xref: /openbmc/linux/drivers/usb/host/xhci.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 
30 #include "xhci.h"
31 
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 		      u32 mask, u32 done, int usec)
56 {
57 	u32	result;
58 
59 	do {
60 		result = xhci_readl(xhci, ptr);
61 		if (result == ~(u32)0)		/* card removed */
62 			return -ENODEV;
63 		result &= mask;
64 		if (result == done)
65 			return 0;
66 		udelay(1);
67 		usec--;
68 	} while (usec > 0);
69 	return -ETIMEDOUT;
70 }
71 
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 	u32 halted;
78 	u32 cmd;
79 	u32 mask;
80 
81 	mask = ~(XHCI_IRQS);
82 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 	if (!halted)
84 		mask &= ~CMD_RUN;
85 
86 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 	cmd &= mask;
88 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90 
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 microframes of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  * XXX: shouldn't we set HC_STATE_HALT here somewhere?
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 	xhci_dbg(xhci, "// Halt the HC\n");
103 	xhci_quiesce(xhci);
104 
105 	return handshake(xhci, &xhci->op_regs->status,
106 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 }
108 
109 /*
110  * Set the run bit and wait for the host to be running.
111  */
112 int xhci_start(struct xhci_hcd *xhci)
113 {
114 	u32 temp;
115 	int ret;
116 
117 	temp = xhci_readl(xhci, &xhci->op_regs->command);
118 	temp |= (CMD_RUN);
119 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
120 			temp);
121 	xhci_writel(xhci, temp, &xhci->op_regs->command);
122 
123 	/*
124 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
125 	 * running.
126 	 */
127 	ret = handshake(xhci, &xhci->op_regs->status,
128 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
129 	if (ret == -ETIMEDOUT)
130 		xhci_err(xhci, "Host took too long to start, "
131 				"waited %u microseconds.\n",
132 				XHCI_MAX_HALT_USEC);
133 	return ret;
134 }
135 
136 /*
137  * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
138  *
139  * This resets pipelines, timers, counters, state machines, etc.
140  * Transactions will be terminated immediately, and operational registers
141  * will be set to their defaults.
142  */
143 int xhci_reset(struct xhci_hcd *xhci)
144 {
145 	u32 command;
146 	u32 state;
147 	int ret;
148 
149 	state = xhci_readl(xhci, &xhci->op_regs->status);
150 	if ((state & STS_HALT) == 0) {
151 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
152 		return 0;
153 	}
154 
155 	xhci_dbg(xhci, "// Reset the HC\n");
156 	command = xhci_readl(xhci, &xhci->op_regs->command);
157 	command |= CMD_RESET;
158 	xhci_writel(xhci, command, &xhci->op_regs->command);
159 	/* XXX: Why does EHCI set this here?  Shouldn't other code do this? */
160 	xhci_to_hcd(xhci)->state = HC_STATE_HALT;
161 
162 	ret = handshake(xhci, &xhci->op_regs->command,
163 			CMD_RESET, 0, 250 * 1000);
164 	if (ret)
165 		return ret;
166 
167 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
168 	/*
169 	 * xHCI cannot write to any doorbells or operational registers other
170 	 * than status until the "Controller Not Ready" flag is cleared.
171 	 */
172 	return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
173 }
174 
175 /*
176  * Free IRQs
177  * free all IRQs request
178  */
179 static void xhci_free_irq(struct xhci_hcd *xhci)
180 {
181 	int i;
182 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
183 
184 	/* return if using legacy interrupt */
185 	if (xhci_to_hcd(xhci)->irq >= 0)
186 		return;
187 
188 	if (xhci->msix_entries) {
189 		for (i = 0; i < xhci->msix_count; i++)
190 			if (xhci->msix_entries[i].vector)
191 				free_irq(xhci->msix_entries[i].vector,
192 						xhci_to_hcd(xhci));
193 	} else if (pdev->irq >= 0)
194 		free_irq(pdev->irq, xhci_to_hcd(xhci));
195 
196 	return;
197 }
198 
199 /*
200  * Set up MSI
201  */
202 static int xhci_setup_msi(struct xhci_hcd *xhci)
203 {
204 	int ret;
205 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
206 
207 	ret = pci_enable_msi(pdev);
208 	if (ret) {
209 		xhci_err(xhci, "failed to allocate MSI entry\n");
210 		return ret;
211 	}
212 
213 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
214 				0, "xhci_hcd", xhci_to_hcd(xhci));
215 	if (ret) {
216 		xhci_err(xhci, "disable MSI interrupt\n");
217 		pci_disable_msi(pdev);
218 	}
219 
220 	return ret;
221 }
222 
223 /*
224  * Set up MSI-X
225  */
226 static int xhci_setup_msix(struct xhci_hcd *xhci)
227 {
228 	int i, ret = 0;
229 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
230 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
231 
232 	/*
233 	 * calculate number of msi-x vectors supported.
234 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
235 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
236 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
237 	 *   Add additional 1 vector to ensure always available interrupt.
238 	 */
239 	xhci->msix_count = min(num_online_cpus() + 1,
240 				HCS_MAX_INTRS(xhci->hcs_params1));
241 
242 	xhci->msix_entries =
243 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
244 				GFP_KERNEL);
245 	if (!xhci->msix_entries) {
246 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
247 		return -ENOMEM;
248 	}
249 
250 	for (i = 0; i < xhci->msix_count; i++) {
251 		xhci->msix_entries[i].entry = i;
252 		xhci->msix_entries[i].vector = 0;
253 	}
254 
255 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
256 	if (ret) {
257 		xhci_err(xhci, "Failed to enable MSI-X\n");
258 		goto free_entries;
259 	}
260 
261 	for (i = 0; i < xhci->msix_count; i++) {
262 		ret = request_irq(xhci->msix_entries[i].vector,
263 				(irq_handler_t)xhci_msi_irq,
264 				0, "xhci_hcd", xhci_to_hcd(xhci));
265 		if (ret)
266 			goto disable_msix;
267 	}
268 
269 	hcd->msix_enabled = 1;
270 	return ret;
271 
272 disable_msix:
273 	xhci_err(xhci, "disable MSI-X interrupt\n");
274 	xhci_free_irq(xhci);
275 	pci_disable_msix(pdev);
276 free_entries:
277 	kfree(xhci->msix_entries);
278 	xhci->msix_entries = NULL;
279 	return ret;
280 }
281 
282 /* Free any IRQs and disable MSI-X */
283 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
284 {
285 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
286 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
287 
288 	xhci_free_irq(xhci);
289 
290 	if (xhci->msix_entries) {
291 		pci_disable_msix(pdev);
292 		kfree(xhci->msix_entries);
293 		xhci->msix_entries = NULL;
294 	} else {
295 		pci_disable_msi(pdev);
296 	}
297 
298 	hcd->msix_enabled = 0;
299 	return;
300 }
301 
302 /*
303  * Initialize memory for HCD and xHC (one-time init).
304  *
305  * Program the PAGESIZE register, initialize the device context array, create
306  * device contexts (?), set up a command ring segment (or two?), create event
307  * ring (one for now).
308  */
309 int xhci_init(struct usb_hcd *hcd)
310 {
311 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
312 	int retval = 0;
313 
314 	xhci_dbg(xhci, "xhci_init\n");
315 	spin_lock_init(&xhci->lock);
316 	if (link_quirk) {
317 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
318 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
319 	} else {
320 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
321 	}
322 	retval = xhci_mem_init(xhci, GFP_KERNEL);
323 	xhci_dbg(xhci, "Finished xhci_init\n");
324 
325 	return retval;
326 }
327 
328 /*-------------------------------------------------------------------------*/
329 
330 
331 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
332 void xhci_event_ring_work(unsigned long arg)
333 {
334 	unsigned long flags;
335 	int temp;
336 	u64 temp_64;
337 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
338 	int i, j;
339 
340 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
341 
342 	spin_lock_irqsave(&xhci->lock, flags);
343 	temp = xhci_readl(xhci, &xhci->op_regs->status);
344 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
345 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
346 		xhci_dbg(xhci, "HW died, polling stopped.\n");
347 		spin_unlock_irqrestore(&xhci->lock, flags);
348 		return;
349 	}
350 
351 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
352 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
353 	xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
354 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
355 	xhci->error_bitmask = 0;
356 	xhci_dbg(xhci, "Event ring:\n");
357 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
358 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
359 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
360 	temp_64 &= ~ERST_PTR_MASK;
361 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
362 	xhci_dbg(xhci, "Command ring:\n");
363 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
364 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
365 	xhci_dbg_cmd_ptrs(xhci);
366 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
367 		if (!xhci->devs[i])
368 			continue;
369 		for (j = 0; j < 31; ++j) {
370 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
371 		}
372 	}
373 
374 	if (xhci->noops_submitted != NUM_TEST_NOOPS)
375 		if (xhci_setup_one_noop(xhci))
376 			xhci_ring_cmd_db(xhci);
377 	spin_unlock_irqrestore(&xhci->lock, flags);
378 
379 	if (!xhci->zombie)
380 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
381 	else
382 		xhci_dbg(xhci, "Quit polling the event ring.\n");
383 }
384 #endif
385 
386 /*
387  * Start the HC after it was halted.
388  *
389  * This function is called by the USB core when the HC driver is added.
390  * Its opposite is xhci_stop().
391  *
392  * xhci_init() must be called once before this function can be called.
393  * Reset the HC, enable device slot contexts, program DCBAAP, and
394  * set command ring pointer and event ring pointer.
395  *
396  * Setup MSI-X vectors and enable interrupts.
397  */
398 int xhci_run(struct usb_hcd *hcd)
399 {
400 	u32 temp;
401 	u64 temp_64;
402 	u32 ret;
403 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
404 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
405 	void (*doorbell)(struct xhci_hcd *) = NULL;
406 
407 	hcd->uses_new_polling = 1;
408 
409 	xhci_dbg(xhci, "xhci_run\n");
410 	/* unregister the legacy interrupt */
411 	if (hcd->irq)
412 		free_irq(hcd->irq, hcd);
413 	hcd->irq = -1;
414 
415 	ret = xhci_setup_msix(xhci);
416 	if (ret)
417 		/* fall back to msi*/
418 		ret = xhci_setup_msi(xhci);
419 
420 	if (ret) {
421 		/* fall back to legacy interrupt*/
422 		ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
423 					hcd->irq_descr, hcd);
424 		if (ret) {
425 			xhci_err(xhci, "request interrupt %d failed\n",
426 					pdev->irq);
427 			return ret;
428 		}
429 		hcd->irq = pdev->irq;
430 	}
431 
432 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
433 	init_timer(&xhci->event_ring_timer);
434 	xhci->event_ring_timer.data = (unsigned long) xhci;
435 	xhci->event_ring_timer.function = xhci_event_ring_work;
436 	/* Poll the event ring */
437 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
438 	xhci->zombie = 0;
439 	xhci_dbg(xhci, "Setting event ring polling timer\n");
440 	add_timer(&xhci->event_ring_timer);
441 #endif
442 
443 	xhci_dbg(xhci, "Command ring memory map follows:\n");
444 	xhci_debug_ring(xhci, xhci->cmd_ring);
445 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
446 	xhci_dbg_cmd_ptrs(xhci);
447 
448 	xhci_dbg(xhci, "ERST memory map follows:\n");
449 	xhci_dbg_erst(xhci, &xhci->erst);
450 	xhci_dbg(xhci, "Event ring:\n");
451 	xhci_debug_ring(xhci, xhci->event_ring);
452 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
453 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
454 	temp_64 &= ~ERST_PTR_MASK;
455 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
456 
457 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
458 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
459 	temp &= ~ER_IRQ_INTERVAL_MASK;
460 	temp |= (u32) 160;
461 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
462 
463 	/* Set the HCD state before we enable the irqs */
464 	hcd->state = HC_STATE_RUNNING;
465 	temp = xhci_readl(xhci, &xhci->op_regs->command);
466 	temp |= (CMD_EIE);
467 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
468 			temp);
469 	xhci_writel(xhci, temp, &xhci->op_regs->command);
470 
471 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
472 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
473 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
474 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
475 			&xhci->ir_set->irq_pending);
476 	xhci_print_ir_set(xhci, xhci->ir_set, 0);
477 
478 	if (NUM_TEST_NOOPS > 0)
479 		doorbell = xhci_setup_one_noop(xhci);
480 	if (xhci->quirks & XHCI_NEC_HOST)
481 		xhci_queue_vendor_command(xhci, 0, 0, 0,
482 				TRB_TYPE(TRB_NEC_GET_FW));
483 
484 	if (xhci_start(xhci)) {
485 		xhci_halt(xhci);
486 		return -ENODEV;
487 	}
488 
489 	if (doorbell)
490 		(*doorbell)(xhci);
491 	if (xhci->quirks & XHCI_NEC_HOST)
492 		xhci_ring_cmd_db(xhci);
493 
494 	xhci_dbg(xhci, "Finished xhci_run\n");
495 	return 0;
496 }
497 
498 /*
499  * Stop xHCI driver.
500  *
501  * This function is called by the USB core when the HC driver is removed.
502  * Its opposite is xhci_run().
503  *
504  * Disable device contexts, disable IRQs, and quiesce the HC.
505  * Reset the HC, finish any completed transactions, and cleanup memory.
506  */
507 void xhci_stop(struct usb_hcd *hcd)
508 {
509 	u32 temp;
510 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
511 
512 	spin_lock_irq(&xhci->lock);
513 	xhci_halt(xhci);
514 	xhci_reset(xhci);
515 	spin_unlock_irq(&xhci->lock);
516 
517 	xhci_cleanup_msix(xhci);
518 
519 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
520 	/* Tell the event ring poll function not to reschedule */
521 	xhci->zombie = 1;
522 	del_timer_sync(&xhci->event_ring_timer);
523 #endif
524 
525 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
526 	temp = xhci_readl(xhci, &xhci->op_regs->status);
527 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
528 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
529 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
530 			&xhci->ir_set->irq_pending);
531 	xhci_print_ir_set(xhci, xhci->ir_set, 0);
532 
533 	xhci_dbg(xhci, "cleaning up memory\n");
534 	xhci_mem_cleanup(xhci);
535 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
536 		    xhci_readl(xhci, &xhci->op_regs->status));
537 }
538 
539 /*
540  * Shutdown HC (not bus-specific)
541  *
542  * This is called when the machine is rebooting or halting.  We assume that the
543  * machine will be powered off, and the HC's internal state will be reset.
544  * Don't bother to free memory.
545  */
546 void xhci_shutdown(struct usb_hcd *hcd)
547 {
548 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
549 
550 	spin_lock_irq(&xhci->lock);
551 	xhci_halt(xhci);
552 	spin_unlock_irq(&xhci->lock);
553 
554 	xhci_cleanup_msix(xhci);
555 
556 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
557 		    xhci_readl(xhci, &xhci->op_regs->status));
558 }
559 
560 #ifdef CONFIG_PM
561 static void xhci_save_registers(struct xhci_hcd *xhci)
562 {
563 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
564 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
565 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
566 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
567 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
568 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
569 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
570 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
571 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
572 }
573 
574 static void xhci_restore_registers(struct xhci_hcd *xhci)
575 {
576 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
577 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
578 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
579 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
580 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
581 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
582 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
583 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
584 }
585 
586 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
587 {
588 	u64	val_64;
589 
590 	/* step 2: initialize command ring buffer */
591 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
592 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
593 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
594 				      xhci->cmd_ring->dequeue) &
595 		 (u64) ~CMD_RING_RSVD_BITS) |
596 		xhci->cmd_ring->cycle_state;
597 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
598 			(long unsigned long) val_64);
599 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
600 }
601 
602 /*
603  * The whole command ring must be cleared to zero when we suspend the host.
604  *
605  * The host doesn't save the command ring pointer in the suspend well, so we
606  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
607  * aligned, because of the reserved bits in the command ring dequeue pointer
608  * register.  Therefore, we can't just set the dequeue pointer back in the
609  * middle of the ring (TRBs are 16-byte aligned).
610  */
611 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
612 {
613 	struct xhci_ring *ring;
614 	struct xhci_segment *seg;
615 
616 	ring = xhci->cmd_ring;
617 	seg = ring->deq_seg;
618 	do {
619 		memset(seg->trbs, 0, SEGMENT_SIZE);
620 		seg = seg->next;
621 	} while (seg != ring->deq_seg);
622 
623 	/* Reset the software enqueue and dequeue pointers */
624 	ring->deq_seg = ring->first_seg;
625 	ring->dequeue = ring->first_seg->trbs;
626 	ring->enq_seg = ring->deq_seg;
627 	ring->enqueue = ring->dequeue;
628 
629 	/*
630 	 * Ring is now zeroed, so the HW should look for change of ownership
631 	 * when the cycle bit is set to 1.
632 	 */
633 	ring->cycle_state = 1;
634 
635 	/*
636 	 * Reset the hardware dequeue pointer.
637 	 * Yes, this will need to be re-written after resume, but we're paranoid
638 	 * and want to make sure the hardware doesn't access bogus memory
639 	 * because, say, the BIOS or an SMI started the host without changing
640 	 * the command ring pointers.
641 	 */
642 	xhci_set_cmd_ring_deq(xhci);
643 }
644 
645 /*
646  * Stop HC (not bus-specific)
647  *
648  * This is called when the machine transition into S3/S4 mode.
649  *
650  */
651 int xhci_suspend(struct xhci_hcd *xhci)
652 {
653 	int			rc = 0;
654 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
655 	u32			command;
656 	int			i;
657 
658 	spin_lock_irq(&xhci->lock);
659 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
660 	/* step 1: stop endpoint */
661 	/* skipped assuming that port suspend has done */
662 
663 	/* step 2: clear Run/Stop bit */
664 	command = xhci_readl(xhci, &xhci->op_regs->command);
665 	command &= ~CMD_RUN;
666 	xhci_writel(xhci, command, &xhci->op_regs->command);
667 	if (handshake(xhci, &xhci->op_regs->status,
668 		      STS_HALT, STS_HALT, 100*100)) {
669 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
670 		spin_unlock_irq(&xhci->lock);
671 		return -ETIMEDOUT;
672 	}
673 	xhci_clear_command_ring(xhci);
674 
675 	/* step 3: save registers */
676 	xhci_save_registers(xhci);
677 
678 	/* step 4: set CSS flag */
679 	command = xhci_readl(xhci, &xhci->op_regs->command);
680 	command |= CMD_CSS;
681 	xhci_writel(xhci, command, &xhci->op_regs->command);
682 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
683 		xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
684 		spin_unlock_irq(&xhci->lock);
685 		return -ETIMEDOUT;
686 	}
687 	spin_unlock_irq(&xhci->lock);
688 
689 	/* step 5: remove core well power */
690 	/* synchronize irq when using MSI-X */
691 	if (xhci->msix_entries) {
692 		for (i = 0; i < xhci->msix_count; i++)
693 			synchronize_irq(xhci->msix_entries[i].vector);
694 	}
695 
696 	return rc;
697 }
698 
699 /*
700  * start xHC (not bus-specific)
701  *
702  * This is called when the machine transition from S3/S4 mode.
703  *
704  */
705 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
706 {
707 	u32			command, temp = 0;
708 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
709 	int	old_state, retval;
710 
711 	old_state = hcd->state;
712 	if (time_before(jiffies, xhci->next_statechange))
713 		msleep(100);
714 
715 	spin_lock_irq(&xhci->lock);
716 
717 	if (!hibernated) {
718 		/* step 1: restore register */
719 		xhci_restore_registers(xhci);
720 		/* step 2: initialize command ring buffer */
721 		xhci_set_cmd_ring_deq(xhci);
722 		/* step 3: restore state and start state*/
723 		/* step 3: set CRS flag */
724 		command = xhci_readl(xhci, &xhci->op_regs->command);
725 		command |= CMD_CRS;
726 		xhci_writel(xhci, command, &xhci->op_regs->command);
727 		if (handshake(xhci, &xhci->op_regs->status,
728 			      STS_RESTORE, 0, 10*100)) {
729 			xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
730 			spin_unlock_irq(&xhci->lock);
731 			return -ETIMEDOUT;
732 		}
733 		temp = xhci_readl(xhci, &xhci->op_regs->status);
734 	}
735 
736 	/* If restore operation fails, re-initialize the HC during resume */
737 	if ((temp & STS_SRE) || hibernated) {
738 		usb_root_hub_lost_power(hcd->self.root_hub);
739 
740 		xhci_dbg(xhci, "Stop HCD\n");
741 		xhci_halt(xhci);
742 		xhci_reset(xhci);
743 		spin_unlock_irq(&xhci->lock);
744 		xhci_cleanup_msix(xhci);
745 
746 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
747 		/* Tell the event ring poll function not to reschedule */
748 		xhci->zombie = 1;
749 		del_timer_sync(&xhci->event_ring_timer);
750 #endif
751 
752 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
753 		temp = xhci_readl(xhci, &xhci->op_regs->status);
754 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
755 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
756 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
757 				&xhci->ir_set->irq_pending);
758 		xhci_print_ir_set(xhci, xhci->ir_set, 0);
759 
760 		xhci_dbg(xhci, "cleaning up memory\n");
761 		xhci_mem_cleanup(xhci);
762 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
763 			    xhci_readl(xhci, &xhci->op_regs->status));
764 
765 		xhci_dbg(xhci, "Initialize the HCD\n");
766 		retval = xhci_init(hcd);
767 		if (retval)
768 			return retval;
769 
770 		xhci_dbg(xhci, "Start the HCD\n");
771 		retval = xhci_run(hcd);
772 		if (!retval)
773 			set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
774 		hcd->state = HC_STATE_SUSPENDED;
775 		return retval;
776 	}
777 
778 	/* step 4: set Run/Stop bit */
779 	command = xhci_readl(xhci, &xhci->op_regs->command);
780 	command |= CMD_RUN;
781 	xhci_writel(xhci, command, &xhci->op_regs->command);
782 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
783 		  0, 250 * 1000);
784 
785 	/* step 5: walk topology and initialize portsc,
786 	 * portpmsc and portli
787 	 */
788 	/* this is done in bus_resume */
789 
790 	/* step 6: restart each of the previously
791 	 * Running endpoints by ringing their doorbells
792 	 */
793 
794 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
795 	if (!hibernated)
796 		hcd->state = old_state;
797 	else
798 		hcd->state = HC_STATE_SUSPENDED;
799 
800 	spin_unlock_irq(&xhci->lock);
801 	return 0;
802 }
803 #endif	/* CONFIG_PM */
804 
805 /*-------------------------------------------------------------------------*/
806 
807 /**
808  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
809  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
810  * value to right shift 1 for the bitmask.
811  *
812  * Index  = (epnum * 2) + direction - 1,
813  * where direction = 0 for OUT, 1 for IN.
814  * For control endpoints, the IN index is used (OUT index is unused), so
815  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
816  */
817 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
818 {
819 	unsigned int index;
820 	if (usb_endpoint_xfer_control(desc))
821 		index = (unsigned int) (usb_endpoint_num(desc)*2);
822 	else
823 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
824 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
825 	return index;
826 }
827 
828 /* Find the flag for this endpoint (for use in the control context).  Use the
829  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
830  * bit 1, etc.
831  */
832 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
833 {
834 	return 1 << (xhci_get_endpoint_index(desc) + 1);
835 }
836 
837 /* Find the flag for this endpoint (for use in the control context).  Use the
838  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
839  * bit 1, etc.
840  */
841 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
842 {
843 	return 1 << (ep_index + 1);
844 }
845 
846 /* Compute the last valid endpoint context index.  Basically, this is the
847  * endpoint index plus one.  For slot contexts with more than valid endpoint,
848  * we find the most significant bit set in the added contexts flags.
849  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
850  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
851  */
852 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
853 {
854 	return fls(added_ctxs) - 1;
855 }
856 
857 /* Returns 1 if the arguments are OK;
858  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
859  */
860 int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
861 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
862 		const char *func) {
863 	struct xhci_hcd	*xhci;
864 	struct xhci_virt_device	*virt_dev;
865 
866 	if (!hcd || (check_ep && !ep) || !udev) {
867 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
868 				func);
869 		return -EINVAL;
870 	}
871 	if (!udev->parent) {
872 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
873 				func);
874 		return 0;
875 	}
876 
877 	if (check_virt_dev) {
878 		xhci = hcd_to_xhci(hcd);
879 		if (!udev->slot_id || !xhci->devs
880 			|| !xhci->devs[udev->slot_id]) {
881 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
882 						"device\n", func);
883 			return -EINVAL;
884 		}
885 
886 		virt_dev = xhci->devs[udev->slot_id];
887 		if (virt_dev->udev != udev) {
888 			printk(KERN_DEBUG "xHCI %s called with udev and "
889 					  "virt_dev does not match\n", func);
890 			return -EINVAL;
891 		}
892 	}
893 
894 	return 1;
895 }
896 
897 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
898 		struct usb_device *udev, struct xhci_command *command,
899 		bool ctx_change, bool must_succeed);
900 
901 /*
902  * Full speed devices may have a max packet size greater than 8 bytes, but the
903  * USB core doesn't know that until it reads the first 8 bytes of the
904  * descriptor.  If the usb_device's max packet size changes after that point,
905  * we need to issue an evaluate context command and wait on it.
906  */
907 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
908 		unsigned int ep_index, struct urb *urb)
909 {
910 	struct xhci_container_ctx *in_ctx;
911 	struct xhci_container_ctx *out_ctx;
912 	struct xhci_input_control_ctx *ctrl_ctx;
913 	struct xhci_ep_ctx *ep_ctx;
914 	int max_packet_size;
915 	int hw_max_packet_size;
916 	int ret = 0;
917 
918 	out_ctx = xhci->devs[slot_id]->out_ctx;
919 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
920 	hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
921 	max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
922 	if (hw_max_packet_size != max_packet_size) {
923 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
924 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
925 				max_packet_size);
926 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
927 				hw_max_packet_size);
928 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
929 
930 		/* Set up the modified control endpoint 0 */
931 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
932 				xhci->devs[slot_id]->out_ctx, ep_index);
933 		in_ctx = xhci->devs[slot_id]->in_ctx;
934 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
935 		ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
936 		ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);
937 
938 		/* Set up the input context flags for the command */
939 		/* FIXME: This won't work if a non-default control endpoint
940 		 * changes max packet sizes.
941 		 */
942 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
943 		ctrl_ctx->add_flags = EP0_FLAG;
944 		ctrl_ctx->drop_flags = 0;
945 
946 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
947 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
948 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
949 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
950 
951 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
952 				true, false);
953 
954 		/* Clean up the input context for later use by bandwidth
955 		 * functions.
956 		 */
957 		ctrl_ctx->add_flags = SLOT_FLAG;
958 	}
959 	return ret;
960 }
961 
962 /*
963  * non-error returns are a promise to giveback() the urb later
964  * we drop ownership so next owner (or urb unlink) can get it
965  */
966 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
967 {
968 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
969 	unsigned long flags;
970 	int ret = 0;
971 	unsigned int slot_id, ep_index;
972 	struct urb_priv	*urb_priv;
973 	int size, i;
974 
975 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
976 					true, true, __func__) <= 0)
977 		return -EINVAL;
978 
979 	slot_id = urb->dev->slot_id;
980 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
981 
982 	if (!HCD_HW_ACCESSIBLE(hcd)) {
983 		if (!in_interrupt())
984 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
985 		ret = -ESHUTDOWN;
986 		goto exit;
987 	}
988 
989 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
990 		size = urb->number_of_packets;
991 	else
992 		size = 1;
993 
994 	urb_priv = kzalloc(sizeof(struct urb_priv) +
995 				  size * sizeof(struct xhci_td *), mem_flags);
996 	if (!urb_priv)
997 		return -ENOMEM;
998 
999 	for (i = 0; i < size; i++) {
1000 		urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1001 		if (!urb_priv->td[i]) {
1002 			urb_priv->length = i;
1003 			xhci_urb_free_priv(xhci, urb_priv);
1004 			return -ENOMEM;
1005 		}
1006 	}
1007 
1008 	urb_priv->length = size;
1009 	urb_priv->td_cnt = 0;
1010 	urb->hcpriv = urb_priv;
1011 
1012 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1013 		/* Check to see if the max packet size for the default control
1014 		 * endpoint changed during FS device enumeration
1015 		 */
1016 		if (urb->dev->speed == USB_SPEED_FULL) {
1017 			ret = xhci_check_maxpacket(xhci, slot_id,
1018 					ep_index, urb);
1019 			if (ret < 0)
1020 				return ret;
1021 		}
1022 
1023 		/* We have a spinlock and interrupts disabled, so we must pass
1024 		 * atomic context to this function, which may allocate memory.
1025 		 */
1026 		spin_lock_irqsave(&xhci->lock, flags);
1027 		if (xhci->xhc_state & XHCI_STATE_DYING)
1028 			goto dying;
1029 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1030 				slot_id, ep_index);
1031 		spin_unlock_irqrestore(&xhci->lock, flags);
1032 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1033 		spin_lock_irqsave(&xhci->lock, flags);
1034 		if (xhci->xhc_state & XHCI_STATE_DYING)
1035 			goto dying;
1036 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1037 				EP_GETTING_STREAMS) {
1038 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1039 					"is transitioning to using streams.\n");
1040 			ret = -EINVAL;
1041 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1042 				EP_GETTING_NO_STREAMS) {
1043 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1044 					"is transitioning to "
1045 					"not having streams.\n");
1046 			ret = -EINVAL;
1047 		} else {
1048 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1049 					slot_id, ep_index);
1050 		}
1051 		spin_unlock_irqrestore(&xhci->lock, flags);
1052 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1053 		spin_lock_irqsave(&xhci->lock, flags);
1054 		if (xhci->xhc_state & XHCI_STATE_DYING)
1055 			goto dying;
1056 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1057 				slot_id, ep_index);
1058 		spin_unlock_irqrestore(&xhci->lock, flags);
1059 	} else {
1060 		spin_lock_irqsave(&xhci->lock, flags);
1061 		if (xhci->xhc_state & XHCI_STATE_DYING)
1062 			goto dying;
1063 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1064 				slot_id, ep_index);
1065 		spin_unlock_irqrestore(&xhci->lock, flags);
1066 	}
1067 exit:
1068 	return ret;
1069 dying:
1070 	xhci_urb_free_priv(xhci, urb_priv);
1071 	urb->hcpriv = NULL;
1072 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1073 			"non-responsive xHCI host.\n",
1074 			urb->ep->desc.bEndpointAddress, urb);
1075 	spin_unlock_irqrestore(&xhci->lock, flags);
1076 	return -ESHUTDOWN;
1077 }
1078 
1079 /* Get the right ring for the given URB.
1080  * If the endpoint supports streams, boundary check the URB's stream ID.
1081  * If the endpoint doesn't support streams, return the singular endpoint ring.
1082  */
1083 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1084 		struct urb *urb)
1085 {
1086 	unsigned int slot_id;
1087 	unsigned int ep_index;
1088 	unsigned int stream_id;
1089 	struct xhci_virt_ep *ep;
1090 
1091 	slot_id = urb->dev->slot_id;
1092 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1093 	stream_id = urb->stream_id;
1094 	ep = &xhci->devs[slot_id]->eps[ep_index];
1095 	/* Common case: no streams */
1096 	if (!(ep->ep_state & EP_HAS_STREAMS))
1097 		return ep->ring;
1098 
1099 	if (stream_id == 0) {
1100 		xhci_warn(xhci,
1101 				"WARN: Slot ID %u, ep index %u has streams, "
1102 				"but URB has no stream ID.\n",
1103 				slot_id, ep_index);
1104 		return NULL;
1105 	}
1106 
1107 	if (stream_id < ep->stream_info->num_streams)
1108 		return ep->stream_info->stream_rings[stream_id];
1109 
1110 	xhci_warn(xhci,
1111 			"WARN: Slot ID %u, ep index %u has "
1112 			"stream IDs 1 to %u allocated, "
1113 			"but stream ID %u is requested.\n",
1114 			slot_id, ep_index,
1115 			ep->stream_info->num_streams - 1,
1116 			stream_id);
1117 	return NULL;
1118 }
1119 
1120 /*
1121  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1122  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1123  * should pick up where it left off in the TD, unless a Set Transfer Ring
1124  * Dequeue Pointer is issued.
1125  *
1126  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1127  * the ring.  Since the ring is a contiguous structure, they can't be physically
1128  * removed.  Instead, there are two options:
1129  *
1130  *  1) If the HC is in the middle of processing the URB to be canceled, we
1131  *     simply move the ring's dequeue pointer past those TRBs using the Set
1132  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1133  *     when drivers timeout on the last submitted URB and attempt to cancel.
1134  *
1135  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1136  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1137  *     HC will need to invalidate the any TRBs it has cached after the stop
1138  *     endpoint command, as noted in the xHCI 0.95 errata.
1139  *
1140  *  3) The TD may have completed by the time the Stop Endpoint Command
1141  *     completes, so software needs to handle that case too.
1142  *
1143  * This function should protect against the TD enqueueing code ringing the
1144  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1145  * It also needs to account for multiple cancellations on happening at the same
1146  * time for the same endpoint.
1147  *
1148  * Note that this function can be called in any context, or so says
1149  * usb_hcd_unlink_urb()
1150  */
1151 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1152 {
1153 	unsigned long flags;
1154 	int ret, i;
1155 	u32 temp;
1156 	struct xhci_hcd *xhci;
1157 	struct urb_priv	*urb_priv;
1158 	struct xhci_td *td;
1159 	unsigned int ep_index;
1160 	struct xhci_ring *ep_ring;
1161 	struct xhci_virt_ep *ep;
1162 
1163 	xhci = hcd_to_xhci(hcd);
1164 	spin_lock_irqsave(&xhci->lock, flags);
1165 	/* Make sure the URB hasn't completed or been unlinked already */
1166 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1167 	if (ret || !urb->hcpriv)
1168 		goto done;
1169 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1170 	if (temp == 0xffffffff) {
1171 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1172 		urb_priv = urb->hcpriv;
1173 
1174 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1175 		spin_unlock_irqrestore(&xhci->lock, flags);
1176 		usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, -ESHUTDOWN);
1177 		xhci_urb_free_priv(xhci, urb_priv);
1178 		return ret;
1179 	}
1180 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1181 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1182 				"non-responsive xHCI host.\n",
1183 				urb->ep->desc.bEndpointAddress, urb);
1184 		/* Let the stop endpoint command watchdog timer (which set this
1185 		 * state) finish cleaning up the endpoint TD lists.  We must
1186 		 * have caught it in the middle of dropping a lock and giving
1187 		 * back an URB.
1188 		 */
1189 		goto done;
1190 	}
1191 
1192 	xhci_dbg(xhci, "Cancel URB %p\n", urb);
1193 	xhci_dbg(xhci, "Event ring:\n");
1194 	xhci_debug_ring(xhci, xhci->event_ring);
1195 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1196 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1197 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1198 	if (!ep_ring) {
1199 		ret = -EINVAL;
1200 		goto done;
1201 	}
1202 
1203 	xhci_dbg(xhci, "Endpoint ring:\n");
1204 	xhci_debug_ring(xhci, ep_ring);
1205 
1206 	urb_priv = urb->hcpriv;
1207 
1208 	for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1209 		td = urb_priv->td[i];
1210 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1211 	}
1212 
1213 	/* Queue a stop endpoint command, but only if this is
1214 	 * the first cancellation to be handled.
1215 	 */
1216 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1217 		ep->ep_state |= EP_HALT_PENDING;
1218 		ep->stop_cmds_pending++;
1219 		ep->stop_cmd_timer.expires = jiffies +
1220 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1221 		add_timer(&ep->stop_cmd_timer);
1222 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1223 		xhci_ring_cmd_db(xhci);
1224 	}
1225 done:
1226 	spin_unlock_irqrestore(&xhci->lock, flags);
1227 	return ret;
1228 }
1229 
1230 /* Drop an endpoint from a new bandwidth configuration for this device.
1231  * Only one call to this function is allowed per endpoint before
1232  * check_bandwidth() or reset_bandwidth() must be called.
1233  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1234  * add the endpoint to the schedule with possibly new parameters denoted by a
1235  * different endpoint descriptor in usb_host_endpoint.
1236  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1237  * not allowed.
1238  *
1239  * The USB core will not allow URBs to be queued to an endpoint that is being
1240  * disabled, so there's no need for mutual exclusion to protect
1241  * the xhci->devs[slot_id] structure.
1242  */
1243 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1244 		struct usb_host_endpoint *ep)
1245 {
1246 	struct xhci_hcd *xhci;
1247 	struct xhci_container_ctx *in_ctx, *out_ctx;
1248 	struct xhci_input_control_ctx *ctrl_ctx;
1249 	struct xhci_slot_ctx *slot_ctx;
1250 	unsigned int last_ctx;
1251 	unsigned int ep_index;
1252 	struct xhci_ep_ctx *ep_ctx;
1253 	u32 drop_flag;
1254 	u32 new_add_flags, new_drop_flags, new_slot_info;
1255 	int ret;
1256 
1257 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1258 	if (ret <= 0)
1259 		return ret;
1260 	xhci = hcd_to_xhci(hcd);
1261 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1262 
1263 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1264 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1265 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1266 				__func__, drop_flag);
1267 		return 0;
1268 	}
1269 
1270 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1271 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1272 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1273 	ep_index = xhci_get_endpoint_index(&ep->desc);
1274 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1275 	/* If the HC already knows the endpoint is disabled,
1276 	 * or the HCD has noted it is disabled, ignore this request
1277 	 */
1278 	if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
1279 			ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
1280 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1281 				__func__, ep);
1282 		return 0;
1283 	}
1284 
1285 	ctrl_ctx->drop_flags |= drop_flag;
1286 	new_drop_flags = ctrl_ctx->drop_flags;
1287 
1288 	ctrl_ctx->add_flags &= ~drop_flag;
1289 	new_add_flags = ctrl_ctx->add_flags;
1290 
1291 	last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
1292 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1293 	/* Update the last valid endpoint context, if we deleted the last one */
1294 	if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
1295 		slot_ctx->dev_info &= ~LAST_CTX_MASK;
1296 		slot_ctx->dev_info |= LAST_CTX(last_ctx);
1297 	}
1298 	new_slot_info = slot_ctx->dev_info;
1299 
1300 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1301 
1302 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1303 			(unsigned int) ep->desc.bEndpointAddress,
1304 			udev->slot_id,
1305 			(unsigned int) new_drop_flags,
1306 			(unsigned int) new_add_flags,
1307 			(unsigned int) new_slot_info);
1308 	return 0;
1309 }
1310 
1311 /* Add an endpoint to a new possible bandwidth configuration for this device.
1312  * Only one call to this function is allowed per endpoint before
1313  * check_bandwidth() or reset_bandwidth() must be called.
1314  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1315  * add the endpoint to the schedule with possibly new parameters denoted by a
1316  * different endpoint descriptor in usb_host_endpoint.
1317  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1318  * not allowed.
1319  *
1320  * The USB core will not allow URBs to be queued to an endpoint until the
1321  * configuration or alt setting is installed in the device, so there's no need
1322  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1323  */
1324 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1325 		struct usb_host_endpoint *ep)
1326 {
1327 	struct xhci_hcd *xhci;
1328 	struct xhci_container_ctx *in_ctx, *out_ctx;
1329 	unsigned int ep_index;
1330 	struct xhci_ep_ctx *ep_ctx;
1331 	struct xhci_slot_ctx *slot_ctx;
1332 	struct xhci_input_control_ctx *ctrl_ctx;
1333 	u32 added_ctxs;
1334 	unsigned int last_ctx;
1335 	u32 new_add_flags, new_drop_flags, new_slot_info;
1336 	int ret = 0;
1337 
1338 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1339 	if (ret <= 0) {
1340 		/* So we won't queue a reset ep command for a root hub */
1341 		ep->hcpriv = NULL;
1342 		return ret;
1343 	}
1344 	xhci = hcd_to_xhci(hcd);
1345 
1346 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1347 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1348 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1349 		/* FIXME when we have to issue an evaluate endpoint command to
1350 		 * deal with ep0 max packet size changing once we get the
1351 		 * descriptors
1352 		 */
1353 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1354 				__func__, added_ctxs);
1355 		return 0;
1356 	}
1357 
1358 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1359 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1360 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1361 	ep_index = xhci_get_endpoint_index(&ep->desc);
1362 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1363 	/* If the HCD has already noted the endpoint is enabled,
1364 	 * ignore this request.
1365 	 */
1366 	if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
1367 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1368 				__func__, ep);
1369 		return 0;
1370 	}
1371 
1372 	/*
1373 	 * Configuration and alternate setting changes must be done in
1374 	 * process context, not interrupt context (or so documenation
1375 	 * for usb_set_interface() and usb_set_configuration() claim).
1376 	 */
1377 	if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
1378 				udev, ep, GFP_NOIO) < 0) {
1379 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1380 				__func__, ep->desc.bEndpointAddress);
1381 		return -ENOMEM;
1382 	}
1383 
1384 	ctrl_ctx->add_flags |= added_ctxs;
1385 	new_add_flags = ctrl_ctx->add_flags;
1386 
1387 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1388 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1389 	 * this re-adds a new state for the endpoint from the new endpoint
1390 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1391 	 * drop flags alone.
1392 	 */
1393 	new_drop_flags = ctrl_ctx->drop_flags;
1394 
1395 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1396 	/* Update the last valid endpoint context, if we just added one past */
1397 	if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
1398 		slot_ctx->dev_info &= ~LAST_CTX_MASK;
1399 		slot_ctx->dev_info |= LAST_CTX(last_ctx);
1400 	}
1401 	new_slot_info = slot_ctx->dev_info;
1402 
1403 	/* Store the usb_device pointer for later use */
1404 	ep->hcpriv = udev;
1405 
1406 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1407 			(unsigned int) ep->desc.bEndpointAddress,
1408 			udev->slot_id,
1409 			(unsigned int) new_drop_flags,
1410 			(unsigned int) new_add_flags,
1411 			(unsigned int) new_slot_info);
1412 	return 0;
1413 }
1414 
1415 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1416 {
1417 	struct xhci_input_control_ctx *ctrl_ctx;
1418 	struct xhci_ep_ctx *ep_ctx;
1419 	struct xhci_slot_ctx *slot_ctx;
1420 	int i;
1421 
1422 	/* When a device's add flag and drop flag are zero, any subsequent
1423 	 * configure endpoint command will leave that endpoint's state
1424 	 * untouched.  Make sure we don't leave any old state in the input
1425 	 * endpoint contexts.
1426 	 */
1427 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1428 	ctrl_ctx->drop_flags = 0;
1429 	ctrl_ctx->add_flags = 0;
1430 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1431 	slot_ctx->dev_info &= ~LAST_CTX_MASK;
1432 	/* Endpoint 0 is always valid */
1433 	slot_ctx->dev_info |= LAST_CTX(1);
1434 	for (i = 1; i < 31; ++i) {
1435 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1436 		ep_ctx->ep_info = 0;
1437 		ep_ctx->ep_info2 = 0;
1438 		ep_ctx->deq = 0;
1439 		ep_ctx->tx_info = 0;
1440 	}
1441 }
1442 
1443 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1444 		struct usb_device *udev, int *cmd_status)
1445 {
1446 	int ret;
1447 
1448 	switch (*cmd_status) {
1449 	case COMP_ENOMEM:
1450 		dev_warn(&udev->dev, "Not enough host controller resources "
1451 				"for new device state.\n");
1452 		ret = -ENOMEM;
1453 		/* FIXME: can we allocate more resources for the HC? */
1454 		break;
1455 	case COMP_BW_ERR:
1456 		dev_warn(&udev->dev, "Not enough bandwidth "
1457 				"for new device state.\n");
1458 		ret = -ENOSPC;
1459 		/* FIXME: can we go back to the old state? */
1460 		break;
1461 	case COMP_TRB_ERR:
1462 		/* the HCD set up something wrong */
1463 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1464 				"add flag = 1, "
1465 				"and endpoint is not disabled.\n");
1466 		ret = -EINVAL;
1467 		break;
1468 	case COMP_SUCCESS:
1469 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1470 		ret = 0;
1471 		break;
1472 	default:
1473 		xhci_err(xhci, "ERROR: unexpected command completion "
1474 				"code 0x%x.\n", *cmd_status);
1475 		ret = -EINVAL;
1476 		break;
1477 	}
1478 	return ret;
1479 }
1480 
1481 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1482 		struct usb_device *udev, int *cmd_status)
1483 {
1484 	int ret;
1485 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1486 
1487 	switch (*cmd_status) {
1488 	case COMP_EINVAL:
1489 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1490 				"context command.\n");
1491 		ret = -EINVAL;
1492 		break;
1493 	case COMP_EBADSLT:
1494 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1495 				"evaluate context command.\n");
1496 	case COMP_CTX_STATE:
1497 		dev_warn(&udev->dev, "WARN: invalid context state for "
1498 				"evaluate context command.\n");
1499 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1500 		ret = -EINVAL;
1501 		break;
1502 	case COMP_SUCCESS:
1503 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1504 		ret = 0;
1505 		break;
1506 	default:
1507 		xhci_err(xhci, "ERROR: unexpected command completion "
1508 				"code 0x%x.\n", *cmd_status);
1509 		ret = -EINVAL;
1510 		break;
1511 	}
1512 	return ret;
1513 }
1514 
1515 /* Issue a configure endpoint command or evaluate context command
1516  * and wait for it to finish.
1517  */
1518 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1519 		struct usb_device *udev,
1520 		struct xhci_command *command,
1521 		bool ctx_change, bool must_succeed)
1522 {
1523 	int ret;
1524 	int timeleft;
1525 	unsigned long flags;
1526 	struct xhci_container_ctx *in_ctx;
1527 	struct completion *cmd_completion;
1528 	int *cmd_status;
1529 	struct xhci_virt_device *virt_dev;
1530 
1531 	spin_lock_irqsave(&xhci->lock, flags);
1532 	virt_dev = xhci->devs[udev->slot_id];
1533 	if (command) {
1534 		in_ctx = command->in_ctx;
1535 		cmd_completion = command->completion;
1536 		cmd_status = &command->status;
1537 		command->command_trb = xhci->cmd_ring->enqueue;
1538 
1539 		/* Enqueue pointer can be left pointing to the link TRB,
1540 		 * we must handle that
1541 		 */
1542 		if ((command->command_trb->link.control & TRB_TYPE_BITMASK)
1543 				== TRB_TYPE(TRB_LINK))
1544 			command->command_trb =
1545 				xhci->cmd_ring->enq_seg->next->trbs;
1546 
1547 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1548 	} else {
1549 		in_ctx = virt_dev->in_ctx;
1550 		cmd_completion = &virt_dev->cmd_completion;
1551 		cmd_status = &virt_dev->cmd_status;
1552 	}
1553 	init_completion(cmd_completion);
1554 
1555 	if (!ctx_change)
1556 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1557 				udev->slot_id, must_succeed);
1558 	else
1559 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1560 				udev->slot_id);
1561 	if (ret < 0) {
1562 		if (command)
1563 			list_del(&command->cmd_list);
1564 		spin_unlock_irqrestore(&xhci->lock, flags);
1565 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1566 		return -ENOMEM;
1567 	}
1568 	xhci_ring_cmd_db(xhci);
1569 	spin_unlock_irqrestore(&xhci->lock, flags);
1570 
1571 	/* Wait for the configure endpoint command to complete */
1572 	timeleft = wait_for_completion_interruptible_timeout(
1573 			cmd_completion,
1574 			USB_CTRL_SET_TIMEOUT);
1575 	if (timeleft <= 0) {
1576 		xhci_warn(xhci, "%s while waiting for %s command\n",
1577 				timeleft == 0 ? "Timeout" : "Signal",
1578 				ctx_change == 0 ?
1579 					"configure endpoint" :
1580 					"evaluate context");
1581 		/* FIXME cancel the configure endpoint command */
1582 		return -ETIME;
1583 	}
1584 
1585 	if (!ctx_change)
1586 		return xhci_configure_endpoint_result(xhci, udev, cmd_status);
1587 	return xhci_evaluate_context_result(xhci, udev, cmd_status);
1588 }
1589 
1590 /* Called after one or more calls to xhci_add_endpoint() or
1591  * xhci_drop_endpoint().  If this call fails, the USB core is expected
1592  * to call xhci_reset_bandwidth().
1593  *
1594  * Since we are in the middle of changing either configuration or
1595  * installing a new alt setting, the USB core won't allow URBs to be
1596  * enqueued for any endpoint on the old config or interface.  Nothing
1597  * else should be touching the xhci->devs[slot_id] structure, so we
1598  * don't need to take the xhci->lock for manipulating that.
1599  */
1600 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1601 {
1602 	int i;
1603 	int ret = 0;
1604 	struct xhci_hcd *xhci;
1605 	struct xhci_virt_device	*virt_dev;
1606 	struct xhci_input_control_ctx *ctrl_ctx;
1607 	struct xhci_slot_ctx *slot_ctx;
1608 
1609 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1610 	if (ret <= 0)
1611 		return ret;
1612 	xhci = hcd_to_xhci(hcd);
1613 
1614 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1615 	virt_dev = xhci->devs[udev->slot_id];
1616 
1617 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1618 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1619 	ctrl_ctx->add_flags |= SLOT_FLAG;
1620 	ctrl_ctx->add_flags &= ~EP0_FLAG;
1621 	ctrl_ctx->drop_flags &= ~SLOT_FLAG;
1622 	ctrl_ctx->drop_flags &= ~EP0_FLAG;
1623 	xhci_dbg(xhci, "New Input Control Context:\n");
1624 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1625 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1626 			LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1627 
1628 	ret = xhci_configure_endpoint(xhci, udev, NULL,
1629 			false, false);
1630 	if (ret) {
1631 		/* Callee should call reset_bandwidth() */
1632 		return ret;
1633 	}
1634 
1635 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1636 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1637 			LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1638 
1639 	xhci_zero_in_ctx(xhci, virt_dev);
1640 	/* Install new rings and free or cache any old rings */
1641 	for (i = 1; i < 31; ++i) {
1642 		if (!virt_dev->eps[i].new_ring)
1643 			continue;
1644 		/* Only cache or free the old ring if it exists.
1645 		 * It may not if this is the first add of an endpoint.
1646 		 */
1647 		if (virt_dev->eps[i].ring) {
1648 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1649 		}
1650 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1651 		virt_dev->eps[i].new_ring = NULL;
1652 	}
1653 
1654 	return ret;
1655 }
1656 
1657 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1658 {
1659 	struct xhci_hcd *xhci;
1660 	struct xhci_virt_device	*virt_dev;
1661 	int i, ret;
1662 
1663 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1664 	if (ret <= 0)
1665 		return;
1666 	xhci = hcd_to_xhci(hcd);
1667 
1668 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1669 	virt_dev = xhci->devs[udev->slot_id];
1670 	/* Free any rings allocated for added endpoints */
1671 	for (i = 0; i < 31; ++i) {
1672 		if (virt_dev->eps[i].new_ring) {
1673 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1674 			virt_dev->eps[i].new_ring = NULL;
1675 		}
1676 	}
1677 	xhci_zero_in_ctx(xhci, virt_dev);
1678 }
1679 
1680 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1681 		struct xhci_container_ctx *in_ctx,
1682 		struct xhci_container_ctx *out_ctx,
1683 		u32 add_flags, u32 drop_flags)
1684 {
1685 	struct xhci_input_control_ctx *ctrl_ctx;
1686 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1687 	ctrl_ctx->add_flags = add_flags;
1688 	ctrl_ctx->drop_flags = drop_flags;
1689 	xhci_slot_copy(xhci, in_ctx, out_ctx);
1690 	ctrl_ctx->add_flags |= SLOT_FLAG;
1691 
1692 	xhci_dbg(xhci, "Input Context:\n");
1693 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1694 }
1695 
1696 void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1697 		unsigned int slot_id, unsigned int ep_index,
1698 		struct xhci_dequeue_state *deq_state)
1699 {
1700 	struct xhci_container_ctx *in_ctx;
1701 	struct xhci_ep_ctx *ep_ctx;
1702 	u32 added_ctxs;
1703 	dma_addr_t addr;
1704 
1705 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1706 			xhci->devs[slot_id]->out_ctx, ep_index);
1707 	in_ctx = xhci->devs[slot_id]->in_ctx;
1708 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1709 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1710 			deq_state->new_deq_ptr);
1711 	if (addr == 0) {
1712 		xhci_warn(xhci, "WARN Cannot submit config ep after "
1713 				"reset ep command\n");
1714 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1715 				deq_state->new_deq_seg,
1716 				deq_state->new_deq_ptr);
1717 		return;
1718 	}
1719 	ep_ctx->deq = addr | deq_state->new_cycle_state;
1720 
1721 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1722 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1723 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1724 }
1725 
1726 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1727 		struct usb_device *udev, unsigned int ep_index)
1728 {
1729 	struct xhci_dequeue_state deq_state;
1730 	struct xhci_virt_ep *ep;
1731 
1732 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1733 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1734 	/* We need to move the HW's dequeue pointer past this TD,
1735 	 * or it will attempt to resend it on the next doorbell ring.
1736 	 */
1737 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
1738 			ep_index, ep->stopped_stream, ep->stopped_td,
1739 			&deq_state);
1740 
1741 	/* HW with the reset endpoint quirk will use the saved dequeue state to
1742 	 * issue a configure endpoint command later.
1743 	 */
1744 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1745 		xhci_dbg(xhci, "Queueing new dequeue state\n");
1746 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1747 				ep_index, ep->stopped_stream, &deq_state);
1748 	} else {
1749 		/* Better hope no one uses the input context between now and the
1750 		 * reset endpoint completion!
1751 		 * XXX: No idea how this hardware will react when stream rings
1752 		 * are enabled.
1753 		 */
1754 		xhci_dbg(xhci, "Setting up input context for "
1755 				"configure endpoint command\n");
1756 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1757 				ep_index, &deq_state);
1758 	}
1759 }
1760 
1761 /* Deal with stalled endpoints.  The core should have sent the control message
1762  * to clear the halt condition.  However, we need to make the xHCI hardware
1763  * reset its sequence number, since a device will expect a sequence number of
1764  * zero after the halt condition is cleared.
1765  * Context: in_interrupt
1766  */
1767 void xhci_endpoint_reset(struct usb_hcd *hcd,
1768 		struct usb_host_endpoint *ep)
1769 {
1770 	struct xhci_hcd *xhci;
1771 	struct usb_device *udev;
1772 	unsigned int ep_index;
1773 	unsigned long flags;
1774 	int ret;
1775 	struct xhci_virt_ep *virt_ep;
1776 
1777 	xhci = hcd_to_xhci(hcd);
1778 	udev = (struct usb_device *) ep->hcpriv;
1779 	/* Called with a root hub endpoint (or an endpoint that wasn't added
1780 	 * with xhci_add_endpoint()
1781 	 */
1782 	if (!ep->hcpriv)
1783 		return;
1784 	ep_index = xhci_get_endpoint_index(&ep->desc);
1785 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1786 	if (!virt_ep->stopped_td) {
1787 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1788 				ep->desc.bEndpointAddress);
1789 		return;
1790 	}
1791 	if (usb_endpoint_xfer_control(&ep->desc)) {
1792 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
1793 		return;
1794 	}
1795 
1796 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
1797 	spin_lock_irqsave(&xhci->lock, flags);
1798 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1799 	/*
1800 	 * Can't change the ring dequeue pointer until it's transitioned to the
1801 	 * stopped state, which is only upon a successful reset endpoint
1802 	 * command.  Better hope that last command worked!
1803 	 */
1804 	if (!ret) {
1805 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
1806 		kfree(virt_ep->stopped_td);
1807 		xhci_ring_cmd_db(xhci);
1808 	}
1809 	virt_ep->stopped_td = NULL;
1810 	virt_ep->stopped_trb = NULL;
1811 	virt_ep->stopped_stream = 0;
1812 	spin_unlock_irqrestore(&xhci->lock, flags);
1813 
1814 	if (ret)
1815 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1816 }
1817 
1818 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
1819 		struct usb_device *udev, struct usb_host_endpoint *ep,
1820 		unsigned int slot_id)
1821 {
1822 	int ret;
1823 	unsigned int ep_index;
1824 	unsigned int ep_state;
1825 
1826 	if (!ep)
1827 		return -EINVAL;
1828 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
1829 	if (ret <= 0)
1830 		return -EINVAL;
1831 	if (ep->ss_ep_comp.bmAttributes == 0) {
1832 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
1833 				" descriptor for ep 0x%x does not support streams\n",
1834 				ep->desc.bEndpointAddress);
1835 		return -EINVAL;
1836 	}
1837 
1838 	ep_index = xhci_get_endpoint_index(&ep->desc);
1839 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1840 	if (ep_state & EP_HAS_STREAMS ||
1841 			ep_state & EP_GETTING_STREAMS) {
1842 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
1843 				"already has streams set up.\n",
1844 				ep->desc.bEndpointAddress);
1845 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
1846 				"dynamic stream context array reallocation.\n");
1847 		return -EINVAL;
1848 	}
1849 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
1850 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
1851 				"endpoint 0x%x; URBs are pending.\n",
1852 				ep->desc.bEndpointAddress);
1853 		return -EINVAL;
1854 	}
1855 	return 0;
1856 }
1857 
1858 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
1859 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
1860 {
1861 	unsigned int max_streams;
1862 
1863 	/* The stream context array size must be a power of two */
1864 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
1865 	/*
1866 	 * Find out how many primary stream array entries the host controller
1867 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
1868 	 * level page entries), but that's an optional feature for xHCI host
1869 	 * controllers. xHCs must support at least 4 stream IDs.
1870 	 */
1871 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
1872 	if (*num_stream_ctxs > max_streams) {
1873 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
1874 				max_streams);
1875 		*num_stream_ctxs = max_streams;
1876 		*num_streams = max_streams;
1877 	}
1878 }
1879 
1880 /* Returns an error code if one of the endpoint already has streams.
1881  * This does not change any data structures, it only checks and gathers
1882  * information.
1883  */
1884 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
1885 		struct usb_device *udev,
1886 		struct usb_host_endpoint **eps, unsigned int num_eps,
1887 		unsigned int *num_streams, u32 *changed_ep_bitmask)
1888 {
1889 	unsigned int max_streams;
1890 	unsigned int endpoint_flag;
1891 	int i;
1892 	int ret;
1893 
1894 	for (i = 0; i < num_eps; i++) {
1895 		ret = xhci_check_streams_endpoint(xhci, udev,
1896 				eps[i], udev->slot_id);
1897 		if (ret < 0)
1898 			return ret;
1899 
1900 		max_streams = USB_SS_MAX_STREAMS(
1901 				eps[i]->ss_ep_comp.bmAttributes);
1902 		if (max_streams < (*num_streams - 1)) {
1903 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
1904 					eps[i]->desc.bEndpointAddress,
1905 					max_streams);
1906 			*num_streams = max_streams+1;
1907 		}
1908 
1909 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
1910 		if (*changed_ep_bitmask & endpoint_flag)
1911 			return -EINVAL;
1912 		*changed_ep_bitmask |= endpoint_flag;
1913 	}
1914 	return 0;
1915 }
1916 
1917 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
1918 		struct usb_device *udev,
1919 		struct usb_host_endpoint **eps, unsigned int num_eps)
1920 {
1921 	u32 changed_ep_bitmask = 0;
1922 	unsigned int slot_id;
1923 	unsigned int ep_index;
1924 	unsigned int ep_state;
1925 	int i;
1926 
1927 	slot_id = udev->slot_id;
1928 	if (!xhci->devs[slot_id])
1929 		return 0;
1930 
1931 	for (i = 0; i < num_eps; i++) {
1932 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1933 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1934 		/* Are streams already being freed for the endpoint? */
1935 		if (ep_state & EP_GETTING_NO_STREAMS) {
1936 			xhci_warn(xhci, "WARN Can't disable streams for "
1937 					"endpoint 0x%x\n, "
1938 					"streams are being disabled already.",
1939 					eps[i]->desc.bEndpointAddress);
1940 			return 0;
1941 		}
1942 		/* Are there actually any streams to free? */
1943 		if (!(ep_state & EP_HAS_STREAMS) &&
1944 				!(ep_state & EP_GETTING_STREAMS)) {
1945 			xhci_warn(xhci, "WARN Can't disable streams for "
1946 					"endpoint 0x%x\n, "
1947 					"streams are already disabled!",
1948 					eps[i]->desc.bEndpointAddress);
1949 			xhci_warn(xhci, "WARN xhci_free_streams() called "
1950 					"with non-streams endpoint\n");
1951 			return 0;
1952 		}
1953 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
1954 	}
1955 	return changed_ep_bitmask;
1956 }
1957 
1958 /*
1959  * The USB device drivers use this function (though the HCD interface in USB
1960  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
1961  * coordinate mass storage command queueing across multiple endpoints (basically
1962  * a stream ID == a task ID).
1963  *
1964  * Setting up streams involves allocating the same size stream context array
1965  * for each endpoint and issuing a configure endpoint command for all endpoints.
1966  *
1967  * Don't allow the call to succeed if one endpoint only supports one stream
1968  * (which means it doesn't support streams at all).
1969  *
1970  * Drivers may get less stream IDs than they asked for, if the host controller
1971  * hardware or endpoints claim they can't support the number of requested
1972  * stream IDs.
1973  */
1974 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
1975 		struct usb_host_endpoint **eps, unsigned int num_eps,
1976 		unsigned int num_streams, gfp_t mem_flags)
1977 {
1978 	int i, ret;
1979 	struct xhci_hcd *xhci;
1980 	struct xhci_virt_device *vdev;
1981 	struct xhci_command *config_cmd;
1982 	unsigned int ep_index;
1983 	unsigned int num_stream_ctxs;
1984 	unsigned long flags;
1985 	u32 changed_ep_bitmask = 0;
1986 
1987 	if (!eps)
1988 		return -EINVAL;
1989 
1990 	/* Add one to the number of streams requested to account for
1991 	 * stream 0 that is reserved for xHCI usage.
1992 	 */
1993 	num_streams += 1;
1994 	xhci = hcd_to_xhci(hcd);
1995 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
1996 			num_streams);
1997 
1998 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
1999 	if (!config_cmd) {
2000 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2001 		return -ENOMEM;
2002 	}
2003 
2004 	/* Check to make sure all endpoints are not already configured for
2005 	 * streams.  While we're at it, find the maximum number of streams that
2006 	 * all the endpoints will support and check for duplicate endpoints.
2007 	 */
2008 	spin_lock_irqsave(&xhci->lock, flags);
2009 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2010 			num_eps, &num_streams, &changed_ep_bitmask);
2011 	if (ret < 0) {
2012 		xhci_free_command(xhci, config_cmd);
2013 		spin_unlock_irqrestore(&xhci->lock, flags);
2014 		return ret;
2015 	}
2016 	if (num_streams <= 1) {
2017 		xhci_warn(xhci, "WARN: endpoints can't handle "
2018 				"more than one stream.\n");
2019 		xhci_free_command(xhci, config_cmd);
2020 		spin_unlock_irqrestore(&xhci->lock, flags);
2021 		return -EINVAL;
2022 	}
2023 	vdev = xhci->devs[udev->slot_id];
2024 	/* Mark each endpoint as being in transistion, so
2025 	 * xhci_urb_enqueue() will reject all URBs.
2026 	 */
2027 	for (i = 0; i < num_eps; i++) {
2028 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2029 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2030 	}
2031 	spin_unlock_irqrestore(&xhci->lock, flags);
2032 
2033 	/* Setup internal data structures and allocate HW data structures for
2034 	 * streams (but don't install the HW structures in the input context
2035 	 * until we're sure all memory allocation succeeded).
2036 	 */
2037 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2038 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2039 			num_stream_ctxs, num_streams);
2040 
2041 	for (i = 0; i < num_eps; i++) {
2042 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2043 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2044 				num_stream_ctxs,
2045 				num_streams, mem_flags);
2046 		if (!vdev->eps[ep_index].stream_info)
2047 			goto cleanup;
2048 		/* Set maxPstreams in endpoint context and update deq ptr to
2049 		 * point to stream context array. FIXME
2050 		 */
2051 	}
2052 
2053 	/* Set up the input context for a configure endpoint command. */
2054 	for (i = 0; i < num_eps; i++) {
2055 		struct xhci_ep_ctx *ep_ctx;
2056 
2057 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2058 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2059 
2060 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2061 				vdev->out_ctx, ep_index);
2062 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2063 				vdev->eps[ep_index].stream_info);
2064 	}
2065 	/* Tell the HW to drop its old copy of the endpoint context info
2066 	 * and add the updated copy from the input context.
2067 	 */
2068 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2069 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2070 
2071 	/* Issue and wait for the configure endpoint command */
2072 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2073 			false, false);
2074 
2075 	/* xHC rejected the configure endpoint command for some reason, so we
2076 	 * leave the old ring intact and free our internal streams data
2077 	 * structure.
2078 	 */
2079 	if (ret < 0)
2080 		goto cleanup;
2081 
2082 	spin_lock_irqsave(&xhci->lock, flags);
2083 	for (i = 0; i < num_eps; i++) {
2084 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2085 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2086 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2087 			 udev->slot_id, ep_index);
2088 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2089 	}
2090 	xhci_free_command(xhci, config_cmd);
2091 	spin_unlock_irqrestore(&xhci->lock, flags);
2092 
2093 	/* Subtract 1 for stream 0, which drivers can't use */
2094 	return num_streams - 1;
2095 
2096 cleanup:
2097 	/* If it didn't work, free the streams! */
2098 	for (i = 0; i < num_eps; i++) {
2099 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2100 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2101 		vdev->eps[ep_index].stream_info = NULL;
2102 		/* FIXME Unset maxPstreams in endpoint context and
2103 		 * update deq ptr to point to normal string ring.
2104 		 */
2105 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2106 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2107 		xhci_endpoint_zero(xhci, vdev, eps[i]);
2108 	}
2109 	xhci_free_command(xhci, config_cmd);
2110 	return -ENOMEM;
2111 }
2112 
2113 /* Transition the endpoint from using streams to being a "normal" endpoint
2114  * without streams.
2115  *
2116  * Modify the endpoint context state, submit a configure endpoint command,
2117  * and free all endpoint rings for streams if that completes successfully.
2118  */
2119 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2120 		struct usb_host_endpoint **eps, unsigned int num_eps,
2121 		gfp_t mem_flags)
2122 {
2123 	int i, ret;
2124 	struct xhci_hcd *xhci;
2125 	struct xhci_virt_device *vdev;
2126 	struct xhci_command *command;
2127 	unsigned int ep_index;
2128 	unsigned long flags;
2129 	u32 changed_ep_bitmask;
2130 
2131 	xhci = hcd_to_xhci(hcd);
2132 	vdev = xhci->devs[udev->slot_id];
2133 
2134 	/* Set up a configure endpoint command to remove the streams rings */
2135 	spin_lock_irqsave(&xhci->lock, flags);
2136 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2137 			udev, eps, num_eps);
2138 	if (changed_ep_bitmask == 0) {
2139 		spin_unlock_irqrestore(&xhci->lock, flags);
2140 		return -EINVAL;
2141 	}
2142 
2143 	/* Use the xhci_command structure from the first endpoint.  We may have
2144 	 * allocated too many, but the driver may call xhci_free_streams() for
2145 	 * each endpoint it grouped into one call to xhci_alloc_streams().
2146 	 */
2147 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2148 	command = vdev->eps[ep_index].stream_info->free_streams_command;
2149 	for (i = 0; i < num_eps; i++) {
2150 		struct xhci_ep_ctx *ep_ctx;
2151 
2152 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2153 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2154 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2155 			EP_GETTING_NO_STREAMS;
2156 
2157 		xhci_endpoint_copy(xhci, command->in_ctx,
2158 				vdev->out_ctx, ep_index);
2159 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2160 				&vdev->eps[ep_index]);
2161 	}
2162 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2163 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2164 	spin_unlock_irqrestore(&xhci->lock, flags);
2165 
2166 	/* Issue and wait for the configure endpoint command,
2167 	 * which must succeed.
2168 	 */
2169 	ret = xhci_configure_endpoint(xhci, udev, command,
2170 			false, true);
2171 
2172 	/* xHC rejected the configure endpoint command for some reason, so we
2173 	 * leave the streams rings intact.
2174 	 */
2175 	if (ret < 0)
2176 		return ret;
2177 
2178 	spin_lock_irqsave(&xhci->lock, flags);
2179 	for (i = 0; i < num_eps; i++) {
2180 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2181 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2182 		vdev->eps[ep_index].stream_info = NULL;
2183 		/* FIXME Unset maxPstreams in endpoint context and
2184 		 * update deq ptr to point to normal string ring.
2185 		 */
2186 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2187 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2188 	}
2189 	spin_unlock_irqrestore(&xhci->lock, flags);
2190 
2191 	return 0;
2192 }
2193 
2194 /*
2195  * This submits a Reset Device Command, which will set the device state to 0,
2196  * set the device address to 0, and disable all the endpoints except the default
2197  * control endpoint.  The USB core should come back and call
2198  * xhci_address_device(), and then re-set up the configuration.  If this is
2199  * called because of a usb_reset_and_verify_device(), then the old alternate
2200  * settings will be re-installed through the normal bandwidth allocation
2201  * functions.
2202  *
2203  * Wait for the Reset Device command to finish.  Remove all structures
2204  * associated with the endpoints that were disabled.  Clear the input device
2205  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
2206  *
2207  * If the virt_dev to be reset does not exist or does not match the udev,
2208  * it means the device is lost, possibly due to the xHC restore error and
2209  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2210  * re-allocate the device.
2211  */
2212 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2213 {
2214 	int ret, i;
2215 	unsigned long flags;
2216 	struct xhci_hcd *xhci;
2217 	unsigned int slot_id;
2218 	struct xhci_virt_device *virt_dev;
2219 	struct xhci_command *reset_device_cmd;
2220 	int timeleft;
2221 	int last_freed_endpoint;
2222 
2223 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2224 	if (ret <= 0)
2225 		return ret;
2226 	xhci = hcd_to_xhci(hcd);
2227 	slot_id = udev->slot_id;
2228 	virt_dev = xhci->devs[slot_id];
2229 	if (!virt_dev) {
2230 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2231 				"not exist. Re-allocate the device\n", slot_id);
2232 		ret = xhci_alloc_dev(hcd, udev);
2233 		if (ret == 1)
2234 			return 0;
2235 		else
2236 			return -EINVAL;
2237 	}
2238 
2239 	if (virt_dev->udev != udev) {
2240 		/* If the virt_dev and the udev does not match, this virt_dev
2241 		 * may belong to another udev.
2242 		 * Re-allocate the device.
2243 		 */
2244 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2245 				"not match the udev. Re-allocate the device\n",
2246 				slot_id);
2247 		ret = xhci_alloc_dev(hcd, udev);
2248 		if (ret == 1)
2249 			return 0;
2250 		else
2251 			return -EINVAL;
2252 	}
2253 
2254 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2255 	/* Allocate the command structure that holds the struct completion.
2256 	 * Assume we're in process context, since the normal device reset
2257 	 * process has to wait for the device anyway.  Storage devices are
2258 	 * reset as part of error handling, so use GFP_NOIO instead of
2259 	 * GFP_KERNEL.
2260 	 */
2261 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2262 	if (!reset_device_cmd) {
2263 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2264 		return -ENOMEM;
2265 	}
2266 
2267 	/* Attempt to submit the Reset Device command to the command ring */
2268 	spin_lock_irqsave(&xhci->lock, flags);
2269 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2270 
2271 	/* Enqueue pointer can be left pointing to the link TRB,
2272 	 * we must handle that
2273 	 */
2274 	if ((reset_device_cmd->command_trb->link.control & TRB_TYPE_BITMASK)
2275 			== TRB_TYPE(TRB_LINK))
2276 		reset_device_cmd->command_trb =
2277 			xhci->cmd_ring->enq_seg->next->trbs;
2278 
2279 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2280 	ret = xhci_queue_reset_device(xhci, slot_id);
2281 	if (ret) {
2282 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2283 		list_del(&reset_device_cmd->cmd_list);
2284 		spin_unlock_irqrestore(&xhci->lock, flags);
2285 		goto command_cleanup;
2286 	}
2287 	xhci_ring_cmd_db(xhci);
2288 	spin_unlock_irqrestore(&xhci->lock, flags);
2289 
2290 	/* Wait for the Reset Device command to finish */
2291 	timeleft = wait_for_completion_interruptible_timeout(
2292 			reset_device_cmd->completion,
2293 			USB_CTRL_SET_TIMEOUT);
2294 	if (timeleft <= 0) {
2295 		xhci_warn(xhci, "%s while waiting for reset device command\n",
2296 				timeleft == 0 ? "Timeout" : "Signal");
2297 		spin_lock_irqsave(&xhci->lock, flags);
2298 		/* The timeout might have raced with the event ring handler, so
2299 		 * only delete from the list if the item isn't poisoned.
2300 		 */
2301 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2302 			list_del(&reset_device_cmd->cmd_list);
2303 		spin_unlock_irqrestore(&xhci->lock, flags);
2304 		ret = -ETIME;
2305 		goto command_cleanup;
2306 	}
2307 
2308 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2309 	 * unless we tried to reset a slot ID that wasn't enabled,
2310 	 * or the device wasn't in the addressed or configured state.
2311 	 */
2312 	ret = reset_device_cmd->status;
2313 	switch (ret) {
2314 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2315 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2316 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2317 				slot_id,
2318 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
2319 		xhci_info(xhci, "Not freeing device rings.\n");
2320 		/* Don't treat this as an error.  May change my mind later. */
2321 		ret = 0;
2322 		goto command_cleanup;
2323 	case COMP_SUCCESS:
2324 		xhci_dbg(xhci, "Successful reset device command.\n");
2325 		break;
2326 	default:
2327 		if (xhci_is_vendor_info_code(xhci, ret))
2328 			break;
2329 		xhci_warn(xhci, "Unknown completion code %u for "
2330 				"reset device command.\n", ret);
2331 		ret = -EINVAL;
2332 		goto command_cleanup;
2333 	}
2334 
2335 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
2336 	last_freed_endpoint = 1;
2337 	for (i = 1; i < 31; ++i) {
2338 		if (!virt_dev->eps[i].ring)
2339 			continue;
2340 		xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2341 		last_freed_endpoint = i;
2342 	}
2343 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2344 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2345 	ret = 0;
2346 
2347 command_cleanup:
2348 	xhci_free_command(xhci, reset_device_cmd);
2349 	return ret;
2350 }
2351 
2352 /*
2353  * At this point, the struct usb_device is about to go away, the device has
2354  * disconnected, and all traffic has been stopped and the endpoints have been
2355  * disabled.  Free any HC data structures associated with that device.
2356  */
2357 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2358 {
2359 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2360 	struct xhci_virt_device *virt_dev;
2361 	unsigned long flags;
2362 	u32 state;
2363 	int i, ret;
2364 
2365 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2366 	if (ret <= 0)
2367 		return;
2368 
2369 	virt_dev = xhci->devs[udev->slot_id];
2370 
2371 	/* Stop any wayward timer functions (which may grab the lock) */
2372 	for (i = 0; i < 31; ++i) {
2373 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2374 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2375 	}
2376 
2377 	spin_lock_irqsave(&xhci->lock, flags);
2378 	/* Don't disable the slot if the host controller is dead. */
2379 	state = xhci_readl(xhci, &xhci->op_regs->status);
2380 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
2381 		xhci_free_virt_device(xhci, udev->slot_id);
2382 		spin_unlock_irqrestore(&xhci->lock, flags);
2383 		return;
2384 	}
2385 
2386 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2387 		spin_unlock_irqrestore(&xhci->lock, flags);
2388 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2389 		return;
2390 	}
2391 	xhci_ring_cmd_db(xhci);
2392 	spin_unlock_irqrestore(&xhci->lock, flags);
2393 	/*
2394 	 * Event command completion handler will free any data structures
2395 	 * associated with the slot.  XXX Can free sleep?
2396 	 */
2397 }
2398 
2399 /*
2400  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2401  * timed out, or allocating memory failed.  Returns 1 on success.
2402  */
2403 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2404 {
2405 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2406 	unsigned long flags;
2407 	int timeleft;
2408 	int ret;
2409 
2410 	spin_lock_irqsave(&xhci->lock, flags);
2411 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2412 	if (ret) {
2413 		spin_unlock_irqrestore(&xhci->lock, flags);
2414 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2415 		return 0;
2416 	}
2417 	xhci_ring_cmd_db(xhci);
2418 	spin_unlock_irqrestore(&xhci->lock, flags);
2419 
2420 	/* XXX: how much time for xHC slot assignment? */
2421 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2422 			USB_CTRL_SET_TIMEOUT);
2423 	if (timeleft <= 0) {
2424 		xhci_warn(xhci, "%s while waiting for a slot\n",
2425 				timeleft == 0 ? "Timeout" : "Signal");
2426 		/* FIXME cancel the enable slot request */
2427 		return 0;
2428 	}
2429 
2430 	if (!xhci->slot_id) {
2431 		xhci_err(xhci, "Error while assigning device slot ID\n");
2432 		return 0;
2433 	}
2434 	/* xhci_alloc_virt_device() does not touch rings; no need to lock.
2435 	 * Use GFP_NOIO, since this function can be called from
2436 	 * xhci_discover_or_reset_device(), which may be called as part of
2437 	 * mass storage driver error handling.
2438 	 */
2439 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2440 		/* Disable slot, if we can do it without mem alloc */
2441 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2442 		spin_lock_irqsave(&xhci->lock, flags);
2443 		if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2444 			xhci_ring_cmd_db(xhci);
2445 		spin_unlock_irqrestore(&xhci->lock, flags);
2446 		return 0;
2447 	}
2448 	udev->slot_id = xhci->slot_id;
2449 	/* Is this a LS or FS device under a HS hub? */
2450 	/* Hub or peripherial? */
2451 	return 1;
2452 }
2453 
2454 /*
2455  * Issue an Address Device command (which will issue a SetAddress request to
2456  * the device).
2457  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2458  * we should only issue and wait on one address command at the same time.
2459  *
2460  * We add one to the device address issued by the hardware because the USB core
2461  * uses address 1 for the root hubs (even though they're not really devices).
2462  */
2463 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2464 {
2465 	unsigned long flags;
2466 	int timeleft;
2467 	struct xhci_virt_device *virt_dev;
2468 	int ret = 0;
2469 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2470 	struct xhci_slot_ctx *slot_ctx;
2471 	struct xhci_input_control_ctx *ctrl_ctx;
2472 	u64 temp_64;
2473 
2474 	if (!udev->slot_id) {
2475 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2476 		return -EINVAL;
2477 	}
2478 
2479 	virt_dev = xhci->devs[udev->slot_id];
2480 
2481 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2482 	/*
2483 	 * If this is the first Set Address since device plug-in or
2484 	 * virt_device realloaction after a resume with an xHCI power loss,
2485 	 * then set up the slot context.
2486 	 */
2487 	if (!slot_ctx->dev_info)
2488 		xhci_setup_addressable_virt_dev(xhci, udev);
2489 	/* Otherwise, update the control endpoint ring enqueue pointer. */
2490 	else
2491 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2492 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2493 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2494 
2495 	spin_lock_irqsave(&xhci->lock, flags);
2496 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2497 					udev->slot_id);
2498 	if (ret) {
2499 		spin_unlock_irqrestore(&xhci->lock, flags);
2500 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2501 		return ret;
2502 	}
2503 	xhci_ring_cmd_db(xhci);
2504 	spin_unlock_irqrestore(&xhci->lock, flags);
2505 
2506 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2507 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2508 			USB_CTRL_SET_TIMEOUT);
2509 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
2510 	 * the SetAddress() "recovery interval" required by USB and aborting the
2511 	 * command on a timeout.
2512 	 */
2513 	if (timeleft <= 0) {
2514 		xhci_warn(xhci, "%s while waiting for a slot\n",
2515 				timeleft == 0 ? "Timeout" : "Signal");
2516 		/* FIXME cancel the address device command */
2517 		return -ETIME;
2518 	}
2519 
2520 	switch (virt_dev->cmd_status) {
2521 	case COMP_CTX_STATE:
2522 	case COMP_EBADSLT:
2523 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2524 				udev->slot_id);
2525 		ret = -EINVAL;
2526 		break;
2527 	case COMP_TX_ERR:
2528 		dev_warn(&udev->dev, "Device not responding to set address.\n");
2529 		ret = -EPROTO;
2530 		break;
2531 	case COMP_SUCCESS:
2532 		xhci_dbg(xhci, "Successful Address Device command\n");
2533 		break;
2534 	default:
2535 		xhci_err(xhci, "ERROR: unexpected command completion "
2536 				"code 0x%x.\n", virt_dev->cmd_status);
2537 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2538 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2539 		ret = -EINVAL;
2540 		break;
2541 	}
2542 	if (ret) {
2543 		return ret;
2544 	}
2545 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2546 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2547 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2548 			udev->slot_id,
2549 			&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2550 			(unsigned long long)
2551 				xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
2552 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2553 			(unsigned long long)virt_dev->out_ctx->dma);
2554 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2555 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2556 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2557 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2558 	/*
2559 	 * USB core uses address 1 for the roothubs, so we add one to the
2560 	 * address given back to us by the HC.
2561 	 */
2562 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2563 	/* Use kernel assigned address for devices; store xHC assigned
2564 	 * address locally. */
2565 	virt_dev->address = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
2566 	/* Zero the input context control for later use */
2567 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2568 	ctrl_ctx->add_flags = 0;
2569 	ctrl_ctx->drop_flags = 0;
2570 
2571 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2572 
2573 	return 0;
2574 }
2575 
2576 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2577  * internal data structures for the device.
2578  */
2579 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2580 			struct usb_tt *tt, gfp_t mem_flags)
2581 {
2582 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2583 	struct xhci_virt_device *vdev;
2584 	struct xhci_command *config_cmd;
2585 	struct xhci_input_control_ctx *ctrl_ctx;
2586 	struct xhci_slot_ctx *slot_ctx;
2587 	unsigned long flags;
2588 	unsigned think_time;
2589 	int ret;
2590 
2591 	/* Ignore root hubs */
2592 	if (!hdev->parent)
2593 		return 0;
2594 
2595 	vdev = xhci->devs[hdev->slot_id];
2596 	if (!vdev) {
2597 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2598 		return -EINVAL;
2599 	}
2600 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2601 	if (!config_cmd) {
2602 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2603 		return -ENOMEM;
2604 	}
2605 
2606 	spin_lock_irqsave(&xhci->lock, flags);
2607 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2608 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2609 	ctrl_ctx->add_flags |= SLOT_FLAG;
2610 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2611 	slot_ctx->dev_info |= DEV_HUB;
2612 	if (tt->multi)
2613 		slot_ctx->dev_info |= DEV_MTT;
2614 	if (xhci->hci_version > 0x95) {
2615 		xhci_dbg(xhci, "xHCI version %x needs hub "
2616 				"TT think time and number of ports\n",
2617 				(unsigned int) xhci->hci_version);
2618 		slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild);
2619 		/* Set TT think time - convert from ns to FS bit times.
2620 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
2621 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
2622 		 */
2623 		think_time = tt->think_time;
2624 		if (think_time != 0)
2625 			think_time = (think_time / 666) - 1;
2626 		slot_ctx->tt_info |= TT_THINK_TIME(think_time);
2627 	} else {
2628 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
2629 				"TT think time or number of ports\n",
2630 				(unsigned int) xhci->hci_version);
2631 	}
2632 	slot_ctx->dev_state = 0;
2633 	spin_unlock_irqrestore(&xhci->lock, flags);
2634 
2635 	xhci_dbg(xhci, "Set up %s for hub device.\n",
2636 			(xhci->hci_version > 0x95) ?
2637 			"configure endpoint" : "evaluate context");
2638 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
2639 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
2640 
2641 	/* Issue and wait for the configure endpoint or
2642 	 * evaluate context command.
2643 	 */
2644 	if (xhci->hci_version > 0x95)
2645 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2646 				false, false);
2647 	else
2648 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2649 				true, false);
2650 
2651 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
2652 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
2653 
2654 	xhci_free_command(xhci, config_cmd);
2655 	return ret;
2656 }
2657 
2658 int xhci_get_frame(struct usb_hcd *hcd)
2659 {
2660 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2661 	/* EHCI mods by the periodic size.  Why? */
2662 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
2663 }
2664 
2665 MODULE_DESCRIPTION(DRIVER_DESC);
2666 MODULE_AUTHOR(DRIVER_AUTHOR);
2667 MODULE_LICENSE("GPL");
2668 
2669 static int __init xhci_hcd_init(void)
2670 {
2671 #ifdef CONFIG_PCI
2672 	int retval = 0;
2673 
2674 	retval = xhci_register_pci();
2675 
2676 	if (retval < 0) {
2677 		printk(KERN_DEBUG "Problem registering PCI driver.");
2678 		return retval;
2679 	}
2680 #endif
2681 	/*
2682 	 * Check the compiler generated sizes of structures that must be laid
2683 	 * out in specific ways for hardware access.
2684 	 */
2685 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2686 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
2687 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
2688 	/* xhci_device_control has eight fields, and also
2689 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
2690 	 */
2691 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
2692 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
2693 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
2694 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
2695 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
2696 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
2697 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
2698 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2699 	return 0;
2700 }
2701 module_init(xhci_hcd_init);
2702 
2703 static void __exit xhci_hcd_cleanup(void)
2704 {
2705 #ifdef CONFIG_PCI
2706 	xhci_unregister_pci();
2707 #endif
2708 }
2709 module_exit(xhci_hcd_cleanup);
2710