1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 35 #define DRIVER_AUTHOR "Sarah Sharp" 36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 39 40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 41 static int link_quirk; 42 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 44 45 static unsigned int quirks; 46 module_param(quirks, uint, S_IRUGO); 47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 48 49 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 50 /* 51 * xhci_handshake - spin reading hc until handshake completes or fails 52 * @ptr: address of hc register to be read 53 * @mask: bits to look at in result of read 54 * @done: value of those bits when handshake succeeds 55 * @usec: timeout in microseconds 56 * 57 * Returns negative errno, or zero on success 58 * 59 * Success happens when the "mask" bits have the specified value (hardware 60 * handshake done). There are two failure modes: "usec" have passed (major 61 * hardware flakeout), or the register reads as all-ones (hardware removed). 62 */ 63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 64 { 65 u32 result; 66 67 do { 68 result = readl(ptr); 69 if (result == ~(u32)0) /* card removed */ 70 return -ENODEV; 71 result &= mask; 72 if (result == done) 73 return 0; 74 udelay(1); 75 usec--; 76 } while (usec > 0); 77 return -ETIMEDOUT; 78 } 79 80 /* 81 * Disable interrupts and begin the xHCI halting process. 82 */ 83 void xhci_quiesce(struct xhci_hcd *xhci) 84 { 85 u32 halted; 86 u32 cmd; 87 u32 mask; 88 89 mask = ~(XHCI_IRQS); 90 halted = readl(&xhci->op_regs->status) & STS_HALT; 91 if (!halted) 92 mask &= ~CMD_RUN; 93 94 cmd = readl(&xhci->op_regs->command); 95 cmd &= mask; 96 writel(cmd, &xhci->op_regs->command); 97 } 98 99 /* 100 * Force HC into halt state. 101 * 102 * Disable any IRQs and clear the run/stop bit. 103 * HC will complete any current and actively pipelined transactions, and 104 * should halt within 16 ms of the run/stop bit being cleared. 105 * Read HC Halted bit in the status register to see when the HC is finished. 106 */ 107 int xhci_halt(struct xhci_hcd *xhci) 108 { 109 int ret; 110 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 111 xhci_quiesce(xhci); 112 113 ret = xhci_handshake(&xhci->op_regs->status, 114 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 115 if (!ret) { 116 xhci->xhc_state |= XHCI_STATE_HALTED; 117 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 118 } else 119 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 120 XHCI_MAX_HALT_USEC); 121 return ret; 122 } 123 124 /* 125 * Set the run bit and wait for the host to be running. 126 */ 127 static int xhci_start(struct xhci_hcd *xhci) 128 { 129 u32 temp; 130 int ret; 131 132 temp = readl(&xhci->op_regs->command); 133 temp |= (CMD_RUN); 134 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 135 temp); 136 writel(temp, &xhci->op_regs->command); 137 138 /* 139 * Wait for the HCHalted Status bit to be 0 to indicate the host is 140 * running. 141 */ 142 ret = xhci_handshake(&xhci->op_regs->status, 143 STS_HALT, 0, XHCI_MAX_HALT_USEC); 144 if (ret == -ETIMEDOUT) 145 xhci_err(xhci, "Host took too long to start, " 146 "waited %u microseconds.\n", 147 XHCI_MAX_HALT_USEC); 148 if (!ret) 149 xhci->xhc_state &= ~XHCI_STATE_HALTED; 150 return ret; 151 } 152 153 /* 154 * Reset a halted HC. 155 * 156 * This resets pipelines, timers, counters, state machines, etc. 157 * Transactions will be terminated immediately, and operational registers 158 * will be set to their defaults. 159 */ 160 int xhci_reset(struct xhci_hcd *xhci) 161 { 162 u32 command; 163 u32 state; 164 int ret, i; 165 166 state = readl(&xhci->op_regs->status); 167 if ((state & STS_HALT) == 0) { 168 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 169 return 0; 170 } 171 172 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 173 command = readl(&xhci->op_regs->command); 174 command |= CMD_RESET; 175 writel(command, &xhci->op_regs->command); 176 177 ret = xhci_handshake(&xhci->op_regs->command, 178 CMD_RESET, 0, 10 * 1000 * 1000); 179 if (ret) 180 return ret; 181 182 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 183 "Wait for controller to be ready for doorbell rings"); 184 /* 185 * xHCI cannot write to any doorbells or operational registers other 186 * than status until the "Controller Not Ready" flag is cleared. 187 */ 188 ret = xhci_handshake(&xhci->op_regs->status, 189 STS_CNR, 0, 10 * 1000 * 1000); 190 191 for (i = 0; i < 2; ++i) { 192 xhci->bus_state[i].port_c_suspend = 0; 193 xhci->bus_state[i].suspended_ports = 0; 194 xhci->bus_state[i].resuming_ports = 0; 195 } 196 197 return ret; 198 } 199 200 #ifdef CONFIG_PCI 201 static int xhci_free_msi(struct xhci_hcd *xhci) 202 { 203 int i; 204 205 if (!xhci->msix_entries) 206 return -EINVAL; 207 208 for (i = 0; i < xhci->msix_count; i++) 209 if (xhci->msix_entries[i].vector) 210 free_irq(xhci->msix_entries[i].vector, 211 xhci_to_hcd(xhci)); 212 return 0; 213 } 214 215 /* 216 * Set up MSI 217 */ 218 static int xhci_setup_msi(struct xhci_hcd *xhci) 219 { 220 int ret; 221 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 222 223 ret = pci_enable_msi(pdev); 224 if (ret) { 225 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 226 "failed to allocate MSI entry"); 227 return ret; 228 } 229 230 ret = request_irq(pdev->irq, xhci_msi_irq, 231 0, "xhci_hcd", xhci_to_hcd(xhci)); 232 if (ret) { 233 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 234 "disable MSI interrupt"); 235 pci_disable_msi(pdev); 236 } 237 238 return ret; 239 } 240 241 /* 242 * Free IRQs 243 * free all IRQs request 244 */ 245 static void xhci_free_irq(struct xhci_hcd *xhci) 246 { 247 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 248 int ret; 249 250 /* return if using legacy interrupt */ 251 if (xhci_to_hcd(xhci)->irq > 0) 252 return; 253 254 ret = xhci_free_msi(xhci); 255 if (!ret) 256 return; 257 if (pdev->irq > 0) 258 free_irq(pdev->irq, xhci_to_hcd(xhci)); 259 260 return; 261 } 262 263 /* 264 * Set up MSI-X 265 */ 266 static int xhci_setup_msix(struct xhci_hcd *xhci) 267 { 268 int i, ret = 0; 269 struct usb_hcd *hcd = xhci_to_hcd(xhci); 270 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 271 272 /* 273 * calculate number of msi-x vectors supported. 274 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 275 * with max number of interrupters based on the xhci HCSPARAMS1. 276 * - num_online_cpus: maximum msi-x vectors per CPUs core. 277 * Add additional 1 vector to ensure always available interrupt. 278 */ 279 xhci->msix_count = min(num_online_cpus() + 1, 280 HCS_MAX_INTRS(xhci->hcs_params1)); 281 282 xhci->msix_entries = 283 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 284 GFP_KERNEL); 285 if (!xhci->msix_entries) { 286 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 287 return -ENOMEM; 288 } 289 290 for (i = 0; i < xhci->msix_count; i++) { 291 xhci->msix_entries[i].entry = i; 292 xhci->msix_entries[i].vector = 0; 293 } 294 295 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 296 if (ret) { 297 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 298 "Failed to enable MSI-X"); 299 goto free_entries; 300 } 301 302 for (i = 0; i < xhci->msix_count; i++) { 303 ret = request_irq(xhci->msix_entries[i].vector, 304 xhci_msi_irq, 305 0, "xhci_hcd", xhci_to_hcd(xhci)); 306 if (ret) 307 goto disable_msix; 308 } 309 310 hcd->msix_enabled = 1; 311 return ret; 312 313 disable_msix: 314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 315 xhci_free_irq(xhci); 316 pci_disable_msix(pdev); 317 free_entries: 318 kfree(xhci->msix_entries); 319 xhci->msix_entries = NULL; 320 return ret; 321 } 322 323 /* Free any IRQs and disable MSI-X */ 324 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 325 { 326 struct usb_hcd *hcd = xhci_to_hcd(xhci); 327 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 328 329 if (xhci->quirks & XHCI_PLAT) 330 return; 331 332 xhci_free_irq(xhci); 333 334 if (xhci->msix_entries) { 335 pci_disable_msix(pdev); 336 kfree(xhci->msix_entries); 337 xhci->msix_entries = NULL; 338 } else { 339 pci_disable_msi(pdev); 340 } 341 342 hcd->msix_enabled = 0; 343 return; 344 } 345 346 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 347 { 348 int i; 349 350 if (xhci->msix_entries) { 351 for (i = 0; i < xhci->msix_count; i++) 352 synchronize_irq(xhci->msix_entries[i].vector); 353 } 354 } 355 356 static int xhci_try_enable_msi(struct usb_hcd *hcd) 357 { 358 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 359 struct pci_dev *pdev; 360 int ret; 361 362 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 363 if (xhci->quirks & XHCI_PLAT) 364 return 0; 365 366 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 367 /* 368 * Some Fresco Logic host controllers advertise MSI, but fail to 369 * generate interrupts. Don't even try to enable MSI. 370 */ 371 if (xhci->quirks & XHCI_BROKEN_MSI) 372 goto legacy_irq; 373 374 /* unregister the legacy interrupt */ 375 if (hcd->irq) 376 free_irq(hcd->irq, hcd); 377 hcd->irq = 0; 378 379 ret = xhci_setup_msix(xhci); 380 if (ret) 381 /* fall back to msi*/ 382 ret = xhci_setup_msi(xhci); 383 384 if (!ret) 385 /* hcd->irq is 0, we have MSI */ 386 return 0; 387 388 if (!pdev->irq) { 389 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 390 return -EINVAL; 391 } 392 393 legacy_irq: 394 if (!strlen(hcd->irq_descr)) 395 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 396 hcd->driver->description, hcd->self.busnum); 397 398 /* fall back to legacy interrupt*/ 399 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 400 hcd->irq_descr, hcd); 401 if (ret) { 402 xhci_err(xhci, "request interrupt %d failed\n", 403 pdev->irq); 404 return ret; 405 } 406 hcd->irq = pdev->irq; 407 return 0; 408 } 409 410 #else 411 412 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 413 { 414 return 0; 415 } 416 417 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 418 { 419 } 420 421 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 422 { 423 } 424 425 #endif 426 427 static void compliance_mode_recovery(unsigned long arg) 428 { 429 struct xhci_hcd *xhci; 430 struct usb_hcd *hcd; 431 u32 temp; 432 int i; 433 434 xhci = (struct xhci_hcd *)arg; 435 436 for (i = 0; i < xhci->num_usb3_ports; i++) { 437 temp = readl(xhci->usb3_ports[i]); 438 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 439 /* 440 * Compliance Mode Detected. Letting USB Core 441 * handle the Warm Reset 442 */ 443 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 444 "Compliance mode detected->port %d", 445 i + 1); 446 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 447 "Attempting compliance mode recovery"); 448 hcd = xhci->shared_hcd; 449 450 if (hcd->state == HC_STATE_SUSPENDED) 451 usb_hcd_resume_root_hub(hcd); 452 453 usb_hcd_poll_rh_status(hcd); 454 } 455 } 456 457 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 458 mod_timer(&xhci->comp_mode_recovery_timer, 459 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 460 } 461 462 /* 463 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 464 * that causes ports behind that hardware to enter compliance mode sometimes. 465 * The quirk creates a timer that polls every 2 seconds the link state of 466 * each host controller's port and recovers it by issuing a Warm reset 467 * if Compliance mode is detected, otherwise the port will become "dead" (no 468 * device connections or disconnections will be detected anymore). Becasue no 469 * status event is generated when entering compliance mode (per xhci spec), 470 * this quirk is needed on systems that have the failing hardware installed. 471 */ 472 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 473 { 474 xhci->port_status_u0 = 0; 475 setup_timer(&xhci->comp_mode_recovery_timer, 476 compliance_mode_recovery, (unsigned long)xhci); 477 xhci->comp_mode_recovery_timer.expires = jiffies + 478 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 479 480 set_timer_slack(&xhci->comp_mode_recovery_timer, 481 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 482 add_timer(&xhci->comp_mode_recovery_timer); 483 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 484 "Compliance mode recovery timer initialized"); 485 } 486 487 /* 488 * This function identifies the systems that have installed the SN65LVPE502CP 489 * USB3.0 re-driver and that need the Compliance Mode Quirk. 490 * Systems: 491 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 492 */ 493 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 494 { 495 const char *dmi_product_name, *dmi_sys_vendor; 496 497 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 498 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 499 if (!dmi_product_name || !dmi_sys_vendor) 500 return false; 501 502 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 503 return false; 504 505 if (strstr(dmi_product_name, "Z420") || 506 strstr(dmi_product_name, "Z620") || 507 strstr(dmi_product_name, "Z820") || 508 strstr(dmi_product_name, "Z1 Workstation")) 509 return true; 510 511 return false; 512 } 513 514 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 515 { 516 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 517 } 518 519 520 /* 521 * Initialize memory for HCD and xHC (one-time init). 522 * 523 * Program the PAGESIZE register, initialize the device context array, create 524 * device contexts (?), set up a command ring segment (or two?), create event 525 * ring (one for now). 526 */ 527 int xhci_init(struct usb_hcd *hcd) 528 { 529 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 530 int retval = 0; 531 532 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 533 spin_lock_init(&xhci->lock); 534 if (xhci->hci_version == 0x95 && link_quirk) { 535 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 536 "QUIRK: Not clearing Link TRB chain bits."); 537 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 538 } else { 539 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 540 "xHCI doesn't need link TRB QUIRK"); 541 } 542 retval = xhci_mem_init(xhci, GFP_KERNEL); 543 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 544 545 /* Initializing Compliance Mode Recovery Data If Needed */ 546 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 547 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 548 compliance_mode_recovery_timer_init(xhci); 549 } 550 551 return retval; 552 } 553 554 /*-------------------------------------------------------------------------*/ 555 556 557 static int xhci_run_finished(struct xhci_hcd *xhci) 558 { 559 if (xhci_start(xhci)) { 560 xhci_halt(xhci); 561 return -ENODEV; 562 } 563 xhci->shared_hcd->state = HC_STATE_RUNNING; 564 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 565 566 if (xhci->quirks & XHCI_NEC_HOST) 567 xhci_ring_cmd_db(xhci); 568 569 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 570 "Finished xhci_run for USB3 roothub"); 571 return 0; 572 } 573 574 /* 575 * Start the HC after it was halted. 576 * 577 * This function is called by the USB core when the HC driver is added. 578 * Its opposite is xhci_stop(). 579 * 580 * xhci_init() must be called once before this function can be called. 581 * Reset the HC, enable device slot contexts, program DCBAAP, and 582 * set command ring pointer and event ring pointer. 583 * 584 * Setup MSI-X vectors and enable interrupts. 585 */ 586 int xhci_run(struct usb_hcd *hcd) 587 { 588 u32 temp; 589 u64 temp_64; 590 int ret; 591 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 592 593 /* Start the xHCI host controller running only after the USB 2.0 roothub 594 * is setup. 595 */ 596 597 hcd->uses_new_polling = 1; 598 if (!usb_hcd_is_primary_hcd(hcd)) 599 return xhci_run_finished(xhci); 600 601 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 602 603 ret = xhci_try_enable_msi(hcd); 604 if (ret) 605 return ret; 606 607 xhci_dbg(xhci, "Command ring memory map follows:\n"); 608 xhci_debug_ring(xhci, xhci->cmd_ring); 609 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 610 xhci_dbg_cmd_ptrs(xhci); 611 612 xhci_dbg(xhci, "ERST memory map follows:\n"); 613 xhci_dbg_erst(xhci, &xhci->erst); 614 xhci_dbg(xhci, "Event ring:\n"); 615 xhci_debug_ring(xhci, xhci->event_ring); 616 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 617 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 618 temp_64 &= ~ERST_PTR_MASK; 619 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 620 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 621 622 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 623 "// Set the interrupt modulation register"); 624 temp = readl(&xhci->ir_set->irq_control); 625 temp &= ~ER_IRQ_INTERVAL_MASK; 626 temp |= (u32) 160; 627 writel(temp, &xhci->ir_set->irq_control); 628 629 /* Set the HCD state before we enable the irqs */ 630 temp = readl(&xhci->op_regs->command); 631 temp |= (CMD_EIE); 632 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 633 "// Enable interrupts, cmd = 0x%x.", temp); 634 writel(temp, &xhci->op_regs->command); 635 636 temp = readl(&xhci->ir_set->irq_pending); 637 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 638 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 639 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 640 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 641 xhci_print_ir_set(xhci, 0); 642 643 if (xhci->quirks & XHCI_NEC_HOST) { 644 struct xhci_command *command; 645 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 646 if (!command) 647 return -ENOMEM; 648 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 649 TRB_TYPE(TRB_NEC_GET_FW)); 650 } 651 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 652 "Finished xhci_run for USB2 roothub"); 653 return 0; 654 } 655 EXPORT_SYMBOL_GPL(xhci_run); 656 657 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 658 { 659 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 660 661 spin_lock_irq(&xhci->lock); 662 xhci_halt(xhci); 663 664 /* The shared_hcd is going to be deallocated shortly (the USB core only 665 * calls this function when allocation fails in usb_add_hcd(), or 666 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 667 */ 668 xhci->shared_hcd = NULL; 669 spin_unlock_irq(&xhci->lock); 670 } 671 672 /* 673 * Stop xHCI driver. 674 * 675 * This function is called by the USB core when the HC driver is removed. 676 * Its opposite is xhci_run(). 677 * 678 * Disable device contexts, disable IRQs, and quiesce the HC. 679 * Reset the HC, finish any completed transactions, and cleanup memory. 680 */ 681 void xhci_stop(struct usb_hcd *hcd) 682 { 683 u32 temp; 684 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 685 686 if (!usb_hcd_is_primary_hcd(hcd)) { 687 xhci_only_stop_hcd(xhci->shared_hcd); 688 return; 689 } 690 691 spin_lock_irq(&xhci->lock); 692 /* Make sure the xHC is halted for a USB3 roothub 693 * (xhci_stop() could be called as part of failed init). 694 */ 695 xhci_halt(xhci); 696 xhci_reset(xhci); 697 spin_unlock_irq(&xhci->lock); 698 699 xhci_cleanup_msix(xhci); 700 701 /* Deleting Compliance Mode Recovery Timer */ 702 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 703 (!(xhci_all_ports_seen_u0(xhci)))) { 704 del_timer_sync(&xhci->comp_mode_recovery_timer); 705 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 706 "%s: compliance mode recovery timer deleted", 707 __func__); 708 } 709 710 if (xhci->quirks & XHCI_AMD_PLL_FIX) 711 usb_amd_dev_put(); 712 713 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 714 "// Disabling event ring interrupts"); 715 temp = readl(&xhci->op_regs->status); 716 writel(temp & ~STS_EINT, &xhci->op_regs->status); 717 temp = readl(&xhci->ir_set->irq_pending); 718 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 719 xhci_print_ir_set(xhci, 0); 720 721 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 722 xhci_mem_cleanup(xhci); 723 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 724 "xhci_stop completed - status = %x", 725 readl(&xhci->op_regs->status)); 726 } 727 728 /* 729 * Shutdown HC (not bus-specific) 730 * 731 * This is called when the machine is rebooting or halting. We assume that the 732 * machine will be powered off, and the HC's internal state will be reset. 733 * Don't bother to free memory. 734 * 735 * This will only ever be called with the main usb_hcd (the USB3 roothub). 736 */ 737 void xhci_shutdown(struct usb_hcd *hcd) 738 { 739 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 740 741 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 742 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 743 744 spin_lock_irq(&xhci->lock); 745 xhci_halt(xhci); 746 /* Workaround for spurious wakeups at shutdown with HSW */ 747 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 748 xhci_reset(xhci); 749 spin_unlock_irq(&xhci->lock); 750 751 xhci_cleanup_msix(xhci); 752 753 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 754 "xhci_shutdown completed - status = %x", 755 readl(&xhci->op_regs->status)); 756 757 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 758 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 759 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 760 } 761 762 #ifdef CONFIG_PM 763 static void xhci_save_registers(struct xhci_hcd *xhci) 764 { 765 xhci->s3.command = readl(&xhci->op_regs->command); 766 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 767 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 768 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 769 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 770 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 771 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 772 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 773 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 774 } 775 776 static void xhci_restore_registers(struct xhci_hcd *xhci) 777 { 778 writel(xhci->s3.command, &xhci->op_regs->command); 779 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 780 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 781 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 782 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 783 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 784 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 785 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 786 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 787 } 788 789 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 790 { 791 u64 val_64; 792 793 /* step 2: initialize command ring buffer */ 794 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 795 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 796 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 797 xhci->cmd_ring->dequeue) & 798 (u64) ~CMD_RING_RSVD_BITS) | 799 xhci->cmd_ring->cycle_state; 800 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 801 "// Setting command ring address to 0x%llx", 802 (long unsigned long) val_64); 803 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 804 } 805 806 /* 807 * The whole command ring must be cleared to zero when we suspend the host. 808 * 809 * The host doesn't save the command ring pointer in the suspend well, so we 810 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 811 * aligned, because of the reserved bits in the command ring dequeue pointer 812 * register. Therefore, we can't just set the dequeue pointer back in the 813 * middle of the ring (TRBs are 16-byte aligned). 814 */ 815 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 816 { 817 struct xhci_ring *ring; 818 struct xhci_segment *seg; 819 820 ring = xhci->cmd_ring; 821 seg = ring->deq_seg; 822 do { 823 memset(seg->trbs, 0, 824 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 825 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 826 cpu_to_le32(~TRB_CYCLE); 827 seg = seg->next; 828 } while (seg != ring->deq_seg); 829 830 /* Reset the software enqueue and dequeue pointers */ 831 ring->deq_seg = ring->first_seg; 832 ring->dequeue = ring->first_seg->trbs; 833 ring->enq_seg = ring->deq_seg; 834 ring->enqueue = ring->dequeue; 835 836 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 837 /* 838 * Ring is now zeroed, so the HW should look for change of ownership 839 * when the cycle bit is set to 1. 840 */ 841 ring->cycle_state = 1; 842 843 /* 844 * Reset the hardware dequeue pointer. 845 * Yes, this will need to be re-written after resume, but we're paranoid 846 * and want to make sure the hardware doesn't access bogus memory 847 * because, say, the BIOS or an SMI started the host without changing 848 * the command ring pointers. 849 */ 850 xhci_set_cmd_ring_deq(xhci); 851 } 852 853 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 854 { 855 int port_index; 856 __le32 __iomem **port_array; 857 unsigned long flags; 858 u32 t1, t2; 859 860 spin_lock_irqsave(&xhci->lock, flags); 861 862 /* disble usb3 ports Wake bits*/ 863 port_index = xhci->num_usb3_ports; 864 port_array = xhci->usb3_ports; 865 while (port_index--) { 866 t1 = readl(port_array[port_index]); 867 t1 = xhci_port_state_to_neutral(t1); 868 t2 = t1 & ~PORT_WAKE_BITS; 869 if (t1 != t2) 870 writel(t2, port_array[port_index]); 871 } 872 873 /* disble usb2 ports Wake bits*/ 874 port_index = xhci->num_usb2_ports; 875 port_array = xhci->usb2_ports; 876 while (port_index--) { 877 t1 = readl(port_array[port_index]); 878 t1 = xhci_port_state_to_neutral(t1); 879 t2 = t1 & ~PORT_WAKE_BITS; 880 if (t1 != t2) 881 writel(t2, port_array[port_index]); 882 } 883 884 spin_unlock_irqrestore(&xhci->lock, flags); 885 } 886 887 /* 888 * Stop HC (not bus-specific) 889 * 890 * This is called when the machine transition into S3/S4 mode. 891 * 892 */ 893 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 894 { 895 int rc = 0; 896 unsigned int delay = XHCI_MAX_HALT_USEC; 897 struct usb_hcd *hcd = xhci_to_hcd(xhci); 898 u32 command; 899 900 if (hcd->state != HC_STATE_SUSPENDED || 901 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 902 return -EINVAL; 903 904 /* Clear root port wake on bits if wakeup not allowed. */ 905 if (!do_wakeup) 906 xhci_disable_port_wake_on_bits(xhci); 907 908 /* Don't poll the roothubs on bus suspend. */ 909 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 910 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 911 del_timer_sync(&hcd->rh_timer); 912 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 913 del_timer_sync(&xhci->shared_hcd->rh_timer); 914 915 spin_lock_irq(&xhci->lock); 916 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 917 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 918 /* step 1: stop endpoint */ 919 /* skipped assuming that port suspend has done */ 920 921 /* step 2: clear Run/Stop bit */ 922 command = readl(&xhci->op_regs->command); 923 command &= ~CMD_RUN; 924 writel(command, &xhci->op_regs->command); 925 926 /* Some chips from Fresco Logic need an extraordinary delay */ 927 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 928 929 if (xhci_handshake(&xhci->op_regs->status, 930 STS_HALT, STS_HALT, delay)) { 931 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 932 spin_unlock_irq(&xhci->lock); 933 return -ETIMEDOUT; 934 } 935 xhci_clear_command_ring(xhci); 936 937 /* step 3: save registers */ 938 xhci_save_registers(xhci); 939 940 /* step 4: set CSS flag */ 941 command = readl(&xhci->op_regs->command); 942 command |= CMD_CSS; 943 writel(command, &xhci->op_regs->command); 944 if (xhci_handshake(&xhci->op_regs->status, 945 STS_SAVE, 0, 10 * 1000)) { 946 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 947 spin_unlock_irq(&xhci->lock); 948 return -ETIMEDOUT; 949 } 950 spin_unlock_irq(&xhci->lock); 951 952 /* 953 * Deleting Compliance Mode Recovery Timer because the xHCI Host 954 * is about to be suspended. 955 */ 956 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 957 (!(xhci_all_ports_seen_u0(xhci)))) { 958 del_timer_sync(&xhci->comp_mode_recovery_timer); 959 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 960 "%s: compliance mode recovery timer deleted", 961 __func__); 962 } 963 964 /* step 5: remove core well power */ 965 /* synchronize irq when using MSI-X */ 966 xhci_msix_sync_irqs(xhci); 967 968 return rc; 969 } 970 EXPORT_SYMBOL_GPL(xhci_suspend); 971 972 /* 973 * start xHC (not bus-specific) 974 * 975 * This is called when the machine transition from S3/S4 mode. 976 * 977 */ 978 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 979 { 980 u32 command, temp = 0, status; 981 struct usb_hcd *hcd = xhci_to_hcd(xhci); 982 struct usb_hcd *secondary_hcd; 983 int retval = 0; 984 bool comp_timer_running = false; 985 986 /* Wait a bit if either of the roothubs need to settle from the 987 * transition into bus suspend. 988 */ 989 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 990 time_before(jiffies, 991 xhci->bus_state[1].next_statechange)) 992 msleep(100); 993 994 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 995 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 996 997 spin_lock_irq(&xhci->lock); 998 if (xhci->quirks & XHCI_RESET_ON_RESUME) 999 hibernated = true; 1000 1001 if (!hibernated) { 1002 /* step 1: restore register */ 1003 xhci_restore_registers(xhci); 1004 /* step 2: initialize command ring buffer */ 1005 xhci_set_cmd_ring_deq(xhci); 1006 /* step 3: restore state and start state*/ 1007 /* step 3: set CRS flag */ 1008 command = readl(&xhci->op_regs->command); 1009 command |= CMD_CRS; 1010 writel(command, &xhci->op_regs->command); 1011 if (xhci_handshake(&xhci->op_regs->status, 1012 STS_RESTORE, 0, 10 * 1000)) { 1013 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1014 spin_unlock_irq(&xhci->lock); 1015 return -ETIMEDOUT; 1016 } 1017 temp = readl(&xhci->op_regs->status); 1018 } 1019 1020 /* If restore operation fails, re-initialize the HC during resume */ 1021 if ((temp & STS_SRE) || hibernated) { 1022 1023 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1024 !(xhci_all_ports_seen_u0(xhci))) { 1025 del_timer_sync(&xhci->comp_mode_recovery_timer); 1026 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1027 "Compliance Mode Recovery Timer deleted!"); 1028 } 1029 1030 /* Let the USB core know _both_ roothubs lost power. */ 1031 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1032 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1033 1034 xhci_dbg(xhci, "Stop HCD\n"); 1035 xhci_halt(xhci); 1036 xhci_reset(xhci); 1037 spin_unlock_irq(&xhci->lock); 1038 xhci_cleanup_msix(xhci); 1039 1040 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1041 temp = readl(&xhci->op_regs->status); 1042 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1043 temp = readl(&xhci->ir_set->irq_pending); 1044 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1045 xhci_print_ir_set(xhci, 0); 1046 1047 xhci_dbg(xhci, "cleaning up memory\n"); 1048 xhci_mem_cleanup(xhci); 1049 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1050 readl(&xhci->op_regs->status)); 1051 1052 /* USB core calls the PCI reinit and start functions twice: 1053 * first with the primary HCD, and then with the secondary HCD. 1054 * If we don't do the same, the host will never be started. 1055 */ 1056 if (!usb_hcd_is_primary_hcd(hcd)) 1057 secondary_hcd = hcd; 1058 else 1059 secondary_hcd = xhci->shared_hcd; 1060 1061 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1062 retval = xhci_init(hcd->primary_hcd); 1063 if (retval) 1064 return retval; 1065 comp_timer_running = true; 1066 1067 xhci_dbg(xhci, "Start the primary HCD\n"); 1068 retval = xhci_run(hcd->primary_hcd); 1069 if (!retval) { 1070 xhci_dbg(xhci, "Start the secondary HCD\n"); 1071 retval = xhci_run(secondary_hcd); 1072 } 1073 hcd->state = HC_STATE_SUSPENDED; 1074 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1075 goto done; 1076 } 1077 1078 /* step 4: set Run/Stop bit */ 1079 command = readl(&xhci->op_regs->command); 1080 command |= CMD_RUN; 1081 writel(command, &xhci->op_regs->command); 1082 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1083 0, 250 * 1000); 1084 1085 /* step 5: walk topology and initialize portsc, 1086 * portpmsc and portli 1087 */ 1088 /* this is done in bus_resume */ 1089 1090 /* step 6: restart each of the previously 1091 * Running endpoints by ringing their doorbells 1092 */ 1093 1094 spin_unlock_irq(&xhci->lock); 1095 1096 done: 1097 if (retval == 0) { 1098 /* Resume root hubs only when have pending events. */ 1099 status = readl(&xhci->op_regs->status); 1100 if (status & STS_EINT) { 1101 usb_hcd_resume_root_hub(hcd); 1102 usb_hcd_resume_root_hub(xhci->shared_hcd); 1103 } 1104 } 1105 1106 /* 1107 * If system is subject to the Quirk, Compliance Mode Timer needs to 1108 * be re-initialized Always after a system resume. Ports are subject 1109 * to suffer the Compliance Mode issue again. It doesn't matter if 1110 * ports have entered previously to U0 before system's suspension. 1111 */ 1112 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1113 compliance_mode_recovery_timer_init(xhci); 1114 1115 /* Re-enable port polling. */ 1116 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1117 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1118 usb_hcd_poll_rh_status(hcd); 1119 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1120 usb_hcd_poll_rh_status(xhci->shared_hcd); 1121 1122 return retval; 1123 } 1124 EXPORT_SYMBOL_GPL(xhci_resume); 1125 #endif /* CONFIG_PM */ 1126 1127 /*-------------------------------------------------------------------------*/ 1128 1129 /** 1130 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1131 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1132 * value to right shift 1 for the bitmask. 1133 * 1134 * Index = (epnum * 2) + direction - 1, 1135 * where direction = 0 for OUT, 1 for IN. 1136 * For control endpoints, the IN index is used (OUT index is unused), so 1137 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1138 */ 1139 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1140 { 1141 unsigned int index; 1142 if (usb_endpoint_xfer_control(desc)) 1143 index = (unsigned int) (usb_endpoint_num(desc)*2); 1144 else 1145 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1146 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1147 return index; 1148 } 1149 1150 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1151 * address from the XHCI endpoint index. 1152 */ 1153 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1154 { 1155 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1156 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1157 return direction | number; 1158 } 1159 1160 /* Find the flag for this endpoint (for use in the control context). Use the 1161 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1162 * bit 1, etc. 1163 */ 1164 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1165 { 1166 return 1 << (xhci_get_endpoint_index(desc) + 1); 1167 } 1168 1169 /* Find the flag for this endpoint (for use in the control context). Use the 1170 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1171 * bit 1, etc. 1172 */ 1173 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1174 { 1175 return 1 << (ep_index + 1); 1176 } 1177 1178 /* Compute the last valid endpoint context index. Basically, this is the 1179 * endpoint index plus one. For slot contexts with more than valid endpoint, 1180 * we find the most significant bit set in the added contexts flags. 1181 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1182 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1183 */ 1184 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1185 { 1186 return fls(added_ctxs) - 1; 1187 } 1188 1189 /* Returns 1 if the arguments are OK; 1190 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1191 */ 1192 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1193 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1194 const char *func) { 1195 struct xhci_hcd *xhci; 1196 struct xhci_virt_device *virt_dev; 1197 1198 if (!hcd || (check_ep && !ep) || !udev) { 1199 pr_debug("xHCI %s called with invalid args\n", func); 1200 return -EINVAL; 1201 } 1202 if (!udev->parent) { 1203 pr_debug("xHCI %s called for root hub\n", func); 1204 return 0; 1205 } 1206 1207 xhci = hcd_to_xhci(hcd); 1208 if (check_virt_dev) { 1209 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1210 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1211 func); 1212 return -EINVAL; 1213 } 1214 1215 virt_dev = xhci->devs[udev->slot_id]; 1216 if (virt_dev->udev != udev) { 1217 xhci_dbg(xhci, "xHCI %s called with udev and " 1218 "virt_dev does not match\n", func); 1219 return -EINVAL; 1220 } 1221 } 1222 1223 if (xhci->xhc_state & XHCI_STATE_HALTED) 1224 return -ENODEV; 1225 1226 return 1; 1227 } 1228 1229 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1230 struct usb_device *udev, struct xhci_command *command, 1231 bool ctx_change, bool must_succeed); 1232 1233 /* 1234 * Full speed devices may have a max packet size greater than 8 bytes, but the 1235 * USB core doesn't know that until it reads the first 8 bytes of the 1236 * descriptor. If the usb_device's max packet size changes after that point, 1237 * we need to issue an evaluate context command and wait on it. 1238 */ 1239 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1240 unsigned int ep_index, struct urb *urb) 1241 { 1242 struct xhci_container_ctx *out_ctx; 1243 struct xhci_input_control_ctx *ctrl_ctx; 1244 struct xhci_ep_ctx *ep_ctx; 1245 struct xhci_command *command; 1246 int max_packet_size; 1247 int hw_max_packet_size; 1248 int ret = 0; 1249 1250 out_ctx = xhci->devs[slot_id]->out_ctx; 1251 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1252 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1253 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1254 if (hw_max_packet_size != max_packet_size) { 1255 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1256 "Max Packet Size for ep 0 changed."); 1257 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1258 "Max packet size in usb_device = %d", 1259 max_packet_size); 1260 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1261 "Max packet size in xHCI HW = %d", 1262 hw_max_packet_size); 1263 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1264 "Issuing evaluate context command."); 1265 1266 /* Set up the input context flags for the command */ 1267 /* FIXME: This won't work if a non-default control endpoint 1268 * changes max packet sizes. 1269 */ 1270 1271 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1272 if (!command) 1273 return -ENOMEM; 1274 1275 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1276 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1277 if (!ctrl_ctx) { 1278 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1279 __func__); 1280 ret = -ENOMEM; 1281 goto command_cleanup; 1282 } 1283 /* Set up the modified control endpoint 0 */ 1284 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1285 xhci->devs[slot_id]->out_ctx, ep_index); 1286 1287 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1288 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1289 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1290 1291 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1292 ctrl_ctx->drop_flags = 0; 1293 1294 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1295 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1296 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1297 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1298 1299 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1300 true, false); 1301 1302 /* Clean up the input context for later use by bandwidth 1303 * functions. 1304 */ 1305 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1306 command_cleanup: 1307 kfree(command->completion); 1308 kfree(command); 1309 } 1310 return ret; 1311 } 1312 1313 /* 1314 * non-error returns are a promise to giveback() the urb later 1315 * we drop ownership so next owner (or urb unlink) can get it 1316 */ 1317 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1318 { 1319 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1320 struct xhci_td *buffer; 1321 unsigned long flags; 1322 int ret = 0; 1323 unsigned int slot_id, ep_index; 1324 struct urb_priv *urb_priv; 1325 int size, i; 1326 1327 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1328 true, true, __func__) <= 0) 1329 return -EINVAL; 1330 1331 slot_id = urb->dev->slot_id; 1332 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1333 1334 if (!HCD_HW_ACCESSIBLE(hcd)) { 1335 if (!in_interrupt()) 1336 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1337 ret = -ESHUTDOWN; 1338 goto exit; 1339 } 1340 1341 /* Reject urb if endpoint is in soft reset, queue must stay empty */ 1342 if (xhci->devs[slot_id]->eps[ep_index].ep_state & EP_CONFIG_PENDING) { 1343 xhci_warn(xhci, "Can't enqueue URB while ep is in soft reset\n"); 1344 ret = -EINVAL; 1345 } 1346 1347 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1348 size = urb->number_of_packets; 1349 else 1350 size = 1; 1351 1352 urb_priv = kzalloc(sizeof(struct urb_priv) + 1353 size * sizeof(struct xhci_td *), mem_flags); 1354 if (!urb_priv) 1355 return -ENOMEM; 1356 1357 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1358 if (!buffer) { 1359 kfree(urb_priv); 1360 return -ENOMEM; 1361 } 1362 1363 for (i = 0; i < size; i++) { 1364 urb_priv->td[i] = buffer; 1365 buffer++; 1366 } 1367 1368 urb_priv->length = size; 1369 urb_priv->td_cnt = 0; 1370 urb->hcpriv = urb_priv; 1371 1372 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1373 /* Check to see if the max packet size for the default control 1374 * endpoint changed during FS device enumeration 1375 */ 1376 if (urb->dev->speed == USB_SPEED_FULL) { 1377 ret = xhci_check_maxpacket(xhci, slot_id, 1378 ep_index, urb); 1379 if (ret < 0) { 1380 xhci_urb_free_priv(urb_priv); 1381 urb->hcpriv = NULL; 1382 return ret; 1383 } 1384 } 1385 1386 /* We have a spinlock and interrupts disabled, so we must pass 1387 * atomic context to this function, which may allocate memory. 1388 */ 1389 spin_lock_irqsave(&xhci->lock, flags); 1390 if (xhci->xhc_state & XHCI_STATE_DYING) 1391 goto dying; 1392 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1393 slot_id, ep_index); 1394 if (ret) 1395 goto free_priv; 1396 spin_unlock_irqrestore(&xhci->lock, flags); 1397 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1398 spin_lock_irqsave(&xhci->lock, flags); 1399 if (xhci->xhc_state & XHCI_STATE_DYING) 1400 goto dying; 1401 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1402 EP_GETTING_STREAMS) { 1403 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1404 "is transitioning to using streams.\n"); 1405 ret = -EINVAL; 1406 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1407 EP_GETTING_NO_STREAMS) { 1408 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1409 "is transitioning to " 1410 "not having streams.\n"); 1411 ret = -EINVAL; 1412 } else { 1413 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1414 slot_id, ep_index); 1415 } 1416 if (ret) 1417 goto free_priv; 1418 spin_unlock_irqrestore(&xhci->lock, flags); 1419 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1420 spin_lock_irqsave(&xhci->lock, flags); 1421 if (xhci->xhc_state & XHCI_STATE_DYING) 1422 goto dying; 1423 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1424 slot_id, ep_index); 1425 if (ret) 1426 goto free_priv; 1427 spin_unlock_irqrestore(&xhci->lock, flags); 1428 } else { 1429 spin_lock_irqsave(&xhci->lock, flags); 1430 if (xhci->xhc_state & XHCI_STATE_DYING) 1431 goto dying; 1432 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1433 slot_id, ep_index); 1434 if (ret) 1435 goto free_priv; 1436 spin_unlock_irqrestore(&xhci->lock, flags); 1437 } 1438 exit: 1439 return ret; 1440 dying: 1441 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1442 "non-responsive xHCI host.\n", 1443 urb->ep->desc.bEndpointAddress, urb); 1444 ret = -ESHUTDOWN; 1445 free_priv: 1446 xhci_urb_free_priv(urb_priv); 1447 urb->hcpriv = NULL; 1448 spin_unlock_irqrestore(&xhci->lock, flags); 1449 return ret; 1450 } 1451 1452 /* Get the right ring for the given URB. 1453 * If the endpoint supports streams, boundary check the URB's stream ID. 1454 * If the endpoint doesn't support streams, return the singular endpoint ring. 1455 */ 1456 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1457 struct urb *urb) 1458 { 1459 unsigned int slot_id; 1460 unsigned int ep_index; 1461 unsigned int stream_id; 1462 struct xhci_virt_ep *ep; 1463 1464 slot_id = urb->dev->slot_id; 1465 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1466 stream_id = urb->stream_id; 1467 ep = &xhci->devs[slot_id]->eps[ep_index]; 1468 /* Common case: no streams */ 1469 if (!(ep->ep_state & EP_HAS_STREAMS)) 1470 return ep->ring; 1471 1472 if (stream_id == 0) { 1473 xhci_warn(xhci, 1474 "WARN: Slot ID %u, ep index %u has streams, " 1475 "but URB has no stream ID.\n", 1476 slot_id, ep_index); 1477 return NULL; 1478 } 1479 1480 if (stream_id < ep->stream_info->num_streams) 1481 return ep->stream_info->stream_rings[stream_id]; 1482 1483 xhci_warn(xhci, 1484 "WARN: Slot ID %u, ep index %u has " 1485 "stream IDs 1 to %u allocated, " 1486 "but stream ID %u is requested.\n", 1487 slot_id, ep_index, 1488 ep->stream_info->num_streams - 1, 1489 stream_id); 1490 return NULL; 1491 } 1492 1493 /* 1494 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1495 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1496 * should pick up where it left off in the TD, unless a Set Transfer Ring 1497 * Dequeue Pointer is issued. 1498 * 1499 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1500 * the ring. Since the ring is a contiguous structure, they can't be physically 1501 * removed. Instead, there are two options: 1502 * 1503 * 1) If the HC is in the middle of processing the URB to be canceled, we 1504 * simply move the ring's dequeue pointer past those TRBs using the Set 1505 * Transfer Ring Dequeue Pointer command. This will be the common case, 1506 * when drivers timeout on the last submitted URB and attempt to cancel. 1507 * 1508 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1509 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1510 * HC will need to invalidate the any TRBs it has cached after the stop 1511 * endpoint command, as noted in the xHCI 0.95 errata. 1512 * 1513 * 3) The TD may have completed by the time the Stop Endpoint Command 1514 * completes, so software needs to handle that case too. 1515 * 1516 * This function should protect against the TD enqueueing code ringing the 1517 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1518 * It also needs to account for multiple cancellations on happening at the same 1519 * time for the same endpoint. 1520 * 1521 * Note that this function can be called in any context, or so says 1522 * usb_hcd_unlink_urb() 1523 */ 1524 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1525 { 1526 unsigned long flags; 1527 int ret, i; 1528 u32 temp; 1529 struct xhci_hcd *xhci; 1530 struct urb_priv *urb_priv; 1531 struct xhci_td *td; 1532 unsigned int ep_index; 1533 struct xhci_ring *ep_ring; 1534 struct xhci_virt_ep *ep; 1535 struct xhci_command *command; 1536 1537 xhci = hcd_to_xhci(hcd); 1538 spin_lock_irqsave(&xhci->lock, flags); 1539 /* Make sure the URB hasn't completed or been unlinked already */ 1540 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1541 if (ret || !urb->hcpriv) 1542 goto done; 1543 temp = readl(&xhci->op_regs->status); 1544 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1545 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1546 "HW died, freeing TD."); 1547 urb_priv = urb->hcpriv; 1548 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1549 td = urb_priv->td[i]; 1550 if (!list_empty(&td->td_list)) 1551 list_del_init(&td->td_list); 1552 if (!list_empty(&td->cancelled_td_list)) 1553 list_del_init(&td->cancelled_td_list); 1554 } 1555 1556 usb_hcd_unlink_urb_from_ep(hcd, urb); 1557 spin_unlock_irqrestore(&xhci->lock, flags); 1558 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1559 xhci_urb_free_priv(urb_priv); 1560 return ret; 1561 } 1562 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1563 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1564 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1565 "Ep 0x%x: URB %p to be canceled on " 1566 "non-responsive xHCI host.", 1567 urb->ep->desc.bEndpointAddress, urb); 1568 /* Let the stop endpoint command watchdog timer (which set this 1569 * state) finish cleaning up the endpoint TD lists. We must 1570 * have caught it in the middle of dropping a lock and giving 1571 * back an URB. 1572 */ 1573 goto done; 1574 } 1575 1576 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1577 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1578 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1579 if (!ep_ring) { 1580 ret = -EINVAL; 1581 goto done; 1582 } 1583 1584 urb_priv = urb->hcpriv; 1585 i = urb_priv->td_cnt; 1586 if (i < urb_priv->length) 1587 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1588 "Cancel URB %p, dev %s, ep 0x%x, " 1589 "starting at offset 0x%llx", 1590 urb, urb->dev->devpath, 1591 urb->ep->desc.bEndpointAddress, 1592 (unsigned long long) xhci_trb_virt_to_dma( 1593 urb_priv->td[i]->start_seg, 1594 urb_priv->td[i]->first_trb)); 1595 1596 for (; i < urb_priv->length; i++) { 1597 td = urb_priv->td[i]; 1598 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1599 } 1600 1601 /* Queue a stop endpoint command, but only if this is 1602 * the first cancellation to be handled. 1603 */ 1604 if (!(ep->ep_state & EP_HALT_PENDING)) { 1605 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1606 if (!command) { 1607 ret = -ENOMEM; 1608 goto done; 1609 } 1610 ep->ep_state |= EP_HALT_PENDING; 1611 ep->stop_cmds_pending++; 1612 ep->stop_cmd_timer.expires = jiffies + 1613 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1614 add_timer(&ep->stop_cmd_timer); 1615 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1616 ep_index, 0); 1617 xhci_ring_cmd_db(xhci); 1618 } 1619 done: 1620 spin_unlock_irqrestore(&xhci->lock, flags); 1621 return ret; 1622 } 1623 1624 /* Drop an endpoint from a new bandwidth configuration for this device. 1625 * Only one call to this function is allowed per endpoint before 1626 * check_bandwidth() or reset_bandwidth() must be called. 1627 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1628 * add the endpoint to the schedule with possibly new parameters denoted by a 1629 * different endpoint descriptor in usb_host_endpoint. 1630 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1631 * not allowed. 1632 * 1633 * The USB core will not allow URBs to be queued to an endpoint that is being 1634 * disabled, so there's no need for mutual exclusion to protect 1635 * the xhci->devs[slot_id] structure. 1636 */ 1637 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1638 struct usb_host_endpoint *ep) 1639 { 1640 struct xhci_hcd *xhci; 1641 struct xhci_container_ctx *in_ctx, *out_ctx; 1642 struct xhci_input_control_ctx *ctrl_ctx; 1643 unsigned int ep_index; 1644 struct xhci_ep_ctx *ep_ctx; 1645 u32 drop_flag; 1646 u32 new_add_flags, new_drop_flags; 1647 int ret; 1648 1649 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1650 if (ret <= 0) 1651 return ret; 1652 xhci = hcd_to_xhci(hcd); 1653 if (xhci->xhc_state & XHCI_STATE_DYING) 1654 return -ENODEV; 1655 1656 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1657 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1658 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1659 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1660 __func__, drop_flag); 1661 return 0; 1662 } 1663 1664 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1665 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1666 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1667 if (!ctrl_ctx) { 1668 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1669 __func__); 1670 return 0; 1671 } 1672 1673 ep_index = xhci_get_endpoint_index(&ep->desc); 1674 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1675 /* If the HC already knows the endpoint is disabled, 1676 * or the HCD has noted it is disabled, ignore this request 1677 */ 1678 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1679 cpu_to_le32(EP_STATE_DISABLED)) || 1680 le32_to_cpu(ctrl_ctx->drop_flags) & 1681 xhci_get_endpoint_flag(&ep->desc)) { 1682 /* Do not warn when called after a usb_device_reset */ 1683 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1684 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1685 __func__, ep); 1686 return 0; 1687 } 1688 1689 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1690 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1691 1692 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1693 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1694 1695 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1696 1697 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1698 (unsigned int) ep->desc.bEndpointAddress, 1699 udev->slot_id, 1700 (unsigned int) new_drop_flags, 1701 (unsigned int) new_add_flags); 1702 return 0; 1703 } 1704 1705 /* Add an endpoint to a new possible bandwidth configuration for this device. 1706 * Only one call to this function is allowed per endpoint before 1707 * check_bandwidth() or reset_bandwidth() must be called. 1708 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1709 * add the endpoint to the schedule with possibly new parameters denoted by a 1710 * different endpoint descriptor in usb_host_endpoint. 1711 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1712 * not allowed. 1713 * 1714 * The USB core will not allow URBs to be queued to an endpoint until the 1715 * configuration or alt setting is installed in the device, so there's no need 1716 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1717 */ 1718 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1719 struct usb_host_endpoint *ep) 1720 { 1721 struct xhci_hcd *xhci; 1722 struct xhci_container_ctx *in_ctx; 1723 unsigned int ep_index; 1724 struct xhci_input_control_ctx *ctrl_ctx; 1725 u32 added_ctxs; 1726 u32 new_add_flags, new_drop_flags; 1727 struct xhci_virt_device *virt_dev; 1728 int ret = 0; 1729 1730 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1731 if (ret <= 0) { 1732 /* So we won't queue a reset ep command for a root hub */ 1733 ep->hcpriv = NULL; 1734 return ret; 1735 } 1736 xhci = hcd_to_xhci(hcd); 1737 if (xhci->xhc_state & XHCI_STATE_DYING) 1738 return -ENODEV; 1739 1740 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1741 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1742 /* FIXME when we have to issue an evaluate endpoint command to 1743 * deal with ep0 max packet size changing once we get the 1744 * descriptors 1745 */ 1746 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1747 __func__, added_ctxs); 1748 return 0; 1749 } 1750 1751 virt_dev = xhci->devs[udev->slot_id]; 1752 in_ctx = virt_dev->in_ctx; 1753 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1754 if (!ctrl_ctx) { 1755 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1756 __func__); 1757 return 0; 1758 } 1759 1760 ep_index = xhci_get_endpoint_index(&ep->desc); 1761 /* If this endpoint is already in use, and the upper layers are trying 1762 * to add it again without dropping it, reject the addition. 1763 */ 1764 if (virt_dev->eps[ep_index].ring && 1765 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1766 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1767 "without dropping it.\n", 1768 (unsigned int) ep->desc.bEndpointAddress); 1769 return -EINVAL; 1770 } 1771 1772 /* If the HCD has already noted the endpoint is enabled, 1773 * ignore this request. 1774 */ 1775 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1776 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1777 __func__, ep); 1778 return 0; 1779 } 1780 1781 /* 1782 * Configuration and alternate setting changes must be done in 1783 * process context, not interrupt context (or so documenation 1784 * for usb_set_interface() and usb_set_configuration() claim). 1785 */ 1786 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1787 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1788 __func__, ep->desc.bEndpointAddress); 1789 return -ENOMEM; 1790 } 1791 1792 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1793 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1794 1795 /* If xhci_endpoint_disable() was called for this endpoint, but the 1796 * xHC hasn't been notified yet through the check_bandwidth() call, 1797 * this re-adds a new state for the endpoint from the new endpoint 1798 * descriptors. We must drop and re-add this endpoint, so we leave the 1799 * drop flags alone. 1800 */ 1801 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1802 1803 /* Store the usb_device pointer for later use */ 1804 ep->hcpriv = udev; 1805 1806 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1807 (unsigned int) ep->desc.bEndpointAddress, 1808 udev->slot_id, 1809 (unsigned int) new_drop_flags, 1810 (unsigned int) new_add_flags); 1811 return 0; 1812 } 1813 1814 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1815 { 1816 struct xhci_input_control_ctx *ctrl_ctx; 1817 struct xhci_ep_ctx *ep_ctx; 1818 struct xhci_slot_ctx *slot_ctx; 1819 int i; 1820 1821 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1822 if (!ctrl_ctx) { 1823 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1824 __func__); 1825 return; 1826 } 1827 1828 /* When a device's add flag and drop flag are zero, any subsequent 1829 * configure endpoint command will leave that endpoint's state 1830 * untouched. Make sure we don't leave any old state in the input 1831 * endpoint contexts. 1832 */ 1833 ctrl_ctx->drop_flags = 0; 1834 ctrl_ctx->add_flags = 0; 1835 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1836 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1837 /* Endpoint 0 is always valid */ 1838 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1839 for (i = 1; i < 31; ++i) { 1840 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1841 ep_ctx->ep_info = 0; 1842 ep_ctx->ep_info2 = 0; 1843 ep_ctx->deq = 0; 1844 ep_ctx->tx_info = 0; 1845 } 1846 } 1847 1848 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1849 struct usb_device *udev, u32 *cmd_status) 1850 { 1851 int ret; 1852 1853 switch (*cmd_status) { 1854 case COMP_CMD_ABORT: 1855 case COMP_CMD_STOP: 1856 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1857 ret = -ETIME; 1858 break; 1859 case COMP_ENOMEM: 1860 dev_warn(&udev->dev, 1861 "Not enough host controller resources for new device state.\n"); 1862 ret = -ENOMEM; 1863 /* FIXME: can we allocate more resources for the HC? */ 1864 break; 1865 case COMP_BW_ERR: 1866 case COMP_2ND_BW_ERR: 1867 dev_warn(&udev->dev, 1868 "Not enough bandwidth for new device state.\n"); 1869 ret = -ENOSPC; 1870 /* FIXME: can we go back to the old state? */ 1871 break; 1872 case COMP_TRB_ERR: 1873 /* the HCD set up something wrong */ 1874 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1875 "add flag = 1, " 1876 "and endpoint is not disabled.\n"); 1877 ret = -EINVAL; 1878 break; 1879 case COMP_DEV_ERR: 1880 dev_warn(&udev->dev, 1881 "ERROR: Incompatible device for endpoint configure command.\n"); 1882 ret = -ENODEV; 1883 break; 1884 case COMP_SUCCESS: 1885 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1886 "Successful Endpoint Configure command"); 1887 ret = 0; 1888 break; 1889 default: 1890 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1891 *cmd_status); 1892 ret = -EINVAL; 1893 break; 1894 } 1895 return ret; 1896 } 1897 1898 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1899 struct usb_device *udev, u32 *cmd_status) 1900 { 1901 int ret; 1902 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1903 1904 switch (*cmd_status) { 1905 case COMP_CMD_ABORT: 1906 case COMP_CMD_STOP: 1907 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1908 ret = -ETIME; 1909 break; 1910 case COMP_EINVAL: 1911 dev_warn(&udev->dev, 1912 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1913 ret = -EINVAL; 1914 break; 1915 case COMP_EBADSLT: 1916 dev_warn(&udev->dev, 1917 "WARN: slot not enabled for evaluate context command.\n"); 1918 ret = -EINVAL; 1919 break; 1920 case COMP_CTX_STATE: 1921 dev_warn(&udev->dev, 1922 "WARN: invalid context state for evaluate context command.\n"); 1923 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1924 ret = -EINVAL; 1925 break; 1926 case COMP_DEV_ERR: 1927 dev_warn(&udev->dev, 1928 "ERROR: Incompatible device for evaluate context command.\n"); 1929 ret = -ENODEV; 1930 break; 1931 case COMP_MEL_ERR: 1932 /* Max Exit Latency too large error */ 1933 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1934 ret = -EINVAL; 1935 break; 1936 case COMP_SUCCESS: 1937 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1938 "Successful evaluate context command"); 1939 ret = 0; 1940 break; 1941 default: 1942 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1943 *cmd_status); 1944 ret = -EINVAL; 1945 break; 1946 } 1947 return ret; 1948 } 1949 1950 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1951 struct xhci_input_control_ctx *ctrl_ctx) 1952 { 1953 u32 valid_add_flags; 1954 u32 valid_drop_flags; 1955 1956 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1957 * (bit 1). The default control endpoint is added during the Address 1958 * Device command and is never removed until the slot is disabled. 1959 */ 1960 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1961 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1962 1963 /* Use hweight32 to count the number of ones in the add flags, or 1964 * number of endpoints added. Don't count endpoints that are changed 1965 * (both added and dropped). 1966 */ 1967 return hweight32(valid_add_flags) - 1968 hweight32(valid_add_flags & valid_drop_flags); 1969 } 1970 1971 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1972 struct xhci_input_control_ctx *ctrl_ctx) 1973 { 1974 u32 valid_add_flags; 1975 u32 valid_drop_flags; 1976 1977 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1978 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1979 1980 return hweight32(valid_drop_flags) - 1981 hweight32(valid_add_flags & valid_drop_flags); 1982 } 1983 1984 /* 1985 * We need to reserve the new number of endpoints before the configure endpoint 1986 * command completes. We can't subtract the dropped endpoints from the number 1987 * of active endpoints until the command completes because we can oversubscribe 1988 * the host in this case: 1989 * 1990 * - the first configure endpoint command drops more endpoints than it adds 1991 * - a second configure endpoint command that adds more endpoints is queued 1992 * - the first configure endpoint command fails, so the config is unchanged 1993 * - the second command may succeed, even though there isn't enough resources 1994 * 1995 * Must be called with xhci->lock held. 1996 */ 1997 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1998 struct xhci_input_control_ctx *ctrl_ctx) 1999 { 2000 u32 added_eps; 2001 2002 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2003 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2004 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2005 "Not enough ep ctxs: " 2006 "%u active, need to add %u, limit is %u.", 2007 xhci->num_active_eps, added_eps, 2008 xhci->limit_active_eps); 2009 return -ENOMEM; 2010 } 2011 xhci->num_active_eps += added_eps; 2012 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2013 "Adding %u ep ctxs, %u now active.", added_eps, 2014 xhci->num_active_eps); 2015 return 0; 2016 } 2017 2018 /* 2019 * The configure endpoint was failed by the xHC for some other reason, so we 2020 * need to revert the resources that failed configuration would have used. 2021 * 2022 * Must be called with xhci->lock held. 2023 */ 2024 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2025 struct xhci_input_control_ctx *ctrl_ctx) 2026 { 2027 u32 num_failed_eps; 2028 2029 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2030 xhci->num_active_eps -= num_failed_eps; 2031 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2032 "Removing %u failed ep ctxs, %u now active.", 2033 num_failed_eps, 2034 xhci->num_active_eps); 2035 } 2036 2037 /* 2038 * Now that the command has completed, clean up the active endpoint count by 2039 * subtracting out the endpoints that were dropped (but not changed). 2040 * 2041 * Must be called with xhci->lock held. 2042 */ 2043 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2044 struct xhci_input_control_ctx *ctrl_ctx) 2045 { 2046 u32 num_dropped_eps; 2047 2048 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2049 xhci->num_active_eps -= num_dropped_eps; 2050 if (num_dropped_eps) 2051 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2052 "Removing %u dropped ep ctxs, %u now active.", 2053 num_dropped_eps, 2054 xhci->num_active_eps); 2055 } 2056 2057 static unsigned int xhci_get_block_size(struct usb_device *udev) 2058 { 2059 switch (udev->speed) { 2060 case USB_SPEED_LOW: 2061 case USB_SPEED_FULL: 2062 return FS_BLOCK; 2063 case USB_SPEED_HIGH: 2064 return HS_BLOCK; 2065 case USB_SPEED_SUPER: 2066 return SS_BLOCK; 2067 case USB_SPEED_UNKNOWN: 2068 case USB_SPEED_WIRELESS: 2069 default: 2070 /* Should never happen */ 2071 return 1; 2072 } 2073 } 2074 2075 static unsigned int 2076 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2077 { 2078 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2079 return LS_OVERHEAD; 2080 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2081 return FS_OVERHEAD; 2082 return HS_OVERHEAD; 2083 } 2084 2085 /* If we are changing a LS/FS device under a HS hub, 2086 * make sure (if we are activating a new TT) that the HS bus has enough 2087 * bandwidth for this new TT. 2088 */ 2089 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2090 struct xhci_virt_device *virt_dev, 2091 int old_active_eps) 2092 { 2093 struct xhci_interval_bw_table *bw_table; 2094 struct xhci_tt_bw_info *tt_info; 2095 2096 /* Find the bandwidth table for the root port this TT is attached to. */ 2097 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2098 tt_info = virt_dev->tt_info; 2099 /* If this TT already had active endpoints, the bandwidth for this TT 2100 * has already been added. Removing all periodic endpoints (and thus 2101 * making the TT enactive) will only decrease the bandwidth used. 2102 */ 2103 if (old_active_eps) 2104 return 0; 2105 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2106 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2107 return -ENOMEM; 2108 return 0; 2109 } 2110 /* Not sure why we would have no new active endpoints... 2111 * 2112 * Maybe because of an Evaluate Context change for a hub update or a 2113 * control endpoint 0 max packet size change? 2114 * FIXME: skip the bandwidth calculation in that case. 2115 */ 2116 return 0; 2117 } 2118 2119 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2120 struct xhci_virt_device *virt_dev) 2121 { 2122 unsigned int bw_reserved; 2123 2124 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2125 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2126 return -ENOMEM; 2127 2128 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2129 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2130 return -ENOMEM; 2131 2132 return 0; 2133 } 2134 2135 /* 2136 * This algorithm is a very conservative estimate of the worst-case scheduling 2137 * scenario for any one interval. The hardware dynamically schedules the 2138 * packets, so we can't tell which microframe could be the limiting factor in 2139 * the bandwidth scheduling. This only takes into account periodic endpoints. 2140 * 2141 * Obviously, we can't solve an NP complete problem to find the minimum worst 2142 * case scenario. Instead, we come up with an estimate that is no less than 2143 * the worst case bandwidth used for any one microframe, but may be an 2144 * over-estimate. 2145 * 2146 * We walk the requirements for each endpoint by interval, starting with the 2147 * smallest interval, and place packets in the schedule where there is only one 2148 * possible way to schedule packets for that interval. In order to simplify 2149 * this algorithm, we record the largest max packet size for each interval, and 2150 * assume all packets will be that size. 2151 * 2152 * For interval 0, we obviously must schedule all packets for each interval. 2153 * The bandwidth for interval 0 is just the amount of data to be transmitted 2154 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2155 * the number of packets). 2156 * 2157 * For interval 1, we have two possible microframes to schedule those packets 2158 * in. For this algorithm, if we can schedule the same number of packets for 2159 * each possible scheduling opportunity (each microframe), we will do so. The 2160 * remaining number of packets will be saved to be transmitted in the gaps in 2161 * the next interval's scheduling sequence. 2162 * 2163 * As we move those remaining packets to be scheduled with interval 2 packets, 2164 * we have to double the number of remaining packets to transmit. This is 2165 * because the intervals are actually powers of 2, and we would be transmitting 2166 * the previous interval's packets twice in this interval. We also have to be 2167 * sure that when we look at the largest max packet size for this interval, we 2168 * also look at the largest max packet size for the remaining packets and take 2169 * the greater of the two. 2170 * 2171 * The algorithm continues to evenly distribute packets in each scheduling 2172 * opportunity, and push the remaining packets out, until we get to the last 2173 * interval. Then those packets and their associated overhead are just added 2174 * to the bandwidth used. 2175 */ 2176 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2177 struct xhci_virt_device *virt_dev, 2178 int old_active_eps) 2179 { 2180 unsigned int bw_reserved; 2181 unsigned int max_bandwidth; 2182 unsigned int bw_used; 2183 unsigned int block_size; 2184 struct xhci_interval_bw_table *bw_table; 2185 unsigned int packet_size = 0; 2186 unsigned int overhead = 0; 2187 unsigned int packets_transmitted = 0; 2188 unsigned int packets_remaining = 0; 2189 unsigned int i; 2190 2191 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2192 return xhci_check_ss_bw(xhci, virt_dev); 2193 2194 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2195 max_bandwidth = HS_BW_LIMIT; 2196 /* Convert percent of bus BW reserved to blocks reserved */ 2197 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2198 } else { 2199 max_bandwidth = FS_BW_LIMIT; 2200 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2201 } 2202 2203 bw_table = virt_dev->bw_table; 2204 /* We need to translate the max packet size and max ESIT payloads into 2205 * the units the hardware uses. 2206 */ 2207 block_size = xhci_get_block_size(virt_dev->udev); 2208 2209 /* If we are manipulating a LS/FS device under a HS hub, double check 2210 * that the HS bus has enough bandwidth if we are activing a new TT. 2211 */ 2212 if (virt_dev->tt_info) { 2213 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2214 "Recalculating BW for rootport %u", 2215 virt_dev->real_port); 2216 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2217 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2218 "newly activated TT.\n"); 2219 return -ENOMEM; 2220 } 2221 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2222 "Recalculating BW for TT slot %u port %u", 2223 virt_dev->tt_info->slot_id, 2224 virt_dev->tt_info->ttport); 2225 } else { 2226 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2227 "Recalculating BW for rootport %u", 2228 virt_dev->real_port); 2229 } 2230 2231 /* Add in how much bandwidth will be used for interval zero, or the 2232 * rounded max ESIT payload + number of packets * largest overhead. 2233 */ 2234 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2235 bw_table->interval_bw[0].num_packets * 2236 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2237 2238 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2239 unsigned int bw_added; 2240 unsigned int largest_mps; 2241 unsigned int interval_overhead; 2242 2243 /* 2244 * How many packets could we transmit in this interval? 2245 * If packets didn't fit in the previous interval, we will need 2246 * to transmit that many packets twice within this interval. 2247 */ 2248 packets_remaining = 2 * packets_remaining + 2249 bw_table->interval_bw[i].num_packets; 2250 2251 /* Find the largest max packet size of this or the previous 2252 * interval. 2253 */ 2254 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2255 largest_mps = 0; 2256 else { 2257 struct xhci_virt_ep *virt_ep; 2258 struct list_head *ep_entry; 2259 2260 ep_entry = bw_table->interval_bw[i].endpoints.next; 2261 virt_ep = list_entry(ep_entry, 2262 struct xhci_virt_ep, bw_endpoint_list); 2263 /* Convert to blocks, rounding up */ 2264 largest_mps = DIV_ROUND_UP( 2265 virt_ep->bw_info.max_packet_size, 2266 block_size); 2267 } 2268 if (largest_mps > packet_size) 2269 packet_size = largest_mps; 2270 2271 /* Use the larger overhead of this or the previous interval. */ 2272 interval_overhead = xhci_get_largest_overhead( 2273 &bw_table->interval_bw[i]); 2274 if (interval_overhead > overhead) 2275 overhead = interval_overhead; 2276 2277 /* How many packets can we evenly distribute across 2278 * (1 << (i + 1)) possible scheduling opportunities? 2279 */ 2280 packets_transmitted = packets_remaining >> (i + 1); 2281 2282 /* Add in the bandwidth used for those scheduled packets */ 2283 bw_added = packets_transmitted * (overhead + packet_size); 2284 2285 /* How many packets do we have remaining to transmit? */ 2286 packets_remaining = packets_remaining % (1 << (i + 1)); 2287 2288 /* What largest max packet size should those packets have? */ 2289 /* If we've transmitted all packets, don't carry over the 2290 * largest packet size. 2291 */ 2292 if (packets_remaining == 0) { 2293 packet_size = 0; 2294 overhead = 0; 2295 } else if (packets_transmitted > 0) { 2296 /* Otherwise if we do have remaining packets, and we've 2297 * scheduled some packets in this interval, take the 2298 * largest max packet size from endpoints with this 2299 * interval. 2300 */ 2301 packet_size = largest_mps; 2302 overhead = interval_overhead; 2303 } 2304 /* Otherwise carry over packet_size and overhead from the last 2305 * time we had a remainder. 2306 */ 2307 bw_used += bw_added; 2308 if (bw_used > max_bandwidth) { 2309 xhci_warn(xhci, "Not enough bandwidth. " 2310 "Proposed: %u, Max: %u\n", 2311 bw_used, max_bandwidth); 2312 return -ENOMEM; 2313 } 2314 } 2315 /* 2316 * Ok, we know we have some packets left over after even-handedly 2317 * scheduling interval 15. We don't know which microframes they will 2318 * fit into, so we over-schedule and say they will be scheduled every 2319 * microframe. 2320 */ 2321 if (packets_remaining > 0) 2322 bw_used += overhead + packet_size; 2323 2324 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2325 unsigned int port_index = virt_dev->real_port - 1; 2326 2327 /* OK, we're manipulating a HS device attached to a 2328 * root port bandwidth domain. Include the number of active TTs 2329 * in the bandwidth used. 2330 */ 2331 bw_used += TT_HS_OVERHEAD * 2332 xhci->rh_bw[port_index].num_active_tts; 2333 } 2334 2335 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2336 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2337 "Available: %u " "percent", 2338 bw_used, max_bandwidth, bw_reserved, 2339 (max_bandwidth - bw_used - bw_reserved) * 100 / 2340 max_bandwidth); 2341 2342 bw_used += bw_reserved; 2343 if (bw_used > max_bandwidth) { 2344 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2345 bw_used, max_bandwidth); 2346 return -ENOMEM; 2347 } 2348 2349 bw_table->bw_used = bw_used; 2350 return 0; 2351 } 2352 2353 static bool xhci_is_async_ep(unsigned int ep_type) 2354 { 2355 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2356 ep_type != ISOC_IN_EP && 2357 ep_type != INT_IN_EP); 2358 } 2359 2360 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2361 { 2362 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2363 } 2364 2365 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2366 { 2367 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2368 2369 if (ep_bw->ep_interval == 0) 2370 return SS_OVERHEAD_BURST + 2371 (ep_bw->mult * ep_bw->num_packets * 2372 (SS_OVERHEAD + mps)); 2373 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2374 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2375 1 << ep_bw->ep_interval); 2376 2377 } 2378 2379 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2380 struct xhci_bw_info *ep_bw, 2381 struct xhci_interval_bw_table *bw_table, 2382 struct usb_device *udev, 2383 struct xhci_virt_ep *virt_ep, 2384 struct xhci_tt_bw_info *tt_info) 2385 { 2386 struct xhci_interval_bw *interval_bw; 2387 int normalized_interval; 2388 2389 if (xhci_is_async_ep(ep_bw->type)) 2390 return; 2391 2392 if (udev->speed == USB_SPEED_SUPER) { 2393 if (xhci_is_sync_in_ep(ep_bw->type)) 2394 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2395 xhci_get_ss_bw_consumed(ep_bw); 2396 else 2397 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2398 xhci_get_ss_bw_consumed(ep_bw); 2399 return; 2400 } 2401 2402 /* SuperSpeed endpoints never get added to intervals in the table, so 2403 * this check is only valid for HS/FS/LS devices. 2404 */ 2405 if (list_empty(&virt_ep->bw_endpoint_list)) 2406 return; 2407 /* For LS/FS devices, we need to translate the interval expressed in 2408 * microframes to frames. 2409 */ 2410 if (udev->speed == USB_SPEED_HIGH) 2411 normalized_interval = ep_bw->ep_interval; 2412 else 2413 normalized_interval = ep_bw->ep_interval - 3; 2414 2415 if (normalized_interval == 0) 2416 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2417 interval_bw = &bw_table->interval_bw[normalized_interval]; 2418 interval_bw->num_packets -= ep_bw->num_packets; 2419 switch (udev->speed) { 2420 case USB_SPEED_LOW: 2421 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2422 break; 2423 case USB_SPEED_FULL: 2424 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2425 break; 2426 case USB_SPEED_HIGH: 2427 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2428 break; 2429 case USB_SPEED_SUPER: 2430 case USB_SPEED_UNKNOWN: 2431 case USB_SPEED_WIRELESS: 2432 /* Should never happen because only LS/FS/HS endpoints will get 2433 * added to the endpoint list. 2434 */ 2435 return; 2436 } 2437 if (tt_info) 2438 tt_info->active_eps -= 1; 2439 list_del_init(&virt_ep->bw_endpoint_list); 2440 } 2441 2442 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2443 struct xhci_bw_info *ep_bw, 2444 struct xhci_interval_bw_table *bw_table, 2445 struct usb_device *udev, 2446 struct xhci_virt_ep *virt_ep, 2447 struct xhci_tt_bw_info *tt_info) 2448 { 2449 struct xhci_interval_bw *interval_bw; 2450 struct xhci_virt_ep *smaller_ep; 2451 int normalized_interval; 2452 2453 if (xhci_is_async_ep(ep_bw->type)) 2454 return; 2455 2456 if (udev->speed == USB_SPEED_SUPER) { 2457 if (xhci_is_sync_in_ep(ep_bw->type)) 2458 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2459 xhci_get_ss_bw_consumed(ep_bw); 2460 else 2461 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2462 xhci_get_ss_bw_consumed(ep_bw); 2463 return; 2464 } 2465 2466 /* For LS/FS devices, we need to translate the interval expressed in 2467 * microframes to frames. 2468 */ 2469 if (udev->speed == USB_SPEED_HIGH) 2470 normalized_interval = ep_bw->ep_interval; 2471 else 2472 normalized_interval = ep_bw->ep_interval - 3; 2473 2474 if (normalized_interval == 0) 2475 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2476 interval_bw = &bw_table->interval_bw[normalized_interval]; 2477 interval_bw->num_packets += ep_bw->num_packets; 2478 switch (udev->speed) { 2479 case USB_SPEED_LOW: 2480 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2481 break; 2482 case USB_SPEED_FULL: 2483 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2484 break; 2485 case USB_SPEED_HIGH: 2486 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2487 break; 2488 case USB_SPEED_SUPER: 2489 case USB_SPEED_UNKNOWN: 2490 case USB_SPEED_WIRELESS: 2491 /* Should never happen because only LS/FS/HS endpoints will get 2492 * added to the endpoint list. 2493 */ 2494 return; 2495 } 2496 2497 if (tt_info) 2498 tt_info->active_eps += 1; 2499 /* Insert the endpoint into the list, largest max packet size first. */ 2500 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2501 bw_endpoint_list) { 2502 if (ep_bw->max_packet_size >= 2503 smaller_ep->bw_info.max_packet_size) { 2504 /* Add the new ep before the smaller endpoint */ 2505 list_add_tail(&virt_ep->bw_endpoint_list, 2506 &smaller_ep->bw_endpoint_list); 2507 return; 2508 } 2509 } 2510 /* Add the new endpoint at the end of the list. */ 2511 list_add_tail(&virt_ep->bw_endpoint_list, 2512 &interval_bw->endpoints); 2513 } 2514 2515 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2516 struct xhci_virt_device *virt_dev, 2517 int old_active_eps) 2518 { 2519 struct xhci_root_port_bw_info *rh_bw_info; 2520 if (!virt_dev->tt_info) 2521 return; 2522 2523 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2524 if (old_active_eps == 0 && 2525 virt_dev->tt_info->active_eps != 0) { 2526 rh_bw_info->num_active_tts += 1; 2527 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2528 } else if (old_active_eps != 0 && 2529 virt_dev->tt_info->active_eps == 0) { 2530 rh_bw_info->num_active_tts -= 1; 2531 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2532 } 2533 } 2534 2535 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2536 struct xhci_virt_device *virt_dev, 2537 struct xhci_container_ctx *in_ctx) 2538 { 2539 struct xhci_bw_info ep_bw_info[31]; 2540 int i; 2541 struct xhci_input_control_ctx *ctrl_ctx; 2542 int old_active_eps = 0; 2543 2544 if (virt_dev->tt_info) 2545 old_active_eps = virt_dev->tt_info->active_eps; 2546 2547 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2548 if (!ctrl_ctx) { 2549 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2550 __func__); 2551 return -ENOMEM; 2552 } 2553 2554 for (i = 0; i < 31; i++) { 2555 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2556 continue; 2557 2558 /* Make a copy of the BW info in case we need to revert this */ 2559 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2560 sizeof(ep_bw_info[i])); 2561 /* Drop the endpoint from the interval table if the endpoint is 2562 * being dropped or changed. 2563 */ 2564 if (EP_IS_DROPPED(ctrl_ctx, i)) 2565 xhci_drop_ep_from_interval_table(xhci, 2566 &virt_dev->eps[i].bw_info, 2567 virt_dev->bw_table, 2568 virt_dev->udev, 2569 &virt_dev->eps[i], 2570 virt_dev->tt_info); 2571 } 2572 /* Overwrite the information stored in the endpoints' bw_info */ 2573 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2574 for (i = 0; i < 31; i++) { 2575 /* Add any changed or added endpoints to the interval table */ 2576 if (EP_IS_ADDED(ctrl_ctx, i)) 2577 xhci_add_ep_to_interval_table(xhci, 2578 &virt_dev->eps[i].bw_info, 2579 virt_dev->bw_table, 2580 virt_dev->udev, 2581 &virt_dev->eps[i], 2582 virt_dev->tt_info); 2583 } 2584 2585 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2586 /* Ok, this fits in the bandwidth we have. 2587 * Update the number of active TTs. 2588 */ 2589 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2590 return 0; 2591 } 2592 2593 /* We don't have enough bandwidth for this, revert the stored info. */ 2594 for (i = 0; i < 31; i++) { 2595 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2596 continue; 2597 2598 /* Drop the new copies of any added or changed endpoints from 2599 * the interval table. 2600 */ 2601 if (EP_IS_ADDED(ctrl_ctx, i)) { 2602 xhci_drop_ep_from_interval_table(xhci, 2603 &virt_dev->eps[i].bw_info, 2604 virt_dev->bw_table, 2605 virt_dev->udev, 2606 &virt_dev->eps[i], 2607 virt_dev->tt_info); 2608 } 2609 /* Revert the endpoint back to its old information */ 2610 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2611 sizeof(ep_bw_info[i])); 2612 /* Add any changed or dropped endpoints back into the table */ 2613 if (EP_IS_DROPPED(ctrl_ctx, i)) 2614 xhci_add_ep_to_interval_table(xhci, 2615 &virt_dev->eps[i].bw_info, 2616 virt_dev->bw_table, 2617 virt_dev->udev, 2618 &virt_dev->eps[i], 2619 virt_dev->tt_info); 2620 } 2621 return -ENOMEM; 2622 } 2623 2624 2625 /* Issue a configure endpoint command or evaluate context command 2626 * and wait for it to finish. 2627 */ 2628 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2629 struct usb_device *udev, 2630 struct xhci_command *command, 2631 bool ctx_change, bool must_succeed) 2632 { 2633 int ret; 2634 unsigned long flags; 2635 struct xhci_input_control_ctx *ctrl_ctx; 2636 struct xhci_virt_device *virt_dev; 2637 2638 if (!command) 2639 return -EINVAL; 2640 2641 spin_lock_irqsave(&xhci->lock, flags); 2642 virt_dev = xhci->devs[udev->slot_id]; 2643 2644 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2645 if (!ctrl_ctx) { 2646 spin_unlock_irqrestore(&xhci->lock, flags); 2647 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2648 __func__); 2649 return -ENOMEM; 2650 } 2651 2652 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2653 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2654 spin_unlock_irqrestore(&xhci->lock, flags); 2655 xhci_warn(xhci, "Not enough host resources, " 2656 "active endpoint contexts = %u\n", 2657 xhci->num_active_eps); 2658 return -ENOMEM; 2659 } 2660 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2661 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2662 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2663 xhci_free_host_resources(xhci, ctrl_ctx); 2664 spin_unlock_irqrestore(&xhci->lock, flags); 2665 xhci_warn(xhci, "Not enough bandwidth\n"); 2666 return -ENOMEM; 2667 } 2668 2669 if (!ctx_change) 2670 ret = xhci_queue_configure_endpoint(xhci, command, 2671 command->in_ctx->dma, 2672 udev->slot_id, must_succeed); 2673 else 2674 ret = xhci_queue_evaluate_context(xhci, command, 2675 command->in_ctx->dma, 2676 udev->slot_id, must_succeed); 2677 if (ret < 0) { 2678 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2679 xhci_free_host_resources(xhci, ctrl_ctx); 2680 spin_unlock_irqrestore(&xhci->lock, flags); 2681 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2682 "FIXME allocate a new ring segment"); 2683 return -ENOMEM; 2684 } 2685 xhci_ring_cmd_db(xhci); 2686 spin_unlock_irqrestore(&xhci->lock, flags); 2687 2688 /* Wait for the configure endpoint command to complete */ 2689 wait_for_completion(command->completion); 2690 2691 if (!ctx_change) 2692 ret = xhci_configure_endpoint_result(xhci, udev, 2693 &command->status); 2694 else 2695 ret = xhci_evaluate_context_result(xhci, udev, 2696 &command->status); 2697 2698 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2699 spin_lock_irqsave(&xhci->lock, flags); 2700 /* If the command failed, remove the reserved resources. 2701 * Otherwise, clean up the estimate to include dropped eps. 2702 */ 2703 if (ret) 2704 xhci_free_host_resources(xhci, ctrl_ctx); 2705 else 2706 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2707 spin_unlock_irqrestore(&xhci->lock, flags); 2708 } 2709 return ret; 2710 } 2711 2712 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2713 struct xhci_virt_device *vdev, int i) 2714 { 2715 struct xhci_virt_ep *ep = &vdev->eps[i]; 2716 2717 if (ep->ep_state & EP_HAS_STREAMS) { 2718 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2719 xhci_get_endpoint_address(i)); 2720 xhci_free_stream_info(xhci, ep->stream_info); 2721 ep->stream_info = NULL; 2722 ep->ep_state &= ~EP_HAS_STREAMS; 2723 } 2724 } 2725 2726 /* Called after one or more calls to xhci_add_endpoint() or 2727 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2728 * to call xhci_reset_bandwidth(). 2729 * 2730 * Since we are in the middle of changing either configuration or 2731 * installing a new alt setting, the USB core won't allow URBs to be 2732 * enqueued for any endpoint on the old config or interface. Nothing 2733 * else should be touching the xhci->devs[slot_id] structure, so we 2734 * don't need to take the xhci->lock for manipulating that. 2735 */ 2736 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2737 { 2738 int i; 2739 int ret = 0; 2740 struct xhci_hcd *xhci; 2741 struct xhci_virt_device *virt_dev; 2742 struct xhci_input_control_ctx *ctrl_ctx; 2743 struct xhci_slot_ctx *slot_ctx; 2744 struct xhci_command *command; 2745 2746 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2747 if (ret <= 0) 2748 return ret; 2749 xhci = hcd_to_xhci(hcd); 2750 if (xhci->xhc_state & XHCI_STATE_DYING) 2751 return -ENODEV; 2752 2753 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2754 virt_dev = xhci->devs[udev->slot_id]; 2755 2756 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2757 if (!command) 2758 return -ENOMEM; 2759 2760 command->in_ctx = virt_dev->in_ctx; 2761 2762 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2763 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2764 if (!ctrl_ctx) { 2765 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2766 __func__); 2767 ret = -ENOMEM; 2768 goto command_cleanup; 2769 } 2770 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2771 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2772 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2773 2774 /* Don't issue the command if there's no endpoints to update. */ 2775 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2776 ctrl_ctx->drop_flags == 0) { 2777 ret = 0; 2778 goto command_cleanup; 2779 } 2780 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2781 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2782 for (i = 31; i >= 1; i--) { 2783 __le32 le32 = cpu_to_le32(BIT(i)); 2784 2785 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2786 || (ctrl_ctx->add_flags & le32) || i == 1) { 2787 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2788 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2789 break; 2790 } 2791 } 2792 xhci_dbg(xhci, "New Input Control Context:\n"); 2793 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2794 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2795 2796 ret = xhci_configure_endpoint(xhci, udev, command, 2797 false, false); 2798 if (ret) 2799 /* Callee should call reset_bandwidth() */ 2800 goto command_cleanup; 2801 2802 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2803 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2804 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2805 2806 /* Free any rings that were dropped, but not changed. */ 2807 for (i = 1; i < 31; ++i) { 2808 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2809 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2810 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2811 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2812 } 2813 } 2814 xhci_zero_in_ctx(xhci, virt_dev); 2815 /* 2816 * Install any rings for completely new endpoints or changed endpoints, 2817 * and free or cache any old rings from changed endpoints. 2818 */ 2819 for (i = 1; i < 31; ++i) { 2820 if (!virt_dev->eps[i].new_ring) 2821 continue; 2822 /* Only cache or free the old ring if it exists. 2823 * It may not if this is the first add of an endpoint. 2824 */ 2825 if (virt_dev->eps[i].ring) { 2826 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2827 } 2828 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2829 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2830 virt_dev->eps[i].new_ring = NULL; 2831 } 2832 command_cleanup: 2833 kfree(command->completion); 2834 kfree(command); 2835 2836 return ret; 2837 } 2838 2839 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2840 { 2841 struct xhci_hcd *xhci; 2842 struct xhci_virt_device *virt_dev; 2843 int i, ret; 2844 2845 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2846 if (ret <= 0) 2847 return; 2848 xhci = hcd_to_xhci(hcd); 2849 2850 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2851 virt_dev = xhci->devs[udev->slot_id]; 2852 /* Free any rings allocated for added endpoints */ 2853 for (i = 0; i < 31; ++i) { 2854 if (virt_dev->eps[i].new_ring) { 2855 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2856 virt_dev->eps[i].new_ring = NULL; 2857 } 2858 } 2859 xhci_zero_in_ctx(xhci, virt_dev); 2860 } 2861 2862 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2863 struct xhci_container_ctx *in_ctx, 2864 struct xhci_container_ctx *out_ctx, 2865 struct xhci_input_control_ctx *ctrl_ctx, 2866 u32 add_flags, u32 drop_flags) 2867 { 2868 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2869 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2870 xhci_slot_copy(xhci, in_ctx, out_ctx); 2871 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2872 2873 xhci_dbg(xhci, "Input Context:\n"); 2874 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2875 } 2876 2877 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2878 unsigned int slot_id, unsigned int ep_index, 2879 struct xhci_dequeue_state *deq_state) 2880 { 2881 struct xhci_input_control_ctx *ctrl_ctx; 2882 struct xhci_container_ctx *in_ctx; 2883 struct xhci_ep_ctx *ep_ctx; 2884 u32 added_ctxs; 2885 dma_addr_t addr; 2886 2887 in_ctx = xhci->devs[slot_id]->in_ctx; 2888 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2889 if (!ctrl_ctx) { 2890 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2891 __func__); 2892 return; 2893 } 2894 2895 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2896 xhci->devs[slot_id]->out_ctx, ep_index); 2897 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2898 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2899 deq_state->new_deq_ptr); 2900 if (addr == 0) { 2901 xhci_warn(xhci, "WARN Cannot submit config ep after " 2902 "reset ep command\n"); 2903 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2904 deq_state->new_deq_seg, 2905 deq_state->new_deq_ptr); 2906 return; 2907 } 2908 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2909 2910 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2911 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2912 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2913 added_ctxs, added_ctxs); 2914 } 2915 2916 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2917 unsigned int ep_index, struct xhci_td *td) 2918 { 2919 struct xhci_dequeue_state deq_state; 2920 struct xhci_virt_ep *ep; 2921 struct usb_device *udev = td->urb->dev; 2922 2923 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2924 "Cleaning up stalled endpoint ring"); 2925 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2926 /* We need to move the HW's dequeue pointer past this TD, 2927 * or it will attempt to resend it on the next doorbell ring. 2928 */ 2929 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2930 ep_index, ep->stopped_stream, td, &deq_state); 2931 2932 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2933 return; 2934 2935 /* HW with the reset endpoint quirk will use the saved dequeue state to 2936 * issue a configure endpoint command later. 2937 */ 2938 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2939 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2940 "Queueing new dequeue state"); 2941 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2942 ep_index, ep->stopped_stream, &deq_state); 2943 } else { 2944 /* Better hope no one uses the input context between now and the 2945 * reset endpoint completion! 2946 * XXX: No idea how this hardware will react when stream rings 2947 * are enabled. 2948 */ 2949 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2950 "Setting up input context for " 2951 "configure endpoint command"); 2952 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2953 ep_index, &deq_state); 2954 } 2955 } 2956 2957 /* Called after clearing a halted device. USB core should have sent the control 2958 * message to clear the device halt condition. The host side of the halt should 2959 * already be cleared with a reset endpoint command issued immediately when the 2960 * STALL tx event was received. 2961 */ 2962 2963 void xhci_endpoint_reset(struct usb_hcd *hcd, 2964 struct usb_host_endpoint *ep) 2965 { 2966 struct xhci_hcd *xhci; 2967 struct usb_device *udev; 2968 struct xhci_virt_device *virt_dev; 2969 struct xhci_virt_ep *virt_ep; 2970 struct xhci_input_control_ctx *ctrl_ctx; 2971 struct xhci_command *command; 2972 unsigned int ep_index, ep_state; 2973 unsigned long flags; 2974 u32 ep_flag; 2975 2976 xhci = hcd_to_xhci(hcd); 2977 udev = (struct usb_device *) ep->hcpriv; 2978 if (!ep->hcpriv) 2979 return; 2980 virt_dev = xhci->devs[udev->slot_id]; 2981 ep_index = xhci_get_endpoint_index(&ep->desc); 2982 virt_ep = &virt_dev->eps[ep_index]; 2983 ep_state = virt_ep->ep_state; 2984 2985 /* 2986 * Implement the config ep command in xhci 4.6.8 additional note: 2987 * The Reset Endpoint Command may only be issued to endpoints in the 2988 * Halted state. If software wishes reset the Data Toggle or Sequence 2989 * Number of an endpoint that isn't in the Halted state, then software 2990 * may issue a Configure Endpoint Command with the Drop and Add bits set 2991 * for the target endpoint. that is in the Stopped state. 2992 */ 2993 2994 if (ep_state & SET_DEQ_PENDING || ep_state & EP_RECENTLY_HALTED) { 2995 virt_ep->ep_state &= ~EP_RECENTLY_HALTED; 2996 xhci_dbg(xhci, "ep recently halted, no toggle reset needed\n"); 2997 return; 2998 } 2999 3000 /* Only interrupt and bulk ep's use Data toggle, USB2 spec 5.5.4-> */ 3001 if (usb_endpoint_xfer_control(&ep->desc) || 3002 usb_endpoint_xfer_isoc(&ep->desc)) 3003 return; 3004 3005 ep_flag = xhci_get_endpoint_flag(&ep->desc); 3006 3007 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3008 return; 3009 3010 command = xhci_alloc_command(xhci, true, true, GFP_NOWAIT); 3011 if (!command) { 3012 xhci_err(xhci, "Could not allocate xHCI command structure.\n"); 3013 return; 3014 } 3015 3016 spin_lock_irqsave(&xhci->lock, flags); 3017 3018 /* block ringing ep doorbell */ 3019 virt_ep->ep_state |= EP_CONFIG_PENDING; 3020 3021 /* 3022 * Make sure endpoint ring is empty before resetting the toggle/seq. 3023 * Driver is required to synchronously cancel all transfer request. 3024 * 3025 * xhci 4.6.6 says we can issue a configure endpoint command on a 3026 * running endpoint ring as long as it's idle (queue empty) 3027 */ 3028 3029 if (!list_empty(&virt_ep->ring->td_list)) { 3030 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3031 spin_unlock_irqrestore(&xhci->lock, flags); 3032 goto cleanup; 3033 } 3034 3035 xhci_dbg(xhci, "Reset toggle/seq for slot %d, ep_index: %d\n", 3036 udev->slot_id, ep_index); 3037 3038 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3039 if (!ctrl_ctx) { 3040 xhci_err(xhci, "Could not get input context, bad type. virt_dev: %p, in_ctx %p\n", 3041 virt_dev, virt_dev->in_ctx); 3042 spin_unlock_irqrestore(&xhci->lock, flags); 3043 goto cleanup; 3044 } 3045 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3046 virt_dev->out_ctx, ctrl_ctx, 3047 ep_flag, ep_flag); 3048 xhci_endpoint_copy(xhci, command->in_ctx, virt_dev->out_ctx, ep_index); 3049 3050 xhci_queue_configure_endpoint(xhci, command, command->in_ctx->dma, 3051 udev->slot_id, false); 3052 xhci_ring_cmd_db(xhci); 3053 spin_unlock_irqrestore(&xhci->lock, flags); 3054 3055 wait_for_completion(command->completion); 3056 3057 cleanup: 3058 virt_ep->ep_state &= ~EP_CONFIG_PENDING; 3059 xhci_free_command(xhci, command); 3060 } 3061 3062 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3063 struct usb_device *udev, struct usb_host_endpoint *ep, 3064 unsigned int slot_id) 3065 { 3066 int ret; 3067 unsigned int ep_index; 3068 unsigned int ep_state; 3069 3070 if (!ep) 3071 return -EINVAL; 3072 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3073 if (ret <= 0) 3074 return -EINVAL; 3075 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3076 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3077 " descriptor for ep 0x%x does not support streams\n", 3078 ep->desc.bEndpointAddress); 3079 return -EINVAL; 3080 } 3081 3082 ep_index = xhci_get_endpoint_index(&ep->desc); 3083 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3084 if (ep_state & EP_HAS_STREAMS || 3085 ep_state & EP_GETTING_STREAMS) { 3086 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3087 "already has streams set up.\n", 3088 ep->desc.bEndpointAddress); 3089 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3090 "dynamic stream context array reallocation.\n"); 3091 return -EINVAL; 3092 } 3093 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3094 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3095 "endpoint 0x%x; URBs are pending.\n", 3096 ep->desc.bEndpointAddress); 3097 return -EINVAL; 3098 } 3099 return 0; 3100 } 3101 3102 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3103 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3104 { 3105 unsigned int max_streams; 3106 3107 /* The stream context array size must be a power of two */ 3108 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3109 /* 3110 * Find out how many primary stream array entries the host controller 3111 * supports. Later we may use secondary stream arrays (similar to 2nd 3112 * level page entries), but that's an optional feature for xHCI host 3113 * controllers. xHCs must support at least 4 stream IDs. 3114 */ 3115 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3116 if (*num_stream_ctxs > max_streams) { 3117 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3118 max_streams); 3119 *num_stream_ctxs = max_streams; 3120 *num_streams = max_streams; 3121 } 3122 } 3123 3124 /* Returns an error code if one of the endpoint already has streams. 3125 * This does not change any data structures, it only checks and gathers 3126 * information. 3127 */ 3128 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3129 struct usb_device *udev, 3130 struct usb_host_endpoint **eps, unsigned int num_eps, 3131 unsigned int *num_streams, u32 *changed_ep_bitmask) 3132 { 3133 unsigned int max_streams; 3134 unsigned int endpoint_flag; 3135 int i; 3136 int ret; 3137 3138 for (i = 0; i < num_eps; i++) { 3139 ret = xhci_check_streams_endpoint(xhci, udev, 3140 eps[i], udev->slot_id); 3141 if (ret < 0) 3142 return ret; 3143 3144 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3145 if (max_streams < (*num_streams - 1)) { 3146 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3147 eps[i]->desc.bEndpointAddress, 3148 max_streams); 3149 *num_streams = max_streams+1; 3150 } 3151 3152 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3153 if (*changed_ep_bitmask & endpoint_flag) 3154 return -EINVAL; 3155 *changed_ep_bitmask |= endpoint_flag; 3156 } 3157 return 0; 3158 } 3159 3160 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3161 struct usb_device *udev, 3162 struct usb_host_endpoint **eps, unsigned int num_eps) 3163 { 3164 u32 changed_ep_bitmask = 0; 3165 unsigned int slot_id; 3166 unsigned int ep_index; 3167 unsigned int ep_state; 3168 int i; 3169 3170 slot_id = udev->slot_id; 3171 if (!xhci->devs[slot_id]) 3172 return 0; 3173 3174 for (i = 0; i < num_eps; i++) { 3175 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3176 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3177 /* Are streams already being freed for the endpoint? */ 3178 if (ep_state & EP_GETTING_NO_STREAMS) { 3179 xhci_warn(xhci, "WARN Can't disable streams for " 3180 "endpoint 0x%x, " 3181 "streams are being disabled already\n", 3182 eps[i]->desc.bEndpointAddress); 3183 return 0; 3184 } 3185 /* Are there actually any streams to free? */ 3186 if (!(ep_state & EP_HAS_STREAMS) && 3187 !(ep_state & EP_GETTING_STREAMS)) { 3188 xhci_warn(xhci, "WARN Can't disable streams for " 3189 "endpoint 0x%x, " 3190 "streams are already disabled!\n", 3191 eps[i]->desc.bEndpointAddress); 3192 xhci_warn(xhci, "WARN xhci_free_streams() called " 3193 "with non-streams endpoint\n"); 3194 return 0; 3195 } 3196 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3197 } 3198 return changed_ep_bitmask; 3199 } 3200 3201 /* 3202 * The USB device drivers use this function (though the HCD interface in USB 3203 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3204 * coordinate mass storage command queueing across multiple endpoints (basically 3205 * a stream ID == a task ID). 3206 * 3207 * Setting up streams involves allocating the same size stream context array 3208 * for each endpoint and issuing a configure endpoint command for all endpoints. 3209 * 3210 * Don't allow the call to succeed if one endpoint only supports one stream 3211 * (which means it doesn't support streams at all). 3212 * 3213 * Drivers may get less stream IDs than they asked for, if the host controller 3214 * hardware or endpoints claim they can't support the number of requested 3215 * stream IDs. 3216 */ 3217 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3218 struct usb_host_endpoint **eps, unsigned int num_eps, 3219 unsigned int num_streams, gfp_t mem_flags) 3220 { 3221 int i, ret; 3222 struct xhci_hcd *xhci; 3223 struct xhci_virt_device *vdev; 3224 struct xhci_command *config_cmd; 3225 struct xhci_input_control_ctx *ctrl_ctx; 3226 unsigned int ep_index; 3227 unsigned int num_stream_ctxs; 3228 unsigned long flags; 3229 u32 changed_ep_bitmask = 0; 3230 3231 if (!eps) 3232 return -EINVAL; 3233 3234 /* Add one to the number of streams requested to account for 3235 * stream 0 that is reserved for xHCI usage. 3236 */ 3237 num_streams += 1; 3238 xhci = hcd_to_xhci(hcd); 3239 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3240 num_streams); 3241 3242 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3243 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3244 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3245 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3246 return -ENOSYS; 3247 } 3248 3249 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3250 if (!config_cmd) { 3251 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3252 return -ENOMEM; 3253 } 3254 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3255 if (!ctrl_ctx) { 3256 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3257 __func__); 3258 xhci_free_command(xhci, config_cmd); 3259 return -ENOMEM; 3260 } 3261 3262 /* Check to make sure all endpoints are not already configured for 3263 * streams. While we're at it, find the maximum number of streams that 3264 * all the endpoints will support and check for duplicate endpoints. 3265 */ 3266 spin_lock_irqsave(&xhci->lock, flags); 3267 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3268 num_eps, &num_streams, &changed_ep_bitmask); 3269 if (ret < 0) { 3270 xhci_free_command(xhci, config_cmd); 3271 spin_unlock_irqrestore(&xhci->lock, flags); 3272 return ret; 3273 } 3274 if (num_streams <= 1) { 3275 xhci_warn(xhci, "WARN: endpoints can't handle " 3276 "more than one stream.\n"); 3277 xhci_free_command(xhci, config_cmd); 3278 spin_unlock_irqrestore(&xhci->lock, flags); 3279 return -EINVAL; 3280 } 3281 vdev = xhci->devs[udev->slot_id]; 3282 /* Mark each endpoint as being in transition, so 3283 * xhci_urb_enqueue() will reject all URBs. 3284 */ 3285 for (i = 0; i < num_eps; i++) { 3286 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3287 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3288 } 3289 spin_unlock_irqrestore(&xhci->lock, flags); 3290 3291 /* Setup internal data structures and allocate HW data structures for 3292 * streams (but don't install the HW structures in the input context 3293 * until we're sure all memory allocation succeeded). 3294 */ 3295 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3296 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3297 num_stream_ctxs, num_streams); 3298 3299 for (i = 0; i < num_eps; i++) { 3300 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3301 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3302 num_stream_ctxs, 3303 num_streams, mem_flags); 3304 if (!vdev->eps[ep_index].stream_info) 3305 goto cleanup; 3306 /* Set maxPstreams in endpoint context and update deq ptr to 3307 * point to stream context array. FIXME 3308 */ 3309 } 3310 3311 /* Set up the input context for a configure endpoint command. */ 3312 for (i = 0; i < num_eps; i++) { 3313 struct xhci_ep_ctx *ep_ctx; 3314 3315 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3316 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3317 3318 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3319 vdev->out_ctx, ep_index); 3320 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3321 vdev->eps[ep_index].stream_info); 3322 } 3323 /* Tell the HW to drop its old copy of the endpoint context info 3324 * and add the updated copy from the input context. 3325 */ 3326 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3327 vdev->out_ctx, ctrl_ctx, 3328 changed_ep_bitmask, changed_ep_bitmask); 3329 3330 /* Issue and wait for the configure endpoint command */ 3331 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3332 false, false); 3333 3334 /* xHC rejected the configure endpoint command for some reason, so we 3335 * leave the old ring intact and free our internal streams data 3336 * structure. 3337 */ 3338 if (ret < 0) 3339 goto cleanup; 3340 3341 spin_lock_irqsave(&xhci->lock, flags); 3342 for (i = 0; i < num_eps; i++) { 3343 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3344 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3345 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3346 udev->slot_id, ep_index); 3347 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3348 } 3349 xhci_free_command(xhci, config_cmd); 3350 spin_unlock_irqrestore(&xhci->lock, flags); 3351 3352 /* Subtract 1 for stream 0, which drivers can't use */ 3353 return num_streams - 1; 3354 3355 cleanup: 3356 /* If it didn't work, free the streams! */ 3357 for (i = 0; i < num_eps; i++) { 3358 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3359 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3360 vdev->eps[ep_index].stream_info = NULL; 3361 /* FIXME Unset maxPstreams in endpoint context and 3362 * update deq ptr to point to normal string ring. 3363 */ 3364 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3365 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3366 xhci_endpoint_zero(xhci, vdev, eps[i]); 3367 } 3368 xhci_free_command(xhci, config_cmd); 3369 return -ENOMEM; 3370 } 3371 3372 /* Transition the endpoint from using streams to being a "normal" endpoint 3373 * without streams. 3374 * 3375 * Modify the endpoint context state, submit a configure endpoint command, 3376 * and free all endpoint rings for streams if that completes successfully. 3377 */ 3378 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3379 struct usb_host_endpoint **eps, unsigned int num_eps, 3380 gfp_t mem_flags) 3381 { 3382 int i, ret; 3383 struct xhci_hcd *xhci; 3384 struct xhci_virt_device *vdev; 3385 struct xhci_command *command; 3386 struct xhci_input_control_ctx *ctrl_ctx; 3387 unsigned int ep_index; 3388 unsigned long flags; 3389 u32 changed_ep_bitmask; 3390 3391 xhci = hcd_to_xhci(hcd); 3392 vdev = xhci->devs[udev->slot_id]; 3393 3394 /* Set up a configure endpoint command to remove the streams rings */ 3395 spin_lock_irqsave(&xhci->lock, flags); 3396 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3397 udev, eps, num_eps); 3398 if (changed_ep_bitmask == 0) { 3399 spin_unlock_irqrestore(&xhci->lock, flags); 3400 return -EINVAL; 3401 } 3402 3403 /* Use the xhci_command structure from the first endpoint. We may have 3404 * allocated too many, but the driver may call xhci_free_streams() for 3405 * each endpoint it grouped into one call to xhci_alloc_streams(). 3406 */ 3407 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3408 command = vdev->eps[ep_index].stream_info->free_streams_command; 3409 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3410 if (!ctrl_ctx) { 3411 spin_unlock_irqrestore(&xhci->lock, flags); 3412 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3413 __func__); 3414 return -EINVAL; 3415 } 3416 3417 for (i = 0; i < num_eps; i++) { 3418 struct xhci_ep_ctx *ep_ctx; 3419 3420 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3421 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3422 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3423 EP_GETTING_NO_STREAMS; 3424 3425 xhci_endpoint_copy(xhci, command->in_ctx, 3426 vdev->out_ctx, ep_index); 3427 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3428 &vdev->eps[ep_index]); 3429 } 3430 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3431 vdev->out_ctx, ctrl_ctx, 3432 changed_ep_bitmask, changed_ep_bitmask); 3433 spin_unlock_irqrestore(&xhci->lock, flags); 3434 3435 /* Issue and wait for the configure endpoint command, 3436 * which must succeed. 3437 */ 3438 ret = xhci_configure_endpoint(xhci, udev, command, 3439 false, true); 3440 3441 /* xHC rejected the configure endpoint command for some reason, so we 3442 * leave the streams rings intact. 3443 */ 3444 if (ret < 0) 3445 return ret; 3446 3447 spin_lock_irqsave(&xhci->lock, flags); 3448 for (i = 0; i < num_eps; i++) { 3449 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3450 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3451 vdev->eps[ep_index].stream_info = NULL; 3452 /* FIXME Unset maxPstreams in endpoint context and 3453 * update deq ptr to point to normal string ring. 3454 */ 3455 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3456 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3457 } 3458 spin_unlock_irqrestore(&xhci->lock, flags); 3459 3460 return 0; 3461 } 3462 3463 /* 3464 * Deletes endpoint resources for endpoints that were active before a Reset 3465 * Device command, or a Disable Slot command. The Reset Device command leaves 3466 * the control endpoint intact, whereas the Disable Slot command deletes it. 3467 * 3468 * Must be called with xhci->lock held. 3469 */ 3470 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3471 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3472 { 3473 int i; 3474 unsigned int num_dropped_eps = 0; 3475 unsigned int drop_flags = 0; 3476 3477 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3478 if (virt_dev->eps[i].ring) { 3479 drop_flags |= 1 << i; 3480 num_dropped_eps++; 3481 } 3482 } 3483 xhci->num_active_eps -= num_dropped_eps; 3484 if (num_dropped_eps) 3485 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3486 "Dropped %u ep ctxs, flags = 0x%x, " 3487 "%u now active.", 3488 num_dropped_eps, drop_flags, 3489 xhci->num_active_eps); 3490 } 3491 3492 /* 3493 * This submits a Reset Device Command, which will set the device state to 0, 3494 * set the device address to 0, and disable all the endpoints except the default 3495 * control endpoint. The USB core should come back and call 3496 * xhci_address_device(), and then re-set up the configuration. If this is 3497 * called because of a usb_reset_and_verify_device(), then the old alternate 3498 * settings will be re-installed through the normal bandwidth allocation 3499 * functions. 3500 * 3501 * Wait for the Reset Device command to finish. Remove all structures 3502 * associated with the endpoints that were disabled. Clear the input device 3503 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3504 * 3505 * If the virt_dev to be reset does not exist or does not match the udev, 3506 * it means the device is lost, possibly due to the xHC restore error and 3507 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3508 * re-allocate the device. 3509 */ 3510 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3511 { 3512 int ret, i; 3513 unsigned long flags; 3514 struct xhci_hcd *xhci; 3515 unsigned int slot_id; 3516 struct xhci_virt_device *virt_dev; 3517 struct xhci_command *reset_device_cmd; 3518 int last_freed_endpoint; 3519 struct xhci_slot_ctx *slot_ctx; 3520 int old_active_eps = 0; 3521 3522 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3523 if (ret <= 0) 3524 return ret; 3525 xhci = hcd_to_xhci(hcd); 3526 slot_id = udev->slot_id; 3527 virt_dev = xhci->devs[slot_id]; 3528 if (!virt_dev) { 3529 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3530 "not exist. Re-allocate the device\n", slot_id); 3531 ret = xhci_alloc_dev(hcd, udev); 3532 if (ret == 1) 3533 return 0; 3534 else 3535 return -EINVAL; 3536 } 3537 3538 if (virt_dev->udev != udev) { 3539 /* If the virt_dev and the udev does not match, this virt_dev 3540 * may belong to another udev. 3541 * Re-allocate the device. 3542 */ 3543 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3544 "not match the udev. Re-allocate the device\n", 3545 slot_id); 3546 ret = xhci_alloc_dev(hcd, udev); 3547 if (ret == 1) 3548 return 0; 3549 else 3550 return -EINVAL; 3551 } 3552 3553 /* If device is not setup, there is no point in resetting it */ 3554 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3555 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3556 SLOT_STATE_DISABLED) 3557 return 0; 3558 3559 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3560 /* Allocate the command structure that holds the struct completion. 3561 * Assume we're in process context, since the normal device reset 3562 * process has to wait for the device anyway. Storage devices are 3563 * reset as part of error handling, so use GFP_NOIO instead of 3564 * GFP_KERNEL. 3565 */ 3566 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3567 if (!reset_device_cmd) { 3568 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3569 return -ENOMEM; 3570 } 3571 3572 /* Attempt to submit the Reset Device command to the command ring */ 3573 spin_lock_irqsave(&xhci->lock, flags); 3574 3575 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3576 if (ret) { 3577 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3578 spin_unlock_irqrestore(&xhci->lock, flags); 3579 goto command_cleanup; 3580 } 3581 xhci_ring_cmd_db(xhci); 3582 spin_unlock_irqrestore(&xhci->lock, flags); 3583 3584 /* Wait for the Reset Device command to finish */ 3585 wait_for_completion(reset_device_cmd->completion); 3586 3587 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3588 * unless we tried to reset a slot ID that wasn't enabled, 3589 * or the device wasn't in the addressed or configured state. 3590 */ 3591 ret = reset_device_cmd->status; 3592 switch (ret) { 3593 case COMP_CMD_ABORT: 3594 case COMP_CMD_STOP: 3595 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3596 ret = -ETIME; 3597 goto command_cleanup; 3598 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3599 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3600 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3601 slot_id, 3602 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3603 xhci_dbg(xhci, "Not freeing device rings.\n"); 3604 /* Don't treat this as an error. May change my mind later. */ 3605 ret = 0; 3606 goto command_cleanup; 3607 case COMP_SUCCESS: 3608 xhci_dbg(xhci, "Successful reset device command.\n"); 3609 break; 3610 default: 3611 if (xhci_is_vendor_info_code(xhci, ret)) 3612 break; 3613 xhci_warn(xhci, "Unknown completion code %u for " 3614 "reset device command.\n", ret); 3615 ret = -EINVAL; 3616 goto command_cleanup; 3617 } 3618 3619 /* Free up host controller endpoint resources */ 3620 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3621 spin_lock_irqsave(&xhci->lock, flags); 3622 /* Don't delete the default control endpoint resources */ 3623 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3624 spin_unlock_irqrestore(&xhci->lock, flags); 3625 } 3626 3627 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3628 last_freed_endpoint = 1; 3629 for (i = 1; i < 31; ++i) { 3630 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3631 3632 if (ep->ep_state & EP_HAS_STREAMS) { 3633 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3634 xhci_get_endpoint_address(i)); 3635 xhci_free_stream_info(xhci, ep->stream_info); 3636 ep->stream_info = NULL; 3637 ep->ep_state &= ~EP_HAS_STREAMS; 3638 } 3639 3640 if (ep->ring) { 3641 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3642 last_freed_endpoint = i; 3643 } 3644 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3645 xhci_drop_ep_from_interval_table(xhci, 3646 &virt_dev->eps[i].bw_info, 3647 virt_dev->bw_table, 3648 udev, 3649 &virt_dev->eps[i], 3650 virt_dev->tt_info); 3651 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3652 } 3653 /* If necessary, update the number of active TTs on this root port */ 3654 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3655 3656 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3657 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3658 ret = 0; 3659 3660 command_cleanup: 3661 xhci_free_command(xhci, reset_device_cmd); 3662 return ret; 3663 } 3664 3665 /* 3666 * At this point, the struct usb_device is about to go away, the device has 3667 * disconnected, and all traffic has been stopped and the endpoints have been 3668 * disabled. Free any HC data structures associated with that device. 3669 */ 3670 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3671 { 3672 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3673 struct xhci_virt_device *virt_dev; 3674 unsigned long flags; 3675 u32 state; 3676 int i, ret; 3677 struct xhci_command *command; 3678 3679 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3680 if (!command) 3681 return; 3682 3683 #ifndef CONFIG_USB_DEFAULT_PERSIST 3684 /* 3685 * We called pm_runtime_get_noresume when the device was attached. 3686 * Decrement the counter here to allow controller to runtime suspend 3687 * if no devices remain. 3688 */ 3689 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3690 pm_runtime_put_noidle(hcd->self.controller); 3691 #endif 3692 3693 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3694 /* If the host is halted due to driver unload, we still need to free the 3695 * device. 3696 */ 3697 if (ret <= 0 && ret != -ENODEV) { 3698 kfree(command); 3699 return; 3700 } 3701 3702 virt_dev = xhci->devs[udev->slot_id]; 3703 3704 /* Stop any wayward timer functions (which may grab the lock) */ 3705 for (i = 0; i < 31; ++i) { 3706 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3707 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3708 } 3709 3710 spin_lock_irqsave(&xhci->lock, flags); 3711 /* Don't disable the slot if the host controller is dead. */ 3712 state = readl(&xhci->op_regs->status); 3713 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3714 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3715 xhci_free_virt_device(xhci, udev->slot_id); 3716 spin_unlock_irqrestore(&xhci->lock, flags); 3717 kfree(command); 3718 return; 3719 } 3720 3721 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3722 udev->slot_id)) { 3723 spin_unlock_irqrestore(&xhci->lock, flags); 3724 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3725 return; 3726 } 3727 xhci_ring_cmd_db(xhci); 3728 spin_unlock_irqrestore(&xhci->lock, flags); 3729 3730 /* 3731 * Event command completion handler will free any data structures 3732 * associated with the slot. XXX Can free sleep? 3733 */ 3734 } 3735 3736 /* 3737 * Checks if we have enough host controller resources for the default control 3738 * endpoint. 3739 * 3740 * Must be called with xhci->lock held. 3741 */ 3742 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3743 { 3744 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3745 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3746 "Not enough ep ctxs: " 3747 "%u active, need to add 1, limit is %u.", 3748 xhci->num_active_eps, xhci->limit_active_eps); 3749 return -ENOMEM; 3750 } 3751 xhci->num_active_eps += 1; 3752 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3753 "Adding 1 ep ctx, %u now active.", 3754 xhci->num_active_eps); 3755 return 0; 3756 } 3757 3758 3759 /* 3760 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3761 * timed out, or allocating memory failed. Returns 1 on success. 3762 */ 3763 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3764 { 3765 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3766 unsigned long flags; 3767 int ret; 3768 struct xhci_command *command; 3769 3770 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3771 if (!command) 3772 return 0; 3773 3774 spin_lock_irqsave(&xhci->lock, flags); 3775 command->completion = &xhci->addr_dev; 3776 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3777 if (ret) { 3778 spin_unlock_irqrestore(&xhci->lock, flags); 3779 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3780 kfree(command); 3781 return 0; 3782 } 3783 xhci_ring_cmd_db(xhci); 3784 spin_unlock_irqrestore(&xhci->lock, flags); 3785 3786 wait_for_completion(command->completion); 3787 3788 if (!xhci->slot_id || command->status != COMP_SUCCESS) { 3789 xhci_err(xhci, "Error while assigning device slot ID\n"); 3790 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3791 HCS_MAX_SLOTS( 3792 readl(&xhci->cap_regs->hcs_params1))); 3793 kfree(command); 3794 return 0; 3795 } 3796 3797 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3798 spin_lock_irqsave(&xhci->lock, flags); 3799 ret = xhci_reserve_host_control_ep_resources(xhci); 3800 if (ret) { 3801 spin_unlock_irqrestore(&xhci->lock, flags); 3802 xhci_warn(xhci, "Not enough host resources, " 3803 "active endpoint contexts = %u\n", 3804 xhci->num_active_eps); 3805 goto disable_slot; 3806 } 3807 spin_unlock_irqrestore(&xhci->lock, flags); 3808 } 3809 /* Use GFP_NOIO, since this function can be called from 3810 * xhci_discover_or_reset_device(), which may be called as part of 3811 * mass storage driver error handling. 3812 */ 3813 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3814 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3815 goto disable_slot; 3816 } 3817 udev->slot_id = xhci->slot_id; 3818 3819 #ifndef CONFIG_USB_DEFAULT_PERSIST 3820 /* 3821 * If resetting upon resume, we can't put the controller into runtime 3822 * suspend if there is a device attached. 3823 */ 3824 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3825 pm_runtime_get_noresume(hcd->self.controller); 3826 #endif 3827 3828 3829 kfree(command); 3830 /* Is this a LS or FS device under a HS hub? */ 3831 /* Hub or peripherial? */ 3832 return 1; 3833 3834 disable_slot: 3835 /* Disable slot, if we can do it without mem alloc */ 3836 spin_lock_irqsave(&xhci->lock, flags); 3837 command->completion = NULL; 3838 command->status = 0; 3839 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3840 udev->slot_id)) 3841 xhci_ring_cmd_db(xhci); 3842 spin_unlock_irqrestore(&xhci->lock, flags); 3843 return 0; 3844 } 3845 3846 /* 3847 * Issue an Address Device command and optionally send a corresponding 3848 * SetAddress request to the device. 3849 * We should be protected by the usb_address0_mutex in hub_wq's hub_port_init, 3850 * so we should only issue and wait on one address command at the same time. 3851 */ 3852 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3853 enum xhci_setup_dev setup) 3854 { 3855 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3856 unsigned long flags; 3857 struct xhci_virt_device *virt_dev; 3858 int ret = 0; 3859 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3860 struct xhci_slot_ctx *slot_ctx; 3861 struct xhci_input_control_ctx *ctrl_ctx; 3862 u64 temp_64; 3863 struct xhci_command *command; 3864 3865 if (!udev->slot_id) { 3866 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3867 "Bad Slot ID %d", udev->slot_id); 3868 return -EINVAL; 3869 } 3870 3871 virt_dev = xhci->devs[udev->slot_id]; 3872 3873 if (WARN_ON(!virt_dev)) { 3874 /* 3875 * In plug/unplug torture test with an NEC controller, 3876 * a zero-dereference was observed once due to virt_dev = 0. 3877 * Print useful debug rather than crash if it is observed again! 3878 */ 3879 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3880 udev->slot_id); 3881 return -EINVAL; 3882 } 3883 3884 if (setup == SETUP_CONTEXT_ONLY) { 3885 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3886 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3887 SLOT_STATE_DEFAULT) { 3888 xhci_dbg(xhci, "Slot already in default state\n"); 3889 return 0; 3890 } 3891 } 3892 3893 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3894 if (!command) 3895 return -ENOMEM; 3896 3897 command->in_ctx = virt_dev->in_ctx; 3898 command->completion = &xhci->addr_dev; 3899 3900 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3901 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3902 if (!ctrl_ctx) { 3903 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3904 __func__); 3905 kfree(command); 3906 return -EINVAL; 3907 } 3908 /* 3909 * If this is the first Set Address since device plug-in or 3910 * virt_device realloaction after a resume with an xHCI power loss, 3911 * then set up the slot context. 3912 */ 3913 if (!slot_ctx->dev_info) 3914 xhci_setup_addressable_virt_dev(xhci, udev); 3915 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3916 else 3917 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3918 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3919 ctrl_ctx->drop_flags = 0; 3920 3921 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3922 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3923 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3924 le32_to_cpu(slot_ctx->dev_info) >> 27); 3925 3926 spin_lock_irqsave(&xhci->lock, flags); 3927 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3928 udev->slot_id, setup); 3929 if (ret) { 3930 spin_unlock_irqrestore(&xhci->lock, flags); 3931 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3932 "FIXME: allocate a command ring segment"); 3933 kfree(command); 3934 return ret; 3935 } 3936 xhci_ring_cmd_db(xhci); 3937 spin_unlock_irqrestore(&xhci->lock, flags); 3938 3939 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3940 wait_for_completion(command->completion); 3941 3942 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3943 * the SetAddress() "recovery interval" required by USB and aborting the 3944 * command on a timeout. 3945 */ 3946 switch (command->status) { 3947 case COMP_CMD_ABORT: 3948 case COMP_CMD_STOP: 3949 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3950 ret = -ETIME; 3951 break; 3952 case COMP_CTX_STATE: 3953 case COMP_EBADSLT: 3954 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3955 act, udev->slot_id); 3956 ret = -EINVAL; 3957 break; 3958 case COMP_TX_ERR: 3959 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3960 ret = -EPROTO; 3961 break; 3962 case COMP_DEV_ERR: 3963 dev_warn(&udev->dev, 3964 "ERROR: Incompatible device for setup %s command\n", act); 3965 ret = -ENODEV; 3966 break; 3967 case COMP_SUCCESS: 3968 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3969 "Successful setup %s command", act); 3970 break; 3971 default: 3972 xhci_err(xhci, 3973 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3974 act, command->status); 3975 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3976 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3977 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3978 ret = -EINVAL; 3979 break; 3980 } 3981 if (ret) { 3982 kfree(command); 3983 return ret; 3984 } 3985 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3986 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3987 "Op regs DCBAA ptr = %#016llx", temp_64); 3988 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3989 "Slot ID %d dcbaa entry @%p = %#016llx", 3990 udev->slot_id, 3991 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3992 (unsigned long long) 3993 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3994 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3995 "Output Context DMA address = %#08llx", 3996 (unsigned long long)virt_dev->out_ctx->dma); 3997 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3998 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3999 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4000 le32_to_cpu(slot_ctx->dev_info) >> 27); 4001 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 4002 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 4003 /* 4004 * USB core uses address 1 for the roothubs, so we add one to the 4005 * address given back to us by the HC. 4006 */ 4007 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4008 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4009 le32_to_cpu(slot_ctx->dev_info) >> 27); 4010 /* Zero the input context control for later use */ 4011 ctrl_ctx->add_flags = 0; 4012 ctrl_ctx->drop_flags = 0; 4013 4014 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4015 "Internal device address = %d", 4016 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4017 kfree(command); 4018 return 0; 4019 } 4020 4021 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4022 { 4023 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4024 } 4025 4026 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4027 { 4028 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4029 } 4030 4031 /* 4032 * Transfer the port index into real index in the HW port status 4033 * registers. Caculate offset between the port's PORTSC register 4034 * and port status base. Divide the number of per port register 4035 * to get the real index. The raw port number bases 1. 4036 */ 4037 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4038 { 4039 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4040 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 4041 __le32 __iomem *addr; 4042 int raw_port; 4043 4044 if (hcd->speed != HCD_USB3) 4045 addr = xhci->usb2_ports[port1 - 1]; 4046 else 4047 addr = xhci->usb3_ports[port1 - 1]; 4048 4049 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 4050 return raw_port; 4051 } 4052 4053 /* 4054 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4055 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4056 */ 4057 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4058 struct usb_device *udev, u16 max_exit_latency) 4059 { 4060 struct xhci_virt_device *virt_dev; 4061 struct xhci_command *command; 4062 struct xhci_input_control_ctx *ctrl_ctx; 4063 struct xhci_slot_ctx *slot_ctx; 4064 unsigned long flags; 4065 int ret; 4066 4067 spin_lock_irqsave(&xhci->lock, flags); 4068 4069 virt_dev = xhci->devs[udev->slot_id]; 4070 4071 /* 4072 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4073 * xHC was re-initialized. Exit latency will be set later after 4074 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4075 */ 4076 4077 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4078 spin_unlock_irqrestore(&xhci->lock, flags); 4079 return 0; 4080 } 4081 4082 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4083 command = xhci->lpm_command; 4084 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4085 if (!ctrl_ctx) { 4086 spin_unlock_irqrestore(&xhci->lock, flags); 4087 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4088 __func__); 4089 return -ENOMEM; 4090 } 4091 4092 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4093 spin_unlock_irqrestore(&xhci->lock, flags); 4094 4095 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4096 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4097 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4098 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4099 slot_ctx->dev_state = 0; 4100 4101 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4102 "Set up evaluate context for LPM MEL change."); 4103 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4104 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4105 4106 /* Issue and wait for the evaluate context command. */ 4107 ret = xhci_configure_endpoint(xhci, udev, command, 4108 true, true); 4109 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4110 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4111 4112 if (!ret) { 4113 spin_lock_irqsave(&xhci->lock, flags); 4114 virt_dev->current_mel = max_exit_latency; 4115 spin_unlock_irqrestore(&xhci->lock, flags); 4116 } 4117 return ret; 4118 } 4119 4120 #ifdef CONFIG_PM 4121 4122 /* BESL to HIRD Encoding array for USB2 LPM */ 4123 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4124 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4125 4126 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4127 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4128 struct usb_device *udev) 4129 { 4130 int u2del, besl, besl_host; 4131 int besl_device = 0; 4132 u32 field; 4133 4134 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4135 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4136 4137 if (field & USB_BESL_SUPPORT) { 4138 for (besl_host = 0; besl_host < 16; besl_host++) { 4139 if (xhci_besl_encoding[besl_host] >= u2del) 4140 break; 4141 } 4142 /* Use baseline BESL value as default */ 4143 if (field & USB_BESL_BASELINE_VALID) 4144 besl_device = USB_GET_BESL_BASELINE(field); 4145 else if (field & USB_BESL_DEEP_VALID) 4146 besl_device = USB_GET_BESL_DEEP(field); 4147 } else { 4148 if (u2del <= 50) 4149 besl_host = 0; 4150 else 4151 besl_host = (u2del - 51) / 75 + 1; 4152 } 4153 4154 besl = besl_host + besl_device; 4155 if (besl > 15) 4156 besl = 15; 4157 4158 return besl; 4159 } 4160 4161 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4162 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4163 { 4164 u32 field; 4165 int l1; 4166 int besld = 0; 4167 int hirdm = 0; 4168 4169 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4170 4171 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4172 l1 = udev->l1_params.timeout / 256; 4173 4174 /* device has preferred BESLD */ 4175 if (field & USB_BESL_DEEP_VALID) { 4176 besld = USB_GET_BESL_DEEP(field); 4177 hirdm = 1; 4178 } 4179 4180 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4181 } 4182 4183 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4184 struct usb_device *udev, int enable) 4185 { 4186 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4187 __le32 __iomem **port_array; 4188 __le32 __iomem *pm_addr, *hlpm_addr; 4189 u32 pm_val, hlpm_val, field; 4190 unsigned int port_num; 4191 unsigned long flags; 4192 int hird, exit_latency; 4193 int ret; 4194 4195 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4196 !udev->lpm_capable) 4197 return -EPERM; 4198 4199 if (!udev->parent || udev->parent->parent || 4200 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4201 return -EPERM; 4202 4203 if (udev->usb2_hw_lpm_capable != 1) 4204 return -EPERM; 4205 4206 spin_lock_irqsave(&xhci->lock, flags); 4207 4208 port_array = xhci->usb2_ports; 4209 port_num = udev->portnum - 1; 4210 pm_addr = port_array[port_num] + PORTPMSC; 4211 pm_val = readl(pm_addr); 4212 hlpm_addr = port_array[port_num] + PORTHLPMC; 4213 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4214 4215 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4216 enable ? "enable" : "disable", port_num + 1); 4217 4218 if (enable) { 4219 /* Host supports BESL timeout instead of HIRD */ 4220 if (udev->usb2_hw_lpm_besl_capable) { 4221 /* if device doesn't have a preferred BESL value use a 4222 * default one which works with mixed HIRD and BESL 4223 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4224 */ 4225 if ((field & USB_BESL_SUPPORT) && 4226 (field & USB_BESL_BASELINE_VALID)) 4227 hird = USB_GET_BESL_BASELINE(field); 4228 else 4229 hird = udev->l1_params.besl; 4230 4231 exit_latency = xhci_besl_encoding[hird]; 4232 spin_unlock_irqrestore(&xhci->lock, flags); 4233 4234 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4235 * input context for link powermanagement evaluate 4236 * context commands. It is protected by hcd->bandwidth 4237 * mutex and is shared by all devices. We need to set 4238 * the max ext latency in USB 2 BESL LPM as well, so 4239 * use the same mutex and xhci_change_max_exit_latency() 4240 */ 4241 mutex_lock(hcd->bandwidth_mutex); 4242 ret = xhci_change_max_exit_latency(xhci, udev, 4243 exit_latency); 4244 mutex_unlock(hcd->bandwidth_mutex); 4245 4246 if (ret < 0) 4247 return ret; 4248 spin_lock_irqsave(&xhci->lock, flags); 4249 4250 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4251 writel(hlpm_val, hlpm_addr); 4252 /* flush write */ 4253 readl(hlpm_addr); 4254 } else { 4255 hird = xhci_calculate_hird_besl(xhci, udev); 4256 } 4257 4258 pm_val &= ~PORT_HIRD_MASK; 4259 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4260 writel(pm_val, pm_addr); 4261 pm_val = readl(pm_addr); 4262 pm_val |= PORT_HLE; 4263 writel(pm_val, pm_addr); 4264 /* flush write */ 4265 readl(pm_addr); 4266 } else { 4267 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4268 writel(pm_val, pm_addr); 4269 /* flush write */ 4270 readl(pm_addr); 4271 if (udev->usb2_hw_lpm_besl_capable) { 4272 spin_unlock_irqrestore(&xhci->lock, flags); 4273 mutex_lock(hcd->bandwidth_mutex); 4274 xhci_change_max_exit_latency(xhci, udev, 0); 4275 mutex_unlock(hcd->bandwidth_mutex); 4276 return 0; 4277 } 4278 } 4279 4280 spin_unlock_irqrestore(&xhci->lock, flags); 4281 return 0; 4282 } 4283 4284 /* check if a usb2 port supports a given extened capability protocol 4285 * only USB2 ports extended protocol capability values are cached. 4286 * Return 1 if capability is supported 4287 */ 4288 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4289 unsigned capability) 4290 { 4291 u32 port_offset, port_count; 4292 int i; 4293 4294 for (i = 0; i < xhci->num_ext_caps; i++) { 4295 if (xhci->ext_caps[i] & capability) { 4296 /* port offsets starts at 1 */ 4297 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4298 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4299 if (port >= port_offset && 4300 port < port_offset + port_count) 4301 return 1; 4302 } 4303 } 4304 return 0; 4305 } 4306 4307 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4308 { 4309 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4310 int portnum = udev->portnum - 1; 4311 4312 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4313 !udev->lpm_capable) 4314 return 0; 4315 4316 /* we only support lpm for non-hub device connected to root hub yet */ 4317 if (!udev->parent || udev->parent->parent || 4318 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4319 return 0; 4320 4321 if (xhci->hw_lpm_support == 1 && 4322 xhci_check_usb2_port_capability( 4323 xhci, portnum, XHCI_HLC)) { 4324 udev->usb2_hw_lpm_capable = 1; 4325 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4326 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4327 if (xhci_check_usb2_port_capability(xhci, portnum, 4328 XHCI_BLC)) 4329 udev->usb2_hw_lpm_besl_capable = 1; 4330 } 4331 4332 return 0; 4333 } 4334 4335 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4336 4337 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4338 static unsigned long long xhci_service_interval_to_ns( 4339 struct usb_endpoint_descriptor *desc) 4340 { 4341 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4342 } 4343 4344 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4345 enum usb3_link_state state) 4346 { 4347 unsigned long long sel; 4348 unsigned long long pel; 4349 unsigned int max_sel_pel; 4350 char *state_name; 4351 4352 switch (state) { 4353 case USB3_LPM_U1: 4354 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4355 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4356 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4357 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4358 state_name = "U1"; 4359 break; 4360 case USB3_LPM_U2: 4361 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4362 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4363 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4364 state_name = "U2"; 4365 break; 4366 default: 4367 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4368 __func__); 4369 return USB3_LPM_DISABLED; 4370 } 4371 4372 if (sel <= max_sel_pel && pel <= max_sel_pel) 4373 return USB3_LPM_DEVICE_INITIATED; 4374 4375 if (sel > max_sel_pel) 4376 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4377 "due to long SEL %llu ms\n", 4378 state_name, sel); 4379 else 4380 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4381 "due to long PEL %llu ms\n", 4382 state_name, pel); 4383 return USB3_LPM_DISABLED; 4384 } 4385 4386 /* The U1 timeout should be the maximum of the following values: 4387 * - For control endpoints, U1 system exit latency (SEL) * 3 4388 * - For bulk endpoints, U1 SEL * 5 4389 * - For interrupt endpoints: 4390 * - Notification EPs, U1 SEL * 3 4391 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4392 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4393 */ 4394 static unsigned long long xhci_calculate_intel_u1_timeout( 4395 struct usb_device *udev, 4396 struct usb_endpoint_descriptor *desc) 4397 { 4398 unsigned long long timeout_ns; 4399 int ep_type; 4400 int intr_type; 4401 4402 ep_type = usb_endpoint_type(desc); 4403 switch (ep_type) { 4404 case USB_ENDPOINT_XFER_CONTROL: 4405 timeout_ns = udev->u1_params.sel * 3; 4406 break; 4407 case USB_ENDPOINT_XFER_BULK: 4408 timeout_ns = udev->u1_params.sel * 5; 4409 break; 4410 case USB_ENDPOINT_XFER_INT: 4411 intr_type = usb_endpoint_interrupt_type(desc); 4412 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4413 timeout_ns = udev->u1_params.sel * 3; 4414 break; 4415 } 4416 /* Otherwise the calculation is the same as isoc eps */ 4417 case USB_ENDPOINT_XFER_ISOC: 4418 timeout_ns = xhci_service_interval_to_ns(desc); 4419 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4420 if (timeout_ns < udev->u1_params.sel * 2) 4421 timeout_ns = udev->u1_params.sel * 2; 4422 break; 4423 default: 4424 return 0; 4425 } 4426 4427 return timeout_ns; 4428 } 4429 4430 /* Returns the hub-encoded U1 timeout value. */ 4431 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4432 struct usb_device *udev, 4433 struct usb_endpoint_descriptor *desc) 4434 { 4435 unsigned long long timeout_ns; 4436 4437 if (xhci->quirks & XHCI_INTEL_HOST) 4438 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4439 else 4440 timeout_ns = udev->u1_params.sel; 4441 4442 /* The U1 timeout is encoded in 1us intervals. 4443 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4444 */ 4445 if (timeout_ns == USB3_LPM_DISABLED) 4446 timeout_ns = 1; 4447 else 4448 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4449 4450 /* If the necessary timeout value is bigger than what we can set in the 4451 * USB 3.0 hub, we have to disable hub-initiated U1. 4452 */ 4453 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4454 return timeout_ns; 4455 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4456 "due to long timeout %llu ms\n", timeout_ns); 4457 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4458 } 4459 4460 /* The U2 timeout should be the maximum of: 4461 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4462 * - largest bInterval of any active periodic endpoint (to avoid going 4463 * into lower power link states between intervals). 4464 * - the U2 Exit Latency of the device 4465 */ 4466 static unsigned long long xhci_calculate_intel_u2_timeout( 4467 struct usb_device *udev, 4468 struct usb_endpoint_descriptor *desc) 4469 { 4470 unsigned long long timeout_ns; 4471 unsigned long long u2_del_ns; 4472 4473 timeout_ns = 10 * 1000 * 1000; 4474 4475 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4476 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4477 timeout_ns = xhci_service_interval_to_ns(desc); 4478 4479 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4480 if (u2_del_ns > timeout_ns) 4481 timeout_ns = u2_del_ns; 4482 4483 return timeout_ns; 4484 } 4485 4486 /* Returns the hub-encoded U2 timeout value. */ 4487 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4488 struct usb_device *udev, 4489 struct usb_endpoint_descriptor *desc) 4490 { 4491 unsigned long long timeout_ns; 4492 4493 if (xhci->quirks & XHCI_INTEL_HOST) 4494 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4495 else 4496 timeout_ns = udev->u2_params.sel; 4497 4498 /* The U2 timeout is encoded in 256us intervals */ 4499 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4500 /* If the necessary timeout value is bigger than what we can set in the 4501 * USB 3.0 hub, we have to disable hub-initiated U2. 4502 */ 4503 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4504 return timeout_ns; 4505 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4506 "due to long timeout %llu ms\n", timeout_ns); 4507 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4508 } 4509 4510 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4511 struct usb_device *udev, 4512 struct usb_endpoint_descriptor *desc, 4513 enum usb3_link_state state, 4514 u16 *timeout) 4515 { 4516 if (state == USB3_LPM_U1) 4517 return xhci_calculate_u1_timeout(xhci, udev, desc); 4518 else if (state == USB3_LPM_U2) 4519 return xhci_calculate_u2_timeout(xhci, udev, desc); 4520 4521 return USB3_LPM_DISABLED; 4522 } 4523 4524 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4525 struct usb_device *udev, 4526 struct usb_endpoint_descriptor *desc, 4527 enum usb3_link_state state, 4528 u16 *timeout) 4529 { 4530 u16 alt_timeout; 4531 4532 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4533 desc, state, timeout); 4534 4535 /* If we found we can't enable hub-initiated LPM, or 4536 * the U1 or U2 exit latency was too high to allow 4537 * device-initiated LPM as well, just stop searching. 4538 */ 4539 if (alt_timeout == USB3_LPM_DISABLED || 4540 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4541 *timeout = alt_timeout; 4542 return -E2BIG; 4543 } 4544 if (alt_timeout > *timeout) 4545 *timeout = alt_timeout; 4546 return 0; 4547 } 4548 4549 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4550 struct usb_device *udev, 4551 struct usb_host_interface *alt, 4552 enum usb3_link_state state, 4553 u16 *timeout) 4554 { 4555 int j; 4556 4557 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4558 if (xhci_update_timeout_for_endpoint(xhci, udev, 4559 &alt->endpoint[j].desc, state, timeout)) 4560 return -E2BIG; 4561 continue; 4562 } 4563 return 0; 4564 } 4565 4566 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4567 enum usb3_link_state state) 4568 { 4569 struct usb_device *parent; 4570 unsigned int num_hubs; 4571 4572 if (state == USB3_LPM_U2) 4573 return 0; 4574 4575 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4576 for (parent = udev->parent, num_hubs = 0; parent->parent; 4577 parent = parent->parent) 4578 num_hubs++; 4579 4580 if (num_hubs < 2) 4581 return 0; 4582 4583 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4584 " below second-tier hub.\n"); 4585 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4586 "to decrease power consumption.\n"); 4587 return -E2BIG; 4588 } 4589 4590 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4591 struct usb_device *udev, 4592 enum usb3_link_state state) 4593 { 4594 if (xhci->quirks & XHCI_INTEL_HOST) 4595 return xhci_check_intel_tier_policy(udev, state); 4596 else 4597 return 0; 4598 } 4599 4600 /* Returns the U1 or U2 timeout that should be enabled. 4601 * If the tier check or timeout setting functions return with a non-zero exit 4602 * code, that means the timeout value has been finalized and we shouldn't look 4603 * at any more endpoints. 4604 */ 4605 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4606 struct usb_device *udev, enum usb3_link_state state) 4607 { 4608 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4609 struct usb_host_config *config; 4610 char *state_name; 4611 int i; 4612 u16 timeout = USB3_LPM_DISABLED; 4613 4614 if (state == USB3_LPM_U1) 4615 state_name = "U1"; 4616 else if (state == USB3_LPM_U2) 4617 state_name = "U2"; 4618 else { 4619 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4620 state); 4621 return timeout; 4622 } 4623 4624 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4625 return timeout; 4626 4627 /* Gather some information about the currently installed configuration 4628 * and alternate interface settings. 4629 */ 4630 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4631 state, &timeout)) 4632 return timeout; 4633 4634 config = udev->actconfig; 4635 if (!config) 4636 return timeout; 4637 4638 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4639 struct usb_driver *driver; 4640 struct usb_interface *intf = config->interface[i]; 4641 4642 if (!intf) 4643 continue; 4644 4645 /* Check if any currently bound drivers want hub-initiated LPM 4646 * disabled. 4647 */ 4648 if (intf->dev.driver) { 4649 driver = to_usb_driver(intf->dev.driver); 4650 if (driver && driver->disable_hub_initiated_lpm) { 4651 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4652 "at request of driver %s\n", 4653 state_name, driver->name); 4654 return xhci_get_timeout_no_hub_lpm(udev, state); 4655 } 4656 } 4657 4658 /* Not sure how this could happen... */ 4659 if (!intf->cur_altsetting) 4660 continue; 4661 4662 if (xhci_update_timeout_for_interface(xhci, udev, 4663 intf->cur_altsetting, 4664 state, &timeout)) 4665 return timeout; 4666 } 4667 return timeout; 4668 } 4669 4670 static int calculate_max_exit_latency(struct usb_device *udev, 4671 enum usb3_link_state state_changed, 4672 u16 hub_encoded_timeout) 4673 { 4674 unsigned long long u1_mel_us = 0; 4675 unsigned long long u2_mel_us = 0; 4676 unsigned long long mel_us = 0; 4677 bool disabling_u1; 4678 bool disabling_u2; 4679 bool enabling_u1; 4680 bool enabling_u2; 4681 4682 disabling_u1 = (state_changed == USB3_LPM_U1 && 4683 hub_encoded_timeout == USB3_LPM_DISABLED); 4684 disabling_u2 = (state_changed == USB3_LPM_U2 && 4685 hub_encoded_timeout == USB3_LPM_DISABLED); 4686 4687 enabling_u1 = (state_changed == USB3_LPM_U1 && 4688 hub_encoded_timeout != USB3_LPM_DISABLED); 4689 enabling_u2 = (state_changed == USB3_LPM_U2 && 4690 hub_encoded_timeout != USB3_LPM_DISABLED); 4691 4692 /* If U1 was already enabled and we're not disabling it, 4693 * or we're going to enable U1, account for the U1 max exit latency. 4694 */ 4695 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4696 enabling_u1) 4697 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4698 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4699 enabling_u2) 4700 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4701 4702 if (u1_mel_us > u2_mel_us) 4703 mel_us = u1_mel_us; 4704 else 4705 mel_us = u2_mel_us; 4706 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4707 if (mel_us > MAX_EXIT) { 4708 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4709 "is too big.\n", mel_us); 4710 return -E2BIG; 4711 } 4712 return mel_us; 4713 } 4714 4715 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4716 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4717 struct usb_device *udev, enum usb3_link_state state) 4718 { 4719 struct xhci_hcd *xhci; 4720 u16 hub_encoded_timeout; 4721 int mel; 4722 int ret; 4723 4724 xhci = hcd_to_xhci(hcd); 4725 /* The LPM timeout values are pretty host-controller specific, so don't 4726 * enable hub-initiated timeouts unless the vendor has provided 4727 * information about their timeout algorithm. 4728 */ 4729 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4730 !xhci->devs[udev->slot_id]) 4731 return USB3_LPM_DISABLED; 4732 4733 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4734 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4735 if (mel < 0) { 4736 /* Max Exit Latency is too big, disable LPM. */ 4737 hub_encoded_timeout = USB3_LPM_DISABLED; 4738 mel = 0; 4739 } 4740 4741 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4742 if (ret) 4743 return ret; 4744 return hub_encoded_timeout; 4745 } 4746 4747 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4748 struct usb_device *udev, enum usb3_link_state state) 4749 { 4750 struct xhci_hcd *xhci; 4751 u16 mel; 4752 int ret; 4753 4754 xhci = hcd_to_xhci(hcd); 4755 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4756 !xhci->devs[udev->slot_id]) 4757 return 0; 4758 4759 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4760 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4761 if (ret) 4762 return ret; 4763 return 0; 4764 } 4765 #else /* CONFIG_PM */ 4766 4767 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4768 struct usb_device *udev, int enable) 4769 { 4770 return 0; 4771 } 4772 4773 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4774 { 4775 return 0; 4776 } 4777 4778 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4779 struct usb_device *udev, enum usb3_link_state state) 4780 { 4781 return USB3_LPM_DISABLED; 4782 } 4783 4784 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4785 struct usb_device *udev, enum usb3_link_state state) 4786 { 4787 return 0; 4788 } 4789 #endif /* CONFIG_PM */ 4790 4791 /*-------------------------------------------------------------------------*/ 4792 4793 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4794 * internal data structures for the device. 4795 */ 4796 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4797 struct usb_tt *tt, gfp_t mem_flags) 4798 { 4799 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4800 struct xhci_virt_device *vdev; 4801 struct xhci_command *config_cmd; 4802 struct xhci_input_control_ctx *ctrl_ctx; 4803 struct xhci_slot_ctx *slot_ctx; 4804 unsigned long flags; 4805 unsigned think_time; 4806 int ret; 4807 4808 /* Ignore root hubs */ 4809 if (!hdev->parent) 4810 return 0; 4811 4812 vdev = xhci->devs[hdev->slot_id]; 4813 if (!vdev) { 4814 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4815 return -EINVAL; 4816 } 4817 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4818 if (!config_cmd) { 4819 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4820 return -ENOMEM; 4821 } 4822 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4823 if (!ctrl_ctx) { 4824 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4825 __func__); 4826 xhci_free_command(xhci, config_cmd); 4827 return -ENOMEM; 4828 } 4829 4830 spin_lock_irqsave(&xhci->lock, flags); 4831 if (hdev->speed == USB_SPEED_HIGH && 4832 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4833 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4834 xhci_free_command(xhci, config_cmd); 4835 spin_unlock_irqrestore(&xhci->lock, flags); 4836 return -ENOMEM; 4837 } 4838 4839 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4840 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4841 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4842 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4843 if (tt->multi) 4844 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4845 if (xhci->hci_version > 0x95) { 4846 xhci_dbg(xhci, "xHCI version %x needs hub " 4847 "TT think time and number of ports\n", 4848 (unsigned int) xhci->hci_version); 4849 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4850 /* Set TT think time - convert from ns to FS bit times. 4851 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4852 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4853 * 4854 * xHCI 1.0: this field shall be 0 if the device is not a 4855 * High-spped hub. 4856 */ 4857 think_time = tt->think_time; 4858 if (think_time != 0) 4859 think_time = (think_time / 666) - 1; 4860 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4861 slot_ctx->tt_info |= 4862 cpu_to_le32(TT_THINK_TIME(think_time)); 4863 } else { 4864 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4865 "TT think time or number of ports\n", 4866 (unsigned int) xhci->hci_version); 4867 } 4868 slot_ctx->dev_state = 0; 4869 spin_unlock_irqrestore(&xhci->lock, flags); 4870 4871 xhci_dbg(xhci, "Set up %s for hub device.\n", 4872 (xhci->hci_version > 0x95) ? 4873 "configure endpoint" : "evaluate context"); 4874 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4875 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4876 4877 /* Issue and wait for the configure endpoint or 4878 * evaluate context command. 4879 */ 4880 if (xhci->hci_version > 0x95) 4881 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4882 false, false); 4883 else 4884 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4885 true, false); 4886 4887 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4888 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4889 4890 xhci_free_command(xhci, config_cmd); 4891 return ret; 4892 } 4893 4894 int xhci_get_frame(struct usb_hcd *hcd) 4895 { 4896 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4897 /* EHCI mods by the periodic size. Why? */ 4898 return readl(&xhci->run_regs->microframe_index) >> 3; 4899 } 4900 4901 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4902 { 4903 struct xhci_hcd *xhci; 4904 struct device *dev = hcd->self.controller; 4905 int retval; 4906 4907 /* Accept arbitrarily long scatter-gather lists */ 4908 hcd->self.sg_tablesize = ~0; 4909 4910 /* support to build packet from discontinuous buffers */ 4911 hcd->self.no_sg_constraint = 1; 4912 4913 /* XHCI controllers don't stop the ep queue on short packets :| */ 4914 hcd->self.no_stop_on_short = 1; 4915 4916 if (usb_hcd_is_primary_hcd(hcd)) { 4917 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4918 if (!xhci) 4919 return -ENOMEM; 4920 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4921 xhci->main_hcd = hcd; 4922 /* Mark the first roothub as being USB 2.0. 4923 * The xHCI driver will register the USB 3.0 roothub. 4924 */ 4925 hcd->speed = HCD_USB2; 4926 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4927 /* 4928 * USB 2.0 roothub under xHCI has an integrated TT, 4929 * (rate matching hub) as opposed to having an OHCI/UHCI 4930 * companion controller. 4931 */ 4932 hcd->has_tt = 1; 4933 } else { 4934 /* xHCI private pointer was set in xhci_pci_probe for the second 4935 * registered roothub. 4936 */ 4937 return 0; 4938 } 4939 4940 xhci->cap_regs = hcd->regs; 4941 xhci->op_regs = hcd->regs + 4942 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4943 xhci->run_regs = hcd->regs + 4944 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4945 /* Cache read-only capability registers */ 4946 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4947 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4948 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4949 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4950 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4951 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4952 xhci_print_registers(xhci); 4953 4954 xhci->quirks = quirks; 4955 4956 get_quirks(dev, xhci); 4957 4958 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4959 * success event after a short transfer. This quirk will ignore such 4960 * spurious event. 4961 */ 4962 if (xhci->hci_version > 0x96) 4963 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4964 4965 /* Make sure the HC is halted. */ 4966 retval = xhci_halt(xhci); 4967 if (retval) 4968 goto error; 4969 4970 xhci_dbg(xhci, "Resetting HCD\n"); 4971 /* Reset the internal HC memory state and registers. */ 4972 retval = xhci_reset(xhci); 4973 if (retval) 4974 goto error; 4975 xhci_dbg(xhci, "Reset complete\n"); 4976 4977 /* Set dma_mask and coherent_dma_mask to 64-bits, 4978 * if xHC supports 64-bit addressing */ 4979 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4980 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4981 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4982 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4983 } 4984 4985 xhci_dbg(xhci, "Calling HCD init\n"); 4986 /* Initialize HCD and host controller data structures. */ 4987 retval = xhci_init(hcd); 4988 if (retval) 4989 goto error; 4990 xhci_dbg(xhci, "Called HCD init\n"); 4991 4992 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4993 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4994 4995 return 0; 4996 error: 4997 kfree(xhci); 4998 return retval; 4999 } 5000 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5001 5002 static const struct hc_driver xhci_hc_driver = { 5003 .description = "xhci-hcd", 5004 .product_desc = "xHCI Host Controller", 5005 .hcd_priv_size = sizeof(struct xhci_hcd *), 5006 5007 /* 5008 * generic hardware linkage 5009 */ 5010 .irq = xhci_irq, 5011 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 5012 5013 /* 5014 * basic lifecycle operations 5015 */ 5016 .reset = NULL, /* set in xhci_init_driver() */ 5017 .start = xhci_run, 5018 .stop = xhci_stop, 5019 .shutdown = xhci_shutdown, 5020 5021 /* 5022 * managing i/o requests and associated device resources 5023 */ 5024 .urb_enqueue = xhci_urb_enqueue, 5025 .urb_dequeue = xhci_urb_dequeue, 5026 .alloc_dev = xhci_alloc_dev, 5027 .free_dev = xhci_free_dev, 5028 .alloc_streams = xhci_alloc_streams, 5029 .free_streams = xhci_free_streams, 5030 .add_endpoint = xhci_add_endpoint, 5031 .drop_endpoint = xhci_drop_endpoint, 5032 .endpoint_reset = xhci_endpoint_reset, 5033 .check_bandwidth = xhci_check_bandwidth, 5034 .reset_bandwidth = xhci_reset_bandwidth, 5035 .address_device = xhci_address_device, 5036 .enable_device = xhci_enable_device, 5037 .update_hub_device = xhci_update_hub_device, 5038 .reset_device = xhci_discover_or_reset_device, 5039 5040 /* 5041 * scheduling support 5042 */ 5043 .get_frame_number = xhci_get_frame, 5044 5045 /* 5046 * root hub support 5047 */ 5048 .hub_control = xhci_hub_control, 5049 .hub_status_data = xhci_hub_status_data, 5050 .bus_suspend = xhci_bus_suspend, 5051 .bus_resume = xhci_bus_resume, 5052 5053 /* 5054 * call back when device connected and addressed 5055 */ 5056 .update_device = xhci_update_device, 5057 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5058 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5059 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5060 .find_raw_port_number = xhci_find_raw_port_number, 5061 }; 5062 5063 void xhci_init_driver(struct hc_driver *drv, int (*setup_fn)(struct usb_hcd *)) 5064 { 5065 BUG_ON(!setup_fn); 5066 *drv = xhci_hc_driver; 5067 drv->reset = setup_fn; 5068 } 5069 EXPORT_SYMBOL_GPL(xhci_init_driver); 5070 5071 MODULE_DESCRIPTION(DRIVER_DESC); 5072 MODULE_AUTHOR(DRIVER_AUTHOR); 5073 MODULE_LICENSE("GPL"); 5074 5075 static int __init xhci_hcd_init(void) 5076 { 5077 /* 5078 * Check the compiler generated sizes of structures that must be laid 5079 * out in specific ways for hardware access. 5080 */ 5081 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5082 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5083 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5084 /* xhci_device_control has eight fields, and also 5085 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5086 */ 5087 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5088 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5089 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5090 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 5091 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5092 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5093 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5094 return 0; 5095 } 5096 module_init(xhci_hcd_init); 5097