COMMAND_RING_STOPPED:
3887 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3888 		ret = -ETIME;
3889 		goto command_cleanup;
3890 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3891 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3892 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3893 				slot_id,
3894 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3895 		xhci_dbg(xhci, "Not freeing device rings.\n");
3896 		/* Don't treat this as an error.  May change my mind later. */
3897 		ret = 0;
3898 		goto command_cleanup;
3899 	case COMP_SUCCESS:
3900 		xhci_dbg(xhci, "Successful reset device command.\n");
3901 		break;
3902 	default:
3903 		if (xhci_is_vendor_info_code(xhci, ret))
3904 			break;
3905 		xhci_warn(xhci, "Unknown completion code %u for "
3906 				"reset device command.\n", ret);
3907 		ret = -EINVAL;
3908 		goto command_cleanup;
3909 	}
3910 
3911 	/* Free up host controller endpoint resources */
3912 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3913 		spin_lock_irqsave(&xhci->lock, flags);
3914 		/* Don't delete the default control endpoint resources */
3915 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3916 		spin_unlock_irqrestore(&xhci->lock, flags);
3917 	}
3918 
3919 	/* Everything but endpoint 0 is disabled, so free the rings. */
3920 	for (i = 1; i < 31; i++) {
3921 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3922 
3923 		if (ep->ep_state & EP_HAS_STREAMS) {
3924 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3925 					xhci_get_endpoint_address(i));
3926 			xhci_free_stream_info(xhci, ep->stream_info);
3927 			ep->stream_info = NULL;
3928 			ep->ep_state &= ~EP_HAS_STREAMS;
3929 		}
3930 
3931 		if (ep->ring) {
3932 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3933 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3934 		}
3935 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3936 			xhci_drop_ep_from_interval_table(xhci,
3937 					&virt_dev->eps[i].bw_info,
3938 					virt_dev->bw_table,
3939 					udev,
3940 					&virt_dev->eps[i],
3941 					virt_dev->tt_info);
3942 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3943 	}
3944 	/* If necessary, update the number of active TTs on this root port */
3945 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3946 	virt_dev->flags = 0;
3947 	ret = 0;
3948 
3949 command_cleanup:
3950 	xhci_free_command(xhci, reset_device_cmd);
3951 	return ret;
3952 }
3953 
3954 /*
3955  * At this point, the struct usb_device is about to go away, the device has
3956  * disconnected, and all traffic has been stopped and the endpoints have been
3957  * disabled.  Free any HC data structures associated with that device.
3958  */
3959 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3960 {
3961 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3962 	struct xhci_virt_device *virt_dev;
3963 	struct xhci_slot_ctx *slot_ctx;
3964 	int i, ret;
3965 
3966 	/*
3967 	 * We called pm_runtime_get_noresume when the device was attached.
3968 	 * Decrement the counter here to allow controller to runtime suspend
3969 	 * if no devices remain.
3970 	 */
3971 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3972 		pm_runtime_put_noidle(hcd->self.controller);
3973 
3974 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3975 	/* If the host is halted due to driver unload, we still need to free the
3976 	 * device.
3977 	 */
3978 	if (ret <= 0 && ret != -ENODEV)
3979 		return;
3980 
3981 	virt_dev = xhci->devs[udev->slot_id];
3982 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3983 	trace_xhci_free_dev(slot_ctx);
3984 
3985 	/* Stop any wayward timer functions (which may grab the lock) */
3986 	for (i = 0; i < 31; i++)
3987 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3988 	virt_dev->udev = NULL;
3989 	xhci_disable_slot(xhci, udev->slot_id);
3990 	xhci_free_virt_device(xhci, udev->slot_id);
3991 }
3992 
3993 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3994 {
3995 	struct xhci_command *command;
3996 	unsigned long flags;
3997 	u32 state;
3998 	int ret;
3999 
4000 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4001 	if (!command)
4002 		return -ENOMEM;
4003 
4004 	xhci_debugfs_remove_slot(xhci, slot_id);
4005 
4006 	spin_lock_irqsave(&xhci->lock, flags);
4007 	/* Don't disable the slot if the host controller is dead. */
4008 	state = readl(&xhci->op_regs->status);
4009 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4010 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4011 		spin_unlock_irqrestore(&xhci->lock, flags);
4012 		kfree(command);
4013 		return -ENODEV;
4014 	}
4015 
4016 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4017 				slot_id);
4018 	if (ret) {
4019 		spin_unlock_irqrestore(&xhci->lock, flags);
4020 		kfree(command);
4021 		return ret;
4022 	}
4023 	xhci_ring_cmd_db(xhci);
4024 	spin_unlock_irqrestore(&xhci->lock, flags);
4025 
4026 	wait_for_completion(command->completion);
4027 
4028 	if (command->status != COMP_SUCCESS)
4029 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4030 			  slot_id, command->status);
4031 
4032 	xhci_free_command(xhci, command);
4033 
4034 	return 0;
4035 }
4036 
4037 /*
4038  * Checks if we have enough host controller resources for the default control
4039  * endpoint.
4040  *
4041  * Must be called with xhci->lock held.
4042  */
4043 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4044 {
4045 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4046 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4047 				"Not enough ep ctxs: "
4048 				"%u active, need to add 1, limit is %u.",
4049 				xhci->num_active_eps, xhci->limit_active_eps);
4050 		return -ENOMEM;
4051 	}
4052 	xhci->num_active_eps += 1;
4053 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4054 			"Adding 1 ep ctx, %u now active.",
4055 			xhci->num_active_eps);
4056 	return 0;
4057 }
4058 
4059 
4060 /*
4061  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4062  * timed out, or allocating memory failed.  Returns 1 on success.
4063  */
4064 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4065 {
4066 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4067 	struct xhci_virt_device *vdev;
4068 	struct xhci_slot_ctx *slot_ctx;
4069 	unsigned long flags;
4070 	int ret, slot_id;
4071 	struct xhci_command *command;
4072 
4073 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4074 	if (!command)
4075 		return 0;
4076 
4077 	spin_lock_irqsave(&xhci->lock, flags);
4078 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4079 	if (ret) {
4080 		spin_unlock_irqrestore(&xhci->lock, flags);
4081 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4082 		xhci_free_command(xhci, command);
4083 		return 0;
4084 	}
4085 	xhci_ring_cmd_db(xhci);
4086 	spin_unlock_irqrestore(&xhci->lock, flags);
4087 
4088 	wait_for_completion(command->completion);
4089 	slot_id = command->slot_id;
4090 
4091 	if (!slot_id || command->status != COMP_SUCCESS) {
4092 		xhci_err(xhci, "Error while assigning device slot ID\n");
4093 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4094 				HCS_MAX_SLOTS(
4095 					readl(&xhci->cap_regs->hcs_params1)));
4096 		xhci_free_command(xhci, command);
4097 		return 0;
4098 	}
4099 
4100 	xhci_free_command(xhci, command);
4101 
4102 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4103 		spin_lock_irqsave(&xhci->lock, flags);
4104 		ret = xhci_reserve_host_control_ep_resources(xhci);
4105 		if (ret) {
4106 			spin_unlock_irqrestore(&xhci->lock, flags);
4107 			xhci_warn(xhci, "Not enough host resources, "
4108 					"active endpoint contexts = %u\n",
4109 					xhci->num_active_eps);
4110 			goto disable_slot;
4111 		}
4112 		spin_unlock_irqrestore(&xhci->lock, flags);
4113 	}
4114 	/* Use GFP_NOIO, since this function can be called from
4115 	 * xhci_discover_or_reset_device(), which may be called as part of
4116 	 * mass storage driver error handling.
4117 	 */
4118 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4119 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4120 		goto disable_slot;
4121 	}
4122 	vdev = xhci->devs[slot_id];
4123 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4124 	trace_xhci_alloc_dev(slot_ctx);
4125 
4126 	udev->slot_id = slot_id;
4127 
4128 	xhci_debugfs_create_slot(xhci, slot_id);
4129 
4130 	/*
4131 	 * If resetting upon resume, we can't put the controller into runtime
4132 	 * suspend if there is a device attached.
4133 	 */
4134 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4135 		pm_runtime_get_noresume(hcd->self.controller);
4136 
4137 	/* Is this a LS or FS device under a HS hub? */
4138 	/* Hub or peripherial? */
4139 	return 1;
4140 
4141 disable_slot:
4142 	xhci_disable_slot(xhci, udev->slot_id);
4143 	xhci_free_virt_device(xhci, udev->slot_id);
4144 
4145 	return 0;
4146 }
4147 
4148 /*
4149  * Issue an Address Device command and optionally send a corresponding
4150  * SetAddress request to the device.
4151  */
4152 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4153 			     enum xhci_setup_dev setup)
4154 {
4155 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4156 	unsigned long flags;
4157 	struct xhci_virt_device *virt_dev;
4158 	int ret = 0;
4159 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4160 	struct xhci_slot_ctx *slot_ctx;
4161 	struct xhci_input_control_ctx *ctrl_ctx;
4162 	u64 temp_64;
4163 	struct xhci_command *command = NULL;
4164 
4165 	mutex_lock(&xhci->mutex);
4166 
4167 	if (xhci->xhc_state) {	/* dying, removing or halted */
4168 		ret = -ESHUTDOWN;
4169 		goto out;
4170 	}
4171 
4172 	if (!udev->slot_id) {
4173 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4174 				"Bad Slot ID %d", udev->slot_id);
4175 		ret = -EINVAL;
4176 		goto out;
4177 	}
4178 
4179 	virt_dev = xhci->devs[udev->slot_id];
4180 
4181 	if (WARN_ON(!virt_dev)) {
4182 		/*
4183 		 * In plug/unplug torture test with an NEC controller,
4184 		 * a zero-dereference was observed once due to virt_dev = 0.
4185 		 * Print useful debug rather than crash if it is observed again!
4186 		 */
4187 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4188 			udev->slot_id);
4189 		ret = -EINVAL;
4190 		goto out;
4191 	}
4192 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4193 	trace_xhci_setup_device_slot(slot_ctx);
4194 
4195 	if (setup == SETUP_CONTEXT_ONLY) {
4196 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4197 		    SLOT_STATE_DEFAULT) {
4198 			xhci_dbg(xhci, "Slot already in default state\n");
4199 			goto out;
4200 		}
4201 	}
4202 
4203 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4204 	if (!command) {
4205 		ret = -ENOMEM;
4206 		goto out;
4207 	}
4208 
4209 	command->in_ctx = virt_dev->in_ctx;
4210 
4211 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4212 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4213 	if (!ctrl_ctx) {
4214 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4215 				__func__);
4216 		ret = -EINVAL;
4217 		goto out;
4218 	}
4219 	/*
4220 	 * If this is the first Set Address since device plug-in or
4221 	 * virt_device realloaction after a resume with an xHCI power loss,
4222 	 * then set up the slot context.
4223 	 */
4224 	if (!slot_ctx->dev_info)
4225 		xhci_setup_addressable_virt_dev(xhci, udev);
4226 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4227 	else
4228 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4229 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4230 	ctrl_ctx->drop_flags = 0;
4231 
4232 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4233 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4234 
4235 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4236 	spin_lock_irqsave(&xhci->lock, flags);
4237 	trace_xhci_setup_device(virt_dev);
4238 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4239 					udev->slot_id, setup);
4240 	if (ret) {
4241 		spin_unlock_irqrestore(&xhci->lock, flags);
4242 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4243 				"FIXME: allocate a command ring segment");
4244 		goto out;
4245 	}
4246 	xhci_ring_cmd_db(xhci);
4247 	spin_unlock_irqrestore(&xhci->lock, flags);
4248 
4249 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4250 	wait_for_completion(command->completion);
4251 
4252 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4253 	 * the SetAddress() "recovery interval" required by USB and aborting the
4254 	 * command on a timeout.
4255 	 */
4256 	switch (command->status) {
4257 	case COMP_COMMAND_ABORTED:
4258 	case COMP_COMMAND_RING_STOPPED:
4259 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4260 		ret = -ETIME;
4261 		break;
4262 	case COMP_CONTEXT_STATE_ERROR:
4263 	case COMP_SLOT_NOT_ENABLED_ERROR:
4264 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4265 			 act, udev->slot_id);
4266 		ret = -EINVAL;
4267 		break;
4268 	case COMP_USB_TRANSACTION_ERROR:
4269 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4270 
4271 		mutex_unlock(&xhci->mutex);
4272 		ret = xhci_disable_slot(xhci, udev->slot_id);
4273 		xhci_free_virt_device(xhci, udev->slot_id);
4274 		if (!ret)
4275 			xhci_alloc_dev(hcd, udev);
4276 		kfree(command->completion);
4277 		kfree(command);
4278 		return -EPROTO;
4279 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4280 		dev_warn(&udev->dev,
4281 			 "ERROR: Incompatible device for setup %s command\n", act);
4282 		ret = -ENODEV;
4283 		break;
4284 	case COMP_SUCCESS:
4285 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4286 			       "Successful setup %s command", act);
4287 		break;
4288 	default:
4289 		xhci_err(xhci,
4290 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4291 			 act, command->status);
4292 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4293 		ret = -EINVAL;
4294 		break;
4295 	}
4296 	if (ret)
4297 		goto out;
4298 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4299 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4300 			"Op regs DCBAA ptr = %#016llx", temp_64);
4301 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4302 		"Slot ID %d dcbaa entry @%p = %#016llx",
4303 		udev->slot_id,
4304 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4305 		(unsigned long long)
4306 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4307 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4308 			"Output Context DMA address = %#08llx",
4309 			(unsigned long long)virt_dev->out_ctx->dma);
4310 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4311 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4312 	/*
4313 	 * USB core uses address 1 for the roothubs, so we add one to the
4314 	 * address given back to us by the HC.
4315 	 */
4316 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4317 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4318 	/* Zero the input context control for later use */
4319 	ctrl_ctx->add_flags = 0;
4320 	ctrl_ctx->drop_flags = 0;
4321 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4322 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4323 
4324 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4325 		       "Internal device address = %d",
4326 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4327 out:
4328 	mutex_unlock(&xhci->mutex);
4329 	if (command) {
4330 		kfree(command->completion);
4331 		kfree(command);
4332 	}
4333 	return ret;
4334 }
4335 
4336 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4337 {
4338 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4339 }
4340 
4341 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4342 {
4343 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4344 }
4345 
4346 /*
4347  * Transfer the port index into real index in the HW port status
4348  * registers. Caculate offset between the port's PORTSC register
4349  * and port status base. Divide the number of per port register
4350  * to get the real index. The raw port number bases 1.
4351  */
4352 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4353 {
4354 	struct xhci_hub *rhub;
4355 
4356 	rhub = xhci_get_rhub(hcd);
4357 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4358 }
4359 
4360 /*
4361  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4362  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4363  */
4364 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4365 			struct usb_device *udev, u16 max_exit_latency)
4366 {
4367 	struct xhci_virt_device *virt_dev;
4368 	struct xhci_command *command;
4369 	struct xhci_input_control_ctx *ctrl_ctx;
4370 	struct xhci_slot_ctx *slot_ctx;
4371 	unsigned long flags;
4372 	int ret;
4373 
4374 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4375 	if (!command)
4376 		return -ENOMEM;
4377 
4378 	spin_lock_irqsave(&xhci->lock, flags);
4379 
4380 	virt_dev = xhci->devs[udev->slot_id];
4381 
4382 	/*
4383 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4384 	 * xHC was re-initialized. Exit latency will be set later after
4385 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4386 	 */
4387 
4388 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4389 		spin_unlock_irqrestore(&xhci->lock, flags);
4390 		return 0;
4391 	}
4392 
4393 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4394 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4395 	if (!ctrl_ctx) {
4396 		spin_unlock_irqrestore(&xhci->lock, flags);
4397 		xhci_free_command(xhci, command);
4398 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4399 				__func__);
4400 		return -ENOMEM;
4401 	}
4402 
4403 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4404 	spin_unlock_irqrestore(&xhci->lock, flags);
4405 
4406 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4407 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4408 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4409 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4410 	slot_ctx->dev_state = 0;
4411 
4412 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4413 			"Set up evaluate context for LPM MEL change.");
4414 
4415 	/* Issue and wait for the evaluate context command. */
4416 	ret = xhci_configure_endpoint(xhci, udev, command,
4417 			true, true);
4418 
4419 	if (!ret) {
4420 		spin_lock_irqsave(&xhci->lock, flags);
4421 		virt_dev->current_mel = max_exit_latency;
4422 		spin_unlock_irqrestore(&xhci->lock, flags);
4423 	}
4424 
4425 	xhci_free_command(xhci, command);
4426 
4427 	return ret;
4428 }
4429 
4430 #ifdef CONFIG_PM
4431 
4432 /* BESL to HIRD Encoding array for USB2 LPM */
4433 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4434 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4435 
4436 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4437 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4438 					struct usb_device *udev)
4439 {
4440 	int u2del, besl, besl_host;
4441 	int besl_device = 0;
4442 	u32 field;
4443 
4444 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4445 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4446 
4447 	if (field & USB_BESL_SUPPORT) {
4448 		for (besl_host = 0; besl_host < 16; besl_host++) {
4449 			if (xhci_besl_encoding[besl_host] >= u2del)
4450 				break;
4451 		}
4452 		/* Use baseline BESL value as default */
4453 		if (field & USB_BESL_BASELINE_VALID)
4454 			besl_device = USB_GET_BESL_BASELINE(field);
4455 		else if (field & USB_BESL_DEEP_VALID)
4456 			besl_device = USB_GET_BESL_DEEP(field);
4457 	} else {
4458 		if (u2del <= 50)
4459 			besl_host = 0;
4460 		else
4461 			besl_host = (u2del - 51) / 75 + 1;
4462 	}
4463 
4464 	besl = besl_host + besl_device;
4465 	if (besl > 15)
4466 		besl = 15;
4467 
4468 	return besl;
4469 }
4470 
4471 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4472 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4473 {
4474 	u32 field;
4475 	int l1;
4476 	int besld = 0;
4477 	int hirdm = 0;
4478 
4479 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4480 
4481 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4482 	l1 = udev->l1_params.timeout / 256;
4483 
4484 	/* device has preferred BESLD */
4485 	if (field & USB_BESL_DEEP_VALID) {
4486 		besld = USB_GET_BESL_DEEP(field);
4487 		hirdm = 1;
4488 	}
4489 
4490 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4491 }
4492 
4493 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4494 			struct usb_device *udev, int enable)
4495 {
4496 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4497 	struct xhci_port **ports;
4498 	__le32 __iomem	*pm_addr, *hlpm_addr;
4499 	u32		pm_val, hlpm_val, field;
4500 	unsigned int	port_num;
4501 	unsigned long	flags;
4502 	int		hird, exit_latency;
4503 	int		ret;
4504 
4505 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4506 		return -EPERM;
4507 
4508 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4509 			!udev->lpm_capable)
4510 		return -EPERM;
4511 
4512 	if (!udev->parent || udev->parent->parent ||
4513 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4514 		return -EPERM;
4515 
4516 	if (udev->usb2_hw_lpm_capable != 1)
4517 		return -EPERM;
4518 
4519 	spin_lock_irqsave(&xhci->lock, flags);
4520 
4521 	ports = xhci->usb2_rhub.ports;
4522 	port_num = udev->portnum - 1;
4523 	pm_addr = ports[port_num]->addr + PORTPMSC;
4524 	pm_val = readl(pm_addr);
4525 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4526 
4527 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4528 			enable ? "enable" : "disable", port_num + 1);
4529 
4530 	if (enable) {
4531 		/* Host supports BESL timeout instead of HIRD */
4532 		if (udev->usb2_hw_lpm_besl_capable) {
4533 			/* if device doesn't have a preferred BESL value use a
4534 			 * default one which works with mixed HIRD and BESL
4535 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4536 			 */
4537 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4538 			if ((field & USB_BESL_SUPPORT) &&
4539 			    (field & USB_BESL_BASELINE_VALID))
4540 				hird = USB_GET_BESL_BASELINE(field);
4541 			else
4542 				hird = udev->l1_params.besl;
4543 
4544 			exit_latency = xhci_besl_encoding[hird];
4545 			spin_unlock_irqrestore(&xhci->lock, flags);
4546 
4547 			ret = xhci_change_max_exit_latency(xhci, udev,
4548 							   exit_latency);
4549 			if (ret < 0)
4550 				return ret;
4551 			spin_lock_irqsave(&xhci->lock, flags);
4552 
4553 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4554 			writel(hlpm_val, hlpm_addr);
4555 			/* flush write */
4556 			readl(hlpm_addr);
4557 		} else {
4558 			hird = xhci_calculate_hird_besl(xhci, udev);
4559 		}
4560 
4561 		pm_val &= ~PORT_HIRD_MASK;
4562 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4563 		writel(pm_val, pm_addr);
4564 		pm_val = readl(pm_addr);
4565 		pm_val |= PORT_HLE;
4566 		writel(pm_val, pm_addr);
4567 		/* flush write */
4568 		readl(pm_addr);
4569 	} else {
4570 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4571 		writel(pm_val, pm_addr);
4572 		/* flush write */
4573 		readl(pm_addr);
4574 		if (udev->usb2_hw_lpm_besl_capable) {
4575 			spin_unlock_irqrestore(&xhci->lock, flags);
4576 			xhci_change_max_exit_latency(xhci, udev, 0);
4577 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4578 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4579 					   100, 10000);
4580 			return 0;
4581 		}
4582 	}
4583 
4584 	spin_unlock_irqrestore(&xhci->lock, flags);
4585 	return 0;
4586 }
4587 
4588 /* check if a usb2 port supports a given extened capability protocol
4589  * only USB2 ports extended protocol capability values are cached.
4590  * Return 1 if capability is supported
4591  */
4592 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4593 					   unsigned capability)
4594 {
4595 	u32 port_offset, port_count;
4596 	int i;
4597 
4598 	for (i = 0; i < xhci->num_ext_caps; i++) {
4599 		if (xhci->ext_caps[i] & capability) {
4600 			/* port offsets starts at 1 */
4601 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4602 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4603 			if (port >= port_offset &&
4604 			    port < port_offset + port_count)
4605 				return 1;
4606 		}
4607 	}
4608 	return 0;
4609 }
4610 
4611 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4612 {
4613 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4614 	int		portnum = udev->portnum - 1;
4615 
4616 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4617 		return 0;
4618 
4619 	/* we only support lpm for non-hub device connected to root hub yet */
4620 	if (!udev->parent || udev->parent->parent ||
4621 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4622 		return 0;
4623 
4624 	if (xhci->hw_lpm_support == 1 &&
4625 			xhci_check_usb2_port_capability(
4626 				xhci, portnum, XHCI_HLC)) {
4627 		udev->usb2_hw_lpm_capable = 1;
4628 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4629 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4630 		if (xhci_check_usb2_port_capability(xhci, portnum,
4631 					XHCI_BLC))
4632 			udev->usb2_hw_lpm_besl_capable = 1;
4633 	}
4634 
4635 	return 0;
4636 }
4637 
4638 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4639 
4640 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4641 static unsigned long long xhci_service_interval_to_ns(
4642 		struct usb_endpoint_descriptor *desc)
4643 {
4644 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4645 }
4646 
4647 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4648 		enum usb3_link_state state)
4649 {
4650 	unsigned long long sel;
4651 	unsigned long long pel;
4652 	unsigned int max_sel_pel;
4653 	char *state_name;
4654 
4655 	switch (state) {
4656 	case USB3_LPM_U1:
4657 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4658 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4659 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4660 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4661 		state_name = "U1";
4662 		break;
4663 	case USB3_LPM_U2:
4664 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4665 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4666 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4667 		state_name = "U2";
4668 		break;
4669 	default:
4670 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4671 				__func__);
4672 		return USB3_LPM_DISABLED;
4673 	}
4674 
4675 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4676 		return USB3_LPM_DEVICE_INITIATED;
4677 
4678 	if (sel > max_sel_pel)
4679 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4680 				"due to long SEL %llu ms\n",
4681 				state_name, sel);
4682 	else
4683 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4684 				"due to long PEL %llu ms\n",
4685 				state_name, pel);
4686 	return USB3_LPM_DISABLED;
4687 }
4688 
4689 /* The U1 timeout should be the maximum of the following values:
4690  *  - For control endpoints, U1 system exit latency (SEL) * 3
4691  *  - For bulk endpoints, U1 SEL * 5
4692  *  - For interrupt endpoints:
4693  *    - Notification EPs, U1 SEL * 3
4694  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4695  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4696  */
4697 static unsigned long long xhci_calculate_intel_u1_timeout(
4698 		struct usb_device *udev,
4699 		struct usb_endpoint_descriptor *desc)
4700 {
4701 	unsigned long long timeout_ns;
4702 	int ep_type;
4703 	int intr_type;
4704 
4705 	ep_type = usb_endpoint_type(desc);
4706 	switch (ep_type) {
4707 	case USB_ENDPOINT_XFER_CONTROL:
4708 		timeout_ns = udev->u1_params.sel * 3;
4709 		break;
4710 	case USB_ENDPOINT_XFER_BULK:
4711 		timeout_ns = udev->u1_params.sel * 5;
4712 		break;
4713 	case USB_ENDPOINT_XFER_INT:
4714 		intr_type = usb_endpoint_interrupt_type(desc);
4715 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4716 			timeout_ns = udev->u1_params.sel * 3;
4717 			break;
4718 		}
4719 		/* Otherwise the calculation is the same as isoc eps */
4720 		fallthrough;
4721 	case USB_ENDPOINT_XFER_ISOC:
4722 		timeout_ns = xhci_service_interval_to_ns(desc);
4723 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4724 		if (timeout_ns < udev->u1_params.sel * 2)
4725 			timeout_ns = udev->u1_params.sel * 2;
4726 		break;
4727 	default:
4728 		return 0;
4729 	}
4730 
4731 	return timeout_ns;
4732 }
4733 
4734 /* Returns the hub-encoded U1 timeout value. */
4735 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4736 		struct usb_device *udev,
4737 		struct usb_endpoint_descriptor *desc)
4738 {
4739 	unsigned long long timeout_ns;
4740 
4741 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4742 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4743 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4744 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4745 			return USB3_LPM_DISABLED;
4746 		}
4747 	}
4748 
4749 	if (xhci->quirks & XHCI_INTEL_HOST)
4750 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4751 	else
4752 		timeout_ns = udev->u1_params.sel;
4753 
4754 	/* The U1 timeout is encoded in 1us intervals.
4755 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4756 	 */
4757 	if (timeout_ns == USB3_LPM_DISABLED)
4758 		timeout_ns = 1;
4759 	else
4760 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4761 
4762 	/* If the necessary timeout value is bigger than what we can set in the
4763 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4764 	 */
4765 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4766 		return timeout_ns;
4767 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4768 			"due to long timeout %llu ms\n", timeout_ns);
4769 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4770 }
4771 
4772 /* The U2 timeout should be the maximum of:
4773  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4774  *  - largest bInterval of any active periodic endpoint (to avoid going
4775  *    into lower power link states between intervals).
4776  *  - the U2 Exit Latency of the device
4777  */
4778 static unsigned long long xhci_calculate_intel_u2_timeout(
4779 		struct usb_device *udev,
4780 		struct usb_endpoint_descriptor *desc)
4781 {
4782 	unsigned long long timeout_ns;
4783 	unsigned long long u2_del_ns;
4784 
4785 	timeout_ns = 10 * 1000 * 1000;
4786 
4787 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4788 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4789 		timeout_ns = xhci_service_interval_to_ns(desc);
4790 
4791 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4792 	if (u2_del_ns > timeout_ns)
4793 		timeout_ns = u2_del_ns;
4794 
4795 	return timeout_ns;
4796 }
4797 
4798 /* Returns the hub-encoded U2 timeout value. */
4799 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4800 		struct usb_device *udev,
4801 		struct usb_endpoint_descriptor *desc)
4802 {
4803 	unsigned long long timeout_ns;
4804 
4805 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4806 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4807 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4808 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4809 			return USB3_LPM_DISABLED;
4810 		}
4811 	}
4812 
4813 	if (xhci->quirks & XHCI_INTEL_HOST)
4814 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4815 	else
4816 		timeout_ns = udev->u2_params.sel;
4817 
4818 	/* The U2 timeout is encoded in 256us intervals */
4819 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4820 	/* If the necessary timeout value is bigger than what we can set in the
4821 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4822 	 */
4823 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4824 		return timeout_ns;
4825 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4826 			"due to long timeout %llu ms\n", timeout_ns);
4827 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4828 }
4829 
4830 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4831 		struct usb_device *udev,
4832 		struct usb_endpoint_descriptor *desc,
4833 		enum usb3_link_state state,
4834 		u16 *timeout)
4835 {
4836 	if (state == USB3_LPM_U1)
4837 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4838 	else if (state == USB3_LPM_U2)
4839 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4840 
4841 	return USB3_LPM_DISABLED;
4842 }
4843 
4844 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4845 		struct usb_device *udev,
4846 		struct usb_endpoint_descriptor *desc,
4847 		enum usb3_link_state state,
4848 		u16 *timeout)
4849 {
4850 	u16 alt_timeout;
4851 
4852 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4853 		desc, state, timeout);
4854 
4855 	/* If we found we can't enable hub-initiated LPM, and
4856 	 * the U1 or U2 exit latency was too high to allow
4857 	 * device-initiated LPM as well, then we will disable LPM
4858 	 * for this device, so stop searching any further.
4859 	 */
4860 	if (alt_timeout == USB3_LPM_DISABLED) {
4861 		*timeout = alt_timeout;
4862 		return -E2BIG;
4863 	}
4864 	if (alt_timeout > *timeout)
4865 		*timeout = alt_timeout;
4866 	return 0;
4867 }
4868 
4869 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4870 		struct usb_device *udev,
4871 		struct usb_host_interface *alt,
4872 		enum usb3_link_state state,
4873 		u16 *timeout)
4874 {
4875 	int j;
4876 
4877 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4878 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4879 					&alt->endpoint[j].desc, state, timeout))
4880 			return -E2BIG;
4881 	}
4882 	return 0;
4883 }
4884 
4885 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4886 		enum usb3_link_state state)
4887 {
4888 	struct usb_device *parent;
4889 	unsigned int num_hubs;
4890 
4891 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4892 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4893 			parent = parent->parent)
4894 		num_hubs++;
4895 
4896 	if (num_hubs < 2)
4897 		return 0;
4898 
4899 	dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4900 			" below second-tier hub.\n");
4901 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4902 			"to decrease power consumption.\n");
4903 	return -E2BIG;
4904 }
4905 
4906 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4907 		struct usb_device *udev,
4908 		enum usb3_link_state state)
4909 {
4910 	if (xhci->quirks & XHCI_INTEL_HOST)
4911 		return xhci_check_intel_tier_policy(udev, state);
4912 	else
4913 		return 0;
4914 }
4915 
4916 /* Returns the U1 or U2 timeout that should be enabled.
4917  * If the tier check or timeout setting functions return with a non-zero exit
4918  * code, that means the timeout value has been finalized and we shouldn't look
4919  * at any more endpoints.
4920  */
4921 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4922 			struct usb_device *udev, enum usb3_link_state state)
4923 {
4924 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4925 	struct usb_host_config *config;
4926 	char *state_name;
4927 	int i;
4928 	u16 timeout = USB3_LPM_DISABLED;
4929 
4930 	if (state == USB3_LPM_U1)
4931 		state_name = "U1";
4932 	else if (state == USB3_LPM_U2)
4933 		state_name = "U2";
4934 	else {
4935 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4936 				state);
4937 		return timeout;
4938 	}
4939 
4940 	/* Gather some information about the currently installed configuration
4941 	 * and alternate interface settings.
4942 	 */
4943 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4944 			state, &timeout))
4945 		return timeout;
4946 
4947 	config = udev->actconfig;
4948 	if (!config)
4949 		return timeout;
4950 
4951 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4952 		struct usb_driver *driver;
4953 		struct usb_interface *intf = config->interface[i];
4954 
4955 		if (!intf)
4956 			continue;
4957 
4958 		/* Check if any currently bound drivers want hub-initiated LPM
4959 		 * disabled.
4960 		 */
4961 		if (intf->dev.driver) {
4962 			driver = to_usb_driver(intf->dev.driver);
4963 			if (driver && driver->disable_hub_initiated_lpm) {
4964 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4965 					state_name, driver->name);
4966 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4967 								      state);
4968 				if (timeout == USB3_LPM_DISABLED)
4969 					return timeout;
4970 			}
4971 		}
4972 
4973 		/* Not sure how this could happen... */
4974 		if (!intf->cur_altsetting)
4975 			continue;
4976 
4977 		if (xhci_update_timeout_for_interface(xhci, udev,
4978 					intf->cur_altsetting,
4979 					state, &timeout))
4980 			return timeout;
4981 	}
4982 	return timeout;
4983 }
4984 
4985 static int calculate_max_exit_latency(struct usb_device *udev,
4986 		enum usb3_link_state state_changed,
4987 		u16 hub_encoded_timeout)
4988 {
4989 	unsigned long long u1_mel_us = 0;
4990 	unsigned long long u2_mel_us = 0;
4991 	unsigned long long mel_us = 0;
4992 	bool disabling_u1;
4993 	bool disabling_u2;
4994 	bool enabling_u1;
4995 	bool enabling_u2;
4996 
4997 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4998 			hub_encoded_timeout == USB3_LPM_DISABLED);
4999 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5000 			hub_encoded_timeout == USB3_LPM_DISABLED);
5001 
5002 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5003 			hub_encoded_timeout != USB3_LPM_DISABLED);
5004 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5005 			hub_encoded_timeout != USB3_LPM_DISABLED);
5006 
5007 	/* If U1 was already enabled and we're not disabling it,
5008 	 * or we're going to enable U1, account for the U1 max exit latency.
5009 	 */
5010 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5011 			enabling_u1)
5012 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5013 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5014 			enabling_u2)
5015 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5016 
5017 	mel_us = max(u1_mel_us, u2_mel_us);
5018 
5019 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5020 	if (mel_us > MAX_EXIT) {
5021 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5022 				"is too big.\n", mel_us);
5023 		return -E2BIG;
5024 	}
5025 	return mel_us;
5026 }
5027 
5028 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5029 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5030 			struct usb_device *udev, enum usb3_link_state state)
5031 {
5032 	struct xhci_hcd	*xhci;
5033 	u16 hub_encoded_timeout;
5034 	int mel;
5035 	int ret;
5036 
5037 	xhci = hcd_to_xhci(hcd);
5038 	/* The LPM timeout values are pretty host-controller specific, so don't
5039 	 * enable hub-initiated timeouts unless the vendor has provided
5040 	 * information about their timeout algorithm.
5041 	 */
5042 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5043 			!xhci->devs[udev->slot_id])
5044 		return USB3_LPM_DISABLED;
5045 
5046 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5047 		return USB3_LPM_DISABLED;
5048 
5049 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5050 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5051 	if (mel < 0) {
5052 		/* Max Exit Latency is too big, disable LPM. */
5053 		hub_encoded_timeout = USB3_LPM_DISABLED;
5054 		mel = 0;
5055 	}
5056 
5057 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5058 	if (ret)
5059 		return ret;
5060 	return hub_encoded_timeout;
5061 }
5062 
5063 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5064 			struct usb_device *udev, enum usb3_link_state state)
5065 {
5066 	struct xhci_hcd	*xhci;
5067 	u16 mel;
5068 
5069 	xhci = hcd_to_xhci(hcd);
5070 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5071 			!xhci->devs[udev->slot_id])
5072 		return 0;
5073 
5074 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5075 	return xhci_change_max_exit_latency(xhci, udev, mel);
5076 }
5077 #else /* CONFIG_PM */
5078 
5079 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5080 				struct usb_device *udev, int enable)
5081 {
5082 	return 0;
5083 }
5084 
5085 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5086 {
5087 	return 0;
5088 }
5089 
5090 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5091 			struct usb_device *udev, enum usb3_link_state state)
5092 {
5093 	return USB3_LPM_DISABLED;
5094 }
5095 
5096 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5097 			struct usb_device *udev, enum usb3_link_state state)
5098 {
5099 	return 0;
5100 }
5101 #endif	/* CONFIG_PM */
5102 
5103 /*-------------------------------------------------------------------------*/
5104 
5105 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5106  * internal data structures for the device.
5107  */
5108 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5109 			struct usb_tt *tt, gfp_t mem_flags)
5110 {
5111 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5112 	struct xhci_virt_device *vdev;
5113 	struct xhci_command *config_cmd;
5114 	struct xhci_input_control_ctx *ctrl_ctx;
5115 	struct xhci_slot_ctx *slot_ctx;
5116 	unsigned long flags;
5117 	unsigned think_time;
5118 	int ret;
5119 
5120 	/* Ignore root hubs */
5121 	if (!hdev->parent)
5122 		return 0;
5123 
5124 	vdev = xhci->devs[hdev->slot_id];
5125 	if (!vdev) {
5126 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5127 		return -EINVAL;
5128 	}
5129 
5130 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5131 	if (!config_cmd)
5132 		return -ENOMEM;
5133 
5134 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5135 	if (!ctrl_ctx) {
5136 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5137 				__func__);
5138 		xhci_free_command(xhci, config_cmd);
5139 		return -ENOMEM;
5140 	}
5141 
5142 	spin_lock_irqsave(&xhci->lock, flags);
5143 	if (hdev->speed == USB_SPEED_HIGH &&
5144 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5145 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5146 		xhci_free_command(xhci, config_cmd);
5147 		spin_unlock_irqrestore(&xhci->lock, flags);
5148 		return -ENOMEM;
5149 	}
5150 
5151 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5152 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5153 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5154 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5155 	/*
5156 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5157 	 * but it may be already set to 1 when setup an xHCI virtual
5158 	 * device, so clear it anyway.
5159 	 */
5160 	if (tt->multi)
5161 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5162 	else if (hdev->speed == USB_SPEED_FULL)
5163 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5164 
5165 	if (xhci->hci_version > 0x95) {
5166 		xhci_dbg(xhci, "xHCI version %x needs hub "
5167 				"TT think time and number of ports\n",
5168 				(unsigned int) xhci->hci_version);
5169 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5170 		/* Set TT think time - convert from ns to FS bit times.
5171 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5172 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5173 		 *
5174 		 * xHCI 1.0: this field shall be 0 if the device is not a
5175 		 * High-spped hub.
5176 		 */
5177 		think_time = tt->think_time;
5178 		if (think_time != 0)
5179 			think_time = (think_time / 666) - 1;
5180 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5181 			slot_ctx->tt_info |=
5182 				cpu_to_le32(TT_THINK_TIME(think_time));
5183 	} else {
5184 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5185 				"TT think time or number of ports\n",
5186 				(unsigned int) xhci->hci_version);
5187 	}
5188 	slot_ctx->dev_state = 0;
5189 	spin_unlock_irqrestore(&xhci->lock, flags);
5190 
5191 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5192 			(xhci->hci_version > 0x95) ?
5193 			"configure endpoint" : "evaluate context");
5194 
5195 	/* Issue and wait for the configure endpoint or
5196 	 * evaluate context command.
5197 	 */
5198 	if (xhci->hci_version > 0x95)
5199 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5200 				false, false);
5201 	else
5202 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5203 				true, false);
5204 
5205 	xhci_free_command(xhci, config_cmd);
5206 	return ret;
5207 }
5208 
5209 static int xhci_get_frame(struct usb_hcd *hcd)
5210 {
5211 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5212 	/* EHCI mods by the periodic size.  Why? */
5213 	return readl(&xhci->run_regs->microframe_index) >> 3;
5214 }
5215 
5216 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5217 {
5218 	xhci->usb2_rhub.hcd = hcd;
5219 	hcd->speed = HCD_USB2;
5220 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5221 	/*
5222 	 * USB 2.0 roothub under xHCI has an integrated TT,
5223 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5224 	 * companion controller.
5225 	 */
5226 	hcd->has_tt = 1;
5227 }
5228 
5229 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5230 {
5231 	unsigned int minor_rev;
5232 
5233 	/*
5234 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5235 	 * should return 0x31 for sbrn, or that the minor revision
5236 	 * is a two digit BCD containig minor and sub-minor numbers.
5237 	 * This was later clarified in xHCI 1.2.
5238 	 *
5239 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5240 	 * minor revision set to 0x1 instead of 0x10.
5241 	 */
5242 	if (xhci->usb3_rhub.min_rev == 0x1)
5243 		minor_rev = 1;
5244 	else
5245 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5246 
5247 	switch (minor_rev) {
5248 	case 2:
5249 		hcd->speed = HCD_USB32;
5250 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5251 		hcd->self.root_hub->rx_lanes = 2;
5252 		hcd->self.root_hub->tx_lanes = 2;
5253 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5254 		break;
5255 	case 1:
5256 		hcd->speed = HCD_USB31;
5257 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5258 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5259 		break;
5260 	}
5261 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5262 		  minor_rev, minor_rev ? "Enhanced " : "");
5263 
5264 	xhci->usb3_rhub.hcd = hcd;
5265 }
5266 
5267 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5268 {
5269 	struct xhci_hcd		*xhci;
5270 	/*
5271 	 * TODO: Check with DWC3 clients for sysdev according to
5272 	 * quirks
5273 	 */
5274 	struct device		*dev = hcd->self.sysdev;
5275 	int			retval;
5276 
5277 	/* Accept arbitrarily long scatter-gather lists */
5278 	hcd->self.sg_tablesize = ~0;
5279 
5280 	/* support to build packet from discontinuous buffers */
5281 	hcd->self.no_sg_constraint = 1;
5282 
5283 	/* XHCI controllers don't stop the ep queue on short packets :| */
5284 	hcd->self.no_stop_on_short = 1;
5285 
5286 	xhci = hcd_to_xhci(hcd);
5287 
5288 	if (!usb_hcd_is_primary_hcd(hcd)) {
5289 		xhci_hcd_init_usb3_data(xhci, hcd);
5290 		return 0;
5291 	}
5292 
5293 	mutex_init(&xhci->mutex);
5294 	xhci->main_hcd = hcd;
5295 	xhci->cap_regs = hcd->regs;
5296 	xhci->op_regs = hcd->regs +
5297 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5298 	xhci->run_regs = hcd->regs +
5299 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5300 	/* Cache read-only capability registers */
5301 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5302 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5303 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5304 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5305 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5306 	if (xhci->hci_version > 0x100)
5307 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5308 
5309 	xhci->quirks |= quirks;
5310 
5311 	get_quirks(dev, xhci);
5312 
5313 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5314 	 * success event after a short transfer. This quirk will ignore such
5315 	 * spurious event.
5316 	 */
5317 	if (xhci->hci_version > 0x96)
5318 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5319 
5320 	/* Make sure the HC is halted. */
5321 	retval = xhci_halt(xhci);
5322 	if (retval)
5323 		return retval;
5324 
5325 	xhci_zero_64b_regs(xhci);
5326 
5327 	xhci_dbg(xhci, "Resetting HCD\n");
5328 	/* Reset the internal HC memory state and registers. */
5329 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5330 	if (retval)
5331 		return retval;
5332 	xhci_dbg(xhci, "Reset complete\n");
5333 
5334 	/*
5335 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5336 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5337 	 * address memory pointers actually. So, this driver clears the AC64
5338 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5339 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5340 	 */
5341 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5342 		xhci->hcc_params &= ~BIT(0);
5343 
5344 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5345 	 * if xHC supports 64-bit addressing */
5346 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5347 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5348 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5349 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5350 	} else {
5351 		/*
5352 		 * This is to avoid error in cases where a 32-bit USB
5353 		 * controller is used on a 64-bit capable system.
5354 		 */
5355 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5356 		if (retval)
5357 			return retval;
5358 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5359 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5360 	}
5361 
5362 	xhci_dbg(xhci, "Calling HCD init\n");
5363 	/* Initialize HCD and host controller data structures. */
5364 	retval = xhci_init(hcd);
5365 	if (retval)
5366 		return retval;
5367 	xhci_dbg(xhci, "Called HCD init\n");
5368 
5369 	if (xhci_hcd_is_usb3(hcd))
5370 		xhci_hcd_init_usb3_data(xhci, hcd);
5371 	else
5372 		xhci_hcd_init_usb2_data(xhci, hcd);
5373 
5374 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5375 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5376 
5377 	return 0;
5378 }
5379 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5380 
5381 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5382 		struct usb_host_endpoint *ep)
5383 {
5384 	struct xhci_hcd *xhci;
5385 	struct usb_device *udev;
5386 	unsigned int slot_id;
5387 	unsigned int ep_index;
5388 	unsigned long flags;
5389 
5390 	xhci = hcd_to_xhci(hcd);
5391 
5392 	spin_lock_irqsave(&xhci->lock, flags);
5393 	udev = (struct usb_device *)ep->hcpriv;
5394 	slot_id = udev->slot_id;
5395 	ep_index = xhci_get_endpoint_index(&ep->desc);
5396 
5397 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5398 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5399 	spin_unlock_irqrestore(&xhci->lock, flags);
5400 }
5401 
5402 static const struct hc_driver xhci_hc_driver = {
5403 	.description =		"xhci-hcd",
5404 	.product_desc =		"xHCI Host Controller",
5405 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5406 
5407 	/*
5408 	 * generic hardware linkage
5409 	 */
5410 	.irq =			xhci_irq,
5411 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5412 				HCD_BH,
5413 
5414 	/*
5415 	 * basic lifecycle operations
5416 	 */
5417 	.reset =		NULL, /* set in xhci_init_driver() */
5418 	.start =		xhci_run,
5419 	.stop =			xhci_stop,
5420 	.shutdown =		xhci_shutdown,
5421 
5422 	/*
5423 	 * managing i/o requests and associated device resources
5424 	 */
5425 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5426 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5427 	.urb_enqueue =		xhci_urb_enqueue,
5428 	.urb_dequeue =		xhci_urb_dequeue,
5429 	.alloc_dev =		xhci_alloc_dev,
5430 	.free_dev =		xhci_free_dev,
5431 	.alloc_streams =	xhci_alloc_streams,
5432 	.free_streams =		xhci_free_streams,
5433 	.add_endpoint =		xhci_add_endpoint,
5434 	.drop_endpoint =	xhci_drop_endpoint,
5435 	.endpoint_disable =	xhci_endpoint_disable,
5436 	.endpoint_reset =	xhci_endpoint_reset,
5437 	.check_bandwidth =	xhci_check_bandwidth,
5438 	.reset_bandwidth =	xhci_reset_bandwidth,
5439 	.address_device =	xhci_address_device,
5440 	.enable_device =	xhci_enable_device,
5441 	.update_hub_device =	xhci_update_hub_device,
5442 	.reset_device =		xhci_discover_or_reset_device,
5443 
5444 	/*
5445 	 * scheduling support
5446 	 */
5447 	.get_frame_number =	xhci_get_frame,
5448 
5449 	/*
5450 	 * root hub support
5451 	 */
5452 	.hub_control =		xhci_hub_control,
5453 	.hub_status_data =	xhci_hub_status_data,
5454 	.bus_suspend =		xhci_bus_suspend,
5455 	.bus_resume =		xhci_bus_resume,
5456 	.get_resuming_ports =	xhci_get_resuming_ports,
5457 
5458 	/*
5459 	 * call back when device connected and addressed
5460 	 */
5461 	.update_device =        xhci_update_device,
5462 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5463 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5464 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5465 	.find_raw_port_number =	xhci_find_raw_port_number,
5466 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5467 };
5468 
5469 void xhci_init_driver(struct hc_driver *drv,
5470 		      const struct xhci_driver_overrides *over)
5471 {
5472 	BUG_ON(!over);
5473 
5474 	/* Copy the generic table to drv then apply the overrides */
5475 	*drv = xhci_hc_driver;
5476 
5477 	if (over) {
5478 		drv->hcd_priv_size += over->extra_priv_size;
5479 		if (over->reset)
5480 			drv->reset = over->reset;
5481 		if (over->start)
5482 			drv->start = over->start;
5483 		if (over->add_endpoint)
5484 			drv->add_endpoint = over->add_endpoint;
5485 		if (over->drop_endpoint)
5486 			drv->drop_endpoint = over->drop_endpoint;
5487 		if (over->check_bandwidth)
5488 			drv->check_bandwidth = over->check_bandwidth;
5489 		if (over->reset_bandwidth)
5490 			drv->reset_bandwidth = over->reset_bandwidth;
5491 	}
5492 }
5493 EXPORT_SYMBOL_GPL(xhci_init_driver);
5494 
5495 MODULE_DESCRIPTION(DRIVER_DESC);
5496 MODULE_AUTHOR(DRIVER_AUTHOR);
5497 MODULE_LICENSE("GPL");
5498 
5499 static int __init xhci_hcd_init(void)
5500 {
5501 	/*
5502 	 * Check the compiler generated sizes of structures that must be laid
5503 	 * out in specific ways for hardware access.
5504 	 */
5505 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5506 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5507 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5508 	/* xhci_device_control has eight fields, and also
5509 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5510 	 */
5511 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5512 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5513 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5514 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5515 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5516 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5517 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5518 
5519 	if (usb_disabled())
5520 		return -ENODEV;
5521 
5522 	xhci_debugfs_create_root();
5523 	xhci_dbc_init();
5524 
5525 	return 0;
5526 }
5527 
5528 /*
5529  * If an init function is provided, an exit function must also be provided
5530  * to allow module unload.
5531  */
5532 static void __exit xhci_hcd_fini(void)
5533 {
5534 	xhci_debugfs_remove_root();
5535 	xhci_dbc_exit();
5536 }
5537 
5538 module_init(xhci_hcd_init);
5539 module_exit(xhci_hcd_fini);
5540