xref: /openbmc/linux/drivers/usb/host/xhci.c (revision d3964221)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (ret) {
117 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 		return ret;
119 	}
120 	xhci->xhc_state |= XHCI_STATE_HALTED;
121 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		/* clear state flags. Including dying, halted or removing */
151 		xhci->xhc_state = 0;
152 
153 	return ret;
154 }
155 
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 	u32 command;
166 	u32 state;
167 	int ret, i;
168 
169 	state = readl(&xhci->op_regs->status);
170 
171 	if (state == ~(u32)0) {
172 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 		return -ENODEV;
174 	}
175 
176 	if ((state & STS_HALT) == 0) {
177 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 		return 0;
179 	}
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 	command = readl(&xhci->op_regs->command);
183 	command |= CMD_RESET;
184 	writel(command, &xhci->op_regs->command);
185 
186 	/* Existing Intel xHCI controllers require a delay of 1 mS,
187 	 * after setting the CMD_RESET bit, and before accessing any
188 	 * HC registers. This allows the HC to complete the
189 	 * reset operation and be ready for HC register access.
190 	 * Without this delay, the subsequent HC register access,
191 	 * may result in a system hang very rarely.
192 	 */
193 	if (xhci->quirks & XHCI_INTEL_HOST)
194 		udelay(1000);
195 
196 	ret = xhci_handshake(&xhci->op_regs->command,
197 			CMD_RESET, 0, 10 * 1000 * 1000);
198 	if (ret)
199 		return ret;
200 
201 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
202 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
203 
204 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
205 			 "Wait for controller to be ready for doorbell rings");
206 	/*
207 	 * xHCI cannot write to any doorbells or operational registers other
208 	 * than status until the "Controller Not Ready" flag is cleared.
209 	 */
210 	ret = xhci_handshake(&xhci->op_regs->status,
211 			STS_CNR, 0, 10 * 1000 * 1000);
212 
213 	for (i = 0; i < 2; i++) {
214 		xhci->bus_state[i].port_c_suspend = 0;
215 		xhci->bus_state[i].suspended_ports = 0;
216 		xhci->bus_state[i].resuming_ports = 0;
217 	}
218 
219 	return ret;
220 }
221 
222 
223 #ifdef CONFIG_USB_PCI
224 /*
225  * Set up MSI
226  */
227 static int xhci_setup_msi(struct xhci_hcd *xhci)
228 {
229 	int ret;
230 	/*
231 	 * TODO:Check with MSI Soc for sysdev
232 	 */
233 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234 
235 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
236 	if (ret < 0) {
237 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 				"failed to allocate MSI entry");
239 		return ret;
240 	}
241 
242 	ret = request_irq(pdev->irq, xhci_msi_irq,
243 				0, "xhci_hcd", xhci_to_hcd(xhci));
244 	if (ret) {
245 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246 				"disable MSI interrupt");
247 		pci_free_irq_vectors(pdev);
248 	}
249 
250 	return ret;
251 }
252 
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 	int i, ret = 0;
259 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261 
262 	/*
263 	 * calculate number of msi-x vectors supported.
264 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
266 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 	 *   Add additional 1 vector to ensure always available interrupt.
268 	 */
269 	xhci->msix_count = min(num_online_cpus() + 1,
270 				HCS_MAX_INTRS(xhci->hcs_params1));
271 
272 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
273 			PCI_IRQ_MSIX);
274 	if (ret < 0) {
275 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
276 				"Failed to enable MSI-X");
277 		return ret;
278 	}
279 
280 	for (i = 0; i < xhci->msix_count; i++) {
281 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
282 				"xhci_hcd", xhci_to_hcd(xhci));
283 		if (ret)
284 			goto disable_msix;
285 	}
286 
287 	hcd->msix_enabled = 1;
288 	return ret;
289 
290 disable_msix:
291 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
292 	while (--i >= 0)
293 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
294 	pci_free_irq_vectors(pdev);
295 	return ret;
296 }
297 
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
300 {
301 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
302 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
303 
304 	if (xhci->quirks & XHCI_PLAT)
305 		return;
306 
307 	/* return if using legacy interrupt */
308 	if (hcd->irq > 0)
309 		return;
310 
311 	if (hcd->msix_enabled) {
312 		int i;
313 
314 		for (i = 0; i < xhci->msix_count; i++)
315 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
316 	} else {
317 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
318 	}
319 
320 	pci_free_irq_vectors(pdev);
321 	hcd->msix_enabled = 0;
322 }
323 
324 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
325 {
326 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
327 
328 	if (hcd->msix_enabled) {
329 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330 		int i;
331 
332 		for (i = 0; i < xhci->msix_count; i++)
333 			synchronize_irq(pci_irq_vector(pdev, i));
334 	}
335 }
336 
337 static int xhci_try_enable_msi(struct usb_hcd *hcd)
338 {
339 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
340 	struct pci_dev  *pdev;
341 	int ret;
342 
343 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
344 	if (xhci->quirks & XHCI_PLAT)
345 		return 0;
346 
347 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
348 	/*
349 	 * Some Fresco Logic host controllers advertise MSI, but fail to
350 	 * generate interrupts.  Don't even try to enable MSI.
351 	 */
352 	if (xhci->quirks & XHCI_BROKEN_MSI)
353 		goto legacy_irq;
354 
355 	/* unregister the legacy interrupt */
356 	if (hcd->irq)
357 		free_irq(hcd->irq, hcd);
358 	hcd->irq = 0;
359 
360 	ret = xhci_setup_msix(xhci);
361 	if (ret)
362 		/* fall back to msi*/
363 		ret = xhci_setup_msi(xhci);
364 
365 	if (!ret) {
366 		hcd->msi_enabled = 1;
367 		return 0;
368 	}
369 
370 	if (!pdev->irq) {
371 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
372 		return -EINVAL;
373 	}
374 
375  legacy_irq:
376 	if (!strlen(hcd->irq_descr))
377 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
378 			 hcd->driver->description, hcd->self.busnum);
379 
380 	/* fall back to legacy interrupt*/
381 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
382 			hcd->irq_descr, hcd);
383 	if (ret) {
384 		xhci_err(xhci, "request interrupt %d failed\n",
385 				pdev->irq);
386 		return ret;
387 	}
388 	hcd->irq = pdev->irq;
389 	return 0;
390 }
391 
392 #else
393 
394 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
395 {
396 	return 0;
397 }
398 
399 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
400 {
401 }
402 
403 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
404 {
405 }
406 
407 #endif
408 
409 static void compliance_mode_recovery(unsigned long arg)
410 {
411 	struct xhci_hcd *xhci;
412 	struct usb_hcd *hcd;
413 	u32 temp;
414 	int i;
415 
416 	xhci = (struct xhci_hcd *)arg;
417 
418 	for (i = 0; i < xhci->num_usb3_ports; i++) {
419 		temp = readl(xhci->usb3_ports[i]);
420 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
421 			/*
422 			 * Compliance Mode Detected. Letting USB Core
423 			 * handle the Warm Reset
424 			 */
425 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426 					"Compliance mode detected->port %d",
427 					i + 1);
428 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
429 					"Attempting compliance mode recovery");
430 			hcd = xhci->shared_hcd;
431 
432 			if (hcd->state == HC_STATE_SUSPENDED)
433 				usb_hcd_resume_root_hub(hcd);
434 
435 			usb_hcd_poll_rh_status(hcd);
436 		}
437 	}
438 
439 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
440 		mod_timer(&xhci->comp_mode_recovery_timer,
441 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
442 }
443 
444 /*
445  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
446  * that causes ports behind that hardware to enter compliance mode sometimes.
447  * The quirk creates a timer that polls every 2 seconds the link state of
448  * each host controller's port and recovers it by issuing a Warm reset
449  * if Compliance mode is detected, otherwise the port will become "dead" (no
450  * device connections or disconnections will be detected anymore). Becasue no
451  * status event is generated when entering compliance mode (per xhci spec),
452  * this quirk is needed on systems that have the failing hardware installed.
453  */
454 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
455 {
456 	xhci->port_status_u0 = 0;
457 	setup_timer(&xhci->comp_mode_recovery_timer,
458 		    compliance_mode_recovery, (unsigned long)xhci);
459 	xhci->comp_mode_recovery_timer.expires = jiffies +
460 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
461 
462 	add_timer(&xhci->comp_mode_recovery_timer);
463 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464 			"Compliance mode recovery timer initialized");
465 }
466 
467 /*
468  * This function identifies the systems that have installed the SN65LVPE502CP
469  * USB3.0 re-driver and that need the Compliance Mode Quirk.
470  * Systems:
471  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
472  */
473 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
474 {
475 	const char *dmi_product_name, *dmi_sys_vendor;
476 
477 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
478 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
479 	if (!dmi_product_name || !dmi_sys_vendor)
480 		return false;
481 
482 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
483 		return false;
484 
485 	if (strstr(dmi_product_name, "Z420") ||
486 			strstr(dmi_product_name, "Z620") ||
487 			strstr(dmi_product_name, "Z820") ||
488 			strstr(dmi_product_name, "Z1 Workstation"))
489 		return true;
490 
491 	return false;
492 }
493 
494 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
495 {
496 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
497 }
498 
499 
500 /*
501  * Initialize memory for HCD and xHC (one-time init).
502  *
503  * Program the PAGESIZE register, initialize the device context array, create
504  * device contexts (?), set up a command ring segment (or two?), create event
505  * ring (one for now).
506  */
507 static int xhci_init(struct usb_hcd *hcd)
508 {
509 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
510 	int retval = 0;
511 
512 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
513 	spin_lock_init(&xhci->lock);
514 	if (xhci->hci_version == 0x95 && link_quirk) {
515 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
516 				"QUIRK: Not clearing Link TRB chain bits.");
517 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
518 	} else {
519 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
520 				"xHCI doesn't need link TRB QUIRK");
521 	}
522 	retval = xhci_mem_init(xhci, GFP_KERNEL);
523 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
524 
525 	/* Initializing Compliance Mode Recovery Data If Needed */
526 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
527 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
528 		compliance_mode_recovery_timer_init(xhci);
529 	}
530 
531 	return retval;
532 }
533 
534 /*-------------------------------------------------------------------------*/
535 
536 
537 static int xhci_run_finished(struct xhci_hcd *xhci)
538 {
539 	if (xhci_start(xhci)) {
540 		xhci_halt(xhci);
541 		return -ENODEV;
542 	}
543 	xhci->shared_hcd->state = HC_STATE_RUNNING;
544 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
545 
546 	if (xhci->quirks & XHCI_NEC_HOST)
547 		xhci_ring_cmd_db(xhci);
548 
549 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
550 			"Finished xhci_run for USB3 roothub");
551 	return 0;
552 }
553 
554 /*
555  * Start the HC after it was halted.
556  *
557  * This function is called by the USB core when the HC driver is added.
558  * Its opposite is xhci_stop().
559  *
560  * xhci_init() must be called once before this function can be called.
561  * Reset the HC, enable device slot contexts, program DCBAAP, and
562  * set command ring pointer and event ring pointer.
563  *
564  * Setup MSI-X vectors and enable interrupts.
565  */
566 int xhci_run(struct usb_hcd *hcd)
567 {
568 	u32 temp;
569 	u64 temp_64;
570 	int ret;
571 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
572 
573 	/* Start the xHCI host controller running only after the USB 2.0 roothub
574 	 * is setup.
575 	 */
576 
577 	hcd->uses_new_polling = 1;
578 	if (!usb_hcd_is_primary_hcd(hcd))
579 		return xhci_run_finished(xhci);
580 
581 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
582 
583 	ret = xhci_try_enable_msi(hcd);
584 	if (ret)
585 		return ret;
586 
587 	xhci_dbg_cmd_ptrs(xhci);
588 
589 	xhci_dbg(xhci, "ERST memory map follows:\n");
590 	xhci_dbg_erst(xhci, &xhci->erst);
591 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
592 	temp_64 &= ~ERST_PTR_MASK;
593 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
594 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
595 
596 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597 			"// Set the interrupt modulation register");
598 	temp = readl(&xhci->ir_set->irq_control);
599 	temp &= ~ER_IRQ_INTERVAL_MASK;
600 	/*
601 	 * the increment interval is 8 times as much as that defined
602 	 * in xHCI spec on MTK's controller
603 	 */
604 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
605 	writel(temp, &xhci->ir_set->irq_control);
606 
607 	/* Set the HCD state before we enable the irqs */
608 	temp = readl(&xhci->op_regs->command);
609 	temp |= (CMD_EIE);
610 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
611 			"// Enable interrupts, cmd = 0x%x.", temp);
612 	writel(temp, &xhci->op_regs->command);
613 
614 	temp = readl(&xhci->ir_set->irq_pending);
615 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
616 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
617 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
618 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
619 	xhci_print_ir_set(xhci, 0);
620 
621 	if (xhci->quirks & XHCI_NEC_HOST) {
622 		struct xhci_command *command;
623 
624 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
625 		if (!command)
626 			return -ENOMEM;
627 
628 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
629 				TRB_TYPE(TRB_NEC_GET_FW));
630 		if (ret)
631 			xhci_free_command(xhci, command);
632 	}
633 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 			"Finished xhci_run for USB2 roothub");
635 	return 0;
636 }
637 EXPORT_SYMBOL_GPL(xhci_run);
638 
639 /*
640  * Stop xHCI driver.
641  *
642  * This function is called by the USB core when the HC driver is removed.
643  * Its opposite is xhci_run().
644  *
645  * Disable device contexts, disable IRQs, and quiesce the HC.
646  * Reset the HC, finish any completed transactions, and cleanup memory.
647  */
648 static void xhci_stop(struct usb_hcd *hcd)
649 {
650 	u32 temp;
651 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
652 
653 	mutex_lock(&xhci->mutex);
654 
655 	/* Only halt host and free memory after both hcds are removed */
656 	if (!usb_hcd_is_primary_hcd(hcd)) {
657 		/* usb core will free this hcd shortly, unset pointer */
658 		xhci->shared_hcd = NULL;
659 		mutex_unlock(&xhci->mutex);
660 		return;
661 	}
662 
663 	spin_lock_irq(&xhci->lock);
664 	xhci->xhc_state |= XHCI_STATE_HALTED;
665 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
666 	xhci_halt(xhci);
667 	xhci_reset(xhci);
668 	spin_unlock_irq(&xhci->lock);
669 
670 	xhci_cleanup_msix(xhci);
671 
672 	/* Deleting Compliance Mode Recovery Timer */
673 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
674 			(!(xhci_all_ports_seen_u0(xhci)))) {
675 		del_timer_sync(&xhci->comp_mode_recovery_timer);
676 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
677 				"%s: compliance mode recovery timer deleted",
678 				__func__);
679 	}
680 
681 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
682 		usb_amd_dev_put();
683 
684 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
685 			"// Disabling event ring interrupts");
686 	temp = readl(&xhci->op_regs->status);
687 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
688 	temp = readl(&xhci->ir_set->irq_pending);
689 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
690 	xhci_print_ir_set(xhci, 0);
691 
692 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
693 	xhci_mem_cleanup(xhci);
694 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695 			"xhci_stop completed - status = %x",
696 			readl(&xhci->op_regs->status));
697 	mutex_unlock(&xhci->mutex);
698 }
699 
700 /*
701  * Shutdown HC (not bus-specific)
702  *
703  * This is called when the machine is rebooting or halting.  We assume that the
704  * machine will be powered off, and the HC's internal state will be reset.
705  * Don't bother to free memory.
706  *
707  * This will only ever be called with the main usb_hcd (the USB3 roothub).
708  */
709 static void xhci_shutdown(struct usb_hcd *hcd)
710 {
711 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
712 
713 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
714 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
715 
716 	spin_lock_irq(&xhci->lock);
717 	xhci_halt(xhci);
718 	/* Workaround for spurious wakeups at shutdown with HSW */
719 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
720 		xhci_reset(xhci);
721 	spin_unlock_irq(&xhci->lock);
722 
723 	xhci_cleanup_msix(xhci);
724 
725 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
726 			"xhci_shutdown completed - status = %x",
727 			readl(&xhci->op_regs->status));
728 
729 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
730 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
731 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
732 }
733 
734 #ifdef CONFIG_PM
735 static void xhci_save_registers(struct xhci_hcd *xhci)
736 {
737 	xhci->s3.command = readl(&xhci->op_regs->command);
738 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
739 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
740 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
741 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
742 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
743 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
744 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
745 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
746 }
747 
748 static void xhci_restore_registers(struct xhci_hcd *xhci)
749 {
750 	writel(xhci->s3.command, &xhci->op_regs->command);
751 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
752 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
753 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
754 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
755 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
756 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
757 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
758 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
759 }
760 
761 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
762 {
763 	u64	val_64;
764 
765 	/* step 2: initialize command ring buffer */
766 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
767 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
768 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
769 				      xhci->cmd_ring->dequeue) &
770 		 (u64) ~CMD_RING_RSVD_BITS) |
771 		xhci->cmd_ring->cycle_state;
772 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
773 			"// Setting command ring address to 0x%llx",
774 			(long unsigned long) val_64);
775 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
776 }
777 
778 /*
779  * The whole command ring must be cleared to zero when we suspend the host.
780  *
781  * The host doesn't save the command ring pointer in the suspend well, so we
782  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
783  * aligned, because of the reserved bits in the command ring dequeue pointer
784  * register.  Therefore, we can't just set the dequeue pointer back in the
785  * middle of the ring (TRBs are 16-byte aligned).
786  */
787 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
788 {
789 	struct xhci_ring *ring;
790 	struct xhci_segment *seg;
791 
792 	ring = xhci->cmd_ring;
793 	seg = ring->deq_seg;
794 	do {
795 		memset(seg->trbs, 0,
796 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
797 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
798 			cpu_to_le32(~TRB_CYCLE);
799 		seg = seg->next;
800 	} while (seg != ring->deq_seg);
801 
802 	/* Reset the software enqueue and dequeue pointers */
803 	ring->deq_seg = ring->first_seg;
804 	ring->dequeue = ring->first_seg->trbs;
805 	ring->enq_seg = ring->deq_seg;
806 	ring->enqueue = ring->dequeue;
807 
808 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
809 	/*
810 	 * Ring is now zeroed, so the HW should look for change of ownership
811 	 * when the cycle bit is set to 1.
812 	 */
813 	ring->cycle_state = 1;
814 
815 	/*
816 	 * Reset the hardware dequeue pointer.
817 	 * Yes, this will need to be re-written after resume, but we're paranoid
818 	 * and want to make sure the hardware doesn't access bogus memory
819 	 * because, say, the BIOS or an SMI started the host without changing
820 	 * the command ring pointers.
821 	 */
822 	xhci_set_cmd_ring_deq(xhci);
823 }
824 
825 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
826 {
827 	int port_index;
828 	__le32 __iomem **port_array;
829 	unsigned long flags;
830 	u32 t1, t2;
831 
832 	spin_lock_irqsave(&xhci->lock, flags);
833 
834 	/* disable usb3 ports Wake bits */
835 	port_index = xhci->num_usb3_ports;
836 	port_array = xhci->usb3_ports;
837 	while (port_index--) {
838 		t1 = readl(port_array[port_index]);
839 		t1 = xhci_port_state_to_neutral(t1);
840 		t2 = t1 & ~PORT_WAKE_BITS;
841 		if (t1 != t2)
842 			writel(t2, port_array[port_index]);
843 	}
844 
845 	/* disable usb2 ports Wake bits */
846 	port_index = xhci->num_usb2_ports;
847 	port_array = xhci->usb2_ports;
848 	while (port_index--) {
849 		t1 = readl(port_array[port_index]);
850 		t1 = xhci_port_state_to_neutral(t1);
851 		t2 = t1 & ~PORT_WAKE_BITS;
852 		if (t1 != t2)
853 			writel(t2, port_array[port_index]);
854 	}
855 
856 	spin_unlock_irqrestore(&xhci->lock, flags);
857 }
858 
859 /*
860  * Stop HC (not bus-specific)
861  *
862  * This is called when the machine transition into S3/S4 mode.
863  *
864  */
865 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
866 {
867 	int			rc = 0;
868 	unsigned int		delay = XHCI_MAX_HALT_USEC;
869 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
870 	u32			command;
871 
872 	if (!hcd->state)
873 		return 0;
874 
875 	if (hcd->state != HC_STATE_SUSPENDED ||
876 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
877 		return -EINVAL;
878 
879 	/* Clear root port wake on bits if wakeup not allowed. */
880 	if (!do_wakeup)
881 		xhci_disable_port_wake_on_bits(xhci);
882 
883 	/* Don't poll the roothubs on bus suspend. */
884 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
885 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
886 	del_timer_sync(&hcd->rh_timer);
887 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
888 	del_timer_sync(&xhci->shared_hcd->rh_timer);
889 
890 	spin_lock_irq(&xhci->lock);
891 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
892 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
893 	/* step 1: stop endpoint */
894 	/* skipped assuming that port suspend has done */
895 
896 	/* step 2: clear Run/Stop bit */
897 	command = readl(&xhci->op_regs->command);
898 	command &= ~CMD_RUN;
899 	writel(command, &xhci->op_regs->command);
900 
901 	/* Some chips from Fresco Logic need an extraordinary delay */
902 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
903 
904 	if (xhci_handshake(&xhci->op_regs->status,
905 		      STS_HALT, STS_HALT, delay)) {
906 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
907 		spin_unlock_irq(&xhci->lock);
908 		return -ETIMEDOUT;
909 	}
910 	xhci_clear_command_ring(xhci);
911 
912 	/* step 3: save registers */
913 	xhci_save_registers(xhci);
914 
915 	/* step 4: set CSS flag */
916 	command = readl(&xhci->op_regs->command);
917 	command |= CMD_CSS;
918 	writel(command, &xhci->op_regs->command);
919 	if (xhci_handshake(&xhci->op_regs->status,
920 				STS_SAVE, 0, 10 * 1000)) {
921 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
922 		spin_unlock_irq(&xhci->lock);
923 		return -ETIMEDOUT;
924 	}
925 	spin_unlock_irq(&xhci->lock);
926 
927 	/*
928 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
929 	 * is about to be suspended.
930 	 */
931 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
932 			(!(xhci_all_ports_seen_u0(xhci)))) {
933 		del_timer_sync(&xhci->comp_mode_recovery_timer);
934 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
935 				"%s: compliance mode recovery timer deleted",
936 				__func__);
937 	}
938 
939 	/* step 5: remove core well power */
940 	/* synchronize irq when using MSI-X */
941 	xhci_msix_sync_irqs(xhci);
942 
943 	return rc;
944 }
945 EXPORT_SYMBOL_GPL(xhci_suspend);
946 
947 /*
948  * start xHC (not bus-specific)
949  *
950  * This is called when the machine transition from S3/S4 mode.
951  *
952  */
953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
954 {
955 	u32			command, temp = 0, status;
956 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
957 	struct usb_hcd		*secondary_hcd;
958 	int			retval = 0;
959 	bool			comp_timer_running = false;
960 
961 	if (!hcd->state)
962 		return 0;
963 
964 	/* Wait a bit if either of the roothubs need to settle from the
965 	 * transition into bus suspend.
966 	 */
967 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
968 			time_before(jiffies,
969 				xhci->bus_state[1].next_statechange))
970 		msleep(100);
971 
972 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
973 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
974 
975 	spin_lock_irq(&xhci->lock);
976 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
977 		hibernated = true;
978 
979 	if (!hibernated) {
980 		/* step 1: restore register */
981 		xhci_restore_registers(xhci);
982 		/* step 2: initialize command ring buffer */
983 		xhci_set_cmd_ring_deq(xhci);
984 		/* step 3: restore state and start state*/
985 		/* step 3: set CRS flag */
986 		command = readl(&xhci->op_regs->command);
987 		command |= CMD_CRS;
988 		writel(command, &xhci->op_regs->command);
989 		if (xhci_handshake(&xhci->op_regs->status,
990 			      STS_RESTORE, 0, 10 * 1000)) {
991 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
992 			spin_unlock_irq(&xhci->lock);
993 			return -ETIMEDOUT;
994 		}
995 		temp = readl(&xhci->op_regs->status);
996 	}
997 
998 	/* If restore operation fails, re-initialize the HC during resume */
999 	if ((temp & STS_SRE) || hibernated) {
1000 
1001 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1002 				!(xhci_all_ports_seen_u0(xhci))) {
1003 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1004 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1005 				"Compliance Mode Recovery Timer deleted!");
1006 		}
1007 
1008 		/* Let the USB core know _both_ roothubs lost power. */
1009 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1010 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1011 
1012 		xhci_dbg(xhci, "Stop HCD\n");
1013 		xhci_halt(xhci);
1014 		xhci_reset(xhci);
1015 		spin_unlock_irq(&xhci->lock);
1016 		xhci_cleanup_msix(xhci);
1017 
1018 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1019 		temp = readl(&xhci->op_regs->status);
1020 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1021 		temp = readl(&xhci->ir_set->irq_pending);
1022 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1023 		xhci_print_ir_set(xhci, 0);
1024 
1025 		xhci_dbg(xhci, "cleaning up memory\n");
1026 		xhci_mem_cleanup(xhci);
1027 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1028 			    readl(&xhci->op_regs->status));
1029 
1030 		/* USB core calls the PCI reinit and start functions twice:
1031 		 * first with the primary HCD, and then with the secondary HCD.
1032 		 * If we don't do the same, the host will never be started.
1033 		 */
1034 		if (!usb_hcd_is_primary_hcd(hcd))
1035 			secondary_hcd = hcd;
1036 		else
1037 			secondary_hcd = xhci->shared_hcd;
1038 
1039 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1040 		retval = xhci_init(hcd->primary_hcd);
1041 		if (retval)
1042 			return retval;
1043 		comp_timer_running = true;
1044 
1045 		xhci_dbg(xhci, "Start the primary HCD\n");
1046 		retval = xhci_run(hcd->primary_hcd);
1047 		if (!retval) {
1048 			xhci_dbg(xhci, "Start the secondary HCD\n");
1049 			retval = xhci_run(secondary_hcd);
1050 		}
1051 		hcd->state = HC_STATE_SUSPENDED;
1052 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1053 		goto done;
1054 	}
1055 
1056 	/* step 4: set Run/Stop bit */
1057 	command = readl(&xhci->op_regs->command);
1058 	command |= CMD_RUN;
1059 	writel(command, &xhci->op_regs->command);
1060 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1061 		  0, 250 * 1000);
1062 
1063 	/* step 5: walk topology and initialize portsc,
1064 	 * portpmsc and portli
1065 	 */
1066 	/* this is done in bus_resume */
1067 
1068 	/* step 6: restart each of the previously
1069 	 * Running endpoints by ringing their doorbells
1070 	 */
1071 
1072 	spin_unlock_irq(&xhci->lock);
1073 
1074  done:
1075 	if (retval == 0) {
1076 		/* Resume root hubs only when have pending events. */
1077 		status = readl(&xhci->op_regs->status);
1078 		if (status & STS_EINT) {
1079 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1080 			usb_hcd_resume_root_hub(hcd);
1081 		}
1082 	}
1083 
1084 	/*
1085 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1086 	 * be re-initialized Always after a system resume. Ports are subject
1087 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1088 	 * ports have entered previously to U0 before system's suspension.
1089 	 */
1090 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1091 		compliance_mode_recovery_timer_init(xhci);
1092 
1093 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1094 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1095 
1096 	/* Re-enable port polling. */
1097 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1098 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1099 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1100 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1101 	usb_hcd_poll_rh_status(hcd);
1102 
1103 	return retval;
1104 }
1105 EXPORT_SYMBOL_GPL(xhci_resume);
1106 #endif	/* CONFIG_PM */
1107 
1108 /*-------------------------------------------------------------------------*/
1109 
1110 /**
1111  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1112  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1113  * value to right shift 1 for the bitmask.
1114  *
1115  * Index  = (epnum * 2) + direction - 1,
1116  * where direction = 0 for OUT, 1 for IN.
1117  * For control endpoints, the IN index is used (OUT index is unused), so
1118  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1119  */
1120 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1121 {
1122 	unsigned int index;
1123 	if (usb_endpoint_xfer_control(desc))
1124 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1125 	else
1126 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1127 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1128 	return index;
1129 }
1130 
1131 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1132  * address from the XHCI endpoint index.
1133  */
1134 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1135 {
1136 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1137 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1138 	return direction | number;
1139 }
1140 
1141 /* Find the flag for this endpoint (for use in the control context).  Use the
1142  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1143  * bit 1, etc.
1144  */
1145 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1146 {
1147 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1148 }
1149 
1150 /* Find the flag for this endpoint (for use in the control context).  Use the
1151  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1152  * bit 1, etc.
1153  */
1154 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1155 {
1156 	return 1 << (ep_index + 1);
1157 }
1158 
1159 /* Compute the last valid endpoint context index.  Basically, this is the
1160  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1161  * we find the most significant bit set in the added contexts flags.
1162  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1163  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1164  */
1165 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1166 {
1167 	return fls(added_ctxs) - 1;
1168 }
1169 
1170 /* Returns 1 if the arguments are OK;
1171  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1172  */
1173 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1174 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1175 		const char *func) {
1176 	struct xhci_hcd	*xhci;
1177 	struct xhci_virt_device	*virt_dev;
1178 
1179 	if (!hcd || (check_ep && !ep) || !udev) {
1180 		pr_debug("xHCI %s called with invalid args\n", func);
1181 		return -EINVAL;
1182 	}
1183 	if (!udev->parent) {
1184 		pr_debug("xHCI %s called for root hub\n", func);
1185 		return 0;
1186 	}
1187 
1188 	xhci = hcd_to_xhci(hcd);
1189 	if (check_virt_dev) {
1190 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1191 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1192 					func);
1193 			return -EINVAL;
1194 		}
1195 
1196 		virt_dev = xhci->devs[udev->slot_id];
1197 		if (virt_dev->udev != udev) {
1198 			xhci_dbg(xhci, "xHCI %s called with udev and "
1199 					  "virt_dev does not match\n", func);
1200 			return -EINVAL;
1201 		}
1202 	}
1203 
1204 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1205 		return -ENODEV;
1206 
1207 	return 1;
1208 }
1209 
1210 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1211 		struct usb_device *udev, struct xhci_command *command,
1212 		bool ctx_change, bool must_succeed);
1213 
1214 /*
1215  * Full speed devices may have a max packet size greater than 8 bytes, but the
1216  * USB core doesn't know that until it reads the first 8 bytes of the
1217  * descriptor.  If the usb_device's max packet size changes after that point,
1218  * we need to issue an evaluate context command and wait on it.
1219  */
1220 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1221 		unsigned int ep_index, struct urb *urb)
1222 {
1223 	struct xhci_container_ctx *out_ctx;
1224 	struct xhci_input_control_ctx *ctrl_ctx;
1225 	struct xhci_ep_ctx *ep_ctx;
1226 	struct xhci_command *command;
1227 	int max_packet_size;
1228 	int hw_max_packet_size;
1229 	int ret = 0;
1230 
1231 	out_ctx = xhci->devs[slot_id]->out_ctx;
1232 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1233 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1234 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1235 	if (hw_max_packet_size != max_packet_size) {
1236 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237 				"Max Packet Size for ep 0 changed.");
1238 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1239 				"Max packet size in usb_device = %d",
1240 				max_packet_size);
1241 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1242 				"Max packet size in xHCI HW = %d",
1243 				hw_max_packet_size);
1244 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1245 				"Issuing evaluate context command.");
1246 
1247 		/* Set up the input context flags for the command */
1248 		/* FIXME: This won't work if a non-default control endpoint
1249 		 * changes max packet sizes.
1250 		 */
1251 
1252 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1253 		if (!command)
1254 			return -ENOMEM;
1255 
1256 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1257 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1258 		if (!ctrl_ctx) {
1259 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1260 					__func__);
1261 			ret = -ENOMEM;
1262 			goto command_cleanup;
1263 		}
1264 		/* Set up the modified control endpoint 0 */
1265 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1266 				xhci->devs[slot_id]->out_ctx, ep_index);
1267 
1268 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1269 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1270 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1271 
1272 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1273 		ctrl_ctx->drop_flags = 0;
1274 
1275 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1276 				true, false);
1277 
1278 		/* Clean up the input context for later use by bandwidth
1279 		 * functions.
1280 		 */
1281 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1282 command_cleanup:
1283 		kfree(command->completion);
1284 		kfree(command);
1285 	}
1286 	return ret;
1287 }
1288 
1289 /*
1290  * non-error returns are a promise to giveback() the urb later
1291  * we drop ownership so next owner (or urb unlink) can get it
1292  */
1293 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1294 {
1295 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1296 	unsigned long flags;
1297 	int ret = 0;
1298 	unsigned int slot_id, ep_index, ep_state;
1299 	struct urb_priv	*urb_priv;
1300 	int num_tds;
1301 
1302 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1303 					true, true, __func__) <= 0)
1304 		return -EINVAL;
1305 
1306 	slot_id = urb->dev->slot_id;
1307 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1308 
1309 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1310 		if (!in_interrupt())
1311 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1312 		return -ESHUTDOWN;
1313 	}
1314 
1315 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1316 		num_tds = urb->number_of_packets;
1317 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1318 	    urb->transfer_buffer_length > 0 &&
1319 	    urb->transfer_flags & URB_ZERO_PACKET &&
1320 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1321 		num_tds = 2;
1322 	else
1323 		num_tds = 1;
1324 
1325 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1326 			   num_tds * sizeof(struct xhci_td), mem_flags);
1327 	if (!urb_priv)
1328 		return -ENOMEM;
1329 
1330 	urb_priv->num_tds = num_tds;
1331 	urb_priv->num_tds_done = 0;
1332 	urb->hcpriv = urb_priv;
1333 
1334 	trace_xhci_urb_enqueue(urb);
1335 
1336 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1337 		/* Check to see if the max packet size for the default control
1338 		 * endpoint changed during FS device enumeration
1339 		 */
1340 		if (urb->dev->speed == USB_SPEED_FULL) {
1341 			ret = xhci_check_maxpacket(xhci, slot_id,
1342 					ep_index, urb);
1343 			if (ret < 0) {
1344 				xhci_urb_free_priv(urb_priv);
1345 				urb->hcpriv = NULL;
1346 				return ret;
1347 			}
1348 		}
1349 	}
1350 
1351 	spin_lock_irqsave(&xhci->lock, flags);
1352 
1353 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1354 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1355 			 urb->ep->desc.bEndpointAddress, urb);
1356 		ret = -ESHUTDOWN;
1357 		goto free_priv;
1358 	}
1359 
1360 	switch (usb_endpoint_type(&urb->ep->desc)) {
1361 
1362 	case USB_ENDPOINT_XFER_CONTROL:
1363 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1364 					 slot_id, ep_index);
1365 		break;
1366 	case USB_ENDPOINT_XFER_BULK:
1367 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1368 		if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1369 			xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1370 				  ep_state);
1371 			ret = -EINVAL;
1372 			break;
1373 		}
1374 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1375 					 slot_id, ep_index);
1376 		break;
1377 
1378 
1379 	case USB_ENDPOINT_XFER_INT:
1380 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1381 				slot_id, ep_index);
1382 		break;
1383 
1384 	case USB_ENDPOINT_XFER_ISOC:
1385 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1386 				slot_id, ep_index);
1387 	}
1388 
1389 	if (ret) {
1390 free_priv:
1391 		xhci_urb_free_priv(urb_priv);
1392 		urb->hcpriv = NULL;
1393 	}
1394 	spin_unlock_irqrestore(&xhci->lock, flags);
1395 	return ret;
1396 }
1397 
1398 /*
1399  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1400  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1401  * should pick up where it left off in the TD, unless a Set Transfer Ring
1402  * Dequeue Pointer is issued.
1403  *
1404  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1405  * the ring.  Since the ring is a contiguous structure, they can't be physically
1406  * removed.  Instead, there are two options:
1407  *
1408  *  1) If the HC is in the middle of processing the URB to be canceled, we
1409  *     simply move the ring's dequeue pointer past those TRBs using the Set
1410  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1411  *     when drivers timeout on the last submitted URB and attempt to cancel.
1412  *
1413  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1414  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1415  *     HC will need to invalidate the any TRBs it has cached after the stop
1416  *     endpoint command, as noted in the xHCI 0.95 errata.
1417  *
1418  *  3) The TD may have completed by the time the Stop Endpoint Command
1419  *     completes, so software needs to handle that case too.
1420  *
1421  * This function should protect against the TD enqueueing code ringing the
1422  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1423  * It also needs to account for multiple cancellations on happening at the same
1424  * time for the same endpoint.
1425  *
1426  * Note that this function can be called in any context, or so says
1427  * usb_hcd_unlink_urb()
1428  */
1429 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1430 {
1431 	unsigned long flags;
1432 	int ret, i;
1433 	u32 temp;
1434 	struct xhci_hcd *xhci;
1435 	struct urb_priv	*urb_priv;
1436 	struct xhci_td *td;
1437 	unsigned int ep_index;
1438 	struct xhci_ring *ep_ring;
1439 	struct xhci_virt_ep *ep;
1440 	struct xhci_command *command;
1441 	struct xhci_virt_device *vdev;
1442 
1443 	xhci = hcd_to_xhci(hcd);
1444 	spin_lock_irqsave(&xhci->lock, flags);
1445 
1446 	trace_xhci_urb_dequeue(urb);
1447 
1448 	/* Make sure the URB hasn't completed or been unlinked already */
1449 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1450 	if (ret)
1451 		goto done;
1452 
1453 	/* give back URB now if we can't queue it for cancel */
1454 	vdev = xhci->devs[urb->dev->slot_id];
1455 	urb_priv = urb->hcpriv;
1456 	if (!vdev || !urb_priv)
1457 		goto err_giveback;
1458 
1459 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1460 	ep = &vdev->eps[ep_index];
1461 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1462 	if (!ep || !ep_ring)
1463 		goto err_giveback;
1464 
1465 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1466 	temp = readl(&xhci->op_regs->status);
1467 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1468 		xhci_hc_died(xhci);
1469 		goto done;
1470 	}
1471 
1472 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1473 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1474 				"HC halted, freeing TD manually.");
1475 		for (i = urb_priv->num_tds_done;
1476 		     i < urb_priv->num_tds;
1477 		     i++) {
1478 			td = &urb_priv->td[i];
1479 			if (!list_empty(&td->td_list))
1480 				list_del_init(&td->td_list);
1481 			if (!list_empty(&td->cancelled_td_list))
1482 				list_del_init(&td->cancelled_td_list);
1483 		}
1484 		goto err_giveback;
1485 	}
1486 
1487 	i = urb_priv->num_tds_done;
1488 	if (i < urb_priv->num_tds)
1489 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1490 				"Cancel URB %p, dev %s, ep 0x%x, "
1491 				"starting at offset 0x%llx",
1492 				urb, urb->dev->devpath,
1493 				urb->ep->desc.bEndpointAddress,
1494 				(unsigned long long) xhci_trb_virt_to_dma(
1495 					urb_priv->td[i].start_seg,
1496 					urb_priv->td[i].first_trb));
1497 
1498 	for (; i < urb_priv->num_tds; i++) {
1499 		td = &urb_priv->td[i];
1500 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1501 	}
1502 
1503 	/* Queue a stop endpoint command, but only if this is
1504 	 * the first cancellation to be handled.
1505 	 */
1506 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1507 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1508 		if (!command) {
1509 			ret = -ENOMEM;
1510 			goto done;
1511 		}
1512 		ep->ep_state |= EP_STOP_CMD_PENDING;
1513 		ep->stop_cmd_timer.expires = jiffies +
1514 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515 		add_timer(&ep->stop_cmd_timer);
1516 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1517 					 ep_index, 0);
1518 		xhci_ring_cmd_db(xhci);
1519 	}
1520 done:
1521 	spin_unlock_irqrestore(&xhci->lock, flags);
1522 	return ret;
1523 
1524 err_giveback:
1525 	if (urb_priv)
1526 		xhci_urb_free_priv(urb_priv);
1527 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1528 	spin_unlock_irqrestore(&xhci->lock, flags);
1529 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1530 	return ret;
1531 }
1532 
1533 /* Drop an endpoint from a new bandwidth configuration for this device.
1534  * Only one call to this function is allowed per endpoint before
1535  * check_bandwidth() or reset_bandwidth() must be called.
1536  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1537  * add the endpoint to the schedule with possibly new parameters denoted by a
1538  * different endpoint descriptor in usb_host_endpoint.
1539  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1540  * not allowed.
1541  *
1542  * The USB core will not allow URBs to be queued to an endpoint that is being
1543  * disabled, so there's no need for mutual exclusion to protect
1544  * the xhci->devs[slot_id] structure.
1545  */
1546 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1547 		struct usb_host_endpoint *ep)
1548 {
1549 	struct xhci_hcd *xhci;
1550 	struct xhci_container_ctx *in_ctx, *out_ctx;
1551 	struct xhci_input_control_ctx *ctrl_ctx;
1552 	unsigned int ep_index;
1553 	struct xhci_ep_ctx *ep_ctx;
1554 	u32 drop_flag;
1555 	u32 new_add_flags, new_drop_flags;
1556 	int ret;
1557 
1558 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1559 	if (ret <= 0)
1560 		return ret;
1561 	xhci = hcd_to_xhci(hcd);
1562 	if (xhci->xhc_state & XHCI_STATE_DYING)
1563 		return -ENODEV;
1564 
1565 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1566 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1567 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1568 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1569 				__func__, drop_flag);
1570 		return 0;
1571 	}
1572 
1573 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1574 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1575 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1576 	if (!ctrl_ctx) {
1577 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1578 				__func__);
1579 		return 0;
1580 	}
1581 
1582 	ep_index = xhci_get_endpoint_index(&ep->desc);
1583 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1584 	/* If the HC already knows the endpoint is disabled,
1585 	 * or the HCD has noted it is disabled, ignore this request
1586 	 */
1587 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1588 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1589 	    xhci_get_endpoint_flag(&ep->desc)) {
1590 		/* Do not warn when called after a usb_device_reset */
1591 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1592 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1593 				  __func__, ep);
1594 		return 0;
1595 	}
1596 
1597 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1598 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1599 
1600 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1601 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1602 
1603 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1604 
1605 	if (xhci->quirks & XHCI_MTK_HOST)
1606 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1607 
1608 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1609 			(unsigned int) ep->desc.bEndpointAddress,
1610 			udev->slot_id,
1611 			(unsigned int) new_drop_flags,
1612 			(unsigned int) new_add_flags);
1613 	return 0;
1614 }
1615 
1616 /* Add an endpoint to a new possible bandwidth configuration for this device.
1617  * Only one call to this function is allowed per endpoint before
1618  * check_bandwidth() or reset_bandwidth() must be called.
1619  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1620  * add the endpoint to the schedule with possibly new parameters denoted by a
1621  * different endpoint descriptor in usb_host_endpoint.
1622  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1623  * not allowed.
1624  *
1625  * The USB core will not allow URBs to be queued to an endpoint until the
1626  * configuration or alt setting is installed in the device, so there's no need
1627  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1628  */
1629 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1630 		struct usb_host_endpoint *ep)
1631 {
1632 	struct xhci_hcd *xhci;
1633 	struct xhci_container_ctx *in_ctx;
1634 	unsigned int ep_index;
1635 	struct xhci_input_control_ctx *ctrl_ctx;
1636 	u32 added_ctxs;
1637 	u32 new_add_flags, new_drop_flags;
1638 	struct xhci_virt_device *virt_dev;
1639 	int ret = 0;
1640 
1641 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1642 	if (ret <= 0) {
1643 		/* So we won't queue a reset ep command for a root hub */
1644 		ep->hcpriv = NULL;
1645 		return ret;
1646 	}
1647 	xhci = hcd_to_xhci(hcd);
1648 	if (xhci->xhc_state & XHCI_STATE_DYING)
1649 		return -ENODEV;
1650 
1651 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1652 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1653 		/* FIXME when we have to issue an evaluate endpoint command to
1654 		 * deal with ep0 max packet size changing once we get the
1655 		 * descriptors
1656 		 */
1657 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1658 				__func__, added_ctxs);
1659 		return 0;
1660 	}
1661 
1662 	virt_dev = xhci->devs[udev->slot_id];
1663 	in_ctx = virt_dev->in_ctx;
1664 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1665 	if (!ctrl_ctx) {
1666 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1667 				__func__);
1668 		return 0;
1669 	}
1670 
1671 	ep_index = xhci_get_endpoint_index(&ep->desc);
1672 	/* If this endpoint is already in use, and the upper layers are trying
1673 	 * to add it again without dropping it, reject the addition.
1674 	 */
1675 	if (virt_dev->eps[ep_index].ring &&
1676 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1677 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1678 				"without dropping it.\n",
1679 				(unsigned int) ep->desc.bEndpointAddress);
1680 		return -EINVAL;
1681 	}
1682 
1683 	/* If the HCD has already noted the endpoint is enabled,
1684 	 * ignore this request.
1685 	 */
1686 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1687 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1688 				__func__, ep);
1689 		return 0;
1690 	}
1691 
1692 	/*
1693 	 * Configuration and alternate setting changes must be done in
1694 	 * process context, not interrupt context (or so documenation
1695 	 * for usb_set_interface() and usb_set_configuration() claim).
1696 	 */
1697 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1698 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1699 				__func__, ep->desc.bEndpointAddress);
1700 		return -ENOMEM;
1701 	}
1702 
1703 	if (xhci->quirks & XHCI_MTK_HOST) {
1704 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1705 		if (ret < 0) {
1706 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1707 			virt_dev->eps[ep_index].new_ring = NULL;
1708 			return ret;
1709 		}
1710 	}
1711 
1712 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1713 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1714 
1715 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1716 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1717 	 * this re-adds a new state for the endpoint from the new endpoint
1718 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1719 	 * drop flags alone.
1720 	 */
1721 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1722 
1723 	/* Store the usb_device pointer for later use */
1724 	ep->hcpriv = udev;
1725 
1726 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1727 			(unsigned int) ep->desc.bEndpointAddress,
1728 			udev->slot_id,
1729 			(unsigned int) new_drop_flags,
1730 			(unsigned int) new_add_flags);
1731 	return 0;
1732 }
1733 
1734 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1735 {
1736 	struct xhci_input_control_ctx *ctrl_ctx;
1737 	struct xhci_ep_ctx *ep_ctx;
1738 	struct xhci_slot_ctx *slot_ctx;
1739 	int i;
1740 
1741 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1742 	if (!ctrl_ctx) {
1743 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1744 				__func__);
1745 		return;
1746 	}
1747 
1748 	/* When a device's add flag and drop flag are zero, any subsequent
1749 	 * configure endpoint command will leave that endpoint's state
1750 	 * untouched.  Make sure we don't leave any old state in the input
1751 	 * endpoint contexts.
1752 	 */
1753 	ctrl_ctx->drop_flags = 0;
1754 	ctrl_ctx->add_flags = 0;
1755 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1756 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1757 	/* Endpoint 0 is always valid */
1758 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1759 	for (i = 1; i < 31; i++) {
1760 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1761 		ep_ctx->ep_info = 0;
1762 		ep_ctx->ep_info2 = 0;
1763 		ep_ctx->deq = 0;
1764 		ep_ctx->tx_info = 0;
1765 	}
1766 }
1767 
1768 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1769 		struct usb_device *udev, u32 *cmd_status)
1770 {
1771 	int ret;
1772 
1773 	switch (*cmd_status) {
1774 	case COMP_COMMAND_ABORTED:
1775 	case COMP_COMMAND_RING_STOPPED:
1776 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1777 		ret = -ETIME;
1778 		break;
1779 	case COMP_RESOURCE_ERROR:
1780 		dev_warn(&udev->dev,
1781 			 "Not enough host controller resources for new device state.\n");
1782 		ret = -ENOMEM;
1783 		/* FIXME: can we allocate more resources for the HC? */
1784 		break;
1785 	case COMP_BANDWIDTH_ERROR:
1786 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1787 		dev_warn(&udev->dev,
1788 			 "Not enough bandwidth for new device state.\n");
1789 		ret = -ENOSPC;
1790 		/* FIXME: can we go back to the old state? */
1791 		break;
1792 	case COMP_TRB_ERROR:
1793 		/* the HCD set up something wrong */
1794 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1795 				"add flag = 1, "
1796 				"and endpoint is not disabled.\n");
1797 		ret = -EINVAL;
1798 		break;
1799 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1800 		dev_warn(&udev->dev,
1801 			 "ERROR: Incompatible device for endpoint configure command.\n");
1802 		ret = -ENODEV;
1803 		break;
1804 	case COMP_SUCCESS:
1805 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1806 				"Successful Endpoint Configure command");
1807 		ret = 0;
1808 		break;
1809 	default:
1810 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1811 				*cmd_status);
1812 		ret = -EINVAL;
1813 		break;
1814 	}
1815 	return ret;
1816 }
1817 
1818 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1819 		struct usb_device *udev, u32 *cmd_status)
1820 {
1821 	int ret;
1822 
1823 	switch (*cmd_status) {
1824 	case COMP_COMMAND_ABORTED:
1825 	case COMP_COMMAND_RING_STOPPED:
1826 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1827 		ret = -ETIME;
1828 		break;
1829 	case COMP_PARAMETER_ERROR:
1830 		dev_warn(&udev->dev,
1831 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1832 		ret = -EINVAL;
1833 		break;
1834 	case COMP_SLOT_NOT_ENABLED_ERROR:
1835 		dev_warn(&udev->dev,
1836 			"WARN: slot not enabled for evaluate context command.\n");
1837 		ret = -EINVAL;
1838 		break;
1839 	case COMP_CONTEXT_STATE_ERROR:
1840 		dev_warn(&udev->dev,
1841 			"WARN: invalid context state for evaluate context command.\n");
1842 		ret = -EINVAL;
1843 		break;
1844 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1845 		dev_warn(&udev->dev,
1846 			"ERROR: Incompatible device for evaluate context command.\n");
1847 		ret = -ENODEV;
1848 		break;
1849 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1850 		/* Max Exit Latency too large error */
1851 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1852 		ret = -EINVAL;
1853 		break;
1854 	case COMP_SUCCESS:
1855 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1856 				"Successful evaluate context command");
1857 		ret = 0;
1858 		break;
1859 	default:
1860 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1861 			*cmd_status);
1862 		ret = -EINVAL;
1863 		break;
1864 	}
1865 	return ret;
1866 }
1867 
1868 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1869 		struct xhci_input_control_ctx *ctrl_ctx)
1870 {
1871 	u32 valid_add_flags;
1872 	u32 valid_drop_flags;
1873 
1874 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1875 	 * (bit 1).  The default control endpoint is added during the Address
1876 	 * Device command and is never removed until the slot is disabled.
1877 	 */
1878 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1879 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1880 
1881 	/* Use hweight32 to count the number of ones in the add flags, or
1882 	 * number of endpoints added.  Don't count endpoints that are changed
1883 	 * (both added and dropped).
1884 	 */
1885 	return hweight32(valid_add_flags) -
1886 		hweight32(valid_add_flags & valid_drop_flags);
1887 }
1888 
1889 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1890 		struct xhci_input_control_ctx *ctrl_ctx)
1891 {
1892 	u32 valid_add_flags;
1893 	u32 valid_drop_flags;
1894 
1895 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1896 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1897 
1898 	return hweight32(valid_drop_flags) -
1899 		hweight32(valid_add_flags & valid_drop_flags);
1900 }
1901 
1902 /*
1903  * We need to reserve the new number of endpoints before the configure endpoint
1904  * command completes.  We can't subtract the dropped endpoints from the number
1905  * of active endpoints until the command completes because we can oversubscribe
1906  * the host in this case:
1907  *
1908  *  - the first configure endpoint command drops more endpoints than it adds
1909  *  - a second configure endpoint command that adds more endpoints is queued
1910  *  - the first configure endpoint command fails, so the config is unchanged
1911  *  - the second command may succeed, even though there isn't enough resources
1912  *
1913  * Must be called with xhci->lock held.
1914  */
1915 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1916 		struct xhci_input_control_ctx *ctrl_ctx)
1917 {
1918 	u32 added_eps;
1919 
1920 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1921 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1922 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1923 				"Not enough ep ctxs: "
1924 				"%u active, need to add %u, limit is %u.",
1925 				xhci->num_active_eps, added_eps,
1926 				xhci->limit_active_eps);
1927 		return -ENOMEM;
1928 	}
1929 	xhci->num_active_eps += added_eps;
1930 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1931 			"Adding %u ep ctxs, %u now active.", added_eps,
1932 			xhci->num_active_eps);
1933 	return 0;
1934 }
1935 
1936 /*
1937  * The configure endpoint was failed by the xHC for some other reason, so we
1938  * need to revert the resources that failed configuration would have used.
1939  *
1940  * Must be called with xhci->lock held.
1941  */
1942 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1943 		struct xhci_input_control_ctx *ctrl_ctx)
1944 {
1945 	u32 num_failed_eps;
1946 
1947 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1948 	xhci->num_active_eps -= num_failed_eps;
1949 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1950 			"Removing %u failed ep ctxs, %u now active.",
1951 			num_failed_eps,
1952 			xhci->num_active_eps);
1953 }
1954 
1955 /*
1956  * Now that the command has completed, clean up the active endpoint count by
1957  * subtracting out the endpoints that were dropped (but not changed).
1958  *
1959  * Must be called with xhci->lock held.
1960  */
1961 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1962 		struct xhci_input_control_ctx *ctrl_ctx)
1963 {
1964 	u32 num_dropped_eps;
1965 
1966 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1967 	xhci->num_active_eps -= num_dropped_eps;
1968 	if (num_dropped_eps)
1969 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1970 				"Removing %u dropped ep ctxs, %u now active.",
1971 				num_dropped_eps,
1972 				xhci->num_active_eps);
1973 }
1974 
1975 static unsigned int xhci_get_block_size(struct usb_device *udev)
1976 {
1977 	switch (udev->speed) {
1978 	case USB_SPEED_LOW:
1979 	case USB_SPEED_FULL:
1980 		return FS_BLOCK;
1981 	case USB_SPEED_HIGH:
1982 		return HS_BLOCK;
1983 	case USB_SPEED_SUPER:
1984 	case USB_SPEED_SUPER_PLUS:
1985 		return SS_BLOCK;
1986 	case USB_SPEED_UNKNOWN:
1987 	case USB_SPEED_WIRELESS:
1988 	default:
1989 		/* Should never happen */
1990 		return 1;
1991 	}
1992 }
1993 
1994 static unsigned int
1995 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1996 {
1997 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1998 		return LS_OVERHEAD;
1999 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2000 		return FS_OVERHEAD;
2001 	return HS_OVERHEAD;
2002 }
2003 
2004 /* If we are changing a LS/FS device under a HS hub,
2005  * make sure (if we are activating a new TT) that the HS bus has enough
2006  * bandwidth for this new TT.
2007  */
2008 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2009 		struct xhci_virt_device *virt_dev,
2010 		int old_active_eps)
2011 {
2012 	struct xhci_interval_bw_table *bw_table;
2013 	struct xhci_tt_bw_info *tt_info;
2014 
2015 	/* Find the bandwidth table for the root port this TT is attached to. */
2016 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2017 	tt_info = virt_dev->tt_info;
2018 	/* If this TT already had active endpoints, the bandwidth for this TT
2019 	 * has already been added.  Removing all periodic endpoints (and thus
2020 	 * making the TT enactive) will only decrease the bandwidth used.
2021 	 */
2022 	if (old_active_eps)
2023 		return 0;
2024 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2025 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2026 			return -ENOMEM;
2027 		return 0;
2028 	}
2029 	/* Not sure why we would have no new active endpoints...
2030 	 *
2031 	 * Maybe because of an Evaluate Context change for a hub update or a
2032 	 * control endpoint 0 max packet size change?
2033 	 * FIXME: skip the bandwidth calculation in that case.
2034 	 */
2035 	return 0;
2036 }
2037 
2038 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2039 		struct xhci_virt_device *virt_dev)
2040 {
2041 	unsigned int bw_reserved;
2042 
2043 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2044 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2045 		return -ENOMEM;
2046 
2047 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2048 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2049 		return -ENOMEM;
2050 
2051 	return 0;
2052 }
2053 
2054 /*
2055  * This algorithm is a very conservative estimate of the worst-case scheduling
2056  * scenario for any one interval.  The hardware dynamically schedules the
2057  * packets, so we can't tell which microframe could be the limiting factor in
2058  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2059  *
2060  * Obviously, we can't solve an NP complete problem to find the minimum worst
2061  * case scenario.  Instead, we come up with an estimate that is no less than
2062  * the worst case bandwidth used for any one microframe, but may be an
2063  * over-estimate.
2064  *
2065  * We walk the requirements for each endpoint by interval, starting with the
2066  * smallest interval, and place packets in the schedule where there is only one
2067  * possible way to schedule packets for that interval.  In order to simplify
2068  * this algorithm, we record the largest max packet size for each interval, and
2069  * assume all packets will be that size.
2070  *
2071  * For interval 0, we obviously must schedule all packets for each interval.
2072  * The bandwidth for interval 0 is just the amount of data to be transmitted
2073  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2074  * the number of packets).
2075  *
2076  * For interval 1, we have two possible microframes to schedule those packets
2077  * in.  For this algorithm, if we can schedule the same number of packets for
2078  * each possible scheduling opportunity (each microframe), we will do so.  The
2079  * remaining number of packets will be saved to be transmitted in the gaps in
2080  * the next interval's scheduling sequence.
2081  *
2082  * As we move those remaining packets to be scheduled with interval 2 packets,
2083  * we have to double the number of remaining packets to transmit.  This is
2084  * because the intervals are actually powers of 2, and we would be transmitting
2085  * the previous interval's packets twice in this interval.  We also have to be
2086  * sure that when we look at the largest max packet size for this interval, we
2087  * also look at the largest max packet size for the remaining packets and take
2088  * the greater of the two.
2089  *
2090  * The algorithm continues to evenly distribute packets in each scheduling
2091  * opportunity, and push the remaining packets out, until we get to the last
2092  * interval.  Then those packets and their associated overhead are just added
2093  * to the bandwidth used.
2094  */
2095 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2096 		struct xhci_virt_device *virt_dev,
2097 		int old_active_eps)
2098 {
2099 	unsigned int bw_reserved;
2100 	unsigned int max_bandwidth;
2101 	unsigned int bw_used;
2102 	unsigned int block_size;
2103 	struct xhci_interval_bw_table *bw_table;
2104 	unsigned int packet_size = 0;
2105 	unsigned int overhead = 0;
2106 	unsigned int packets_transmitted = 0;
2107 	unsigned int packets_remaining = 0;
2108 	unsigned int i;
2109 
2110 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2111 		return xhci_check_ss_bw(xhci, virt_dev);
2112 
2113 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2114 		max_bandwidth = HS_BW_LIMIT;
2115 		/* Convert percent of bus BW reserved to blocks reserved */
2116 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2117 	} else {
2118 		max_bandwidth = FS_BW_LIMIT;
2119 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2120 	}
2121 
2122 	bw_table = virt_dev->bw_table;
2123 	/* We need to translate the max packet size and max ESIT payloads into
2124 	 * the units the hardware uses.
2125 	 */
2126 	block_size = xhci_get_block_size(virt_dev->udev);
2127 
2128 	/* If we are manipulating a LS/FS device under a HS hub, double check
2129 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2130 	 */
2131 	if (virt_dev->tt_info) {
2132 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2133 				"Recalculating BW for rootport %u",
2134 				virt_dev->real_port);
2135 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2136 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2137 					"newly activated TT.\n");
2138 			return -ENOMEM;
2139 		}
2140 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2141 				"Recalculating BW for TT slot %u port %u",
2142 				virt_dev->tt_info->slot_id,
2143 				virt_dev->tt_info->ttport);
2144 	} else {
2145 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2146 				"Recalculating BW for rootport %u",
2147 				virt_dev->real_port);
2148 	}
2149 
2150 	/* Add in how much bandwidth will be used for interval zero, or the
2151 	 * rounded max ESIT payload + number of packets * largest overhead.
2152 	 */
2153 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2154 		bw_table->interval_bw[0].num_packets *
2155 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2156 
2157 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2158 		unsigned int bw_added;
2159 		unsigned int largest_mps;
2160 		unsigned int interval_overhead;
2161 
2162 		/*
2163 		 * How many packets could we transmit in this interval?
2164 		 * If packets didn't fit in the previous interval, we will need
2165 		 * to transmit that many packets twice within this interval.
2166 		 */
2167 		packets_remaining = 2 * packets_remaining +
2168 			bw_table->interval_bw[i].num_packets;
2169 
2170 		/* Find the largest max packet size of this or the previous
2171 		 * interval.
2172 		 */
2173 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2174 			largest_mps = 0;
2175 		else {
2176 			struct xhci_virt_ep *virt_ep;
2177 			struct list_head *ep_entry;
2178 
2179 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2180 			virt_ep = list_entry(ep_entry,
2181 					struct xhci_virt_ep, bw_endpoint_list);
2182 			/* Convert to blocks, rounding up */
2183 			largest_mps = DIV_ROUND_UP(
2184 					virt_ep->bw_info.max_packet_size,
2185 					block_size);
2186 		}
2187 		if (largest_mps > packet_size)
2188 			packet_size = largest_mps;
2189 
2190 		/* Use the larger overhead of this or the previous interval. */
2191 		interval_overhead = xhci_get_largest_overhead(
2192 				&bw_table->interval_bw[i]);
2193 		if (interval_overhead > overhead)
2194 			overhead = interval_overhead;
2195 
2196 		/* How many packets can we evenly distribute across
2197 		 * (1 << (i + 1)) possible scheduling opportunities?
2198 		 */
2199 		packets_transmitted = packets_remaining >> (i + 1);
2200 
2201 		/* Add in the bandwidth used for those scheduled packets */
2202 		bw_added = packets_transmitted * (overhead + packet_size);
2203 
2204 		/* How many packets do we have remaining to transmit? */
2205 		packets_remaining = packets_remaining % (1 << (i + 1));
2206 
2207 		/* What largest max packet size should those packets have? */
2208 		/* If we've transmitted all packets, don't carry over the
2209 		 * largest packet size.
2210 		 */
2211 		if (packets_remaining == 0) {
2212 			packet_size = 0;
2213 			overhead = 0;
2214 		} else if (packets_transmitted > 0) {
2215 			/* Otherwise if we do have remaining packets, and we've
2216 			 * scheduled some packets in this interval, take the
2217 			 * largest max packet size from endpoints with this
2218 			 * interval.
2219 			 */
2220 			packet_size = largest_mps;
2221 			overhead = interval_overhead;
2222 		}
2223 		/* Otherwise carry over packet_size and overhead from the last
2224 		 * time we had a remainder.
2225 		 */
2226 		bw_used += bw_added;
2227 		if (bw_used > max_bandwidth) {
2228 			xhci_warn(xhci, "Not enough bandwidth. "
2229 					"Proposed: %u, Max: %u\n",
2230 				bw_used, max_bandwidth);
2231 			return -ENOMEM;
2232 		}
2233 	}
2234 	/*
2235 	 * Ok, we know we have some packets left over after even-handedly
2236 	 * scheduling interval 15.  We don't know which microframes they will
2237 	 * fit into, so we over-schedule and say they will be scheduled every
2238 	 * microframe.
2239 	 */
2240 	if (packets_remaining > 0)
2241 		bw_used += overhead + packet_size;
2242 
2243 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2244 		unsigned int port_index = virt_dev->real_port - 1;
2245 
2246 		/* OK, we're manipulating a HS device attached to a
2247 		 * root port bandwidth domain.  Include the number of active TTs
2248 		 * in the bandwidth used.
2249 		 */
2250 		bw_used += TT_HS_OVERHEAD *
2251 			xhci->rh_bw[port_index].num_active_tts;
2252 	}
2253 
2254 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2255 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2256 		"Available: %u " "percent",
2257 		bw_used, max_bandwidth, bw_reserved,
2258 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2259 		max_bandwidth);
2260 
2261 	bw_used += bw_reserved;
2262 	if (bw_used > max_bandwidth) {
2263 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2264 				bw_used, max_bandwidth);
2265 		return -ENOMEM;
2266 	}
2267 
2268 	bw_table->bw_used = bw_used;
2269 	return 0;
2270 }
2271 
2272 static bool xhci_is_async_ep(unsigned int ep_type)
2273 {
2274 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2275 					ep_type != ISOC_IN_EP &&
2276 					ep_type != INT_IN_EP);
2277 }
2278 
2279 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2280 {
2281 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2282 }
2283 
2284 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2285 {
2286 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2287 
2288 	if (ep_bw->ep_interval == 0)
2289 		return SS_OVERHEAD_BURST +
2290 			(ep_bw->mult * ep_bw->num_packets *
2291 					(SS_OVERHEAD + mps));
2292 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2293 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2294 				1 << ep_bw->ep_interval);
2295 
2296 }
2297 
2298 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2299 		struct xhci_bw_info *ep_bw,
2300 		struct xhci_interval_bw_table *bw_table,
2301 		struct usb_device *udev,
2302 		struct xhci_virt_ep *virt_ep,
2303 		struct xhci_tt_bw_info *tt_info)
2304 {
2305 	struct xhci_interval_bw	*interval_bw;
2306 	int normalized_interval;
2307 
2308 	if (xhci_is_async_ep(ep_bw->type))
2309 		return;
2310 
2311 	if (udev->speed >= USB_SPEED_SUPER) {
2312 		if (xhci_is_sync_in_ep(ep_bw->type))
2313 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2314 				xhci_get_ss_bw_consumed(ep_bw);
2315 		else
2316 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2317 				xhci_get_ss_bw_consumed(ep_bw);
2318 		return;
2319 	}
2320 
2321 	/* SuperSpeed endpoints never get added to intervals in the table, so
2322 	 * this check is only valid for HS/FS/LS devices.
2323 	 */
2324 	if (list_empty(&virt_ep->bw_endpoint_list))
2325 		return;
2326 	/* For LS/FS devices, we need to translate the interval expressed in
2327 	 * microframes to frames.
2328 	 */
2329 	if (udev->speed == USB_SPEED_HIGH)
2330 		normalized_interval = ep_bw->ep_interval;
2331 	else
2332 		normalized_interval = ep_bw->ep_interval - 3;
2333 
2334 	if (normalized_interval == 0)
2335 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2336 	interval_bw = &bw_table->interval_bw[normalized_interval];
2337 	interval_bw->num_packets -= ep_bw->num_packets;
2338 	switch (udev->speed) {
2339 	case USB_SPEED_LOW:
2340 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2341 		break;
2342 	case USB_SPEED_FULL:
2343 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2344 		break;
2345 	case USB_SPEED_HIGH:
2346 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2347 		break;
2348 	case USB_SPEED_SUPER:
2349 	case USB_SPEED_SUPER_PLUS:
2350 	case USB_SPEED_UNKNOWN:
2351 	case USB_SPEED_WIRELESS:
2352 		/* Should never happen because only LS/FS/HS endpoints will get
2353 		 * added to the endpoint list.
2354 		 */
2355 		return;
2356 	}
2357 	if (tt_info)
2358 		tt_info->active_eps -= 1;
2359 	list_del_init(&virt_ep->bw_endpoint_list);
2360 }
2361 
2362 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2363 		struct xhci_bw_info *ep_bw,
2364 		struct xhci_interval_bw_table *bw_table,
2365 		struct usb_device *udev,
2366 		struct xhci_virt_ep *virt_ep,
2367 		struct xhci_tt_bw_info *tt_info)
2368 {
2369 	struct xhci_interval_bw	*interval_bw;
2370 	struct xhci_virt_ep *smaller_ep;
2371 	int normalized_interval;
2372 
2373 	if (xhci_is_async_ep(ep_bw->type))
2374 		return;
2375 
2376 	if (udev->speed == USB_SPEED_SUPER) {
2377 		if (xhci_is_sync_in_ep(ep_bw->type))
2378 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2379 				xhci_get_ss_bw_consumed(ep_bw);
2380 		else
2381 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2382 				xhci_get_ss_bw_consumed(ep_bw);
2383 		return;
2384 	}
2385 
2386 	/* For LS/FS devices, we need to translate the interval expressed in
2387 	 * microframes to frames.
2388 	 */
2389 	if (udev->speed == USB_SPEED_HIGH)
2390 		normalized_interval = ep_bw->ep_interval;
2391 	else
2392 		normalized_interval = ep_bw->ep_interval - 3;
2393 
2394 	if (normalized_interval == 0)
2395 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2396 	interval_bw = &bw_table->interval_bw[normalized_interval];
2397 	interval_bw->num_packets += ep_bw->num_packets;
2398 	switch (udev->speed) {
2399 	case USB_SPEED_LOW:
2400 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2401 		break;
2402 	case USB_SPEED_FULL:
2403 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2404 		break;
2405 	case USB_SPEED_HIGH:
2406 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2407 		break;
2408 	case USB_SPEED_SUPER:
2409 	case USB_SPEED_SUPER_PLUS:
2410 	case USB_SPEED_UNKNOWN:
2411 	case USB_SPEED_WIRELESS:
2412 		/* Should never happen because only LS/FS/HS endpoints will get
2413 		 * added to the endpoint list.
2414 		 */
2415 		return;
2416 	}
2417 
2418 	if (tt_info)
2419 		tt_info->active_eps += 1;
2420 	/* Insert the endpoint into the list, largest max packet size first. */
2421 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2422 			bw_endpoint_list) {
2423 		if (ep_bw->max_packet_size >=
2424 				smaller_ep->bw_info.max_packet_size) {
2425 			/* Add the new ep before the smaller endpoint */
2426 			list_add_tail(&virt_ep->bw_endpoint_list,
2427 					&smaller_ep->bw_endpoint_list);
2428 			return;
2429 		}
2430 	}
2431 	/* Add the new endpoint at the end of the list. */
2432 	list_add_tail(&virt_ep->bw_endpoint_list,
2433 			&interval_bw->endpoints);
2434 }
2435 
2436 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2437 		struct xhci_virt_device *virt_dev,
2438 		int old_active_eps)
2439 {
2440 	struct xhci_root_port_bw_info *rh_bw_info;
2441 	if (!virt_dev->tt_info)
2442 		return;
2443 
2444 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2445 	if (old_active_eps == 0 &&
2446 				virt_dev->tt_info->active_eps != 0) {
2447 		rh_bw_info->num_active_tts += 1;
2448 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2449 	} else if (old_active_eps != 0 &&
2450 				virt_dev->tt_info->active_eps == 0) {
2451 		rh_bw_info->num_active_tts -= 1;
2452 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2453 	}
2454 }
2455 
2456 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2457 		struct xhci_virt_device *virt_dev,
2458 		struct xhci_container_ctx *in_ctx)
2459 {
2460 	struct xhci_bw_info ep_bw_info[31];
2461 	int i;
2462 	struct xhci_input_control_ctx *ctrl_ctx;
2463 	int old_active_eps = 0;
2464 
2465 	if (virt_dev->tt_info)
2466 		old_active_eps = virt_dev->tt_info->active_eps;
2467 
2468 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2469 	if (!ctrl_ctx) {
2470 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2471 				__func__);
2472 		return -ENOMEM;
2473 	}
2474 
2475 	for (i = 0; i < 31; i++) {
2476 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2477 			continue;
2478 
2479 		/* Make a copy of the BW info in case we need to revert this */
2480 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2481 				sizeof(ep_bw_info[i]));
2482 		/* Drop the endpoint from the interval table if the endpoint is
2483 		 * being dropped or changed.
2484 		 */
2485 		if (EP_IS_DROPPED(ctrl_ctx, i))
2486 			xhci_drop_ep_from_interval_table(xhci,
2487 					&virt_dev->eps[i].bw_info,
2488 					virt_dev->bw_table,
2489 					virt_dev->udev,
2490 					&virt_dev->eps[i],
2491 					virt_dev->tt_info);
2492 	}
2493 	/* Overwrite the information stored in the endpoints' bw_info */
2494 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2495 	for (i = 0; i < 31; i++) {
2496 		/* Add any changed or added endpoints to the interval table */
2497 		if (EP_IS_ADDED(ctrl_ctx, i))
2498 			xhci_add_ep_to_interval_table(xhci,
2499 					&virt_dev->eps[i].bw_info,
2500 					virt_dev->bw_table,
2501 					virt_dev->udev,
2502 					&virt_dev->eps[i],
2503 					virt_dev->tt_info);
2504 	}
2505 
2506 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2507 		/* Ok, this fits in the bandwidth we have.
2508 		 * Update the number of active TTs.
2509 		 */
2510 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2511 		return 0;
2512 	}
2513 
2514 	/* We don't have enough bandwidth for this, revert the stored info. */
2515 	for (i = 0; i < 31; i++) {
2516 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2517 			continue;
2518 
2519 		/* Drop the new copies of any added or changed endpoints from
2520 		 * the interval table.
2521 		 */
2522 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2523 			xhci_drop_ep_from_interval_table(xhci,
2524 					&virt_dev->eps[i].bw_info,
2525 					virt_dev->bw_table,
2526 					virt_dev->udev,
2527 					&virt_dev->eps[i],
2528 					virt_dev->tt_info);
2529 		}
2530 		/* Revert the endpoint back to its old information */
2531 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2532 				sizeof(ep_bw_info[i]));
2533 		/* Add any changed or dropped endpoints back into the table */
2534 		if (EP_IS_DROPPED(ctrl_ctx, i))
2535 			xhci_add_ep_to_interval_table(xhci,
2536 					&virt_dev->eps[i].bw_info,
2537 					virt_dev->bw_table,
2538 					virt_dev->udev,
2539 					&virt_dev->eps[i],
2540 					virt_dev->tt_info);
2541 	}
2542 	return -ENOMEM;
2543 }
2544 
2545 
2546 /* Issue a configure endpoint command or evaluate context command
2547  * and wait for it to finish.
2548  */
2549 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2550 		struct usb_device *udev,
2551 		struct xhci_command *command,
2552 		bool ctx_change, bool must_succeed)
2553 {
2554 	int ret;
2555 	unsigned long flags;
2556 	struct xhci_input_control_ctx *ctrl_ctx;
2557 	struct xhci_virt_device *virt_dev;
2558 
2559 	if (!command)
2560 		return -EINVAL;
2561 
2562 	spin_lock_irqsave(&xhci->lock, flags);
2563 
2564 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2565 		spin_unlock_irqrestore(&xhci->lock, flags);
2566 		return -ESHUTDOWN;
2567 	}
2568 
2569 	virt_dev = xhci->devs[udev->slot_id];
2570 
2571 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2572 	if (!ctrl_ctx) {
2573 		spin_unlock_irqrestore(&xhci->lock, flags);
2574 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2575 				__func__);
2576 		return -ENOMEM;
2577 	}
2578 
2579 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2580 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2581 		spin_unlock_irqrestore(&xhci->lock, flags);
2582 		xhci_warn(xhci, "Not enough host resources, "
2583 				"active endpoint contexts = %u\n",
2584 				xhci->num_active_eps);
2585 		return -ENOMEM;
2586 	}
2587 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2588 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2589 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2590 			xhci_free_host_resources(xhci, ctrl_ctx);
2591 		spin_unlock_irqrestore(&xhci->lock, flags);
2592 		xhci_warn(xhci, "Not enough bandwidth\n");
2593 		return -ENOMEM;
2594 	}
2595 
2596 	if (!ctx_change)
2597 		ret = xhci_queue_configure_endpoint(xhci, command,
2598 				command->in_ctx->dma,
2599 				udev->slot_id, must_succeed);
2600 	else
2601 		ret = xhci_queue_evaluate_context(xhci, command,
2602 				command->in_ctx->dma,
2603 				udev->slot_id, must_succeed);
2604 	if (ret < 0) {
2605 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2606 			xhci_free_host_resources(xhci, ctrl_ctx);
2607 		spin_unlock_irqrestore(&xhci->lock, flags);
2608 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2609 				"FIXME allocate a new ring segment");
2610 		return -ENOMEM;
2611 	}
2612 	xhci_ring_cmd_db(xhci);
2613 	spin_unlock_irqrestore(&xhci->lock, flags);
2614 
2615 	/* Wait for the configure endpoint command to complete */
2616 	wait_for_completion(command->completion);
2617 
2618 	if (!ctx_change)
2619 		ret = xhci_configure_endpoint_result(xhci, udev,
2620 						     &command->status);
2621 	else
2622 		ret = xhci_evaluate_context_result(xhci, udev,
2623 						   &command->status);
2624 
2625 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2626 		spin_lock_irqsave(&xhci->lock, flags);
2627 		/* If the command failed, remove the reserved resources.
2628 		 * Otherwise, clean up the estimate to include dropped eps.
2629 		 */
2630 		if (ret)
2631 			xhci_free_host_resources(xhci, ctrl_ctx);
2632 		else
2633 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2634 		spin_unlock_irqrestore(&xhci->lock, flags);
2635 	}
2636 	return ret;
2637 }
2638 
2639 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2640 	struct xhci_virt_device *vdev, int i)
2641 {
2642 	struct xhci_virt_ep *ep = &vdev->eps[i];
2643 
2644 	if (ep->ep_state & EP_HAS_STREAMS) {
2645 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2646 				xhci_get_endpoint_address(i));
2647 		xhci_free_stream_info(xhci, ep->stream_info);
2648 		ep->stream_info = NULL;
2649 		ep->ep_state &= ~EP_HAS_STREAMS;
2650 	}
2651 }
2652 
2653 /* Called after one or more calls to xhci_add_endpoint() or
2654  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2655  * to call xhci_reset_bandwidth().
2656  *
2657  * Since we are in the middle of changing either configuration or
2658  * installing a new alt setting, the USB core won't allow URBs to be
2659  * enqueued for any endpoint on the old config or interface.  Nothing
2660  * else should be touching the xhci->devs[slot_id] structure, so we
2661  * don't need to take the xhci->lock for manipulating that.
2662  */
2663 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2664 {
2665 	int i;
2666 	int ret = 0;
2667 	struct xhci_hcd *xhci;
2668 	struct xhci_virt_device	*virt_dev;
2669 	struct xhci_input_control_ctx *ctrl_ctx;
2670 	struct xhci_slot_ctx *slot_ctx;
2671 	struct xhci_command *command;
2672 
2673 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2674 	if (ret <= 0)
2675 		return ret;
2676 	xhci = hcd_to_xhci(hcd);
2677 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2678 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2679 		return -ENODEV;
2680 
2681 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2682 	virt_dev = xhci->devs[udev->slot_id];
2683 
2684 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2685 	if (!command)
2686 		return -ENOMEM;
2687 
2688 	command->in_ctx = virt_dev->in_ctx;
2689 
2690 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2691 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2692 	if (!ctrl_ctx) {
2693 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2694 				__func__);
2695 		ret = -ENOMEM;
2696 		goto command_cleanup;
2697 	}
2698 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2699 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2700 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2701 
2702 	/* Don't issue the command if there's no endpoints to update. */
2703 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2704 	    ctrl_ctx->drop_flags == 0) {
2705 		ret = 0;
2706 		goto command_cleanup;
2707 	}
2708 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2709 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2710 	for (i = 31; i >= 1; i--) {
2711 		__le32 le32 = cpu_to_le32(BIT(i));
2712 
2713 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2714 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2715 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2716 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2717 			break;
2718 		}
2719 	}
2720 
2721 	ret = xhci_configure_endpoint(xhci, udev, command,
2722 			false, false);
2723 	if (ret)
2724 		/* Callee should call reset_bandwidth() */
2725 		goto command_cleanup;
2726 
2727 	/* Free any rings that were dropped, but not changed. */
2728 	for (i = 1; i < 31; i++) {
2729 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2730 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2731 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2732 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2733 		}
2734 	}
2735 	xhci_zero_in_ctx(xhci, virt_dev);
2736 	/*
2737 	 * Install any rings for completely new endpoints or changed endpoints,
2738 	 * and free any old rings from changed endpoints.
2739 	 */
2740 	for (i = 1; i < 31; i++) {
2741 		if (!virt_dev->eps[i].new_ring)
2742 			continue;
2743 		/* Only free the old ring if it exists.
2744 		 * It may not if this is the first add of an endpoint.
2745 		 */
2746 		if (virt_dev->eps[i].ring) {
2747 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2748 		}
2749 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2750 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2751 		virt_dev->eps[i].new_ring = NULL;
2752 	}
2753 command_cleanup:
2754 	kfree(command->completion);
2755 	kfree(command);
2756 
2757 	return ret;
2758 }
2759 
2760 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2761 {
2762 	struct xhci_hcd *xhci;
2763 	struct xhci_virt_device	*virt_dev;
2764 	int i, ret;
2765 
2766 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2767 	if (ret <= 0)
2768 		return;
2769 	xhci = hcd_to_xhci(hcd);
2770 
2771 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2772 	virt_dev = xhci->devs[udev->slot_id];
2773 	/* Free any rings allocated for added endpoints */
2774 	for (i = 0; i < 31; i++) {
2775 		if (virt_dev->eps[i].new_ring) {
2776 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2777 			virt_dev->eps[i].new_ring = NULL;
2778 		}
2779 	}
2780 	xhci_zero_in_ctx(xhci, virt_dev);
2781 }
2782 
2783 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2784 		struct xhci_container_ctx *in_ctx,
2785 		struct xhci_container_ctx *out_ctx,
2786 		struct xhci_input_control_ctx *ctrl_ctx,
2787 		u32 add_flags, u32 drop_flags)
2788 {
2789 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2790 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2791 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2792 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2793 }
2794 
2795 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2796 		unsigned int slot_id, unsigned int ep_index,
2797 		struct xhci_dequeue_state *deq_state)
2798 {
2799 	struct xhci_input_control_ctx *ctrl_ctx;
2800 	struct xhci_container_ctx *in_ctx;
2801 	struct xhci_ep_ctx *ep_ctx;
2802 	u32 added_ctxs;
2803 	dma_addr_t addr;
2804 
2805 	in_ctx = xhci->devs[slot_id]->in_ctx;
2806 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2807 	if (!ctrl_ctx) {
2808 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2809 				__func__);
2810 		return;
2811 	}
2812 
2813 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2814 			xhci->devs[slot_id]->out_ctx, ep_index);
2815 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2816 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2817 			deq_state->new_deq_ptr);
2818 	if (addr == 0) {
2819 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2820 				"reset ep command\n");
2821 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2822 				deq_state->new_deq_seg,
2823 				deq_state->new_deq_ptr);
2824 		return;
2825 	}
2826 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2827 
2828 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2829 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2830 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2831 			added_ctxs, added_ctxs);
2832 }
2833 
2834 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2835 			       unsigned int stream_id, struct xhci_td *td)
2836 {
2837 	struct xhci_dequeue_state deq_state;
2838 	struct xhci_virt_ep *ep;
2839 	struct usb_device *udev = td->urb->dev;
2840 
2841 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2842 			"Cleaning up stalled endpoint ring");
2843 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2844 	/* We need to move the HW's dequeue pointer past this TD,
2845 	 * or it will attempt to resend it on the next doorbell ring.
2846 	 */
2847 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2848 			ep_index, stream_id, td, &deq_state);
2849 
2850 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2851 		return;
2852 
2853 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2854 	 * issue a configure endpoint command later.
2855 	 */
2856 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2857 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2858 				"Queueing new dequeue state");
2859 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2860 				ep_index, &deq_state);
2861 	} else {
2862 		/* Better hope no one uses the input context between now and the
2863 		 * reset endpoint completion!
2864 		 * XXX: No idea how this hardware will react when stream rings
2865 		 * are enabled.
2866 		 */
2867 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2868 				"Setting up input context for "
2869 				"configure endpoint command");
2870 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2871 				ep_index, &deq_state);
2872 	}
2873 }
2874 
2875 /* Called when clearing halted device. The core should have sent the control
2876  * message to clear the device halt condition. The host side of the halt should
2877  * already be cleared with a reset endpoint command issued when the STALL tx
2878  * event was received.
2879  *
2880  * Context: in_interrupt
2881  */
2882 
2883 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2884 		struct usb_host_endpoint *ep)
2885 {
2886 	struct xhci_hcd *xhci;
2887 
2888 	xhci = hcd_to_xhci(hcd);
2889 
2890 	/*
2891 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2892 	 * The Reset Endpoint Command may only be issued to endpoints in the
2893 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2894 	 * Number of an endpoint that isn't in the Halted state, then software
2895 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2896 	 * for the target endpoint. that is in the Stopped state.
2897 	 */
2898 
2899 	/* For now just print debug to follow the situation */
2900 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2901 		 ep->desc.bEndpointAddress);
2902 }
2903 
2904 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2905 		struct usb_device *udev, struct usb_host_endpoint *ep,
2906 		unsigned int slot_id)
2907 {
2908 	int ret;
2909 	unsigned int ep_index;
2910 	unsigned int ep_state;
2911 
2912 	if (!ep)
2913 		return -EINVAL;
2914 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2915 	if (ret <= 0)
2916 		return -EINVAL;
2917 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2918 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2919 				" descriptor for ep 0x%x does not support streams\n",
2920 				ep->desc.bEndpointAddress);
2921 		return -EINVAL;
2922 	}
2923 
2924 	ep_index = xhci_get_endpoint_index(&ep->desc);
2925 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2926 	if (ep_state & EP_HAS_STREAMS ||
2927 			ep_state & EP_GETTING_STREAMS) {
2928 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2929 				"already has streams set up.\n",
2930 				ep->desc.bEndpointAddress);
2931 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2932 				"dynamic stream context array reallocation.\n");
2933 		return -EINVAL;
2934 	}
2935 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2936 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2937 				"endpoint 0x%x; URBs are pending.\n",
2938 				ep->desc.bEndpointAddress);
2939 		return -EINVAL;
2940 	}
2941 	return 0;
2942 }
2943 
2944 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2945 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2946 {
2947 	unsigned int max_streams;
2948 
2949 	/* The stream context array size must be a power of two */
2950 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2951 	/*
2952 	 * Find out how many primary stream array entries the host controller
2953 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2954 	 * level page entries), but that's an optional feature for xHCI host
2955 	 * controllers. xHCs must support at least 4 stream IDs.
2956 	 */
2957 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2958 	if (*num_stream_ctxs > max_streams) {
2959 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2960 				max_streams);
2961 		*num_stream_ctxs = max_streams;
2962 		*num_streams = max_streams;
2963 	}
2964 }
2965 
2966 /* Returns an error code if one of the endpoint already has streams.
2967  * This does not change any data structures, it only checks and gathers
2968  * information.
2969  */
2970 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2971 		struct usb_device *udev,
2972 		struct usb_host_endpoint **eps, unsigned int num_eps,
2973 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2974 {
2975 	unsigned int max_streams;
2976 	unsigned int endpoint_flag;
2977 	int i;
2978 	int ret;
2979 
2980 	for (i = 0; i < num_eps; i++) {
2981 		ret = xhci_check_streams_endpoint(xhci, udev,
2982 				eps[i], udev->slot_id);
2983 		if (ret < 0)
2984 			return ret;
2985 
2986 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2987 		if (max_streams < (*num_streams - 1)) {
2988 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2989 					eps[i]->desc.bEndpointAddress,
2990 					max_streams);
2991 			*num_streams = max_streams+1;
2992 		}
2993 
2994 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2995 		if (*changed_ep_bitmask & endpoint_flag)
2996 			return -EINVAL;
2997 		*changed_ep_bitmask |= endpoint_flag;
2998 	}
2999 	return 0;
3000 }
3001 
3002 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3003 		struct usb_device *udev,
3004 		struct usb_host_endpoint **eps, unsigned int num_eps)
3005 {
3006 	u32 changed_ep_bitmask = 0;
3007 	unsigned int slot_id;
3008 	unsigned int ep_index;
3009 	unsigned int ep_state;
3010 	int i;
3011 
3012 	slot_id = udev->slot_id;
3013 	if (!xhci->devs[slot_id])
3014 		return 0;
3015 
3016 	for (i = 0; i < num_eps; i++) {
3017 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3018 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3019 		/* Are streams already being freed for the endpoint? */
3020 		if (ep_state & EP_GETTING_NO_STREAMS) {
3021 			xhci_warn(xhci, "WARN Can't disable streams for "
3022 					"endpoint 0x%x, "
3023 					"streams are being disabled already\n",
3024 					eps[i]->desc.bEndpointAddress);
3025 			return 0;
3026 		}
3027 		/* Are there actually any streams to free? */
3028 		if (!(ep_state & EP_HAS_STREAMS) &&
3029 				!(ep_state & EP_GETTING_STREAMS)) {
3030 			xhci_warn(xhci, "WARN Can't disable streams for "
3031 					"endpoint 0x%x, "
3032 					"streams are already disabled!\n",
3033 					eps[i]->desc.bEndpointAddress);
3034 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3035 					"with non-streams endpoint\n");
3036 			return 0;
3037 		}
3038 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3039 	}
3040 	return changed_ep_bitmask;
3041 }
3042 
3043 /*
3044  * The USB device drivers use this function (through the HCD interface in USB
3045  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3046  * coordinate mass storage command queueing across multiple endpoints (basically
3047  * a stream ID == a task ID).
3048  *
3049  * Setting up streams involves allocating the same size stream context array
3050  * for each endpoint and issuing a configure endpoint command for all endpoints.
3051  *
3052  * Don't allow the call to succeed if one endpoint only supports one stream
3053  * (which means it doesn't support streams at all).
3054  *
3055  * Drivers may get less stream IDs than they asked for, if the host controller
3056  * hardware or endpoints claim they can't support the number of requested
3057  * stream IDs.
3058  */
3059 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3060 		struct usb_host_endpoint **eps, unsigned int num_eps,
3061 		unsigned int num_streams, gfp_t mem_flags)
3062 {
3063 	int i, ret;
3064 	struct xhci_hcd *xhci;
3065 	struct xhci_virt_device *vdev;
3066 	struct xhci_command *config_cmd;
3067 	struct xhci_input_control_ctx *ctrl_ctx;
3068 	unsigned int ep_index;
3069 	unsigned int num_stream_ctxs;
3070 	unsigned int max_packet;
3071 	unsigned long flags;
3072 	u32 changed_ep_bitmask = 0;
3073 
3074 	if (!eps)
3075 		return -EINVAL;
3076 
3077 	/* Add one to the number of streams requested to account for
3078 	 * stream 0 that is reserved for xHCI usage.
3079 	 */
3080 	num_streams += 1;
3081 	xhci = hcd_to_xhci(hcd);
3082 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3083 			num_streams);
3084 
3085 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3086 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3087 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3088 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3089 		return -ENOSYS;
3090 	}
3091 
3092 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3093 	if (!config_cmd)
3094 		return -ENOMEM;
3095 
3096 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3097 	if (!ctrl_ctx) {
3098 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3099 				__func__);
3100 		xhci_free_command(xhci, config_cmd);
3101 		return -ENOMEM;
3102 	}
3103 
3104 	/* Check to make sure all endpoints are not already configured for
3105 	 * streams.  While we're at it, find the maximum number of streams that
3106 	 * all the endpoints will support and check for duplicate endpoints.
3107 	 */
3108 	spin_lock_irqsave(&xhci->lock, flags);
3109 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3110 			num_eps, &num_streams, &changed_ep_bitmask);
3111 	if (ret < 0) {
3112 		xhci_free_command(xhci, config_cmd);
3113 		spin_unlock_irqrestore(&xhci->lock, flags);
3114 		return ret;
3115 	}
3116 	if (num_streams <= 1) {
3117 		xhci_warn(xhci, "WARN: endpoints can't handle "
3118 				"more than one stream.\n");
3119 		xhci_free_command(xhci, config_cmd);
3120 		spin_unlock_irqrestore(&xhci->lock, flags);
3121 		return -EINVAL;
3122 	}
3123 	vdev = xhci->devs[udev->slot_id];
3124 	/* Mark each endpoint as being in transition, so
3125 	 * xhci_urb_enqueue() will reject all URBs.
3126 	 */
3127 	for (i = 0; i < num_eps; i++) {
3128 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3129 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3130 	}
3131 	spin_unlock_irqrestore(&xhci->lock, flags);
3132 
3133 	/* Setup internal data structures and allocate HW data structures for
3134 	 * streams (but don't install the HW structures in the input context
3135 	 * until we're sure all memory allocation succeeded).
3136 	 */
3137 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3138 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3139 			num_stream_ctxs, num_streams);
3140 
3141 	for (i = 0; i < num_eps; i++) {
3142 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3143 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3144 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3145 				num_stream_ctxs,
3146 				num_streams,
3147 				max_packet, mem_flags);
3148 		if (!vdev->eps[ep_index].stream_info)
3149 			goto cleanup;
3150 		/* Set maxPstreams in endpoint context and update deq ptr to
3151 		 * point to stream context array. FIXME
3152 		 */
3153 	}
3154 
3155 	/* Set up the input context for a configure endpoint command. */
3156 	for (i = 0; i < num_eps; i++) {
3157 		struct xhci_ep_ctx *ep_ctx;
3158 
3159 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3160 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3161 
3162 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3163 				vdev->out_ctx, ep_index);
3164 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3165 				vdev->eps[ep_index].stream_info);
3166 	}
3167 	/* Tell the HW to drop its old copy of the endpoint context info
3168 	 * and add the updated copy from the input context.
3169 	 */
3170 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3171 			vdev->out_ctx, ctrl_ctx,
3172 			changed_ep_bitmask, changed_ep_bitmask);
3173 
3174 	/* Issue and wait for the configure endpoint command */
3175 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3176 			false, false);
3177 
3178 	/* xHC rejected the configure endpoint command for some reason, so we
3179 	 * leave the old ring intact and free our internal streams data
3180 	 * structure.
3181 	 */
3182 	if (ret < 0)
3183 		goto cleanup;
3184 
3185 	spin_lock_irqsave(&xhci->lock, flags);
3186 	for (i = 0; i < num_eps; i++) {
3187 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3188 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3189 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3190 			 udev->slot_id, ep_index);
3191 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3192 	}
3193 	xhci_free_command(xhci, config_cmd);
3194 	spin_unlock_irqrestore(&xhci->lock, flags);
3195 
3196 	/* Subtract 1 for stream 0, which drivers can't use */
3197 	return num_streams - 1;
3198 
3199 cleanup:
3200 	/* If it didn't work, free the streams! */
3201 	for (i = 0; i < num_eps; i++) {
3202 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3203 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3204 		vdev->eps[ep_index].stream_info = NULL;
3205 		/* FIXME Unset maxPstreams in endpoint context and
3206 		 * update deq ptr to point to normal string ring.
3207 		 */
3208 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3209 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3210 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3211 	}
3212 	xhci_free_command(xhci, config_cmd);
3213 	return -ENOMEM;
3214 }
3215 
3216 /* Transition the endpoint from using streams to being a "normal" endpoint
3217  * without streams.
3218  *
3219  * Modify the endpoint context state, submit a configure endpoint command,
3220  * and free all endpoint rings for streams if that completes successfully.
3221  */
3222 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3223 		struct usb_host_endpoint **eps, unsigned int num_eps,
3224 		gfp_t mem_flags)
3225 {
3226 	int i, ret;
3227 	struct xhci_hcd *xhci;
3228 	struct xhci_virt_device *vdev;
3229 	struct xhci_command *command;
3230 	struct xhci_input_control_ctx *ctrl_ctx;
3231 	unsigned int ep_index;
3232 	unsigned long flags;
3233 	u32 changed_ep_bitmask;
3234 
3235 	xhci = hcd_to_xhci(hcd);
3236 	vdev = xhci->devs[udev->slot_id];
3237 
3238 	/* Set up a configure endpoint command to remove the streams rings */
3239 	spin_lock_irqsave(&xhci->lock, flags);
3240 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3241 			udev, eps, num_eps);
3242 	if (changed_ep_bitmask == 0) {
3243 		spin_unlock_irqrestore(&xhci->lock, flags);
3244 		return -EINVAL;
3245 	}
3246 
3247 	/* Use the xhci_command structure from the first endpoint.  We may have
3248 	 * allocated too many, but the driver may call xhci_free_streams() for
3249 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3250 	 */
3251 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3252 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3253 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3254 	if (!ctrl_ctx) {
3255 		spin_unlock_irqrestore(&xhci->lock, flags);
3256 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3257 				__func__);
3258 		return -EINVAL;
3259 	}
3260 
3261 	for (i = 0; i < num_eps; i++) {
3262 		struct xhci_ep_ctx *ep_ctx;
3263 
3264 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3265 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3266 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3267 			EP_GETTING_NO_STREAMS;
3268 
3269 		xhci_endpoint_copy(xhci, command->in_ctx,
3270 				vdev->out_ctx, ep_index);
3271 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3272 				&vdev->eps[ep_index]);
3273 	}
3274 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3275 			vdev->out_ctx, ctrl_ctx,
3276 			changed_ep_bitmask, changed_ep_bitmask);
3277 	spin_unlock_irqrestore(&xhci->lock, flags);
3278 
3279 	/* Issue and wait for the configure endpoint command,
3280 	 * which must succeed.
3281 	 */
3282 	ret = xhci_configure_endpoint(xhci, udev, command,
3283 			false, true);
3284 
3285 	/* xHC rejected the configure endpoint command for some reason, so we
3286 	 * leave the streams rings intact.
3287 	 */
3288 	if (ret < 0)
3289 		return ret;
3290 
3291 	spin_lock_irqsave(&xhci->lock, flags);
3292 	for (i = 0; i < num_eps; i++) {
3293 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3294 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3295 		vdev->eps[ep_index].stream_info = NULL;
3296 		/* FIXME Unset maxPstreams in endpoint context and
3297 		 * update deq ptr to point to normal string ring.
3298 		 */
3299 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3300 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3301 	}
3302 	spin_unlock_irqrestore(&xhci->lock, flags);
3303 
3304 	return 0;
3305 }
3306 
3307 /*
3308  * Deletes endpoint resources for endpoints that were active before a Reset
3309  * Device command, or a Disable Slot command.  The Reset Device command leaves
3310  * the control endpoint intact, whereas the Disable Slot command deletes it.
3311  *
3312  * Must be called with xhci->lock held.
3313  */
3314 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3315 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3316 {
3317 	int i;
3318 	unsigned int num_dropped_eps = 0;
3319 	unsigned int drop_flags = 0;
3320 
3321 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3322 		if (virt_dev->eps[i].ring) {
3323 			drop_flags |= 1 << i;
3324 			num_dropped_eps++;
3325 		}
3326 	}
3327 	xhci->num_active_eps -= num_dropped_eps;
3328 	if (num_dropped_eps)
3329 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3330 				"Dropped %u ep ctxs, flags = 0x%x, "
3331 				"%u now active.",
3332 				num_dropped_eps, drop_flags,
3333 				xhci->num_active_eps);
3334 }
3335 
3336 /*
3337  * This submits a Reset Device Command, which will set the device state to 0,
3338  * set the device address to 0, and disable all the endpoints except the default
3339  * control endpoint.  The USB core should come back and call
3340  * xhci_address_device(), and then re-set up the configuration.  If this is
3341  * called because of a usb_reset_and_verify_device(), then the old alternate
3342  * settings will be re-installed through the normal bandwidth allocation
3343  * functions.
3344  *
3345  * Wait for the Reset Device command to finish.  Remove all structures
3346  * associated with the endpoints that were disabled.  Clear the input device
3347  * structure? Reset the control endpoint 0 max packet size?
3348  *
3349  * If the virt_dev to be reset does not exist or does not match the udev,
3350  * it means the device is lost, possibly due to the xHC restore error and
3351  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3352  * re-allocate the device.
3353  */
3354 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3355 		struct usb_device *udev)
3356 {
3357 	int ret, i;
3358 	unsigned long flags;
3359 	struct xhci_hcd *xhci;
3360 	unsigned int slot_id;
3361 	struct xhci_virt_device *virt_dev;
3362 	struct xhci_command *reset_device_cmd;
3363 	int last_freed_endpoint;
3364 	struct xhci_slot_ctx *slot_ctx;
3365 	int old_active_eps = 0;
3366 
3367 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3368 	if (ret <= 0)
3369 		return ret;
3370 	xhci = hcd_to_xhci(hcd);
3371 	slot_id = udev->slot_id;
3372 	virt_dev = xhci->devs[slot_id];
3373 	if (!virt_dev) {
3374 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3375 				"not exist. Re-allocate the device\n", slot_id);
3376 		ret = xhci_alloc_dev(hcd, udev);
3377 		if (ret == 1)
3378 			return 0;
3379 		else
3380 			return -EINVAL;
3381 	}
3382 
3383 	if (virt_dev->tt_info)
3384 		old_active_eps = virt_dev->tt_info->active_eps;
3385 
3386 	if (virt_dev->udev != udev) {
3387 		/* If the virt_dev and the udev does not match, this virt_dev
3388 		 * may belong to another udev.
3389 		 * Re-allocate the device.
3390 		 */
3391 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3392 				"not match the udev. Re-allocate the device\n",
3393 				slot_id);
3394 		ret = xhci_alloc_dev(hcd, udev);
3395 		if (ret == 1)
3396 			return 0;
3397 		else
3398 			return -EINVAL;
3399 	}
3400 
3401 	/* If device is not setup, there is no point in resetting it */
3402 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3403 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3404 						SLOT_STATE_DISABLED)
3405 		return 0;
3406 
3407 	trace_xhci_discover_or_reset_device(slot_ctx);
3408 
3409 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3410 	/* Allocate the command structure that holds the struct completion.
3411 	 * Assume we're in process context, since the normal device reset
3412 	 * process has to wait for the device anyway.  Storage devices are
3413 	 * reset as part of error handling, so use GFP_NOIO instead of
3414 	 * GFP_KERNEL.
3415 	 */
3416 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3417 	if (!reset_device_cmd) {
3418 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3419 		return -ENOMEM;
3420 	}
3421 
3422 	/* Attempt to submit the Reset Device command to the command ring */
3423 	spin_lock_irqsave(&xhci->lock, flags);
3424 
3425 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3426 	if (ret) {
3427 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3428 		spin_unlock_irqrestore(&xhci->lock, flags);
3429 		goto command_cleanup;
3430 	}
3431 	xhci_ring_cmd_db(xhci);
3432 	spin_unlock_irqrestore(&xhci->lock, flags);
3433 
3434 	/* Wait for the Reset Device command to finish */
3435 	wait_for_completion(reset_device_cmd->completion);
3436 
3437 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3438 	 * unless we tried to reset a slot ID that wasn't enabled,
3439 	 * or the device wasn't in the addressed or configured state.
3440 	 */
3441 	ret = reset_device_cmd->status;
3442 	switch (ret) {
3443 	case COMP_COMMAND_ABORTED:
3444 	case COMP_COMMAND_RING_STOPPED:
3445 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3446 		ret = -ETIME;
3447 		goto command_cleanup;
3448 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3449 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3450 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3451 				slot_id,
3452 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3453 		xhci_dbg(xhci, "Not freeing device rings.\n");
3454 		/* Don't treat this as an error.  May change my mind later. */
3455 		ret = 0;
3456 		goto command_cleanup;
3457 	case COMP_SUCCESS:
3458 		xhci_dbg(xhci, "Successful reset device command.\n");
3459 		break;
3460 	default:
3461 		if (xhci_is_vendor_info_code(xhci, ret))
3462 			break;
3463 		xhci_warn(xhci, "Unknown completion code %u for "
3464 				"reset device command.\n", ret);
3465 		ret = -EINVAL;
3466 		goto command_cleanup;
3467 	}
3468 
3469 	/* Free up host controller endpoint resources */
3470 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3471 		spin_lock_irqsave(&xhci->lock, flags);
3472 		/* Don't delete the default control endpoint resources */
3473 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3474 		spin_unlock_irqrestore(&xhci->lock, flags);
3475 	}
3476 
3477 	/* Everything but endpoint 0 is disabled, so free the rings. */
3478 	last_freed_endpoint = 1;
3479 	for (i = 1; i < 31; i++) {
3480 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3481 
3482 		if (ep->ep_state & EP_HAS_STREAMS) {
3483 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3484 					xhci_get_endpoint_address(i));
3485 			xhci_free_stream_info(xhci, ep->stream_info);
3486 			ep->stream_info = NULL;
3487 			ep->ep_state &= ~EP_HAS_STREAMS;
3488 		}
3489 
3490 		if (ep->ring) {
3491 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3492 			last_freed_endpoint = i;
3493 		}
3494 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3495 			xhci_drop_ep_from_interval_table(xhci,
3496 					&virt_dev->eps[i].bw_info,
3497 					virt_dev->bw_table,
3498 					udev,
3499 					&virt_dev->eps[i],
3500 					virt_dev->tt_info);
3501 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3502 	}
3503 	/* If necessary, update the number of active TTs on this root port */
3504 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3505 	ret = 0;
3506 
3507 command_cleanup:
3508 	xhci_free_command(xhci, reset_device_cmd);
3509 	return ret;
3510 }
3511 
3512 /*
3513  * At this point, the struct usb_device is about to go away, the device has
3514  * disconnected, and all traffic has been stopped and the endpoints have been
3515  * disabled.  Free any HC data structures associated with that device.
3516  */
3517 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3518 {
3519 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3520 	struct xhci_virt_device *virt_dev;
3521 	struct xhci_slot_ctx *slot_ctx;
3522 	int i, ret;
3523 	struct xhci_command *command;
3524 
3525 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3526 	if (!command)
3527 		return;
3528 
3529 #ifndef CONFIG_USB_DEFAULT_PERSIST
3530 	/*
3531 	 * We called pm_runtime_get_noresume when the device was attached.
3532 	 * Decrement the counter here to allow controller to runtime suspend
3533 	 * if no devices remain.
3534 	 */
3535 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3536 		pm_runtime_put_noidle(hcd->self.controller);
3537 #endif
3538 
3539 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3540 	/* If the host is halted due to driver unload, we still need to free the
3541 	 * device.
3542 	 */
3543 	if (ret <= 0 && ret != -ENODEV) {
3544 		kfree(command);
3545 		return;
3546 	}
3547 
3548 	virt_dev = xhci->devs[udev->slot_id];
3549 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3550 	trace_xhci_free_dev(slot_ctx);
3551 
3552 	/* Stop any wayward timer functions (which may grab the lock) */
3553 	for (i = 0; i < 31; i++) {
3554 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3555 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3556 	}
3557 
3558 	xhci_disable_slot(xhci, command, udev->slot_id);
3559 	/*
3560 	 * Event command completion handler will free any data structures
3561 	 * associated with the slot.  XXX Can free sleep?
3562 	 */
3563 }
3564 
3565 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command,
3566 			u32 slot_id)
3567 {
3568 	unsigned long flags;
3569 	u32 state;
3570 	int ret = 0;
3571 	struct xhci_virt_device *virt_dev;
3572 
3573 	virt_dev = xhci->devs[slot_id];
3574 	if (!virt_dev)
3575 		return -EINVAL;
3576 	if (!command)
3577 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3578 	if (!command)
3579 		return -ENOMEM;
3580 
3581 	spin_lock_irqsave(&xhci->lock, flags);
3582 	/* Don't disable the slot if the host controller is dead. */
3583 	state = readl(&xhci->op_regs->status);
3584 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3585 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3586 		xhci_free_virt_device(xhci, slot_id);
3587 		spin_unlock_irqrestore(&xhci->lock, flags);
3588 		kfree(command);
3589 		return ret;
3590 	}
3591 
3592 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3593 				slot_id);
3594 	if (ret) {
3595 		spin_unlock_irqrestore(&xhci->lock, flags);
3596 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3597 		return ret;
3598 	}
3599 	xhci_ring_cmd_db(xhci);
3600 	spin_unlock_irqrestore(&xhci->lock, flags);
3601 	return ret;
3602 }
3603 
3604 /*
3605  * Checks if we have enough host controller resources for the default control
3606  * endpoint.
3607  *
3608  * Must be called with xhci->lock held.
3609  */
3610 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3611 {
3612 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3613 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3614 				"Not enough ep ctxs: "
3615 				"%u active, need to add 1, limit is %u.",
3616 				xhci->num_active_eps, xhci->limit_active_eps);
3617 		return -ENOMEM;
3618 	}
3619 	xhci->num_active_eps += 1;
3620 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3621 			"Adding 1 ep ctx, %u now active.",
3622 			xhci->num_active_eps);
3623 	return 0;
3624 }
3625 
3626 
3627 /*
3628  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3629  * timed out, or allocating memory failed.  Returns 1 on success.
3630  */
3631 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3632 {
3633 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3634 	struct xhci_virt_device *vdev;
3635 	struct xhci_slot_ctx *slot_ctx;
3636 	unsigned long flags;
3637 	int ret, slot_id;
3638 	struct xhci_command *command;
3639 
3640 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3641 	if (!command)
3642 		return 0;
3643 
3644 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3645 	mutex_lock(&xhci->mutex);
3646 	spin_lock_irqsave(&xhci->lock, flags);
3647 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3648 	if (ret) {
3649 		spin_unlock_irqrestore(&xhci->lock, flags);
3650 		mutex_unlock(&xhci->mutex);
3651 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3652 		xhci_free_command(xhci, command);
3653 		return 0;
3654 	}
3655 	xhci_ring_cmd_db(xhci);
3656 	spin_unlock_irqrestore(&xhci->lock, flags);
3657 
3658 	wait_for_completion(command->completion);
3659 	slot_id = command->slot_id;
3660 	mutex_unlock(&xhci->mutex);
3661 
3662 	if (!slot_id || command->status != COMP_SUCCESS) {
3663 		xhci_err(xhci, "Error while assigning device slot ID\n");
3664 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3665 				HCS_MAX_SLOTS(
3666 					readl(&xhci->cap_regs->hcs_params1)));
3667 		xhci_free_command(xhci, command);
3668 		return 0;
3669 	}
3670 
3671 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3672 		spin_lock_irqsave(&xhci->lock, flags);
3673 		ret = xhci_reserve_host_control_ep_resources(xhci);
3674 		if (ret) {
3675 			spin_unlock_irqrestore(&xhci->lock, flags);
3676 			xhci_warn(xhci, "Not enough host resources, "
3677 					"active endpoint contexts = %u\n",
3678 					xhci->num_active_eps);
3679 			goto disable_slot;
3680 		}
3681 		spin_unlock_irqrestore(&xhci->lock, flags);
3682 	}
3683 	/* Use GFP_NOIO, since this function can be called from
3684 	 * xhci_discover_or_reset_device(), which may be called as part of
3685 	 * mass storage driver error handling.
3686 	 */
3687 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3688 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3689 		goto disable_slot;
3690 	}
3691 	vdev = xhci->devs[slot_id];
3692 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3693 	trace_xhci_alloc_dev(slot_ctx);
3694 
3695 	udev->slot_id = slot_id;
3696 
3697 #ifndef CONFIG_USB_DEFAULT_PERSIST
3698 	/*
3699 	 * If resetting upon resume, we can't put the controller into runtime
3700 	 * suspend if there is a device attached.
3701 	 */
3702 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3703 		pm_runtime_get_noresume(hcd->self.controller);
3704 #endif
3705 
3706 
3707 	xhci_free_command(xhci, command);
3708 	/* Is this a LS or FS device under a HS hub? */
3709 	/* Hub or peripherial? */
3710 	return 1;
3711 
3712 disable_slot:
3713 	/* Disable slot, if we can do it without mem alloc */
3714 	kfree(command->completion);
3715 	command->completion = NULL;
3716 	command->status = 0;
3717 	return xhci_disable_slot(xhci, command, udev->slot_id);
3718 }
3719 
3720 /*
3721  * Issue an Address Device command and optionally send a corresponding
3722  * SetAddress request to the device.
3723  */
3724 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3725 			     enum xhci_setup_dev setup)
3726 {
3727 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3728 	unsigned long flags;
3729 	struct xhci_virt_device *virt_dev;
3730 	int ret = 0;
3731 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3732 	struct xhci_slot_ctx *slot_ctx;
3733 	struct xhci_input_control_ctx *ctrl_ctx;
3734 	u64 temp_64;
3735 	struct xhci_command *command = NULL;
3736 
3737 	mutex_lock(&xhci->mutex);
3738 
3739 	if (xhci->xhc_state) {	/* dying, removing or halted */
3740 		ret = -ESHUTDOWN;
3741 		goto out;
3742 	}
3743 
3744 	if (!udev->slot_id) {
3745 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3746 				"Bad Slot ID %d", udev->slot_id);
3747 		ret = -EINVAL;
3748 		goto out;
3749 	}
3750 
3751 	virt_dev = xhci->devs[udev->slot_id];
3752 
3753 	if (WARN_ON(!virt_dev)) {
3754 		/*
3755 		 * In plug/unplug torture test with an NEC controller,
3756 		 * a zero-dereference was observed once due to virt_dev = 0.
3757 		 * Print useful debug rather than crash if it is observed again!
3758 		 */
3759 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3760 			udev->slot_id);
3761 		ret = -EINVAL;
3762 		goto out;
3763 	}
3764 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3765 	trace_xhci_setup_device_slot(slot_ctx);
3766 
3767 	if (setup == SETUP_CONTEXT_ONLY) {
3768 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3769 		    SLOT_STATE_DEFAULT) {
3770 			xhci_dbg(xhci, "Slot already in default state\n");
3771 			goto out;
3772 		}
3773 	}
3774 
3775 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3776 	if (!command) {
3777 		ret = -ENOMEM;
3778 		goto out;
3779 	}
3780 
3781 	command->in_ctx = virt_dev->in_ctx;
3782 
3783 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3784 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3785 	if (!ctrl_ctx) {
3786 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3787 				__func__);
3788 		ret = -EINVAL;
3789 		goto out;
3790 	}
3791 	/*
3792 	 * If this is the first Set Address since device plug-in or
3793 	 * virt_device realloaction after a resume with an xHCI power loss,
3794 	 * then set up the slot context.
3795 	 */
3796 	if (!slot_ctx->dev_info)
3797 		xhci_setup_addressable_virt_dev(xhci, udev);
3798 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3799 	else
3800 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3801 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3802 	ctrl_ctx->drop_flags = 0;
3803 
3804 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3805 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3806 
3807 	spin_lock_irqsave(&xhci->lock, flags);
3808 	trace_xhci_setup_device(virt_dev);
3809 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3810 					udev->slot_id, setup);
3811 	if (ret) {
3812 		spin_unlock_irqrestore(&xhci->lock, flags);
3813 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3814 				"FIXME: allocate a command ring segment");
3815 		goto out;
3816 	}
3817 	xhci_ring_cmd_db(xhci);
3818 	spin_unlock_irqrestore(&xhci->lock, flags);
3819 
3820 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3821 	wait_for_completion(command->completion);
3822 
3823 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3824 	 * the SetAddress() "recovery interval" required by USB and aborting the
3825 	 * command on a timeout.
3826 	 */
3827 	switch (command->status) {
3828 	case COMP_COMMAND_ABORTED:
3829 	case COMP_COMMAND_RING_STOPPED:
3830 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3831 		ret = -ETIME;
3832 		break;
3833 	case COMP_CONTEXT_STATE_ERROR:
3834 	case COMP_SLOT_NOT_ENABLED_ERROR:
3835 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3836 			 act, udev->slot_id);
3837 		ret = -EINVAL;
3838 		break;
3839 	case COMP_USB_TRANSACTION_ERROR:
3840 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3841 		ret = -EPROTO;
3842 		break;
3843 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3844 		dev_warn(&udev->dev,
3845 			 "ERROR: Incompatible device for setup %s command\n", act);
3846 		ret = -ENODEV;
3847 		break;
3848 	case COMP_SUCCESS:
3849 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3850 			       "Successful setup %s command", act);
3851 		break;
3852 	default:
3853 		xhci_err(xhci,
3854 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3855 			 act, command->status);
3856 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3857 		ret = -EINVAL;
3858 		break;
3859 	}
3860 	if (ret)
3861 		goto out;
3862 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3863 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3864 			"Op regs DCBAA ptr = %#016llx", temp_64);
3865 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3866 		"Slot ID %d dcbaa entry @%p = %#016llx",
3867 		udev->slot_id,
3868 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3869 		(unsigned long long)
3870 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3871 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3872 			"Output Context DMA address = %#08llx",
3873 			(unsigned long long)virt_dev->out_ctx->dma);
3874 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3875 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3876 	/*
3877 	 * USB core uses address 1 for the roothubs, so we add one to the
3878 	 * address given back to us by the HC.
3879 	 */
3880 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3881 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3882 	/* Zero the input context control for later use */
3883 	ctrl_ctx->add_flags = 0;
3884 	ctrl_ctx->drop_flags = 0;
3885 
3886 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3887 		       "Internal device address = %d",
3888 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3889 out:
3890 	mutex_unlock(&xhci->mutex);
3891 	if (command) {
3892 		kfree(command->completion);
3893 		kfree(command);
3894 	}
3895 	return ret;
3896 }
3897 
3898 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3899 {
3900 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3901 }
3902 
3903 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3904 {
3905 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3906 }
3907 
3908 /*
3909  * Transfer the port index into real index in the HW port status
3910  * registers. Caculate offset between the port's PORTSC register
3911  * and port status base. Divide the number of per port register
3912  * to get the real index. The raw port number bases 1.
3913  */
3914 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3915 {
3916 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3917 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3918 	__le32 __iomem *addr;
3919 	int raw_port;
3920 
3921 	if (hcd->speed < HCD_USB3)
3922 		addr = xhci->usb2_ports[port1 - 1];
3923 	else
3924 		addr = xhci->usb3_ports[port1 - 1];
3925 
3926 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3927 	return raw_port;
3928 }
3929 
3930 /*
3931  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3932  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3933  */
3934 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3935 			struct usb_device *udev, u16 max_exit_latency)
3936 {
3937 	struct xhci_virt_device *virt_dev;
3938 	struct xhci_command *command;
3939 	struct xhci_input_control_ctx *ctrl_ctx;
3940 	struct xhci_slot_ctx *slot_ctx;
3941 	unsigned long flags;
3942 	int ret;
3943 
3944 	spin_lock_irqsave(&xhci->lock, flags);
3945 
3946 	virt_dev = xhci->devs[udev->slot_id];
3947 
3948 	/*
3949 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3950 	 * xHC was re-initialized. Exit latency will be set later after
3951 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3952 	 */
3953 
3954 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3955 		spin_unlock_irqrestore(&xhci->lock, flags);
3956 		return 0;
3957 	}
3958 
3959 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3960 	command = xhci->lpm_command;
3961 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3962 	if (!ctrl_ctx) {
3963 		spin_unlock_irqrestore(&xhci->lock, flags);
3964 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3965 				__func__);
3966 		return -ENOMEM;
3967 	}
3968 
3969 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3970 	spin_unlock_irqrestore(&xhci->lock, flags);
3971 
3972 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3973 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3974 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3975 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3976 	slot_ctx->dev_state = 0;
3977 
3978 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3979 			"Set up evaluate context for LPM MEL change.");
3980 
3981 	/* Issue and wait for the evaluate context command. */
3982 	ret = xhci_configure_endpoint(xhci, udev, command,
3983 			true, true);
3984 
3985 	if (!ret) {
3986 		spin_lock_irqsave(&xhci->lock, flags);
3987 		virt_dev->current_mel = max_exit_latency;
3988 		spin_unlock_irqrestore(&xhci->lock, flags);
3989 	}
3990 	return ret;
3991 }
3992 
3993 #ifdef CONFIG_PM
3994 
3995 /* BESL to HIRD Encoding array for USB2 LPM */
3996 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3997 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3998 
3999 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4000 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4001 					struct usb_device *udev)
4002 {
4003 	int u2del, besl, besl_host;
4004 	int besl_device = 0;
4005 	u32 field;
4006 
4007 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4008 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4009 
4010 	if (field & USB_BESL_SUPPORT) {
4011 		for (besl_host = 0; besl_host < 16; besl_host++) {
4012 			if (xhci_besl_encoding[besl_host] >= u2del)
4013 				break;
4014 		}
4015 		/* Use baseline BESL value as default */
4016 		if (field & USB_BESL_BASELINE_VALID)
4017 			besl_device = USB_GET_BESL_BASELINE(field);
4018 		else if (field & USB_BESL_DEEP_VALID)
4019 			besl_device = USB_GET_BESL_DEEP(field);
4020 	} else {
4021 		if (u2del <= 50)
4022 			besl_host = 0;
4023 		else
4024 			besl_host = (u2del - 51) / 75 + 1;
4025 	}
4026 
4027 	besl = besl_host + besl_device;
4028 	if (besl > 15)
4029 		besl = 15;
4030 
4031 	return besl;
4032 }
4033 
4034 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4035 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4036 {
4037 	u32 field;
4038 	int l1;
4039 	int besld = 0;
4040 	int hirdm = 0;
4041 
4042 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4043 
4044 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4045 	l1 = udev->l1_params.timeout / 256;
4046 
4047 	/* device has preferred BESLD */
4048 	if (field & USB_BESL_DEEP_VALID) {
4049 		besld = USB_GET_BESL_DEEP(field);
4050 		hirdm = 1;
4051 	}
4052 
4053 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4054 }
4055 
4056 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4057 			struct usb_device *udev, int enable)
4058 {
4059 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4060 	__le32 __iomem	**port_array;
4061 	__le32 __iomem	*pm_addr, *hlpm_addr;
4062 	u32		pm_val, hlpm_val, field;
4063 	unsigned int	port_num;
4064 	unsigned long	flags;
4065 	int		hird, exit_latency;
4066 	int		ret;
4067 
4068 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4069 			!udev->lpm_capable)
4070 		return -EPERM;
4071 
4072 	if (!udev->parent || udev->parent->parent ||
4073 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4074 		return -EPERM;
4075 
4076 	if (udev->usb2_hw_lpm_capable != 1)
4077 		return -EPERM;
4078 
4079 	spin_lock_irqsave(&xhci->lock, flags);
4080 
4081 	port_array = xhci->usb2_ports;
4082 	port_num = udev->portnum - 1;
4083 	pm_addr = port_array[port_num] + PORTPMSC;
4084 	pm_val = readl(pm_addr);
4085 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4086 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4087 
4088 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4089 			enable ? "enable" : "disable", port_num + 1);
4090 
4091 	if (enable) {
4092 		/* Host supports BESL timeout instead of HIRD */
4093 		if (udev->usb2_hw_lpm_besl_capable) {
4094 			/* if device doesn't have a preferred BESL value use a
4095 			 * default one which works with mixed HIRD and BESL
4096 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4097 			 */
4098 			if ((field & USB_BESL_SUPPORT) &&
4099 			    (field & USB_BESL_BASELINE_VALID))
4100 				hird = USB_GET_BESL_BASELINE(field);
4101 			else
4102 				hird = udev->l1_params.besl;
4103 
4104 			exit_latency = xhci_besl_encoding[hird];
4105 			spin_unlock_irqrestore(&xhci->lock, flags);
4106 
4107 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4108 			 * input context for link powermanagement evaluate
4109 			 * context commands. It is protected by hcd->bandwidth
4110 			 * mutex and is shared by all devices. We need to set
4111 			 * the max ext latency in USB 2 BESL LPM as well, so
4112 			 * use the same mutex and xhci_change_max_exit_latency()
4113 			 */
4114 			mutex_lock(hcd->bandwidth_mutex);
4115 			ret = xhci_change_max_exit_latency(xhci, udev,
4116 							   exit_latency);
4117 			mutex_unlock(hcd->bandwidth_mutex);
4118 
4119 			if (ret < 0)
4120 				return ret;
4121 			spin_lock_irqsave(&xhci->lock, flags);
4122 
4123 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4124 			writel(hlpm_val, hlpm_addr);
4125 			/* flush write */
4126 			readl(hlpm_addr);
4127 		} else {
4128 			hird = xhci_calculate_hird_besl(xhci, udev);
4129 		}
4130 
4131 		pm_val &= ~PORT_HIRD_MASK;
4132 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4133 		writel(pm_val, pm_addr);
4134 		pm_val = readl(pm_addr);
4135 		pm_val |= PORT_HLE;
4136 		writel(pm_val, pm_addr);
4137 		/* flush write */
4138 		readl(pm_addr);
4139 	} else {
4140 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4141 		writel(pm_val, pm_addr);
4142 		/* flush write */
4143 		readl(pm_addr);
4144 		if (udev->usb2_hw_lpm_besl_capable) {
4145 			spin_unlock_irqrestore(&xhci->lock, flags);
4146 			mutex_lock(hcd->bandwidth_mutex);
4147 			xhci_change_max_exit_latency(xhci, udev, 0);
4148 			mutex_unlock(hcd->bandwidth_mutex);
4149 			return 0;
4150 		}
4151 	}
4152 
4153 	spin_unlock_irqrestore(&xhci->lock, flags);
4154 	return 0;
4155 }
4156 
4157 /* check if a usb2 port supports a given extened capability protocol
4158  * only USB2 ports extended protocol capability values are cached.
4159  * Return 1 if capability is supported
4160  */
4161 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4162 					   unsigned capability)
4163 {
4164 	u32 port_offset, port_count;
4165 	int i;
4166 
4167 	for (i = 0; i < xhci->num_ext_caps; i++) {
4168 		if (xhci->ext_caps[i] & capability) {
4169 			/* port offsets starts at 1 */
4170 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4171 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4172 			if (port >= port_offset &&
4173 			    port < port_offset + port_count)
4174 				return 1;
4175 		}
4176 	}
4177 	return 0;
4178 }
4179 
4180 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4181 {
4182 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4183 	int		portnum = udev->portnum - 1;
4184 
4185 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4186 			!udev->lpm_capable)
4187 		return 0;
4188 
4189 	/* we only support lpm for non-hub device connected to root hub yet */
4190 	if (!udev->parent || udev->parent->parent ||
4191 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4192 		return 0;
4193 
4194 	if (xhci->hw_lpm_support == 1 &&
4195 			xhci_check_usb2_port_capability(
4196 				xhci, portnum, XHCI_HLC)) {
4197 		udev->usb2_hw_lpm_capable = 1;
4198 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4199 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4200 		if (xhci_check_usb2_port_capability(xhci, portnum,
4201 					XHCI_BLC))
4202 			udev->usb2_hw_lpm_besl_capable = 1;
4203 	}
4204 
4205 	return 0;
4206 }
4207 
4208 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4209 
4210 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4211 static unsigned long long xhci_service_interval_to_ns(
4212 		struct usb_endpoint_descriptor *desc)
4213 {
4214 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4215 }
4216 
4217 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4218 		enum usb3_link_state state)
4219 {
4220 	unsigned long long sel;
4221 	unsigned long long pel;
4222 	unsigned int max_sel_pel;
4223 	char *state_name;
4224 
4225 	switch (state) {
4226 	case USB3_LPM_U1:
4227 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4228 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4229 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4230 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4231 		state_name = "U1";
4232 		break;
4233 	case USB3_LPM_U2:
4234 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4235 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4236 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4237 		state_name = "U2";
4238 		break;
4239 	default:
4240 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4241 				__func__);
4242 		return USB3_LPM_DISABLED;
4243 	}
4244 
4245 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4246 		return USB3_LPM_DEVICE_INITIATED;
4247 
4248 	if (sel > max_sel_pel)
4249 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4250 				"due to long SEL %llu ms\n",
4251 				state_name, sel);
4252 	else
4253 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4254 				"due to long PEL %llu ms\n",
4255 				state_name, pel);
4256 	return USB3_LPM_DISABLED;
4257 }
4258 
4259 /* The U1 timeout should be the maximum of the following values:
4260  *  - For control endpoints, U1 system exit latency (SEL) * 3
4261  *  - For bulk endpoints, U1 SEL * 5
4262  *  - For interrupt endpoints:
4263  *    - Notification EPs, U1 SEL * 3
4264  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4265  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4266  */
4267 static unsigned long long xhci_calculate_intel_u1_timeout(
4268 		struct usb_device *udev,
4269 		struct usb_endpoint_descriptor *desc)
4270 {
4271 	unsigned long long timeout_ns;
4272 	int ep_type;
4273 	int intr_type;
4274 
4275 	ep_type = usb_endpoint_type(desc);
4276 	switch (ep_type) {
4277 	case USB_ENDPOINT_XFER_CONTROL:
4278 		timeout_ns = udev->u1_params.sel * 3;
4279 		break;
4280 	case USB_ENDPOINT_XFER_BULK:
4281 		timeout_ns = udev->u1_params.sel * 5;
4282 		break;
4283 	case USB_ENDPOINT_XFER_INT:
4284 		intr_type = usb_endpoint_interrupt_type(desc);
4285 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4286 			timeout_ns = udev->u1_params.sel * 3;
4287 			break;
4288 		}
4289 		/* Otherwise the calculation is the same as isoc eps */
4290 	case USB_ENDPOINT_XFER_ISOC:
4291 		timeout_ns = xhci_service_interval_to_ns(desc);
4292 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4293 		if (timeout_ns < udev->u1_params.sel * 2)
4294 			timeout_ns = udev->u1_params.sel * 2;
4295 		break;
4296 	default:
4297 		return 0;
4298 	}
4299 
4300 	return timeout_ns;
4301 }
4302 
4303 /* Returns the hub-encoded U1 timeout value. */
4304 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4305 		struct usb_device *udev,
4306 		struct usb_endpoint_descriptor *desc)
4307 {
4308 	unsigned long long timeout_ns;
4309 
4310 	if (xhci->quirks & XHCI_INTEL_HOST)
4311 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4312 	else
4313 		timeout_ns = udev->u1_params.sel;
4314 
4315 	/* The U1 timeout is encoded in 1us intervals.
4316 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4317 	 */
4318 	if (timeout_ns == USB3_LPM_DISABLED)
4319 		timeout_ns = 1;
4320 	else
4321 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4322 
4323 	/* If the necessary timeout value is bigger than what we can set in the
4324 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4325 	 */
4326 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4327 		return timeout_ns;
4328 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4329 			"due to long timeout %llu ms\n", timeout_ns);
4330 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4331 }
4332 
4333 /* The U2 timeout should be the maximum of:
4334  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4335  *  - largest bInterval of any active periodic endpoint (to avoid going
4336  *    into lower power link states between intervals).
4337  *  - the U2 Exit Latency of the device
4338  */
4339 static unsigned long long xhci_calculate_intel_u2_timeout(
4340 		struct usb_device *udev,
4341 		struct usb_endpoint_descriptor *desc)
4342 {
4343 	unsigned long long timeout_ns;
4344 	unsigned long long u2_del_ns;
4345 
4346 	timeout_ns = 10 * 1000 * 1000;
4347 
4348 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4349 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4350 		timeout_ns = xhci_service_interval_to_ns(desc);
4351 
4352 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4353 	if (u2_del_ns > timeout_ns)
4354 		timeout_ns = u2_del_ns;
4355 
4356 	return timeout_ns;
4357 }
4358 
4359 /* Returns the hub-encoded U2 timeout value. */
4360 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4361 		struct usb_device *udev,
4362 		struct usb_endpoint_descriptor *desc)
4363 {
4364 	unsigned long long timeout_ns;
4365 
4366 	if (xhci->quirks & XHCI_INTEL_HOST)
4367 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4368 	else
4369 		timeout_ns = udev->u2_params.sel;
4370 
4371 	/* The U2 timeout is encoded in 256us intervals */
4372 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4373 	/* If the necessary timeout value is bigger than what we can set in the
4374 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4375 	 */
4376 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4377 		return timeout_ns;
4378 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4379 			"due to long timeout %llu ms\n", timeout_ns);
4380 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4381 }
4382 
4383 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4384 		struct usb_device *udev,
4385 		struct usb_endpoint_descriptor *desc,
4386 		enum usb3_link_state state,
4387 		u16 *timeout)
4388 {
4389 	if (state == USB3_LPM_U1)
4390 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4391 	else if (state == USB3_LPM_U2)
4392 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4393 
4394 	return USB3_LPM_DISABLED;
4395 }
4396 
4397 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4398 		struct usb_device *udev,
4399 		struct usb_endpoint_descriptor *desc,
4400 		enum usb3_link_state state,
4401 		u16 *timeout)
4402 {
4403 	u16 alt_timeout;
4404 
4405 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4406 		desc, state, timeout);
4407 
4408 	/* If we found we can't enable hub-initiated LPM, or
4409 	 * the U1 or U2 exit latency was too high to allow
4410 	 * device-initiated LPM as well, just stop searching.
4411 	 */
4412 	if (alt_timeout == USB3_LPM_DISABLED ||
4413 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4414 		*timeout = alt_timeout;
4415 		return -E2BIG;
4416 	}
4417 	if (alt_timeout > *timeout)
4418 		*timeout = alt_timeout;
4419 	return 0;
4420 }
4421 
4422 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4423 		struct usb_device *udev,
4424 		struct usb_host_interface *alt,
4425 		enum usb3_link_state state,
4426 		u16 *timeout)
4427 {
4428 	int j;
4429 
4430 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4431 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4432 					&alt->endpoint[j].desc, state, timeout))
4433 			return -E2BIG;
4434 		continue;
4435 	}
4436 	return 0;
4437 }
4438 
4439 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4440 		enum usb3_link_state state)
4441 {
4442 	struct usb_device *parent;
4443 	unsigned int num_hubs;
4444 
4445 	if (state == USB3_LPM_U2)
4446 		return 0;
4447 
4448 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4449 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4450 			parent = parent->parent)
4451 		num_hubs++;
4452 
4453 	if (num_hubs < 2)
4454 		return 0;
4455 
4456 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4457 			" below second-tier hub.\n");
4458 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4459 			"to decrease power consumption.\n");
4460 	return -E2BIG;
4461 }
4462 
4463 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4464 		struct usb_device *udev,
4465 		enum usb3_link_state state)
4466 {
4467 	if (xhci->quirks & XHCI_INTEL_HOST)
4468 		return xhci_check_intel_tier_policy(udev, state);
4469 	else
4470 		return 0;
4471 }
4472 
4473 /* Returns the U1 or U2 timeout that should be enabled.
4474  * If the tier check or timeout setting functions return with a non-zero exit
4475  * code, that means the timeout value has been finalized and we shouldn't look
4476  * at any more endpoints.
4477  */
4478 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4479 			struct usb_device *udev, enum usb3_link_state state)
4480 {
4481 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4482 	struct usb_host_config *config;
4483 	char *state_name;
4484 	int i;
4485 	u16 timeout = USB3_LPM_DISABLED;
4486 
4487 	if (state == USB3_LPM_U1)
4488 		state_name = "U1";
4489 	else if (state == USB3_LPM_U2)
4490 		state_name = "U2";
4491 	else {
4492 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4493 				state);
4494 		return timeout;
4495 	}
4496 
4497 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4498 		return timeout;
4499 
4500 	/* Gather some information about the currently installed configuration
4501 	 * and alternate interface settings.
4502 	 */
4503 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4504 			state, &timeout))
4505 		return timeout;
4506 
4507 	config = udev->actconfig;
4508 	if (!config)
4509 		return timeout;
4510 
4511 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4512 		struct usb_driver *driver;
4513 		struct usb_interface *intf = config->interface[i];
4514 
4515 		if (!intf)
4516 			continue;
4517 
4518 		/* Check if any currently bound drivers want hub-initiated LPM
4519 		 * disabled.
4520 		 */
4521 		if (intf->dev.driver) {
4522 			driver = to_usb_driver(intf->dev.driver);
4523 			if (driver && driver->disable_hub_initiated_lpm) {
4524 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4525 						"at request of driver %s\n",
4526 						state_name, driver->name);
4527 				return xhci_get_timeout_no_hub_lpm(udev, state);
4528 			}
4529 		}
4530 
4531 		/* Not sure how this could happen... */
4532 		if (!intf->cur_altsetting)
4533 			continue;
4534 
4535 		if (xhci_update_timeout_for_interface(xhci, udev,
4536 					intf->cur_altsetting,
4537 					state, &timeout))
4538 			return timeout;
4539 	}
4540 	return timeout;
4541 }
4542 
4543 static int calculate_max_exit_latency(struct usb_device *udev,
4544 		enum usb3_link_state state_changed,
4545 		u16 hub_encoded_timeout)
4546 {
4547 	unsigned long long u1_mel_us = 0;
4548 	unsigned long long u2_mel_us = 0;
4549 	unsigned long long mel_us = 0;
4550 	bool disabling_u1;
4551 	bool disabling_u2;
4552 	bool enabling_u1;
4553 	bool enabling_u2;
4554 
4555 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4556 			hub_encoded_timeout == USB3_LPM_DISABLED);
4557 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4558 			hub_encoded_timeout == USB3_LPM_DISABLED);
4559 
4560 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4561 			hub_encoded_timeout != USB3_LPM_DISABLED);
4562 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4563 			hub_encoded_timeout != USB3_LPM_DISABLED);
4564 
4565 	/* If U1 was already enabled and we're not disabling it,
4566 	 * or we're going to enable U1, account for the U1 max exit latency.
4567 	 */
4568 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4569 			enabling_u1)
4570 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4571 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4572 			enabling_u2)
4573 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4574 
4575 	if (u1_mel_us > u2_mel_us)
4576 		mel_us = u1_mel_us;
4577 	else
4578 		mel_us = u2_mel_us;
4579 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4580 	if (mel_us > MAX_EXIT) {
4581 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4582 				"is too big.\n", mel_us);
4583 		return -E2BIG;
4584 	}
4585 	return mel_us;
4586 }
4587 
4588 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4589 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4590 			struct usb_device *udev, enum usb3_link_state state)
4591 {
4592 	struct xhci_hcd	*xhci;
4593 	u16 hub_encoded_timeout;
4594 	int mel;
4595 	int ret;
4596 
4597 	xhci = hcd_to_xhci(hcd);
4598 	/* The LPM timeout values are pretty host-controller specific, so don't
4599 	 * enable hub-initiated timeouts unless the vendor has provided
4600 	 * information about their timeout algorithm.
4601 	 */
4602 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4603 			!xhci->devs[udev->slot_id])
4604 		return USB3_LPM_DISABLED;
4605 
4606 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4607 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4608 	if (mel < 0) {
4609 		/* Max Exit Latency is too big, disable LPM. */
4610 		hub_encoded_timeout = USB3_LPM_DISABLED;
4611 		mel = 0;
4612 	}
4613 
4614 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4615 	if (ret)
4616 		return ret;
4617 	return hub_encoded_timeout;
4618 }
4619 
4620 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4621 			struct usb_device *udev, enum usb3_link_state state)
4622 {
4623 	struct xhci_hcd	*xhci;
4624 	u16 mel;
4625 
4626 	xhci = hcd_to_xhci(hcd);
4627 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4628 			!xhci->devs[udev->slot_id])
4629 		return 0;
4630 
4631 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4632 	return xhci_change_max_exit_latency(xhci, udev, mel);
4633 }
4634 #else /* CONFIG_PM */
4635 
4636 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4637 				struct usb_device *udev, int enable)
4638 {
4639 	return 0;
4640 }
4641 
4642 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4643 {
4644 	return 0;
4645 }
4646 
4647 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4648 			struct usb_device *udev, enum usb3_link_state state)
4649 {
4650 	return USB3_LPM_DISABLED;
4651 }
4652 
4653 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4654 			struct usb_device *udev, enum usb3_link_state state)
4655 {
4656 	return 0;
4657 }
4658 #endif	/* CONFIG_PM */
4659 
4660 /*-------------------------------------------------------------------------*/
4661 
4662 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4663  * internal data structures for the device.
4664  */
4665 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4666 			struct usb_tt *tt, gfp_t mem_flags)
4667 {
4668 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4669 	struct xhci_virt_device *vdev;
4670 	struct xhci_command *config_cmd;
4671 	struct xhci_input_control_ctx *ctrl_ctx;
4672 	struct xhci_slot_ctx *slot_ctx;
4673 	unsigned long flags;
4674 	unsigned think_time;
4675 	int ret;
4676 
4677 	/* Ignore root hubs */
4678 	if (!hdev->parent)
4679 		return 0;
4680 
4681 	vdev = xhci->devs[hdev->slot_id];
4682 	if (!vdev) {
4683 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4684 		return -EINVAL;
4685 	}
4686 
4687 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4688 	if (!config_cmd)
4689 		return -ENOMEM;
4690 
4691 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4692 	if (!ctrl_ctx) {
4693 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4694 				__func__);
4695 		xhci_free_command(xhci, config_cmd);
4696 		return -ENOMEM;
4697 	}
4698 
4699 	spin_lock_irqsave(&xhci->lock, flags);
4700 	if (hdev->speed == USB_SPEED_HIGH &&
4701 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4702 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4703 		xhci_free_command(xhci, config_cmd);
4704 		spin_unlock_irqrestore(&xhci->lock, flags);
4705 		return -ENOMEM;
4706 	}
4707 
4708 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4709 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4710 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4711 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4712 	/*
4713 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4714 	 * but it may be already set to 1 when setup an xHCI virtual
4715 	 * device, so clear it anyway.
4716 	 */
4717 	if (tt->multi)
4718 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4719 	else if (hdev->speed == USB_SPEED_FULL)
4720 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4721 
4722 	if (xhci->hci_version > 0x95) {
4723 		xhci_dbg(xhci, "xHCI version %x needs hub "
4724 				"TT think time and number of ports\n",
4725 				(unsigned int) xhci->hci_version);
4726 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4727 		/* Set TT think time - convert from ns to FS bit times.
4728 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4729 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4730 		 *
4731 		 * xHCI 1.0: this field shall be 0 if the device is not a
4732 		 * High-spped hub.
4733 		 */
4734 		think_time = tt->think_time;
4735 		if (think_time != 0)
4736 			think_time = (think_time / 666) - 1;
4737 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4738 			slot_ctx->tt_info |=
4739 				cpu_to_le32(TT_THINK_TIME(think_time));
4740 	} else {
4741 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4742 				"TT think time or number of ports\n",
4743 				(unsigned int) xhci->hci_version);
4744 	}
4745 	slot_ctx->dev_state = 0;
4746 	spin_unlock_irqrestore(&xhci->lock, flags);
4747 
4748 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4749 			(xhci->hci_version > 0x95) ?
4750 			"configure endpoint" : "evaluate context");
4751 
4752 	/* Issue and wait for the configure endpoint or
4753 	 * evaluate context command.
4754 	 */
4755 	if (xhci->hci_version > 0x95)
4756 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4757 				false, false);
4758 	else
4759 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4760 				true, false);
4761 
4762 	xhci_free_command(xhci, config_cmd);
4763 	return ret;
4764 }
4765 
4766 static int xhci_get_frame(struct usb_hcd *hcd)
4767 {
4768 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4769 	/* EHCI mods by the periodic size.  Why? */
4770 	return readl(&xhci->run_regs->microframe_index) >> 3;
4771 }
4772 
4773 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4774 {
4775 	struct xhci_hcd		*xhci;
4776 	/*
4777 	 * TODO: Check with DWC3 clients for sysdev according to
4778 	 * quirks
4779 	 */
4780 	struct device		*dev = hcd->self.sysdev;
4781 	int			retval;
4782 
4783 	/* Accept arbitrarily long scatter-gather lists */
4784 	hcd->self.sg_tablesize = ~0;
4785 
4786 	/* support to build packet from discontinuous buffers */
4787 	hcd->self.no_sg_constraint = 1;
4788 
4789 	/* XHCI controllers don't stop the ep queue on short packets :| */
4790 	hcd->self.no_stop_on_short = 1;
4791 
4792 	xhci = hcd_to_xhci(hcd);
4793 
4794 	if (usb_hcd_is_primary_hcd(hcd)) {
4795 		xhci->main_hcd = hcd;
4796 		/* Mark the first roothub as being USB 2.0.
4797 		 * The xHCI driver will register the USB 3.0 roothub.
4798 		 */
4799 		hcd->speed = HCD_USB2;
4800 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4801 		/*
4802 		 * USB 2.0 roothub under xHCI has an integrated TT,
4803 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4804 		 * companion controller.
4805 		 */
4806 		hcd->has_tt = 1;
4807 	} else {
4808 		/* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4809 		if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4810 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4811 			hcd->speed = HCD_USB31;
4812 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4813 		}
4814 		/* xHCI private pointer was set in xhci_pci_probe for the second
4815 		 * registered roothub.
4816 		 */
4817 		return 0;
4818 	}
4819 
4820 	mutex_init(&xhci->mutex);
4821 	xhci->cap_regs = hcd->regs;
4822 	xhci->op_regs = hcd->regs +
4823 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4824 	xhci->run_regs = hcd->regs +
4825 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4826 	/* Cache read-only capability registers */
4827 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4828 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4829 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4830 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4831 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4832 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4833 	if (xhci->hci_version > 0x100)
4834 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4835 	xhci_print_registers(xhci);
4836 
4837 	xhci->quirks |= quirks;
4838 
4839 	get_quirks(dev, xhci);
4840 
4841 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4842 	 * success event after a short transfer. This quirk will ignore such
4843 	 * spurious event.
4844 	 */
4845 	if (xhci->hci_version > 0x96)
4846 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4847 
4848 	/* Make sure the HC is halted. */
4849 	retval = xhci_halt(xhci);
4850 	if (retval)
4851 		return retval;
4852 
4853 	xhci_dbg(xhci, "Resetting HCD\n");
4854 	/* Reset the internal HC memory state and registers. */
4855 	retval = xhci_reset(xhci);
4856 	if (retval)
4857 		return retval;
4858 	xhci_dbg(xhci, "Reset complete\n");
4859 
4860 	/*
4861 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4862 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4863 	 * address memory pointers actually. So, this driver clears the AC64
4864 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4865 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4866 	 */
4867 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4868 		xhci->hcc_params &= ~BIT(0);
4869 
4870 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4871 	 * if xHC supports 64-bit addressing */
4872 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4873 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4874 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4875 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4876 	} else {
4877 		/*
4878 		 * This is to avoid error in cases where a 32-bit USB
4879 		 * controller is used on a 64-bit capable system.
4880 		 */
4881 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4882 		if (retval)
4883 			return retval;
4884 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4885 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4886 	}
4887 
4888 	xhci_dbg(xhci, "Calling HCD init\n");
4889 	/* Initialize HCD and host controller data structures. */
4890 	retval = xhci_init(hcd);
4891 	if (retval)
4892 		return retval;
4893 	xhci_dbg(xhci, "Called HCD init\n");
4894 
4895 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4896 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4897 
4898 	return 0;
4899 }
4900 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4901 
4902 static const struct hc_driver xhci_hc_driver = {
4903 	.description =		"xhci-hcd",
4904 	.product_desc =		"xHCI Host Controller",
4905 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4906 
4907 	/*
4908 	 * generic hardware linkage
4909 	 */
4910 	.irq =			xhci_irq,
4911 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4912 
4913 	/*
4914 	 * basic lifecycle operations
4915 	 */
4916 	.reset =		NULL, /* set in xhci_init_driver() */
4917 	.start =		xhci_run,
4918 	.stop =			xhci_stop,
4919 	.shutdown =		xhci_shutdown,
4920 
4921 	/*
4922 	 * managing i/o requests and associated device resources
4923 	 */
4924 	.urb_enqueue =		xhci_urb_enqueue,
4925 	.urb_dequeue =		xhci_urb_dequeue,
4926 	.alloc_dev =		xhci_alloc_dev,
4927 	.free_dev =		xhci_free_dev,
4928 	.alloc_streams =	xhci_alloc_streams,
4929 	.free_streams =		xhci_free_streams,
4930 	.add_endpoint =		xhci_add_endpoint,
4931 	.drop_endpoint =	xhci_drop_endpoint,
4932 	.endpoint_reset =	xhci_endpoint_reset,
4933 	.check_bandwidth =	xhci_check_bandwidth,
4934 	.reset_bandwidth =	xhci_reset_bandwidth,
4935 	.address_device =	xhci_address_device,
4936 	.enable_device =	xhci_enable_device,
4937 	.update_hub_device =	xhci_update_hub_device,
4938 	.reset_device =		xhci_discover_or_reset_device,
4939 
4940 	/*
4941 	 * scheduling support
4942 	 */
4943 	.get_frame_number =	xhci_get_frame,
4944 
4945 	/*
4946 	 * root hub support
4947 	 */
4948 	.hub_control =		xhci_hub_control,
4949 	.hub_status_data =	xhci_hub_status_data,
4950 	.bus_suspend =		xhci_bus_suspend,
4951 	.bus_resume =		xhci_bus_resume,
4952 
4953 	/*
4954 	 * call back when device connected and addressed
4955 	 */
4956 	.update_device =        xhci_update_device,
4957 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4958 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4959 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
4960 	.find_raw_port_number =	xhci_find_raw_port_number,
4961 };
4962 
4963 void xhci_init_driver(struct hc_driver *drv,
4964 		      const struct xhci_driver_overrides *over)
4965 {
4966 	BUG_ON(!over);
4967 
4968 	/* Copy the generic table to drv then apply the overrides */
4969 	*drv = xhci_hc_driver;
4970 
4971 	if (over) {
4972 		drv->hcd_priv_size += over->extra_priv_size;
4973 		if (over->reset)
4974 			drv->reset = over->reset;
4975 		if (over->start)
4976 			drv->start = over->start;
4977 	}
4978 }
4979 EXPORT_SYMBOL_GPL(xhci_init_driver);
4980 
4981 MODULE_DESCRIPTION(DRIVER_DESC);
4982 MODULE_AUTHOR(DRIVER_AUTHOR);
4983 MODULE_LICENSE("GPL");
4984 
4985 static int __init xhci_hcd_init(void)
4986 {
4987 	/*
4988 	 * Check the compiler generated sizes of structures that must be laid
4989 	 * out in specific ways for hardware access.
4990 	 */
4991 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4992 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4993 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4994 	/* xhci_device_control has eight fields, and also
4995 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4996 	 */
4997 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4998 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4999 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5000 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5001 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5002 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5003 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5004 
5005 	if (usb_disabled())
5006 		return -ENODEV;
5007 
5008 	return 0;
5009 }
5010 
5011 /*
5012  * If an init function is provided, an exit function must also be provided
5013  * to allow module unload.
5014  */
5015 static void __exit xhci_hcd_fini(void) { }
5016 
5017 module_init(xhci_hcd_init);
5018 module_exit(xhci_hcd_fini);
5019