1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-mtk.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, usec); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 115 xhci_quiesce(xhci); 116 117 ret = xhci_handshake(&xhci->op_regs->status, 118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 119 if (ret) { 120 xhci_warn(xhci, "Host halt failed, %d\n", ret); 121 return ret; 122 } 123 xhci->xhc_state |= XHCI_STATE_HALTED; 124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 125 return ret; 126 } 127 128 /* 129 * Set the run bit and wait for the host to be running. 130 */ 131 int xhci_start(struct xhci_hcd *xhci) 132 { 133 u32 temp; 134 int ret; 135 136 temp = readl(&xhci->op_regs->command); 137 temp |= (CMD_RUN); 138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 139 temp); 140 writel(temp, &xhci->op_regs->command); 141 142 /* 143 * Wait for the HCHalted Status bit to be 0 to indicate the host is 144 * running. 145 */ 146 ret = xhci_handshake(&xhci->op_regs->status, 147 STS_HALT, 0, XHCI_MAX_HALT_USEC); 148 if (ret == -ETIMEDOUT) 149 xhci_err(xhci, "Host took too long to start, " 150 "waited %u microseconds.\n", 151 XHCI_MAX_HALT_USEC); 152 if (!ret) 153 /* clear state flags. Including dying, halted or removing */ 154 xhci->xhc_state = 0; 155 156 return ret; 157 } 158 159 /* 160 * Reset a halted HC. 161 * 162 * This resets pipelines, timers, counters, state machines, etc. 163 * Transactions will be terminated immediately, and operational registers 164 * will be set to their defaults. 165 */ 166 int xhci_reset(struct xhci_hcd *xhci) 167 { 168 u32 command; 169 u32 state; 170 int ret; 171 172 state = readl(&xhci->op_regs->status); 173 174 if (state == ~(u32)0) { 175 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 176 return -ENODEV; 177 } 178 179 if ((state & STS_HALT) == 0) { 180 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 181 return 0; 182 } 183 184 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 185 command = readl(&xhci->op_regs->command); 186 command |= CMD_RESET; 187 writel(command, &xhci->op_regs->command); 188 189 /* Existing Intel xHCI controllers require a delay of 1 mS, 190 * after setting the CMD_RESET bit, and before accessing any 191 * HC registers. This allows the HC to complete the 192 * reset operation and be ready for HC register access. 193 * Without this delay, the subsequent HC register access, 194 * may result in a system hang very rarely. 195 */ 196 if (xhci->quirks & XHCI_INTEL_HOST) 197 udelay(1000); 198 199 ret = xhci_handshake(&xhci->op_regs->command, 200 CMD_RESET, 0, 10 * 1000 * 1000); 201 if (ret) 202 return ret; 203 204 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 205 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 206 207 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 208 "Wait for controller to be ready for doorbell rings"); 209 /* 210 * xHCI cannot write to any doorbells or operational registers other 211 * than status until the "Controller Not Ready" flag is cleared. 212 */ 213 ret = xhci_handshake(&xhci->op_regs->status, 214 STS_CNR, 0, 10 * 1000 * 1000); 215 216 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 217 xhci->usb2_rhub.bus_state.suspended_ports = 0; 218 xhci->usb2_rhub.bus_state.resuming_ports = 0; 219 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb3_rhub.bus_state.suspended_ports = 0; 221 xhci->usb3_rhub.bus_state.resuming_ports = 0; 222 223 return ret; 224 } 225 226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 227 { 228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 229 int err, i; 230 u64 val; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) { 270 struct xhci_intr_reg __iomem *ir; 271 272 ir = &xhci->run_regs->ir_set[i]; 273 val = xhci_read_64(xhci, &ir->erst_base); 274 if (upper_32_bits(val)) 275 xhci_write_64(xhci, 0, &ir->erst_base); 276 val= xhci_read_64(xhci, &ir->erst_dequeue); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_dequeue); 279 } 280 281 /* Wait for the fault to appear. It will be cleared on reset */ 282 err = xhci_handshake(&xhci->op_regs->status, 283 STS_FATAL, STS_FATAL, 284 XHCI_MAX_HALT_USEC); 285 if (!err) 286 xhci_info(xhci, "Fault detected\n"); 287 } 288 289 #ifdef CONFIG_USB_PCI 290 /* 291 * Set up MSI 292 */ 293 static int xhci_setup_msi(struct xhci_hcd *xhci) 294 { 295 int ret; 296 /* 297 * TODO:Check with MSI Soc for sysdev 298 */ 299 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 300 301 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 302 if (ret < 0) { 303 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 304 "failed to allocate MSI entry"); 305 return ret; 306 } 307 308 ret = request_irq(pdev->irq, xhci_msi_irq, 309 0, "xhci_hcd", xhci_to_hcd(xhci)); 310 if (ret) { 311 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 312 "disable MSI interrupt"); 313 pci_free_irq_vectors(pdev); 314 } 315 316 return ret; 317 } 318 319 /* 320 * Set up MSI-X 321 */ 322 static int xhci_setup_msix(struct xhci_hcd *xhci) 323 { 324 int i, ret = 0; 325 struct usb_hcd *hcd = xhci_to_hcd(xhci); 326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 327 328 /* 329 * calculate number of msi-x vectors supported. 330 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 331 * with max number of interrupters based on the xhci HCSPARAMS1. 332 * - num_online_cpus: maximum msi-x vectors per CPUs core. 333 * Add additional 1 vector to ensure always available interrupt. 334 */ 335 xhci->msix_count = min(num_online_cpus() + 1, 336 HCS_MAX_INTRS(xhci->hcs_params1)); 337 338 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 339 PCI_IRQ_MSIX); 340 if (ret < 0) { 341 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 342 "Failed to enable MSI-X"); 343 return ret; 344 } 345 346 for (i = 0; i < xhci->msix_count; i++) { 347 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 348 "xhci_hcd", xhci_to_hcd(xhci)); 349 if (ret) 350 goto disable_msix; 351 } 352 353 hcd->msix_enabled = 1; 354 return ret; 355 356 disable_msix: 357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 358 while (--i >= 0) 359 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 360 pci_free_irq_vectors(pdev); 361 return ret; 362 } 363 364 /* Free any IRQs and disable MSI-X */ 365 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 366 { 367 struct usb_hcd *hcd = xhci_to_hcd(xhci); 368 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 369 370 if (xhci->quirks & XHCI_PLAT) 371 return; 372 373 /* return if using legacy interrupt */ 374 if (hcd->irq > 0) 375 return; 376 377 if (hcd->msix_enabled) { 378 int i; 379 380 for (i = 0; i < xhci->msix_count; i++) 381 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 382 } else { 383 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 384 } 385 386 pci_free_irq_vectors(pdev); 387 hcd->msix_enabled = 0; 388 } 389 390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 391 { 392 struct usb_hcd *hcd = xhci_to_hcd(xhci); 393 394 if (hcd->msix_enabled) { 395 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 396 int i; 397 398 for (i = 0; i < xhci->msix_count; i++) 399 synchronize_irq(pci_irq_vector(pdev, i)); 400 } 401 } 402 403 static int xhci_try_enable_msi(struct usb_hcd *hcd) 404 { 405 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 406 struct pci_dev *pdev; 407 int ret; 408 409 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 410 if (xhci->quirks & XHCI_PLAT) 411 return 0; 412 413 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 414 /* 415 * Some Fresco Logic host controllers advertise MSI, but fail to 416 * generate interrupts. Don't even try to enable MSI. 417 */ 418 if (xhci->quirks & XHCI_BROKEN_MSI) 419 goto legacy_irq; 420 421 /* unregister the legacy interrupt */ 422 if (hcd->irq) 423 free_irq(hcd->irq, hcd); 424 hcd->irq = 0; 425 426 ret = xhci_setup_msix(xhci); 427 if (ret) 428 /* fall back to msi*/ 429 ret = xhci_setup_msi(xhci); 430 431 if (!ret) { 432 hcd->msi_enabled = 1; 433 return 0; 434 } 435 436 if (!pdev->irq) { 437 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 438 return -EINVAL; 439 } 440 441 legacy_irq: 442 if (!strlen(hcd->irq_descr)) 443 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 444 hcd->driver->description, hcd->self.busnum); 445 446 /* fall back to legacy interrupt*/ 447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 448 hcd->irq_descr, hcd); 449 if (ret) { 450 xhci_err(xhci, "request interrupt %d failed\n", 451 pdev->irq); 452 return ret; 453 } 454 hcd->irq = pdev->irq; 455 return 0; 456 } 457 458 #else 459 460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 461 { 462 return 0; 463 } 464 465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 466 { 467 } 468 469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 470 { 471 } 472 473 #endif 474 475 static void compliance_mode_recovery(struct timer_list *t) 476 { 477 struct xhci_hcd *xhci; 478 struct usb_hcd *hcd; 479 struct xhci_hub *rhub; 480 u32 temp; 481 int i; 482 483 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 484 rhub = &xhci->usb3_rhub; 485 486 for (i = 0; i < rhub->num_ports; i++) { 487 temp = readl(rhub->ports[i]->addr); 488 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 489 /* 490 * Compliance Mode Detected. Letting USB Core 491 * handle the Warm Reset 492 */ 493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 494 "Compliance mode detected->port %d", 495 i + 1); 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Attempting compliance mode recovery"); 498 hcd = xhci->shared_hcd; 499 500 if (hcd->state == HC_STATE_SUSPENDED) 501 usb_hcd_resume_root_hub(hcd); 502 503 usb_hcd_poll_rh_status(hcd); 504 } 505 } 506 507 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 508 mod_timer(&xhci->comp_mode_recovery_timer, 509 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 510 } 511 512 /* 513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 514 * that causes ports behind that hardware to enter compliance mode sometimes. 515 * The quirk creates a timer that polls every 2 seconds the link state of 516 * each host controller's port and recovers it by issuing a Warm reset 517 * if Compliance mode is detected, otherwise the port will become "dead" (no 518 * device connections or disconnections will be detected anymore). Becasue no 519 * status event is generated when entering compliance mode (per xhci spec), 520 * this quirk is needed on systems that have the failing hardware installed. 521 */ 522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 523 { 524 xhci->port_status_u0 = 0; 525 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 526 0); 527 xhci->comp_mode_recovery_timer.expires = jiffies + 528 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 529 530 add_timer(&xhci->comp_mode_recovery_timer); 531 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 532 "Compliance mode recovery timer initialized"); 533 } 534 535 /* 536 * This function identifies the systems that have installed the SN65LVPE502CP 537 * USB3.0 re-driver and that need the Compliance Mode Quirk. 538 * Systems: 539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 540 */ 541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 542 { 543 const char *dmi_product_name, *dmi_sys_vendor; 544 545 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 546 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 547 if (!dmi_product_name || !dmi_sys_vendor) 548 return false; 549 550 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 551 return false; 552 553 if (strstr(dmi_product_name, "Z420") || 554 strstr(dmi_product_name, "Z620") || 555 strstr(dmi_product_name, "Z820") || 556 strstr(dmi_product_name, "Z1 Workstation")) 557 return true; 558 559 return false; 560 } 561 562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 563 { 564 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 565 } 566 567 568 /* 569 * Initialize memory for HCD and xHC (one-time init). 570 * 571 * Program the PAGESIZE register, initialize the device context array, create 572 * device contexts (?), set up a command ring segment (or two?), create event 573 * ring (one for now). 574 */ 575 static int xhci_init(struct usb_hcd *hcd) 576 { 577 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 578 int retval = 0; 579 580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 581 spin_lock_init(&xhci->lock); 582 if (xhci->hci_version == 0x95 && link_quirk) { 583 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 584 "QUIRK: Not clearing Link TRB chain bits."); 585 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 586 } else { 587 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 588 "xHCI doesn't need link TRB QUIRK"); 589 } 590 retval = xhci_mem_init(xhci, GFP_KERNEL); 591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 592 593 /* Initializing Compliance Mode Recovery Data If Needed */ 594 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 595 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 596 compliance_mode_recovery_timer_init(xhci); 597 } 598 599 return retval; 600 } 601 602 /*-------------------------------------------------------------------------*/ 603 604 605 static int xhci_run_finished(struct xhci_hcd *xhci) 606 { 607 if (xhci_start(xhci)) { 608 xhci_halt(xhci); 609 return -ENODEV; 610 } 611 xhci->shared_hcd->state = HC_STATE_RUNNING; 612 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 613 614 if (xhci->quirks & XHCI_NEC_HOST) 615 xhci_ring_cmd_db(xhci); 616 617 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 618 "Finished xhci_run for USB3 roothub"); 619 return 0; 620 } 621 622 /* 623 * Start the HC after it was halted. 624 * 625 * This function is called by the USB core when the HC driver is added. 626 * Its opposite is xhci_stop(). 627 * 628 * xhci_init() must be called once before this function can be called. 629 * Reset the HC, enable device slot contexts, program DCBAAP, and 630 * set command ring pointer and event ring pointer. 631 * 632 * Setup MSI-X vectors and enable interrupts. 633 */ 634 int xhci_run(struct usb_hcd *hcd) 635 { 636 u32 temp; 637 u64 temp_64; 638 int ret; 639 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 640 641 /* Start the xHCI host controller running only after the USB 2.0 roothub 642 * is setup. 643 */ 644 645 hcd->uses_new_polling = 1; 646 if (!usb_hcd_is_primary_hcd(hcd)) 647 return xhci_run_finished(xhci); 648 649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 650 651 ret = xhci_try_enable_msi(hcd); 652 if (ret) 653 return ret; 654 655 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 656 temp_64 &= ~ERST_PTR_MASK; 657 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 658 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 659 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "// Set the interrupt modulation register"); 662 temp = readl(&xhci->ir_set->irq_control); 663 temp &= ~ER_IRQ_INTERVAL_MASK; 664 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 665 writel(temp, &xhci->ir_set->irq_control); 666 667 /* Set the HCD state before we enable the irqs */ 668 temp = readl(&xhci->op_regs->command); 669 temp |= (CMD_EIE); 670 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 671 "// Enable interrupts, cmd = 0x%x.", temp); 672 writel(temp, &xhci->op_regs->command); 673 674 temp = readl(&xhci->ir_set->irq_pending); 675 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 676 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 677 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 678 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 679 680 if (xhci->quirks & XHCI_NEC_HOST) { 681 struct xhci_command *command; 682 683 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 684 if (!command) 685 return -ENOMEM; 686 687 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 688 TRB_TYPE(TRB_NEC_GET_FW)); 689 if (ret) 690 xhci_free_command(xhci, command); 691 } 692 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 693 "Finished xhci_run for USB2 roothub"); 694 695 xhci_dbc_init(xhci); 696 697 xhci_debugfs_init(xhci); 698 699 return 0; 700 } 701 EXPORT_SYMBOL_GPL(xhci_run); 702 703 /* 704 * Stop xHCI driver. 705 * 706 * This function is called by the USB core when the HC driver is removed. 707 * Its opposite is xhci_run(). 708 * 709 * Disable device contexts, disable IRQs, and quiesce the HC. 710 * Reset the HC, finish any completed transactions, and cleanup memory. 711 */ 712 static void xhci_stop(struct usb_hcd *hcd) 713 { 714 u32 temp; 715 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 716 717 mutex_lock(&xhci->mutex); 718 719 /* Only halt host and free memory after both hcds are removed */ 720 if (!usb_hcd_is_primary_hcd(hcd)) { 721 mutex_unlock(&xhci->mutex); 722 return; 723 } 724 725 xhci_dbc_exit(xhci); 726 727 spin_lock_irq(&xhci->lock); 728 xhci->xhc_state |= XHCI_STATE_HALTED; 729 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 730 xhci_halt(xhci); 731 xhci_reset(xhci); 732 spin_unlock_irq(&xhci->lock); 733 734 xhci_cleanup_msix(xhci); 735 736 /* Deleting Compliance Mode Recovery Timer */ 737 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 738 (!(xhci_all_ports_seen_u0(xhci)))) { 739 del_timer_sync(&xhci->comp_mode_recovery_timer); 740 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 741 "%s: compliance mode recovery timer deleted", 742 __func__); 743 } 744 745 if (xhci->quirks & XHCI_AMD_PLL_FIX) 746 usb_amd_dev_put(); 747 748 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 749 "// Disabling event ring interrupts"); 750 temp = readl(&xhci->op_regs->status); 751 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 752 temp = readl(&xhci->ir_set->irq_pending); 753 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 754 755 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 756 xhci_mem_cleanup(xhci); 757 xhci_debugfs_exit(xhci); 758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 759 "xhci_stop completed - status = %x", 760 readl(&xhci->op_regs->status)); 761 mutex_unlock(&xhci->mutex); 762 } 763 764 /* 765 * Shutdown HC (not bus-specific) 766 * 767 * This is called when the machine is rebooting or halting. We assume that the 768 * machine will be powered off, and the HC's internal state will be reset. 769 * Don't bother to free memory. 770 * 771 * This will only ever be called with the main usb_hcd (the USB3 roothub). 772 */ 773 void xhci_shutdown(struct usb_hcd *hcd) 774 { 775 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 776 777 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 778 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 779 780 spin_lock_irq(&xhci->lock); 781 xhci_halt(xhci); 782 /* Workaround for spurious wakeups at shutdown with HSW */ 783 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 784 xhci_reset(xhci); 785 spin_unlock_irq(&xhci->lock); 786 787 xhci_cleanup_msix(xhci); 788 789 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 790 "xhci_shutdown completed - status = %x", 791 readl(&xhci->op_regs->status)); 792 } 793 EXPORT_SYMBOL_GPL(xhci_shutdown); 794 795 #ifdef CONFIG_PM 796 static void xhci_save_registers(struct xhci_hcd *xhci) 797 { 798 xhci->s3.command = readl(&xhci->op_regs->command); 799 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 800 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 801 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 802 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 803 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 804 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 805 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 806 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 807 } 808 809 static void xhci_restore_registers(struct xhci_hcd *xhci) 810 { 811 writel(xhci->s3.command, &xhci->op_regs->command); 812 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 813 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 814 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 815 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 816 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 817 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 818 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 819 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 820 } 821 822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 823 { 824 u64 val_64; 825 826 /* step 2: initialize command ring buffer */ 827 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 828 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 829 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 830 xhci->cmd_ring->dequeue) & 831 (u64) ~CMD_RING_RSVD_BITS) | 832 xhci->cmd_ring->cycle_state; 833 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 834 "// Setting command ring address to 0x%llx", 835 (long unsigned long) val_64); 836 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 837 } 838 839 /* 840 * The whole command ring must be cleared to zero when we suspend the host. 841 * 842 * The host doesn't save the command ring pointer in the suspend well, so we 843 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 844 * aligned, because of the reserved bits in the command ring dequeue pointer 845 * register. Therefore, we can't just set the dequeue pointer back in the 846 * middle of the ring (TRBs are 16-byte aligned). 847 */ 848 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 849 { 850 struct xhci_ring *ring; 851 struct xhci_segment *seg; 852 853 ring = xhci->cmd_ring; 854 seg = ring->deq_seg; 855 do { 856 memset(seg->trbs, 0, 857 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 858 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 859 cpu_to_le32(~TRB_CYCLE); 860 seg = seg->next; 861 } while (seg != ring->deq_seg); 862 863 /* Reset the software enqueue and dequeue pointers */ 864 ring->deq_seg = ring->first_seg; 865 ring->dequeue = ring->first_seg->trbs; 866 ring->enq_seg = ring->deq_seg; 867 ring->enqueue = ring->dequeue; 868 869 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 870 /* 871 * Ring is now zeroed, so the HW should look for change of ownership 872 * when the cycle bit is set to 1. 873 */ 874 ring->cycle_state = 1; 875 876 /* 877 * Reset the hardware dequeue pointer. 878 * Yes, this will need to be re-written after resume, but we're paranoid 879 * and want to make sure the hardware doesn't access bogus memory 880 * because, say, the BIOS or an SMI started the host without changing 881 * the command ring pointers. 882 */ 883 xhci_set_cmd_ring_deq(xhci); 884 } 885 886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 887 { 888 struct xhci_port **ports; 889 int port_index; 890 unsigned long flags; 891 u32 t1, t2, portsc; 892 893 spin_lock_irqsave(&xhci->lock, flags); 894 895 /* disable usb3 ports Wake bits */ 896 port_index = xhci->usb3_rhub.num_ports; 897 ports = xhci->usb3_rhub.ports; 898 while (port_index--) { 899 t1 = readl(ports[port_index]->addr); 900 portsc = t1; 901 t1 = xhci_port_state_to_neutral(t1); 902 t2 = t1 & ~PORT_WAKE_BITS; 903 if (t1 != t2) { 904 writel(t2, ports[port_index]->addr); 905 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 906 xhci->usb3_rhub.hcd->self.busnum, 907 port_index + 1, portsc, t2); 908 } 909 } 910 911 /* disable usb2 ports Wake bits */ 912 port_index = xhci->usb2_rhub.num_ports; 913 ports = xhci->usb2_rhub.ports; 914 while (port_index--) { 915 t1 = readl(ports[port_index]->addr); 916 portsc = t1; 917 t1 = xhci_port_state_to_neutral(t1); 918 t2 = t1 & ~PORT_WAKE_BITS; 919 if (t1 != t2) { 920 writel(t2, ports[port_index]->addr); 921 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n", 922 xhci->usb2_rhub.hcd->self.busnum, 923 port_index + 1, portsc, t2); 924 } 925 } 926 spin_unlock_irqrestore(&xhci->lock, flags); 927 } 928 929 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 930 { 931 struct xhci_port **ports; 932 int port_index; 933 u32 status; 934 u32 portsc; 935 936 status = readl(&xhci->op_regs->status); 937 if (status & STS_EINT) 938 return true; 939 /* 940 * Checking STS_EINT is not enough as there is a lag between a change 941 * bit being set and the Port Status Change Event that it generated 942 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 943 */ 944 945 port_index = xhci->usb2_rhub.num_ports; 946 ports = xhci->usb2_rhub.ports; 947 while (port_index--) { 948 portsc = readl(ports[port_index]->addr); 949 if (portsc & PORT_CHANGE_MASK || 950 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 951 return true; 952 } 953 port_index = xhci->usb3_rhub.num_ports; 954 ports = xhci->usb3_rhub.ports; 955 while (port_index--) { 956 portsc = readl(ports[port_index]->addr); 957 if (portsc & PORT_CHANGE_MASK || 958 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 959 return true; 960 } 961 return false; 962 } 963 964 /* 965 * Stop HC (not bus-specific) 966 * 967 * This is called when the machine transition into S3/S4 mode. 968 * 969 */ 970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 971 { 972 int rc = 0; 973 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 974 struct usb_hcd *hcd = xhci_to_hcd(xhci); 975 u32 command; 976 u32 res; 977 978 if (!hcd->state) 979 return 0; 980 981 if (hcd->state != HC_STATE_SUSPENDED || 982 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 983 return -EINVAL; 984 985 /* Clear root port wake on bits if wakeup not allowed. */ 986 if (!do_wakeup) 987 xhci_disable_port_wake_on_bits(xhci); 988 989 if (!HCD_HW_ACCESSIBLE(hcd)) 990 return 0; 991 992 xhci_dbc_suspend(xhci); 993 994 /* Don't poll the roothubs on bus suspend. */ 995 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 997 del_timer_sync(&hcd->rh_timer); 998 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 999 del_timer_sync(&xhci->shared_hcd->rh_timer); 1000 1001 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1002 usleep_range(1000, 1500); 1003 1004 spin_lock_irq(&xhci->lock); 1005 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1006 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1007 /* step 1: stop endpoint */ 1008 /* skipped assuming that port suspend has done */ 1009 1010 /* step 2: clear Run/Stop bit */ 1011 command = readl(&xhci->op_regs->command); 1012 command &= ~CMD_RUN; 1013 writel(command, &xhci->op_regs->command); 1014 1015 /* Some chips from Fresco Logic need an extraordinary delay */ 1016 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1017 1018 if (xhci_handshake(&xhci->op_regs->status, 1019 STS_HALT, STS_HALT, delay)) { 1020 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1021 spin_unlock_irq(&xhci->lock); 1022 return -ETIMEDOUT; 1023 } 1024 xhci_clear_command_ring(xhci); 1025 1026 /* step 3: save registers */ 1027 xhci_save_registers(xhci); 1028 1029 /* step 4: set CSS flag */ 1030 command = readl(&xhci->op_regs->command); 1031 command |= CMD_CSS; 1032 writel(command, &xhci->op_regs->command); 1033 xhci->broken_suspend = 0; 1034 if (xhci_handshake(&xhci->op_regs->status, 1035 STS_SAVE, 0, 20 * 1000)) { 1036 /* 1037 * AMD SNPS xHC 3.0 occasionally does not clear the 1038 * SSS bit of USBSTS and when driver tries to poll 1039 * to see if the xHC clears BIT(8) which never happens 1040 * and driver assumes that controller is not responding 1041 * and times out. To workaround this, its good to check 1042 * if SRE and HCE bits are not set (as per xhci 1043 * Section 5.4.2) and bypass the timeout. 1044 */ 1045 res = readl(&xhci->op_regs->status); 1046 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1047 (((res & STS_SRE) == 0) && 1048 ((res & STS_HCE) == 0))) { 1049 xhci->broken_suspend = 1; 1050 } else { 1051 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1052 spin_unlock_irq(&xhci->lock); 1053 return -ETIMEDOUT; 1054 } 1055 } 1056 spin_unlock_irq(&xhci->lock); 1057 1058 /* 1059 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1060 * is about to be suspended. 1061 */ 1062 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1063 (!(xhci_all_ports_seen_u0(xhci)))) { 1064 del_timer_sync(&xhci->comp_mode_recovery_timer); 1065 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1066 "%s: compliance mode recovery timer deleted", 1067 __func__); 1068 } 1069 1070 /* step 5: remove core well power */ 1071 /* synchronize irq when using MSI-X */ 1072 xhci_msix_sync_irqs(xhci); 1073 1074 return rc; 1075 } 1076 EXPORT_SYMBOL_GPL(xhci_suspend); 1077 1078 /* 1079 * start xHC (not bus-specific) 1080 * 1081 * This is called when the machine transition from S3/S4 mode. 1082 * 1083 */ 1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1085 { 1086 u32 command, temp = 0; 1087 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1088 struct usb_hcd *secondary_hcd; 1089 int retval = 0; 1090 bool comp_timer_running = false; 1091 1092 if (!hcd->state) 1093 return 0; 1094 1095 /* Wait a bit if either of the roothubs need to settle from the 1096 * transition into bus suspend. 1097 */ 1098 1099 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1100 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1101 msleep(100); 1102 1103 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1104 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1105 1106 spin_lock_irq(&xhci->lock); 1107 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1108 hibernated = true; 1109 1110 if (!hibernated) { 1111 /* 1112 * Some controllers might lose power during suspend, so wait 1113 * for controller not ready bit to clear, just as in xHC init. 1114 */ 1115 retval = xhci_handshake(&xhci->op_regs->status, 1116 STS_CNR, 0, 10 * 1000 * 1000); 1117 if (retval) { 1118 xhci_warn(xhci, "Controller not ready at resume %d\n", 1119 retval); 1120 spin_unlock_irq(&xhci->lock); 1121 return retval; 1122 } 1123 /* step 1: restore register */ 1124 xhci_restore_registers(xhci); 1125 /* step 2: initialize command ring buffer */ 1126 xhci_set_cmd_ring_deq(xhci); 1127 /* step 3: restore state and start state*/ 1128 /* step 3: set CRS flag */ 1129 command = readl(&xhci->op_regs->command); 1130 command |= CMD_CRS; 1131 writel(command, &xhci->op_regs->command); 1132 /* 1133 * Some controllers take up to 55+ ms to complete the controller 1134 * restore so setting the timeout to 100ms. Xhci specification 1135 * doesn't mention any timeout value. 1136 */ 1137 if (xhci_handshake(&xhci->op_regs->status, 1138 STS_RESTORE, 0, 100 * 1000)) { 1139 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1140 spin_unlock_irq(&xhci->lock); 1141 return -ETIMEDOUT; 1142 } 1143 temp = readl(&xhci->op_regs->status); 1144 } 1145 1146 /* If restore operation fails, re-initialize the HC during resume */ 1147 if ((temp & STS_SRE) || hibernated) { 1148 1149 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1150 !(xhci_all_ports_seen_u0(xhci))) { 1151 del_timer_sync(&xhci->comp_mode_recovery_timer); 1152 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1153 "Compliance Mode Recovery Timer deleted!"); 1154 } 1155 1156 /* Let the USB core know _both_ roothubs lost power. */ 1157 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1158 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1159 1160 xhci_dbg(xhci, "Stop HCD\n"); 1161 xhci_halt(xhci); 1162 xhci_zero_64b_regs(xhci); 1163 retval = xhci_reset(xhci); 1164 spin_unlock_irq(&xhci->lock); 1165 if (retval) 1166 return retval; 1167 xhci_cleanup_msix(xhci); 1168 1169 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1170 temp = readl(&xhci->op_regs->status); 1171 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1172 temp = readl(&xhci->ir_set->irq_pending); 1173 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1174 1175 xhci_dbg(xhci, "cleaning up memory\n"); 1176 xhci_mem_cleanup(xhci); 1177 xhci_debugfs_exit(xhci); 1178 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1179 readl(&xhci->op_regs->status)); 1180 1181 /* USB core calls the PCI reinit and start functions twice: 1182 * first with the primary HCD, and then with the secondary HCD. 1183 * If we don't do the same, the host will never be started. 1184 */ 1185 if (!usb_hcd_is_primary_hcd(hcd)) 1186 secondary_hcd = hcd; 1187 else 1188 secondary_hcd = xhci->shared_hcd; 1189 1190 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1191 retval = xhci_init(hcd->primary_hcd); 1192 if (retval) 1193 return retval; 1194 comp_timer_running = true; 1195 1196 xhci_dbg(xhci, "Start the primary HCD\n"); 1197 retval = xhci_run(hcd->primary_hcd); 1198 if (!retval) { 1199 xhci_dbg(xhci, "Start the secondary HCD\n"); 1200 retval = xhci_run(secondary_hcd); 1201 } 1202 hcd->state = HC_STATE_SUSPENDED; 1203 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1204 goto done; 1205 } 1206 1207 /* step 4: set Run/Stop bit */ 1208 command = readl(&xhci->op_regs->command); 1209 command |= CMD_RUN; 1210 writel(command, &xhci->op_regs->command); 1211 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1212 0, 250 * 1000); 1213 1214 /* step 5: walk topology and initialize portsc, 1215 * portpmsc and portli 1216 */ 1217 /* this is done in bus_resume */ 1218 1219 /* step 6: restart each of the previously 1220 * Running endpoints by ringing their doorbells 1221 */ 1222 1223 spin_unlock_irq(&xhci->lock); 1224 1225 xhci_dbc_resume(xhci); 1226 1227 done: 1228 if (retval == 0) { 1229 /* Resume root hubs only when have pending events. */ 1230 if (xhci_pending_portevent(xhci)) { 1231 usb_hcd_resume_root_hub(xhci->shared_hcd); 1232 usb_hcd_resume_root_hub(hcd); 1233 } 1234 } 1235 1236 /* 1237 * If system is subject to the Quirk, Compliance Mode Timer needs to 1238 * be re-initialized Always after a system resume. Ports are subject 1239 * to suffer the Compliance Mode issue again. It doesn't matter if 1240 * ports have entered previously to U0 before system's suspension. 1241 */ 1242 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1243 compliance_mode_recovery_timer_init(xhci); 1244 1245 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1246 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1247 1248 /* Re-enable port polling. */ 1249 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1250 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1251 usb_hcd_poll_rh_status(xhci->shared_hcd); 1252 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1253 usb_hcd_poll_rh_status(hcd); 1254 1255 return retval; 1256 } 1257 EXPORT_SYMBOL_GPL(xhci_resume); 1258 #endif /* CONFIG_PM */ 1259 1260 /*-------------------------------------------------------------------------*/ 1261 1262 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1263 { 1264 void *temp; 1265 int ret = 0; 1266 unsigned int buf_len; 1267 enum dma_data_direction dir; 1268 1269 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1270 buf_len = urb->transfer_buffer_length; 1271 1272 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1273 dev_to_node(hcd->self.sysdev)); 1274 1275 if (usb_urb_dir_out(urb)) 1276 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1277 temp, buf_len, 0); 1278 1279 urb->transfer_buffer = temp; 1280 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1281 urb->transfer_buffer, 1282 urb->transfer_buffer_length, 1283 dir); 1284 1285 if (dma_mapping_error(hcd->self.sysdev, 1286 urb->transfer_dma)) { 1287 ret = -EAGAIN; 1288 kfree(temp); 1289 } else { 1290 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1291 } 1292 1293 return ret; 1294 } 1295 1296 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1297 struct urb *urb) 1298 { 1299 bool ret = false; 1300 unsigned int i; 1301 unsigned int len = 0; 1302 unsigned int trb_size; 1303 unsigned int max_pkt; 1304 struct scatterlist *sg; 1305 struct scatterlist *tail_sg; 1306 1307 tail_sg = urb->sg; 1308 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1309 1310 if (!urb->num_sgs) 1311 return ret; 1312 1313 if (urb->dev->speed >= USB_SPEED_SUPER) 1314 trb_size = TRB_CACHE_SIZE_SS; 1315 else 1316 trb_size = TRB_CACHE_SIZE_HS; 1317 1318 if (urb->transfer_buffer_length != 0 && 1319 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1320 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1321 len = len + sg->length; 1322 if (i > trb_size - 2) { 1323 len = len - tail_sg->length; 1324 if (len < max_pkt) { 1325 ret = true; 1326 break; 1327 } 1328 1329 tail_sg = sg_next(tail_sg); 1330 } 1331 } 1332 } 1333 return ret; 1334 } 1335 1336 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1337 { 1338 unsigned int len; 1339 unsigned int buf_len; 1340 enum dma_data_direction dir; 1341 1342 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1343 1344 buf_len = urb->transfer_buffer_length; 1345 1346 if (IS_ENABLED(CONFIG_HAS_DMA) && 1347 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1348 dma_unmap_single(hcd->self.sysdev, 1349 urb->transfer_dma, 1350 urb->transfer_buffer_length, 1351 dir); 1352 1353 if (usb_urb_dir_in(urb)) 1354 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1355 urb->transfer_buffer, 1356 buf_len, 1357 0); 1358 1359 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1360 kfree(urb->transfer_buffer); 1361 urb->transfer_buffer = NULL; 1362 } 1363 1364 /* 1365 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1366 * we'll copy the actual data into the TRB address register. This is limited to 1367 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1368 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1369 */ 1370 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1371 gfp_t mem_flags) 1372 { 1373 struct xhci_hcd *xhci; 1374 1375 xhci = hcd_to_xhci(hcd); 1376 1377 if (xhci_urb_suitable_for_idt(urb)) 1378 return 0; 1379 1380 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1381 if (xhci_urb_temp_buffer_required(hcd, urb)) 1382 return xhci_map_temp_buffer(hcd, urb); 1383 } 1384 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1385 } 1386 1387 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1388 { 1389 struct xhci_hcd *xhci; 1390 bool unmap_temp_buf = false; 1391 1392 xhci = hcd_to_xhci(hcd); 1393 1394 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1395 unmap_temp_buf = true; 1396 1397 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1398 xhci_unmap_temp_buf(hcd, urb); 1399 else 1400 usb_hcd_unmap_urb_for_dma(hcd, urb); 1401 } 1402 1403 /** 1404 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1405 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1406 * value to right shift 1 for the bitmask. 1407 * 1408 * Index = (epnum * 2) + direction - 1, 1409 * where direction = 0 for OUT, 1 for IN. 1410 * For control endpoints, the IN index is used (OUT index is unused), so 1411 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1412 */ 1413 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1414 { 1415 unsigned int index; 1416 if (usb_endpoint_xfer_control(desc)) 1417 index = (unsigned int) (usb_endpoint_num(desc)*2); 1418 else 1419 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1420 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1421 return index; 1422 } 1423 1424 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1425 * address from the XHCI endpoint index. 1426 */ 1427 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1428 { 1429 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1430 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1431 return direction | number; 1432 } 1433 1434 /* Find the flag for this endpoint (for use in the control context). Use the 1435 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1436 * bit 1, etc. 1437 */ 1438 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1439 { 1440 return 1 << (xhci_get_endpoint_index(desc) + 1); 1441 } 1442 1443 /* Compute the last valid endpoint context index. Basically, this is the 1444 * endpoint index plus one. For slot contexts with more than valid endpoint, 1445 * we find the most significant bit set in the added contexts flags. 1446 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1447 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1448 */ 1449 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1450 { 1451 return fls(added_ctxs) - 1; 1452 } 1453 1454 /* Returns 1 if the arguments are OK; 1455 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1456 */ 1457 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1458 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1459 const char *func) { 1460 struct xhci_hcd *xhci; 1461 struct xhci_virt_device *virt_dev; 1462 1463 if (!hcd || (check_ep && !ep) || !udev) { 1464 pr_debug("xHCI %s called with invalid args\n", func); 1465 return -EINVAL; 1466 } 1467 if (!udev->parent) { 1468 pr_debug("xHCI %s called for root hub\n", func); 1469 return 0; 1470 } 1471 1472 xhci = hcd_to_xhci(hcd); 1473 if (check_virt_dev) { 1474 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1475 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1476 func); 1477 return -EINVAL; 1478 } 1479 1480 virt_dev = xhci->devs[udev->slot_id]; 1481 if (virt_dev->udev != udev) { 1482 xhci_dbg(xhci, "xHCI %s called with udev and " 1483 "virt_dev does not match\n", func); 1484 return -EINVAL; 1485 } 1486 } 1487 1488 if (xhci->xhc_state & XHCI_STATE_HALTED) 1489 return -ENODEV; 1490 1491 return 1; 1492 } 1493 1494 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1495 struct usb_device *udev, struct xhci_command *command, 1496 bool ctx_change, bool must_succeed); 1497 1498 /* 1499 * Full speed devices may have a max packet size greater than 8 bytes, but the 1500 * USB core doesn't know that until it reads the first 8 bytes of the 1501 * descriptor. If the usb_device's max packet size changes after that point, 1502 * we need to issue an evaluate context command and wait on it. 1503 */ 1504 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1505 unsigned int ep_index, struct urb *urb) 1506 { 1507 struct xhci_container_ctx *out_ctx; 1508 struct xhci_input_control_ctx *ctrl_ctx; 1509 struct xhci_ep_ctx *ep_ctx; 1510 struct xhci_command *command; 1511 int max_packet_size; 1512 int hw_max_packet_size; 1513 int ret = 0; 1514 1515 out_ctx = xhci->devs[slot_id]->out_ctx; 1516 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1517 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1518 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1519 if (hw_max_packet_size != max_packet_size) { 1520 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1521 "Max Packet Size for ep 0 changed."); 1522 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1523 "Max packet size in usb_device = %d", 1524 max_packet_size); 1525 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1526 "Max packet size in xHCI HW = %d", 1527 hw_max_packet_size); 1528 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1529 "Issuing evaluate context command."); 1530 1531 /* Set up the input context flags for the command */ 1532 /* FIXME: This won't work if a non-default control endpoint 1533 * changes max packet sizes. 1534 */ 1535 1536 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1537 if (!command) 1538 return -ENOMEM; 1539 1540 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1541 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1542 if (!ctrl_ctx) { 1543 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1544 __func__); 1545 ret = -ENOMEM; 1546 goto command_cleanup; 1547 } 1548 /* Set up the modified control endpoint 0 */ 1549 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1550 xhci->devs[slot_id]->out_ctx, ep_index); 1551 1552 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1553 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1554 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1555 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1556 1557 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1558 ctrl_ctx->drop_flags = 0; 1559 1560 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1561 true, false); 1562 1563 /* Clean up the input context for later use by bandwidth 1564 * functions. 1565 */ 1566 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1567 command_cleanup: 1568 kfree(command->completion); 1569 kfree(command); 1570 } 1571 return ret; 1572 } 1573 1574 /* 1575 * non-error returns are a promise to giveback() the urb later 1576 * we drop ownership so next owner (or urb unlink) can get it 1577 */ 1578 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1579 { 1580 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1581 unsigned long flags; 1582 int ret = 0; 1583 unsigned int slot_id, ep_index; 1584 unsigned int *ep_state; 1585 struct urb_priv *urb_priv; 1586 int num_tds; 1587 1588 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1589 true, true, __func__) <= 0) 1590 return -EINVAL; 1591 1592 slot_id = urb->dev->slot_id; 1593 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1594 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1595 1596 if (!HCD_HW_ACCESSIBLE(hcd)) 1597 return -ESHUTDOWN; 1598 1599 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1600 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1601 return -ENODEV; 1602 } 1603 1604 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1605 num_tds = urb->number_of_packets; 1606 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1607 urb->transfer_buffer_length > 0 && 1608 urb->transfer_flags & URB_ZERO_PACKET && 1609 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1610 num_tds = 2; 1611 else 1612 num_tds = 1; 1613 1614 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1615 if (!urb_priv) 1616 return -ENOMEM; 1617 1618 urb_priv->num_tds = num_tds; 1619 urb_priv->num_tds_done = 0; 1620 urb->hcpriv = urb_priv; 1621 1622 trace_xhci_urb_enqueue(urb); 1623 1624 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1625 /* Check to see if the max packet size for the default control 1626 * endpoint changed during FS device enumeration 1627 */ 1628 if (urb->dev->speed == USB_SPEED_FULL) { 1629 ret = xhci_check_maxpacket(xhci, slot_id, 1630 ep_index, urb); 1631 if (ret < 0) { 1632 xhci_urb_free_priv(urb_priv); 1633 urb->hcpriv = NULL; 1634 return ret; 1635 } 1636 } 1637 } 1638 1639 spin_lock_irqsave(&xhci->lock, flags); 1640 1641 if (xhci->xhc_state & XHCI_STATE_DYING) { 1642 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1643 urb->ep->desc.bEndpointAddress, urb); 1644 ret = -ESHUTDOWN; 1645 goto free_priv; 1646 } 1647 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1648 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1649 *ep_state); 1650 ret = -EINVAL; 1651 goto free_priv; 1652 } 1653 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1654 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1655 ret = -EINVAL; 1656 goto free_priv; 1657 } 1658 1659 switch (usb_endpoint_type(&urb->ep->desc)) { 1660 1661 case USB_ENDPOINT_XFER_CONTROL: 1662 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1663 slot_id, ep_index); 1664 break; 1665 case USB_ENDPOINT_XFER_BULK: 1666 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1667 slot_id, ep_index); 1668 break; 1669 case USB_ENDPOINT_XFER_INT: 1670 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1671 slot_id, ep_index); 1672 break; 1673 case USB_ENDPOINT_XFER_ISOC: 1674 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1675 slot_id, ep_index); 1676 } 1677 1678 if (ret) { 1679 free_priv: 1680 xhci_urb_free_priv(urb_priv); 1681 urb->hcpriv = NULL; 1682 } 1683 spin_unlock_irqrestore(&xhci->lock, flags); 1684 return ret; 1685 } 1686 1687 /* 1688 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1689 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1690 * should pick up where it left off in the TD, unless a Set Transfer Ring 1691 * Dequeue Pointer is issued. 1692 * 1693 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1694 * the ring. Since the ring is a contiguous structure, they can't be physically 1695 * removed. Instead, there are two options: 1696 * 1697 * 1) If the HC is in the middle of processing the URB to be canceled, we 1698 * simply move the ring's dequeue pointer past those TRBs using the Set 1699 * Transfer Ring Dequeue Pointer command. This will be the common case, 1700 * when drivers timeout on the last submitted URB and attempt to cancel. 1701 * 1702 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1703 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1704 * HC will need to invalidate the any TRBs it has cached after the stop 1705 * endpoint command, as noted in the xHCI 0.95 errata. 1706 * 1707 * 3) The TD may have completed by the time the Stop Endpoint Command 1708 * completes, so software needs to handle that case too. 1709 * 1710 * This function should protect against the TD enqueueing code ringing the 1711 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1712 * It also needs to account for multiple cancellations on happening at the same 1713 * time for the same endpoint. 1714 * 1715 * Note that this function can be called in any context, or so says 1716 * usb_hcd_unlink_urb() 1717 */ 1718 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1719 { 1720 unsigned long flags; 1721 int ret, i; 1722 u32 temp; 1723 struct xhci_hcd *xhci; 1724 struct urb_priv *urb_priv; 1725 struct xhci_td *td; 1726 unsigned int ep_index; 1727 struct xhci_ring *ep_ring; 1728 struct xhci_virt_ep *ep; 1729 struct xhci_command *command; 1730 struct xhci_virt_device *vdev; 1731 1732 xhci = hcd_to_xhci(hcd); 1733 spin_lock_irqsave(&xhci->lock, flags); 1734 1735 trace_xhci_urb_dequeue(urb); 1736 1737 /* Make sure the URB hasn't completed or been unlinked already */ 1738 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1739 if (ret) 1740 goto done; 1741 1742 /* give back URB now if we can't queue it for cancel */ 1743 vdev = xhci->devs[urb->dev->slot_id]; 1744 urb_priv = urb->hcpriv; 1745 if (!vdev || !urb_priv) 1746 goto err_giveback; 1747 1748 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1749 ep = &vdev->eps[ep_index]; 1750 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1751 if (!ep || !ep_ring) 1752 goto err_giveback; 1753 1754 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1755 temp = readl(&xhci->op_regs->status); 1756 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1757 xhci_hc_died(xhci); 1758 goto done; 1759 } 1760 1761 /* 1762 * check ring is not re-allocated since URB was enqueued. If it is, then 1763 * make sure none of the ring related pointers in this URB private data 1764 * are touched, such as td_list, otherwise we overwrite freed data 1765 */ 1766 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1767 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1768 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1769 td = &urb_priv->td[i]; 1770 if (!list_empty(&td->cancelled_td_list)) 1771 list_del_init(&td->cancelled_td_list); 1772 } 1773 goto err_giveback; 1774 } 1775 1776 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1777 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1778 "HC halted, freeing TD manually."); 1779 for (i = urb_priv->num_tds_done; 1780 i < urb_priv->num_tds; 1781 i++) { 1782 td = &urb_priv->td[i]; 1783 if (!list_empty(&td->td_list)) 1784 list_del_init(&td->td_list); 1785 if (!list_empty(&td->cancelled_td_list)) 1786 list_del_init(&td->cancelled_td_list); 1787 } 1788 goto err_giveback; 1789 } 1790 1791 i = urb_priv->num_tds_done; 1792 if (i < urb_priv->num_tds) 1793 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1794 "Cancel URB %p, dev %s, ep 0x%x, " 1795 "starting at offset 0x%llx", 1796 urb, urb->dev->devpath, 1797 urb->ep->desc.bEndpointAddress, 1798 (unsigned long long) xhci_trb_virt_to_dma( 1799 urb_priv->td[i].start_seg, 1800 urb_priv->td[i].first_trb)); 1801 1802 for (; i < urb_priv->num_tds; i++) { 1803 td = &urb_priv->td[i]; 1804 /* TD can already be on cancelled list if ep halted on it */ 1805 if (list_empty(&td->cancelled_td_list)) { 1806 td->cancel_status = TD_DIRTY; 1807 list_add_tail(&td->cancelled_td_list, 1808 &ep->cancelled_td_list); 1809 } 1810 } 1811 1812 /* Queue a stop endpoint command, but only if this is 1813 * the first cancellation to be handled. 1814 */ 1815 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1816 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1817 if (!command) { 1818 ret = -ENOMEM; 1819 goto done; 1820 } 1821 ep->ep_state |= EP_STOP_CMD_PENDING; 1822 ep->stop_cmd_timer.expires = jiffies + 1823 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1824 add_timer(&ep->stop_cmd_timer); 1825 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1826 ep_index, 0); 1827 xhci_ring_cmd_db(xhci); 1828 } 1829 done: 1830 spin_unlock_irqrestore(&xhci->lock, flags); 1831 return ret; 1832 1833 err_giveback: 1834 if (urb_priv) 1835 xhci_urb_free_priv(urb_priv); 1836 usb_hcd_unlink_urb_from_ep(hcd, urb); 1837 spin_unlock_irqrestore(&xhci->lock, flags); 1838 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1839 return ret; 1840 } 1841 1842 /* Drop an endpoint from a new bandwidth configuration for this device. 1843 * Only one call to this function is allowed per endpoint before 1844 * check_bandwidth() or reset_bandwidth() must be called. 1845 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1846 * add the endpoint to the schedule with possibly new parameters denoted by a 1847 * different endpoint descriptor in usb_host_endpoint. 1848 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1849 * not allowed. 1850 * 1851 * The USB core will not allow URBs to be queued to an endpoint that is being 1852 * disabled, so there's no need for mutual exclusion to protect 1853 * the xhci->devs[slot_id] structure. 1854 */ 1855 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1856 struct usb_host_endpoint *ep) 1857 { 1858 struct xhci_hcd *xhci; 1859 struct xhci_container_ctx *in_ctx, *out_ctx; 1860 struct xhci_input_control_ctx *ctrl_ctx; 1861 unsigned int ep_index; 1862 struct xhci_ep_ctx *ep_ctx; 1863 u32 drop_flag; 1864 u32 new_add_flags, new_drop_flags; 1865 int ret; 1866 1867 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1868 if (ret <= 0) 1869 return ret; 1870 xhci = hcd_to_xhci(hcd); 1871 if (xhci->xhc_state & XHCI_STATE_DYING) 1872 return -ENODEV; 1873 1874 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1875 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1876 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1877 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1878 __func__, drop_flag); 1879 return 0; 1880 } 1881 1882 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1883 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1884 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1885 if (!ctrl_ctx) { 1886 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1887 __func__); 1888 return 0; 1889 } 1890 1891 ep_index = xhci_get_endpoint_index(&ep->desc); 1892 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1893 /* If the HC already knows the endpoint is disabled, 1894 * or the HCD has noted it is disabled, ignore this request 1895 */ 1896 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1897 le32_to_cpu(ctrl_ctx->drop_flags) & 1898 xhci_get_endpoint_flag(&ep->desc)) { 1899 /* Do not warn when called after a usb_device_reset */ 1900 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1901 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1902 __func__, ep); 1903 return 0; 1904 } 1905 1906 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1907 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1908 1909 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1910 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1911 1912 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1913 1914 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1915 1916 if (xhci->quirks & XHCI_MTK_HOST) 1917 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1918 1919 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1920 (unsigned int) ep->desc.bEndpointAddress, 1921 udev->slot_id, 1922 (unsigned int) new_drop_flags, 1923 (unsigned int) new_add_flags); 1924 return 0; 1925 } 1926 1927 /* Add an endpoint to a new possible bandwidth configuration for this device. 1928 * Only one call to this function is allowed per endpoint before 1929 * check_bandwidth() or reset_bandwidth() must be called. 1930 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1931 * add the endpoint to the schedule with possibly new parameters denoted by a 1932 * different endpoint descriptor in usb_host_endpoint. 1933 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1934 * not allowed. 1935 * 1936 * The USB core will not allow URBs to be queued to an endpoint until the 1937 * configuration or alt setting is installed in the device, so there's no need 1938 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1939 */ 1940 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1941 struct usb_host_endpoint *ep) 1942 { 1943 struct xhci_hcd *xhci; 1944 struct xhci_container_ctx *in_ctx; 1945 unsigned int ep_index; 1946 struct xhci_input_control_ctx *ctrl_ctx; 1947 struct xhci_ep_ctx *ep_ctx; 1948 u32 added_ctxs; 1949 u32 new_add_flags, new_drop_flags; 1950 struct xhci_virt_device *virt_dev; 1951 int ret = 0; 1952 1953 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1954 if (ret <= 0) { 1955 /* So we won't queue a reset ep command for a root hub */ 1956 ep->hcpriv = NULL; 1957 return ret; 1958 } 1959 xhci = hcd_to_xhci(hcd); 1960 if (xhci->xhc_state & XHCI_STATE_DYING) 1961 return -ENODEV; 1962 1963 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1964 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1965 /* FIXME when we have to issue an evaluate endpoint command to 1966 * deal with ep0 max packet size changing once we get the 1967 * descriptors 1968 */ 1969 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1970 __func__, added_ctxs); 1971 return 0; 1972 } 1973 1974 virt_dev = xhci->devs[udev->slot_id]; 1975 in_ctx = virt_dev->in_ctx; 1976 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1977 if (!ctrl_ctx) { 1978 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1979 __func__); 1980 return 0; 1981 } 1982 1983 ep_index = xhci_get_endpoint_index(&ep->desc); 1984 /* If this endpoint is already in use, and the upper layers are trying 1985 * to add it again without dropping it, reject the addition. 1986 */ 1987 if (virt_dev->eps[ep_index].ring && 1988 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1989 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1990 "without dropping it.\n", 1991 (unsigned int) ep->desc.bEndpointAddress); 1992 return -EINVAL; 1993 } 1994 1995 /* If the HCD has already noted the endpoint is enabled, 1996 * ignore this request. 1997 */ 1998 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1999 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2000 __func__, ep); 2001 return 0; 2002 } 2003 2004 /* 2005 * Configuration and alternate setting changes must be done in 2006 * process context, not interrupt context (or so documenation 2007 * for usb_set_interface() and usb_set_configuration() claim). 2008 */ 2009 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2010 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2011 __func__, ep->desc.bEndpointAddress); 2012 return -ENOMEM; 2013 } 2014 2015 if (xhci->quirks & XHCI_MTK_HOST) { 2016 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 2017 if (ret < 0) { 2018 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring); 2019 virt_dev->eps[ep_index].new_ring = NULL; 2020 return ret; 2021 } 2022 } 2023 2024 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2025 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2026 2027 /* If xhci_endpoint_disable() was called for this endpoint, but the 2028 * xHC hasn't been notified yet through the check_bandwidth() call, 2029 * this re-adds a new state for the endpoint from the new endpoint 2030 * descriptors. We must drop and re-add this endpoint, so we leave the 2031 * drop flags alone. 2032 */ 2033 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2034 2035 /* Store the usb_device pointer for later use */ 2036 ep->hcpriv = udev; 2037 2038 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2039 trace_xhci_add_endpoint(ep_ctx); 2040 2041 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2042 (unsigned int) ep->desc.bEndpointAddress, 2043 udev->slot_id, 2044 (unsigned int) new_drop_flags, 2045 (unsigned int) new_add_flags); 2046 return 0; 2047 } 2048 2049 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2050 { 2051 struct xhci_input_control_ctx *ctrl_ctx; 2052 struct xhci_ep_ctx *ep_ctx; 2053 struct xhci_slot_ctx *slot_ctx; 2054 int i; 2055 2056 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2057 if (!ctrl_ctx) { 2058 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2059 __func__); 2060 return; 2061 } 2062 2063 /* When a device's add flag and drop flag are zero, any subsequent 2064 * configure endpoint command will leave that endpoint's state 2065 * untouched. Make sure we don't leave any old state in the input 2066 * endpoint contexts. 2067 */ 2068 ctrl_ctx->drop_flags = 0; 2069 ctrl_ctx->add_flags = 0; 2070 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2071 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2072 /* Endpoint 0 is always valid */ 2073 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2074 for (i = 1; i < 31; i++) { 2075 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2076 ep_ctx->ep_info = 0; 2077 ep_ctx->ep_info2 = 0; 2078 ep_ctx->deq = 0; 2079 ep_ctx->tx_info = 0; 2080 } 2081 } 2082 2083 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2084 struct usb_device *udev, u32 *cmd_status) 2085 { 2086 int ret; 2087 2088 switch (*cmd_status) { 2089 case COMP_COMMAND_ABORTED: 2090 case COMP_COMMAND_RING_STOPPED: 2091 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2092 ret = -ETIME; 2093 break; 2094 case COMP_RESOURCE_ERROR: 2095 dev_warn(&udev->dev, 2096 "Not enough host controller resources for new device state.\n"); 2097 ret = -ENOMEM; 2098 /* FIXME: can we allocate more resources for the HC? */ 2099 break; 2100 case COMP_BANDWIDTH_ERROR: 2101 case COMP_SECONDARY_BANDWIDTH_ERROR: 2102 dev_warn(&udev->dev, 2103 "Not enough bandwidth for new device state.\n"); 2104 ret = -ENOSPC; 2105 /* FIXME: can we go back to the old state? */ 2106 break; 2107 case COMP_TRB_ERROR: 2108 /* the HCD set up something wrong */ 2109 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2110 "add flag = 1, " 2111 "and endpoint is not disabled.\n"); 2112 ret = -EINVAL; 2113 break; 2114 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2115 dev_warn(&udev->dev, 2116 "ERROR: Incompatible device for endpoint configure command.\n"); 2117 ret = -ENODEV; 2118 break; 2119 case COMP_SUCCESS: 2120 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2121 "Successful Endpoint Configure command"); 2122 ret = 0; 2123 break; 2124 default: 2125 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2126 *cmd_status); 2127 ret = -EINVAL; 2128 break; 2129 } 2130 return ret; 2131 } 2132 2133 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2134 struct usb_device *udev, u32 *cmd_status) 2135 { 2136 int ret; 2137 2138 switch (*cmd_status) { 2139 case COMP_COMMAND_ABORTED: 2140 case COMP_COMMAND_RING_STOPPED: 2141 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2142 ret = -ETIME; 2143 break; 2144 case COMP_PARAMETER_ERROR: 2145 dev_warn(&udev->dev, 2146 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2147 ret = -EINVAL; 2148 break; 2149 case COMP_SLOT_NOT_ENABLED_ERROR: 2150 dev_warn(&udev->dev, 2151 "WARN: slot not enabled for evaluate context command.\n"); 2152 ret = -EINVAL; 2153 break; 2154 case COMP_CONTEXT_STATE_ERROR: 2155 dev_warn(&udev->dev, 2156 "WARN: invalid context state for evaluate context command.\n"); 2157 ret = -EINVAL; 2158 break; 2159 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2160 dev_warn(&udev->dev, 2161 "ERROR: Incompatible device for evaluate context command.\n"); 2162 ret = -ENODEV; 2163 break; 2164 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2165 /* Max Exit Latency too large error */ 2166 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2167 ret = -EINVAL; 2168 break; 2169 case COMP_SUCCESS: 2170 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2171 "Successful evaluate context command"); 2172 ret = 0; 2173 break; 2174 default: 2175 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2176 *cmd_status); 2177 ret = -EINVAL; 2178 break; 2179 } 2180 return ret; 2181 } 2182 2183 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2184 struct xhci_input_control_ctx *ctrl_ctx) 2185 { 2186 u32 valid_add_flags; 2187 u32 valid_drop_flags; 2188 2189 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2190 * (bit 1). The default control endpoint is added during the Address 2191 * Device command and is never removed until the slot is disabled. 2192 */ 2193 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2194 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2195 2196 /* Use hweight32 to count the number of ones in the add flags, or 2197 * number of endpoints added. Don't count endpoints that are changed 2198 * (both added and dropped). 2199 */ 2200 return hweight32(valid_add_flags) - 2201 hweight32(valid_add_flags & valid_drop_flags); 2202 } 2203 2204 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2205 struct xhci_input_control_ctx *ctrl_ctx) 2206 { 2207 u32 valid_add_flags; 2208 u32 valid_drop_flags; 2209 2210 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2211 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2212 2213 return hweight32(valid_drop_flags) - 2214 hweight32(valid_add_flags & valid_drop_flags); 2215 } 2216 2217 /* 2218 * We need to reserve the new number of endpoints before the configure endpoint 2219 * command completes. We can't subtract the dropped endpoints from the number 2220 * of active endpoints until the command completes because we can oversubscribe 2221 * the host in this case: 2222 * 2223 * - the first configure endpoint command drops more endpoints than it adds 2224 * - a second configure endpoint command that adds more endpoints is queued 2225 * - the first configure endpoint command fails, so the config is unchanged 2226 * - the second command may succeed, even though there isn't enough resources 2227 * 2228 * Must be called with xhci->lock held. 2229 */ 2230 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2231 struct xhci_input_control_ctx *ctrl_ctx) 2232 { 2233 u32 added_eps; 2234 2235 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2236 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2237 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2238 "Not enough ep ctxs: " 2239 "%u active, need to add %u, limit is %u.", 2240 xhci->num_active_eps, added_eps, 2241 xhci->limit_active_eps); 2242 return -ENOMEM; 2243 } 2244 xhci->num_active_eps += added_eps; 2245 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2246 "Adding %u ep ctxs, %u now active.", added_eps, 2247 xhci->num_active_eps); 2248 return 0; 2249 } 2250 2251 /* 2252 * The configure endpoint was failed by the xHC for some other reason, so we 2253 * need to revert the resources that failed configuration would have used. 2254 * 2255 * Must be called with xhci->lock held. 2256 */ 2257 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2258 struct xhci_input_control_ctx *ctrl_ctx) 2259 { 2260 u32 num_failed_eps; 2261 2262 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2263 xhci->num_active_eps -= num_failed_eps; 2264 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2265 "Removing %u failed ep ctxs, %u now active.", 2266 num_failed_eps, 2267 xhci->num_active_eps); 2268 } 2269 2270 /* 2271 * Now that the command has completed, clean up the active endpoint count by 2272 * subtracting out the endpoints that were dropped (but not changed). 2273 * 2274 * Must be called with xhci->lock held. 2275 */ 2276 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2277 struct xhci_input_control_ctx *ctrl_ctx) 2278 { 2279 u32 num_dropped_eps; 2280 2281 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2282 xhci->num_active_eps -= num_dropped_eps; 2283 if (num_dropped_eps) 2284 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2285 "Removing %u dropped ep ctxs, %u now active.", 2286 num_dropped_eps, 2287 xhci->num_active_eps); 2288 } 2289 2290 static unsigned int xhci_get_block_size(struct usb_device *udev) 2291 { 2292 switch (udev->speed) { 2293 case USB_SPEED_LOW: 2294 case USB_SPEED_FULL: 2295 return FS_BLOCK; 2296 case USB_SPEED_HIGH: 2297 return HS_BLOCK; 2298 case USB_SPEED_SUPER: 2299 case USB_SPEED_SUPER_PLUS: 2300 return SS_BLOCK; 2301 case USB_SPEED_UNKNOWN: 2302 case USB_SPEED_WIRELESS: 2303 default: 2304 /* Should never happen */ 2305 return 1; 2306 } 2307 } 2308 2309 static unsigned int 2310 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2311 { 2312 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2313 return LS_OVERHEAD; 2314 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2315 return FS_OVERHEAD; 2316 return HS_OVERHEAD; 2317 } 2318 2319 /* If we are changing a LS/FS device under a HS hub, 2320 * make sure (if we are activating a new TT) that the HS bus has enough 2321 * bandwidth for this new TT. 2322 */ 2323 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2324 struct xhci_virt_device *virt_dev, 2325 int old_active_eps) 2326 { 2327 struct xhci_interval_bw_table *bw_table; 2328 struct xhci_tt_bw_info *tt_info; 2329 2330 /* Find the bandwidth table for the root port this TT is attached to. */ 2331 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2332 tt_info = virt_dev->tt_info; 2333 /* If this TT already had active endpoints, the bandwidth for this TT 2334 * has already been added. Removing all periodic endpoints (and thus 2335 * making the TT enactive) will only decrease the bandwidth used. 2336 */ 2337 if (old_active_eps) 2338 return 0; 2339 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2340 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2341 return -ENOMEM; 2342 return 0; 2343 } 2344 /* Not sure why we would have no new active endpoints... 2345 * 2346 * Maybe because of an Evaluate Context change for a hub update or a 2347 * control endpoint 0 max packet size change? 2348 * FIXME: skip the bandwidth calculation in that case. 2349 */ 2350 return 0; 2351 } 2352 2353 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2354 struct xhci_virt_device *virt_dev) 2355 { 2356 unsigned int bw_reserved; 2357 2358 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2359 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2360 return -ENOMEM; 2361 2362 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2363 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2364 return -ENOMEM; 2365 2366 return 0; 2367 } 2368 2369 /* 2370 * This algorithm is a very conservative estimate of the worst-case scheduling 2371 * scenario for any one interval. The hardware dynamically schedules the 2372 * packets, so we can't tell which microframe could be the limiting factor in 2373 * the bandwidth scheduling. This only takes into account periodic endpoints. 2374 * 2375 * Obviously, we can't solve an NP complete problem to find the minimum worst 2376 * case scenario. Instead, we come up with an estimate that is no less than 2377 * the worst case bandwidth used for any one microframe, but may be an 2378 * over-estimate. 2379 * 2380 * We walk the requirements for each endpoint by interval, starting with the 2381 * smallest interval, and place packets in the schedule where there is only one 2382 * possible way to schedule packets for that interval. In order to simplify 2383 * this algorithm, we record the largest max packet size for each interval, and 2384 * assume all packets will be that size. 2385 * 2386 * For interval 0, we obviously must schedule all packets for each interval. 2387 * The bandwidth for interval 0 is just the amount of data to be transmitted 2388 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2389 * the number of packets). 2390 * 2391 * For interval 1, we have two possible microframes to schedule those packets 2392 * in. For this algorithm, if we can schedule the same number of packets for 2393 * each possible scheduling opportunity (each microframe), we will do so. The 2394 * remaining number of packets will be saved to be transmitted in the gaps in 2395 * the next interval's scheduling sequence. 2396 * 2397 * As we move those remaining packets to be scheduled with interval 2 packets, 2398 * we have to double the number of remaining packets to transmit. This is 2399 * because the intervals are actually powers of 2, and we would be transmitting 2400 * the previous interval's packets twice in this interval. We also have to be 2401 * sure that when we look at the largest max packet size for this interval, we 2402 * also look at the largest max packet size for the remaining packets and take 2403 * the greater of the two. 2404 * 2405 * The algorithm continues to evenly distribute packets in each scheduling 2406 * opportunity, and push the remaining packets out, until we get to the last 2407 * interval. Then those packets and their associated overhead are just added 2408 * to the bandwidth used. 2409 */ 2410 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2411 struct xhci_virt_device *virt_dev, 2412 int old_active_eps) 2413 { 2414 unsigned int bw_reserved; 2415 unsigned int max_bandwidth; 2416 unsigned int bw_used; 2417 unsigned int block_size; 2418 struct xhci_interval_bw_table *bw_table; 2419 unsigned int packet_size = 0; 2420 unsigned int overhead = 0; 2421 unsigned int packets_transmitted = 0; 2422 unsigned int packets_remaining = 0; 2423 unsigned int i; 2424 2425 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2426 return xhci_check_ss_bw(xhci, virt_dev); 2427 2428 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2429 max_bandwidth = HS_BW_LIMIT; 2430 /* Convert percent of bus BW reserved to blocks reserved */ 2431 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2432 } else { 2433 max_bandwidth = FS_BW_LIMIT; 2434 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2435 } 2436 2437 bw_table = virt_dev->bw_table; 2438 /* We need to translate the max packet size and max ESIT payloads into 2439 * the units the hardware uses. 2440 */ 2441 block_size = xhci_get_block_size(virt_dev->udev); 2442 2443 /* If we are manipulating a LS/FS device under a HS hub, double check 2444 * that the HS bus has enough bandwidth if we are activing a new TT. 2445 */ 2446 if (virt_dev->tt_info) { 2447 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2448 "Recalculating BW for rootport %u", 2449 virt_dev->real_port); 2450 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2451 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2452 "newly activated TT.\n"); 2453 return -ENOMEM; 2454 } 2455 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2456 "Recalculating BW for TT slot %u port %u", 2457 virt_dev->tt_info->slot_id, 2458 virt_dev->tt_info->ttport); 2459 } else { 2460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2461 "Recalculating BW for rootport %u", 2462 virt_dev->real_port); 2463 } 2464 2465 /* Add in how much bandwidth will be used for interval zero, or the 2466 * rounded max ESIT payload + number of packets * largest overhead. 2467 */ 2468 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2469 bw_table->interval_bw[0].num_packets * 2470 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2471 2472 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2473 unsigned int bw_added; 2474 unsigned int largest_mps; 2475 unsigned int interval_overhead; 2476 2477 /* 2478 * How many packets could we transmit in this interval? 2479 * If packets didn't fit in the previous interval, we will need 2480 * to transmit that many packets twice within this interval. 2481 */ 2482 packets_remaining = 2 * packets_remaining + 2483 bw_table->interval_bw[i].num_packets; 2484 2485 /* Find the largest max packet size of this or the previous 2486 * interval. 2487 */ 2488 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2489 largest_mps = 0; 2490 else { 2491 struct xhci_virt_ep *virt_ep; 2492 struct list_head *ep_entry; 2493 2494 ep_entry = bw_table->interval_bw[i].endpoints.next; 2495 virt_ep = list_entry(ep_entry, 2496 struct xhci_virt_ep, bw_endpoint_list); 2497 /* Convert to blocks, rounding up */ 2498 largest_mps = DIV_ROUND_UP( 2499 virt_ep->bw_info.max_packet_size, 2500 block_size); 2501 } 2502 if (largest_mps > packet_size) 2503 packet_size = largest_mps; 2504 2505 /* Use the larger overhead of this or the previous interval. */ 2506 interval_overhead = xhci_get_largest_overhead( 2507 &bw_table->interval_bw[i]); 2508 if (interval_overhead > overhead) 2509 overhead = interval_overhead; 2510 2511 /* How many packets can we evenly distribute across 2512 * (1 << (i + 1)) possible scheduling opportunities? 2513 */ 2514 packets_transmitted = packets_remaining >> (i + 1); 2515 2516 /* Add in the bandwidth used for those scheduled packets */ 2517 bw_added = packets_transmitted * (overhead + packet_size); 2518 2519 /* How many packets do we have remaining to transmit? */ 2520 packets_remaining = packets_remaining % (1 << (i + 1)); 2521 2522 /* What largest max packet size should those packets have? */ 2523 /* If we've transmitted all packets, don't carry over the 2524 * largest packet size. 2525 */ 2526 if (packets_remaining == 0) { 2527 packet_size = 0; 2528 overhead = 0; 2529 } else if (packets_transmitted > 0) { 2530 /* Otherwise if we do have remaining packets, and we've 2531 * scheduled some packets in this interval, take the 2532 * largest max packet size from endpoints with this 2533 * interval. 2534 */ 2535 packet_size = largest_mps; 2536 overhead = interval_overhead; 2537 } 2538 /* Otherwise carry over packet_size and overhead from the last 2539 * time we had a remainder. 2540 */ 2541 bw_used += bw_added; 2542 if (bw_used > max_bandwidth) { 2543 xhci_warn(xhci, "Not enough bandwidth. " 2544 "Proposed: %u, Max: %u\n", 2545 bw_used, max_bandwidth); 2546 return -ENOMEM; 2547 } 2548 } 2549 /* 2550 * Ok, we know we have some packets left over after even-handedly 2551 * scheduling interval 15. We don't know which microframes they will 2552 * fit into, so we over-schedule and say they will be scheduled every 2553 * microframe. 2554 */ 2555 if (packets_remaining > 0) 2556 bw_used += overhead + packet_size; 2557 2558 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2559 unsigned int port_index = virt_dev->real_port - 1; 2560 2561 /* OK, we're manipulating a HS device attached to a 2562 * root port bandwidth domain. Include the number of active TTs 2563 * in the bandwidth used. 2564 */ 2565 bw_used += TT_HS_OVERHEAD * 2566 xhci->rh_bw[port_index].num_active_tts; 2567 } 2568 2569 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2570 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2571 "Available: %u " "percent", 2572 bw_used, max_bandwidth, bw_reserved, 2573 (max_bandwidth - bw_used - bw_reserved) * 100 / 2574 max_bandwidth); 2575 2576 bw_used += bw_reserved; 2577 if (bw_used > max_bandwidth) { 2578 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2579 bw_used, max_bandwidth); 2580 return -ENOMEM; 2581 } 2582 2583 bw_table->bw_used = bw_used; 2584 return 0; 2585 } 2586 2587 static bool xhci_is_async_ep(unsigned int ep_type) 2588 { 2589 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2590 ep_type != ISOC_IN_EP && 2591 ep_type != INT_IN_EP); 2592 } 2593 2594 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2595 { 2596 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2597 } 2598 2599 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2600 { 2601 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2602 2603 if (ep_bw->ep_interval == 0) 2604 return SS_OVERHEAD_BURST + 2605 (ep_bw->mult * ep_bw->num_packets * 2606 (SS_OVERHEAD + mps)); 2607 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2608 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2609 1 << ep_bw->ep_interval); 2610 2611 } 2612 2613 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2614 struct xhci_bw_info *ep_bw, 2615 struct xhci_interval_bw_table *bw_table, 2616 struct usb_device *udev, 2617 struct xhci_virt_ep *virt_ep, 2618 struct xhci_tt_bw_info *tt_info) 2619 { 2620 struct xhci_interval_bw *interval_bw; 2621 int normalized_interval; 2622 2623 if (xhci_is_async_ep(ep_bw->type)) 2624 return; 2625 2626 if (udev->speed >= USB_SPEED_SUPER) { 2627 if (xhci_is_sync_in_ep(ep_bw->type)) 2628 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2629 xhci_get_ss_bw_consumed(ep_bw); 2630 else 2631 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2632 xhci_get_ss_bw_consumed(ep_bw); 2633 return; 2634 } 2635 2636 /* SuperSpeed endpoints never get added to intervals in the table, so 2637 * this check is only valid for HS/FS/LS devices. 2638 */ 2639 if (list_empty(&virt_ep->bw_endpoint_list)) 2640 return; 2641 /* For LS/FS devices, we need to translate the interval expressed in 2642 * microframes to frames. 2643 */ 2644 if (udev->speed == USB_SPEED_HIGH) 2645 normalized_interval = ep_bw->ep_interval; 2646 else 2647 normalized_interval = ep_bw->ep_interval - 3; 2648 2649 if (normalized_interval == 0) 2650 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2651 interval_bw = &bw_table->interval_bw[normalized_interval]; 2652 interval_bw->num_packets -= ep_bw->num_packets; 2653 switch (udev->speed) { 2654 case USB_SPEED_LOW: 2655 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2656 break; 2657 case USB_SPEED_FULL: 2658 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2659 break; 2660 case USB_SPEED_HIGH: 2661 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2662 break; 2663 case USB_SPEED_SUPER: 2664 case USB_SPEED_SUPER_PLUS: 2665 case USB_SPEED_UNKNOWN: 2666 case USB_SPEED_WIRELESS: 2667 /* Should never happen because only LS/FS/HS endpoints will get 2668 * added to the endpoint list. 2669 */ 2670 return; 2671 } 2672 if (tt_info) 2673 tt_info->active_eps -= 1; 2674 list_del_init(&virt_ep->bw_endpoint_list); 2675 } 2676 2677 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2678 struct xhci_bw_info *ep_bw, 2679 struct xhci_interval_bw_table *bw_table, 2680 struct usb_device *udev, 2681 struct xhci_virt_ep *virt_ep, 2682 struct xhci_tt_bw_info *tt_info) 2683 { 2684 struct xhci_interval_bw *interval_bw; 2685 struct xhci_virt_ep *smaller_ep; 2686 int normalized_interval; 2687 2688 if (xhci_is_async_ep(ep_bw->type)) 2689 return; 2690 2691 if (udev->speed == USB_SPEED_SUPER) { 2692 if (xhci_is_sync_in_ep(ep_bw->type)) 2693 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2694 xhci_get_ss_bw_consumed(ep_bw); 2695 else 2696 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2697 xhci_get_ss_bw_consumed(ep_bw); 2698 return; 2699 } 2700 2701 /* For LS/FS devices, we need to translate the interval expressed in 2702 * microframes to frames. 2703 */ 2704 if (udev->speed == USB_SPEED_HIGH) 2705 normalized_interval = ep_bw->ep_interval; 2706 else 2707 normalized_interval = ep_bw->ep_interval - 3; 2708 2709 if (normalized_interval == 0) 2710 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2711 interval_bw = &bw_table->interval_bw[normalized_interval]; 2712 interval_bw->num_packets += ep_bw->num_packets; 2713 switch (udev->speed) { 2714 case USB_SPEED_LOW: 2715 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2716 break; 2717 case USB_SPEED_FULL: 2718 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2719 break; 2720 case USB_SPEED_HIGH: 2721 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2722 break; 2723 case USB_SPEED_SUPER: 2724 case USB_SPEED_SUPER_PLUS: 2725 case USB_SPEED_UNKNOWN: 2726 case USB_SPEED_WIRELESS: 2727 /* Should never happen because only LS/FS/HS endpoints will get 2728 * added to the endpoint list. 2729 */ 2730 return; 2731 } 2732 2733 if (tt_info) 2734 tt_info->active_eps += 1; 2735 /* Insert the endpoint into the list, largest max packet size first. */ 2736 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2737 bw_endpoint_list) { 2738 if (ep_bw->max_packet_size >= 2739 smaller_ep->bw_info.max_packet_size) { 2740 /* Add the new ep before the smaller endpoint */ 2741 list_add_tail(&virt_ep->bw_endpoint_list, 2742 &smaller_ep->bw_endpoint_list); 2743 return; 2744 } 2745 } 2746 /* Add the new endpoint at the end of the list. */ 2747 list_add_tail(&virt_ep->bw_endpoint_list, 2748 &interval_bw->endpoints); 2749 } 2750 2751 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2752 struct xhci_virt_device *virt_dev, 2753 int old_active_eps) 2754 { 2755 struct xhci_root_port_bw_info *rh_bw_info; 2756 if (!virt_dev->tt_info) 2757 return; 2758 2759 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2760 if (old_active_eps == 0 && 2761 virt_dev->tt_info->active_eps != 0) { 2762 rh_bw_info->num_active_tts += 1; 2763 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2764 } else if (old_active_eps != 0 && 2765 virt_dev->tt_info->active_eps == 0) { 2766 rh_bw_info->num_active_tts -= 1; 2767 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2768 } 2769 } 2770 2771 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2772 struct xhci_virt_device *virt_dev, 2773 struct xhci_container_ctx *in_ctx) 2774 { 2775 struct xhci_bw_info ep_bw_info[31]; 2776 int i; 2777 struct xhci_input_control_ctx *ctrl_ctx; 2778 int old_active_eps = 0; 2779 2780 if (virt_dev->tt_info) 2781 old_active_eps = virt_dev->tt_info->active_eps; 2782 2783 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2784 if (!ctrl_ctx) { 2785 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2786 __func__); 2787 return -ENOMEM; 2788 } 2789 2790 for (i = 0; i < 31; i++) { 2791 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2792 continue; 2793 2794 /* Make a copy of the BW info in case we need to revert this */ 2795 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2796 sizeof(ep_bw_info[i])); 2797 /* Drop the endpoint from the interval table if the endpoint is 2798 * being dropped or changed. 2799 */ 2800 if (EP_IS_DROPPED(ctrl_ctx, i)) 2801 xhci_drop_ep_from_interval_table(xhci, 2802 &virt_dev->eps[i].bw_info, 2803 virt_dev->bw_table, 2804 virt_dev->udev, 2805 &virt_dev->eps[i], 2806 virt_dev->tt_info); 2807 } 2808 /* Overwrite the information stored in the endpoints' bw_info */ 2809 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2810 for (i = 0; i < 31; i++) { 2811 /* Add any changed or added endpoints to the interval table */ 2812 if (EP_IS_ADDED(ctrl_ctx, i)) 2813 xhci_add_ep_to_interval_table(xhci, 2814 &virt_dev->eps[i].bw_info, 2815 virt_dev->bw_table, 2816 virt_dev->udev, 2817 &virt_dev->eps[i], 2818 virt_dev->tt_info); 2819 } 2820 2821 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2822 /* Ok, this fits in the bandwidth we have. 2823 * Update the number of active TTs. 2824 */ 2825 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2826 return 0; 2827 } 2828 2829 /* We don't have enough bandwidth for this, revert the stored info. */ 2830 for (i = 0; i < 31; i++) { 2831 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2832 continue; 2833 2834 /* Drop the new copies of any added or changed endpoints from 2835 * the interval table. 2836 */ 2837 if (EP_IS_ADDED(ctrl_ctx, i)) { 2838 xhci_drop_ep_from_interval_table(xhci, 2839 &virt_dev->eps[i].bw_info, 2840 virt_dev->bw_table, 2841 virt_dev->udev, 2842 &virt_dev->eps[i], 2843 virt_dev->tt_info); 2844 } 2845 /* Revert the endpoint back to its old information */ 2846 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2847 sizeof(ep_bw_info[i])); 2848 /* Add any changed or dropped endpoints back into the table */ 2849 if (EP_IS_DROPPED(ctrl_ctx, i)) 2850 xhci_add_ep_to_interval_table(xhci, 2851 &virt_dev->eps[i].bw_info, 2852 virt_dev->bw_table, 2853 virt_dev->udev, 2854 &virt_dev->eps[i], 2855 virt_dev->tt_info); 2856 } 2857 return -ENOMEM; 2858 } 2859 2860 2861 /* Issue a configure endpoint command or evaluate context command 2862 * and wait for it to finish. 2863 */ 2864 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2865 struct usb_device *udev, 2866 struct xhci_command *command, 2867 bool ctx_change, bool must_succeed) 2868 { 2869 int ret; 2870 unsigned long flags; 2871 struct xhci_input_control_ctx *ctrl_ctx; 2872 struct xhci_virt_device *virt_dev; 2873 struct xhci_slot_ctx *slot_ctx; 2874 2875 if (!command) 2876 return -EINVAL; 2877 2878 spin_lock_irqsave(&xhci->lock, flags); 2879 2880 if (xhci->xhc_state & XHCI_STATE_DYING) { 2881 spin_unlock_irqrestore(&xhci->lock, flags); 2882 return -ESHUTDOWN; 2883 } 2884 2885 virt_dev = xhci->devs[udev->slot_id]; 2886 2887 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2888 if (!ctrl_ctx) { 2889 spin_unlock_irqrestore(&xhci->lock, flags); 2890 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2891 __func__); 2892 return -ENOMEM; 2893 } 2894 2895 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2896 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2897 spin_unlock_irqrestore(&xhci->lock, flags); 2898 xhci_warn(xhci, "Not enough host resources, " 2899 "active endpoint contexts = %u\n", 2900 xhci->num_active_eps); 2901 return -ENOMEM; 2902 } 2903 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2904 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2905 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2906 xhci_free_host_resources(xhci, ctrl_ctx); 2907 spin_unlock_irqrestore(&xhci->lock, flags); 2908 xhci_warn(xhci, "Not enough bandwidth\n"); 2909 return -ENOMEM; 2910 } 2911 2912 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2913 2914 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2915 trace_xhci_configure_endpoint(slot_ctx); 2916 2917 if (!ctx_change) 2918 ret = xhci_queue_configure_endpoint(xhci, command, 2919 command->in_ctx->dma, 2920 udev->slot_id, must_succeed); 2921 else 2922 ret = xhci_queue_evaluate_context(xhci, command, 2923 command->in_ctx->dma, 2924 udev->slot_id, must_succeed); 2925 if (ret < 0) { 2926 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2927 xhci_free_host_resources(xhci, ctrl_ctx); 2928 spin_unlock_irqrestore(&xhci->lock, flags); 2929 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2930 "FIXME allocate a new ring segment"); 2931 return -ENOMEM; 2932 } 2933 xhci_ring_cmd_db(xhci); 2934 spin_unlock_irqrestore(&xhci->lock, flags); 2935 2936 /* Wait for the configure endpoint command to complete */ 2937 wait_for_completion(command->completion); 2938 2939 if (!ctx_change) 2940 ret = xhci_configure_endpoint_result(xhci, udev, 2941 &command->status); 2942 else 2943 ret = xhci_evaluate_context_result(xhci, udev, 2944 &command->status); 2945 2946 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2947 spin_lock_irqsave(&xhci->lock, flags); 2948 /* If the command failed, remove the reserved resources. 2949 * Otherwise, clean up the estimate to include dropped eps. 2950 */ 2951 if (ret) 2952 xhci_free_host_resources(xhci, ctrl_ctx); 2953 else 2954 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2955 spin_unlock_irqrestore(&xhci->lock, flags); 2956 } 2957 return ret; 2958 } 2959 2960 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2961 struct xhci_virt_device *vdev, int i) 2962 { 2963 struct xhci_virt_ep *ep = &vdev->eps[i]; 2964 2965 if (ep->ep_state & EP_HAS_STREAMS) { 2966 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2967 xhci_get_endpoint_address(i)); 2968 xhci_free_stream_info(xhci, ep->stream_info); 2969 ep->stream_info = NULL; 2970 ep->ep_state &= ~EP_HAS_STREAMS; 2971 } 2972 } 2973 2974 /* Called after one or more calls to xhci_add_endpoint() or 2975 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2976 * to call xhci_reset_bandwidth(). 2977 * 2978 * Since we are in the middle of changing either configuration or 2979 * installing a new alt setting, the USB core won't allow URBs to be 2980 * enqueued for any endpoint on the old config or interface. Nothing 2981 * else should be touching the xhci->devs[slot_id] structure, so we 2982 * don't need to take the xhci->lock for manipulating that. 2983 */ 2984 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2985 { 2986 int i; 2987 int ret = 0; 2988 struct xhci_hcd *xhci; 2989 struct xhci_virt_device *virt_dev; 2990 struct xhci_input_control_ctx *ctrl_ctx; 2991 struct xhci_slot_ctx *slot_ctx; 2992 struct xhci_command *command; 2993 2994 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2995 if (ret <= 0) 2996 return ret; 2997 xhci = hcd_to_xhci(hcd); 2998 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2999 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3000 return -ENODEV; 3001 3002 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3003 virt_dev = xhci->devs[udev->slot_id]; 3004 3005 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3006 if (!command) 3007 return -ENOMEM; 3008 3009 command->in_ctx = virt_dev->in_ctx; 3010 3011 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3012 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3013 if (!ctrl_ctx) { 3014 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3015 __func__); 3016 ret = -ENOMEM; 3017 goto command_cleanup; 3018 } 3019 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3020 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3021 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3022 3023 /* Don't issue the command if there's no endpoints to update. */ 3024 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3025 ctrl_ctx->drop_flags == 0) { 3026 ret = 0; 3027 goto command_cleanup; 3028 } 3029 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3030 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3031 for (i = 31; i >= 1; i--) { 3032 __le32 le32 = cpu_to_le32(BIT(i)); 3033 3034 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3035 || (ctrl_ctx->add_flags & le32) || i == 1) { 3036 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3037 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3038 break; 3039 } 3040 } 3041 3042 ret = xhci_configure_endpoint(xhci, udev, command, 3043 false, false); 3044 if (ret) 3045 /* Callee should call reset_bandwidth() */ 3046 goto command_cleanup; 3047 3048 /* Free any rings that were dropped, but not changed. */ 3049 for (i = 1; i < 31; i++) { 3050 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3051 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3052 xhci_free_endpoint_ring(xhci, virt_dev, i); 3053 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3054 } 3055 } 3056 xhci_zero_in_ctx(xhci, virt_dev); 3057 /* 3058 * Install any rings for completely new endpoints or changed endpoints, 3059 * and free any old rings from changed endpoints. 3060 */ 3061 for (i = 1; i < 31; i++) { 3062 if (!virt_dev->eps[i].new_ring) 3063 continue; 3064 /* Only free the old ring if it exists. 3065 * It may not if this is the first add of an endpoint. 3066 */ 3067 if (virt_dev->eps[i].ring) { 3068 xhci_free_endpoint_ring(xhci, virt_dev, i); 3069 } 3070 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3071 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3072 virt_dev->eps[i].new_ring = NULL; 3073 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3074 } 3075 command_cleanup: 3076 kfree(command->completion); 3077 kfree(command); 3078 3079 return ret; 3080 } 3081 3082 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3083 { 3084 struct xhci_hcd *xhci; 3085 struct xhci_virt_device *virt_dev; 3086 int i, ret; 3087 3088 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3089 if (ret <= 0) 3090 return; 3091 xhci = hcd_to_xhci(hcd); 3092 3093 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3094 virt_dev = xhci->devs[udev->slot_id]; 3095 /* Free any rings allocated for added endpoints */ 3096 for (i = 0; i < 31; i++) { 3097 if (virt_dev->eps[i].new_ring) { 3098 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3099 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3100 virt_dev->eps[i].new_ring = NULL; 3101 } 3102 } 3103 xhci_zero_in_ctx(xhci, virt_dev); 3104 } 3105 3106 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3107 struct xhci_container_ctx *in_ctx, 3108 struct xhci_container_ctx *out_ctx, 3109 struct xhci_input_control_ctx *ctrl_ctx, 3110 u32 add_flags, u32 drop_flags) 3111 { 3112 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3113 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3114 xhci_slot_copy(xhci, in_ctx, out_ctx); 3115 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3116 } 3117 3118 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3119 struct usb_host_endpoint *host_ep) 3120 { 3121 struct xhci_hcd *xhci; 3122 struct xhci_virt_device *vdev; 3123 struct xhci_virt_ep *ep; 3124 struct usb_device *udev; 3125 unsigned long flags; 3126 unsigned int ep_index; 3127 3128 xhci = hcd_to_xhci(hcd); 3129 rescan: 3130 spin_lock_irqsave(&xhci->lock, flags); 3131 3132 udev = (struct usb_device *)host_ep->hcpriv; 3133 if (!udev || !udev->slot_id) 3134 goto done; 3135 3136 vdev = xhci->devs[udev->slot_id]; 3137 if (!vdev) 3138 goto done; 3139 3140 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3141 ep = &vdev->eps[ep_index]; 3142 if (!ep) 3143 goto done; 3144 3145 /* wait for hub_tt_work to finish clearing hub TT */ 3146 if (ep->ep_state & EP_CLEARING_TT) { 3147 spin_unlock_irqrestore(&xhci->lock, flags); 3148 schedule_timeout_uninterruptible(1); 3149 goto rescan; 3150 } 3151 3152 if (ep->ep_state) 3153 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3154 ep->ep_state); 3155 done: 3156 host_ep->hcpriv = NULL; 3157 spin_unlock_irqrestore(&xhci->lock, flags); 3158 } 3159 3160 /* 3161 * Called after usb core issues a clear halt control message. 3162 * The host side of the halt should already be cleared by a reset endpoint 3163 * command issued when the STALL event was received. 3164 * 3165 * The reset endpoint command may only be issued to endpoints in the halted 3166 * state. For software that wishes to reset the data toggle or sequence number 3167 * of an endpoint that isn't in the halted state this function will issue a 3168 * configure endpoint command with the Drop and Add bits set for the target 3169 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3170 */ 3171 3172 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3173 struct usb_host_endpoint *host_ep) 3174 { 3175 struct xhci_hcd *xhci; 3176 struct usb_device *udev; 3177 struct xhci_virt_device *vdev; 3178 struct xhci_virt_ep *ep; 3179 struct xhci_input_control_ctx *ctrl_ctx; 3180 struct xhci_command *stop_cmd, *cfg_cmd; 3181 unsigned int ep_index; 3182 unsigned long flags; 3183 u32 ep_flag; 3184 int err; 3185 3186 xhci = hcd_to_xhci(hcd); 3187 if (!host_ep->hcpriv) 3188 return; 3189 udev = (struct usb_device *) host_ep->hcpriv; 3190 vdev = xhci->devs[udev->slot_id]; 3191 3192 /* 3193 * vdev may be lost due to xHC restore error and re-initialization 3194 * during S3/S4 resume. A new vdev will be allocated later by 3195 * xhci_discover_or_reset_device() 3196 */ 3197 if (!udev->slot_id || !vdev) 3198 return; 3199 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3200 ep = &vdev->eps[ep_index]; 3201 if (!ep) 3202 return; 3203 3204 /* Bail out if toggle is already being cleared by a endpoint reset */ 3205 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3206 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3207 return; 3208 } 3209 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3210 if (usb_endpoint_xfer_control(&host_ep->desc) || 3211 usb_endpoint_xfer_isoc(&host_ep->desc)) 3212 return; 3213 3214 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3215 3216 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3217 return; 3218 3219 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3220 if (!stop_cmd) 3221 return; 3222 3223 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3224 if (!cfg_cmd) 3225 goto cleanup; 3226 3227 spin_lock_irqsave(&xhci->lock, flags); 3228 3229 /* block queuing new trbs and ringing ep doorbell */ 3230 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3231 3232 /* 3233 * Make sure endpoint ring is empty before resetting the toggle/seq. 3234 * Driver is required to synchronously cancel all transfer request. 3235 * Stop the endpoint to force xHC to update the output context 3236 */ 3237 3238 if (!list_empty(&ep->ring->td_list)) { 3239 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3240 spin_unlock_irqrestore(&xhci->lock, flags); 3241 xhci_free_command(xhci, cfg_cmd); 3242 goto cleanup; 3243 } 3244 3245 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3246 ep_index, 0); 3247 if (err < 0) { 3248 spin_unlock_irqrestore(&xhci->lock, flags); 3249 xhci_free_command(xhci, cfg_cmd); 3250 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3251 __func__, err); 3252 goto cleanup; 3253 } 3254 3255 xhci_ring_cmd_db(xhci); 3256 spin_unlock_irqrestore(&xhci->lock, flags); 3257 3258 wait_for_completion(stop_cmd->completion); 3259 3260 spin_lock_irqsave(&xhci->lock, flags); 3261 3262 /* config ep command clears toggle if add and drop ep flags are set */ 3263 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3264 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3265 ctrl_ctx, ep_flag, ep_flag); 3266 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3267 3268 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3269 udev->slot_id, false); 3270 if (err < 0) { 3271 spin_unlock_irqrestore(&xhci->lock, flags); 3272 xhci_free_command(xhci, cfg_cmd); 3273 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3274 __func__, err); 3275 goto cleanup; 3276 } 3277 3278 xhci_ring_cmd_db(xhci); 3279 spin_unlock_irqrestore(&xhci->lock, flags); 3280 3281 wait_for_completion(cfg_cmd->completion); 3282 3283 xhci_free_command(xhci, cfg_cmd); 3284 cleanup: 3285 xhci_free_command(xhci, stop_cmd); 3286 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3287 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3288 } 3289 3290 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3291 struct usb_device *udev, struct usb_host_endpoint *ep, 3292 unsigned int slot_id) 3293 { 3294 int ret; 3295 unsigned int ep_index; 3296 unsigned int ep_state; 3297 3298 if (!ep) 3299 return -EINVAL; 3300 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3301 if (ret <= 0) 3302 return -EINVAL; 3303 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3304 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3305 " descriptor for ep 0x%x does not support streams\n", 3306 ep->desc.bEndpointAddress); 3307 return -EINVAL; 3308 } 3309 3310 ep_index = xhci_get_endpoint_index(&ep->desc); 3311 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3312 if (ep_state & EP_HAS_STREAMS || 3313 ep_state & EP_GETTING_STREAMS) { 3314 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3315 "already has streams set up.\n", 3316 ep->desc.bEndpointAddress); 3317 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3318 "dynamic stream context array reallocation.\n"); 3319 return -EINVAL; 3320 } 3321 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3322 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3323 "endpoint 0x%x; URBs are pending.\n", 3324 ep->desc.bEndpointAddress); 3325 return -EINVAL; 3326 } 3327 return 0; 3328 } 3329 3330 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3331 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3332 { 3333 unsigned int max_streams; 3334 3335 /* The stream context array size must be a power of two */ 3336 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3337 /* 3338 * Find out how many primary stream array entries the host controller 3339 * supports. Later we may use secondary stream arrays (similar to 2nd 3340 * level page entries), but that's an optional feature for xHCI host 3341 * controllers. xHCs must support at least 4 stream IDs. 3342 */ 3343 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3344 if (*num_stream_ctxs > max_streams) { 3345 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3346 max_streams); 3347 *num_stream_ctxs = max_streams; 3348 *num_streams = max_streams; 3349 } 3350 } 3351 3352 /* Returns an error code if one of the endpoint already has streams. 3353 * This does not change any data structures, it only checks and gathers 3354 * information. 3355 */ 3356 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3357 struct usb_device *udev, 3358 struct usb_host_endpoint **eps, unsigned int num_eps, 3359 unsigned int *num_streams, u32 *changed_ep_bitmask) 3360 { 3361 unsigned int max_streams; 3362 unsigned int endpoint_flag; 3363 int i; 3364 int ret; 3365 3366 for (i = 0; i < num_eps; i++) { 3367 ret = xhci_check_streams_endpoint(xhci, udev, 3368 eps[i], udev->slot_id); 3369 if (ret < 0) 3370 return ret; 3371 3372 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3373 if (max_streams < (*num_streams - 1)) { 3374 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3375 eps[i]->desc.bEndpointAddress, 3376 max_streams); 3377 *num_streams = max_streams+1; 3378 } 3379 3380 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3381 if (*changed_ep_bitmask & endpoint_flag) 3382 return -EINVAL; 3383 *changed_ep_bitmask |= endpoint_flag; 3384 } 3385 return 0; 3386 } 3387 3388 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3389 struct usb_device *udev, 3390 struct usb_host_endpoint **eps, unsigned int num_eps) 3391 { 3392 u32 changed_ep_bitmask = 0; 3393 unsigned int slot_id; 3394 unsigned int ep_index; 3395 unsigned int ep_state; 3396 int i; 3397 3398 slot_id = udev->slot_id; 3399 if (!xhci->devs[slot_id]) 3400 return 0; 3401 3402 for (i = 0; i < num_eps; i++) { 3403 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3404 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3405 /* Are streams already being freed for the endpoint? */ 3406 if (ep_state & EP_GETTING_NO_STREAMS) { 3407 xhci_warn(xhci, "WARN Can't disable streams for " 3408 "endpoint 0x%x, " 3409 "streams are being disabled already\n", 3410 eps[i]->desc.bEndpointAddress); 3411 return 0; 3412 } 3413 /* Are there actually any streams to free? */ 3414 if (!(ep_state & EP_HAS_STREAMS) && 3415 !(ep_state & EP_GETTING_STREAMS)) { 3416 xhci_warn(xhci, "WARN Can't disable streams for " 3417 "endpoint 0x%x, " 3418 "streams are already disabled!\n", 3419 eps[i]->desc.bEndpointAddress); 3420 xhci_warn(xhci, "WARN xhci_free_streams() called " 3421 "with non-streams endpoint\n"); 3422 return 0; 3423 } 3424 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3425 } 3426 return changed_ep_bitmask; 3427 } 3428 3429 /* 3430 * The USB device drivers use this function (through the HCD interface in USB 3431 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3432 * coordinate mass storage command queueing across multiple endpoints (basically 3433 * a stream ID == a task ID). 3434 * 3435 * Setting up streams involves allocating the same size stream context array 3436 * for each endpoint and issuing a configure endpoint command for all endpoints. 3437 * 3438 * Don't allow the call to succeed if one endpoint only supports one stream 3439 * (which means it doesn't support streams at all). 3440 * 3441 * Drivers may get less stream IDs than they asked for, if the host controller 3442 * hardware or endpoints claim they can't support the number of requested 3443 * stream IDs. 3444 */ 3445 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3446 struct usb_host_endpoint **eps, unsigned int num_eps, 3447 unsigned int num_streams, gfp_t mem_flags) 3448 { 3449 int i, ret; 3450 struct xhci_hcd *xhci; 3451 struct xhci_virt_device *vdev; 3452 struct xhci_command *config_cmd; 3453 struct xhci_input_control_ctx *ctrl_ctx; 3454 unsigned int ep_index; 3455 unsigned int num_stream_ctxs; 3456 unsigned int max_packet; 3457 unsigned long flags; 3458 u32 changed_ep_bitmask = 0; 3459 3460 if (!eps) 3461 return -EINVAL; 3462 3463 /* Add one to the number of streams requested to account for 3464 * stream 0 that is reserved for xHCI usage. 3465 */ 3466 num_streams += 1; 3467 xhci = hcd_to_xhci(hcd); 3468 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3469 num_streams); 3470 3471 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3472 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3473 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3474 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3475 return -ENOSYS; 3476 } 3477 3478 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3479 if (!config_cmd) 3480 return -ENOMEM; 3481 3482 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3483 if (!ctrl_ctx) { 3484 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3485 __func__); 3486 xhci_free_command(xhci, config_cmd); 3487 return -ENOMEM; 3488 } 3489 3490 /* Check to make sure all endpoints are not already configured for 3491 * streams. While we're at it, find the maximum number of streams that 3492 * all the endpoints will support and check for duplicate endpoints. 3493 */ 3494 spin_lock_irqsave(&xhci->lock, flags); 3495 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3496 num_eps, &num_streams, &changed_ep_bitmask); 3497 if (ret < 0) { 3498 xhci_free_command(xhci, config_cmd); 3499 spin_unlock_irqrestore(&xhci->lock, flags); 3500 return ret; 3501 } 3502 if (num_streams <= 1) { 3503 xhci_warn(xhci, "WARN: endpoints can't handle " 3504 "more than one stream.\n"); 3505 xhci_free_command(xhci, config_cmd); 3506 spin_unlock_irqrestore(&xhci->lock, flags); 3507 return -EINVAL; 3508 } 3509 vdev = xhci->devs[udev->slot_id]; 3510 /* Mark each endpoint as being in transition, so 3511 * xhci_urb_enqueue() will reject all URBs. 3512 */ 3513 for (i = 0; i < num_eps; i++) { 3514 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3515 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3516 } 3517 spin_unlock_irqrestore(&xhci->lock, flags); 3518 3519 /* Setup internal data structures and allocate HW data structures for 3520 * streams (but don't install the HW structures in the input context 3521 * until we're sure all memory allocation succeeded). 3522 */ 3523 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3524 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3525 num_stream_ctxs, num_streams); 3526 3527 for (i = 0; i < num_eps; i++) { 3528 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3529 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3530 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3531 num_stream_ctxs, 3532 num_streams, 3533 max_packet, mem_flags); 3534 if (!vdev->eps[ep_index].stream_info) 3535 goto cleanup; 3536 /* Set maxPstreams in endpoint context and update deq ptr to 3537 * point to stream context array. FIXME 3538 */ 3539 } 3540 3541 /* Set up the input context for a configure endpoint command. */ 3542 for (i = 0; i < num_eps; i++) { 3543 struct xhci_ep_ctx *ep_ctx; 3544 3545 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3546 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3547 3548 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3549 vdev->out_ctx, ep_index); 3550 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3551 vdev->eps[ep_index].stream_info); 3552 } 3553 /* Tell the HW to drop its old copy of the endpoint context info 3554 * and add the updated copy from the input context. 3555 */ 3556 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3557 vdev->out_ctx, ctrl_ctx, 3558 changed_ep_bitmask, changed_ep_bitmask); 3559 3560 /* Issue and wait for the configure endpoint command */ 3561 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3562 false, false); 3563 3564 /* xHC rejected the configure endpoint command for some reason, so we 3565 * leave the old ring intact and free our internal streams data 3566 * structure. 3567 */ 3568 if (ret < 0) 3569 goto cleanup; 3570 3571 spin_lock_irqsave(&xhci->lock, flags); 3572 for (i = 0; i < num_eps; i++) { 3573 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3574 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3575 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3576 udev->slot_id, ep_index); 3577 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3578 } 3579 xhci_free_command(xhci, config_cmd); 3580 spin_unlock_irqrestore(&xhci->lock, flags); 3581 3582 for (i = 0; i < num_eps; i++) { 3583 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3584 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3585 } 3586 /* Subtract 1 for stream 0, which drivers can't use */ 3587 return num_streams - 1; 3588 3589 cleanup: 3590 /* If it didn't work, free the streams! */ 3591 for (i = 0; i < num_eps; i++) { 3592 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3593 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3594 vdev->eps[ep_index].stream_info = NULL; 3595 /* FIXME Unset maxPstreams in endpoint context and 3596 * update deq ptr to point to normal string ring. 3597 */ 3598 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3599 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3600 xhci_endpoint_zero(xhci, vdev, eps[i]); 3601 } 3602 xhci_free_command(xhci, config_cmd); 3603 return -ENOMEM; 3604 } 3605 3606 /* Transition the endpoint from using streams to being a "normal" endpoint 3607 * without streams. 3608 * 3609 * Modify the endpoint context state, submit a configure endpoint command, 3610 * and free all endpoint rings for streams if that completes successfully. 3611 */ 3612 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3613 struct usb_host_endpoint **eps, unsigned int num_eps, 3614 gfp_t mem_flags) 3615 { 3616 int i, ret; 3617 struct xhci_hcd *xhci; 3618 struct xhci_virt_device *vdev; 3619 struct xhci_command *command; 3620 struct xhci_input_control_ctx *ctrl_ctx; 3621 unsigned int ep_index; 3622 unsigned long flags; 3623 u32 changed_ep_bitmask; 3624 3625 xhci = hcd_to_xhci(hcd); 3626 vdev = xhci->devs[udev->slot_id]; 3627 3628 /* Set up a configure endpoint command to remove the streams rings */ 3629 spin_lock_irqsave(&xhci->lock, flags); 3630 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3631 udev, eps, num_eps); 3632 if (changed_ep_bitmask == 0) { 3633 spin_unlock_irqrestore(&xhci->lock, flags); 3634 return -EINVAL; 3635 } 3636 3637 /* Use the xhci_command structure from the first endpoint. We may have 3638 * allocated too many, but the driver may call xhci_free_streams() for 3639 * each endpoint it grouped into one call to xhci_alloc_streams(). 3640 */ 3641 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3642 command = vdev->eps[ep_index].stream_info->free_streams_command; 3643 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3644 if (!ctrl_ctx) { 3645 spin_unlock_irqrestore(&xhci->lock, flags); 3646 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3647 __func__); 3648 return -EINVAL; 3649 } 3650 3651 for (i = 0; i < num_eps; i++) { 3652 struct xhci_ep_ctx *ep_ctx; 3653 3654 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3655 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3656 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3657 EP_GETTING_NO_STREAMS; 3658 3659 xhci_endpoint_copy(xhci, command->in_ctx, 3660 vdev->out_ctx, ep_index); 3661 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3662 &vdev->eps[ep_index]); 3663 } 3664 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3665 vdev->out_ctx, ctrl_ctx, 3666 changed_ep_bitmask, changed_ep_bitmask); 3667 spin_unlock_irqrestore(&xhci->lock, flags); 3668 3669 /* Issue and wait for the configure endpoint command, 3670 * which must succeed. 3671 */ 3672 ret = xhci_configure_endpoint(xhci, udev, command, 3673 false, true); 3674 3675 /* xHC rejected the configure endpoint command for some reason, so we 3676 * leave the streams rings intact. 3677 */ 3678 if (ret < 0) 3679 return ret; 3680 3681 spin_lock_irqsave(&xhci->lock, flags); 3682 for (i = 0; i < num_eps; i++) { 3683 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3684 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3685 vdev->eps[ep_index].stream_info = NULL; 3686 /* FIXME Unset maxPstreams in endpoint context and 3687 * update deq ptr to point to normal string ring. 3688 */ 3689 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3690 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3691 } 3692 spin_unlock_irqrestore(&xhci->lock, flags); 3693 3694 return 0; 3695 } 3696 3697 /* 3698 * Deletes endpoint resources for endpoints that were active before a Reset 3699 * Device command, or a Disable Slot command. The Reset Device command leaves 3700 * the control endpoint intact, whereas the Disable Slot command deletes it. 3701 * 3702 * Must be called with xhci->lock held. 3703 */ 3704 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3705 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3706 { 3707 int i; 3708 unsigned int num_dropped_eps = 0; 3709 unsigned int drop_flags = 0; 3710 3711 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3712 if (virt_dev->eps[i].ring) { 3713 drop_flags |= 1 << i; 3714 num_dropped_eps++; 3715 } 3716 } 3717 xhci->num_active_eps -= num_dropped_eps; 3718 if (num_dropped_eps) 3719 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3720 "Dropped %u ep ctxs, flags = 0x%x, " 3721 "%u now active.", 3722 num_dropped_eps, drop_flags, 3723 xhci->num_active_eps); 3724 } 3725 3726 /* 3727 * This submits a Reset Device Command, which will set the device state to 0, 3728 * set the device address to 0, and disable all the endpoints except the default 3729 * control endpoint. The USB core should come back and call 3730 * xhci_address_device(), and then re-set up the configuration. If this is 3731 * called because of a usb_reset_and_verify_device(), then the old alternate 3732 * settings will be re-installed through the normal bandwidth allocation 3733 * functions. 3734 * 3735 * Wait for the Reset Device command to finish. Remove all structures 3736 * associated with the endpoints that were disabled. Clear the input device 3737 * structure? Reset the control endpoint 0 max packet size? 3738 * 3739 * If the virt_dev to be reset does not exist or does not match the udev, 3740 * it means the device is lost, possibly due to the xHC restore error and 3741 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3742 * re-allocate the device. 3743 */ 3744 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3745 struct usb_device *udev) 3746 { 3747 int ret, i; 3748 unsigned long flags; 3749 struct xhci_hcd *xhci; 3750 unsigned int slot_id; 3751 struct xhci_virt_device *virt_dev; 3752 struct xhci_command *reset_device_cmd; 3753 struct xhci_slot_ctx *slot_ctx; 3754 int old_active_eps = 0; 3755 3756 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3757 if (ret <= 0) 3758 return ret; 3759 xhci = hcd_to_xhci(hcd); 3760 slot_id = udev->slot_id; 3761 virt_dev = xhci->devs[slot_id]; 3762 if (!virt_dev) { 3763 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3764 "not exist. Re-allocate the device\n", slot_id); 3765 ret = xhci_alloc_dev(hcd, udev); 3766 if (ret == 1) 3767 return 0; 3768 else 3769 return -EINVAL; 3770 } 3771 3772 if (virt_dev->tt_info) 3773 old_active_eps = virt_dev->tt_info->active_eps; 3774 3775 if (virt_dev->udev != udev) { 3776 /* If the virt_dev and the udev does not match, this virt_dev 3777 * may belong to another udev. 3778 * Re-allocate the device. 3779 */ 3780 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3781 "not match the udev. Re-allocate the device\n", 3782 slot_id); 3783 ret = xhci_alloc_dev(hcd, udev); 3784 if (ret == 1) 3785 return 0; 3786 else 3787 return -EINVAL; 3788 } 3789 3790 /* If device is not setup, there is no point in resetting it */ 3791 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3792 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3793 SLOT_STATE_DISABLED) 3794 return 0; 3795 3796 trace_xhci_discover_or_reset_device(slot_ctx); 3797 3798 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3799 /* Allocate the command structure that holds the struct completion. 3800 * Assume we're in process context, since the normal device reset 3801 * process has to wait for the device anyway. Storage devices are 3802 * reset as part of error handling, so use GFP_NOIO instead of 3803 * GFP_KERNEL. 3804 */ 3805 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3806 if (!reset_device_cmd) { 3807 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3808 return -ENOMEM; 3809 } 3810 3811 /* Attempt to submit the Reset Device command to the command ring */ 3812 spin_lock_irqsave(&xhci->lock, flags); 3813 3814 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3815 if (ret) { 3816 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3817 spin_unlock_irqrestore(&xhci->lock, flags); 3818 goto command_cleanup; 3819 } 3820 xhci_ring_cmd_db(xhci); 3821 spin_unlock_irqrestore(&xhci->lock, flags); 3822 3823 /* Wait for the Reset Device command to finish */ 3824 wait_for_completion(reset_device_cmd->completion); 3825 3826 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3827 * unless we tried to reset a slot ID that wasn't enabled, 3828 * or the device wasn't in the addressed or configured state. 3829 */ 3830 ret = reset_device_cmd->status; 3831 switch (ret) { 3832 case COMP_COMMAND_ABORTED: 3833 case COMP_COMMAND_RING_STOPPED: 3834 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3835 ret = -ETIME; 3836 goto command_cleanup; 3837 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3838 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3839 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3840 slot_id, 3841 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3842 xhci_dbg(xhci, "Not freeing device rings.\n"); 3843 /* Don't treat this as an error. May change my mind later. */ 3844 ret = 0; 3845 goto command_cleanup; 3846 case COMP_SUCCESS: 3847 xhci_dbg(xhci, "Successful reset device command.\n"); 3848 break; 3849 default: 3850 if (xhci_is_vendor_info_code(xhci, ret)) 3851 break; 3852 xhci_warn(xhci, "Unknown completion code %u for " 3853 "reset device command.\n", ret); 3854 ret = -EINVAL; 3855 goto command_cleanup; 3856 } 3857 3858 /* Free up host controller endpoint resources */ 3859 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3860 spin_lock_irqsave(&xhci->lock, flags); 3861 /* Don't delete the default control endpoint resources */ 3862 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3863 spin_unlock_irqrestore(&xhci->lock, flags); 3864 } 3865 3866 /* Everything but endpoint 0 is disabled, so free the rings. */ 3867 for (i = 1; i < 31; i++) { 3868 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3869 3870 if (ep->ep_state & EP_HAS_STREAMS) { 3871 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3872 xhci_get_endpoint_address(i)); 3873 xhci_free_stream_info(xhci, ep->stream_info); 3874 ep->stream_info = NULL; 3875 ep->ep_state &= ~EP_HAS_STREAMS; 3876 } 3877 3878 if (ep->ring) { 3879 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3880 xhci_free_endpoint_ring(xhci, virt_dev, i); 3881 } 3882 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3883 xhci_drop_ep_from_interval_table(xhci, 3884 &virt_dev->eps[i].bw_info, 3885 virt_dev->bw_table, 3886 udev, 3887 &virt_dev->eps[i], 3888 virt_dev->tt_info); 3889 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3890 } 3891 /* If necessary, update the number of active TTs on this root port */ 3892 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3893 virt_dev->flags = 0; 3894 ret = 0; 3895 3896 command_cleanup: 3897 xhci_free_command(xhci, reset_device_cmd); 3898 return ret; 3899 } 3900 3901 /* 3902 * At this point, the struct usb_device is about to go away, the device has 3903 * disconnected, and all traffic has been stopped and the endpoints have been 3904 * disabled. Free any HC data structures associated with that device. 3905 */ 3906 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3907 { 3908 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3909 struct xhci_virt_device *virt_dev; 3910 struct xhci_slot_ctx *slot_ctx; 3911 int i, ret; 3912 3913 #ifndef CONFIG_USB_DEFAULT_PERSIST 3914 /* 3915 * We called pm_runtime_get_noresume when the device was attached. 3916 * Decrement the counter here to allow controller to runtime suspend 3917 * if no devices remain. 3918 */ 3919 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3920 pm_runtime_put_noidle(hcd->self.controller); 3921 #endif 3922 3923 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3924 /* If the host is halted due to driver unload, we still need to free the 3925 * device. 3926 */ 3927 if (ret <= 0 && ret != -ENODEV) 3928 return; 3929 3930 virt_dev = xhci->devs[udev->slot_id]; 3931 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3932 trace_xhci_free_dev(slot_ctx); 3933 3934 /* Stop any wayward timer functions (which may grab the lock) */ 3935 for (i = 0; i < 31; i++) { 3936 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3937 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3938 } 3939 virt_dev->udev = NULL; 3940 ret = xhci_disable_slot(xhci, udev->slot_id); 3941 if (ret) 3942 xhci_free_virt_device(xhci, udev->slot_id); 3943 } 3944 3945 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3946 { 3947 struct xhci_command *command; 3948 unsigned long flags; 3949 u32 state; 3950 int ret = 0; 3951 3952 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3953 if (!command) 3954 return -ENOMEM; 3955 3956 xhci_debugfs_remove_slot(xhci, slot_id); 3957 3958 spin_lock_irqsave(&xhci->lock, flags); 3959 /* Don't disable the slot if the host controller is dead. */ 3960 state = readl(&xhci->op_regs->status); 3961 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3962 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3963 spin_unlock_irqrestore(&xhci->lock, flags); 3964 kfree(command); 3965 return -ENODEV; 3966 } 3967 3968 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3969 slot_id); 3970 if (ret) { 3971 spin_unlock_irqrestore(&xhci->lock, flags); 3972 kfree(command); 3973 return ret; 3974 } 3975 xhci_ring_cmd_db(xhci); 3976 spin_unlock_irqrestore(&xhci->lock, flags); 3977 return ret; 3978 } 3979 3980 /* 3981 * Checks if we have enough host controller resources for the default control 3982 * endpoint. 3983 * 3984 * Must be called with xhci->lock held. 3985 */ 3986 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3987 { 3988 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3989 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3990 "Not enough ep ctxs: " 3991 "%u active, need to add 1, limit is %u.", 3992 xhci->num_active_eps, xhci->limit_active_eps); 3993 return -ENOMEM; 3994 } 3995 xhci->num_active_eps += 1; 3996 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3997 "Adding 1 ep ctx, %u now active.", 3998 xhci->num_active_eps); 3999 return 0; 4000 } 4001 4002 4003 /* 4004 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4005 * timed out, or allocating memory failed. Returns 1 on success. 4006 */ 4007 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4008 { 4009 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4010 struct xhci_virt_device *vdev; 4011 struct xhci_slot_ctx *slot_ctx; 4012 unsigned long flags; 4013 int ret, slot_id; 4014 struct xhci_command *command; 4015 4016 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4017 if (!command) 4018 return 0; 4019 4020 spin_lock_irqsave(&xhci->lock, flags); 4021 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4022 if (ret) { 4023 spin_unlock_irqrestore(&xhci->lock, flags); 4024 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4025 xhci_free_command(xhci, command); 4026 return 0; 4027 } 4028 xhci_ring_cmd_db(xhci); 4029 spin_unlock_irqrestore(&xhci->lock, flags); 4030 4031 wait_for_completion(command->completion); 4032 slot_id = command->slot_id; 4033 4034 if (!slot_id || command->status != COMP_SUCCESS) { 4035 xhci_err(xhci, "Error while assigning device slot ID\n"); 4036 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4037 HCS_MAX_SLOTS( 4038 readl(&xhci->cap_regs->hcs_params1))); 4039 xhci_free_command(xhci, command); 4040 return 0; 4041 } 4042 4043 xhci_free_command(xhci, command); 4044 4045 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4046 spin_lock_irqsave(&xhci->lock, flags); 4047 ret = xhci_reserve_host_control_ep_resources(xhci); 4048 if (ret) { 4049 spin_unlock_irqrestore(&xhci->lock, flags); 4050 xhci_warn(xhci, "Not enough host resources, " 4051 "active endpoint contexts = %u\n", 4052 xhci->num_active_eps); 4053 goto disable_slot; 4054 } 4055 spin_unlock_irqrestore(&xhci->lock, flags); 4056 } 4057 /* Use GFP_NOIO, since this function can be called from 4058 * xhci_discover_or_reset_device(), which may be called as part of 4059 * mass storage driver error handling. 4060 */ 4061 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4062 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4063 goto disable_slot; 4064 } 4065 vdev = xhci->devs[slot_id]; 4066 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4067 trace_xhci_alloc_dev(slot_ctx); 4068 4069 udev->slot_id = slot_id; 4070 4071 xhci_debugfs_create_slot(xhci, slot_id); 4072 4073 #ifndef CONFIG_USB_DEFAULT_PERSIST 4074 /* 4075 * If resetting upon resume, we can't put the controller into runtime 4076 * suspend if there is a device attached. 4077 */ 4078 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4079 pm_runtime_get_noresume(hcd->self.controller); 4080 #endif 4081 4082 /* Is this a LS or FS device under a HS hub? */ 4083 /* Hub or peripherial? */ 4084 return 1; 4085 4086 disable_slot: 4087 ret = xhci_disable_slot(xhci, udev->slot_id); 4088 if (ret) 4089 xhci_free_virt_device(xhci, udev->slot_id); 4090 4091 return 0; 4092 } 4093 4094 /* 4095 * Issue an Address Device command and optionally send a corresponding 4096 * SetAddress request to the device. 4097 */ 4098 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4099 enum xhci_setup_dev setup) 4100 { 4101 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4102 unsigned long flags; 4103 struct xhci_virt_device *virt_dev; 4104 int ret = 0; 4105 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4106 struct xhci_slot_ctx *slot_ctx; 4107 struct xhci_input_control_ctx *ctrl_ctx; 4108 u64 temp_64; 4109 struct xhci_command *command = NULL; 4110 4111 mutex_lock(&xhci->mutex); 4112 4113 if (xhci->xhc_state) { /* dying, removing or halted */ 4114 ret = -ESHUTDOWN; 4115 goto out; 4116 } 4117 4118 if (!udev->slot_id) { 4119 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4120 "Bad Slot ID %d", udev->slot_id); 4121 ret = -EINVAL; 4122 goto out; 4123 } 4124 4125 virt_dev = xhci->devs[udev->slot_id]; 4126 4127 if (WARN_ON(!virt_dev)) { 4128 /* 4129 * In plug/unplug torture test with an NEC controller, 4130 * a zero-dereference was observed once due to virt_dev = 0. 4131 * Print useful debug rather than crash if it is observed again! 4132 */ 4133 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4134 udev->slot_id); 4135 ret = -EINVAL; 4136 goto out; 4137 } 4138 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4139 trace_xhci_setup_device_slot(slot_ctx); 4140 4141 if (setup == SETUP_CONTEXT_ONLY) { 4142 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4143 SLOT_STATE_DEFAULT) { 4144 xhci_dbg(xhci, "Slot already in default state\n"); 4145 goto out; 4146 } 4147 } 4148 4149 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4150 if (!command) { 4151 ret = -ENOMEM; 4152 goto out; 4153 } 4154 4155 command->in_ctx = virt_dev->in_ctx; 4156 4157 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4158 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4159 if (!ctrl_ctx) { 4160 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4161 __func__); 4162 ret = -EINVAL; 4163 goto out; 4164 } 4165 /* 4166 * If this is the first Set Address since device plug-in or 4167 * virt_device realloaction after a resume with an xHCI power loss, 4168 * then set up the slot context. 4169 */ 4170 if (!slot_ctx->dev_info) 4171 xhci_setup_addressable_virt_dev(xhci, udev); 4172 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4173 else 4174 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4175 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4176 ctrl_ctx->drop_flags = 0; 4177 4178 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4179 le32_to_cpu(slot_ctx->dev_info) >> 27); 4180 4181 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4182 spin_lock_irqsave(&xhci->lock, flags); 4183 trace_xhci_setup_device(virt_dev); 4184 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4185 udev->slot_id, setup); 4186 if (ret) { 4187 spin_unlock_irqrestore(&xhci->lock, flags); 4188 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4189 "FIXME: allocate a command ring segment"); 4190 goto out; 4191 } 4192 xhci_ring_cmd_db(xhci); 4193 spin_unlock_irqrestore(&xhci->lock, flags); 4194 4195 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4196 wait_for_completion(command->completion); 4197 4198 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4199 * the SetAddress() "recovery interval" required by USB and aborting the 4200 * command on a timeout. 4201 */ 4202 switch (command->status) { 4203 case COMP_COMMAND_ABORTED: 4204 case COMP_COMMAND_RING_STOPPED: 4205 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4206 ret = -ETIME; 4207 break; 4208 case COMP_CONTEXT_STATE_ERROR: 4209 case COMP_SLOT_NOT_ENABLED_ERROR: 4210 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4211 act, udev->slot_id); 4212 ret = -EINVAL; 4213 break; 4214 case COMP_USB_TRANSACTION_ERROR: 4215 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4216 4217 mutex_unlock(&xhci->mutex); 4218 ret = xhci_disable_slot(xhci, udev->slot_id); 4219 if (!ret) 4220 xhci_alloc_dev(hcd, udev); 4221 kfree(command->completion); 4222 kfree(command); 4223 return -EPROTO; 4224 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4225 dev_warn(&udev->dev, 4226 "ERROR: Incompatible device for setup %s command\n", act); 4227 ret = -ENODEV; 4228 break; 4229 case COMP_SUCCESS: 4230 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4231 "Successful setup %s command", act); 4232 break; 4233 default: 4234 xhci_err(xhci, 4235 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4236 act, command->status); 4237 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4238 ret = -EINVAL; 4239 break; 4240 } 4241 if (ret) 4242 goto out; 4243 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4244 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4245 "Op regs DCBAA ptr = %#016llx", temp_64); 4246 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4247 "Slot ID %d dcbaa entry @%p = %#016llx", 4248 udev->slot_id, 4249 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4250 (unsigned long long) 4251 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4252 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4253 "Output Context DMA address = %#08llx", 4254 (unsigned long long)virt_dev->out_ctx->dma); 4255 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4256 le32_to_cpu(slot_ctx->dev_info) >> 27); 4257 /* 4258 * USB core uses address 1 for the roothubs, so we add one to the 4259 * address given back to us by the HC. 4260 */ 4261 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4262 le32_to_cpu(slot_ctx->dev_info) >> 27); 4263 /* Zero the input context control for later use */ 4264 ctrl_ctx->add_flags = 0; 4265 ctrl_ctx->drop_flags = 0; 4266 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4267 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4268 4269 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4270 "Internal device address = %d", 4271 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4272 out: 4273 mutex_unlock(&xhci->mutex); 4274 if (command) { 4275 kfree(command->completion); 4276 kfree(command); 4277 } 4278 return ret; 4279 } 4280 4281 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4282 { 4283 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4284 } 4285 4286 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4287 { 4288 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4289 } 4290 4291 /* 4292 * Transfer the port index into real index in the HW port status 4293 * registers. Caculate offset between the port's PORTSC register 4294 * and port status base. Divide the number of per port register 4295 * to get the real index. The raw port number bases 1. 4296 */ 4297 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4298 { 4299 struct xhci_hub *rhub; 4300 4301 rhub = xhci_get_rhub(hcd); 4302 return rhub->ports[port1 - 1]->hw_portnum + 1; 4303 } 4304 4305 /* 4306 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4307 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4308 */ 4309 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4310 struct usb_device *udev, u16 max_exit_latency) 4311 { 4312 struct xhci_virt_device *virt_dev; 4313 struct xhci_command *command; 4314 struct xhci_input_control_ctx *ctrl_ctx; 4315 struct xhci_slot_ctx *slot_ctx; 4316 unsigned long flags; 4317 int ret; 4318 4319 spin_lock_irqsave(&xhci->lock, flags); 4320 4321 virt_dev = xhci->devs[udev->slot_id]; 4322 4323 /* 4324 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4325 * xHC was re-initialized. Exit latency will be set later after 4326 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4327 */ 4328 4329 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4330 spin_unlock_irqrestore(&xhci->lock, flags); 4331 return 0; 4332 } 4333 4334 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4335 command = xhci->lpm_command; 4336 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4337 if (!ctrl_ctx) { 4338 spin_unlock_irqrestore(&xhci->lock, flags); 4339 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4340 __func__); 4341 return -ENOMEM; 4342 } 4343 4344 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4345 spin_unlock_irqrestore(&xhci->lock, flags); 4346 4347 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4348 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4349 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4350 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4351 slot_ctx->dev_state = 0; 4352 4353 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4354 "Set up evaluate context for LPM MEL change."); 4355 4356 /* Issue and wait for the evaluate context command. */ 4357 ret = xhci_configure_endpoint(xhci, udev, command, 4358 true, true); 4359 4360 if (!ret) { 4361 spin_lock_irqsave(&xhci->lock, flags); 4362 virt_dev->current_mel = max_exit_latency; 4363 spin_unlock_irqrestore(&xhci->lock, flags); 4364 } 4365 return ret; 4366 } 4367 4368 #ifdef CONFIG_PM 4369 4370 /* BESL to HIRD Encoding array for USB2 LPM */ 4371 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4372 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4373 4374 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4375 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4376 struct usb_device *udev) 4377 { 4378 int u2del, besl, besl_host; 4379 int besl_device = 0; 4380 u32 field; 4381 4382 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4383 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4384 4385 if (field & USB_BESL_SUPPORT) { 4386 for (besl_host = 0; besl_host < 16; besl_host++) { 4387 if (xhci_besl_encoding[besl_host] >= u2del) 4388 break; 4389 } 4390 /* Use baseline BESL value as default */ 4391 if (field & USB_BESL_BASELINE_VALID) 4392 besl_device = USB_GET_BESL_BASELINE(field); 4393 else if (field & USB_BESL_DEEP_VALID) 4394 besl_device = USB_GET_BESL_DEEP(field); 4395 } else { 4396 if (u2del <= 50) 4397 besl_host = 0; 4398 else 4399 besl_host = (u2del - 51) / 75 + 1; 4400 } 4401 4402 besl = besl_host + besl_device; 4403 if (besl > 15) 4404 besl = 15; 4405 4406 return besl; 4407 } 4408 4409 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4410 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4411 { 4412 u32 field; 4413 int l1; 4414 int besld = 0; 4415 int hirdm = 0; 4416 4417 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4418 4419 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4420 l1 = udev->l1_params.timeout / 256; 4421 4422 /* device has preferred BESLD */ 4423 if (field & USB_BESL_DEEP_VALID) { 4424 besld = USB_GET_BESL_DEEP(field); 4425 hirdm = 1; 4426 } 4427 4428 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4429 } 4430 4431 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4432 struct usb_device *udev, int enable) 4433 { 4434 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4435 struct xhci_port **ports; 4436 __le32 __iomem *pm_addr, *hlpm_addr; 4437 u32 pm_val, hlpm_val, field; 4438 unsigned int port_num; 4439 unsigned long flags; 4440 int hird, exit_latency; 4441 int ret; 4442 4443 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4444 return -EPERM; 4445 4446 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4447 !udev->lpm_capable) 4448 return -EPERM; 4449 4450 if (!udev->parent || udev->parent->parent || 4451 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4452 return -EPERM; 4453 4454 if (udev->usb2_hw_lpm_capable != 1) 4455 return -EPERM; 4456 4457 spin_lock_irqsave(&xhci->lock, flags); 4458 4459 ports = xhci->usb2_rhub.ports; 4460 port_num = udev->portnum - 1; 4461 pm_addr = ports[port_num]->addr + PORTPMSC; 4462 pm_val = readl(pm_addr); 4463 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4464 4465 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4466 enable ? "enable" : "disable", port_num + 1); 4467 4468 if (enable) { 4469 /* Host supports BESL timeout instead of HIRD */ 4470 if (udev->usb2_hw_lpm_besl_capable) { 4471 /* if device doesn't have a preferred BESL value use a 4472 * default one which works with mixed HIRD and BESL 4473 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4474 */ 4475 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4476 if ((field & USB_BESL_SUPPORT) && 4477 (field & USB_BESL_BASELINE_VALID)) 4478 hird = USB_GET_BESL_BASELINE(field); 4479 else 4480 hird = udev->l1_params.besl; 4481 4482 exit_latency = xhci_besl_encoding[hird]; 4483 spin_unlock_irqrestore(&xhci->lock, flags); 4484 4485 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4486 * input context for link powermanagement evaluate 4487 * context commands. It is protected by hcd->bandwidth 4488 * mutex and is shared by all devices. We need to set 4489 * the max ext latency in USB 2 BESL LPM as well, so 4490 * use the same mutex and xhci_change_max_exit_latency() 4491 */ 4492 mutex_lock(hcd->bandwidth_mutex); 4493 ret = xhci_change_max_exit_latency(xhci, udev, 4494 exit_latency); 4495 mutex_unlock(hcd->bandwidth_mutex); 4496 4497 if (ret < 0) 4498 return ret; 4499 spin_lock_irqsave(&xhci->lock, flags); 4500 4501 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4502 writel(hlpm_val, hlpm_addr); 4503 /* flush write */ 4504 readl(hlpm_addr); 4505 } else { 4506 hird = xhci_calculate_hird_besl(xhci, udev); 4507 } 4508 4509 pm_val &= ~PORT_HIRD_MASK; 4510 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4511 writel(pm_val, pm_addr); 4512 pm_val = readl(pm_addr); 4513 pm_val |= PORT_HLE; 4514 writel(pm_val, pm_addr); 4515 /* flush write */ 4516 readl(pm_addr); 4517 } else { 4518 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4519 writel(pm_val, pm_addr); 4520 /* flush write */ 4521 readl(pm_addr); 4522 if (udev->usb2_hw_lpm_besl_capable) { 4523 spin_unlock_irqrestore(&xhci->lock, flags); 4524 mutex_lock(hcd->bandwidth_mutex); 4525 xhci_change_max_exit_latency(xhci, udev, 0); 4526 mutex_unlock(hcd->bandwidth_mutex); 4527 readl_poll_timeout(ports[port_num]->addr, pm_val, 4528 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4529 100, 10000); 4530 return 0; 4531 } 4532 } 4533 4534 spin_unlock_irqrestore(&xhci->lock, flags); 4535 return 0; 4536 } 4537 4538 /* check if a usb2 port supports a given extened capability protocol 4539 * only USB2 ports extended protocol capability values are cached. 4540 * Return 1 if capability is supported 4541 */ 4542 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4543 unsigned capability) 4544 { 4545 u32 port_offset, port_count; 4546 int i; 4547 4548 for (i = 0; i < xhci->num_ext_caps; i++) { 4549 if (xhci->ext_caps[i] & capability) { 4550 /* port offsets starts at 1 */ 4551 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4552 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4553 if (port >= port_offset && 4554 port < port_offset + port_count) 4555 return 1; 4556 } 4557 } 4558 return 0; 4559 } 4560 4561 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4562 { 4563 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4564 int portnum = udev->portnum - 1; 4565 4566 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4567 return 0; 4568 4569 /* we only support lpm for non-hub device connected to root hub yet */ 4570 if (!udev->parent || udev->parent->parent || 4571 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4572 return 0; 4573 4574 if (xhci->hw_lpm_support == 1 && 4575 xhci_check_usb2_port_capability( 4576 xhci, portnum, XHCI_HLC)) { 4577 udev->usb2_hw_lpm_capable = 1; 4578 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4579 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4580 if (xhci_check_usb2_port_capability(xhci, portnum, 4581 XHCI_BLC)) 4582 udev->usb2_hw_lpm_besl_capable = 1; 4583 } 4584 4585 return 0; 4586 } 4587 4588 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4589 4590 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4591 static unsigned long long xhci_service_interval_to_ns( 4592 struct usb_endpoint_descriptor *desc) 4593 { 4594 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4595 } 4596 4597 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4598 enum usb3_link_state state) 4599 { 4600 unsigned long long sel; 4601 unsigned long long pel; 4602 unsigned int max_sel_pel; 4603 char *state_name; 4604 4605 switch (state) { 4606 case USB3_LPM_U1: 4607 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4608 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4609 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4610 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4611 state_name = "U1"; 4612 break; 4613 case USB3_LPM_U2: 4614 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4615 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4616 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4617 state_name = "U2"; 4618 break; 4619 default: 4620 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4621 __func__); 4622 return USB3_LPM_DISABLED; 4623 } 4624 4625 if (sel <= max_sel_pel && pel <= max_sel_pel) 4626 return USB3_LPM_DEVICE_INITIATED; 4627 4628 if (sel > max_sel_pel) 4629 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4630 "due to long SEL %llu ms\n", 4631 state_name, sel); 4632 else 4633 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4634 "due to long PEL %llu ms\n", 4635 state_name, pel); 4636 return USB3_LPM_DISABLED; 4637 } 4638 4639 /* The U1 timeout should be the maximum of the following values: 4640 * - For control endpoints, U1 system exit latency (SEL) * 3 4641 * - For bulk endpoints, U1 SEL * 5 4642 * - For interrupt endpoints: 4643 * - Notification EPs, U1 SEL * 3 4644 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4645 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4646 */ 4647 static unsigned long long xhci_calculate_intel_u1_timeout( 4648 struct usb_device *udev, 4649 struct usb_endpoint_descriptor *desc) 4650 { 4651 unsigned long long timeout_ns; 4652 int ep_type; 4653 int intr_type; 4654 4655 ep_type = usb_endpoint_type(desc); 4656 switch (ep_type) { 4657 case USB_ENDPOINT_XFER_CONTROL: 4658 timeout_ns = udev->u1_params.sel * 3; 4659 break; 4660 case USB_ENDPOINT_XFER_BULK: 4661 timeout_ns = udev->u1_params.sel * 5; 4662 break; 4663 case USB_ENDPOINT_XFER_INT: 4664 intr_type = usb_endpoint_interrupt_type(desc); 4665 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4666 timeout_ns = udev->u1_params.sel * 3; 4667 break; 4668 } 4669 /* Otherwise the calculation is the same as isoc eps */ 4670 fallthrough; 4671 case USB_ENDPOINT_XFER_ISOC: 4672 timeout_ns = xhci_service_interval_to_ns(desc); 4673 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4674 if (timeout_ns < udev->u1_params.sel * 2) 4675 timeout_ns = udev->u1_params.sel * 2; 4676 break; 4677 default: 4678 return 0; 4679 } 4680 4681 return timeout_ns; 4682 } 4683 4684 /* Returns the hub-encoded U1 timeout value. */ 4685 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4686 struct usb_device *udev, 4687 struct usb_endpoint_descriptor *desc) 4688 { 4689 unsigned long long timeout_ns; 4690 4691 if (xhci->quirks & XHCI_INTEL_HOST) 4692 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4693 else 4694 timeout_ns = udev->u1_params.sel; 4695 4696 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4697 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4698 if (xhci_service_interval_to_ns(desc) <= timeout_ns) { 4699 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4700 return USB3_LPM_DISABLED; 4701 } 4702 } 4703 4704 /* The U1 timeout is encoded in 1us intervals. 4705 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4706 */ 4707 if (timeout_ns == USB3_LPM_DISABLED) 4708 timeout_ns = 1; 4709 else 4710 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4711 4712 /* If the necessary timeout value is bigger than what we can set in the 4713 * USB 3.0 hub, we have to disable hub-initiated U1. 4714 */ 4715 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4716 return timeout_ns; 4717 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4718 "due to long timeout %llu ms\n", timeout_ns); 4719 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4720 } 4721 4722 /* The U2 timeout should be the maximum of: 4723 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4724 * - largest bInterval of any active periodic endpoint (to avoid going 4725 * into lower power link states between intervals). 4726 * - the U2 Exit Latency of the device 4727 */ 4728 static unsigned long long xhci_calculate_intel_u2_timeout( 4729 struct usb_device *udev, 4730 struct usb_endpoint_descriptor *desc) 4731 { 4732 unsigned long long timeout_ns; 4733 unsigned long long u2_del_ns; 4734 4735 timeout_ns = 10 * 1000 * 1000; 4736 4737 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4738 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4739 timeout_ns = xhci_service_interval_to_ns(desc); 4740 4741 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4742 if (u2_del_ns > timeout_ns) 4743 timeout_ns = u2_del_ns; 4744 4745 return timeout_ns; 4746 } 4747 4748 /* Returns the hub-encoded U2 timeout value. */ 4749 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4750 struct usb_device *udev, 4751 struct usb_endpoint_descriptor *desc) 4752 { 4753 unsigned long long timeout_ns; 4754 4755 if (xhci->quirks & XHCI_INTEL_HOST) 4756 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4757 else 4758 timeout_ns = udev->u2_params.sel; 4759 4760 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4761 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4762 if (xhci_service_interval_to_ns(desc) <= timeout_ns) { 4763 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4764 return USB3_LPM_DISABLED; 4765 } 4766 } 4767 4768 /* The U2 timeout is encoded in 256us intervals */ 4769 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4770 /* If the necessary timeout value is bigger than what we can set in the 4771 * USB 3.0 hub, we have to disable hub-initiated U2. 4772 */ 4773 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4774 return timeout_ns; 4775 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4776 "due to long timeout %llu ms\n", timeout_ns); 4777 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4778 } 4779 4780 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4781 struct usb_device *udev, 4782 struct usb_endpoint_descriptor *desc, 4783 enum usb3_link_state state, 4784 u16 *timeout) 4785 { 4786 if (state == USB3_LPM_U1) 4787 return xhci_calculate_u1_timeout(xhci, udev, desc); 4788 else if (state == USB3_LPM_U2) 4789 return xhci_calculate_u2_timeout(xhci, udev, desc); 4790 4791 return USB3_LPM_DISABLED; 4792 } 4793 4794 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4795 struct usb_device *udev, 4796 struct usb_endpoint_descriptor *desc, 4797 enum usb3_link_state state, 4798 u16 *timeout) 4799 { 4800 u16 alt_timeout; 4801 4802 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4803 desc, state, timeout); 4804 4805 /* If we found we can't enable hub-initiated LPM, and 4806 * the U1 or U2 exit latency was too high to allow 4807 * device-initiated LPM as well, then we will disable LPM 4808 * for this device, so stop searching any further. 4809 */ 4810 if (alt_timeout == USB3_LPM_DISABLED) { 4811 *timeout = alt_timeout; 4812 return -E2BIG; 4813 } 4814 if (alt_timeout > *timeout) 4815 *timeout = alt_timeout; 4816 return 0; 4817 } 4818 4819 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4820 struct usb_device *udev, 4821 struct usb_host_interface *alt, 4822 enum usb3_link_state state, 4823 u16 *timeout) 4824 { 4825 int j; 4826 4827 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4828 if (xhci_update_timeout_for_endpoint(xhci, udev, 4829 &alt->endpoint[j].desc, state, timeout)) 4830 return -E2BIG; 4831 continue; 4832 } 4833 return 0; 4834 } 4835 4836 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4837 enum usb3_link_state state) 4838 { 4839 struct usb_device *parent; 4840 unsigned int num_hubs; 4841 4842 if (state == USB3_LPM_U2) 4843 return 0; 4844 4845 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4846 for (parent = udev->parent, num_hubs = 0; parent->parent; 4847 parent = parent->parent) 4848 num_hubs++; 4849 4850 if (num_hubs < 2) 4851 return 0; 4852 4853 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4854 " below second-tier hub.\n"); 4855 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4856 "to decrease power consumption.\n"); 4857 return -E2BIG; 4858 } 4859 4860 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4861 struct usb_device *udev, 4862 enum usb3_link_state state) 4863 { 4864 if (xhci->quirks & XHCI_INTEL_HOST) 4865 return xhci_check_intel_tier_policy(udev, state); 4866 else 4867 return 0; 4868 } 4869 4870 /* Returns the U1 or U2 timeout that should be enabled. 4871 * If the tier check or timeout setting functions return with a non-zero exit 4872 * code, that means the timeout value has been finalized and we shouldn't look 4873 * at any more endpoints. 4874 */ 4875 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4876 struct usb_device *udev, enum usb3_link_state state) 4877 { 4878 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4879 struct usb_host_config *config; 4880 char *state_name; 4881 int i; 4882 u16 timeout = USB3_LPM_DISABLED; 4883 4884 if (state == USB3_LPM_U1) 4885 state_name = "U1"; 4886 else if (state == USB3_LPM_U2) 4887 state_name = "U2"; 4888 else { 4889 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4890 state); 4891 return timeout; 4892 } 4893 4894 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4895 return timeout; 4896 4897 /* Gather some information about the currently installed configuration 4898 * and alternate interface settings. 4899 */ 4900 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4901 state, &timeout)) 4902 return timeout; 4903 4904 config = udev->actconfig; 4905 if (!config) 4906 return timeout; 4907 4908 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4909 struct usb_driver *driver; 4910 struct usb_interface *intf = config->interface[i]; 4911 4912 if (!intf) 4913 continue; 4914 4915 /* Check if any currently bound drivers want hub-initiated LPM 4916 * disabled. 4917 */ 4918 if (intf->dev.driver) { 4919 driver = to_usb_driver(intf->dev.driver); 4920 if (driver && driver->disable_hub_initiated_lpm) { 4921 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4922 state_name, driver->name); 4923 timeout = xhci_get_timeout_no_hub_lpm(udev, 4924 state); 4925 if (timeout == USB3_LPM_DISABLED) 4926 return timeout; 4927 } 4928 } 4929 4930 /* Not sure how this could happen... */ 4931 if (!intf->cur_altsetting) 4932 continue; 4933 4934 if (xhci_update_timeout_for_interface(xhci, udev, 4935 intf->cur_altsetting, 4936 state, &timeout)) 4937 return timeout; 4938 } 4939 return timeout; 4940 } 4941 4942 static int calculate_max_exit_latency(struct usb_device *udev, 4943 enum usb3_link_state state_changed, 4944 u16 hub_encoded_timeout) 4945 { 4946 unsigned long long u1_mel_us = 0; 4947 unsigned long long u2_mel_us = 0; 4948 unsigned long long mel_us = 0; 4949 bool disabling_u1; 4950 bool disabling_u2; 4951 bool enabling_u1; 4952 bool enabling_u2; 4953 4954 disabling_u1 = (state_changed == USB3_LPM_U1 && 4955 hub_encoded_timeout == USB3_LPM_DISABLED); 4956 disabling_u2 = (state_changed == USB3_LPM_U2 && 4957 hub_encoded_timeout == USB3_LPM_DISABLED); 4958 4959 enabling_u1 = (state_changed == USB3_LPM_U1 && 4960 hub_encoded_timeout != USB3_LPM_DISABLED); 4961 enabling_u2 = (state_changed == USB3_LPM_U2 && 4962 hub_encoded_timeout != USB3_LPM_DISABLED); 4963 4964 /* If U1 was already enabled and we're not disabling it, 4965 * or we're going to enable U1, account for the U1 max exit latency. 4966 */ 4967 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4968 enabling_u1) 4969 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4970 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4971 enabling_u2) 4972 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4973 4974 if (u1_mel_us > u2_mel_us) 4975 mel_us = u1_mel_us; 4976 else 4977 mel_us = u2_mel_us; 4978 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4979 if (mel_us > MAX_EXIT) { 4980 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4981 "is too big.\n", mel_us); 4982 return -E2BIG; 4983 } 4984 return mel_us; 4985 } 4986 4987 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4988 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4989 struct usb_device *udev, enum usb3_link_state state) 4990 { 4991 struct xhci_hcd *xhci; 4992 u16 hub_encoded_timeout; 4993 int mel; 4994 int ret; 4995 4996 xhci = hcd_to_xhci(hcd); 4997 /* The LPM timeout values are pretty host-controller specific, so don't 4998 * enable hub-initiated timeouts unless the vendor has provided 4999 * information about their timeout algorithm. 5000 */ 5001 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5002 !xhci->devs[udev->slot_id]) 5003 return USB3_LPM_DISABLED; 5004 5005 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5006 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5007 if (mel < 0) { 5008 /* Max Exit Latency is too big, disable LPM. */ 5009 hub_encoded_timeout = USB3_LPM_DISABLED; 5010 mel = 0; 5011 } 5012 5013 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5014 if (ret) 5015 return ret; 5016 return hub_encoded_timeout; 5017 } 5018 5019 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5020 struct usb_device *udev, enum usb3_link_state state) 5021 { 5022 struct xhci_hcd *xhci; 5023 u16 mel; 5024 5025 xhci = hcd_to_xhci(hcd); 5026 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5027 !xhci->devs[udev->slot_id]) 5028 return 0; 5029 5030 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5031 return xhci_change_max_exit_latency(xhci, udev, mel); 5032 } 5033 #else /* CONFIG_PM */ 5034 5035 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5036 struct usb_device *udev, int enable) 5037 { 5038 return 0; 5039 } 5040 5041 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5042 { 5043 return 0; 5044 } 5045 5046 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5047 struct usb_device *udev, enum usb3_link_state state) 5048 { 5049 return USB3_LPM_DISABLED; 5050 } 5051 5052 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5053 struct usb_device *udev, enum usb3_link_state state) 5054 { 5055 return 0; 5056 } 5057 #endif /* CONFIG_PM */ 5058 5059 /*-------------------------------------------------------------------------*/ 5060 5061 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5062 * internal data structures for the device. 5063 */ 5064 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5065 struct usb_tt *tt, gfp_t mem_flags) 5066 { 5067 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5068 struct xhci_virt_device *vdev; 5069 struct xhci_command *config_cmd; 5070 struct xhci_input_control_ctx *ctrl_ctx; 5071 struct xhci_slot_ctx *slot_ctx; 5072 unsigned long flags; 5073 unsigned think_time; 5074 int ret; 5075 5076 /* Ignore root hubs */ 5077 if (!hdev->parent) 5078 return 0; 5079 5080 vdev = xhci->devs[hdev->slot_id]; 5081 if (!vdev) { 5082 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5083 return -EINVAL; 5084 } 5085 5086 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5087 if (!config_cmd) 5088 return -ENOMEM; 5089 5090 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5091 if (!ctrl_ctx) { 5092 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5093 __func__); 5094 xhci_free_command(xhci, config_cmd); 5095 return -ENOMEM; 5096 } 5097 5098 spin_lock_irqsave(&xhci->lock, flags); 5099 if (hdev->speed == USB_SPEED_HIGH && 5100 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5101 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5102 xhci_free_command(xhci, config_cmd); 5103 spin_unlock_irqrestore(&xhci->lock, flags); 5104 return -ENOMEM; 5105 } 5106 5107 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5108 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5109 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5110 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5111 /* 5112 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5113 * but it may be already set to 1 when setup an xHCI virtual 5114 * device, so clear it anyway. 5115 */ 5116 if (tt->multi) 5117 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5118 else if (hdev->speed == USB_SPEED_FULL) 5119 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5120 5121 if (xhci->hci_version > 0x95) { 5122 xhci_dbg(xhci, "xHCI version %x needs hub " 5123 "TT think time and number of ports\n", 5124 (unsigned int) xhci->hci_version); 5125 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5126 /* Set TT think time - convert from ns to FS bit times. 5127 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5128 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5129 * 5130 * xHCI 1.0: this field shall be 0 if the device is not a 5131 * High-spped hub. 5132 */ 5133 think_time = tt->think_time; 5134 if (think_time != 0) 5135 think_time = (think_time / 666) - 1; 5136 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5137 slot_ctx->tt_info |= 5138 cpu_to_le32(TT_THINK_TIME(think_time)); 5139 } else { 5140 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5141 "TT think time or number of ports\n", 5142 (unsigned int) xhci->hci_version); 5143 } 5144 slot_ctx->dev_state = 0; 5145 spin_unlock_irqrestore(&xhci->lock, flags); 5146 5147 xhci_dbg(xhci, "Set up %s for hub device.\n", 5148 (xhci->hci_version > 0x95) ? 5149 "configure endpoint" : "evaluate context"); 5150 5151 /* Issue and wait for the configure endpoint or 5152 * evaluate context command. 5153 */ 5154 if (xhci->hci_version > 0x95) 5155 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5156 false, false); 5157 else 5158 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5159 true, false); 5160 5161 xhci_free_command(xhci, config_cmd); 5162 return ret; 5163 } 5164 5165 static int xhci_get_frame(struct usb_hcd *hcd) 5166 { 5167 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5168 /* EHCI mods by the periodic size. Why? */ 5169 return readl(&xhci->run_regs->microframe_index) >> 3; 5170 } 5171 5172 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5173 { 5174 struct xhci_hcd *xhci; 5175 /* 5176 * TODO: Check with DWC3 clients for sysdev according to 5177 * quirks 5178 */ 5179 struct device *dev = hcd->self.sysdev; 5180 unsigned int minor_rev; 5181 int retval; 5182 5183 /* Accept arbitrarily long scatter-gather lists */ 5184 hcd->self.sg_tablesize = ~0; 5185 5186 /* support to build packet from discontinuous buffers */ 5187 hcd->self.no_sg_constraint = 1; 5188 5189 /* XHCI controllers don't stop the ep queue on short packets :| */ 5190 hcd->self.no_stop_on_short = 1; 5191 5192 xhci = hcd_to_xhci(hcd); 5193 5194 if (usb_hcd_is_primary_hcd(hcd)) { 5195 xhci->main_hcd = hcd; 5196 xhci->usb2_rhub.hcd = hcd; 5197 /* Mark the first roothub as being USB 2.0. 5198 * The xHCI driver will register the USB 3.0 roothub. 5199 */ 5200 hcd->speed = HCD_USB2; 5201 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5202 /* 5203 * USB 2.0 roothub under xHCI has an integrated TT, 5204 * (rate matching hub) as opposed to having an OHCI/UHCI 5205 * companion controller. 5206 */ 5207 hcd->has_tt = 1; 5208 } else { 5209 /* 5210 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5211 * should return 0x31 for sbrn, or that the minor revision 5212 * is a two digit BCD containig minor and sub-minor numbers. 5213 * This was later clarified in xHCI 1.2. 5214 * 5215 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5216 * minor revision set to 0x1 instead of 0x10. 5217 */ 5218 if (xhci->usb3_rhub.min_rev == 0x1) 5219 minor_rev = 1; 5220 else 5221 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5222 5223 switch (minor_rev) { 5224 case 2: 5225 hcd->speed = HCD_USB32; 5226 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5227 hcd->self.root_hub->rx_lanes = 2; 5228 hcd->self.root_hub->tx_lanes = 2; 5229 break; 5230 case 1: 5231 hcd->speed = HCD_USB31; 5232 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5233 break; 5234 } 5235 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5236 minor_rev, 5237 minor_rev ? "Enhanced " : ""); 5238 5239 xhci->usb3_rhub.hcd = hcd; 5240 /* xHCI private pointer was set in xhci_pci_probe for the second 5241 * registered roothub. 5242 */ 5243 return 0; 5244 } 5245 5246 mutex_init(&xhci->mutex); 5247 xhci->cap_regs = hcd->regs; 5248 xhci->op_regs = hcd->regs + 5249 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5250 xhci->run_regs = hcd->regs + 5251 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5252 /* Cache read-only capability registers */ 5253 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5254 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5255 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5256 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5257 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5258 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5259 if (xhci->hci_version > 0x100) 5260 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5261 5262 xhci->quirks |= quirks; 5263 5264 get_quirks(dev, xhci); 5265 5266 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5267 * success event after a short transfer. This quirk will ignore such 5268 * spurious event. 5269 */ 5270 if (xhci->hci_version > 0x96) 5271 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5272 5273 /* Make sure the HC is halted. */ 5274 retval = xhci_halt(xhci); 5275 if (retval) 5276 return retval; 5277 5278 xhci_zero_64b_regs(xhci); 5279 5280 xhci_dbg(xhci, "Resetting HCD\n"); 5281 /* Reset the internal HC memory state and registers. */ 5282 retval = xhci_reset(xhci); 5283 if (retval) 5284 return retval; 5285 xhci_dbg(xhci, "Reset complete\n"); 5286 5287 /* 5288 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5289 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5290 * address memory pointers actually. So, this driver clears the AC64 5291 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5292 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5293 */ 5294 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5295 xhci->hcc_params &= ~BIT(0); 5296 5297 /* Set dma_mask and coherent_dma_mask to 64-bits, 5298 * if xHC supports 64-bit addressing */ 5299 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5300 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5301 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5302 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5303 } else { 5304 /* 5305 * This is to avoid error in cases where a 32-bit USB 5306 * controller is used on a 64-bit capable system. 5307 */ 5308 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5309 if (retval) 5310 return retval; 5311 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5312 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5313 } 5314 5315 xhci_dbg(xhci, "Calling HCD init\n"); 5316 /* Initialize HCD and host controller data structures. */ 5317 retval = xhci_init(hcd); 5318 if (retval) 5319 return retval; 5320 xhci_dbg(xhci, "Called HCD init\n"); 5321 5322 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5323 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5324 5325 return 0; 5326 } 5327 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5328 5329 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5330 struct usb_host_endpoint *ep) 5331 { 5332 struct xhci_hcd *xhci; 5333 struct usb_device *udev; 5334 unsigned int slot_id; 5335 unsigned int ep_index; 5336 unsigned long flags; 5337 5338 xhci = hcd_to_xhci(hcd); 5339 5340 spin_lock_irqsave(&xhci->lock, flags); 5341 udev = (struct usb_device *)ep->hcpriv; 5342 slot_id = udev->slot_id; 5343 ep_index = xhci_get_endpoint_index(&ep->desc); 5344 5345 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5346 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5347 spin_unlock_irqrestore(&xhci->lock, flags); 5348 } 5349 5350 static const struct hc_driver xhci_hc_driver = { 5351 .description = "xhci-hcd", 5352 .product_desc = "xHCI Host Controller", 5353 .hcd_priv_size = sizeof(struct xhci_hcd), 5354 5355 /* 5356 * generic hardware linkage 5357 */ 5358 .irq = xhci_irq, 5359 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5360 HCD_BH, 5361 5362 /* 5363 * basic lifecycle operations 5364 */ 5365 .reset = NULL, /* set in xhci_init_driver() */ 5366 .start = xhci_run, 5367 .stop = xhci_stop, 5368 .shutdown = xhci_shutdown, 5369 5370 /* 5371 * managing i/o requests and associated device resources 5372 */ 5373 .map_urb_for_dma = xhci_map_urb_for_dma, 5374 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5375 .urb_enqueue = xhci_urb_enqueue, 5376 .urb_dequeue = xhci_urb_dequeue, 5377 .alloc_dev = xhci_alloc_dev, 5378 .free_dev = xhci_free_dev, 5379 .alloc_streams = xhci_alloc_streams, 5380 .free_streams = xhci_free_streams, 5381 .add_endpoint = xhci_add_endpoint, 5382 .drop_endpoint = xhci_drop_endpoint, 5383 .endpoint_disable = xhci_endpoint_disable, 5384 .endpoint_reset = xhci_endpoint_reset, 5385 .check_bandwidth = xhci_check_bandwidth, 5386 .reset_bandwidth = xhci_reset_bandwidth, 5387 .address_device = xhci_address_device, 5388 .enable_device = xhci_enable_device, 5389 .update_hub_device = xhci_update_hub_device, 5390 .reset_device = xhci_discover_or_reset_device, 5391 5392 /* 5393 * scheduling support 5394 */ 5395 .get_frame_number = xhci_get_frame, 5396 5397 /* 5398 * root hub support 5399 */ 5400 .hub_control = xhci_hub_control, 5401 .hub_status_data = xhci_hub_status_data, 5402 .bus_suspend = xhci_bus_suspend, 5403 .bus_resume = xhci_bus_resume, 5404 .get_resuming_ports = xhci_get_resuming_ports, 5405 5406 /* 5407 * call back when device connected and addressed 5408 */ 5409 .update_device = xhci_update_device, 5410 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5411 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5412 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5413 .find_raw_port_number = xhci_find_raw_port_number, 5414 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5415 }; 5416 5417 void xhci_init_driver(struct hc_driver *drv, 5418 const struct xhci_driver_overrides *over) 5419 { 5420 BUG_ON(!over); 5421 5422 /* Copy the generic table to drv then apply the overrides */ 5423 *drv = xhci_hc_driver; 5424 5425 if (over) { 5426 drv->hcd_priv_size += over->extra_priv_size; 5427 if (over->reset) 5428 drv->reset = over->reset; 5429 if (over->start) 5430 drv->start = over->start; 5431 if (over->check_bandwidth) 5432 drv->check_bandwidth = over->check_bandwidth; 5433 if (over->reset_bandwidth) 5434 drv->reset_bandwidth = over->reset_bandwidth; 5435 } 5436 } 5437 EXPORT_SYMBOL_GPL(xhci_init_driver); 5438 5439 MODULE_DESCRIPTION(DRIVER_DESC); 5440 MODULE_AUTHOR(DRIVER_AUTHOR); 5441 MODULE_LICENSE("GPL"); 5442 5443 static int __init xhci_hcd_init(void) 5444 { 5445 /* 5446 * Check the compiler generated sizes of structures that must be laid 5447 * out in specific ways for hardware access. 5448 */ 5449 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5450 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5451 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5452 /* xhci_device_control has eight fields, and also 5453 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5454 */ 5455 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5456 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5457 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5458 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5459 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5460 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5461 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5462 5463 if (usb_disabled()) 5464 return -ENODEV; 5465 5466 xhci_debugfs_create_root(); 5467 5468 return 0; 5469 } 5470 5471 /* 5472 * If an init function is provided, an exit function must also be provided 5473 * to allow module unload. 5474 */ 5475 static void __exit xhci_hcd_fini(void) 5476 { 5477 xhci_debugfs_remove_root(); 5478 } 5479 5480 module_init(xhci_hcd_init); 5481 module_exit(xhci_hcd_fini); 5482