1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (ret) { 117 xhci_warn(xhci, "Host halt failed, %d\n", ret); 118 return ret; 119 } 120 xhci->xhc_state |= XHCI_STATE_HALTED; 121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 171 if (state == ~(u32)0) { 172 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 173 return -ENODEV; 174 } 175 176 if ((state & STS_HALT) == 0) { 177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 178 return 0; 179 } 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 182 command = readl(&xhci->op_regs->command); 183 command |= CMD_RESET; 184 writel(command, &xhci->op_regs->command); 185 186 /* Existing Intel xHCI controllers require a delay of 1 mS, 187 * after setting the CMD_RESET bit, and before accessing any 188 * HC registers. This allows the HC to complete the 189 * reset operation and be ready for HC register access. 190 * Without this delay, the subsequent HC register access, 191 * may result in a system hang very rarely. 192 */ 193 if (xhci->quirks & XHCI_INTEL_HOST) 194 udelay(1000); 195 196 ret = xhci_handshake(&xhci->op_regs->command, 197 CMD_RESET, 0, 10 * 1000 * 1000); 198 if (ret) 199 return ret; 200 201 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 202 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 203 204 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 205 "Wait for controller to be ready for doorbell rings"); 206 /* 207 * xHCI cannot write to any doorbells or operational registers other 208 * than status until the "Controller Not Ready" flag is cleared. 209 */ 210 ret = xhci_handshake(&xhci->op_regs->status, 211 STS_CNR, 0, 10 * 1000 * 1000); 212 213 for (i = 0; i < 2; i++) { 214 xhci->bus_state[i].port_c_suspend = 0; 215 xhci->bus_state[i].suspended_ports = 0; 216 xhci->bus_state[i].resuming_ports = 0; 217 } 218 219 return ret; 220 } 221 222 223 #ifdef CONFIG_USB_PCI 224 /* 225 * Set up MSI 226 */ 227 static int xhci_setup_msi(struct xhci_hcd *xhci) 228 { 229 int ret; 230 /* 231 * TODO:Check with MSI Soc for sysdev 232 */ 233 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 234 235 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 236 if (ret < 0) { 237 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 238 "failed to allocate MSI entry"); 239 return ret; 240 } 241 242 ret = request_irq(pdev->irq, xhci_msi_irq, 243 0, "xhci_hcd", xhci_to_hcd(xhci)); 244 if (ret) { 245 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 246 "disable MSI interrupt"); 247 pci_free_irq_vectors(pdev); 248 } 249 250 return ret; 251 } 252 253 /* 254 * Set up MSI-X 255 */ 256 static int xhci_setup_msix(struct xhci_hcd *xhci) 257 { 258 int i, ret = 0; 259 struct usb_hcd *hcd = xhci_to_hcd(xhci); 260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 261 262 /* 263 * calculate number of msi-x vectors supported. 264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 265 * with max number of interrupters based on the xhci HCSPARAMS1. 266 * - num_online_cpus: maximum msi-x vectors per CPUs core. 267 * Add additional 1 vector to ensure always available interrupt. 268 */ 269 xhci->msix_count = min(num_online_cpus() + 1, 270 HCS_MAX_INTRS(xhci->hcs_params1)); 271 272 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 273 PCI_IRQ_MSIX); 274 if (ret < 0) { 275 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 276 "Failed to enable MSI-X"); 277 return ret; 278 } 279 280 for (i = 0; i < xhci->msix_count; i++) { 281 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 282 "xhci_hcd", xhci_to_hcd(xhci)); 283 if (ret) 284 goto disable_msix; 285 } 286 287 hcd->msix_enabled = 1; 288 return ret; 289 290 disable_msix: 291 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 292 while (--i >= 0) 293 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 294 pci_free_irq_vectors(pdev); 295 return ret; 296 } 297 298 /* Free any IRQs and disable MSI-X */ 299 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 300 { 301 struct usb_hcd *hcd = xhci_to_hcd(xhci); 302 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 303 304 if (xhci->quirks & XHCI_PLAT) 305 return; 306 307 /* return if using legacy interrupt */ 308 if (hcd->irq > 0) 309 return; 310 311 if (hcd->msix_enabled) { 312 int i; 313 314 for (i = 0; i < xhci->msix_count; i++) 315 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 316 } else { 317 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 318 } 319 320 pci_free_irq_vectors(pdev); 321 hcd->msix_enabled = 0; 322 } 323 324 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 325 { 326 struct usb_hcd *hcd = xhci_to_hcd(xhci); 327 328 if (hcd->msix_enabled) { 329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 330 int i; 331 332 for (i = 0; i < xhci->msix_count; i++) 333 synchronize_irq(pci_irq_vector(pdev, i)); 334 } 335 } 336 337 static int xhci_try_enable_msi(struct usb_hcd *hcd) 338 { 339 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 340 struct pci_dev *pdev; 341 int ret; 342 343 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 344 if (xhci->quirks & XHCI_PLAT) 345 return 0; 346 347 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 348 /* 349 * Some Fresco Logic host controllers advertise MSI, but fail to 350 * generate interrupts. Don't even try to enable MSI. 351 */ 352 if (xhci->quirks & XHCI_BROKEN_MSI) 353 goto legacy_irq; 354 355 /* unregister the legacy interrupt */ 356 if (hcd->irq) 357 free_irq(hcd->irq, hcd); 358 hcd->irq = 0; 359 360 ret = xhci_setup_msix(xhci); 361 if (ret) 362 /* fall back to msi*/ 363 ret = xhci_setup_msi(xhci); 364 365 if (!ret) { 366 hcd->msi_enabled = 1; 367 return 0; 368 } 369 370 if (!pdev->irq) { 371 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 372 return -EINVAL; 373 } 374 375 legacy_irq: 376 if (!strlen(hcd->irq_descr)) 377 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 378 hcd->driver->description, hcd->self.busnum); 379 380 /* fall back to legacy interrupt*/ 381 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 382 hcd->irq_descr, hcd); 383 if (ret) { 384 xhci_err(xhci, "request interrupt %d failed\n", 385 pdev->irq); 386 return ret; 387 } 388 hcd->irq = pdev->irq; 389 return 0; 390 } 391 392 #else 393 394 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 395 { 396 return 0; 397 } 398 399 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 400 { 401 } 402 403 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 404 { 405 } 406 407 #endif 408 409 static void compliance_mode_recovery(unsigned long arg) 410 { 411 struct xhci_hcd *xhci; 412 struct usb_hcd *hcd; 413 u32 temp; 414 int i; 415 416 xhci = (struct xhci_hcd *)arg; 417 418 for (i = 0; i < xhci->num_usb3_ports; i++) { 419 temp = readl(xhci->usb3_ports[i]); 420 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 421 /* 422 * Compliance Mode Detected. Letting USB Core 423 * handle the Warm Reset 424 */ 425 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 426 "Compliance mode detected->port %d", 427 i + 1); 428 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 429 "Attempting compliance mode recovery"); 430 hcd = xhci->shared_hcd; 431 432 if (hcd->state == HC_STATE_SUSPENDED) 433 usb_hcd_resume_root_hub(hcd); 434 435 usb_hcd_poll_rh_status(hcd); 436 } 437 } 438 439 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 440 mod_timer(&xhci->comp_mode_recovery_timer, 441 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 442 } 443 444 /* 445 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 446 * that causes ports behind that hardware to enter compliance mode sometimes. 447 * The quirk creates a timer that polls every 2 seconds the link state of 448 * each host controller's port and recovers it by issuing a Warm reset 449 * if Compliance mode is detected, otherwise the port will become "dead" (no 450 * device connections or disconnections will be detected anymore). Becasue no 451 * status event is generated when entering compliance mode (per xhci spec), 452 * this quirk is needed on systems that have the failing hardware installed. 453 */ 454 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 455 { 456 xhci->port_status_u0 = 0; 457 setup_timer(&xhci->comp_mode_recovery_timer, 458 compliance_mode_recovery, (unsigned long)xhci); 459 xhci->comp_mode_recovery_timer.expires = jiffies + 460 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 461 462 add_timer(&xhci->comp_mode_recovery_timer); 463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 464 "Compliance mode recovery timer initialized"); 465 } 466 467 /* 468 * This function identifies the systems that have installed the SN65LVPE502CP 469 * USB3.0 re-driver and that need the Compliance Mode Quirk. 470 * Systems: 471 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 472 */ 473 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 474 { 475 const char *dmi_product_name, *dmi_sys_vendor; 476 477 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 478 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 479 if (!dmi_product_name || !dmi_sys_vendor) 480 return false; 481 482 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 483 return false; 484 485 if (strstr(dmi_product_name, "Z420") || 486 strstr(dmi_product_name, "Z620") || 487 strstr(dmi_product_name, "Z820") || 488 strstr(dmi_product_name, "Z1 Workstation")) 489 return true; 490 491 return false; 492 } 493 494 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 495 { 496 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 497 } 498 499 500 /* 501 * Initialize memory for HCD and xHC (one-time init). 502 * 503 * Program the PAGESIZE register, initialize the device context array, create 504 * device contexts (?), set up a command ring segment (or two?), create event 505 * ring (one for now). 506 */ 507 static int xhci_init(struct usb_hcd *hcd) 508 { 509 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 510 int retval = 0; 511 512 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 513 spin_lock_init(&xhci->lock); 514 if (xhci->hci_version == 0x95 && link_quirk) { 515 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 516 "QUIRK: Not clearing Link TRB chain bits."); 517 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 518 } else { 519 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 520 "xHCI doesn't need link TRB QUIRK"); 521 } 522 retval = xhci_mem_init(xhci, GFP_KERNEL); 523 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 524 525 /* Initializing Compliance Mode Recovery Data If Needed */ 526 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 527 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 528 compliance_mode_recovery_timer_init(xhci); 529 } 530 531 return retval; 532 } 533 534 /*-------------------------------------------------------------------------*/ 535 536 537 static int xhci_run_finished(struct xhci_hcd *xhci) 538 { 539 if (xhci_start(xhci)) { 540 xhci_halt(xhci); 541 return -ENODEV; 542 } 543 xhci->shared_hcd->state = HC_STATE_RUNNING; 544 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 545 546 if (xhci->quirks & XHCI_NEC_HOST) 547 xhci_ring_cmd_db(xhci); 548 549 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 550 "Finished xhci_run for USB3 roothub"); 551 return 0; 552 } 553 554 /* 555 * Start the HC after it was halted. 556 * 557 * This function is called by the USB core when the HC driver is added. 558 * Its opposite is xhci_stop(). 559 * 560 * xhci_init() must be called once before this function can be called. 561 * Reset the HC, enable device slot contexts, program DCBAAP, and 562 * set command ring pointer and event ring pointer. 563 * 564 * Setup MSI-X vectors and enable interrupts. 565 */ 566 int xhci_run(struct usb_hcd *hcd) 567 { 568 u32 temp; 569 u64 temp_64; 570 int ret; 571 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 572 573 /* Start the xHCI host controller running only after the USB 2.0 roothub 574 * is setup. 575 */ 576 577 hcd->uses_new_polling = 1; 578 if (!usb_hcd_is_primary_hcd(hcd)) 579 return xhci_run_finished(xhci); 580 581 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 582 583 ret = xhci_try_enable_msi(hcd); 584 if (ret) 585 return ret; 586 587 xhci_dbg_cmd_ptrs(xhci); 588 589 xhci_dbg(xhci, "ERST memory map follows:\n"); 590 xhci_dbg_erst(xhci, &xhci->erst); 591 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 592 temp_64 &= ~ERST_PTR_MASK; 593 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 594 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 595 596 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 597 "// Set the interrupt modulation register"); 598 temp = readl(&xhci->ir_set->irq_control); 599 temp &= ~ER_IRQ_INTERVAL_MASK; 600 /* 601 * the increment interval is 8 times as much as that defined 602 * in xHCI spec on MTK's controller 603 */ 604 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 605 writel(temp, &xhci->ir_set->irq_control); 606 607 /* Set the HCD state before we enable the irqs */ 608 temp = readl(&xhci->op_regs->command); 609 temp |= (CMD_EIE); 610 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 611 "// Enable interrupts, cmd = 0x%x.", temp); 612 writel(temp, &xhci->op_regs->command); 613 614 temp = readl(&xhci->ir_set->irq_pending); 615 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 616 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 617 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 618 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 619 xhci_print_ir_set(xhci, 0); 620 621 if (xhci->quirks & XHCI_NEC_HOST) { 622 struct xhci_command *command; 623 624 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 625 if (!command) 626 return -ENOMEM; 627 628 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 629 TRB_TYPE(TRB_NEC_GET_FW)); 630 if (ret) 631 xhci_free_command(xhci, command); 632 } 633 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 634 "Finished xhci_run for USB2 roothub"); 635 return 0; 636 } 637 EXPORT_SYMBOL_GPL(xhci_run); 638 639 /* 640 * Stop xHCI driver. 641 * 642 * This function is called by the USB core when the HC driver is removed. 643 * Its opposite is xhci_run(). 644 * 645 * Disable device contexts, disable IRQs, and quiesce the HC. 646 * Reset the HC, finish any completed transactions, and cleanup memory. 647 */ 648 static void xhci_stop(struct usb_hcd *hcd) 649 { 650 u32 temp; 651 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 652 653 mutex_lock(&xhci->mutex); 654 655 /* Only halt host and free memory after both hcds are removed */ 656 if (!usb_hcd_is_primary_hcd(hcd)) { 657 /* usb core will free this hcd shortly, unset pointer */ 658 xhci->shared_hcd = NULL; 659 mutex_unlock(&xhci->mutex); 660 return; 661 } 662 663 spin_lock_irq(&xhci->lock); 664 xhci->xhc_state |= XHCI_STATE_HALTED; 665 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 666 xhci_halt(xhci); 667 xhci_reset(xhci); 668 spin_unlock_irq(&xhci->lock); 669 670 xhci_cleanup_msix(xhci); 671 672 /* Deleting Compliance Mode Recovery Timer */ 673 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 674 (!(xhci_all_ports_seen_u0(xhci)))) { 675 del_timer_sync(&xhci->comp_mode_recovery_timer); 676 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 677 "%s: compliance mode recovery timer deleted", 678 __func__); 679 } 680 681 if (xhci->quirks & XHCI_AMD_PLL_FIX) 682 usb_amd_dev_put(); 683 684 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 685 "// Disabling event ring interrupts"); 686 temp = readl(&xhci->op_regs->status); 687 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 688 temp = readl(&xhci->ir_set->irq_pending); 689 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 690 xhci_print_ir_set(xhci, 0); 691 692 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 693 xhci_mem_cleanup(xhci); 694 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 695 "xhci_stop completed - status = %x", 696 readl(&xhci->op_regs->status)); 697 mutex_unlock(&xhci->mutex); 698 } 699 700 /* 701 * Shutdown HC (not bus-specific) 702 * 703 * This is called when the machine is rebooting or halting. We assume that the 704 * machine will be powered off, and the HC's internal state will be reset. 705 * Don't bother to free memory. 706 * 707 * This will only ever be called with the main usb_hcd (the USB3 roothub). 708 */ 709 static void xhci_shutdown(struct usb_hcd *hcd) 710 { 711 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 712 713 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 714 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 715 716 spin_lock_irq(&xhci->lock); 717 xhci_halt(xhci); 718 /* Workaround for spurious wakeups at shutdown with HSW */ 719 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 720 xhci_reset(xhci); 721 spin_unlock_irq(&xhci->lock); 722 723 xhci_cleanup_msix(xhci); 724 725 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 726 "xhci_shutdown completed - status = %x", 727 readl(&xhci->op_regs->status)); 728 729 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 730 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 731 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 732 } 733 734 #ifdef CONFIG_PM 735 static void xhci_save_registers(struct xhci_hcd *xhci) 736 { 737 xhci->s3.command = readl(&xhci->op_regs->command); 738 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 739 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 740 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 741 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 742 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 743 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 744 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 745 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 746 } 747 748 static void xhci_restore_registers(struct xhci_hcd *xhci) 749 { 750 writel(xhci->s3.command, &xhci->op_regs->command); 751 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 752 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 753 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 754 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 755 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 756 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 757 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 758 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 759 } 760 761 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 762 { 763 u64 val_64; 764 765 /* step 2: initialize command ring buffer */ 766 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 767 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 768 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 769 xhci->cmd_ring->dequeue) & 770 (u64) ~CMD_RING_RSVD_BITS) | 771 xhci->cmd_ring->cycle_state; 772 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 773 "// Setting command ring address to 0x%llx", 774 (long unsigned long) val_64); 775 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 776 } 777 778 /* 779 * The whole command ring must be cleared to zero when we suspend the host. 780 * 781 * The host doesn't save the command ring pointer in the suspend well, so we 782 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 783 * aligned, because of the reserved bits in the command ring dequeue pointer 784 * register. Therefore, we can't just set the dequeue pointer back in the 785 * middle of the ring (TRBs are 16-byte aligned). 786 */ 787 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 788 { 789 struct xhci_ring *ring; 790 struct xhci_segment *seg; 791 792 ring = xhci->cmd_ring; 793 seg = ring->deq_seg; 794 do { 795 memset(seg->trbs, 0, 796 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 797 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 798 cpu_to_le32(~TRB_CYCLE); 799 seg = seg->next; 800 } while (seg != ring->deq_seg); 801 802 /* Reset the software enqueue and dequeue pointers */ 803 ring->deq_seg = ring->first_seg; 804 ring->dequeue = ring->first_seg->trbs; 805 ring->enq_seg = ring->deq_seg; 806 ring->enqueue = ring->dequeue; 807 808 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 809 /* 810 * Ring is now zeroed, so the HW should look for change of ownership 811 * when the cycle bit is set to 1. 812 */ 813 ring->cycle_state = 1; 814 815 /* 816 * Reset the hardware dequeue pointer. 817 * Yes, this will need to be re-written after resume, but we're paranoid 818 * and want to make sure the hardware doesn't access bogus memory 819 * because, say, the BIOS or an SMI started the host without changing 820 * the command ring pointers. 821 */ 822 xhci_set_cmd_ring_deq(xhci); 823 } 824 825 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 826 { 827 int port_index; 828 __le32 __iomem **port_array; 829 unsigned long flags; 830 u32 t1, t2; 831 832 spin_lock_irqsave(&xhci->lock, flags); 833 834 /* disable usb3 ports Wake bits */ 835 port_index = xhci->num_usb3_ports; 836 port_array = xhci->usb3_ports; 837 while (port_index--) { 838 t1 = readl(port_array[port_index]); 839 t1 = xhci_port_state_to_neutral(t1); 840 t2 = t1 & ~PORT_WAKE_BITS; 841 if (t1 != t2) 842 writel(t2, port_array[port_index]); 843 } 844 845 /* disable usb2 ports Wake bits */ 846 port_index = xhci->num_usb2_ports; 847 port_array = xhci->usb2_ports; 848 while (port_index--) { 849 t1 = readl(port_array[port_index]); 850 t1 = xhci_port_state_to_neutral(t1); 851 t2 = t1 & ~PORT_WAKE_BITS; 852 if (t1 != t2) 853 writel(t2, port_array[port_index]); 854 } 855 856 spin_unlock_irqrestore(&xhci->lock, flags); 857 } 858 859 /* 860 * Stop HC (not bus-specific) 861 * 862 * This is called when the machine transition into S3/S4 mode. 863 * 864 */ 865 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 866 { 867 int rc = 0; 868 unsigned int delay = XHCI_MAX_HALT_USEC; 869 struct usb_hcd *hcd = xhci_to_hcd(xhci); 870 u32 command; 871 872 if (!hcd->state) 873 return 0; 874 875 if (hcd->state != HC_STATE_SUSPENDED || 876 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 877 return -EINVAL; 878 879 /* Clear root port wake on bits if wakeup not allowed. */ 880 if (!do_wakeup) 881 xhci_disable_port_wake_on_bits(xhci); 882 883 /* Don't poll the roothubs on bus suspend. */ 884 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 885 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 886 del_timer_sync(&hcd->rh_timer); 887 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 888 del_timer_sync(&xhci->shared_hcd->rh_timer); 889 890 spin_lock_irq(&xhci->lock); 891 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 892 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 893 /* step 1: stop endpoint */ 894 /* skipped assuming that port suspend has done */ 895 896 /* step 2: clear Run/Stop bit */ 897 command = readl(&xhci->op_regs->command); 898 command &= ~CMD_RUN; 899 writel(command, &xhci->op_regs->command); 900 901 /* Some chips from Fresco Logic need an extraordinary delay */ 902 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 903 904 if (xhci_handshake(&xhci->op_regs->status, 905 STS_HALT, STS_HALT, delay)) { 906 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 907 spin_unlock_irq(&xhci->lock); 908 return -ETIMEDOUT; 909 } 910 xhci_clear_command_ring(xhci); 911 912 /* step 3: save registers */ 913 xhci_save_registers(xhci); 914 915 /* step 4: set CSS flag */ 916 command = readl(&xhci->op_regs->command); 917 command |= CMD_CSS; 918 writel(command, &xhci->op_regs->command); 919 if (xhci_handshake(&xhci->op_regs->status, 920 STS_SAVE, 0, 10 * 1000)) { 921 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 922 spin_unlock_irq(&xhci->lock); 923 return -ETIMEDOUT; 924 } 925 spin_unlock_irq(&xhci->lock); 926 927 /* 928 * Deleting Compliance Mode Recovery Timer because the xHCI Host 929 * is about to be suspended. 930 */ 931 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 932 (!(xhci_all_ports_seen_u0(xhci)))) { 933 del_timer_sync(&xhci->comp_mode_recovery_timer); 934 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 935 "%s: compliance mode recovery timer deleted", 936 __func__); 937 } 938 939 /* step 5: remove core well power */ 940 /* synchronize irq when using MSI-X */ 941 xhci_msix_sync_irqs(xhci); 942 943 return rc; 944 } 945 EXPORT_SYMBOL_GPL(xhci_suspend); 946 947 /* 948 * start xHC (not bus-specific) 949 * 950 * This is called when the machine transition from S3/S4 mode. 951 * 952 */ 953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 954 { 955 u32 command, temp = 0, status; 956 struct usb_hcd *hcd = xhci_to_hcd(xhci); 957 struct usb_hcd *secondary_hcd; 958 int retval = 0; 959 bool comp_timer_running = false; 960 961 if (!hcd->state) 962 return 0; 963 964 /* Wait a bit if either of the roothubs need to settle from the 965 * transition into bus suspend. 966 */ 967 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 968 time_before(jiffies, 969 xhci->bus_state[1].next_statechange)) 970 msleep(100); 971 972 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 973 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 974 975 spin_lock_irq(&xhci->lock); 976 if (xhci->quirks & XHCI_RESET_ON_RESUME) 977 hibernated = true; 978 979 if (!hibernated) { 980 /* step 1: restore register */ 981 xhci_restore_registers(xhci); 982 /* step 2: initialize command ring buffer */ 983 xhci_set_cmd_ring_deq(xhci); 984 /* step 3: restore state and start state*/ 985 /* step 3: set CRS flag */ 986 command = readl(&xhci->op_regs->command); 987 command |= CMD_CRS; 988 writel(command, &xhci->op_regs->command); 989 if (xhci_handshake(&xhci->op_regs->status, 990 STS_RESTORE, 0, 10 * 1000)) { 991 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 992 spin_unlock_irq(&xhci->lock); 993 return -ETIMEDOUT; 994 } 995 temp = readl(&xhci->op_regs->status); 996 } 997 998 /* If restore operation fails, re-initialize the HC during resume */ 999 if ((temp & STS_SRE) || hibernated) { 1000 1001 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1002 !(xhci_all_ports_seen_u0(xhci))) { 1003 del_timer_sync(&xhci->comp_mode_recovery_timer); 1004 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1005 "Compliance Mode Recovery Timer deleted!"); 1006 } 1007 1008 /* Let the USB core know _both_ roothubs lost power. */ 1009 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1010 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1011 1012 xhci_dbg(xhci, "Stop HCD\n"); 1013 xhci_halt(xhci); 1014 xhci_reset(xhci); 1015 spin_unlock_irq(&xhci->lock); 1016 xhci_cleanup_msix(xhci); 1017 1018 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1019 temp = readl(&xhci->op_regs->status); 1020 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1021 temp = readl(&xhci->ir_set->irq_pending); 1022 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1023 xhci_print_ir_set(xhci, 0); 1024 1025 xhci_dbg(xhci, "cleaning up memory\n"); 1026 xhci_mem_cleanup(xhci); 1027 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1028 readl(&xhci->op_regs->status)); 1029 1030 /* USB core calls the PCI reinit and start functions twice: 1031 * first with the primary HCD, and then with the secondary HCD. 1032 * If we don't do the same, the host will never be started. 1033 */ 1034 if (!usb_hcd_is_primary_hcd(hcd)) 1035 secondary_hcd = hcd; 1036 else 1037 secondary_hcd = xhci->shared_hcd; 1038 1039 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1040 retval = xhci_init(hcd->primary_hcd); 1041 if (retval) 1042 return retval; 1043 comp_timer_running = true; 1044 1045 xhci_dbg(xhci, "Start the primary HCD\n"); 1046 retval = xhci_run(hcd->primary_hcd); 1047 if (!retval) { 1048 xhci_dbg(xhci, "Start the secondary HCD\n"); 1049 retval = xhci_run(secondary_hcd); 1050 } 1051 hcd->state = HC_STATE_SUSPENDED; 1052 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1053 goto done; 1054 } 1055 1056 /* step 4: set Run/Stop bit */ 1057 command = readl(&xhci->op_regs->command); 1058 command |= CMD_RUN; 1059 writel(command, &xhci->op_regs->command); 1060 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1061 0, 250 * 1000); 1062 1063 /* step 5: walk topology and initialize portsc, 1064 * portpmsc and portli 1065 */ 1066 /* this is done in bus_resume */ 1067 1068 /* step 6: restart each of the previously 1069 * Running endpoints by ringing their doorbells 1070 */ 1071 1072 spin_unlock_irq(&xhci->lock); 1073 1074 done: 1075 if (retval == 0) { 1076 /* Resume root hubs only when have pending events. */ 1077 status = readl(&xhci->op_regs->status); 1078 if (status & STS_EINT) { 1079 usb_hcd_resume_root_hub(xhci->shared_hcd); 1080 usb_hcd_resume_root_hub(hcd); 1081 } 1082 } 1083 1084 /* 1085 * If system is subject to the Quirk, Compliance Mode Timer needs to 1086 * be re-initialized Always after a system resume. Ports are subject 1087 * to suffer the Compliance Mode issue again. It doesn't matter if 1088 * ports have entered previously to U0 before system's suspension. 1089 */ 1090 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1091 compliance_mode_recovery_timer_init(xhci); 1092 1093 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1094 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1095 1096 /* Re-enable port polling. */ 1097 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1098 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1099 usb_hcd_poll_rh_status(xhci->shared_hcd); 1100 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1101 usb_hcd_poll_rh_status(hcd); 1102 1103 return retval; 1104 } 1105 EXPORT_SYMBOL_GPL(xhci_resume); 1106 #endif /* CONFIG_PM */ 1107 1108 /*-------------------------------------------------------------------------*/ 1109 1110 /** 1111 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1112 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1113 * value to right shift 1 for the bitmask. 1114 * 1115 * Index = (epnum * 2) + direction - 1, 1116 * where direction = 0 for OUT, 1 for IN. 1117 * For control endpoints, the IN index is used (OUT index is unused), so 1118 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1119 */ 1120 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1121 { 1122 unsigned int index; 1123 if (usb_endpoint_xfer_control(desc)) 1124 index = (unsigned int) (usb_endpoint_num(desc)*2); 1125 else 1126 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1127 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1128 return index; 1129 } 1130 1131 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1132 * address from the XHCI endpoint index. 1133 */ 1134 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1135 { 1136 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1137 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1138 return direction | number; 1139 } 1140 1141 /* Find the flag for this endpoint (for use in the control context). Use the 1142 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1143 * bit 1, etc. 1144 */ 1145 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1146 { 1147 return 1 << (xhci_get_endpoint_index(desc) + 1); 1148 } 1149 1150 /* Find the flag for this endpoint (for use in the control context). Use the 1151 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1152 * bit 1, etc. 1153 */ 1154 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1155 { 1156 return 1 << (ep_index + 1); 1157 } 1158 1159 /* Compute the last valid endpoint context index. Basically, this is the 1160 * endpoint index plus one. For slot contexts with more than valid endpoint, 1161 * we find the most significant bit set in the added contexts flags. 1162 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1163 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1164 */ 1165 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1166 { 1167 return fls(added_ctxs) - 1; 1168 } 1169 1170 /* Returns 1 if the arguments are OK; 1171 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1172 */ 1173 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1174 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1175 const char *func) { 1176 struct xhci_hcd *xhci; 1177 struct xhci_virt_device *virt_dev; 1178 1179 if (!hcd || (check_ep && !ep) || !udev) { 1180 pr_debug("xHCI %s called with invalid args\n", func); 1181 return -EINVAL; 1182 } 1183 if (!udev->parent) { 1184 pr_debug("xHCI %s called for root hub\n", func); 1185 return 0; 1186 } 1187 1188 xhci = hcd_to_xhci(hcd); 1189 if (check_virt_dev) { 1190 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1191 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1192 func); 1193 return -EINVAL; 1194 } 1195 1196 virt_dev = xhci->devs[udev->slot_id]; 1197 if (virt_dev->udev != udev) { 1198 xhci_dbg(xhci, "xHCI %s called with udev and " 1199 "virt_dev does not match\n", func); 1200 return -EINVAL; 1201 } 1202 } 1203 1204 if (xhci->xhc_state & XHCI_STATE_HALTED) 1205 return -ENODEV; 1206 1207 return 1; 1208 } 1209 1210 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1211 struct usb_device *udev, struct xhci_command *command, 1212 bool ctx_change, bool must_succeed); 1213 1214 /* 1215 * Full speed devices may have a max packet size greater than 8 bytes, but the 1216 * USB core doesn't know that until it reads the first 8 bytes of the 1217 * descriptor. If the usb_device's max packet size changes after that point, 1218 * we need to issue an evaluate context command and wait on it. 1219 */ 1220 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1221 unsigned int ep_index, struct urb *urb) 1222 { 1223 struct xhci_container_ctx *out_ctx; 1224 struct xhci_input_control_ctx *ctrl_ctx; 1225 struct xhci_ep_ctx *ep_ctx; 1226 struct xhci_command *command; 1227 int max_packet_size; 1228 int hw_max_packet_size; 1229 int ret = 0; 1230 1231 out_ctx = xhci->devs[slot_id]->out_ctx; 1232 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1233 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1234 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1235 if (hw_max_packet_size != max_packet_size) { 1236 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1237 "Max Packet Size for ep 0 changed."); 1238 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1239 "Max packet size in usb_device = %d", 1240 max_packet_size); 1241 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1242 "Max packet size in xHCI HW = %d", 1243 hw_max_packet_size); 1244 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1245 "Issuing evaluate context command."); 1246 1247 /* Set up the input context flags for the command */ 1248 /* FIXME: This won't work if a non-default control endpoint 1249 * changes max packet sizes. 1250 */ 1251 1252 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1253 if (!command) 1254 return -ENOMEM; 1255 1256 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1257 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1258 if (!ctrl_ctx) { 1259 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1260 __func__); 1261 ret = -ENOMEM; 1262 goto command_cleanup; 1263 } 1264 /* Set up the modified control endpoint 0 */ 1265 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1266 xhci->devs[slot_id]->out_ctx, ep_index); 1267 1268 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1269 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1270 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1271 1272 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1273 ctrl_ctx->drop_flags = 0; 1274 1275 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1276 true, false); 1277 1278 /* Clean up the input context for later use by bandwidth 1279 * functions. 1280 */ 1281 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1282 command_cleanup: 1283 kfree(command->completion); 1284 kfree(command); 1285 } 1286 return ret; 1287 } 1288 1289 /* 1290 * non-error returns are a promise to giveback() the urb later 1291 * we drop ownership so next owner (or urb unlink) can get it 1292 */ 1293 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1294 { 1295 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1296 unsigned long flags; 1297 int ret = 0; 1298 unsigned int slot_id, ep_index, ep_state; 1299 struct urb_priv *urb_priv; 1300 int num_tds; 1301 1302 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1303 true, true, __func__) <= 0) 1304 return -EINVAL; 1305 1306 slot_id = urb->dev->slot_id; 1307 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1308 1309 if (!HCD_HW_ACCESSIBLE(hcd)) { 1310 if (!in_interrupt()) 1311 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1312 return -ESHUTDOWN; 1313 } 1314 1315 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1316 num_tds = urb->number_of_packets; 1317 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1318 urb->transfer_buffer_length > 0 && 1319 urb->transfer_flags & URB_ZERO_PACKET && 1320 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1321 num_tds = 2; 1322 else 1323 num_tds = 1; 1324 1325 urb_priv = kzalloc(sizeof(struct urb_priv) + 1326 num_tds * sizeof(struct xhci_td), mem_flags); 1327 if (!urb_priv) 1328 return -ENOMEM; 1329 1330 urb_priv->num_tds = num_tds; 1331 urb_priv->num_tds_done = 0; 1332 urb->hcpriv = urb_priv; 1333 1334 trace_xhci_urb_enqueue(urb); 1335 1336 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1337 /* Check to see if the max packet size for the default control 1338 * endpoint changed during FS device enumeration 1339 */ 1340 if (urb->dev->speed == USB_SPEED_FULL) { 1341 ret = xhci_check_maxpacket(xhci, slot_id, 1342 ep_index, urb); 1343 if (ret < 0) { 1344 xhci_urb_free_priv(urb_priv); 1345 urb->hcpriv = NULL; 1346 return ret; 1347 } 1348 } 1349 } 1350 1351 spin_lock_irqsave(&xhci->lock, flags); 1352 1353 if (xhci->xhc_state & XHCI_STATE_DYING) { 1354 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1355 urb->ep->desc.bEndpointAddress, urb); 1356 ret = -ESHUTDOWN; 1357 goto free_priv; 1358 } 1359 1360 switch (usb_endpoint_type(&urb->ep->desc)) { 1361 1362 case USB_ENDPOINT_XFER_CONTROL: 1363 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1364 slot_id, ep_index); 1365 break; 1366 case USB_ENDPOINT_XFER_BULK: 1367 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1368 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1369 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1370 ep_state); 1371 ret = -EINVAL; 1372 break; 1373 } 1374 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1375 slot_id, ep_index); 1376 break; 1377 1378 1379 case USB_ENDPOINT_XFER_INT: 1380 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1381 slot_id, ep_index); 1382 break; 1383 1384 case USB_ENDPOINT_XFER_ISOC: 1385 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1386 slot_id, ep_index); 1387 } 1388 1389 if (ret) { 1390 free_priv: 1391 xhci_urb_free_priv(urb_priv); 1392 urb->hcpriv = NULL; 1393 } 1394 spin_unlock_irqrestore(&xhci->lock, flags); 1395 return ret; 1396 } 1397 1398 /* 1399 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1400 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1401 * should pick up where it left off in the TD, unless a Set Transfer Ring 1402 * Dequeue Pointer is issued. 1403 * 1404 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1405 * the ring. Since the ring is a contiguous structure, they can't be physically 1406 * removed. Instead, there are two options: 1407 * 1408 * 1) If the HC is in the middle of processing the URB to be canceled, we 1409 * simply move the ring's dequeue pointer past those TRBs using the Set 1410 * Transfer Ring Dequeue Pointer command. This will be the common case, 1411 * when drivers timeout on the last submitted URB and attempt to cancel. 1412 * 1413 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1414 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1415 * HC will need to invalidate the any TRBs it has cached after the stop 1416 * endpoint command, as noted in the xHCI 0.95 errata. 1417 * 1418 * 3) The TD may have completed by the time the Stop Endpoint Command 1419 * completes, so software needs to handle that case too. 1420 * 1421 * This function should protect against the TD enqueueing code ringing the 1422 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1423 * It also needs to account for multiple cancellations on happening at the same 1424 * time for the same endpoint. 1425 * 1426 * Note that this function can be called in any context, or so says 1427 * usb_hcd_unlink_urb() 1428 */ 1429 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1430 { 1431 unsigned long flags; 1432 int ret, i; 1433 u32 temp; 1434 struct xhci_hcd *xhci; 1435 struct urb_priv *urb_priv; 1436 struct xhci_td *td; 1437 unsigned int ep_index; 1438 struct xhci_ring *ep_ring; 1439 struct xhci_virt_ep *ep; 1440 struct xhci_command *command; 1441 struct xhci_virt_device *vdev; 1442 1443 xhci = hcd_to_xhci(hcd); 1444 spin_lock_irqsave(&xhci->lock, flags); 1445 1446 trace_xhci_urb_dequeue(urb); 1447 1448 /* Make sure the URB hasn't completed or been unlinked already */ 1449 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1450 if (ret) 1451 goto done; 1452 1453 /* give back URB now if we can't queue it for cancel */ 1454 vdev = xhci->devs[urb->dev->slot_id]; 1455 urb_priv = urb->hcpriv; 1456 if (!vdev || !urb_priv) 1457 goto err_giveback; 1458 1459 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1460 ep = &vdev->eps[ep_index]; 1461 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1462 if (!ep || !ep_ring) 1463 goto err_giveback; 1464 1465 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1466 temp = readl(&xhci->op_regs->status); 1467 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1468 xhci_hc_died(xhci); 1469 goto done; 1470 } 1471 1472 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1473 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1474 "HC halted, freeing TD manually."); 1475 for (i = urb_priv->num_tds_done; 1476 i < urb_priv->num_tds; 1477 i++) { 1478 td = &urb_priv->td[i]; 1479 if (!list_empty(&td->td_list)) 1480 list_del_init(&td->td_list); 1481 if (!list_empty(&td->cancelled_td_list)) 1482 list_del_init(&td->cancelled_td_list); 1483 } 1484 goto err_giveback; 1485 } 1486 1487 i = urb_priv->num_tds_done; 1488 if (i < urb_priv->num_tds) 1489 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1490 "Cancel URB %p, dev %s, ep 0x%x, " 1491 "starting at offset 0x%llx", 1492 urb, urb->dev->devpath, 1493 urb->ep->desc.bEndpointAddress, 1494 (unsigned long long) xhci_trb_virt_to_dma( 1495 urb_priv->td[i].start_seg, 1496 urb_priv->td[i].first_trb)); 1497 1498 for (; i < urb_priv->num_tds; i++) { 1499 td = &urb_priv->td[i]; 1500 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1501 } 1502 1503 /* Queue a stop endpoint command, but only if this is 1504 * the first cancellation to be handled. 1505 */ 1506 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1507 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1508 if (!command) { 1509 ret = -ENOMEM; 1510 goto done; 1511 } 1512 ep->ep_state |= EP_STOP_CMD_PENDING; 1513 ep->stop_cmd_timer.expires = jiffies + 1514 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1515 add_timer(&ep->stop_cmd_timer); 1516 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1517 ep_index, 0); 1518 xhci_ring_cmd_db(xhci); 1519 } 1520 done: 1521 spin_unlock_irqrestore(&xhci->lock, flags); 1522 return ret; 1523 1524 err_giveback: 1525 if (urb_priv) 1526 xhci_urb_free_priv(urb_priv); 1527 usb_hcd_unlink_urb_from_ep(hcd, urb); 1528 spin_unlock_irqrestore(&xhci->lock, flags); 1529 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1530 return ret; 1531 } 1532 1533 /* Drop an endpoint from a new bandwidth configuration for this device. 1534 * Only one call to this function is allowed per endpoint before 1535 * check_bandwidth() or reset_bandwidth() must be called. 1536 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1537 * add the endpoint to the schedule with possibly new parameters denoted by a 1538 * different endpoint descriptor in usb_host_endpoint. 1539 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1540 * not allowed. 1541 * 1542 * The USB core will not allow URBs to be queued to an endpoint that is being 1543 * disabled, so there's no need for mutual exclusion to protect 1544 * the xhci->devs[slot_id] structure. 1545 */ 1546 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1547 struct usb_host_endpoint *ep) 1548 { 1549 struct xhci_hcd *xhci; 1550 struct xhci_container_ctx *in_ctx, *out_ctx; 1551 struct xhci_input_control_ctx *ctrl_ctx; 1552 unsigned int ep_index; 1553 struct xhci_ep_ctx *ep_ctx; 1554 u32 drop_flag; 1555 u32 new_add_flags, new_drop_flags; 1556 int ret; 1557 1558 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1559 if (ret <= 0) 1560 return ret; 1561 xhci = hcd_to_xhci(hcd); 1562 if (xhci->xhc_state & XHCI_STATE_DYING) 1563 return -ENODEV; 1564 1565 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1566 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1567 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1568 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1569 __func__, drop_flag); 1570 return 0; 1571 } 1572 1573 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1574 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1575 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1576 if (!ctrl_ctx) { 1577 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1578 __func__); 1579 return 0; 1580 } 1581 1582 ep_index = xhci_get_endpoint_index(&ep->desc); 1583 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1584 /* If the HC already knows the endpoint is disabled, 1585 * or the HCD has noted it is disabled, ignore this request 1586 */ 1587 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1588 le32_to_cpu(ctrl_ctx->drop_flags) & 1589 xhci_get_endpoint_flag(&ep->desc)) { 1590 /* Do not warn when called after a usb_device_reset */ 1591 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1592 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1593 __func__, ep); 1594 return 0; 1595 } 1596 1597 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1598 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1599 1600 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1601 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1602 1603 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1604 1605 if (xhci->quirks & XHCI_MTK_HOST) 1606 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1607 1608 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1609 (unsigned int) ep->desc.bEndpointAddress, 1610 udev->slot_id, 1611 (unsigned int) new_drop_flags, 1612 (unsigned int) new_add_flags); 1613 return 0; 1614 } 1615 1616 /* Add an endpoint to a new possible bandwidth configuration for this device. 1617 * Only one call to this function is allowed per endpoint before 1618 * check_bandwidth() or reset_bandwidth() must be called. 1619 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1620 * add the endpoint to the schedule with possibly new parameters denoted by a 1621 * different endpoint descriptor in usb_host_endpoint. 1622 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1623 * not allowed. 1624 * 1625 * The USB core will not allow URBs to be queued to an endpoint until the 1626 * configuration or alt setting is installed in the device, so there's no need 1627 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1628 */ 1629 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1630 struct usb_host_endpoint *ep) 1631 { 1632 struct xhci_hcd *xhci; 1633 struct xhci_container_ctx *in_ctx; 1634 unsigned int ep_index; 1635 struct xhci_input_control_ctx *ctrl_ctx; 1636 u32 added_ctxs; 1637 u32 new_add_flags, new_drop_flags; 1638 struct xhci_virt_device *virt_dev; 1639 int ret = 0; 1640 1641 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1642 if (ret <= 0) { 1643 /* So we won't queue a reset ep command for a root hub */ 1644 ep->hcpriv = NULL; 1645 return ret; 1646 } 1647 xhci = hcd_to_xhci(hcd); 1648 if (xhci->xhc_state & XHCI_STATE_DYING) 1649 return -ENODEV; 1650 1651 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1652 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1653 /* FIXME when we have to issue an evaluate endpoint command to 1654 * deal with ep0 max packet size changing once we get the 1655 * descriptors 1656 */ 1657 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1658 __func__, added_ctxs); 1659 return 0; 1660 } 1661 1662 virt_dev = xhci->devs[udev->slot_id]; 1663 in_ctx = virt_dev->in_ctx; 1664 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1665 if (!ctrl_ctx) { 1666 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1667 __func__); 1668 return 0; 1669 } 1670 1671 ep_index = xhci_get_endpoint_index(&ep->desc); 1672 /* If this endpoint is already in use, and the upper layers are trying 1673 * to add it again without dropping it, reject the addition. 1674 */ 1675 if (virt_dev->eps[ep_index].ring && 1676 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1677 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1678 "without dropping it.\n", 1679 (unsigned int) ep->desc.bEndpointAddress); 1680 return -EINVAL; 1681 } 1682 1683 /* If the HCD has already noted the endpoint is enabled, 1684 * ignore this request. 1685 */ 1686 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1687 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1688 __func__, ep); 1689 return 0; 1690 } 1691 1692 /* 1693 * Configuration and alternate setting changes must be done in 1694 * process context, not interrupt context (or so documenation 1695 * for usb_set_interface() and usb_set_configuration() claim). 1696 */ 1697 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1698 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1699 __func__, ep->desc.bEndpointAddress); 1700 return -ENOMEM; 1701 } 1702 1703 if (xhci->quirks & XHCI_MTK_HOST) { 1704 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1705 if (ret < 0) { 1706 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 1707 virt_dev->eps[ep_index].new_ring = NULL; 1708 return ret; 1709 } 1710 } 1711 1712 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1713 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1714 1715 /* If xhci_endpoint_disable() was called for this endpoint, but the 1716 * xHC hasn't been notified yet through the check_bandwidth() call, 1717 * this re-adds a new state for the endpoint from the new endpoint 1718 * descriptors. We must drop and re-add this endpoint, so we leave the 1719 * drop flags alone. 1720 */ 1721 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1722 1723 /* Store the usb_device pointer for later use */ 1724 ep->hcpriv = udev; 1725 1726 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1727 (unsigned int) ep->desc.bEndpointAddress, 1728 udev->slot_id, 1729 (unsigned int) new_drop_flags, 1730 (unsigned int) new_add_flags); 1731 return 0; 1732 } 1733 1734 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1735 { 1736 struct xhci_input_control_ctx *ctrl_ctx; 1737 struct xhci_ep_ctx *ep_ctx; 1738 struct xhci_slot_ctx *slot_ctx; 1739 int i; 1740 1741 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1742 if (!ctrl_ctx) { 1743 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1744 __func__); 1745 return; 1746 } 1747 1748 /* When a device's add flag and drop flag are zero, any subsequent 1749 * configure endpoint command will leave that endpoint's state 1750 * untouched. Make sure we don't leave any old state in the input 1751 * endpoint contexts. 1752 */ 1753 ctrl_ctx->drop_flags = 0; 1754 ctrl_ctx->add_flags = 0; 1755 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1756 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1757 /* Endpoint 0 is always valid */ 1758 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1759 for (i = 1; i < 31; i++) { 1760 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1761 ep_ctx->ep_info = 0; 1762 ep_ctx->ep_info2 = 0; 1763 ep_ctx->deq = 0; 1764 ep_ctx->tx_info = 0; 1765 } 1766 } 1767 1768 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1769 struct usb_device *udev, u32 *cmd_status) 1770 { 1771 int ret; 1772 1773 switch (*cmd_status) { 1774 case COMP_COMMAND_ABORTED: 1775 case COMP_COMMAND_RING_STOPPED: 1776 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1777 ret = -ETIME; 1778 break; 1779 case COMP_RESOURCE_ERROR: 1780 dev_warn(&udev->dev, 1781 "Not enough host controller resources for new device state.\n"); 1782 ret = -ENOMEM; 1783 /* FIXME: can we allocate more resources for the HC? */ 1784 break; 1785 case COMP_BANDWIDTH_ERROR: 1786 case COMP_SECONDARY_BANDWIDTH_ERROR: 1787 dev_warn(&udev->dev, 1788 "Not enough bandwidth for new device state.\n"); 1789 ret = -ENOSPC; 1790 /* FIXME: can we go back to the old state? */ 1791 break; 1792 case COMP_TRB_ERROR: 1793 /* the HCD set up something wrong */ 1794 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1795 "add flag = 1, " 1796 "and endpoint is not disabled.\n"); 1797 ret = -EINVAL; 1798 break; 1799 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1800 dev_warn(&udev->dev, 1801 "ERROR: Incompatible device for endpoint configure command.\n"); 1802 ret = -ENODEV; 1803 break; 1804 case COMP_SUCCESS: 1805 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1806 "Successful Endpoint Configure command"); 1807 ret = 0; 1808 break; 1809 default: 1810 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1811 *cmd_status); 1812 ret = -EINVAL; 1813 break; 1814 } 1815 return ret; 1816 } 1817 1818 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1819 struct usb_device *udev, u32 *cmd_status) 1820 { 1821 int ret; 1822 1823 switch (*cmd_status) { 1824 case COMP_COMMAND_ABORTED: 1825 case COMP_COMMAND_RING_STOPPED: 1826 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1827 ret = -ETIME; 1828 break; 1829 case COMP_PARAMETER_ERROR: 1830 dev_warn(&udev->dev, 1831 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1832 ret = -EINVAL; 1833 break; 1834 case COMP_SLOT_NOT_ENABLED_ERROR: 1835 dev_warn(&udev->dev, 1836 "WARN: slot not enabled for evaluate context command.\n"); 1837 ret = -EINVAL; 1838 break; 1839 case COMP_CONTEXT_STATE_ERROR: 1840 dev_warn(&udev->dev, 1841 "WARN: invalid context state for evaluate context command.\n"); 1842 ret = -EINVAL; 1843 break; 1844 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1845 dev_warn(&udev->dev, 1846 "ERROR: Incompatible device for evaluate context command.\n"); 1847 ret = -ENODEV; 1848 break; 1849 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1850 /* Max Exit Latency too large error */ 1851 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1852 ret = -EINVAL; 1853 break; 1854 case COMP_SUCCESS: 1855 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1856 "Successful evaluate context command"); 1857 ret = 0; 1858 break; 1859 default: 1860 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1861 *cmd_status); 1862 ret = -EINVAL; 1863 break; 1864 } 1865 return ret; 1866 } 1867 1868 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1869 struct xhci_input_control_ctx *ctrl_ctx) 1870 { 1871 u32 valid_add_flags; 1872 u32 valid_drop_flags; 1873 1874 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1875 * (bit 1). The default control endpoint is added during the Address 1876 * Device command and is never removed until the slot is disabled. 1877 */ 1878 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1879 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1880 1881 /* Use hweight32 to count the number of ones in the add flags, or 1882 * number of endpoints added. Don't count endpoints that are changed 1883 * (both added and dropped). 1884 */ 1885 return hweight32(valid_add_flags) - 1886 hweight32(valid_add_flags & valid_drop_flags); 1887 } 1888 1889 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1890 struct xhci_input_control_ctx *ctrl_ctx) 1891 { 1892 u32 valid_add_flags; 1893 u32 valid_drop_flags; 1894 1895 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1896 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1897 1898 return hweight32(valid_drop_flags) - 1899 hweight32(valid_add_flags & valid_drop_flags); 1900 } 1901 1902 /* 1903 * We need to reserve the new number of endpoints before the configure endpoint 1904 * command completes. We can't subtract the dropped endpoints from the number 1905 * of active endpoints until the command completes because we can oversubscribe 1906 * the host in this case: 1907 * 1908 * - the first configure endpoint command drops more endpoints than it adds 1909 * - a second configure endpoint command that adds more endpoints is queued 1910 * - the first configure endpoint command fails, so the config is unchanged 1911 * - the second command may succeed, even though there isn't enough resources 1912 * 1913 * Must be called with xhci->lock held. 1914 */ 1915 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1916 struct xhci_input_control_ctx *ctrl_ctx) 1917 { 1918 u32 added_eps; 1919 1920 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1921 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1922 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1923 "Not enough ep ctxs: " 1924 "%u active, need to add %u, limit is %u.", 1925 xhci->num_active_eps, added_eps, 1926 xhci->limit_active_eps); 1927 return -ENOMEM; 1928 } 1929 xhci->num_active_eps += added_eps; 1930 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1931 "Adding %u ep ctxs, %u now active.", added_eps, 1932 xhci->num_active_eps); 1933 return 0; 1934 } 1935 1936 /* 1937 * The configure endpoint was failed by the xHC for some other reason, so we 1938 * need to revert the resources that failed configuration would have used. 1939 * 1940 * Must be called with xhci->lock held. 1941 */ 1942 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1943 struct xhci_input_control_ctx *ctrl_ctx) 1944 { 1945 u32 num_failed_eps; 1946 1947 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1948 xhci->num_active_eps -= num_failed_eps; 1949 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1950 "Removing %u failed ep ctxs, %u now active.", 1951 num_failed_eps, 1952 xhci->num_active_eps); 1953 } 1954 1955 /* 1956 * Now that the command has completed, clean up the active endpoint count by 1957 * subtracting out the endpoints that were dropped (but not changed). 1958 * 1959 * Must be called with xhci->lock held. 1960 */ 1961 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1962 struct xhci_input_control_ctx *ctrl_ctx) 1963 { 1964 u32 num_dropped_eps; 1965 1966 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1967 xhci->num_active_eps -= num_dropped_eps; 1968 if (num_dropped_eps) 1969 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1970 "Removing %u dropped ep ctxs, %u now active.", 1971 num_dropped_eps, 1972 xhci->num_active_eps); 1973 } 1974 1975 static unsigned int xhci_get_block_size(struct usb_device *udev) 1976 { 1977 switch (udev->speed) { 1978 case USB_SPEED_LOW: 1979 case USB_SPEED_FULL: 1980 return FS_BLOCK; 1981 case USB_SPEED_HIGH: 1982 return HS_BLOCK; 1983 case USB_SPEED_SUPER: 1984 case USB_SPEED_SUPER_PLUS: 1985 return SS_BLOCK; 1986 case USB_SPEED_UNKNOWN: 1987 case USB_SPEED_WIRELESS: 1988 default: 1989 /* Should never happen */ 1990 return 1; 1991 } 1992 } 1993 1994 static unsigned int 1995 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1996 { 1997 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1998 return LS_OVERHEAD; 1999 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2000 return FS_OVERHEAD; 2001 return HS_OVERHEAD; 2002 } 2003 2004 /* If we are changing a LS/FS device under a HS hub, 2005 * make sure (if we are activating a new TT) that the HS bus has enough 2006 * bandwidth for this new TT. 2007 */ 2008 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2009 struct xhci_virt_device *virt_dev, 2010 int old_active_eps) 2011 { 2012 struct xhci_interval_bw_table *bw_table; 2013 struct xhci_tt_bw_info *tt_info; 2014 2015 /* Find the bandwidth table for the root port this TT is attached to. */ 2016 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2017 tt_info = virt_dev->tt_info; 2018 /* If this TT already had active endpoints, the bandwidth for this TT 2019 * has already been added. Removing all periodic endpoints (and thus 2020 * making the TT enactive) will only decrease the bandwidth used. 2021 */ 2022 if (old_active_eps) 2023 return 0; 2024 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2025 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2026 return -ENOMEM; 2027 return 0; 2028 } 2029 /* Not sure why we would have no new active endpoints... 2030 * 2031 * Maybe because of an Evaluate Context change for a hub update or a 2032 * control endpoint 0 max packet size change? 2033 * FIXME: skip the bandwidth calculation in that case. 2034 */ 2035 return 0; 2036 } 2037 2038 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2039 struct xhci_virt_device *virt_dev) 2040 { 2041 unsigned int bw_reserved; 2042 2043 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2044 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2045 return -ENOMEM; 2046 2047 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2048 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2049 return -ENOMEM; 2050 2051 return 0; 2052 } 2053 2054 /* 2055 * This algorithm is a very conservative estimate of the worst-case scheduling 2056 * scenario for any one interval. The hardware dynamically schedules the 2057 * packets, so we can't tell which microframe could be the limiting factor in 2058 * the bandwidth scheduling. This only takes into account periodic endpoints. 2059 * 2060 * Obviously, we can't solve an NP complete problem to find the minimum worst 2061 * case scenario. Instead, we come up with an estimate that is no less than 2062 * the worst case bandwidth used for any one microframe, but may be an 2063 * over-estimate. 2064 * 2065 * We walk the requirements for each endpoint by interval, starting with the 2066 * smallest interval, and place packets in the schedule where there is only one 2067 * possible way to schedule packets for that interval. In order to simplify 2068 * this algorithm, we record the largest max packet size for each interval, and 2069 * assume all packets will be that size. 2070 * 2071 * For interval 0, we obviously must schedule all packets for each interval. 2072 * The bandwidth for interval 0 is just the amount of data to be transmitted 2073 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2074 * the number of packets). 2075 * 2076 * For interval 1, we have two possible microframes to schedule those packets 2077 * in. For this algorithm, if we can schedule the same number of packets for 2078 * each possible scheduling opportunity (each microframe), we will do so. The 2079 * remaining number of packets will be saved to be transmitted in the gaps in 2080 * the next interval's scheduling sequence. 2081 * 2082 * As we move those remaining packets to be scheduled with interval 2 packets, 2083 * we have to double the number of remaining packets to transmit. This is 2084 * because the intervals are actually powers of 2, and we would be transmitting 2085 * the previous interval's packets twice in this interval. We also have to be 2086 * sure that when we look at the largest max packet size for this interval, we 2087 * also look at the largest max packet size for the remaining packets and take 2088 * the greater of the two. 2089 * 2090 * The algorithm continues to evenly distribute packets in each scheduling 2091 * opportunity, and push the remaining packets out, until we get to the last 2092 * interval. Then those packets and their associated overhead are just added 2093 * to the bandwidth used. 2094 */ 2095 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2096 struct xhci_virt_device *virt_dev, 2097 int old_active_eps) 2098 { 2099 unsigned int bw_reserved; 2100 unsigned int max_bandwidth; 2101 unsigned int bw_used; 2102 unsigned int block_size; 2103 struct xhci_interval_bw_table *bw_table; 2104 unsigned int packet_size = 0; 2105 unsigned int overhead = 0; 2106 unsigned int packets_transmitted = 0; 2107 unsigned int packets_remaining = 0; 2108 unsigned int i; 2109 2110 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2111 return xhci_check_ss_bw(xhci, virt_dev); 2112 2113 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2114 max_bandwidth = HS_BW_LIMIT; 2115 /* Convert percent of bus BW reserved to blocks reserved */ 2116 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2117 } else { 2118 max_bandwidth = FS_BW_LIMIT; 2119 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2120 } 2121 2122 bw_table = virt_dev->bw_table; 2123 /* We need to translate the max packet size and max ESIT payloads into 2124 * the units the hardware uses. 2125 */ 2126 block_size = xhci_get_block_size(virt_dev->udev); 2127 2128 /* If we are manipulating a LS/FS device under a HS hub, double check 2129 * that the HS bus has enough bandwidth if we are activing a new TT. 2130 */ 2131 if (virt_dev->tt_info) { 2132 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2133 "Recalculating BW for rootport %u", 2134 virt_dev->real_port); 2135 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2136 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2137 "newly activated TT.\n"); 2138 return -ENOMEM; 2139 } 2140 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2141 "Recalculating BW for TT slot %u port %u", 2142 virt_dev->tt_info->slot_id, 2143 virt_dev->tt_info->ttport); 2144 } else { 2145 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2146 "Recalculating BW for rootport %u", 2147 virt_dev->real_port); 2148 } 2149 2150 /* Add in how much bandwidth will be used for interval zero, or the 2151 * rounded max ESIT payload + number of packets * largest overhead. 2152 */ 2153 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2154 bw_table->interval_bw[0].num_packets * 2155 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2156 2157 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2158 unsigned int bw_added; 2159 unsigned int largest_mps; 2160 unsigned int interval_overhead; 2161 2162 /* 2163 * How many packets could we transmit in this interval? 2164 * If packets didn't fit in the previous interval, we will need 2165 * to transmit that many packets twice within this interval. 2166 */ 2167 packets_remaining = 2 * packets_remaining + 2168 bw_table->interval_bw[i].num_packets; 2169 2170 /* Find the largest max packet size of this or the previous 2171 * interval. 2172 */ 2173 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2174 largest_mps = 0; 2175 else { 2176 struct xhci_virt_ep *virt_ep; 2177 struct list_head *ep_entry; 2178 2179 ep_entry = bw_table->interval_bw[i].endpoints.next; 2180 virt_ep = list_entry(ep_entry, 2181 struct xhci_virt_ep, bw_endpoint_list); 2182 /* Convert to blocks, rounding up */ 2183 largest_mps = DIV_ROUND_UP( 2184 virt_ep->bw_info.max_packet_size, 2185 block_size); 2186 } 2187 if (largest_mps > packet_size) 2188 packet_size = largest_mps; 2189 2190 /* Use the larger overhead of this or the previous interval. */ 2191 interval_overhead = xhci_get_largest_overhead( 2192 &bw_table->interval_bw[i]); 2193 if (interval_overhead > overhead) 2194 overhead = interval_overhead; 2195 2196 /* How many packets can we evenly distribute across 2197 * (1 << (i + 1)) possible scheduling opportunities? 2198 */ 2199 packets_transmitted = packets_remaining >> (i + 1); 2200 2201 /* Add in the bandwidth used for those scheduled packets */ 2202 bw_added = packets_transmitted * (overhead + packet_size); 2203 2204 /* How many packets do we have remaining to transmit? */ 2205 packets_remaining = packets_remaining % (1 << (i + 1)); 2206 2207 /* What largest max packet size should those packets have? */ 2208 /* If we've transmitted all packets, don't carry over the 2209 * largest packet size. 2210 */ 2211 if (packets_remaining == 0) { 2212 packet_size = 0; 2213 overhead = 0; 2214 } else if (packets_transmitted > 0) { 2215 /* Otherwise if we do have remaining packets, and we've 2216 * scheduled some packets in this interval, take the 2217 * largest max packet size from endpoints with this 2218 * interval. 2219 */ 2220 packet_size = largest_mps; 2221 overhead = interval_overhead; 2222 } 2223 /* Otherwise carry over packet_size and overhead from the last 2224 * time we had a remainder. 2225 */ 2226 bw_used += bw_added; 2227 if (bw_used > max_bandwidth) { 2228 xhci_warn(xhci, "Not enough bandwidth. " 2229 "Proposed: %u, Max: %u\n", 2230 bw_used, max_bandwidth); 2231 return -ENOMEM; 2232 } 2233 } 2234 /* 2235 * Ok, we know we have some packets left over after even-handedly 2236 * scheduling interval 15. We don't know which microframes they will 2237 * fit into, so we over-schedule and say they will be scheduled every 2238 * microframe. 2239 */ 2240 if (packets_remaining > 0) 2241 bw_used += overhead + packet_size; 2242 2243 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2244 unsigned int port_index = virt_dev->real_port - 1; 2245 2246 /* OK, we're manipulating a HS device attached to a 2247 * root port bandwidth domain. Include the number of active TTs 2248 * in the bandwidth used. 2249 */ 2250 bw_used += TT_HS_OVERHEAD * 2251 xhci->rh_bw[port_index].num_active_tts; 2252 } 2253 2254 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2255 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2256 "Available: %u " "percent", 2257 bw_used, max_bandwidth, bw_reserved, 2258 (max_bandwidth - bw_used - bw_reserved) * 100 / 2259 max_bandwidth); 2260 2261 bw_used += bw_reserved; 2262 if (bw_used > max_bandwidth) { 2263 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2264 bw_used, max_bandwidth); 2265 return -ENOMEM; 2266 } 2267 2268 bw_table->bw_used = bw_used; 2269 return 0; 2270 } 2271 2272 static bool xhci_is_async_ep(unsigned int ep_type) 2273 { 2274 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2275 ep_type != ISOC_IN_EP && 2276 ep_type != INT_IN_EP); 2277 } 2278 2279 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2280 { 2281 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2282 } 2283 2284 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2285 { 2286 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2287 2288 if (ep_bw->ep_interval == 0) 2289 return SS_OVERHEAD_BURST + 2290 (ep_bw->mult * ep_bw->num_packets * 2291 (SS_OVERHEAD + mps)); 2292 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2293 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2294 1 << ep_bw->ep_interval); 2295 2296 } 2297 2298 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2299 struct xhci_bw_info *ep_bw, 2300 struct xhci_interval_bw_table *bw_table, 2301 struct usb_device *udev, 2302 struct xhci_virt_ep *virt_ep, 2303 struct xhci_tt_bw_info *tt_info) 2304 { 2305 struct xhci_interval_bw *interval_bw; 2306 int normalized_interval; 2307 2308 if (xhci_is_async_ep(ep_bw->type)) 2309 return; 2310 2311 if (udev->speed >= USB_SPEED_SUPER) { 2312 if (xhci_is_sync_in_ep(ep_bw->type)) 2313 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2314 xhci_get_ss_bw_consumed(ep_bw); 2315 else 2316 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2317 xhci_get_ss_bw_consumed(ep_bw); 2318 return; 2319 } 2320 2321 /* SuperSpeed endpoints never get added to intervals in the table, so 2322 * this check is only valid for HS/FS/LS devices. 2323 */ 2324 if (list_empty(&virt_ep->bw_endpoint_list)) 2325 return; 2326 /* For LS/FS devices, we need to translate the interval expressed in 2327 * microframes to frames. 2328 */ 2329 if (udev->speed == USB_SPEED_HIGH) 2330 normalized_interval = ep_bw->ep_interval; 2331 else 2332 normalized_interval = ep_bw->ep_interval - 3; 2333 2334 if (normalized_interval == 0) 2335 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2336 interval_bw = &bw_table->interval_bw[normalized_interval]; 2337 interval_bw->num_packets -= ep_bw->num_packets; 2338 switch (udev->speed) { 2339 case USB_SPEED_LOW: 2340 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2341 break; 2342 case USB_SPEED_FULL: 2343 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2344 break; 2345 case USB_SPEED_HIGH: 2346 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2347 break; 2348 case USB_SPEED_SUPER: 2349 case USB_SPEED_SUPER_PLUS: 2350 case USB_SPEED_UNKNOWN: 2351 case USB_SPEED_WIRELESS: 2352 /* Should never happen because only LS/FS/HS endpoints will get 2353 * added to the endpoint list. 2354 */ 2355 return; 2356 } 2357 if (tt_info) 2358 tt_info->active_eps -= 1; 2359 list_del_init(&virt_ep->bw_endpoint_list); 2360 } 2361 2362 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2363 struct xhci_bw_info *ep_bw, 2364 struct xhci_interval_bw_table *bw_table, 2365 struct usb_device *udev, 2366 struct xhci_virt_ep *virt_ep, 2367 struct xhci_tt_bw_info *tt_info) 2368 { 2369 struct xhci_interval_bw *interval_bw; 2370 struct xhci_virt_ep *smaller_ep; 2371 int normalized_interval; 2372 2373 if (xhci_is_async_ep(ep_bw->type)) 2374 return; 2375 2376 if (udev->speed == USB_SPEED_SUPER) { 2377 if (xhci_is_sync_in_ep(ep_bw->type)) 2378 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2379 xhci_get_ss_bw_consumed(ep_bw); 2380 else 2381 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2382 xhci_get_ss_bw_consumed(ep_bw); 2383 return; 2384 } 2385 2386 /* For LS/FS devices, we need to translate the interval expressed in 2387 * microframes to frames. 2388 */ 2389 if (udev->speed == USB_SPEED_HIGH) 2390 normalized_interval = ep_bw->ep_interval; 2391 else 2392 normalized_interval = ep_bw->ep_interval - 3; 2393 2394 if (normalized_interval == 0) 2395 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2396 interval_bw = &bw_table->interval_bw[normalized_interval]; 2397 interval_bw->num_packets += ep_bw->num_packets; 2398 switch (udev->speed) { 2399 case USB_SPEED_LOW: 2400 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2401 break; 2402 case USB_SPEED_FULL: 2403 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2404 break; 2405 case USB_SPEED_HIGH: 2406 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2407 break; 2408 case USB_SPEED_SUPER: 2409 case USB_SPEED_SUPER_PLUS: 2410 case USB_SPEED_UNKNOWN: 2411 case USB_SPEED_WIRELESS: 2412 /* Should never happen because only LS/FS/HS endpoints will get 2413 * added to the endpoint list. 2414 */ 2415 return; 2416 } 2417 2418 if (tt_info) 2419 tt_info->active_eps += 1; 2420 /* Insert the endpoint into the list, largest max packet size first. */ 2421 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2422 bw_endpoint_list) { 2423 if (ep_bw->max_packet_size >= 2424 smaller_ep->bw_info.max_packet_size) { 2425 /* Add the new ep before the smaller endpoint */ 2426 list_add_tail(&virt_ep->bw_endpoint_list, 2427 &smaller_ep->bw_endpoint_list); 2428 return; 2429 } 2430 } 2431 /* Add the new endpoint at the end of the list. */ 2432 list_add_tail(&virt_ep->bw_endpoint_list, 2433 &interval_bw->endpoints); 2434 } 2435 2436 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2437 struct xhci_virt_device *virt_dev, 2438 int old_active_eps) 2439 { 2440 struct xhci_root_port_bw_info *rh_bw_info; 2441 if (!virt_dev->tt_info) 2442 return; 2443 2444 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2445 if (old_active_eps == 0 && 2446 virt_dev->tt_info->active_eps != 0) { 2447 rh_bw_info->num_active_tts += 1; 2448 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2449 } else if (old_active_eps != 0 && 2450 virt_dev->tt_info->active_eps == 0) { 2451 rh_bw_info->num_active_tts -= 1; 2452 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2453 } 2454 } 2455 2456 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2457 struct xhci_virt_device *virt_dev, 2458 struct xhci_container_ctx *in_ctx) 2459 { 2460 struct xhci_bw_info ep_bw_info[31]; 2461 int i; 2462 struct xhci_input_control_ctx *ctrl_ctx; 2463 int old_active_eps = 0; 2464 2465 if (virt_dev->tt_info) 2466 old_active_eps = virt_dev->tt_info->active_eps; 2467 2468 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2469 if (!ctrl_ctx) { 2470 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2471 __func__); 2472 return -ENOMEM; 2473 } 2474 2475 for (i = 0; i < 31; i++) { 2476 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2477 continue; 2478 2479 /* Make a copy of the BW info in case we need to revert this */ 2480 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2481 sizeof(ep_bw_info[i])); 2482 /* Drop the endpoint from the interval table if the endpoint is 2483 * being dropped or changed. 2484 */ 2485 if (EP_IS_DROPPED(ctrl_ctx, i)) 2486 xhci_drop_ep_from_interval_table(xhci, 2487 &virt_dev->eps[i].bw_info, 2488 virt_dev->bw_table, 2489 virt_dev->udev, 2490 &virt_dev->eps[i], 2491 virt_dev->tt_info); 2492 } 2493 /* Overwrite the information stored in the endpoints' bw_info */ 2494 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2495 for (i = 0; i < 31; i++) { 2496 /* Add any changed or added endpoints to the interval table */ 2497 if (EP_IS_ADDED(ctrl_ctx, i)) 2498 xhci_add_ep_to_interval_table(xhci, 2499 &virt_dev->eps[i].bw_info, 2500 virt_dev->bw_table, 2501 virt_dev->udev, 2502 &virt_dev->eps[i], 2503 virt_dev->tt_info); 2504 } 2505 2506 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2507 /* Ok, this fits in the bandwidth we have. 2508 * Update the number of active TTs. 2509 */ 2510 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2511 return 0; 2512 } 2513 2514 /* We don't have enough bandwidth for this, revert the stored info. */ 2515 for (i = 0; i < 31; i++) { 2516 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2517 continue; 2518 2519 /* Drop the new copies of any added or changed endpoints from 2520 * the interval table. 2521 */ 2522 if (EP_IS_ADDED(ctrl_ctx, i)) { 2523 xhci_drop_ep_from_interval_table(xhci, 2524 &virt_dev->eps[i].bw_info, 2525 virt_dev->bw_table, 2526 virt_dev->udev, 2527 &virt_dev->eps[i], 2528 virt_dev->tt_info); 2529 } 2530 /* Revert the endpoint back to its old information */ 2531 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2532 sizeof(ep_bw_info[i])); 2533 /* Add any changed or dropped endpoints back into the table */ 2534 if (EP_IS_DROPPED(ctrl_ctx, i)) 2535 xhci_add_ep_to_interval_table(xhci, 2536 &virt_dev->eps[i].bw_info, 2537 virt_dev->bw_table, 2538 virt_dev->udev, 2539 &virt_dev->eps[i], 2540 virt_dev->tt_info); 2541 } 2542 return -ENOMEM; 2543 } 2544 2545 2546 /* Issue a configure endpoint command or evaluate context command 2547 * and wait for it to finish. 2548 */ 2549 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2550 struct usb_device *udev, 2551 struct xhci_command *command, 2552 bool ctx_change, bool must_succeed) 2553 { 2554 int ret; 2555 unsigned long flags; 2556 struct xhci_input_control_ctx *ctrl_ctx; 2557 struct xhci_virt_device *virt_dev; 2558 2559 if (!command) 2560 return -EINVAL; 2561 2562 spin_lock_irqsave(&xhci->lock, flags); 2563 2564 if (xhci->xhc_state & XHCI_STATE_DYING) { 2565 spin_unlock_irqrestore(&xhci->lock, flags); 2566 return -ESHUTDOWN; 2567 } 2568 2569 virt_dev = xhci->devs[udev->slot_id]; 2570 2571 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2572 if (!ctrl_ctx) { 2573 spin_unlock_irqrestore(&xhci->lock, flags); 2574 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2575 __func__); 2576 return -ENOMEM; 2577 } 2578 2579 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2580 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2581 spin_unlock_irqrestore(&xhci->lock, flags); 2582 xhci_warn(xhci, "Not enough host resources, " 2583 "active endpoint contexts = %u\n", 2584 xhci->num_active_eps); 2585 return -ENOMEM; 2586 } 2587 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2588 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2589 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2590 xhci_free_host_resources(xhci, ctrl_ctx); 2591 spin_unlock_irqrestore(&xhci->lock, flags); 2592 xhci_warn(xhci, "Not enough bandwidth\n"); 2593 return -ENOMEM; 2594 } 2595 2596 if (!ctx_change) 2597 ret = xhci_queue_configure_endpoint(xhci, command, 2598 command->in_ctx->dma, 2599 udev->slot_id, must_succeed); 2600 else 2601 ret = xhci_queue_evaluate_context(xhci, command, 2602 command->in_ctx->dma, 2603 udev->slot_id, must_succeed); 2604 if (ret < 0) { 2605 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2606 xhci_free_host_resources(xhci, ctrl_ctx); 2607 spin_unlock_irqrestore(&xhci->lock, flags); 2608 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2609 "FIXME allocate a new ring segment"); 2610 return -ENOMEM; 2611 } 2612 xhci_ring_cmd_db(xhci); 2613 spin_unlock_irqrestore(&xhci->lock, flags); 2614 2615 /* Wait for the configure endpoint command to complete */ 2616 wait_for_completion(command->completion); 2617 2618 if (!ctx_change) 2619 ret = xhci_configure_endpoint_result(xhci, udev, 2620 &command->status); 2621 else 2622 ret = xhci_evaluate_context_result(xhci, udev, 2623 &command->status); 2624 2625 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2626 spin_lock_irqsave(&xhci->lock, flags); 2627 /* If the command failed, remove the reserved resources. 2628 * Otherwise, clean up the estimate to include dropped eps. 2629 */ 2630 if (ret) 2631 xhci_free_host_resources(xhci, ctrl_ctx); 2632 else 2633 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2634 spin_unlock_irqrestore(&xhci->lock, flags); 2635 } 2636 return ret; 2637 } 2638 2639 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2640 struct xhci_virt_device *vdev, int i) 2641 { 2642 struct xhci_virt_ep *ep = &vdev->eps[i]; 2643 2644 if (ep->ep_state & EP_HAS_STREAMS) { 2645 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2646 xhci_get_endpoint_address(i)); 2647 xhci_free_stream_info(xhci, ep->stream_info); 2648 ep->stream_info = NULL; 2649 ep->ep_state &= ~EP_HAS_STREAMS; 2650 } 2651 } 2652 2653 /* Called after one or more calls to xhci_add_endpoint() or 2654 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2655 * to call xhci_reset_bandwidth(). 2656 * 2657 * Since we are in the middle of changing either configuration or 2658 * installing a new alt setting, the USB core won't allow URBs to be 2659 * enqueued for any endpoint on the old config or interface. Nothing 2660 * else should be touching the xhci->devs[slot_id] structure, so we 2661 * don't need to take the xhci->lock for manipulating that. 2662 */ 2663 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2664 { 2665 int i; 2666 int ret = 0; 2667 struct xhci_hcd *xhci; 2668 struct xhci_virt_device *virt_dev; 2669 struct xhci_input_control_ctx *ctrl_ctx; 2670 struct xhci_slot_ctx *slot_ctx; 2671 struct xhci_command *command; 2672 2673 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2674 if (ret <= 0) 2675 return ret; 2676 xhci = hcd_to_xhci(hcd); 2677 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2678 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2679 return -ENODEV; 2680 2681 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2682 virt_dev = xhci->devs[udev->slot_id]; 2683 2684 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2685 if (!command) 2686 return -ENOMEM; 2687 2688 command->in_ctx = virt_dev->in_ctx; 2689 2690 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2691 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2692 if (!ctrl_ctx) { 2693 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2694 __func__); 2695 ret = -ENOMEM; 2696 goto command_cleanup; 2697 } 2698 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2699 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2700 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2701 2702 /* Don't issue the command if there's no endpoints to update. */ 2703 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2704 ctrl_ctx->drop_flags == 0) { 2705 ret = 0; 2706 goto command_cleanup; 2707 } 2708 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2709 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2710 for (i = 31; i >= 1; i--) { 2711 __le32 le32 = cpu_to_le32(BIT(i)); 2712 2713 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2714 || (ctrl_ctx->add_flags & le32) || i == 1) { 2715 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2716 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2717 break; 2718 } 2719 } 2720 2721 ret = xhci_configure_endpoint(xhci, udev, command, 2722 false, false); 2723 if (ret) 2724 /* Callee should call reset_bandwidth() */ 2725 goto command_cleanup; 2726 2727 /* Free any rings that were dropped, but not changed. */ 2728 for (i = 1; i < 31; i++) { 2729 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2730 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2731 xhci_free_endpoint_ring(xhci, virt_dev, i); 2732 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2733 } 2734 } 2735 xhci_zero_in_ctx(xhci, virt_dev); 2736 /* 2737 * Install any rings for completely new endpoints or changed endpoints, 2738 * and free any old rings from changed endpoints. 2739 */ 2740 for (i = 1; i < 31; i++) { 2741 if (!virt_dev->eps[i].new_ring) 2742 continue; 2743 /* Only free the old ring if it exists. 2744 * It may not if this is the first add of an endpoint. 2745 */ 2746 if (virt_dev->eps[i].ring) { 2747 xhci_free_endpoint_ring(xhci, virt_dev, i); 2748 } 2749 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2750 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2751 virt_dev->eps[i].new_ring = NULL; 2752 } 2753 command_cleanup: 2754 kfree(command->completion); 2755 kfree(command); 2756 2757 return ret; 2758 } 2759 2760 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2761 { 2762 struct xhci_hcd *xhci; 2763 struct xhci_virt_device *virt_dev; 2764 int i, ret; 2765 2766 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2767 if (ret <= 0) 2768 return; 2769 xhci = hcd_to_xhci(hcd); 2770 2771 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2772 virt_dev = xhci->devs[udev->slot_id]; 2773 /* Free any rings allocated for added endpoints */ 2774 for (i = 0; i < 31; i++) { 2775 if (virt_dev->eps[i].new_ring) { 2776 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2777 virt_dev->eps[i].new_ring = NULL; 2778 } 2779 } 2780 xhci_zero_in_ctx(xhci, virt_dev); 2781 } 2782 2783 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2784 struct xhci_container_ctx *in_ctx, 2785 struct xhci_container_ctx *out_ctx, 2786 struct xhci_input_control_ctx *ctrl_ctx, 2787 u32 add_flags, u32 drop_flags) 2788 { 2789 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2790 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2791 xhci_slot_copy(xhci, in_ctx, out_ctx); 2792 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2793 } 2794 2795 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2796 unsigned int slot_id, unsigned int ep_index, 2797 struct xhci_dequeue_state *deq_state) 2798 { 2799 struct xhci_input_control_ctx *ctrl_ctx; 2800 struct xhci_container_ctx *in_ctx; 2801 struct xhci_ep_ctx *ep_ctx; 2802 u32 added_ctxs; 2803 dma_addr_t addr; 2804 2805 in_ctx = xhci->devs[slot_id]->in_ctx; 2806 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2807 if (!ctrl_ctx) { 2808 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2809 __func__); 2810 return; 2811 } 2812 2813 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2814 xhci->devs[slot_id]->out_ctx, ep_index); 2815 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2816 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2817 deq_state->new_deq_ptr); 2818 if (addr == 0) { 2819 xhci_warn(xhci, "WARN Cannot submit config ep after " 2820 "reset ep command\n"); 2821 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2822 deq_state->new_deq_seg, 2823 deq_state->new_deq_ptr); 2824 return; 2825 } 2826 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2827 2828 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2829 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2830 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2831 added_ctxs, added_ctxs); 2832 } 2833 2834 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 2835 unsigned int stream_id, struct xhci_td *td) 2836 { 2837 struct xhci_dequeue_state deq_state; 2838 struct xhci_virt_ep *ep; 2839 struct usb_device *udev = td->urb->dev; 2840 2841 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2842 "Cleaning up stalled endpoint ring"); 2843 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2844 /* We need to move the HW's dequeue pointer past this TD, 2845 * or it will attempt to resend it on the next doorbell ring. 2846 */ 2847 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2848 ep_index, stream_id, td, &deq_state); 2849 2850 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2851 return; 2852 2853 /* HW with the reset endpoint quirk will use the saved dequeue state to 2854 * issue a configure endpoint command later. 2855 */ 2856 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2857 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2858 "Queueing new dequeue state"); 2859 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2860 ep_index, &deq_state); 2861 } else { 2862 /* Better hope no one uses the input context between now and the 2863 * reset endpoint completion! 2864 * XXX: No idea how this hardware will react when stream rings 2865 * are enabled. 2866 */ 2867 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2868 "Setting up input context for " 2869 "configure endpoint command"); 2870 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2871 ep_index, &deq_state); 2872 } 2873 } 2874 2875 /* Called when clearing halted device. The core should have sent the control 2876 * message to clear the device halt condition. The host side of the halt should 2877 * already be cleared with a reset endpoint command issued when the STALL tx 2878 * event was received. 2879 * 2880 * Context: in_interrupt 2881 */ 2882 2883 static void xhci_endpoint_reset(struct usb_hcd *hcd, 2884 struct usb_host_endpoint *ep) 2885 { 2886 struct xhci_hcd *xhci; 2887 2888 xhci = hcd_to_xhci(hcd); 2889 2890 /* 2891 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2892 * The Reset Endpoint Command may only be issued to endpoints in the 2893 * Halted state. If software wishes reset the Data Toggle or Sequence 2894 * Number of an endpoint that isn't in the Halted state, then software 2895 * may issue a Configure Endpoint Command with the Drop and Add bits set 2896 * for the target endpoint. that is in the Stopped state. 2897 */ 2898 2899 /* For now just print debug to follow the situation */ 2900 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2901 ep->desc.bEndpointAddress); 2902 } 2903 2904 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2905 struct usb_device *udev, struct usb_host_endpoint *ep, 2906 unsigned int slot_id) 2907 { 2908 int ret; 2909 unsigned int ep_index; 2910 unsigned int ep_state; 2911 2912 if (!ep) 2913 return -EINVAL; 2914 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2915 if (ret <= 0) 2916 return -EINVAL; 2917 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2918 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2919 " descriptor for ep 0x%x does not support streams\n", 2920 ep->desc.bEndpointAddress); 2921 return -EINVAL; 2922 } 2923 2924 ep_index = xhci_get_endpoint_index(&ep->desc); 2925 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2926 if (ep_state & EP_HAS_STREAMS || 2927 ep_state & EP_GETTING_STREAMS) { 2928 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2929 "already has streams set up.\n", 2930 ep->desc.bEndpointAddress); 2931 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2932 "dynamic stream context array reallocation.\n"); 2933 return -EINVAL; 2934 } 2935 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2936 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2937 "endpoint 0x%x; URBs are pending.\n", 2938 ep->desc.bEndpointAddress); 2939 return -EINVAL; 2940 } 2941 return 0; 2942 } 2943 2944 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2945 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2946 { 2947 unsigned int max_streams; 2948 2949 /* The stream context array size must be a power of two */ 2950 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2951 /* 2952 * Find out how many primary stream array entries the host controller 2953 * supports. Later we may use secondary stream arrays (similar to 2nd 2954 * level page entries), but that's an optional feature for xHCI host 2955 * controllers. xHCs must support at least 4 stream IDs. 2956 */ 2957 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2958 if (*num_stream_ctxs > max_streams) { 2959 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2960 max_streams); 2961 *num_stream_ctxs = max_streams; 2962 *num_streams = max_streams; 2963 } 2964 } 2965 2966 /* Returns an error code if one of the endpoint already has streams. 2967 * This does not change any data structures, it only checks and gathers 2968 * information. 2969 */ 2970 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2971 struct usb_device *udev, 2972 struct usb_host_endpoint **eps, unsigned int num_eps, 2973 unsigned int *num_streams, u32 *changed_ep_bitmask) 2974 { 2975 unsigned int max_streams; 2976 unsigned int endpoint_flag; 2977 int i; 2978 int ret; 2979 2980 for (i = 0; i < num_eps; i++) { 2981 ret = xhci_check_streams_endpoint(xhci, udev, 2982 eps[i], udev->slot_id); 2983 if (ret < 0) 2984 return ret; 2985 2986 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2987 if (max_streams < (*num_streams - 1)) { 2988 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2989 eps[i]->desc.bEndpointAddress, 2990 max_streams); 2991 *num_streams = max_streams+1; 2992 } 2993 2994 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2995 if (*changed_ep_bitmask & endpoint_flag) 2996 return -EINVAL; 2997 *changed_ep_bitmask |= endpoint_flag; 2998 } 2999 return 0; 3000 } 3001 3002 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3003 struct usb_device *udev, 3004 struct usb_host_endpoint **eps, unsigned int num_eps) 3005 { 3006 u32 changed_ep_bitmask = 0; 3007 unsigned int slot_id; 3008 unsigned int ep_index; 3009 unsigned int ep_state; 3010 int i; 3011 3012 slot_id = udev->slot_id; 3013 if (!xhci->devs[slot_id]) 3014 return 0; 3015 3016 for (i = 0; i < num_eps; i++) { 3017 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3018 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3019 /* Are streams already being freed for the endpoint? */ 3020 if (ep_state & EP_GETTING_NO_STREAMS) { 3021 xhci_warn(xhci, "WARN Can't disable streams for " 3022 "endpoint 0x%x, " 3023 "streams are being disabled already\n", 3024 eps[i]->desc.bEndpointAddress); 3025 return 0; 3026 } 3027 /* Are there actually any streams to free? */ 3028 if (!(ep_state & EP_HAS_STREAMS) && 3029 !(ep_state & EP_GETTING_STREAMS)) { 3030 xhci_warn(xhci, "WARN Can't disable streams for " 3031 "endpoint 0x%x, " 3032 "streams are already disabled!\n", 3033 eps[i]->desc.bEndpointAddress); 3034 xhci_warn(xhci, "WARN xhci_free_streams() called " 3035 "with non-streams endpoint\n"); 3036 return 0; 3037 } 3038 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3039 } 3040 return changed_ep_bitmask; 3041 } 3042 3043 /* 3044 * The USB device drivers use this function (through the HCD interface in USB 3045 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3046 * coordinate mass storage command queueing across multiple endpoints (basically 3047 * a stream ID == a task ID). 3048 * 3049 * Setting up streams involves allocating the same size stream context array 3050 * for each endpoint and issuing a configure endpoint command for all endpoints. 3051 * 3052 * Don't allow the call to succeed if one endpoint only supports one stream 3053 * (which means it doesn't support streams at all). 3054 * 3055 * Drivers may get less stream IDs than they asked for, if the host controller 3056 * hardware or endpoints claim they can't support the number of requested 3057 * stream IDs. 3058 */ 3059 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3060 struct usb_host_endpoint **eps, unsigned int num_eps, 3061 unsigned int num_streams, gfp_t mem_flags) 3062 { 3063 int i, ret; 3064 struct xhci_hcd *xhci; 3065 struct xhci_virt_device *vdev; 3066 struct xhci_command *config_cmd; 3067 struct xhci_input_control_ctx *ctrl_ctx; 3068 unsigned int ep_index; 3069 unsigned int num_stream_ctxs; 3070 unsigned int max_packet; 3071 unsigned long flags; 3072 u32 changed_ep_bitmask = 0; 3073 3074 if (!eps) 3075 return -EINVAL; 3076 3077 /* Add one to the number of streams requested to account for 3078 * stream 0 that is reserved for xHCI usage. 3079 */ 3080 num_streams += 1; 3081 xhci = hcd_to_xhci(hcd); 3082 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3083 num_streams); 3084 3085 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3086 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3087 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3088 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3089 return -ENOSYS; 3090 } 3091 3092 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3093 if (!config_cmd) 3094 return -ENOMEM; 3095 3096 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3097 if (!ctrl_ctx) { 3098 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3099 __func__); 3100 xhci_free_command(xhci, config_cmd); 3101 return -ENOMEM; 3102 } 3103 3104 /* Check to make sure all endpoints are not already configured for 3105 * streams. While we're at it, find the maximum number of streams that 3106 * all the endpoints will support and check for duplicate endpoints. 3107 */ 3108 spin_lock_irqsave(&xhci->lock, flags); 3109 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3110 num_eps, &num_streams, &changed_ep_bitmask); 3111 if (ret < 0) { 3112 xhci_free_command(xhci, config_cmd); 3113 spin_unlock_irqrestore(&xhci->lock, flags); 3114 return ret; 3115 } 3116 if (num_streams <= 1) { 3117 xhci_warn(xhci, "WARN: endpoints can't handle " 3118 "more than one stream.\n"); 3119 xhci_free_command(xhci, config_cmd); 3120 spin_unlock_irqrestore(&xhci->lock, flags); 3121 return -EINVAL; 3122 } 3123 vdev = xhci->devs[udev->slot_id]; 3124 /* Mark each endpoint as being in transition, so 3125 * xhci_urb_enqueue() will reject all URBs. 3126 */ 3127 for (i = 0; i < num_eps; i++) { 3128 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3129 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3130 } 3131 spin_unlock_irqrestore(&xhci->lock, flags); 3132 3133 /* Setup internal data structures and allocate HW data structures for 3134 * streams (but don't install the HW structures in the input context 3135 * until we're sure all memory allocation succeeded). 3136 */ 3137 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3138 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3139 num_stream_ctxs, num_streams); 3140 3141 for (i = 0; i < num_eps; i++) { 3142 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3143 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3144 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3145 num_stream_ctxs, 3146 num_streams, 3147 max_packet, mem_flags); 3148 if (!vdev->eps[ep_index].stream_info) 3149 goto cleanup; 3150 /* Set maxPstreams in endpoint context and update deq ptr to 3151 * point to stream context array. FIXME 3152 */ 3153 } 3154 3155 /* Set up the input context for a configure endpoint command. */ 3156 for (i = 0; i < num_eps; i++) { 3157 struct xhci_ep_ctx *ep_ctx; 3158 3159 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3160 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3161 3162 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3163 vdev->out_ctx, ep_index); 3164 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3165 vdev->eps[ep_index].stream_info); 3166 } 3167 /* Tell the HW to drop its old copy of the endpoint context info 3168 * and add the updated copy from the input context. 3169 */ 3170 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3171 vdev->out_ctx, ctrl_ctx, 3172 changed_ep_bitmask, changed_ep_bitmask); 3173 3174 /* Issue and wait for the configure endpoint command */ 3175 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3176 false, false); 3177 3178 /* xHC rejected the configure endpoint command for some reason, so we 3179 * leave the old ring intact and free our internal streams data 3180 * structure. 3181 */ 3182 if (ret < 0) 3183 goto cleanup; 3184 3185 spin_lock_irqsave(&xhci->lock, flags); 3186 for (i = 0; i < num_eps; i++) { 3187 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3188 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3189 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3190 udev->slot_id, ep_index); 3191 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3192 } 3193 xhci_free_command(xhci, config_cmd); 3194 spin_unlock_irqrestore(&xhci->lock, flags); 3195 3196 /* Subtract 1 for stream 0, which drivers can't use */ 3197 return num_streams - 1; 3198 3199 cleanup: 3200 /* If it didn't work, free the streams! */ 3201 for (i = 0; i < num_eps; i++) { 3202 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3203 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3204 vdev->eps[ep_index].stream_info = NULL; 3205 /* FIXME Unset maxPstreams in endpoint context and 3206 * update deq ptr to point to normal string ring. 3207 */ 3208 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3209 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3210 xhci_endpoint_zero(xhci, vdev, eps[i]); 3211 } 3212 xhci_free_command(xhci, config_cmd); 3213 return -ENOMEM; 3214 } 3215 3216 /* Transition the endpoint from using streams to being a "normal" endpoint 3217 * without streams. 3218 * 3219 * Modify the endpoint context state, submit a configure endpoint command, 3220 * and free all endpoint rings for streams if that completes successfully. 3221 */ 3222 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3223 struct usb_host_endpoint **eps, unsigned int num_eps, 3224 gfp_t mem_flags) 3225 { 3226 int i, ret; 3227 struct xhci_hcd *xhci; 3228 struct xhci_virt_device *vdev; 3229 struct xhci_command *command; 3230 struct xhci_input_control_ctx *ctrl_ctx; 3231 unsigned int ep_index; 3232 unsigned long flags; 3233 u32 changed_ep_bitmask; 3234 3235 xhci = hcd_to_xhci(hcd); 3236 vdev = xhci->devs[udev->slot_id]; 3237 3238 /* Set up a configure endpoint command to remove the streams rings */ 3239 spin_lock_irqsave(&xhci->lock, flags); 3240 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3241 udev, eps, num_eps); 3242 if (changed_ep_bitmask == 0) { 3243 spin_unlock_irqrestore(&xhci->lock, flags); 3244 return -EINVAL; 3245 } 3246 3247 /* Use the xhci_command structure from the first endpoint. We may have 3248 * allocated too many, but the driver may call xhci_free_streams() for 3249 * each endpoint it grouped into one call to xhci_alloc_streams(). 3250 */ 3251 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3252 command = vdev->eps[ep_index].stream_info->free_streams_command; 3253 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3254 if (!ctrl_ctx) { 3255 spin_unlock_irqrestore(&xhci->lock, flags); 3256 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3257 __func__); 3258 return -EINVAL; 3259 } 3260 3261 for (i = 0; i < num_eps; i++) { 3262 struct xhci_ep_ctx *ep_ctx; 3263 3264 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3265 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3266 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3267 EP_GETTING_NO_STREAMS; 3268 3269 xhci_endpoint_copy(xhci, command->in_ctx, 3270 vdev->out_ctx, ep_index); 3271 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3272 &vdev->eps[ep_index]); 3273 } 3274 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3275 vdev->out_ctx, ctrl_ctx, 3276 changed_ep_bitmask, changed_ep_bitmask); 3277 spin_unlock_irqrestore(&xhci->lock, flags); 3278 3279 /* Issue and wait for the configure endpoint command, 3280 * which must succeed. 3281 */ 3282 ret = xhci_configure_endpoint(xhci, udev, command, 3283 false, true); 3284 3285 /* xHC rejected the configure endpoint command for some reason, so we 3286 * leave the streams rings intact. 3287 */ 3288 if (ret < 0) 3289 return ret; 3290 3291 spin_lock_irqsave(&xhci->lock, flags); 3292 for (i = 0; i < num_eps; i++) { 3293 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3294 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3295 vdev->eps[ep_index].stream_info = NULL; 3296 /* FIXME Unset maxPstreams in endpoint context and 3297 * update deq ptr to point to normal string ring. 3298 */ 3299 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3300 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3301 } 3302 spin_unlock_irqrestore(&xhci->lock, flags); 3303 3304 return 0; 3305 } 3306 3307 /* 3308 * Deletes endpoint resources for endpoints that were active before a Reset 3309 * Device command, or a Disable Slot command. The Reset Device command leaves 3310 * the control endpoint intact, whereas the Disable Slot command deletes it. 3311 * 3312 * Must be called with xhci->lock held. 3313 */ 3314 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3315 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3316 { 3317 int i; 3318 unsigned int num_dropped_eps = 0; 3319 unsigned int drop_flags = 0; 3320 3321 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3322 if (virt_dev->eps[i].ring) { 3323 drop_flags |= 1 << i; 3324 num_dropped_eps++; 3325 } 3326 } 3327 xhci->num_active_eps -= num_dropped_eps; 3328 if (num_dropped_eps) 3329 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3330 "Dropped %u ep ctxs, flags = 0x%x, " 3331 "%u now active.", 3332 num_dropped_eps, drop_flags, 3333 xhci->num_active_eps); 3334 } 3335 3336 /* 3337 * This submits a Reset Device Command, which will set the device state to 0, 3338 * set the device address to 0, and disable all the endpoints except the default 3339 * control endpoint. The USB core should come back and call 3340 * xhci_address_device(), and then re-set up the configuration. If this is 3341 * called because of a usb_reset_and_verify_device(), then the old alternate 3342 * settings will be re-installed through the normal bandwidth allocation 3343 * functions. 3344 * 3345 * Wait for the Reset Device command to finish. Remove all structures 3346 * associated with the endpoints that were disabled. Clear the input device 3347 * structure? Reset the control endpoint 0 max packet size? 3348 * 3349 * If the virt_dev to be reset does not exist or does not match the udev, 3350 * it means the device is lost, possibly due to the xHC restore error and 3351 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3352 * re-allocate the device. 3353 */ 3354 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3355 struct usb_device *udev) 3356 { 3357 int ret, i; 3358 unsigned long flags; 3359 struct xhci_hcd *xhci; 3360 unsigned int slot_id; 3361 struct xhci_virt_device *virt_dev; 3362 struct xhci_command *reset_device_cmd; 3363 int last_freed_endpoint; 3364 struct xhci_slot_ctx *slot_ctx; 3365 int old_active_eps = 0; 3366 3367 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3368 if (ret <= 0) 3369 return ret; 3370 xhci = hcd_to_xhci(hcd); 3371 slot_id = udev->slot_id; 3372 virt_dev = xhci->devs[slot_id]; 3373 if (!virt_dev) { 3374 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3375 "not exist. Re-allocate the device\n", slot_id); 3376 ret = xhci_alloc_dev(hcd, udev); 3377 if (ret == 1) 3378 return 0; 3379 else 3380 return -EINVAL; 3381 } 3382 3383 if (virt_dev->tt_info) 3384 old_active_eps = virt_dev->tt_info->active_eps; 3385 3386 if (virt_dev->udev != udev) { 3387 /* If the virt_dev and the udev does not match, this virt_dev 3388 * may belong to another udev. 3389 * Re-allocate the device. 3390 */ 3391 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3392 "not match the udev. Re-allocate the device\n", 3393 slot_id); 3394 ret = xhci_alloc_dev(hcd, udev); 3395 if (ret == 1) 3396 return 0; 3397 else 3398 return -EINVAL; 3399 } 3400 3401 /* If device is not setup, there is no point in resetting it */ 3402 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3403 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3404 SLOT_STATE_DISABLED) 3405 return 0; 3406 3407 trace_xhci_discover_or_reset_device(slot_ctx); 3408 3409 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3410 /* Allocate the command structure that holds the struct completion. 3411 * Assume we're in process context, since the normal device reset 3412 * process has to wait for the device anyway. Storage devices are 3413 * reset as part of error handling, so use GFP_NOIO instead of 3414 * GFP_KERNEL. 3415 */ 3416 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3417 if (!reset_device_cmd) { 3418 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3419 return -ENOMEM; 3420 } 3421 3422 /* Attempt to submit the Reset Device command to the command ring */ 3423 spin_lock_irqsave(&xhci->lock, flags); 3424 3425 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3426 if (ret) { 3427 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3428 spin_unlock_irqrestore(&xhci->lock, flags); 3429 goto command_cleanup; 3430 } 3431 xhci_ring_cmd_db(xhci); 3432 spin_unlock_irqrestore(&xhci->lock, flags); 3433 3434 /* Wait for the Reset Device command to finish */ 3435 wait_for_completion(reset_device_cmd->completion); 3436 3437 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3438 * unless we tried to reset a slot ID that wasn't enabled, 3439 * or the device wasn't in the addressed or configured state. 3440 */ 3441 ret = reset_device_cmd->status; 3442 switch (ret) { 3443 case COMP_COMMAND_ABORTED: 3444 case COMP_COMMAND_RING_STOPPED: 3445 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3446 ret = -ETIME; 3447 goto command_cleanup; 3448 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3449 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3450 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3451 slot_id, 3452 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3453 xhci_dbg(xhci, "Not freeing device rings.\n"); 3454 /* Don't treat this as an error. May change my mind later. */ 3455 ret = 0; 3456 goto command_cleanup; 3457 case COMP_SUCCESS: 3458 xhci_dbg(xhci, "Successful reset device command.\n"); 3459 break; 3460 default: 3461 if (xhci_is_vendor_info_code(xhci, ret)) 3462 break; 3463 xhci_warn(xhci, "Unknown completion code %u for " 3464 "reset device command.\n", ret); 3465 ret = -EINVAL; 3466 goto command_cleanup; 3467 } 3468 3469 /* Free up host controller endpoint resources */ 3470 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3471 spin_lock_irqsave(&xhci->lock, flags); 3472 /* Don't delete the default control endpoint resources */ 3473 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3474 spin_unlock_irqrestore(&xhci->lock, flags); 3475 } 3476 3477 /* Everything but endpoint 0 is disabled, so free the rings. */ 3478 last_freed_endpoint = 1; 3479 for (i = 1; i < 31; i++) { 3480 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3481 3482 if (ep->ep_state & EP_HAS_STREAMS) { 3483 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3484 xhci_get_endpoint_address(i)); 3485 xhci_free_stream_info(xhci, ep->stream_info); 3486 ep->stream_info = NULL; 3487 ep->ep_state &= ~EP_HAS_STREAMS; 3488 } 3489 3490 if (ep->ring) { 3491 xhci_free_endpoint_ring(xhci, virt_dev, i); 3492 last_freed_endpoint = i; 3493 } 3494 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3495 xhci_drop_ep_from_interval_table(xhci, 3496 &virt_dev->eps[i].bw_info, 3497 virt_dev->bw_table, 3498 udev, 3499 &virt_dev->eps[i], 3500 virt_dev->tt_info); 3501 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3502 } 3503 /* If necessary, update the number of active TTs on this root port */ 3504 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3505 ret = 0; 3506 3507 command_cleanup: 3508 xhci_free_command(xhci, reset_device_cmd); 3509 return ret; 3510 } 3511 3512 /* 3513 * At this point, the struct usb_device is about to go away, the device has 3514 * disconnected, and all traffic has been stopped and the endpoints have been 3515 * disabled. Free any HC data structures associated with that device. 3516 */ 3517 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3518 { 3519 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3520 struct xhci_virt_device *virt_dev; 3521 struct xhci_slot_ctx *slot_ctx; 3522 int i, ret; 3523 struct xhci_command *command; 3524 3525 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3526 if (!command) 3527 return; 3528 3529 #ifndef CONFIG_USB_DEFAULT_PERSIST 3530 /* 3531 * We called pm_runtime_get_noresume when the device was attached. 3532 * Decrement the counter here to allow controller to runtime suspend 3533 * if no devices remain. 3534 */ 3535 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3536 pm_runtime_put_noidle(hcd->self.controller); 3537 #endif 3538 3539 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3540 /* If the host is halted due to driver unload, we still need to free the 3541 * device. 3542 */ 3543 if (ret <= 0 && ret != -ENODEV) { 3544 kfree(command); 3545 return; 3546 } 3547 3548 virt_dev = xhci->devs[udev->slot_id]; 3549 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3550 trace_xhci_free_dev(slot_ctx); 3551 3552 /* Stop any wayward timer functions (which may grab the lock) */ 3553 for (i = 0; i < 31; i++) { 3554 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3555 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3556 } 3557 3558 xhci_disable_slot(xhci, command, udev->slot_id); 3559 /* 3560 * Event command completion handler will free any data structures 3561 * associated with the slot. XXX Can free sleep? 3562 */ 3563 } 3564 3565 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command, 3566 u32 slot_id) 3567 { 3568 unsigned long flags; 3569 u32 state; 3570 int ret = 0; 3571 struct xhci_virt_device *virt_dev; 3572 3573 virt_dev = xhci->devs[slot_id]; 3574 if (!virt_dev) 3575 return -EINVAL; 3576 if (!command) 3577 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3578 if (!command) 3579 return -ENOMEM; 3580 3581 spin_lock_irqsave(&xhci->lock, flags); 3582 /* Don't disable the slot if the host controller is dead. */ 3583 state = readl(&xhci->op_regs->status); 3584 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3585 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3586 xhci_free_virt_device(xhci, slot_id); 3587 spin_unlock_irqrestore(&xhci->lock, flags); 3588 kfree(command); 3589 return ret; 3590 } 3591 3592 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3593 slot_id); 3594 if (ret) { 3595 spin_unlock_irqrestore(&xhci->lock, flags); 3596 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3597 return ret; 3598 } 3599 xhci_ring_cmd_db(xhci); 3600 spin_unlock_irqrestore(&xhci->lock, flags); 3601 return ret; 3602 } 3603 3604 /* 3605 * Checks if we have enough host controller resources for the default control 3606 * endpoint. 3607 * 3608 * Must be called with xhci->lock held. 3609 */ 3610 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3611 { 3612 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3613 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3614 "Not enough ep ctxs: " 3615 "%u active, need to add 1, limit is %u.", 3616 xhci->num_active_eps, xhci->limit_active_eps); 3617 return -ENOMEM; 3618 } 3619 xhci->num_active_eps += 1; 3620 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3621 "Adding 1 ep ctx, %u now active.", 3622 xhci->num_active_eps); 3623 return 0; 3624 } 3625 3626 3627 /* 3628 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3629 * timed out, or allocating memory failed. Returns 1 on success. 3630 */ 3631 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3632 { 3633 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3634 struct xhci_virt_device *vdev; 3635 struct xhci_slot_ctx *slot_ctx; 3636 unsigned long flags; 3637 int ret, slot_id; 3638 struct xhci_command *command; 3639 3640 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3641 if (!command) 3642 return 0; 3643 3644 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3645 mutex_lock(&xhci->mutex); 3646 spin_lock_irqsave(&xhci->lock, flags); 3647 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3648 if (ret) { 3649 spin_unlock_irqrestore(&xhci->lock, flags); 3650 mutex_unlock(&xhci->mutex); 3651 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3652 xhci_free_command(xhci, command); 3653 return 0; 3654 } 3655 xhci_ring_cmd_db(xhci); 3656 spin_unlock_irqrestore(&xhci->lock, flags); 3657 3658 wait_for_completion(command->completion); 3659 slot_id = command->slot_id; 3660 mutex_unlock(&xhci->mutex); 3661 3662 if (!slot_id || command->status != COMP_SUCCESS) { 3663 xhci_err(xhci, "Error while assigning device slot ID\n"); 3664 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3665 HCS_MAX_SLOTS( 3666 readl(&xhci->cap_regs->hcs_params1))); 3667 xhci_free_command(xhci, command); 3668 return 0; 3669 } 3670 3671 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3672 spin_lock_irqsave(&xhci->lock, flags); 3673 ret = xhci_reserve_host_control_ep_resources(xhci); 3674 if (ret) { 3675 spin_unlock_irqrestore(&xhci->lock, flags); 3676 xhci_warn(xhci, "Not enough host resources, " 3677 "active endpoint contexts = %u\n", 3678 xhci->num_active_eps); 3679 goto disable_slot; 3680 } 3681 spin_unlock_irqrestore(&xhci->lock, flags); 3682 } 3683 /* Use GFP_NOIO, since this function can be called from 3684 * xhci_discover_or_reset_device(), which may be called as part of 3685 * mass storage driver error handling. 3686 */ 3687 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3688 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3689 goto disable_slot; 3690 } 3691 vdev = xhci->devs[slot_id]; 3692 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3693 trace_xhci_alloc_dev(slot_ctx); 3694 3695 udev->slot_id = slot_id; 3696 3697 #ifndef CONFIG_USB_DEFAULT_PERSIST 3698 /* 3699 * If resetting upon resume, we can't put the controller into runtime 3700 * suspend if there is a device attached. 3701 */ 3702 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3703 pm_runtime_get_noresume(hcd->self.controller); 3704 #endif 3705 3706 3707 xhci_free_command(xhci, command); 3708 /* Is this a LS or FS device under a HS hub? */ 3709 /* Hub or peripherial? */ 3710 return 1; 3711 3712 disable_slot: 3713 /* Disable slot, if we can do it without mem alloc */ 3714 kfree(command->completion); 3715 command->completion = NULL; 3716 command->status = 0; 3717 return xhci_disable_slot(xhci, command, udev->slot_id); 3718 } 3719 3720 /* 3721 * Issue an Address Device command and optionally send a corresponding 3722 * SetAddress request to the device. 3723 */ 3724 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3725 enum xhci_setup_dev setup) 3726 { 3727 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3728 unsigned long flags; 3729 struct xhci_virt_device *virt_dev; 3730 int ret = 0; 3731 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3732 struct xhci_slot_ctx *slot_ctx; 3733 struct xhci_input_control_ctx *ctrl_ctx; 3734 u64 temp_64; 3735 struct xhci_command *command = NULL; 3736 3737 mutex_lock(&xhci->mutex); 3738 3739 if (xhci->xhc_state) { /* dying, removing or halted */ 3740 ret = -ESHUTDOWN; 3741 goto out; 3742 } 3743 3744 if (!udev->slot_id) { 3745 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3746 "Bad Slot ID %d", udev->slot_id); 3747 ret = -EINVAL; 3748 goto out; 3749 } 3750 3751 virt_dev = xhci->devs[udev->slot_id]; 3752 3753 if (WARN_ON(!virt_dev)) { 3754 /* 3755 * In plug/unplug torture test with an NEC controller, 3756 * a zero-dereference was observed once due to virt_dev = 0. 3757 * Print useful debug rather than crash if it is observed again! 3758 */ 3759 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3760 udev->slot_id); 3761 ret = -EINVAL; 3762 goto out; 3763 } 3764 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3765 trace_xhci_setup_device_slot(slot_ctx); 3766 3767 if (setup == SETUP_CONTEXT_ONLY) { 3768 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3769 SLOT_STATE_DEFAULT) { 3770 xhci_dbg(xhci, "Slot already in default state\n"); 3771 goto out; 3772 } 3773 } 3774 3775 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3776 if (!command) { 3777 ret = -ENOMEM; 3778 goto out; 3779 } 3780 3781 command->in_ctx = virt_dev->in_ctx; 3782 3783 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3784 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3785 if (!ctrl_ctx) { 3786 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3787 __func__); 3788 ret = -EINVAL; 3789 goto out; 3790 } 3791 /* 3792 * If this is the first Set Address since device plug-in or 3793 * virt_device realloaction after a resume with an xHCI power loss, 3794 * then set up the slot context. 3795 */ 3796 if (!slot_ctx->dev_info) 3797 xhci_setup_addressable_virt_dev(xhci, udev); 3798 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3799 else 3800 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3801 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3802 ctrl_ctx->drop_flags = 0; 3803 3804 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3805 le32_to_cpu(slot_ctx->dev_info) >> 27); 3806 3807 spin_lock_irqsave(&xhci->lock, flags); 3808 trace_xhci_setup_device(virt_dev); 3809 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3810 udev->slot_id, setup); 3811 if (ret) { 3812 spin_unlock_irqrestore(&xhci->lock, flags); 3813 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3814 "FIXME: allocate a command ring segment"); 3815 goto out; 3816 } 3817 xhci_ring_cmd_db(xhci); 3818 spin_unlock_irqrestore(&xhci->lock, flags); 3819 3820 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3821 wait_for_completion(command->completion); 3822 3823 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3824 * the SetAddress() "recovery interval" required by USB and aborting the 3825 * command on a timeout. 3826 */ 3827 switch (command->status) { 3828 case COMP_COMMAND_ABORTED: 3829 case COMP_COMMAND_RING_STOPPED: 3830 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3831 ret = -ETIME; 3832 break; 3833 case COMP_CONTEXT_STATE_ERROR: 3834 case COMP_SLOT_NOT_ENABLED_ERROR: 3835 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3836 act, udev->slot_id); 3837 ret = -EINVAL; 3838 break; 3839 case COMP_USB_TRANSACTION_ERROR: 3840 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3841 ret = -EPROTO; 3842 break; 3843 case COMP_INCOMPATIBLE_DEVICE_ERROR: 3844 dev_warn(&udev->dev, 3845 "ERROR: Incompatible device for setup %s command\n", act); 3846 ret = -ENODEV; 3847 break; 3848 case COMP_SUCCESS: 3849 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3850 "Successful setup %s command", act); 3851 break; 3852 default: 3853 xhci_err(xhci, 3854 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3855 act, command->status); 3856 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3857 ret = -EINVAL; 3858 break; 3859 } 3860 if (ret) 3861 goto out; 3862 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3863 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3864 "Op regs DCBAA ptr = %#016llx", temp_64); 3865 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3866 "Slot ID %d dcbaa entry @%p = %#016llx", 3867 udev->slot_id, 3868 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3869 (unsigned long long) 3870 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3871 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3872 "Output Context DMA address = %#08llx", 3873 (unsigned long long)virt_dev->out_ctx->dma); 3874 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3875 le32_to_cpu(slot_ctx->dev_info) >> 27); 3876 /* 3877 * USB core uses address 1 for the roothubs, so we add one to the 3878 * address given back to us by the HC. 3879 */ 3880 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3881 le32_to_cpu(slot_ctx->dev_info) >> 27); 3882 /* Zero the input context control for later use */ 3883 ctrl_ctx->add_flags = 0; 3884 ctrl_ctx->drop_flags = 0; 3885 3886 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3887 "Internal device address = %d", 3888 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3889 out: 3890 mutex_unlock(&xhci->mutex); 3891 if (command) { 3892 kfree(command->completion); 3893 kfree(command); 3894 } 3895 return ret; 3896 } 3897 3898 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3899 { 3900 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3901 } 3902 3903 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3904 { 3905 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3906 } 3907 3908 /* 3909 * Transfer the port index into real index in the HW port status 3910 * registers. Caculate offset between the port's PORTSC register 3911 * and port status base. Divide the number of per port register 3912 * to get the real index. The raw port number bases 1. 3913 */ 3914 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3915 { 3916 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3917 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3918 __le32 __iomem *addr; 3919 int raw_port; 3920 3921 if (hcd->speed < HCD_USB3) 3922 addr = xhci->usb2_ports[port1 - 1]; 3923 else 3924 addr = xhci->usb3_ports[port1 - 1]; 3925 3926 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3927 return raw_port; 3928 } 3929 3930 /* 3931 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3932 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3933 */ 3934 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3935 struct usb_device *udev, u16 max_exit_latency) 3936 { 3937 struct xhci_virt_device *virt_dev; 3938 struct xhci_command *command; 3939 struct xhci_input_control_ctx *ctrl_ctx; 3940 struct xhci_slot_ctx *slot_ctx; 3941 unsigned long flags; 3942 int ret; 3943 3944 spin_lock_irqsave(&xhci->lock, flags); 3945 3946 virt_dev = xhci->devs[udev->slot_id]; 3947 3948 /* 3949 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3950 * xHC was re-initialized. Exit latency will be set later after 3951 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 3952 */ 3953 3954 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 3955 spin_unlock_irqrestore(&xhci->lock, flags); 3956 return 0; 3957 } 3958 3959 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3960 command = xhci->lpm_command; 3961 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3962 if (!ctrl_ctx) { 3963 spin_unlock_irqrestore(&xhci->lock, flags); 3964 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3965 __func__); 3966 return -ENOMEM; 3967 } 3968 3969 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3970 spin_unlock_irqrestore(&xhci->lock, flags); 3971 3972 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3973 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3974 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3975 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3976 slot_ctx->dev_state = 0; 3977 3978 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3979 "Set up evaluate context for LPM MEL change."); 3980 3981 /* Issue and wait for the evaluate context command. */ 3982 ret = xhci_configure_endpoint(xhci, udev, command, 3983 true, true); 3984 3985 if (!ret) { 3986 spin_lock_irqsave(&xhci->lock, flags); 3987 virt_dev->current_mel = max_exit_latency; 3988 spin_unlock_irqrestore(&xhci->lock, flags); 3989 } 3990 return ret; 3991 } 3992 3993 #ifdef CONFIG_PM 3994 3995 /* BESL to HIRD Encoding array for USB2 LPM */ 3996 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3997 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3998 3999 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4000 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4001 struct usb_device *udev) 4002 { 4003 int u2del, besl, besl_host; 4004 int besl_device = 0; 4005 u32 field; 4006 4007 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4008 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4009 4010 if (field & USB_BESL_SUPPORT) { 4011 for (besl_host = 0; besl_host < 16; besl_host++) { 4012 if (xhci_besl_encoding[besl_host] >= u2del) 4013 break; 4014 } 4015 /* Use baseline BESL value as default */ 4016 if (field & USB_BESL_BASELINE_VALID) 4017 besl_device = USB_GET_BESL_BASELINE(field); 4018 else if (field & USB_BESL_DEEP_VALID) 4019 besl_device = USB_GET_BESL_DEEP(field); 4020 } else { 4021 if (u2del <= 50) 4022 besl_host = 0; 4023 else 4024 besl_host = (u2del - 51) / 75 + 1; 4025 } 4026 4027 besl = besl_host + besl_device; 4028 if (besl > 15) 4029 besl = 15; 4030 4031 return besl; 4032 } 4033 4034 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4035 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4036 { 4037 u32 field; 4038 int l1; 4039 int besld = 0; 4040 int hirdm = 0; 4041 4042 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4043 4044 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4045 l1 = udev->l1_params.timeout / 256; 4046 4047 /* device has preferred BESLD */ 4048 if (field & USB_BESL_DEEP_VALID) { 4049 besld = USB_GET_BESL_DEEP(field); 4050 hirdm = 1; 4051 } 4052 4053 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4054 } 4055 4056 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4057 struct usb_device *udev, int enable) 4058 { 4059 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4060 __le32 __iomem **port_array; 4061 __le32 __iomem *pm_addr, *hlpm_addr; 4062 u32 pm_val, hlpm_val, field; 4063 unsigned int port_num; 4064 unsigned long flags; 4065 int hird, exit_latency; 4066 int ret; 4067 4068 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4069 !udev->lpm_capable) 4070 return -EPERM; 4071 4072 if (!udev->parent || udev->parent->parent || 4073 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4074 return -EPERM; 4075 4076 if (udev->usb2_hw_lpm_capable != 1) 4077 return -EPERM; 4078 4079 spin_lock_irqsave(&xhci->lock, flags); 4080 4081 port_array = xhci->usb2_ports; 4082 port_num = udev->portnum - 1; 4083 pm_addr = port_array[port_num] + PORTPMSC; 4084 pm_val = readl(pm_addr); 4085 hlpm_addr = port_array[port_num] + PORTHLPMC; 4086 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4087 4088 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4089 enable ? "enable" : "disable", port_num + 1); 4090 4091 if (enable) { 4092 /* Host supports BESL timeout instead of HIRD */ 4093 if (udev->usb2_hw_lpm_besl_capable) { 4094 /* if device doesn't have a preferred BESL value use a 4095 * default one which works with mixed HIRD and BESL 4096 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4097 */ 4098 if ((field & USB_BESL_SUPPORT) && 4099 (field & USB_BESL_BASELINE_VALID)) 4100 hird = USB_GET_BESL_BASELINE(field); 4101 else 4102 hird = udev->l1_params.besl; 4103 4104 exit_latency = xhci_besl_encoding[hird]; 4105 spin_unlock_irqrestore(&xhci->lock, flags); 4106 4107 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4108 * input context for link powermanagement evaluate 4109 * context commands. It is protected by hcd->bandwidth 4110 * mutex and is shared by all devices. We need to set 4111 * the max ext latency in USB 2 BESL LPM as well, so 4112 * use the same mutex and xhci_change_max_exit_latency() 4113 */ 4114 mutex_lock(hcd->bandwidth_mutex); 4115 ret = xhci_change_max_exit_latency(xhci, udev, 4116 exit_latency); 4117 mutex_unlock(hcd->bandwidth_mutex); 4118 4119 if (ret < 0) 4120 return ret; 4121 spin_lock_irqsave(&xhci->lock, flags); 4122 4123 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4124 writel(hlpm_val, hlpm_addr); 4125 /* flush write */ 4126 readl(hlpm_addr); 4127 } else { 4128 hird = xhci_calculate_hird_besl(xhci, udev); 4129 } 4130 4131 pm_val &= ~PORT_HIRD_MASK; 4132 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4133 writel(pm_val, pm_addr); 4134 pm_val = readl(pm_addr); 4135 pm_val |= PORT_HLE; 4136 writel(pm_val, pm_addr); 4137 /* flush write */ 4138 readl(pm_addr); 4139 } else { 4140 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4141 writel(pm_val, pm_addr); 4142 /* flush write */ 4143 readl(pm_addr); 4144 if (udev->usb2_hw_lpm_besl_capable) { 4145 spin_unlock_irqrestore(&xhci->lock, flags); 4146 mutex_lock(hcd->bandwidth_mutex); 4147 xhci_change_max_exit_latency(xhci, udev, 0); 4148 mutex_unlock(hcd->bandwidth_mutex); 4149 return 0; 4150 } 4151 } 4152 4153 spin_unlock_irqrestore(&xhci->lock, flags); 4154 return 0; 4155 } 4156 4157 /* check if a usb2 port supports a given extened capability protocol 4158 * only USB2 ports extended protocol capability values are cached. 4159 * Return 1 if capability is supported 4160 */ 4161 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4162 unsigned capability) 4163 { 4164 u32 port_offset, port_count; 4165 int i; 4166 4167 for (i = 0; i < xhci->num_ext_caps; i++) { 4168 if (xhci->ext_caps[i] & capability) { 4169 /* port offsets starts at 1 */ 4170 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4171 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4172 if (port >= port_offset && 4173 port < port_offset + port_count) 4174 return 1; 4175 } 4176 } 4177 return 0; 4178 } 4179 4180 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4181 { 4182 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4183 int portnum = udev->portnum - 1; 4184 4185 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4186 !udev->lpm_capable) 4187 return 0; 4188 4189 /* we only support lpm for non-hub device connected to root hub yet */ 4190 if (!udev->parent || udev->parent->parent || 4191 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4192 return 0; 4193 4194 if (xhci->hw_lpm_support == 1 && 4195 xhci_check_usb2_port_capability( 4196 xhci, portnum, XHCI_HLC)) { 4197 udev->usb2_hw_lpm_capable = 1; 4198 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4199 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4200 if (xhci_check_usb2_port_capability(xhci, portnum, 4201 XHCI_BLC)) 4202 udev->usb2_hw_lpm_besl_capable = 1; 4203 } 4204 4205 return 0; 4206 } 4207 4208 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4209 4210 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4211 static unsigned long long xhci_service_interval_to_ns( 4212 struct usb_endpoint_descriptor *desc) 4213 { 4214 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4215 } 4216 4217 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4218 enum usb3_link_state state) 4219 { 4220 unsigned long long sel; 4221 unsigned long long pel; 4222 unsigned int max_sel_pel; 4223 char *state_name; 4224 4225 switch (state) { 4226 case USB3_LPM_U1: 4227 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4228 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4229 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4230 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4231 state_name = "U1"; 4232 break; 4233 case USB3_LPM_U2: 4234 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4235 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4236 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4237 state_name = "U2"; 4238 break; 4239 default: 4240 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4241 __func__); 4242 return USB3_LPM_DISABLED; 4243 } 4244 4245 if (sel <= max_sel_pel && pel <= max_sel_pel) 4246 return USB3_LPM_DEVICE_INITIATED; 4247 4248 if (sel > max_sel_pel) 4249 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4250 "due to long SEL %llu ms\n", 4251 state_name, sel); 4252 else 4253 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4254 "due to long PEL %llu ms\n", 4255 state_name, pel); 4256 return USB3_LPM_DISABLED; 4257 } 4258 4259 /* The U1 timeout should be the maximum of the following values: 4260 * - For control endpoints, U1 system exit latency (SEL) * 3 4261 * - For bulk endpoints, U1 SEL * 5 4262 * - For interrupt endpoints: 4263 * - Notification EPs, U1 SEL * 3 4264 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4265 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4266 */ 4267 static unsigned long long xhci_calculate_intel_u1_timeout( 4268 struct usb_device *udev, 4269 struct usb_endpoint_descriptor *desc) 4270 { 4271 unsigned long long timeout_ns; 4272 int ep_type; 4273 int intr_type; 4274 4275 ep_type = usb_endpoint_type(desc); 4276 switch (ep_type) { 4277 case USB_ENDPOINT_XFER_CONTROL: 4278 timeout_ns = udev->u1_params.sel * 3; 4279 break; 4280 case USB_ENDPOINT_XFER_BULK: 4281 timeout_ns = udev->u1_params.sel * 5; 4282 break; 4283 case USB_ENDPOINT_XFER_INT: 4284 intr_type = usb_endpoint_interrupt_type(desc); 4285 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4286 timeout_ns = udev->u1_params.sel * 3; 4287 break; 4288 } 4289 /* Otherwise the calculation is the same as isoc eps */ 4290 case USB_ENDPOINT_XFER_ISOC: 4291 timeout_ns = xhci_service_interval_to_ns(desc); 4292 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4293 if (timeout_ns < udev->u1_params.sel * 2) 4294 timeout_ns = udev->u1_params.sel * 2; 4295 break; 4296 default: 4297 return 0; 4298 } 4299 4300 return timeout_ns; 4301 } 4302 4303 /* Returns the hub-encoded U1 timeout value. */ 4304 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4305 struct usb_device *udev, 4306 struct usb_endpoint_descriptor *desc) 4307 { 4308 unsigned long long timeout_ns; 4309 4310 if (xhci->quirks & XHCI_INTEL_HOST) 4311 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4312 else 4313 timeout_ns = udev->u1_params.sel; 4314 4315 /* The U1 timeout is encoded in 1us intervals. 4316 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4317 */ 4318 if (timeout_ns == USB3_LPM_DISABLED) 4319 timeout_ns = 1; 4320 else 4321 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4322 4323 /* If the necessary timeout value is bigger than what we can set in the 4324 * USB 3.0 hub, we have to disable hub-initiated U1. 4325 */ 4326 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4327 return timeout_ns; 4328 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4329 "due to long timeout %llu ms\n", timeout_ns); 4330 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4331 } 4332 4333 /* The U2 timeout should be the maximum of: 4334 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4335 * - largest bInterval of any active periodic endpoint (to avoid going 4336 * into lower power link states between intervals). 4337 * - the U2 Exit Latency of the device 4338 */ 4339 static unsigned long long xhci_calculate_intel_u2_timeout( 4340 struct usb_device *udev, 4341 struct usb_endpoint_descriptor *desc) 4342 { 4343 unsigned long long timeout_ns; 4344 unsigned long long u2_del_ns; 4345 4346 timeout_ns = 10 * 1000 * 1000; 4347 4348 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4349 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4350 timeout_ns = xhci_service_interval_to_ns(desc); 4351 4352 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4353 if (u2_del_ns > timeout_ns) 4354 timeout_ns = u2_del_ns; 4355 4356 return timeout_ns; 4357 } 4358 4359 /* Returns the hub-encoded U2 timeout value. */ 4360 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4361 struct usb_device *udev, 4362 struct usb_endpoint_descriptor *desc) 4363 { 4364 unsigned long long timeout_ns; 4365 4366 if (xhci->quirks & XHCI_INTEL_HOST) 4367 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4368 else 4369 timeout_ns = udev->u2_params.sel; 4370 4371 /* The U2 timeout is encoded in 256us intervals */ 4372 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4373 /* If the necessary timeout value is bigger than what we can set in the 4374 * USB 3.0 hub, we have to disable hub-initiated U2. 4375 */ 4376 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4377 return timeout_ns; 4378 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4379 "due to long timeout %llu ms\n", timeout_ns); 4380 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4381 } 4382 4383 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4384 struct usb_device *udev, 4385 struct usb_endpoint_descriptor *desc, 4386 enum usb3_link_state state, 4387 u16 *timeout) 4388 { 4389 if (state == USB3_LPM_U1) 4390 return xhci_calculate_u1_timeout(xhci, udev, desc); 4391 else if (state == USB3_LPM_U2) 4392 return xhci_calculate_u2_timeout(xhci, udev, desc); 4393 4394 return USB3_LPM_DISABLED; 4395 } 4396 4397 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4398 struct usb_device *udev, 4399 struct usb_endpoint_descriptor *desc, 4400 enum usb3_link_state state, 4401 u16 *timeout) 4402 { 4403 u16 alt_timeout; 4404 4405 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4406 desc, state, timeout); 4407 4408 /* If we found we can't enable hub-initiated LPM, or 4409 * the U1 or U2 exit latency was too high to allow 4410 * device-initiated LPM as well, just stop searching. 4411 */ 4412 if (alt_timeout == USB3_LPM_DISABLED || 4413 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4414 *timeout = alt_timeout; 4415 return -E2BIG; 4416 } 4417 if (alt_timeout > *timeout) 4418 *timeout = alt_timeout; 4419 return 0; 4420 } 4421 4422 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4423 struct usb_device *udev, 4424 struct usb_host_interface *alt, 4425 enum usb3_link_state state, 4426 u16 *timeout) 4427 { 4428 int j; 4429 4430 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4431 if (xhci_update_timeout_for_endpoint(xhci, udev, 4432 &alt->endpoint[j].desc, state, timeout)) 4433 return -E2BIG; 4434 continue; 4435 } 4436 return 0; 4437 } 4438 4439 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4440 enum usb3_link_state state) 4441 { 4442 struct usb_device *parent; 4443 unsigned int num_hubs; 4444 4445 if (state == USB3_LPM_U2) 4446 return 0; 4447 4448 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4449 for (parent = udev->parent, num_hubs = 0; parent->parent; 4450 parent = parent->parent) 4451 num_hubs++; 4452 4453 if (num_hubs < 2) 4454 return 0; 4455 4456 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4457 " below second-tier hub.\n"); 4458 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4459 "to decrease power consumption.\n"); 4460 return -E2BIG; 4461 } 4462 4463 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4464 struct usb_device *udev, 4465 enum usb3_link_state state) 4466 { 4467 if (xhci->quirks & XHCI_INTEL_HOST) 4468 return xhci_check_intel_tier_policy(udev, state); 4469 else 4470 return 0; 4471 } 4472 4473 /* Returns the U1 or U2 timeout that should be enabled. 4474 * If the tier check or timeout setting functions return with a non-zero exit 4475 * code, that means the timeout value has been finalized and we shouldn't look 4476 * at any more endpoints. 4477 */ 4478 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4479 struct usb_device *udev, enum usb3_link_state state) 4480 { 4481 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4482 struct usb_host_config *config; 4483 char *state_name; 4484 int i; 4485 u16 timeout = USB3_LPM_DISABLED; 4486 4487 if (state == USB3_LPM_U1) 4488 state_name = "U1"; 4489 else if (state == USB3_LPM_U2) 4490 state_name = "U2"; 4491 else { 4492 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4493 state); 4494 return timeout; 4495 } 4496 4497 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4498 return timeout; 4499 4500 /* Gather some information about the currently installed configuration 4501 * and alternate interface settings. 4502 */ 4503 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4504 state, &timeout)) 4505 return timeout; 4506 4507 config = udev->actconfig; 4508 if (!config) 4509 return timeout; 4510 4511 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4512 struct usb_driver *driver; 4513 struct usb_interface *intf = config->interface[i]; 4514 4515 if (!intf) 4516 continue; 4517 4518 /* Check if any currently bound drivers want hub-initiated LPM 4519 * disabled. 4520 */ 4521 if (intf->dev.driver) { 4522 driver = to_usb_driver(intf->dev.driver); 4523 if (driver && driver->disable_hub_initiated_lpm) { 4524 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4525 "at request of driver %s\n", 4526 state_name, driver->name); 4527 return xhci_get_timeout_no_hub_lpm(udev, state); 4528 } 4529 } 4530 4531 /* Not sure how this could happen... */ 4532 if (!intf->cur_altsetting) 4533 continue; 4534 4535 if (xhci_update_timeout_for_interface(xhci, udev, 4536 intf->cur_altsetting, 4537 state, &timeout)) 4538 return timeout; 4539 } 4540 return timeout; 4541 } 4542 4543 static int calculate_max_exit_latency(struct usb_device *udev, 4544 enum usb3_link_state state_changed, 4545 u16 hub_encoded_timeout) 4546 { 4547 unsigned long long u1_mel_us = 0; 4548 unsigned long long u2_mel_us = 0; 4549 unsigned long long mel_us = 0; 4550 bool disabling_u1; 4551 bool disabling_u2; 4552 bool enabling_u1; 4553 bool enabling_u2; 4554 4555 disabling_u1 = (state_changed == USB3_LPM_U1 && 4556 hub_encoded_timeout == USB3_LPM_DISABLED); 4557 disabling_u2 = (state_changed == USB3_LPM_U2 && 4558 hub_encoded_timeout == USB3_LPM_DISABLED); 4559 4560 enabling_u1 = (state_changed == USB3_LPM_U1 && 4561 hub_encoded_timeout != USB3_LPM_DISABLED); 4562 enabling_u2 = (state_changed == USB3_LPM_U2 && 4563 hub_encoded_timeout != USB3_LPM_DISABLED); 4564 4565 /* If U1 was already enabled and we're not disabling it, 4566 * or we're going to enable U1, account for the U1 max exit latency. 4567 */ 4568 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4569 enabling_u1) 4570 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4571 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4572 enabling_u2) 4573 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4574 4575 if (u1_mel_us > u2_mel_us) 4576 mel_us = u1_mel_us; 4577 else 4578 mel_us = u2_mel_us; 4579 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4580 if (mel_us > MAX_EXIT) { 4581 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4582 "is too big.\n", mel_us); 4583 return -E2BIG; 4584 } 4585 return mel_us; 4586 } 4587 4588 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4589 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4590 struct usb_device *udev, enum usb3_link_state state) 4591 { 4592 struct xhci_hcd *xhci; 4593 u16 hub_encoded_timeout; 4594 int mel; 4595 int ret; 4596 4597 xhci = hcd_to_xhci(hcd); 4598 /* The LPM timeout values are pretty host-controller specific, so don't 4599 * enable hub-initiated timeouts unless the vendor has provided 4600 * information about their timeout algorithm. 4601 */ 4602 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4603 !xhci->devs[udev->slot_id]) 4604 return USB3_LPM_DISABLED; 4605 4606 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4607 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4608 if (mel < 0) { 4609 /* Max Exit Latency is too big, disable LPM. */ 4610 hub_encoded_timeout = USB3_LPM_DISABLED; 4611 mel = 0; 4612 } 4613 4614 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4615 if (ret) 4616 return ret; 4617 return hub_encoded_timeout; 4618 } 4619 4620 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4621 struct usb_device *udev, enum usb3_link_state state) 4622 { 4623 struct xhci_hcd *xhci; 4624 u16 mel; 4625 4626 xhci = hcd_to_xhci(hcd); 4627 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4628 !xhci->devs[udev->slot_id]) 4629 return 0; 4630 4631 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4632 return xhci_change_max_exit_latency(xhci, udev, mel); 4633 } 4634 #else /* CONFIG_PM */ 4635 4636 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4637 struct usb_device *udev, int enable) 4638 { 4639 return 0; 4640 } 4641 4642 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4643 { 4644 return 0; 4645 } 4646 4647 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4648 struct usb_device *udev, enum usb3_link_state state) 4649 { 4650 return USB3_LPM_DISABLED; 4651 } 4652 4653 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4654 struct usb_device *udev, enum usb3_link_state state) 4655 { 4656 return 0; 4657 } 4658 #endif /* CONFIG_PM */ 4659 4660 /*-------------------------------------------------------------------------*/ 4661 4662 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4663 * internal data structures for the device. 4664 */ 4665 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4666 struct usb_tt *tt, gfp_t mem_flags) 4667 { 4668 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4669 struct xhci_virt_device *vdev; 4670 struct xhci_command *config_cmd; 4671 struct xhci_input_control_ctx *ctrl_ctx; 4672 struct xhci_slot_ctx *slot_ctx; 4673 unsigned long flags; 4674 unsigned think_time; 4675 int ret; 4676 4677 /* Ignore root hubs */ 4678 if (!hdev->parent) 4679 return 0; 4680 4681 vdev = xhci->devs[hdev->slot_id]; 4682 if (!vdev) { 4683 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4684 return -EINVAL; 4685 } 4686 4687 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4688 if (!config_cmd) 4689 return -ENOMEM; 4690 4691 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4692 if (!ctrl_ctx) { 4693 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4694 __func__); 4695 xhci_free_command(xhci, config_cmd); 4696 return -ENOMEM; 4697 } 4698 4699 spin_lock_irqsave(&xhci->lock, flags); 4700 if (hdev->speed == USB_SPEED_HIGH && 4701 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4702 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4703 xhci_free_command(xhci, config_cmd); 4704 spin_unlock_irqrestore(&xhci->lock, flags); 4705 return -ENOMEM; 4706 } 4707 4708 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4709 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4710 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4711 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4712 /* 4713 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4714 * but it may be already set to 1 when setup an xHCI virtual 4715 * device, so clear it anyway. 4716 */ 4717 if (tt->multi) 4718 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4719 else if (hdev->speed == USB_SPEED_FULL) 4720 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4721 4722 if (xhci->hci_version > 0x95) { 4723 xhci_dbg(xhci, "xHCI version %x needs hub " 4724 "TT think time and number of ports\n", 4725 (unsigned int) xhci->hci_version); 4726 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4727 /* Set TT think time - convert from ns to FS bit times. 4728 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4729 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4730 * 4731 * xHCI 1.0: this field shall be 0 if the device is not a 4732 * High-spped hub. 4733 */ 4734 think_time = tt->think_time; 4735 if (think_time != 0) 4736 think_time = (think_time / 666) - 1; 4737 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4738 slot_ctx->tt_info |= 4739 cpu_to_le32(TT_THINK_TIME(think_time)); 4740 } else { 4741 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4742 "TT think time or number of ports\n", 4743 (unsigned int) xhci->hci_version); 4744 } 4745 slot_ctx->dev_state = 0; 4746 spin_unlock_irqrestore(&xhci->lock, flags); 4747 4748 xhci_dbg(xhci, "Set up %s for hub device.\n", 4749 (xhci->hci_version > 0x95) ? 4750 "configure endpoint" : "evaluate context"); 4751 4752 /* Issue and wait for the configure endpoint or 4753 * evaluate context command. 4754 */ 4755 if (xhci->hci_version > 0x95) 4756 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4757 false, false); 4758 else 4759 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4760 true, false); 4761 4762 xhci_free_command(xhci, config_cmd); 4763 return ret; 4764 } 4765 4766 static int xhci_get_frame(struct usb_hcd *hcd) 4767 { 4768 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4769 /* EHCI mods by the periodic size. Why? */ 4770 return readl(&xhci->run_regs->microframe_index) >> 3; 4771 } 4772 4773 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4774 { 4775 struct xhci_hcd *xhci; 4776 /* 4777 * TODO: Check with DWC3 clients for sysdev according to 4778 * quirks 4779 */ 4780 struct device *dev = hcd->self.sysdev; 4781 int retval; 4782 4783 /* Accept arbitrarily long scatter-gather lists */ 4784 hcd->self.sg_tablesize = ~0; 4785 4786 /* support to build packet from discontinuous buffers */ 4787 hcd->self.no_sg_constraint = 1; 4788 4789 /* XHCI controllers don't stop the ep queue on short packets :| */ 4790 hcd->self.no_stop_on_short = 1; 4791 4792 xhci = hcd_to_xhci(hcd); 4793 4794 if (usb_hcd_is_primary_hcd(hcd)) { 4795 xhci->main_hcd = hcd; 4796 /* Mark the first roothub as being USB 2.0. 4797 * The xHCI driver will register the USB 3.0 roothub. 4798 */ 4799 hcd->speed = HCD_USB2; 4800 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4801 /* 4802 * USB 2.0 roothub under xHCI has an integrated TT, 4803 * (rate matching hub) as opposed to having an OHCI/UHCI 4804 * companion controller. 4805 */ 4806 hcd->has_tt = 1; 4807 } else { 4808 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */ 4809 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) { 4810 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4811 hcd->speed = HCD_USB31; 4812 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4813 } 4814 /* xHCI private pointer was set in xhci_pci_probe for the second 4815 * registered roothub. 4816 */ 4817 return 0; 4818 } 4819 4820 mutex_init(&xhci->mutex); 4821 xhci->cap_regs = hcd->regs; 4822 xhci->op_regs = hcd->regs + 4823 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4824 xhci->run_regs = hcd->regs + 4825 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4826 /* Cache read-only capability registers */ 4827 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4828 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4829 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4830 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4831 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4832 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4833 if (xhci->hci_version > 0x100) 4834 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4835 xhci_print_registers(xhci); 4836 4837 xhci->quirks |= quirks; 4838 4839 get_quirks(dev, xhci); 4840 4841 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4842 * success event after a short transfer. This quirk will ignore such 4843 * spurious event. 4844 */ 4845 if (xhci->hci_version > 0x96) 4846 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4847 4848 /* Make sure the HC is halted. */ 4849 retval = xhci_halt(xhci); 4850 if (retval) 4851 return retval; 4852 4853 xhci_dbg(xhci, "Resetting HCD\n"); 4854 /* Reset the internal HC memory state and registers. */ 4855 retval = xhci_reset(xhci); 4856 if (retval) 4857 return retval; 4858 xhci_dbg(xhci, "Reset complete\n"); 4859 4860 /* 4861 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4862 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4863 * address memory pointers actually. So, this driver clears the AC64 4864 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4865 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4866 */ 4867 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4868 xhci->hcc_params &= ~BIT(0); 4869 4870 /* Set dma_mask and coherent_dma_mask to 64-bits, 4871 * if xHC supports 64-bit addressing */ 4872 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4873 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4874 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4875 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4876 } else { 4877 /* 4878 * This is to avoid error in cases where a 32-bit USB 4879 * controller is used on a 64-bit capable system. 4880 */ 4881 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4882 if (retval) 4883 return retval; 4884 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4885 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4886 } 4887 4888 xhci_dbg(xhci, "Calling HCD init\n"); 4889 /* Initialize HCD and host controller data structures. */ 4890 retval = xhci_init(hcd); 4891 if (retval) 4892 return retval; 4893 xhci_dbg(xhci, "Called HCD init\n"); 4894 4895 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4896 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4897 4898 return 0; 4899 } 4900 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4901 4902 static const struct hc_driver xhci_hc_driver = { 4903 .description = "xhci-hcd", 4904 .product_desc = "xHCI Host Controller", 4905 .hcd_priv_size = sizeof(struct xhci_hcd), 4906 4907 /* 4908 * generic hardware linkage 4909 */ 4910 .irq = xhci_irq, 4911 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4912 4913 /* 4914 * basic lifecycle operations 4915 */ 4916 .reset = NULL, /* set in xhci_init_driver() */ 4917 .start = xhci_run, 4918 .stop = xhci_stop, 4919 .shutdown = xhci_shutdown, 4920 4921 /* 4922 * managing i/o requests and associated device resources 4923 */ 4924 .urb_enqueue = xhci_urb_enqueue, 4925 .urb_dequeue = xhci_urb_dequeue, 4926 .alloc_dev = xhci_alloc_dev, 4927 .free_dev = xhci_free_dev, 4928 .alloc_streams = xhci_alloc_streams, 4929 .free_streams = xhci_free_streams, 4930 .add_endpoint = xhci_add_endpoint, 4931 .drop_endpoint = xhci_drop_endpoint, 4932 .endpoint_reset = xhci_endpoint_reset, 4933 .check_bandwidth = xhci_check_bandwidth, 4934 .reset_bandwidth = xhci_reset_bandwidth, 4935 .address_device = xhci_address_device, 4936 .enable_device = xhci_enable_device, 4937 .update_hub_device = xhci_update_hub_device, 4938 .reset_device = xhci_discover_or_reset_device, 4939 4940 /* 4941 * scheduling support 4942 */ 4943 .get_frame_number = xhci_get_frame, 4944 4945 /* 4946 * root hub support 4947 */ 4948 .hub_control = xhci_hub_control, 4949 .hub_status_data = xhci_hub_status_data, 4950 .bus_suspend = xhci_bus_suspend, 4951 .bus_resume = xhci_bus_resume, 4952 4953 /* 4954 * call back when device connected and addressed 4955 */ 4956 .update_device = xhci_update_device, 4957 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4958 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4959 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 4960 .find_raw_port_number = xhci_find_raw_port_number, 4961 }; 4962 4963 void xhci_init_driver(struct hc_driver *drv, 4964 const struct xhci_driver_overrides *over) 4965 { 4966 BUG_ON(!over); 4967 4968 /* Copy the generic table to drv then apply the overrides */ 4969 *drv = xhci_hc_driver; 4970 4971 if (over) { 4972 drv->hcd_priv_size += over->extra_priv_size; 4973 if (over->reset) 4974 drv->reset = over->reset; 4975 if (over->start) 4976 drv->start = over->start; 4977 } 4978 } 4979 EXPORT_SYMBOL_GPL(xhci_init_driver); 4980 4981 MODULE_DESCRIPTION(DRIVER_DESC); 4982 MODULE_AUTHOR(DRIVER_AUTHOR); 4983 MODULE_LICENSE("GPL"); 4984 4985 static int __init xhci_hcd_init(void) 4986 { 4987 /* 4988 * Check the compiler generated sizes of structures that must be laid 4989 * out in specific ways for hardware access. 4990 */ 4991 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4992 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4993 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4994 /* xhci_device_control has eight fields, and also 4995 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4996 */ 4997 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4998 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4999 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5000 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5001 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5002 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5003 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5004 5005 if (usb_disabled()) 5006 return -ENODEV; 5007 5008 return 0; 5009 } 5010 5011 /* 5012 * If an init function is provided, an exit function must also be provided 5013 * to allow module unload. 5014 */ 5015 static void __exit xhci_hcd_fini(void) { } 5016 5017 module_init(xhci_hcd_init); 5018 module_exit(xhci_hcd_fini); 5019