xref: /openbmc/linux/drivers/usb/host/xhci.c (revision d0b73b48)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 
31 #include "xhci.h"
32 
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * xhci_handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 		      u32 mask, u32 done, int usec)
57 {
58 	u32	result;
59 
60 	do {
61 		result = xhci_readl(xhci, ptr);
62 		if (result == ~(u32)0)		/* card removed */
63 			return -ENODEV;
64 		result &= mask;
65 		if (result == done)
66 			return 0;
67 		udelay(1);
68 		usec--;
69 	} while (usec > 0);
70 	return -ETIMEDOUT;
71 }
72 
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78 	u32 halted;
79 	u32 cmd;
80 	u32 mask;
81 
82 	mask = ~(XHCI_IRQS);
83 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 	if (!halted)
85 		mask &= ~CMD_RUN;
86 
87 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 	cmd &= mask;
89 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91 
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 	int ret;
103 	xhci_dbg(xhci, "// Halt the HC\n");
104 	xhci_quiesce(xhci);
105 
106 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
107 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 	if (!ret) {
109 		xhci->xhc_state |= XHCI_STATE_HALTED;
110 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 	} else
112 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 				XHCI_MAX_HALT_USEC);
114 	return ret;
115 }
116 
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122 	u32 temp;
123 	int ret;
124 
125 	temp = xhci_readl(xhci, &xhci->op_regs->command);
126 	temp |= (CMD_RUN);
127 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 			temp);
129 	xhci_writel(xhci, temp, &xhci->op_regs->command);
130 
131 	/*
132 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 	 * running.
134 	 */
135 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
136 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 	if (ret == -ETIMEDOUT)
138 		xhci_err(xhci, "Host took too long to start, "
139 				"waited %u microseconds.\n",
140 				XHCI_MAX_HALT_USEC);
141 	if (!ret)
142 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
143 	return ret;
144 }
145 
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 	u32 command;
156 	u32 state;
157 	int ret, i;
158 
159 	state = xhci_readl(xhci, &xhci->op_regs->status);
160 	if ((state & STS_HALT) == 0) {
161 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 		return 0;
163 	}
164 
165 	xhci_dbg(xhci, "// Reset the HC\n");
166 	command = xhci_readl(xhci, &xhci->op_regs->command);
167 	command |= CMD_RESET;
168 	xhci_writel(xhci, command, &xhci->op_regs->command);
169 
170 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
171 			CMD_RESET, 0, 10 * 1000 * 1000);
172 	if (ret)
173 		return ret;
174 
175 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 	/*
177 	 * xHCI cannot write to any doorbells or operational registers other
178 	 * than status until the "Controller Not Ready" flag is cleared.
179 	 */
180 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
181 			STS_CNR, 0, 10 * 1000 * 1000);
182 
183 	for (i = 0; i < 2; ++i) {
184 		xhci->bus_state[i].port_c_suspend = 0;
185 		xhci->bus_state[i].suspended_ports = 0;
186 		xhci->bus_state[i].resuming_ports = 0;
187 	}
188 
189 	return ret;
190 }
191 
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195 	int i;
196 
197 	if (!xhci->msix_entries)
198 		return -EINVAL;
199 
200 	for (i = 0; i < xhci->msix_count; i++)
201 		if (xhci->msix_entries[i].vector)
202 			free_irq(xhci->msix_entries[i].vector,
203 					xhci_to_hcd(xhci));
204 	return 0;
205 }
206 
207 /*
208  * Set up MSI
209  */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212 	int ret;
213 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214 
215 	ret = pci_enable_msi(pdev);
216 	if (ret) {
217 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
218 		return ret;
219 	}
220 
221 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222 				0, "xhci_hcd", xhci_to_hcd(xhci));
223 	if (ret) {
224 		xhci_dbg(xhci, "disable MSI interrupt\n");
225 		pci_disable_msi(pdev);
226 	}
227 
228 	return ret;
229 }
230 
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 	int ret;
239 
240 	/* return if using legacy interrupt */
241 	if (xhci_to_hcd(xhci)->irq > 0)
242 		return;
243 
244 	ret = xhci_free_msi(xhci);
245 	if (!ret)
246 		return;
247 	if (pdev->irq > 0)
248 		free_irq(pdev->irq, xhci_to_hcd(xhci));
249 
250 	return;
251 }
252 
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 	int i, ret = 0;
259 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261 
262 	/*
263 	 * calculate number of msi-x vectors supported.
264 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
266 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 	 *   Add additional 1 vector to ensure always available interrupt.
268 	 */
269 	xhci->msix_count = min(num_online_cpus() + 1,
270 				HCS_MAX_INTRS(xhci->hcs_params1));
271 
272 	xhci->msix_entries =
273 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 				GFP_KERNEL);
275 	if (!xhci->msix_entries) {
276 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 		return -ENOMEM;
278 	}
279 
280 	for (i = 0; i < xhci->msix_count; i++) {
281 		xhci->msix_entries[i].entry = i;
282 		xhci->msix_entries[i].vector = 0;
283 	}
284 
285 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 	if (ret) {
287 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
288 		goto free_entries;
289 	}
290 
291 	for (i = 0; i < xhci->msix_count; i++) {
292 		ret = request_irq(xhci->msix_entries[i].vector,
293 				(irq_handler_t)xhci_msi_irq,
294 				0, "xhci_hcd", xhci_to_hcd(xhci));
295 		if (ret)
296 			goto disable_msix;
297 	}
298 
299 	hcd->msix_enabled = 1;
300 	return ret;
301 
302 disable_msix:
303 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 	xhci_free_irq(xhci);
305 	pci_disable_msix(pdev);
306 free_entries:
307 	kfree(xhci->msix_entries);
308 	xhci->msix_entries = NULL;
309 	return ret;
310 }
311 
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317 
318 	xhci_free_irq(xhci);
319 
320 	if (xhci->msix_entries) {
321 		pci_disable_msix(pdev);
322 		kfree(xhci->msix_entries);
323 		xhci->msix_entries = NULL;
324 	} else {
325 		pci_disable_msi(pdev);
326 	}
327 
328 	hcd->msix_enabled = 0;
329 	return;
330 }
331 
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334 	int i;
335 
336 	if (xhci->msix_entries) {
337 		for (i = 0; i < xhci->msix_count; i++)
338 			synchronize_irq(xhci->msix_entries[i].vector);
339 	}
340 }
341 
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346 	int ret;
347 
348 	/*
349 	 * Some Fresco Logic host controllers advertise MSI, but fail to
350 	 * generate interrupts.  Don't even try to enable MSI.
351 	 */
352 	if (xhci->quirks & XHCI_BROKEN_MSI)
353 		return 0;
354 
355 	/* unregister the legacy interrupt */
356 	if (hcd->irq)
357 		free_irq(hcd->irq, hcd);
358 	hcd->irq = 0;
359 
360 	ret = xhci_setup_msix(xhci);
361 	if (ret)
362 		/* fall back to msi*/
363 		ret = xhci_setup_msi(xhci);
364 
365 	if (!ret)
366 		/* hcd->irq is 0, we have MSI */
367 		return 0;
368 
369 	if (!pdev->irq) {
370 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371 		return -EINVAL;
372 	}
373 
374 	/* fall back to legacy interrupt*/
375 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
376 			hcd->irq_descr, hcd);
377 	if (ret) {
378 		xhci_err(xhci, "request interrupt %d failed\n",
379 				pdev->irq);
380 		return ret;
381 	}
382 	hcd->irq = pdev->irq;
383 	return 0;
384 }
385 
386 #else
387 
388 static int xhci_try_enable_msi(struct usb_hcd *hcd)
389 {
390 	return 0;
391 }
392 
393 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
394 {
395 }
396 
397 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
398 {
399 }
400 
401 #endif
402 
403 static void compliance_mode_recovery(unsigned long arg)
404 {
405 	struct xhci_hcd *xhci;
406 	struct usb_hcd *hcd;
407 	u32 temp;
408 	int i;
409 
410 	xhci = (struct xhci_hcd *)arg;
411 
412 	for (i = 0; i < xhci->num_usb3_ports; i++) {
413 		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
414 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
415 			/*
416 			 * Compliance Mode Detected. Letting USB Core
417 			 * handle the Warm Reset
418 			 */
419 			xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
420 					i + 1);
421 			xhci_dbg(xhci, "Attempting Recovery routine!\n");
422 			hcd = xhci->shared_hcd;
423 
424 			if (hcd->state == HC_STATE_SUSPENDED)
425 				usb_hcd_resume_root_hub(hcd);
426 
427 			usb_hcd_poll_rh_status(hcd);
428 		}
429 	}
430 
431 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
432 		mod_timer(&xhci->comp_mode_recovery_timer,
433 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
434 }
435 
436 /*
437  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
438  * that causes ports behind that hardware to enter compliance mode sometimes.
439  * The quirk creates a timer that polls every 2 seconds the link state of
440  * each host controller's port and recovers it by issuing a Warm reset
441  * if Compliance mode is detected, otherwise the port will become "dead" (no
442  * device connections or disconnections will be detected anymore). Becasue no
443  * status event is generated when entering compliance mode (per xhci spec),
444  * this quirk is needed on systems that have the failing hardware installed.
445  */
446 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
447 {
448 	xhci->port_status_u0 = 0;
449 	init_timer(&xhci->comp_mode_recovery_timer);
450 
451 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
452 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
453 	xhci->comp_mode_recovery_timer.expires = jiffies +
454 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
455 
456 	set_timer_slack(&xhci->comp_mode_recovery_timer,
457 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
458 	add_timer(&xhci->comp_mode_recovery_timer);
459 	xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
460 }
461 
462 /*
463  * This function identifies the systems that have installed the SN65LVPE502CP
464  * USB3.0 re-driver and that need the Compliance Mode Quirk.
465  * Systems:
466  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
467  */
468 static bool compliance_mode_recovery_timer_quirk_check(void)
469 {
470 	const char *dmi_product_name, *dmi_sys_vendor;
471 
472 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
473 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
474 	if (!dmi_product_name || !dmi_sys_vendor)
475 		return false;
476 
477 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
478 		return false;
479 
480 	if (strstr(dmi_product_name, "Z420") ||
481 			strstr(dmi_product_name, "Z620") ||
482 			strstr(dmi_product_name, "Z820") ||
483 			strstr(dmi_product_name, "Z1 Workstation"))
484 		return true;
485 
486 	return false;
487 }
488 
489 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
490 {
491 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
492 }
493 
494 
495 /*
496  * Initialize memory for HCD and xHC (one-time init).
497  *
498  * Program the PAGESIZE register, initialize the device context array, create
499  * device contexts (?), set up a command ring segment (or two?), create event
500  * ring (one for now).
501  */
502 int xhci_init(struct usb_hcd *hcd)
503 {
504 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
505 	int retval = 0;
506 
507 	xhci_dbg(xhci, "xhci_init\n");
508 	spin_lock_init(&xhci->lock);
509 	if (xhci->hci_version == 0x95 && link_quirk) {
510 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
511 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
512 	} else {
513 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
514 	}
515 	retval = xhci_mem_init(xhci, GFP_KERNEL);
516 	xhci_dbg(xhci, "Finished xhci_init\n");
517 
518 	/* Initializing Compliance Mode Recovery Data If Needed */
519 	if (compliance_mode_recovery_timer_quirk_check()) {
520 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
521 		compliance_mode_recovery_timer_init(xhci);
522 	}
523 
524 	return retval;
525 }
526 
527 /*-------------------------------------------------------------------------*/
528 
529 
530 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
531 static void xhci_event_ring_work(unsigned long arg)
532 {
533 	unsigned long flags;
534 	int temp;
535 	u64 temp_64;
536 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
537 	int i, j;
538 
539 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
540 
541 	spin_lock_irqsave(&xhci->lock, flags);
542 	temp = xhci_readl(xhci, &xhci->op_regs->status);
543 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
544 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
545 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
546 		xhci_dbg(xhci, "HW died, polling stopped.\n");
547 		spin_unlock_irqrestore(&xhci->lock, flags);
548 		return;
549 	}
550 
551 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
552 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
553 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
554 	xhci->error_bitmask = 0;
555 	xhci_dbg(xhci, "Event ring:\n");
556 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
557 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
558 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
559 	temp_64 &= ~ERST_PTR_MASK;
560 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
561 	xhci_dbg(xhci, "Command ring:\n");
562 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
563 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
564 	xhci_dbg_cmd_ptrs(xhci);
565 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
566 		if (!xhci->devs[i])
567 			continue;
568 		for (j = 0; j < 31; ++j) {
569 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
570 		}
571 	}
572 	spin_unlock_irqrestore(&xhci->lock, flags);
573 
574 	if (!xhci->zombie)
575 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
576 	else
577 		xhci_dbg(xhci, "Quit polling the event ring.\n");
578 }
579 #endif
580 
581 static int xhci_run_finished(struct xhci_hcd *xhci)
582 {
583 	if (xhci_start(xhci)) {
584 		xhci_halt(xhci);
585 		return -ENODEV;
586 	}
587 	xhci->shared_hcd->state = HC_STATE_RUNNING;
588 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
589 
590 	if (xhci->quirks & XHCI_NEC_HOST)
591 		xhci_ring_cmd_db(xhci);
592 
593 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
594 	return 0;
595 }
596 
597 /*
598  * Start the HC after it was halted.
599  *
600  * This function is called by the USB core when the HC driver is added.
601  * Its opposite is xhci_stop().
602  *
603  * xhci_init() must be called once before this function can be called.
604  * Reset the HC, enable device slot contexts, program DCBAAP, and
605  * set command ring pointer and event ring pointer.
606  *
607  * Setup MSI-X vectors and enable interrupts.
608  */
609 int xhci_run(struct usb_hcd *hcd)
610 {
611 	u32 temp;
612 	u64 temp_64;
613 	int ret;
614 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
615 
616 	/* Start the xHCI host controller running only after the USB 2.0 roothub
617 	 * is setup.
618 	 */
619 
620 	hcd->uses_new_polling = 1;
621 	if (!usb_hcd_is_primary_hcd(hcd))
622 		return xhci_run_finished(xhci);
623 
624 	xhci_dbg(xhci, "xhci_run\n");
625 
626 	ret = xhci_try_enable_msi(hcd);
627 	if (ret)
628 		return ret;
629 
630 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
631 	init_timer(&xhci->event_ring_timer);
632 	xhci->event_ring_timer.data = (unsigned long) xhci;
633 	xhci->event_ring_timer.function = xhci_event_ring_work;
634 	/* Poll the event ring */
635 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
636 	xhci->zombie = 0;
637 	xhci_dbg(xhci, "Setting event ring polling timer\n");
638 	add_timer(&xhci->event_ring_timer);
639 #endif
640 
641 	xhci_dbg(xhci, "Command ring memory map follows:\n");
642 	xhci_debug_ring(xhci, xhci->cmd_ring);
643 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
644 	xhci_dbg_cmd_ptrs(xhci);
645 
646 	xhci_dbg(xhci, "ERST memory map follows:\n");
647 	xhci_dbg_erst(xhci, &xhci->erst);
648 	xhci_dbg(xhci, "Event ring:\n");
649 	xhci_debug_ring(xhci, xhci->event_ring);
650 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
651 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
652 	temp_64 &= ~ERST_PTR_MASK;
653 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
654 
655 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
656 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
657 	temp &= ~ER_IRQ_INTERVAL_MASK;
658 	temp |= (u32) 160;
659 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
660 
661 	/* Set the HCD state before we enable the irqs */
662 	temp = xhci_readl(xhci, &xhci->op_regs->command);
663 	temp |= (CMD_EIE);
664 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
665 			temp);
666 	xhci_writel(xhci, temp, &xhci->op_regs->command);
667 
668 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
669 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
670 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
671 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
672 			&xhci->ir_set->irq_pending);
673 	xhci_print_ir_set(xhci, 0);
674 
675 	if (xhci->quirks & XHCI_NEC_HOST)
676 		xhci_queue_vendor_command(xhci, 0, 0, 0,
677 				TRB_TYPE(TRB_NEC_GET_FW));
678 
679 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
680 	return 0;
681 }
682 
683 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
684 {
685 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686 
687 	spin_lock_irq(&xhci->lock);
688 	xhci_halt(xhci);
689 
690 	/* The shared_hcd is going to be deallocated shortly (the USB core only
691 	 * calls this function when allocation fails in usb_add_hcd(), or
692 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
693 	 */
694 	xhci->shared_hcd = NULL;
695 	spin_unlock_irq(&xhci->lock);
696 }
697 
698 /*
699  * Stop xHCI driver.
700  *
701  * This function is called by the USB core when the HC driver is removed.
702  * Its opposite is xhci_run().
703  *
704  * Disable device contexts, disable IRQs, and quiesce the HC.
705  * Reset the HC, finish any completed transactions, and cleanup memory.
706  */
707 void xhci_stop(struct usb_hcd *hcd)
708 {
709 	u32 temp;
710 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
711 
712 	if (!usb_hcd_is_primary_hcd(hcd)) {
713 		xhci_only_stop_hcd(xhci->shared_hcd);
714 		return;
715 	}
716 
717 	spin_lock_irq(&xhci->lock);
718 	/* Make sure the xHC is halted for a USB3 roothub
719 	 * (xhci_stop() could be called as part of failed init).
720 	 */
721 	xhci_halt(xhci);
722 	xhci_reset(xhci);
723 	spin_unlock_irq(&xhci->lock);
724 
725 	xhci_cleanup_msix(xhci);
726 
727 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
728 	/* Tell the event ring poll function not to reschedule */
729 	xhci->zombie = 1;
730 	del_timer_sync(&xhci->event_ring_timer);
731 #endif
732 
733 	/* Deleting Compliance Mode Recovery Timer */
734 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
735 			(!(xhci_all_ports_seen_u0(xhci))))
736 		del_timer_sync(&xhci->comp_mode_recovery_timer);
737 
738 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
739 		usb_amd_dev_put();
740 
741 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
742 	temp = xhci_readl(xhci, &xhci->op_regs->status);
743 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
744 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
745 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
746 			&xhci->ir_set->irq_pending);
747 	xhci_print_ir_set(xhci, 0);
748 
749 	xhci_dbg(xhci, "cleaning up memory\n");
750 	xhci_mem_cleanup(xhci);
751 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
752 		    xhci_readl(xhci, &xhci->op_regs->status));
753 }
754 
755 /*
756  * Shutdown HC (not bus-specific)
757  *
758  * This is called when the machine is rebooting or halting.  We assume that the
759  * machine will be powered off, and the HC's internal state will be reset.
760  * Don't bother to free memory.
761  *
762  * This will only ever be called with the main usb_hcd (the USB3 roothub).
763  */
764 void xhci_shutdown(struct usb_hcd *hcd)
765 {
766 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
767 
768 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
769 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
770 
771 	spin_lock_irq(&xhci->lock);
772 	xhci_halt(xhci);
773 	spin_unlock_irq(&xhci->lock);
774 
775 	xhci_cleanup_msix(xhci);
776 
777 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
778 		    xhci_readl(xhci, &xhci->op_regs->status));
779 }
780 
781 #ifdef CONFIG_PM
782 static void xhci_save_registers(struct xhci_hcd *xhci)
783 {
784 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
785 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
786 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
787 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
788 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
789 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
790 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
791 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
792 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
793 }
794 
795 static void xhci_restore_registers(struct xhci_hcd *xhci)
796 {
797 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
798 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
799 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
800 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
801 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
802 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
803 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
804 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
805 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
806 }
807 
808 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
809 {
810 	u64	val_64;
811 
812 	/* step 2: initialize command ring buffer */
813 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
814 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
815 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
816 				      xhci->cmd_ring->dequeue) &
817 		 (u64) ~CMD_RING_RSVD_BITS) |
818 		xhci->cmd_ring->cycle_state;
819 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
820 			(long unsigned long) val_64);
821 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
822 }
823 
824 /*
825  * The whole command ring must be cleared to zero when we suspend the host.
826  *
827  * The host doesn't save the command ring pointer in the suspend well, so we
828  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
829  * aligned, because of the reserved bits in the command ring dequeue pointer
830  * register.  Therefore, we can't just set the dequeue pointer back in the
831  * middle of the ring (TRBs are 16-byte aligned).
832  */
833 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
834 {
835 	struct xhci_ring *ring;
836 	struct xhci_segment *seg;
837 
838 	ring = xhci->cmd_ring;
839 	seg = ring->deq_seg;
840 	do {
841 		memset(seg->trbs, 0,
842 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
843 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
844 			cpu_to_le32(~TRB_CYCLE);
845 		seg = seg->next;
846 	} while (seg != ring->deq_seg);
847 
848 	/* Reset the software enqueue and dequeue pointers */
849 	ring->deq_seg = ring->first_seg;
850 	ring->dequeue = ring->first_seg->trbs;
851 	ring->enq_seg = ring->deq_seg;
852 	ring->enqueue = ring->dequeue;
853 
854 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
855 	/*
856 	 * Ring is now zeroed, so the HW should look for change of ownership
857 	 * when the cycle bit is set to 1.
858 	 */
859 	ring->cycle_state = 1;
860 
861 	/*
862 	 * Reset the hardware dequeue pointer.
863 	 * Yes, this will need to be re-written after resume, but we're paranoid
864 	 * and want to make sure the hardware doesn't access bogus memory
865 	 * because, say, the BIOS or an SMI started the host without changing
866 	 * the command ring pointers.
867 	 */
868 	xhci_set_cmd_ring_deq(xhci);
869 }
870 
871 /*
872  * Stop HC (not bus-specific)
873  *
874  * This is called when the machine transition into S3/S4 mode.
875  *
876  */
877 int xhci_suspend(struct xhci_hcd *xhci)
878 {
879 	int			rc = 0;
880 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
881 	u32			command;
882 
883 	if (hcd->state != HC_STATE_SUSPENDED ||
884 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
885 		return -EINVAL;
886 
887 	/* Don't poll the roothubs on bus suspend. */
888 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
889 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
890 	del_timer_sync(&hcd->rh_timer);
891 
892 	spin_lock_irq(&xhci->lock);
893 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
894 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
895 	/* step 1: stop endpoint */
896 	/* skipped assuming that port suspend has done */
897 
898 	/* step 2: clear Run/Stop bit */
899 	command = xhci_readl(xhci, &xhci->op_regs->command);
900 	command &= ~CMD_RUN;
901 	xhci_writel(xhci, command, &xhci->op_regs->command);
902 	if (xhci_handshake(xhci, &xhci->op_regs->status,
903 		      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
904 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
905 		spin_unlock_irq(&xhci->lock);
906 		return -ETIMEDOUT;
907 	}
908 	xhci_clear_command_ring(xhci);
909 
910 	/* step 3: save registers */
911 	xhci_save_registers(xhci);
912 
913 	/* step 4: set CSS flag */
914 	command = xhci_readl(xhci, &xhci->op_regs->command);
915 	command |= CMD_CSS;
916 	xhci_writel(xhci, command, &xhci->op_regs->command);
917 	if (xhci_handshake(xhci, &xhci->op_regs->status,
918 				STS_SAVE, 0, 10 * 1000)) {
919 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
920 		spin_unlock_irq(&xhci->lock);
921 		return -ETIMEDOUT;
922 	}
923 	spin_unlock_irq(&xhci->lock);
924 
925 	/*
926 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
927 	 * is about to be suspended.
928 	 */
929 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
930 			(!(xhci_all_ports_seen_u0(xhci)))) {
931 		del_timer_sync(&xhci->comp_mode_recovery_timer);
932 		xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
933 	}
934 
935 	/* step 5: remove core well power */
936 	/* synchronize irq when using MSI-X */
937 	xhci_msix_sync_irqs(xhci);
938 
939 	return rc;
940 }
941 
942 /*
943  * start xHC (not bus-specific)
944  *
945  * This is called when the machine transition from S3/S4 mode.
946  *
947  */
948 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
949 {
950 	u32			command, temp = 0;
951 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
952 	struct usb_hcd		*secondary_hcd;
953 	int			retval = 0;
954 
955 	/* Wait a bit if either of the roothubs need to settle from the
956 	 * transition into bus suspend.
957 	 */
958 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
959 			time_before(jiffies,
960 				xhci->bus_state[1].next_statechange))
961 		msleep(100);
962 
963 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
964 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
965 
966 	spin_lock_irq(&xhci->lock);
967 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
968 		hibernated = true;
969 
970 	if (!hibernated) {
971 		/* step 1: restore register */
972 		xhci_restore_registers(xhci);
973 		/* step 2: initialize command ring buffer */
974 		xhci_set_cmd_ring_deq(xhci);
975 		/* step 3: restore state and start state*/
976 		/* step 3: set CRS flag */
977 		command = xhci_readl(xhci, &xhci->op_regs->command);
978 		command |= CMD_CRS;
979 		xhci_writel(xhci, command, &xhci->op_regs->command);
980 		if (xhci_handshake(xhci, &xhci->op_regs->status,
981 			      STS_RESTORE, 0, 10 * 1000)) {
982 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
983 			spin_unlock_irq(&xhci->lock);
984 			return -ETIMEDOUT;
985 		}
986 		temp = xhci_readl(xhci, &xhci->op_regs->status);
987 	}
988 
989 	/* If restore operation fails, re-initialize the HC during resume */
990 	if ((temp & STS_SRE) || hibernated) {
991 		/* Let the USB core know _both_ roothubs lost power. */
992 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
993 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
994 
995 		xhci_dbg(xhci, "Stop HCD\n");
996 		xhci_halt(xhci);
997 		xhci_reset(xhci);
998 		spin_unlock_irq(&xhci->lock);
999 		xhci_cleanup_msix(xhci);
1000 
1001 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1002 		/* Tell the event ring poll function not to reschedule */
1003 		xhci->zombie = 1;
1004 		del_timer_sync(&xhci->event_ring_timer);
1005 #endif
1006 
1007 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1008 		temp = xhci_readl(xhci, &xhci->op_regs->status);
1009 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1010 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1011 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1012 				&xhci->ir_set->irq_pending);
1013 		xhci_print_ir_set(xhci, 0);
1014 
1015 		xhci_dbg(xhci, "cleaning up memory\n");
1016 		xhci_mem_cleanup(xhci);
1017 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1018 			    xhci_readl(xhci, &xhci->op_regs->status));
1019 
1020 		/* USB core calls the PCI reinit and start functions twice:
1021 		 * first with the primary HCD, and then with the secondary HCD.
1022 		 * If we don't do the same, the host will never be started.
1023 		 */
1024 		if (!usb_hcd_is_primary_hcd(hcd))
1025 			secondary_hcd = hcd;
1026 		else
1027 			secondary_hcd = xhci->shared_hcd;
1028 
1029 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1030 		retval = xhci_init(hcd->primary_hcd);
1031 		if (retval)
1032 			return retval;
1033 		xhci_dbg(xhci, "Start the primary HCD\n");
1034 		retval = xhci_run(hcd->primary_hcd);
1035 		if (!retval) {
1036 			xhci_dbg(xhci, "Start the secondary HCD\n");
1037 			retval = xhci_run(secondary_hcd);
1038 		}
1039 		hcd->state = HC_STATE_SUSPENDED;
1040 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1041 		goto done;
1042 	}
1043 
1044 	/* step 4: set Run/Stop bit */
1045 	command = xhci_readl(xhci, &xhci->op_regs->command);
1046 	command |= CMD_RUN;
1047 	xhci_writel(xhci, command, &xhci->op_regs->command);
1048 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1049 		  0, 250 * 1000);
1050 
1051 	/* step 5: walk topology and initialize portsc,
1052 	 * portpmsc and portli
1053 	 */
1054 	/* this is done in bus_resume */
1055 
1056 	/* step 6: restart each of the previously
1057 	 * Running endpoints by ringing their doorbells
1058 	 */
1059 
1060 	spin_unlock_irq(&xhci->lock);
1061 
1062  done:
1063 	if (retval == 0) {
1064 		usb_hcd_resume_root_hub(hcd);
1065 		usb_hcd_resume_root_hub(xhci->shared_hcd);
1066 	}
1067 
1068 	/*
1069 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1070 	 * be re-initialized Always after a system resume. Ports are subject
1071 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1072 	 * ports have entered previously to U0 before system's suspension.
1073 	 */
1074 	if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1075 		compliance_mode_recovery_timer_init(xhci);
1076 
1077 	/* Re-enable port polling. */
1078 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1079 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1080 	usb_hcd_poll_rh_status(hcd);
1081 
1082 	return retval;
1083 }
1084 #endif	/* CONFIG_PM */
1085 
1086 /*-------------------------------------------------------------------------*/
1087 
1088 /**
1089  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1090  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1091  * value to right shift 1 for the bitmask.
1092  *
1093  * Index  = (epnum * 2) + direction - 1,
1094  * where direction = 0 for OUT, 1 for IN.
1095  * For control endpoints, the IN index is used (OUT index is unused), so
1096  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1097  */
1098 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1099 {
1100 	unsigned int index;
1101 	if (usb_endpoint_xfer_control(desc))
1102 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1103 	else
1104 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1105 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1106 	return index;
1107 }
1108 
1109 /* Find the flag for this endpoint (for use in the control context).  Use the
1110  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1111  * bit 1, etc.
1112  */
1113 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1114 {
1115 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1116 }
1117 
1118 /* Find the flag for this endpoint (for use in the control context).  Use the
1119  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1120  * bit 1, etc.
1121  */
1122 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1123 {
1124 	return 1 << (ep_index + 1);
1125 }
1126 
1127 /* Compute the last valid endpoint context index.  Basically, this is the
1128  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1129  * we find the most significant bit set in the added contexts flags.
1130  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1131  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1132  */
1133 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1134 {
1135 	return fls(added_ctxs) - 1;
1136 }
1137 
1138 /* Returns 1 if the arguments are OK;
1139  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1140  */
1141 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1142 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1143 		const char *func) {
1144 	struct xhci_hcd	*xhci;
1145 	struct xhci_virt_device	*virt_dev;
1146 
1147 	if (!hcd || (check_ep && !ep) || !udev) {
1148 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1149 				func);
1150 		return -EINVAL;
1151 	}
1152 	if (!udev->parent) {
1153 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1154 				func);
1155 		return 0;
1156 	}
1157 
1158 	xhci = hcd_to_xhci(hcd);
1159 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1160 		return -ENODEV;
1161 
1162 	if (check_virt_dev) {
1163 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1164 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1165 						"device\n", func);
1166 			return -EINVAL;
1167 		}
1168 
1169 		virt_dev = xhci->devs[udev->slot_id];
1170 		if (virt_dev->udev != udev) {
1171 			printk(KERN_DEBUG "xHCI %s called with udev and "
1172 					  "virt_dev does not match\n", func);
1173 			return -EINVAL;
1174 		}
1175 	}
1176 
1177 	return 1;
1178 }
1179 
1180 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1181 		struct usb_device *udev, struct xhci_command *command,
1182 		bool ctx_change, bool must_succeed);
1183 
1184 /*
1185  * Full speed devices may have a max packet size greater than 8 bytes, but the
1186  * USB core doesn't know that until it reads the first 8 bytes of the
1187  * descriptor.  If the usb_device's max packet size changes after that point,
1188  * we need to issue an evaluate context command and wait on it.
1189  */
1190 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1191 		unsigned int ep_index, struct urb *urb)
1192 {
1193 	struct xhci_container_ctx *in_ctx;
1194 	struct xhci_container_ctx *out_ctx;
1195 	struct xhci_input_control_ctx *ctrl_ctx;
1196 	struct xhci_ep_ctx *ep_ctx;
1197 	int max_packet_size;
1198 	int hw_max_packet_size;
1199 	int ret = 0;
1200 
1201 	out_ctx = xhci->devs[slot_id]->out_ctx;
1202 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1203 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1204 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1205 	if (hw_max_packet_size != max_packet_size) {
1206 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1207 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1208 				max_packet_size);
1209 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1210 				hw_max_packet_size);
1211 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1212 
1213 		/* Set up the modified control endpoint 0 */
1214 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1215 				xhci->devs[slot_id]->out_ctx, ep_index);
1216 		in_ctx = xhci->devs[slot_id]->in_ctx;
1217 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1218 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1219 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1220 
1221 		/* Set up the input context flags for the command */
1222 		/* FIXME: This won't work if a non-default control endpoint
1223 		 * changes max packet sizes.
1224 		 */
1225 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1226 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1227 		ctrl_ctx->drop_flags = 0;
1228 
1229 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1230 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1231 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1232 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1233 
1234 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1235 				true, false);
1236 
1237 		/* Clean up the input context for later use by bandwidth
1238 		 * functions.
1239 		 */
1240 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1241 	}
1242 	return ret;
1243 }
1244 
1245 /*
1246  * non-error returns are a promise to giveback() the urb later
1247  * we drop ownership so next owner (or urb unlink) can get it
1248  */
1249 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1250 {
1251 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1252 	struct xhci_td *buffer;
1253 	unsigned long flags;
1254 	int ret = 0;
1255 	unsigned int slot_id, ep_index;
1256 	struct urb_priv	*urb_priv;
1257 	int size, i;
1258 
1259 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1260 					true, true, __func__) <= 0)
1261 		return -EINVAL;
1262 
1263 	slot_id = urb->dev->slot_id;
1264 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1265 
1266 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1267 		if (!in_interrupt())
1268 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1269 		ret = -ESHUTDOWN;
1270 		goto exit;
1271 	}
1272 
1273 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1274 		size = urb->number_of_packets;
1275 	else
1276 		size = 1;
1277 
1278 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1279 				  size * sizeof(struct xhci_td *), mem_flags);
1280 	if (!urb_priv)
1281 		return -ENOMEM;
1282 
1283 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1284 	if (!buffer) {
1285 		kfree(urb_priv);
1286 		return -ENOMEM;
1287 	}
1288 
1289 	for (i = 0; i < size; i++) {
1290 		urb_priv->td[i] = buffer;
1291 		buffer++;
1292 	}
1293 
1294 	urb_priv->length = size;
1295 	urb_priv->td_cnt = 0;
1296 	urb->hcpriv = urb_priv;
1297 
1298 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1299 		/* Check to see if the max packet size for the default control
1300 		 * endpoint changed during FS device enumeration
1301 		 */
1302 		if (urb->dev->speed == USB_SPEED_FULL) {
1303 			ret = xhci_check_maxpacket(xhci, slot_id,
1304 					ep_index, urb);
1305 			if (ret < 0) {
1306 				xhci_urb_free_priv(xhci, urb_priv);
1307 				urb->hcpriv = NULL;
1308 				return ret;
1309 			}
1310 		}
1311 
1312 		/* We have a spinlock and interrupts disabled, so we must pass
1313 		 * atomic context to this function, which may allocate memory.
1314 		 */
1315 		spin_lock_irqsave(&xhci->lock, flags);
1316 		if (xhci->xhc_state & XHCI_STATE_DYING)
1317 			goto dying;
1318 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1319 				slot_id, ep_index);
1320 		if (ret)
1321 			goto free_priv;
1322 		spin_unlock_irqrestore(&xhci->lock, flags);
1323 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1324 		spin_lock_irqsave(&xhci->lock, flags);
1325 		if (xhci->xhc_state & XHCI_STATE_DYING)
1326 			goto dying;
1327 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1328 				EP_GETTING_STREAMS) {
1329 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1330 					"is transitioning to using streams.\n");
1331 			ret = -EINVAL;
1332 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1333 				EP_GETTING_NO_STREAMS) {
1334 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1335 					"is transitioning to "
1336 					"not having streams.\n");
1337 			ret = -EINVAL;
1338 		} else {
1339 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1340 					slot_id, ep_index);
1341 		}
1342 		if (ret)
1343 			goto free_priv;
1344 		spin_unlock_irqrestore(&xhci->lock, flags);
1345 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1346 		spin_lock_irqsave(&xhci->lock, flags);
1347 		if (xhci->xhc_state & XHCI_STATE_DYING)
1348 			goto dying;
1349 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1350 				slot_id, ep_index);
1351 		if (ret)
1352 			goto free_priv;
1353 		spin_unlock_irqrestore(&xhci->lock, flags);
1354 	} else {
1355 		spin_lock_irqsave(&xhci->lock, flags);
1356 		if (xhci->xhc_state & XHCI_STATE_DYING)
1357 			goto dying;
1358 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1359 				slot_id, ep_index);
1360 		if (ret)
1361 			goto free_priv;
1362 		spin_unlock_irqrestore(&xhci->lock, flags);
1363 	}
1364 exit:
1365 	return ret;
1366 dying:
1367 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1368 			"non-responsive xHCI host.\n",
1369 			urb->ep->desc.bEndpointAddress, urb);
1370 	ret = -ESHUTDOWN;
1371 free_priv:
1372 	xhci_urb_free_priv(xhci, urb_priv);
1373 	urb->hcpriv = NULL;
1374 	spin_unlock_irqrestore(&xhci->lock, flags);
1375 	return ret;
1376 }
1377 
1378 /* Get the right ring for the given URB.
1379  * If the endpoint supports streams, boundary check the URB's stream ID.
1380  * If the endpoint doesn't support streams, return the singular endpoint ring.
1381  */
1382 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1383 		struct urb *urb)
1384 {
1385 	unsigned int slot_id;
1386 	unsigned int ep_index;
1387 	unsigned int stream_id;
1388 	struct xhci_virt_ep *ep;
1389 
1390 	slot_id = urb->dev->slot_id;
1391 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1392 	stream_id = urb->stream_id;
1393 	ep = &xhci->devs[slot_id]->eps[ep_index];
1394 	/* Common case: no streams */
1395 	if (!(ep->ep_state & EP_HAS_STREAMS))
1396 		return ep->ring;
1397 
1398 	if (stream_id == 0) {
1399 		xhci_warn(xhci,
1400 				"WARN: Slot ID %u, ep index %u has streams, "
1401 				"but URB has no stream ID.\n",
1402 				slot_id, ep_index);
1403 		return NULL;
1404 	}
1405 
1406 	if (stream_id < ep->stream_info->num_streams)
1407 		return ep->stream_info->stream_rings[stream_id];
1408 
1409 	xhci_warn(xhci,
1410 			"WARN: Slot ID %u, ep index %u has "
1411 			"stream IDs 1 to %u allocated, "
1412 			"but stream ID %u is requested.\n",
1413 			slot_id, ep_index,
1414 			ep->stream_info->num_streams - 1,
1415 			stream_id);
1416 	return NULL;
1417 }
1418 
1419 /*
1420  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1421  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1422  * should pick up where it left off in the TD, unless a Set Transfer Ring
1423  * Dequeue Pointer is issued.
1424  *
1425  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1426  * the ring.  Since the ring is a contiguous structure, they can't be physically
1427  * removed.  Instead, there are two options:
1428  *
1429  *  1) If the HC is in the middle of processing the URB to be canceled, we
1430  *     simply move the ring's dequeue pointer past those TRBs using the Set
1431  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1432  *     when drivers timeout on the last submitted URB and attempt to cancel.
1433  *
1434  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1435  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1436  *     HC will need to invalidate the any TRBs it has cached after the stop
1437  *     endpoint command, as noted in the xHCI 0.95 errata.
1438  *
1439  *  3) The TD may have completed by the time the Stop Endpoint Command
1440  *     completes, so software needs to handle that case too.
1441  *
1442  * This function should protect against the TD enqueueing code ringing the
1443  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1444  * It also needs to account for multiple cancellations on happening at the same
1445  * time for the same endpoint.
1446  *
1447  * Note that this function can be called in any context, or so says
1448  * usb_hcd_unlink_urb()
1449  */
1450 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1451 {
1452 	unsigned long flags;
1453 	int ret, i;
1454 	u32 temp;
1455 	struct xhci_hcd *xhci;
1456 	struct urb_priv	*urb_priv;
1457 	struct xhci_td *td;
1458 	unsigned int ep_index;
1459 	struct xhci_ring *ep_ring;
1460 	struct xhci_virt_ep *ep;
1461 
1462 	xhci = hcd_to_xhci(hcd);
1463 	spin_lock_irqsave(&xhci->lock, flags);
1464 	/* Make sure the URB hasn't completed or been unlinked already */
1465 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1466 	if (ret || !urb->hcpriv)
1467 		goto done;
1468 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1469 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1470 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1471 		urb_priv = urb->hcpriv;
1472 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1473 			td = urb_priv->td[i];
1474 			if (!list_empty(&td->td_list))
1475 				list_del_init(&td->td_list);
1476 			if (!list_empty(&td->cancelled_td_list))
1477 				list_del_init(&td->cancelled_td_list);
1478 		}
1479 
1480 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1481 		spin_unlock_irqrestore(&xhci->lock, flags);
1482 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1483 		xhci_urb_free_priv(xhci, urb_priv);
1484 		return ret;
1485 	}
1486 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1487 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1488 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1489 				"non-responsive xHCI host.\n",
1490 				urb->ep->desc.bEndpointAddress, urb);
1491 		/* Let the stop endpoint command watchdog timer (which set this
1492 		 * state) finish cleaning up the endpoint TD lists.  We must
1493 		 * have caught it in the middle of dropping a lock and giving
1494 		 * back an URB.
1495 		 */
1496 		goto done;
1497 	}
1498 
1499 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1500 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1501 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1502 	if (!ep_ring) {
1503 		ret = -EINVAL;
1504 		goto done;
1505 	}
1506 
1507 	urb_priv = urb->hcpriv;
1508 	i = urb_priv->td_cnt;
1509 	if (i < urb_priv->length)
1510 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1511 				"starting at offset 0x%llx\n",
1512 				urb, urb->dev->devpath,
1513 				urb->ep->desc.bEndpointAddress,
1514 				(unsigned long long) xhci_trb_virt_to_dma(
1515 					urb_priv->td[i]->start_seg,
1516 					urb_priv->td[i]->first_trb));
1517 
1518 	for (; i < urb_priv->length; i++) {
1519 		td = urb_priv->td[i];
1520 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1521 	}
1522 
1523 	/* Queue a stop endpoint command, but only if this is
1524 	 * the first cancellation to be handled.
1525 	 */
1526 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1527 		ep->ep_state |= EP_HALT_PENDING;
1528 		ep->stop_cmds_pending++;
1529 		ep->stop_cmd_timer.expires = jiffies +
1530 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1531 		add_timer(&ep->stop_cmd_timer);
1532 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1533 		xhci_ring_cmd_db(xhci);
1534 	}
1535 done:
1536 	spin_unlock_irqrestore(&xhci->lock, flags);
1537 	return ret;
1538 }
1539 
1540 /* Drop an endpoint from a new bandwidth configuration for this device.
1541  * Only one call to this function is allowed per endpoint before
1542  * check_bandwidth() or reset_bandwidth() must be called.
1543  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1544  * add the endpoint to the schedule with possibly new parameters denoted by a
1545  * different endpoint descriptor in usb_host_endpoint.
1546  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1547  * not allowed.
1548  *
1549  * The USB core will not allow URBs to be queued to an endpoint that is being
1550  * disabled, so there's no need for mutual exclusion to protect
1551  * the xhci->devs[slot_id] structure.
1552  */
1553 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1554 		struct usb_host_endpoint *ep)
1555 {
1556 	struct xhci_hcd *xhci;
1557 	struct xhci_container_ctx *in_ctx, *out_ctx;
1558 	struct xhci_input_control_ctx *ctrl_ctx;
1559 	struct xhci_slot_ctx *slot_ctx;
1560 	unsigned int last_ctx;
1561 	unsigned int ep_index;
1562 	struct xhci_ep_ctx *ep_ctx;
1563 	u32 drop_flag;
1564 	u32 new_add_flags, new_drop_flags, new_slot_info;
1565 	int ret;
1566 
1567 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1568 	if (ret <= 0)
1569 		return ret;
1570 	xhci = hcd_to_xhci(hcd);
1571 	if (xhci->xhc_state & XHCI_STATE_DYING)
1572 		return -ENODEV;
1573 
1574 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1575 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1576 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1577 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1578 				__func__, drop_flag);
1579 		return 0;
1580 	}
1581 
1582 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1583 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1584 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1585 	ep_index = xhci_get_endpoint_index(&ep->desc);
1586 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1587 	/* If the HC already knows the endpoint is disabled,
1588 	 * or the HCD has noted it is disabled, ignore this request
1589 	 */
1590 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1591 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1592 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1593 	    xhci_get_endpoint_flag(&ep->desc)) {
1594 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1595 				__func__, ep);
1596 		return 0;
1597 	}
1598 
1599 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1600 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1601 
1602 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1603 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1604 
1605 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1606 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1607 	/* Update the last valid endpoint context, if we deleted the last one */
1608 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1609 	    LAST_CTX(last_ctx)) {
1610 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1611 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1612 	}
1613 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1614 
1615 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1616 
1617 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1618 			(unsigned int) ep->desc.bEndpointAddress,
1619 			udev->slot_id,
1620 			(unsigned int) new_drop_flags,
1621 			(unsigned int) new_add_flags,
1622 			(unsigned int) new_slot_info);
1623 	return 0;
1624 }
1625 
1626 /* Add an endpoint to a new possible bandwidth configuration for this device.
1627  * Only one call to this function is allowed per endpoint before
1628  * check_bandwidth() or reset_bandwidth() must be called.
1629  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1630  * add the endpoint to the schedule with possibly new parameters denoted by a
1631  * different endpoint descriptor in usb_host_endpoint.
1632  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1633  * not allowed.
1634  *
1635  * The USB core will not allow URBs to be queued to an endpoint until the
1636  * configuration or alt setting is installed in the device, so there's no need
1637  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1638  */
1639 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1640 		struct usb_host_endpoint *ep)
1641 {
1642 	struct xhci_hcd *xhci;
1643 	struct xhci_container_ctx *in_ctx, *out_ctx;
1644 	unsigned int ep_index;
1645 	struct xhci_slot_ctx *slot_ctx;
1646 	struct xhci_input_control_ctx *ctrl_ctx;
1647 	u32 added_ctxs;
1648 	unsigned int last_ctx;
1649 	u32 new_add_flags, new_drop_flags, new_slot_info;
1650 	struct xhci_virt_device *virt_dev;
1651 	int ret = 0;
1652 
1653 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1654 	if (ret <= 0) {
1655 		/* So we won't queue a reset ep command for a root hub */
1656 		ep->hcpriv = NULL;
1657 		return ret;
1658 	}
1659 	xhci = hcd_to_xhci(hcd);
1660 	if (xhci->xhc_state & XHCI_STATE_DYING)
1661 		return -ENODEV;
1662 
1663 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1664 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1665 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1666 		/* FIXME when we have to issue an evaluate endpoint command to
1667 		 * deal with ep0 max packet size changing once we get the
1668 		 * descriptors
1669 		 */
1670 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1671 				__func__, added_ctxs);
1672 		return 0;
1673 	}
1674 
1675 	virt_dev = xhci->devs[udev->slot_id];
1676 	in_ctx = virt_dev->in_ctx;
1677 	out_ctx = virt_dev->out_ctx;
1678 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1679 	ep_index = xhci_get_endpoint_index(&ep->desc);
1680 
1681 	/* If this endpoint is already in use, and the upper layers are trying
1682 	 * to add it again without dropping it, reject the addition.
1683 	 */
1684 	if (virt_dev->eps[ep_index].ring &&
1685 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1686 				xhci_get_endpoint_flag(&ep->desc))) {
1687 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1688 				"without dropping it.\n",
1689 				(unsigned int) ep->desc.bEndpointAddress);
1690 		return -EINVAL;
1691 	}
1692 
1693 	/* If the HCD has already noted the endpoint is enabled,
1694 	 * ignore this request.
1695 	 */
1696 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1697 	    xhci_get_endpoint_flag(&ep->desc)) {
1698 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1699 				__func__, ep);
1700 		return 0;
1701 	}
1702 
1703 	/*
1704 	 * Configuration and alternate setting changes must be done in
1705 	 * process context, not interrupt context (or so documenation
1706 	 * for usb_set_interface() and usb_set_configuration() claim).
1707 	 */
1708 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1709 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1710 				__func__, ep->desc.bEndpointAddress);
1711 		return -ENOMEM;
1712 	}
1713 
1714 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1715 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1716 
1717 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1718 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1719 	 * this re-adds a new state for the endpoint from the new endpoint
1720 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1721 	 * drop flags alone.
1722 	 */
1723 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1724 
1725 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1726 	/* Update the last valid endpoint context, if we just added one past */
1727 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1728 	    LAST_CTX(last_ctx)) {
1729 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1730 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1731 	}
1732 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1733 
1734 	/* Store the usb_device pointer for later use */
1735 	ep->hcpriv = udev;
1736 
1737 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1738 			(unsigned int) ep->desc.bEndpointAddress,
1739 			udev->slot_id,
1740 			(unsigned int) new_drop_flags,
1741 			(unsigned int) new_add_flags,
1742 			(unsigned int) new_slot_info);
1743 	return 0;
1744 }
1745 
1746 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1747 {
1748 	struct xhci_input_control_ctx *ctrl_ctx;
1749 	struct xhci_ep_ctx *ep_ctx;
1750 	struct xhci_slot_ctx *slot_ctx;
1751 	int i;
1752 
1753 	/* When a device's add flag and drop flag are zero, any subsequent
1754 	 * configure endpoint command will leave that endpoint's state
1755 	 * untouched.  Make sure we don't leave any old state in the input
1756 	 * endpoint contexts.
1757 	 */
1758 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1759 	ctrl_ctx->drop_flags = 0;
1760 	ctrl_ctx->add_flags = 0;
1761 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1762 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1763 	/* Endpoint 0 is always valid */
1764 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1765 	for (i = 1; i < 31; ++i) {
1766 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1767 		ep_ctx->ep_info = 0;
1768 		ep_ctx->ep_info2 = 0;
1769 		ep_ctx->deq = 0;
1770 		ep_ctx->tx_info = 0;
1771 	}
1772 }
1773 
1774 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1775 		struct usb_device *udev, u32 *cmd_status)
1776 {
1777 	int ret;
1778 
1779 	switch (*cmd_status) {
1780 	case COMP_ENOMEM:
1781 		dev_warn(&udev->dev, "Not enough host controller resources "
1782 				"for new device state.\n");
1783 		ret = -ENOMEM;
1784 		/* FIXME: can we allocate more resources for the HC? */
1785 		break;
1786 	case COMP_BW_ERR:
1787 	case COMP_2ND_BW_ERR:
1788 		dev_warn(&udev->dev, "Not enough bandwidth "
1789 				"for new device state.\n");
1790 		ret = -ENOSPC;
1791 		/* FIXME: can we go back to the old state? */
1792 		break;
1793 	case COMP_TRB_ERR:
1794 		/* the HCD set up something wrong */
1795 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1796 				"add flag = 1, "
1797 				"and endpoint is not disabled.\n");
1798 		ret = -EINVAL;
1799 		break;
1800 	case COMP_DEV_ERR:
1801 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1802 				"configure command.\n");
1803 		ret = -ENODEV;
1804 		break;
1805 	case COMP_SUCCESS:
1806 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1807 		ret = 0;
1808 		break;
1809 	default:
1810 		xhci_err(xhci, "ERROR: unexpected command completion "
1811 				"code 0x%x.\n", *cmd_status);
1812 		ret = -EINVAL;
1813 		break;
1814 	}
1815 	return ret;
1816 }
1817 
1818 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1819 		struct usb_device *udev, u32 *cmd_status)
1820 {
1821 	int ret;
1822 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1823 
1824 	switch (*cmd_status) {
1825 	case COMP_EINVAL:
1826 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1827 				"context command.\n");
1828 		ret = -EINVAL;
1829 		break;
1830 	case COMP_EBADSLT:
1831 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1832 				"evaluate context command.\n");
1833 		ret = -EINVAL;
1834 		break;
1835 	case COMP_CTX_STATE:
1836 		dev_warn(&udev->dev, "WARN: invalid context state for "
1837 				"evaluate context command.\n");
1838 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1839 		ret = -EINVAL;
1840 		break;
1841 	case COMP_DEV_ERR:
1842 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1843 				"context command.\n");
1844 		ret = -ENODEV;
1845 		break;
1846 	case COMP_MEL_ERR:
1847 		/* Max Exit Latency too large error */
1848 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1849 		ret = -EINVAL;
1850 		break;
1851 	case COMP_SUCCESS:
1852 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1853 		ret = 0;
1854 		break;
1855 	default:
1856 		xhci_err(xhci, "ERROR: unexpected command completion "
1857 				"code 0x%x.\n", *cmd_status);
1858 		ret = -EINVAL;
1859 		break;
1860 	}
1861 	return ret;
1862 }
1863 
1864 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1865 		struct xhci_container_ctx *in_ctx)
1866 {
1867 	struct xhci_input_control_ctx *ctrl_ctx;
1868 	u32 valid_add_flags;
1869 	u32 valid_drop_flags;
1870 
1871 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1872 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1873 	 * (bit 1).  The default control endpoint is added during the Address
1874 	 * Device command and is never removed until the slot is disabled.
1875 	 */
1876 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1877 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1878 
1879 	/* Use hweight32 to count the number of ones in the add flags, or
1880 	 * number of endpoints added.  Don't count endpoints that are changed
1881 	 * (both added and dropped).
1882 	 */
1883 	return hweight32(valid_add_flags) -
1884 		hweight32(valid_add_flags & valid_drop_flags);
1885 }
1886 
1887 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1888 		struct xhci_container_ctx *in_ctx)
1889 {
1890 	struct xhci_input_control_ctx *ctrl_ctx;
1891 	u32 valid_add_flags;
1892 	u32 valid_drop_flags;
1893 
1894 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1895 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1896 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1897 
1898 	return hweight32(valid_drop_flags) -
1899 		hweight32(valid_add_flags & valid_drop_flags);
1900 }
1901 
1902 /*
1903  * We need to reserve the new number of endpoints before the configure endpoint
1904  * command completes.  We can't subtract the dropped endpoints from the number
1905  * of active endpoints until the command completes because we can oversubscribe
1906  * the host in this case:
1907  *
1908  *  - the first configure endpoint command drops more endpoints than it adds
1909  *  - a second configure endpoint command that adds more endpoints is queued
1910  *  - the first configure endpoint command fails, so the config is unchanged
1911  *  - the second command may succeed, even though there isn't enough resources
1912  *
1913  * Must be called with xhci->lock held.
1914  */
1915 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1916 		struct xhci_container_ctx *in_ctx)
1917 {
1918 	u32 added_eps;
1919 
1920 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1921 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1922 		xhci_dbg(xhci, "Not enough ep ctxs: "
1923 				"%u active, need to add %u, limit is %u.\n",
1924 				xhci->num_active_eps, added_eps,
1925 				xhci->limit_active_eps);
1926 		return -ENOMEM;
1927 	}
1928 	xhci->num_active_eps += added_eps;
1929 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1930 			xhci->num_active_eps);
1931 	return 0;
1932 }
1933 
1934 /*
1935  * The configure endpoint was failed by the xHC for some other reason, so we
1936  * need to revert the resources that failed configuration would have used.
1937  *
1938  * Must be called with xhci->lock held.
1939  */
1940 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1941 		struct xhci_container_ctx *in_ctx)
1942 {
1943 	u32 num_failed_eps;
1944 
1945 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1946 	xhci->num_active_eps -= num_failed_eps;
1947 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1948 			num_failed_eps,
1949 			xhci->num_active_eps);
1950 }
1951 
1952 /*
1953  * Now that the command has completed, clean up the active endpoint count by
1954  * subtracting out the endpoints that were dropped (but not changed).
1955  *
1956  * Must be called with xhci->lock held.
1957  */
1958 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1959 		struct xhci_container_ctx *in_ctx)
1960 {
1961 	u32 num_dropped_eps;
1962 
1963 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1964 	xhci->num_active_eps -= num_dropped_eps;
1965 	if (num_dropped_eps)
1966 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1967 				num_dropped_eps,
1968 				xhci->num_active_eps);
1969 }
1970 
1971 static unsigned int xhci_get_block_size(struct usb_device *udev)
1972 {
1973 	switch (udev->speed) {
1974 	case USB_SPEED_LOW:
1975 	case USB_SPEED_FULL:
1976 		return FS_BLOCK;
1977 	case USB_SPEED_HIGH:
1978 		return HS_BLOCK;
1979 	case USB_SPEED_SUPER:
1980 		return SS_BLOCK;
1981 	case USB_SPEED_UNKNOWN:
1982 	case USB_SPEED_WIRELESS:
1983 	default:
1984 		/* Should never happen */
1985 		return 1;
1986 	}
1987 }
1988 
1989 static unsigned int
1990 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1991 {
1992 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1993 		return LS_OVERHEAD;
1994 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1995 		return FS_OVERHEAD;
1996 	return HS_OVERHEAD;
1997 }
1998 
1999 /* If we are changing a LS/FS device under a HS hub,
2000  * make sure (if we are activating a new TT) that the HS bus has enough
2001  * bandwidth for this new TT.
2002  */
2003 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2004 		struct xhci_virt_device *virt_dev,
2005 		int old_active_eps)
2006 {
2007 	struct xhci_interval_bw_table *bw_table;
2008 	struct xhci_tt_bw_info *tt_info;
2009 
2010 	/* Find the bandwidth table for the root port this TT is attached to. */
2011 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2012 	tt_info = virt_dev->tt_info;
2013 	/* If this TT already had active endpoints, the bandwidth for this TT
2014 	 * has already been added.  Removing all periodic endpoints (and thus
2015 	 * making the TT enactive) will only decrease the bandwidth used.
2016 	 */
2017 	if (old_active_eps)
2018 		return 0;
2019 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2020 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2021 			return -ENOMEM;
2022 		return 0;
2023 	}
2024 	/* Not sure why we would have no new active endpoints...
2025 	 *
2026 	 * Maybe because of an Evaluate Context change for a hub update or a
2027 	 * control endpoint 0 max packet size change?
2028 	 * FIXME: skip the bandwidth calculation in that case.
2029 	 */
2030 	return 0;
2031 }
2032 
2033 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2034 		struct xhci_virt_device *virt_dev)
2035 {
2036 	unsigned int bw_reserved;
2037 
2038 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2039 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2040 		return -ENOMEM;
2041 
2042 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2043 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2044 		return -ENOMEM;
2045 
2046 	return 0;
2047 }
2048 
2049 /*
2050  * This algorithm is a very conservative estimate of the worst-case scheduling
2051  * scenario for any one interval.  The hardware dynamically schedules the
2052  * packets, so we can't tell which microframe could be the limiting factor in
2053  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2054  *
2055  * Obviously, we can't solve an NP complete problem to find the minimum worst
2056  * case scenario.  Instead, we come up with an estimate that is no less than
2057  * the worst case bandwidth used for any one microframe, but may be an
2058  * over-estimate.
2059  *
2060  * We walk the requirements for each endpoint by interval, starting with the
2061  * smallest interval, and place packets in the schedule where there is only one
2062  * possible way to schedule packets for that interval.  In order to simplify
2063  * this algorithm, we record the largest max packet size for each interval, and
2064  * assume all packets will be that size.
2065  *
2066  * For interval 0, we obviously must schedule all packets for each interval.
2067  * The bandwidth for interval 0 is just the amount of data to be transmitted
2068  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2069  * the number of packets).
2070  *
2071  * For interval 1, we have two possible microframes to schedule those packets
2072  * in.  For this algorithm, if we can schedule the same number of packets for
2073  * each possible scheduling opportunity (each microframe), we will do so.  The
2074  * remaining number of packets will be saved to be transmitted in the gaps in
2075  * the next interval's scheduling sequence.
2076  *
2077  * As we move those remaining packets to be scheduled with interval 2 packets,
2078  * we have to double the number of remaining packets to transmit.  This is
2079  * because the intervals are actually powers of 2, and we would be transmitting
2080  * the previous interval's packets twice in this interval.  We also have to be
2081  * sure that when we look at the largest max packet size for this interval, we
2082  * also look at the largest max packet size for the remaining packets and take
2083  * the greater of the two.
2084  *
2085  * The algorithm continues to evenly distribute packets in each scheduling
2086  * opportunity, and push the remaining packets out, until we get to the last
2087  * interval.  Then those packets and their associated overhead are just added
2088  * to the bandwidth used.
2089  */
2090 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2091 		struct xhci_virt_device *virt_dev,
2092 		int old_active_eps)
2093 {
2094 	unsigned int bw_reserved;
2095 	unsigned int max_bandwidth;
2096 	unsigned int bw_used;
2097 	unsigned int block_size;
2098 	struct xhci_interval_bw_table *bw_table;
2099 	unsigned int packet_size = 0;
2100 	unsigned int overhead = 0;
2101 	unsigned int packets_transmitted = 0;
2102 	unsigned int packets_remaining = 0;
2103 	unsigned int i;
2104 
2105 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2106 		return xhci_check_ss_bw(xhci, virt_dev);
2107 
2108 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2109 		max_bandwidth = HS_BW_LIMIT;
2110 		/* Convert percent of bus BW reserved to blocks reserved */
2111 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2112 	} else {
2113 		max_bandwidth = FS_BW_LIMIT;
2114 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2115 	}
2116 
2117 	bw_table = virt_dev->bw_table;
2118 	/* We need to translate the max packet size and max ESIT payloads into
2119 	 * the units the hardware uses.
2120 	 */
2121 	block_size = xhci_get_block_size(virt_dev->udev);
2122 
2123 	/* If we are manipulating a LS/FS device under a HS hub, double check
2124 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2125 	 */
2126 	if (virt_dev->tt_info) {
2127 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2128 				virt_dev->real_port);
2129 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2130 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2131 					"newly activated TT.\n");
2132 			return -ENOMEM;
2133 		}
2134 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2135 				virt_dev->tt_info->slot_id,
2136 				virt_dev->tt_info->ttport);
2137 	} else {
2138 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2139 				virt_dev->real_port);
2140 	}
2141 
2142 	/* Add in how much bandwidth will be used for interval zero, or the
2143 	 * rounded max ESIT payload + number of packets * largest overhead.
2144 	 */
2145 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2146 		bw_table->interval_bw[0].num_packets *
2147 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2148 
2149 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2150 		unsigned int bw_added;
2151 		unsigned int largest_mps;
2152 		unsigned int interval_overhead;
2153 
2154 		/*
2155 		 * How many packets could we transmit in this interval?
2156 		 * If packets didn't fit in the previous interval, we will need
2157 		 * to transmit that many packets twice within this interval.
2158 		 */
2159 		packets_remaining = 2 * packets_remaining +
2160 			bw_table->interval_bw[i].num_packets;
2161 
2162 		/* Find the largest max packet size of this or the previous
2163 		 * interval.
2164 		 */
2165 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2166 			largest_mps = 0;
2167 		else {
2168 			struct xhci_virt_ep *virt_ep;
2169 			struct list_head *ep_entry;
2170 
2171 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2172 			virt_ep = list_entry(ep_entry,
2173 					struct xhci_virt_ep, bw_endpoint_list);
2174 			/* Convert to blocks, rounding up */
2175 			largest_mps = DIV_ROUND_UP(
2176 					virt_ep->bw_info.max_packet_size,
2177 					block_size);
2178 		}
2179 		if (largest_mps > packet_size)
2180 			packet_size = largest_mps;
2181 
2182 		/* Use the larger overhead of this or the previous interval. */
2183 		interval_overhead = xhci_get_largest_overhead(
2184 				&bw_table->interval_bw[i]);
2185 		if (interval_overhead > overhead)
2186 			overhead = interval_overhead;
2187 
2188 		/* How many packets can we evenly distribute across
2189 		 * (1 << (i + 1)) possible scheduling opportunities?
2190 		 */
2191 		packets_transmitted = packets_remaining >> (i + 1);
2192 
2193 		/* Add in the bandwidth used for those scheduled packets */
2194 		bw_added = packets_transmitted * (overhead + packet_size);
2195 
2196 		/* How many packets do we have remaining to transmit? */
2197 		packets_remaining = packets_remaining % (1 << (i + 1));
2198 
2199 		/* What largest max packet size should those packets have? */
2200 		/* If we've transmitted all packets, don't carry over the
2201 		 * largest packet size.
2202 		 */
2203 		if (packets_remaining == 0) {
2204 			packet_size = 0;
2205 			overhead = 0;
2206 		} else if (packets_transmitted > 0) {
2207 			/* Otherwise if we do have remaining packets, and we've
2208 			 * scheduled some packets in this interval, take the
2209 			 * largest max packet size from endpoints with this
2210 			 * interval.
2211 			 */
2212 			packet_size = largest_mps;
2213 			overhead = interval_overhead;
2214 		}
2215 		/* Otherwise carry over packet_size and overhead from the last
2216 		 * time we had a remainder.
2217 		 */
2218 		bw_used += bw_added;
2219 		if (bw_used > max_bandwidth) {
2220 			xhci_warn(xhci, "Not enough bandwidth. "
2221 					"Proposed: %u, Max: %u\n",
2222 				bw_used, max_bandwidth);
2223 			return -ENOMEM;
2224 		}
2225 	}
2226 	/*
2227 	 * Ok, we know we have some packets left over after even-handedly
2228 	 * scheduling interval 15.  We don't know which microframes they will
2229 	 * fit into, so we over-schedule and say they will be scheduled every
2230 	 * microframe.
2231 	 */
2232 	if (packets_remaining > 0)
2233 		bw_used += overhead + packet_size;
2234 
2235 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2236 		unsigned int port_index = virt_dev->real_port - 1;
2237 
2238 		/* OK, we're manipulating a HS device attached to a
2239 		 * root port bandwidth domain.  Include the number of active TTs
2240 		 * in the bandwidth used.
2241 		 */
2242 		bw_used += TT_HS_OVERHEAD *
2243 			xhci->rh_bw[port_index].num_active_tts;
2244 	}
2245 
2246 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2247 		"Available: %u " "percent\n",
2248 		bw_used, max_bandwidth, bw_reserved,
2249 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2250 		max_bandwidth);
2251 
2252 	bw_used += bw_reserved;
2253 	if (bw_used > max_bandwidth) {
2254 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2255 				bw_used, max_bandwidth);
2256 		return -ENOMEM;
2257 	}
2258 
2259 	bw_table->bw_used = bw_used;
2260 	return 0;
2261 }
2262 
2263 static bool xhci_is_async_ep(unsigned int ep_type)
2264 {
2265 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2266 					ep_type != ISOC_IN_EP &&
2267 					ep_type != INT_IN_EP);
2268 }
2269 
2270 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2271 {
2272 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2273 }
2274 
2275 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2276 {
2277 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2278 
2279 	if (ep_bw->ep_interval == 0)
2280 		return SS_OVERHEAD_BURST +
2281 			(ep_bw->mult * ep_bw->num_packets *
2282 					(SS_OVERHEAD + mps));
2283 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2284 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2285 				1 << ep_bw->ep_interval);
2286 
2287 }
2288 
2289 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2290 		struct xhci_bw_info *ep_bw,
2291 		struct xhci_interval_bw_table *bw_table,
2292 		struct usb_device *udev,
2293 		struct xhci_virt_ep *virt_ep,
2294 		struct xhci_tt_bw_info *tt_info)
2295 {
2296 	struct xhci_interval_bw	*interval_bw;
2297 	int normalized_interval;
2298 
2299 	if (xhci_is_async_ep(ep_bw->type))
2300 		return;
2301 
2302 	if (udev->speed == USB_SPEED_SUPER) {
2303 		if (xhci_is_sync_in_ep(ep_bw->type))
2304 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2305 				xhci_get_ss_bw_consumed(ep_bw);
2306 		else
2307 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2308 				xhci_get_ss_bw_consumed(ep_bw);
2309 		return;
2310 	}
2311 
2312 	/* SuperSpeed endpoints never get added to intervals in the table, so
2313 	 * this check is only valid for HS/FS/LS devices.
2314 	 */
2315 	if (list_empty(&virt_ep->bw_endpoint_list))
2316 		return;
2317 	/* For LS/FS devices, we need to translate the interval expressed in
2318 	 * microframes to frames.
2319 	 */
2320 	if (udev->speed == USB_SPEED_HIGH)
2321 		normalized_interval = ep_bw->ep_interval;
2322 	else
2323 		normalized_interval = ep_bw->ep_interval - 3;
2324 
2325 	if (normalized_interval == 0)
2326 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2327 	interval_bw = &bw_table->interval_bw[normalized_interval];
2328 	interval_bw->num_packets -= ep_bw->num_packets;
2329 	switch (udev->speed) {
2330 	case USB_SPEED_LOW:
2331 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2332 		break;
2333 	case USB_SPEED_FULL:
2334 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2335 		break;
2336 	case USB_SPEED_HIGH:
2337 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2338 		break;
2339 	case USB_SPEED_SUPER:
2340 	case USB_SPEED_UNKNOWN:
2341 	case USB_SPEED_WIRELESS:
2342 		/* Should never happen because only LS/FS/HS endpoints will get
2343 		 * added to the endpoint list.
2344 		 */
2345 		return;
2346 	}
2347 	if (tt_info)
2348 		tt_info->active_eps -= 1;
2349 	list_del_init(&virt_ep->bw_endpoint_list);
2350 }
2351 
2352 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2353 		struct xhci_bw_info *ep_bw,
2354 		struct xhci_interval_bw_table *bw_table,
2355 		struct usb_device *udev,
2356 		struct xhci_virt_ep *virt_ep,
2357 		struct xhci_tt_bw_info *tt_info)
2358 {
2359 	struct xhci_interval_bw	*interval_bw;
2360 	struct xhci_virt_ep *smaller_ep;
2361 	int normalized_interval;
2362 
2363 	if (xhci_is_async_ep(ep_bw->type))
2364 		return;
2365 
2366 	if (udev->speed == USB_SPEED_SUPER) {
2367 		if (xhci_is_sync_in_ep(ep_bw->type))
2368 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2369 				xhci_get_ss_bw_consumed(ep_bw);
2370 		else
2371 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2372 				xhci_get_ss_bw_consumed(ep_bw);
2373 		return;
2374 	}
2375 
2376 	/* For LS/FS devices, we need to translate the interval expressed in
2377 	 * microframes to frames.
2378 	 */
2379 	if (udev->speed == USB_SPEED_HIGH)
2380 		normalized_interval = ep_bw->ep_interval;
2381 	else
2382 		normalized_interval = ep_bw->ep_interval - 3;
2383 
2384 	if (normalized_interval == 0)
2385 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2386 	interval_bw = &bw_table->interval_bw[normalized_interval];
2387 	interval_bw->num_packets += ep_bw->num_packets;
2388 	switch (udev->speed) {
2389 	case USB_SPEED_LOW:
2390 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2391 		break;
2392 	case USB_SPEED_FULL:
2393 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2394 		break;
2395 	case USB_SPEED_HIGH:
2396 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2397 		break;
2398 	case USB_SPEED_SUPER:
2399 	case USB_SPEED_UNKNOWN:
2400 	case USB_SPEED_WIRELESS:
2401 		/* Should never happen because only LS/FS/HS endpoints will get
2402 		 * added to the endpoint list.
2403 		 */
2404 		return;
2405 	}
2406 
2407 	if (tt_info)
2408 		tt_info->active_eps += 1;
2409 	/* Insert the endpoint into the list, largest max packet size first. */
2410 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2411 			bw_endpoint_list) {
2412 		if (ep_bw->max_packet_size >=
2413 				smaller_ep->bw_info.max_packet_size) {
2414 			/* Add the new ep before the smaller endpoint */
2415 			list_add_tail(&virt_ep->bw_endpoint_list,
2416 					&smaller_ep->bw_endpoint_list);
2417 			return;
2418 		}
2419 	}
2420 	/* Add the new endpoint at the end of the list. */
2421 	list_add_tail(&virt_ep->bw_endpoint_list,
2422 			&interval_bw->endpoints);
2423 }
2424 
2425 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2426 		struct xhci_virt_device *virt_dev,
2427 		int old_active_eps)
2428 {
2429 	struct xhci_root_port_bw_info *rh_bw_info;
2430 	if (!virt_dev->tt_info)
2431 		return;
2432 
2433 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2434 	if (old_active_eps == 0 &&
2435 				virt_dev->tt_info->active_eps != 0) {
2436 		rh_bw_info->num_active_tts += 1;
2437 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2438 	} else if (old_active_eps != 0 &&
2439 				virt_dev->tt_info->active_eps == 0) {
2440 		rh_bw_info->num_active_tts -= 1;
2441 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2442 	}
2443 }
2444 
2445 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2446 		struct xhci_virt_device *virt_dev,
2447 		struct xhci_container_ctx *in_ctx)
2448 {
2449 	struct xhci_bw_info ep_bw_info[31];
2450 	int i;
2451 	struct xhci_input_control_ctx *ctrl_ctx;
2452 	int old_active_eps = 0;
2453 
2454 	if (virt_dev->tt_info)
2455 		old_active_eps = virt_dev->tt_info->active_eps;
2456 
2457 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2458 
2459 	for (i = 0; i < 31; i++) {
2460 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2461 			continue;
2462 
2463 		/* Make a copy of the BW info in case we need to revert this */
2464 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2465 				sizeof(ep_bw_info[i]));
2466 		/* Drop the endpoint from the interval table if the endpoint is
2467 		 * being dropped or changed.
2468 		 */
2469 		if (EP_IS_DROPPED(ctrl_ctx, i))
2470 			xhci_drop_ep_from_interval_table(xhci,
2471 					&virt_dev->eps[i].bw_info,
2472 					virt_dev->bw_table,
2473 					virt_dev->udev,
2474 					&virt_dev->eps[i],
2475 					virt_dev->tt_info);
2476 	}
2477 	/* Overwrite the information stored in the endpoints' bw_info */
2478 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2479 	for (i = 0; i < 31; i++) {
2480 		/* Add any changed or added endpoints to the interval table */
2481 		if (EP_IS_ADDED(ctrl_ctx, i))
2482 			xhci_add_ep_to_interval_table(xhci,
2483 					&virt_dev->eps[i].bw_info,
2484 					virt_dev->bw_table,
2485 					virt_dev->udev,
2486 					&virt_dev->eps[i],
2487 					virt_dev->tt_info);
2488 	}
2489 
2490 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2491 		/* Ok, this fits in the bandwidth we have.
2492 		 * Update the number of active TTs.
2493 		 */
2494 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2495 		return 0;
2496 	}
2497 
2498 	/* We don't have enough bandwidth for this, revert the stored info. */
2499 	for (i = 0; i < 31; i++) {
2500 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2501 			continue;
2502 
2503 		/* Drop the new copies of any added or changed endpoints from
2504 		 * the interval table.
2505 		 */
2506 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2507 			xhci_drop_ep_from_interval_table(xhci,
2508 					&virt_dev->eps[i].bw_info,
2509 					virt_dev->bw_table,
2510 					virt_dev->udev,
2511 					&virt_dev->eps[i],
2512 					virt_dev->tt_info);
2513 		}
2514 		/* Revert the endpoint back to its old information */
2515 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2516 				sizeof(ep_bw_info[i]));
2517 		/* Add any changed or dropped endpoints back into the table */
2518 		if (EP_IS_DROPPED(ctrl_ctx, i))
2519 			xhci_add_ep_to_interval_table(xhci,
2520 					&virt_dev->eps[i].bw_info,
2521 					virt_dev->bw_table,
2522 					virt_dev->udev,
2523 					&virt_dev->eps[i],
2524 					virt_dev->tt_info);
2525 	}
2526 	return -ENOMEM;
2527 }
2528 
2529 
2530 /* Issue a configure endpoint command or evaluate context command
2531  * and wait for it to finish.
2532  */
2533 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2534 		struct usb_device *udev,
2535 		struct xhci_command *command,
2536 		bool ctx_change, bool must_succeed)
2537 {
2538 	int ret;
2539 	int timeleft;
2540 	unsigned long flags;
2541 	struct xhci_container_ctx *in_ctx;
2542 	struct completion *cmd_completion;
2543 	u32 *cmd_status;
2544 	struct xhci_virt_device *virt_dev;
2545 	union xhci_trb *cmd_trb;
2546 
2547 	spin_lock_irqsave(&xhci->lock, flags);
2548 	virt_dev = xhci->devs[udev->slot_id];
2549 
2550 	if (command)
2551 		in_ctx = command->in_ctx;
2552 	else
2553 		in_ctx = virt_dev->in_ctx;
2554 
2555 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2556 			xhci_reserve_host_resources(xhci, in_ctx)) {
2557 		spin_unlock_irqrestore(&xhci->lock, flags);
2558 		xhci_warn(xhci, "Not enough host resources, "
2559 				"active endpoint contexts = %u\n",
2560 				xhci->num_active_eps);
2561 		return -ENOMEM;
2562 	}
2563 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2564 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2565 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2566 			xhci_free_host_resources(xhci, in_ctx);
2567 		spin_unlock_irqrestore(&xhci->lock, flags);
2568 		xhci_warn(xhci, "Not enough bandwidth\n");
2569 		return -ENOMEM;
2570 	}
2571 
2572 	if (command) {
2573 		cmd_completion = command->completion;
2574 		cmd_status = &command->status;
2575 		command->command_trb = xhci->cmd_ring->enqueue;
2576 
2577 		/* Enqueue pointer can be left pointing to the link TRB,
2578 		 * we must handle that
2579 		 */
2580 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2581 			command->command_trb =
2582 				xhci->cmd_ring->enq_seg->next->trbs;
2583 
2584 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2585 	} else {
2586 		cmd_completion = &virt_dev->cmd_completion;
2587 		cmd_status = &virt_dev->cmd_status;
2588 	}
2589 	init_completion(cmd_completion);
2590 
2591 	cmd_trb = xhci->cmd_ring->dequeue;
2592 	if (!ctx_change)
2593 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2594 				udev->slot_id, must_succeed);
2595 	else
2596 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2597 				udev->slot_id, must_succeed);
2598 	if (ret < 0) {
2599 		if (command)
2600 			list_del(&command->cmd_list);
2601 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2602 			xhci_free_host_resources(xhci, in_ctx);
2603 		spin_unlock_irqrestore(&xhci->lock, flags);
2604 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2605 		return -ENOMEM;
2606 	}
2607 	xhci_ring_cmd_db(xhci);
2608 	spin_unlock_irqrestore(&xhci->lock, flags);
2609 
2610 	/* Wait for the configure endpoint command to complete */
2611 	timeleft = wait_for_completion_interruptible_timeout(
2612 			cmd_completion,
2613 			XHCI_CMD_DEFAULT_TIMEOUT);
2614 	if (timeleft <= 0) {
2615 		xhci_warn(xhci, "%s while waiting for %s command\n",
2616 				timeleft == 0 ? "Timeout" : "Signal",
2617 				ctx_change == 0 ?
2618 					"configure endpoint" :
2619 					"evaluate context");
2620 		/* cancel the configure endpoint command */
2621 		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2622 		if (ret < 0)
2623 			return ret;
2624 		return -ETIME;
2625 	}
2626 
2627 	if (!ctx_change)
2628 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2629 	else
2630 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2631 
2632 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2633 		spin_lock_irqsave(&xhci->lock, flags);
2634 		/* If the command failed, remove the reserved resources.
2635 		 * Otherwise, clean up the estimate to include dropped eps.
2636 		 */
2637 		if (ret)
2638 			xhci_free_host_resources(xhci, in_ctx);
2639 		else
2640 			xhci_finish_resource_reservation(xhci, in_ctx);
2641 		spin_unlock_irqrestore(&xhci->lock, flags);
2642 	}
2643 	return ret;
2644 }
2645 
2646 /* Called after one or more calls to xhci_add_endpoint() or
2647  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2648  * to call xhci_reset_bandwidth().
2649  *
2650  * Since we are in the middle of changing either configuration or
2651  * installing a new alt setting, the USB core won't allow URBs to be
2652  * enqueued for any endpoint on the old config or interface.  Nothing
2653  * else should be touching the xhci->devs[slot_id] structure, so we
2654  * don't need to take the xhci->lock for manipulating that.
2655  */
2656 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2657 {
2658 	int i;
2659 	int ret = 0;
2660 	struct xhci_hcd *xhci;
2661 	struct xhci_virt_device	*virt_dev;
2662 	struct xhci_input_control_ctx *ctrl_ctx;
2663 	struct xhci_slot_ctx *slot_ctx;
2664 
2665 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2666 	if (ret <= 0)
2667 		return ret;
2668 	xhci = hcd_to_xhci(hcd);
2669 	if (xhci->xhc_state & XHCI_STATE_DYING)
2670 		return -ENODEV;
2671 
2672 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2673 	virt_dev = xhci->devs[udev->slot_id];
2674 
2675 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2676 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2677 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2678 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2679 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2680 
2681 	/* Don't issue the command if there's no endpoints to update. */
2682 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2683 			ctrl_ctx->drop_flags == 0)
2684 		return 0;
2685 
2686 	xhci_dbg(xhci, "New Input Control Context:\n");
2687 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2688 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2689 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2690 
2691 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2692 			false, false);
2693 	if (ret) {
2694 		/* Callee should call reset_bandwidth() */
2695 		return ret;
2696 	}
2697 
2698 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2699 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2700 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2701 
2702 	/* Free any rings that were dropped, but not changed. */
2703 	for (i = 1; i < 31; ++i) {
2704 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2705 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2706 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2707 	}
2708 	xhci_zero_in_ctx(xhci, virt_dev);
2709 	/*
2710 	 * Install any rings for completely new endpoints or changed endpoints,
2711 	 * and free or cache any old rings from changed endpoints.
2712 	 */
2713 	for (i = 1; i < 31; ++i) {
2714 		if (!virt_dev->eps[i].new_ring)
2715 			continue;
2716 		/* Only cache or free the old ring if it exists.
2717 		 * It may not if this is the first add of an endpoint.
2718 		 */
2719 		if (virt_dev->eps[i].ring) {
2720 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2721 		}
2722 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2723 		virt_dev->eps[i].new_ring = NULL;
2724 	}
2725 
2726 	return ret;
2727 }
2728 
2729 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2730 {
2731 	struct xhci_hcd *xhci;
2732 	struct xhci_virt_device	*virt_dev;
2733 	int i, ret;
2734 
2735 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2736 	if (ret <= 0)
2737 		return;
2738 	xhci = hcd_to_xhci(hcd);
2739 
2740 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2741 	virt_dev = xhci->devs[udev->slot_id];
2742 	/* Free any rings allocated for added endpoints */
2743 	for (i = 0; i < 31; ++i) {
2744 		if (virt_dev->eps[i].new_ring) {
2745 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2746 			virt_dev->eps[i].new_ring = NULL;
2747 		}
2748 	}
2749 	xhci_zero_in_ctx(xhci, virt_dev);
2750 }
2751 
2752 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2753 		struct xhci_container_ctx *in_ctx,
2754 		struct xhci_container_ctx *out_ctx,
2755 		u32 add_flags, u32 drop_flags)
2756 {
2757 	struct xhci_input_control_ctx *ctrl_ctx;
2758 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2759 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2760 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2761 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2762 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2763 
2764 	xhci_dbg(xhci, "Input Context:\n");
2765 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2766 }
2767 
2768 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2769 		unsigned int slot_id, unsigned int ep_index,
2770 		struct xhci_dequeue_state *deq_state)
2771 {
2772 	struct xhci_container_ctx *in_ctx;
2773 	struct xhci_ep_ctx *ep_ctx;
2774 	u32 added_ctxs;
2775 	dma_addr_t addr;
2776 
2777 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2778 			xhci->devs[slot_id]->out_ctx, ep_index);
2779 	in_ctx = xhci->devs[slot_id]->in_ctx;
2780 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2781 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2782 			deq_state->new_deq_ptr);
2783 	if (addr == 0) {
2784 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2785 				"reset ep command\n");
2786 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2787 				deq_state->new_deq_seg,
2788 				deq_state->new_deq_ptr);
2789 		return;
2790 	}
2791 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2792 
2793 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2794 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2795 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2796 }
2797 
2798 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2799 		struct usb_device *udev, unsigned int ep_index)
2800 {
2801 	struct xhci_dequeue_state deq_state;
2802 	struct xhci_virt_ep *ep;
2803 
2804 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2805 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2806 	/* We need to move the HW's dequeue pointer past this TD,
2807 	 * or it will attempt to resend it on the next doorbell ring.
2808 	 */
2809 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2810 			ep_index, ep->stopped_stream, ep->stopped_td,
2811 			&deq_state);
2812 
2813 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2814 	 * issue a configure endpoint command later.
2815 	 */
2816 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2817 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2818 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2819 				ep_index, ep->stopped_stream, &deq_state);
2820 	} else {
2821 		/* Better hope no one uses the input context between now and the
2822 		 * reset endpoint completion!
2823 		 * XXX: No idea how this hardware will react when stream rings
2824 		 * are enabled.
2825 		 */
2826 		xhci_dbg(xhci, "Setting up input context for "
2827 				"configure endpoint command\n");
2828 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2829 				ep_index, &deq_state);
2830 	}
2831 }
2832 
2833 /* Deal with stalled endpoints.  The core should have sent the control message
2834  * to clear the halt condition.  However, we need to make the xHCI hardware
2835  * reset its sequence number, since a device will expect a sequence number of
2836  * zero after the halt condition is cleared.
2837  * Context: in_interrupt
2838  */
2839 void xhci_endpoint_reset(struct usb_hcd *hcd,
2840 		struct usb_host_endpoint *ep)
2841 {
2842 	struct xhci_hcd *xhci;
2843 	struct usb_device *udev;
2844 	unsigned int ep_index;
2845 	unsigned long flags;
2846 	int ret;
2847 	struct xhci_virt_ep *virt_ep;
2848 
2849 	xhci = hcd_to_xhci(hcd);
2850 	udev = (struct usb_device *) ep->hcpriv;
2851 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2852 	 * with xhci_add_endpoint()
2853 	 */
2854 	if (!ep->hcpriv)
2855 		return;
2856 	ep_index = xhci_get_endpoint_index(&ep->desc);
2857 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2858 	if (!virt_ep->stopped_td) {
2859 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2860 				ep->desc.bEndpointAddress);
2861 		return;
2862 	}
2863 	if (usb_endpoint_xfer_control(&ep->desc)) {
2864 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2865 		return;
2866 	}
2867 
2868 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2869 	spin_lock_irqsave(&xhci->lock, flags);
2870 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2871 	/*
2872 	 * Can't change the ring dequeue pointer until it's transitioned to the
2873 	 * stopped state, which is only upon a successful reset endpoint
2874 	 * command.  Better hope that last command worked!
2875 	 */
2876 	if (!ret) {
2877 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2878 		kfree(virt_ep->stopped_td);
2879 		xhci_ring_cmd_db(xhci);
2880 	}
2881 	virt_ep->stopped_td = NULL;
2882 	virt_ep->stopped_trb = NULL;
2883 	virt_ep->stopped_stream = 0;
2884 	spin_unlock_irqrestore(&xhci->lock, flags);
2885 
2886 	if (ret)
2887 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2888 }
2889 
2890 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2891 		struct usb_device *udev, struct usb_host_endpoint *ep,
2892 		unsigned int slot_id)
2893 {
2894 	int ret;
2895 	unsigned int ep_index;
2896 	unsigned int ep_state;
2897 
2898 	if (!ep)
2899 		return -EINVAL;
2900 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2901 	if (ret <= 0)
2902 		return -EINVAL;
2903 	if (ep->ss_ep_comp.bmAttributes == 0) {
2904 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2905 				" descriptor for ep 0x%x does not support streams\n",
2906 				ep->desc.bEndpointAddress);
2907 		return -EINVAL;
2908 	}
2909 
2910 	ep_index = xhci_get_endpoint_index(&ep->desc);
2911 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2912 	if (ep_state & EP_HAS_STREAMS ||
2913 			ep_state & EP_GETTING_STREAMS) {
2914 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2915 				"already has streams set up.\n",
2916 				ep->desc.bEndpointAddress);
2917 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2918 				"dynamic stream context array reallocation.\n");
2919 		return -EINVAL;
2920 	}
2921 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2922 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2923 				"endpoint 0x%x; URBs are pending.\n",
2924 				ep->desc.bEndpointAddress);
2925 		return -EINVAL;
2926 	}
2927 	return 0;
2928 }
2929 
2930 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2931 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2932 {
2933 	unsigned int max_streams;
2934 
2935 	/* The stream context array size must be a power of two */
2936 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2937 	/*
2938 	 * Find out how many primary stream array entries the host controller
2939 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2940 	 * level page entries), but that's an optional feature for xHCI host
2941 	 * controllers. xHCs must support at least 4 stream IDs.
2942 	 */
2943 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2944 	if (*num_stream_ctxs > max_streams) {
2945 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2946 				max_streams);
2947 		*num_stream_ctxs = max_streams;
2948 		*num_streams = max_streams;
2949 	}
2950 }
2951 
2952 /* Returns an error code if one of the endpoint already has streams.
2953  * This does not change any data structures, it only checks and gathers
2954  * information.
2955  */
2956 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2957 		struct usb_device *udev,
2958 		struct usb_host_endpoint **eps, unsigned int num_eps,
2959 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2960 {
2961 	unsigned int max_streams;
2962 	unsigned int endpoint_flag;
2963 	int i;
2964 	int ret;
2965 
2966 	for (i = 0; i < num_eps; i++) {
2967 		ret = xhci_check_streams_endpoint(xhci, udev,
2968 				eps[i], udev->slot_id);
2969 		if (ret < 0)
2970 			return ret;
2971 
2972 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2973 		if (max_streams < (*num_streams - 1)) {
2974 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2975 					eps[i]->desc.bEndpointAddress,
2976 					max_streams);
2977 			*num_streams = max_streams+1;
2978 		}
2979 
2980 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2981 		if (*changed_ep_bitmask & endpoint_flag)
2982 			return -EINVAL;
2983 		*changed_ep_bitmask |= endpoint_flag;
2984 	}
2985 	return 0;
2986 }
2987 
2988 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2989 		struct usb_device *udev,
2990 		struct usb_host_endpoint **eps, unsigned int num_eps)
2991 {
2992 	u32 changed_ep_bitmask = 0;
2993 	unsigned int slot_id;
2994 	unsigned int ep_index;
2995 	unsigned int ep_state;
2996 	int i;
2997 
2998 	slot_id = udev->slot_id;
2999 	if (!xhci->devs[slot_id])
3000 		return 0;
3001 
3002 	for (i = 0; i < num_eps; i++) {
3003 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3004 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3005 		/* Are streams already being freed for the endpoint? */
3006 		if (ep_state & EP_GETTING_NO_STREAMS) {
3007 			xhci_warn(xhci, "WARN Can't disable streams for "
3008 					"endpoint 0x%x\n, "
3009 					"streams are being disabled already.",
3010 					eps[i]->desc.bEndpointAddress);
3011 			return 0;
3012 		}
3013 		/* Are there actually any streams to free? */
3014 		if (!(ep_state & EP_HAS_STREAMS) &&
3015 				!(ep_state & EP_GETTING_STREAMS)) {
3016 			xhci_warn(xhci, "WARN Can't disable streams for "
3017 					"endpoint 0x%x\n, "
3018 					"streams are already disabled!",
3019 					eps[i]->desc.bEndpointAddress);
3020 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3021 					"with non-streams endpoint\n");
3022 			return 0;
3023 		}
3024 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3025 	}
3026 	return changed_ep_bitmask;
3027 }
3028 
3029 /*
3030  * The USB device drivers use this function (though the HCD interface in USB
3031  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3032  * coordinate mass storage command queueing across multiple endpoints (basically
3033  * a stream ID == a task ID).
3034  *
3035  * Setting up streams involves allocating the same size stream context array
3036  * for each endpoint and issuing a configure endpoint command for all endpoints.
3037  *
3038  * Don't allow the call to succeed if one endpoint only supports one stream
3039  * (which means it doesn't support streams at all).
3040  *
3041  * Drivers may get less stream IDs than they asked for, if the host controller
3042  * hardware or endpoints claim they can't support the number of requested
3043  * stream IDs.
3044  */
3045 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3046 		struct usb_host_endpoint **eps, unsigned int num_eps,
3047 		unsigned int num_streams, gfp_t mem_flags)
3048 {
3049 	int i, ret;
3050 	struct xhci_hcd *xhci;
3051 	struct xhci_virt_device *vdev;
3052 	struct xhci_command *config_cmd;
3053 	unsigned int ep_index;
3054 	unsigned int num_stream_ctxs;
3055 	unsigned long flags;
3056 	u32 changed_ep_bitmask = 0;
3057 
3058 	if (!eps)
3059 		return -EINVAL;
3060 
3061 	/* Add one to the number of streams requested to account for
3062 	 * stream 0 that is reserved for xHCI usage.
3063 	 */
3064 	num_streams += 1;
3065 	xhci = hcd_to_xhci(hcd);
3066 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3067 			num_streams);
3068 
3069 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3070 	if (!config_cmd) {
3071 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3072 		return -ENOMEM;
3073 	}
3074 
3075 	/* Check to make sure all endpoints are not already configured for
3076 	 * streams.  While we're at it, find the maximum number of streams that
3077 	 * all the endpoints will support and check for duplicate endpoints.
3078 	 */
3079 	spin_lock_irqsave(&xhci->lock, flags);
3080 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3081 			num_eps, &num_streams, &changed_ep_bitmask);
3082 	if (ret < 0) {
3083 		xhci_free_command(xhci, config_cmd);
3084 		spin_unlock_irqrestore(&xhci->lock, flags);
3085 		return ret;
3086 	}
3087 	if (num_streams <= 1) {
3088 		xhci_warn(xhci, "WARN: endpoints can't handle "
3089 				"more than one stream.\n");
3090 		xhci_free_command(xhci, config_cmd);
3091 		spin_unlock_irqrestore(&xhci->lock, flags);
3092 		return -EINVAL;
3093 	}
3094 	vdev = xhci->devs[udev->slot_id];
3095 	/* Mark each endpoint as being in transition, so
3096 	 * xhci_urb_enqueue() will reject all URBs.
3097 	 */
3098 	for (i = 0; i < num_eps; i++) {
3099 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3100 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3101 	}
3102 	spin_unlock_irqrestore(&xhci->lock, flags);
3103 
3104 	/* Setup internal data structures and allocate HW data structures for
3105 	 * streams (but don't install the HW structures in the input context
3106 	 * until we're sure all memory allocation succeeded).
3107 	 */
3108 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3109 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3110 			num_stream_ctxs, num_streams);
3111 
3112 	for (i = 0; i < num_eps; i++) {
3113 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3114 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3115 				num_stream_ctxs,
3116 				num_streams, mem_flags);
3117 		if (!vdev->eps[ep_index].stream_info)
3118 			goto cleanup;
3119 		/* Set maxPstreams in endpoint context and update deq ptr to
3120 		 * point to stream context array. FIXME
3121 		 */
3122 	}
3123 
3124 	/* Set up the input context for a configure endpoint command. */
3125 	for (i = 0; i < num_eps; i++) {
3126 		struct xhci_ep_ctx *ep_ctx;
3127 
3128 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3129 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3130 
3131 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3132 				vdev->out_ctx, ep_index);
3133 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3134 				vdev->eps[ep_index].stream_info);
3135 	}
3136 	/* Tell the HW to drop its old copy of the endpoint context info
3137 	 * and add the updated copy from the input context.
3138 	 */
3139 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3140 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3141 
3142 	/* Issue and wait for the configure endpoint command */
3143 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3144 			false, false);
3145 
3146 	/* xHC rejected the configure endpoint command for some reason, so we
3147 	 * leave the old ring intact and free our internal streams data
3148 	 * structure.
3149 	 */
3150 	if (ret < 0)
3151 		goto cleanup;
3152 
3153 	spin_lock_irqsave(&xhci->lock, flags);
3154 	for (i = 0; i < num_eps; i++) {
3155 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3156 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3157 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3158 			 udev->slot_id, ep_index);
3159 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3160 	}
3161 	xhci_free_command(xhci, config_cmd);
3162 	spin_unlock_irqrestore(&xhci->lock, flags);
3163 
3164 	/* Subtract 1 for stream 0, which drivers can't use */
3165 	return num_streams - 1;
3166 
3167 cleanup:
3168 	/* If it didn't work, free the streams! */
3169 	for (i = 0; i < num_eps; i++) {
3170 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3171 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3172 		vdev->eps[ep_index].stream_info = NULL;
3173 		/* FIXME Unset maxPstreams in endpoint context and
3174 		 * update deq ptr to point to normal string ring.
3175 		 */
3176 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3177 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3178 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3179 	}
3180 	xhci_free_command(xhci, config_cmd);
3181 	return -ENOMEM;
3182 }
3183 
3184 /* Transition the endpoint from using streams to being a "normal" endpoint
3185  * without streams.
3186  *
3187  * Modify the endpoint context state, submit a configure endpoint command,
3188  * and free all endpoint rings for streams if that completes successfully.
3189  */
3190 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3191 		struct usb_host_endpoint **eps, unsigned int num_eps,
3192 		gfp_t mem_flags)
3193 {
3194 	int i, ret;
3195 	struct xhci_hcd *xhci;
3196 	struct xhci_virt_device *vdev;
3197 	struct xhci_command *command;
3198 	unsigned int ep_index;
3199 	unsigned long flags;
3200 	u32 changed_ep_bitmask;
3201 
3202 	xhci = hcd_to_xhci(hcd);
3203 	vdev = xhci->devs[udev->slot_id];
3204 
3205 	/* Set up a configure endpoint command to remove the streams rings */
3206 	spin_lock_irqsave(&xhci->lock, flags);
3207 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3208 			udev, eps, num_eps);
3209 	if (changed_ep_bitmask == 0) {
3210 		spin_unlock_irqrestore(&xhci->lock, flags);
3211 		return -EINVAL;
3212 	}
3213 
3214 	/* Use the xhci_command structure from the first endpoint.  We may have
3215 	 * allocated too many, but the driver may call xhci_free_streams() for
3216 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3217 	 */
3218 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3219 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3220 	for (i = 0; i < num_eps; i++) {
3221 		struct xhci_ep_ctx *ep_ctx;
3222 
3223 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3224 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3225 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3226 			EP_GETTING_NO_STREAMS;
3227 
3228 		xhci_endpoint_copy(xhci, command->in_ctx,
3229 				vdev->out_ctx, ep_index);
3230 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3231 				&vdev->eps[ep_index]);
3232 	}
3233 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3234 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3235 	spin_unlock_irqrestore(&xhci->lock, flags);
3236 
3237 	/* Issue and wait for the configure endpoint command,
3238 	 * which must succeed.
3239 	 */
3240 	ret = xhci_configure_endpoint(xhci, udev, command,
3241 			false, true);
3242 
3243 	/* xHC rejected the configure endpoint command for some reason, so we
3244 	 * leave the streams rings intact.
3245 	 */
3246 	if (ret < 0)
3247 		return ret;
3248 
3249 	spin_lock_irqsave(&xhci->lock, flags);
3250 	for (i = 0; i < num_eps; i++) {
3251 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3252 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3253 		vdev->eps[ep_index].stream_info = NULL;
3254 		/* FIXME Unset maxPstreams in endpoint context and
3255 		 * update deq ptr to point to normal string ring.
3256 		 */
3257 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3258 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3259 	}
3260 	spin_unlock_irqrestore(&xhci->lock, flags);
3261 
3262 	return 0;
3263 }
3264 
3265 /*
3266  * Deletes endpoint resources for endpoints that were active before a Reset
3267  * Device command, or a Disable Slot command.  The Reset Device command leaves
3268  * the control endpoint intact, whereas the Disable Slot command deletes it.
3269  *
3270  * Must be called with xhci->lock held.
3271  */
3272 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3273 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3274 {
3275 	int i;
3276 	unsigned int num_dropped_eps = 0;
3277 	unsigned int drop_flags = 0;
3278 
3279 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3280 		if (virt_dev->eps[i].ring) {
3281 			drop_flags |= 1 << i;
3282 			num_dropped_eps++;
3283 		}
3284 	}
3285 	xhci->num_active_eps -= num_dropped_eps;
3286 	if (num_dropped_eps)
3287 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3288 				"%u now active.\n",
3289 				num_dropped_eps, drop_flags,
3290 				xhci->num_active_eps);
3291 }
3292 
3293 /*
3294  * This submits a Reset Device Command, which will set the device state to 0,
3295  * set the device address to 0, and disable all the endpoints except the default
3296  * control endpoint.  The USB core should come back and call
3297  * xhci_address_device(), and then re-set up the configuration.  If this is
3298  * called because of a usb_reset_and_verify_device(), then the old alternate
3299  * settings will be re-installed through the normal bandwidth allocation
3300  * functions.
3301  *
3302  * Wait for the Reset Device command to finish.  Remove all structures
3303  * associated with the endpoints that were disabled.  Clear the input device
3304  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3305  *
3306  * If the virt_dev to be reset does not exist or does not match the udev,
3307  * it means the device is lost, possibly due to the xHC restore error and
3308  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3309  * re-allocate the device.
3310  */
3311 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3312 {
3313 	int ret, i;
3314 	unsigned long flags;
3315 	struct xhci_hcd *xhci;
3316 	unsigned int slot_id;
3317 	struct xhci_virt_device *virt_dev;
3318 	struct xhci_command *reset_device_cmd;
3319 	int timeleft;
3320 	int last_freed_endpoint;
3321 	struct xhci_slot_ctx *slot_ctx;
3322 	int old_active_eps = 0;
3323 
3324 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3325 	if (ret <= 0)
3326 		return ret;
3327 	xhci = hcd_to_xhci(hcd);
3328 	slot_id = udev->slot_id;
3329 	virt_dev = xhci->devs[slot_id];
3330 	if (!virt_dev) {
3331 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3332 				"not exist. Re-allocate the device\n", slot_id);
3333 		ret = xhci_alloc_dev(hcd, udev);
3334 		if (ret == 1)
3335 			return 0;
3336 		else
3337 			return -EINVAL;
3338 	}
3339 
3340 	if (virt_dev->udev != udev) {
3341 		/* If the virt_dev and the udev does not match, this virt_dev
3342 		 * may belong to another udev.
3343 		 * Re-allocate the device.
3344 		 */
3345 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3346 				"not match the udev. Re-allocate the device\n",
3347 				slot_id);
3348 		ret = xhci_alloc_dev(hcd, udev);
3349 		if (ret == 1)
3350 			return 0;
3351 		else
3352 			return -EINVAL;
3353 	}
3354 
3355 	/* If device is not setup, there is no point in resetting it */
3356 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3357 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3358 						SLOT_STATE_DISABLED)
3359 		return 0;
3360 
3361 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3362 	/* Allocate the command structure that holds the struct completion.
3363 	 * Assume we're in process context, since the normal device reset
3364 	 * process has to wait for the device anyway.  Storage devices are
3365 	 * reset as part of error handling, so use GFP_NOIO instead of
3366 	 * GFP_KERNEL.
3367 	 */
3368 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3369 	if (!reset_device_cmd) {
3370 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3371 		return -ENOMEM;
3372 	}
3373 
3374 	/* Attempt to submit the Reset Device command to the command ring */
3375 	spin_lock_irqsave(&xhci->lock, flags);
3376 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3377 
3378 	/* Enqueue pointer can be left pointing to the link TRB,
3379 	 * we must handle that
3380 	 */
3381 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3382 		reset_device_cmd->command_trb =
3383 			xhci->cmd_ring->enq_seg->next->trbs;
3384 
3385 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3386 	ret = xhci_queue_reset_device(xhci, slot_id);
3387 	if (ret) {
3388 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3389 		list_del(&reset_device_cmd->cmd_list);
3390 		spin_unlock_irqrestore(&xhci->lock, flags);
3391 		goto command_cleanup;
3392 	}
3393 	xhci_ring_cmd_db(xhci);
3394 	spin_unlock_irqrestore(&xhci->lock, flags);
3395 
3396 	/* Wait for the Reset Device command to finish */
3397 	timeleft = wait_for_completion_interruptible_timeout(
3398 			reset_device_cmd->completion,
3399 			USB_CTRL_SET_TIMEOUT);
3400 	if (timeleft <= 0) {
3401 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3402 				timeleft == 0 ? "Timeout" : "Signal");
3403 		spin_lock_irqsave(&xhci->lock, flags);
3404 		/* The timeout might have raced with the event ring handler, so
3405 		 * only delete from the list if the item isn't poisoned.
3406 		 */
3407 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3408 			list_del(&reset_device_cmd->cmd_list);
3409 		spin_unlock_irqrestore(&xhci->lock, flags);
3410 		ret = -ETIME;
3411 		goto command_cleanup;
3412 	}
3413 
3414 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3415 	 * unless we tried to reset a slot ID that wasn't enabled,
3416 	 * or the device wasn't in the addressed or configured state.
3417 	 */
3418 	ret = reset_device_cmd->status;
3419 	switch (ret) {
3420 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3421 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3422 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3423 				slot_id,
3424 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3425 		xhci_info(xhci, "Not freeing device rings.\n");
3426 		/* Don't treat this as an error.  May change my mind later. */
3427 		ret = 0;
3428 		goto command_cleanup;
3429 	case COMP_SUCCESS:
3430 		xhci_dbg(xhci, "Successful reset device command.\n");
3431 		break;
3432 	default:
3433 		if (xhci_is_vendor_info_code(xhci, ret))
3434 			break;
3435 		xhci_warn(xhci, "Unknown completion code %u for "
3436 				"reset device command.\n", ret);
3437 		ret = -EINVAL;
3438 		goto command_cleanup;
3439 	}
3440 
3441 	/* Free up host controller endpoint resources */
3442 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3443 		spin_lock_irqsave(&xhci->lock, flags);
3444 		/* Don't delete the default control endpoint resources */
3445 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3446 		spin_unlock_irqrestore(&xhci->lock, flags);
3447 	}
3448 
3449 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3450 	last_freed_endpoint = 1;
3451 	for (i = 1; i < 31; ++i) {
3452 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3453 
3454 		if (ep->ep_state & EP_HAS_STREAMS) {
3455 			xhci_free_stream_info(xhci, ep->stream_info);
3456 			ep->stream_info = NULL;
3457 			ep->ep_state &= ~EP_HAS_STREAMS;
3458 		}
3459 
3460 		if (ep->ring) {
3461 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3462 			last_freed_endpoint = i;
3463 		}
3464 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3465 			xhci_drop_ep_from_interval_table(xhci,
3466 					&virt_dev->eps[i].bw_info,
3467 					virt_dev->bw_table,
3468 					udev,
3469 					&virt_dev->eps[i],
3470 					virt_dev->tt_info);
3471 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3472 	}
3473 	/* If necessary, update the number of active TTs on this root port */
3474 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3475 
3476 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3477 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3478 	ret = 0;
3479 
3480 command_cleanup:
3481 	xhci_free_command(xhci, reset_device_cmd);
3482 	return ret;
3483 }
3484 
3485 /*
3486  * At this point, the struct usb_device is about to go away, the device has
3487  * disconnected, and all traffic has been stopped and the endpoints have been
3488  * disabled.  Free any HC data structures associated with that device.
3489  */
3490 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3491 {
3492 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3493 	struct xhci_virt_device *virt_dev;
3494 	unsigned long flags;
3495 	u32 state;
3496 	int i, ret;
3497 
3498 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3499 	/* If the host is halted due to driver unload, we still need to free the
3500 	 * device.
3501 	 */
3502 	if (ret <= 0 && ret != -ENODEV)
3503 		return;
3504 
3505 	virt_dev = xhci->devs[udev->slot_id];
3506 
3507 	/* Stop any wayward timer functions (which may grab the lock) */
3508 	for (i = 0; i < 31; ++i) {
3509 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3510 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3511 	}
3512 
3513 	if (udev->usb2_hw_lpm_enabled) {
3514 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3515 		udev->usb2_hw_lpm_enabled = 0;
3516 	}
3517 
3518 	spin_lock_irqsave(&xhci->lock, flags);
3519 	/* Don't disable the slot if the host controller is dead. */
3520 	state = xhci_readl(xhci, &xhci->op_regs->status);
3521 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3522 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3523 		xhci_free_virt_device(xhci, udev->slot_id);
3524 		spin_unlock_irqrestore(&xhci->lock, flags);
3525 		return;
3526 	}
3527 
3528 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3529 		spin_unlock_irqrestore(&xhci->lock, flags);
3530 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3531 		return;
3532 	}
3533 	xhci_ring_cmd_db(xhci);
3534 	spin_unlock_irqrestore(&xhci->lock, flags);
3535 	/*
3536 	 * Event command completion handler will free any data structures
3537 	 * associated with the slot.  XXX Can free sleep?
3538 	 */
3539 }
3540 
3541 /*
3542  * Checks if we have enough host controller resources for the default control
3543  * endpoint.
3544  *
3545  * Must be called with xhci->lock held.
3546  */
3547 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3548 {
3549 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3550 		xhci_dbg(xhci, "Not enough ep ctxs: "
3551 				"%u active, need to add 1, limit is %u.\n",
3552 				xhci->num_active_eps, xhci->limit_active_eps);
3553 		return -ENOMEM;
3554 	}
3555 	xhci->num_active_eps += 1;
3556 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3557 			xhci->num_active_eps);
3558 	return 0;
3559 }
3560 
3561 
3562 /*
3563  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3564  * timed out, or allocating memory failed.  Returns 1 on success.
3565  */
3566 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3567 {
3568 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3569 	unsigned long flags;
3570 	int timeleft;
3571 	int ret;
3572 	union xhci_trb *cmd_trb;
3573 
3574 	spin_lock_irqsave(&xhci->lock, flags);
3575 	cmd_trb = xhci->cmd_ring->dequeue;
3576 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3577 	if (ret) {
3578 		spin_unlock_irqrestore(&xhci->lock, flags);
3579 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3580 		return 0;
3581 	}
3582 	xhci_ring_cmd_db(xhci);
3583 	spin_unlock_irqrestore(&xhci->lock, flags);
3584 
3585 	/* XXX: how much time for xHC slot assignment? */
3586 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3587 			XHCI_CMD_DEFAULT_TIMEOUT);
3588 	if (timeleft <= 0) {
3589 		xhci_warn(xhci, "%s while waiting for a slot\n",
3590 				timeleft == 0 ? "Timeout" : "Signal");
3591 		/* cancel the enable slot request */
3592 		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3593 	}
3594 
3595 	if (!xhci->slot_id) {
3596 		xhci_err(xhci, "Error while assigning device slot ID\n");
3597 		return 0;
3598 	}
3599 
3600 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3601 		spin_lock_irqsave(&xhci->lock, flags);
3602 		ret = xhci_reserve_host_control_ep_resources(xhci);
3603 		if (ret) {
3604 			spin_unlock_irqrestore(&xhci->lock, flags);
3605 			xhci_warn(xhci, "Not enough host resources, "
3606 					"active endpoint contexts = %u\n",
3607 					xhci->num_active_eps);
3608 			goto disable_slot;
3609 		}
3610 		spin_unlock_irqrestore(&xhci->lock, flags);
3611 	}
3612 	/* Use GFP_NOIO, since this function can be called from
3613 	 * xhci_discover_or_reset_device(), which may be called as part of
3614 	 * mass storage driver error handling.
3615 	 */
3616 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3617 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3618 		goto disable_slot;
3619 	}
3620 	udev->slot_id = xhci->slot_id;
3621 	/* Is this a LS or FS device under a HS hub? */
3622 	/* Hub or peripherial? */
3623 	return 1;
3624 
3625 disable_slot:
3626 	/* Disable slot, if we can do it without mem alloc */
3627 	spin_lock_irqsave(&xhci->lock, flags);
3628 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3629 		xhci_ring_cmd_db(xhci);
3630 	spin_unlock_irqrestore(&xhci->lock, flags);
3631 	return 0;
3632 }
3633 
3634 /*
3635  * Issue an Address Device command (which will issue a SetAddress request to
3636  * the device).
3637  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3638  * we should only issue and wait on one address command at the same time.
3639  *
3640  * We add one to the device address issued by the hardware because the USB core
3641  * uses address 1 for the root hubs (even though they're not really devices).
3642  */
3643 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3644 {
3645 	unsigned long flags;
3646 	int timeleft;
3647 	struct xhci_virt_device *virt_dev;
3648 	int ret = 0;
3649 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3650 	struct xhci_slot_ctx *slot_ctx;
3651 	struct xhci_input_control_ctx *ctrl_ctx;
3652 	u64 temp_64;
3653 	union xhci_trb *cmd_trb;
3654 
3655 	if (!udev->slot_id) {
3656 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3657 		return -EINVAL;
3658 	}
3659 
3660 	virt_dev = xhci->devs[udev->slot_id];
3661 
3662 	if (WARN_ON(!virt_dev)) {
3663 		/*
3664 		 * In plug/unplug torture test with an NEC controller,
3665 		 * a zero-dereference was observed once due to virt_dev = 0.
3666 		 * Print useful debug rather than crash if it is observed again!
3667 		 */
3668 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3669 			udev->slot_id);
3670 		return -EINVAL;
3671 	}
3672 
3673 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3674 	/*
3675 	 * If this is the first Set Address since device plug-in or
3676 	 * virt_device realloaction after a resume with an xHCI power loss,
3677 	 * then set up the slot context.
3678 	 */
3679 	if (!slot_ctx->dev_info)
3680 		xhci_setup_addressable_virt_dev(xhci, udev);
3681 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3682 	else
3683 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3684 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3685 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3686 	ctrl_ctx->drop_flags = 0;
3687 
3688 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3689 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3690 
3691 	spin_lock_irqsave(&xhci->lock, flags);
3692 	cmd_trb = xhci->cmd_ring->dequeue;
3693 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3694 					udev->slot_id);
3695 	if (ret) {
3696 		spin_unlock_irqrestore(&xhci->lock, flags);
3697 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3698 		return ret;
3699 	}
3700 	xhci_ring_cmd_db(xhci);
3701 	spin_unlock_irqrestore(&xhci->lock, flags);
3702 
3703 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3704 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3705 			XHCI_CMD_DEFAULT_TIMEOUT);
3706 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3707 	 * the SetAddress() "recovery interval" required by USB and aborting the
3708 	 * command on a timeout.
3709 	 */
3710 	if (timeleft <= 0) {
3711 		xhci_warn(xhci, "%s while waiting for address device command\n",
3712 				timeleft == 0 ? "Timeout" : "Signal");
3713 		/* cancel the address device command */
3714 		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3715 		if (ret < 0)
3716 			return ret;
3717 		return -ETIME;
3718 	}
3719 
3720 	switch (virt_dev->cmd_status) {
3721 	case COMP_CTX_STATE:
3722 	case COMP_EBADSLT:
3723 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3724 				udev->slot_id);
3725 		ret = -EINVAL;
3726 		break;
3727 	case COMP_TX_ERR:
3728 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3729 		ret = -EPROTO;
3730 		break;
3731 	case COMP_DEV_ERR:
3732 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3733 				"device command.\n");
3734 		ret = -ENODEV;
3735 		break;
3736 	case COMP_SUCCESS:
3737 		xhci_dbg(xhci, "Successful Address Device command\n");
3738 		break;
3739 	default:
3740 		xhci_err(xhci, "ERROR: unexpected command completion "
3741 				"code 0x%x.\n", virt_dev->cmd_status);
3742 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3743 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3744 		ret = -EINVAL;
3745 		break;
3746 	}
3747 	if (ret) {
3748 		return ret;
3749 	}
3750 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3751 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3752 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3753 		 udev->slot_id,
3754 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3755 		 (unsigned long long)
3756 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3757 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3758 			(unsigned long long)virt_dev->out_ctx->dma);
3759 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3760 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3761 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3762 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3763 	/*
3764 	 * USB core uses address 1 for the roothubs, so we add one to the
3765 	 * address given back to us by the HC.
3766 	 */
3767 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3768 	/* Use kernel assigned address for devices; store xHC assigned
3769 	 * address locally. */
3770 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3771 		+ 1;
3772 	/* Zero the input context control for later use */
3773 	ctrl_ctx->add_flags = 0;
3774 	ctrl_ctx->drop_flags = 0;
3775 
3776 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3777 
3778 	return 0;
3779 }
3780 
3781 #ifdef CONFIG_USB_SUSPEND
3782 
3783 /* BESL to HIRD Encoding array for USB2 LPM */
3784 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3785 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3786 
3787 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3788 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3789 					struct usb_device *udev)
3790 {
3791 	int u2del, besl, besl_host;
3792 	int besl_device = 0;
3793 	u32 field;
3794 
3795 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3796 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3797 
3798 	if (field & USB_BESL_SUPPORT) {
3799 		for (besl_host = 0; besl_host < 16; besl_host++) {
3800 			if (xhci_besl_encoding[besl_host] >= u2del)
3801 				break;
3802 		}
3803 		/* Use baseline BESL value as default */
3804 		if (field & USB_BESL_BASELINE_VALID)
3805 			besl_device = USB_GET_BESL_BASELINE(field);
3806 		else if (field & USB_BESL_DEEP_VALID)
3807 			besl_device = USB_GET_BESL_DEEP(field);
3808 	} else {
3809 		if (u2del <= 50)
3810 			besl_host = 0;
3811 		else
3812 			besl_host = (u2del - 51) / 75 + 1;
3813 	}
3814 
3815 	besl = besl_host + besl_device;
3816 	if (besl > 15)
3817 		besl = 15;
3818 
3819 	return besl;
3820 }
3821 
3822 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3823 					struct usb_device *udev)
3824 {
3825 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3826 	struct dev_info	*dev_info;
3827 	__le32 __iomem	**port_array;
3828 	__le32 __iomem	*addr, *pm_addr;
3829 	u32		temp, dev_id;
3830 	unsigned int	port_num;
3831 	unsigned long	flags;
3832 	int		hird;
3833 	int		ret;
3834 
3835 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3836 			!udev->lpm_capable)
3837 		return -EINVAL;
3838 
3839 	/* we only support lpm for non-hub device connected to root hub yet */
3840 	if (!udev->parent || udev->parent->parent ||
3841 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3842 		return -EINVAL;
3843 
3844 	spin_lock_irqsave(&xhci->lock, flags);
3845 
3846 	/* Look for devices in lpm_failed_devs list */
3847 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3848 			le16_to_cpu(udev->descriptor.idProduct);
3849 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3850 		if (dev_info->dev_id == dev_id) {
3851 			ret = -EINVAL;
3852 			goto finish;
3853 		}
3854 	}
3855 
3856 	port_array = xhci->usb2_ports;
3857 	port_num = udev->portnum - 1;
3858 
3859 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3860 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3861 		ret = -EINVAL;
3862 		goto finish;
3863 	}
3864 
3865 	/*
3866 	 * Test USB 2.0 software LPM.
3867 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3868 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3869 	 * in the June 2011 errata release.
3870 	 */
3871 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3872 	/*
3873 	 * Set L1 Device Slot and HIRD/BESL.
3874 	 * Check device's USB 2.0 extension descriptor to determine whether
3875 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3876 	 */
3877 	pm_addr = port_array[port_num] + 1;
3878 	hird = xhci_calculate_hird_besl(xhci, udev);
3879 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3880 	xhci_writel(xhci, temp, pm_addr);
3881 
3882 	/* Set port link state to U2(L1) */
3883 	addr = port_array[port_num];
3884 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3885 
3886 	/* wait for ACK */
3887 	spin_unlock_irqrestore(&xhci->lock, flags);
3888 	msleep(10);
3889 	spin_lock_irqsave(&xhci->lock, flags);
3890 
3891 	/* Check L1 Status */
3892 	ret = xhci_handshake(xhci, pm_addr,
3893 			PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3894 	if (ret != -ETIMEDOUT) {
3895 		/* enter L1 successfully */
3896 		temp = xhci_readl(xhci, addr);
3897 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3898 				port_num, temp);
3899 		ret = 0;
3900 	} else {
3901 		temp = xhci_readl(xhci, pm_addr);
3902 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3903 				port_num, temp & PORT_L1S_MASK);
3904 		ret = -EINVAL;
3905 	}
3906 
3907 	/* Resume the port */
3908 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3909 
3910 	spin_unlock_irqrestore(&xhci->lock, flags);
3911 	msleep(10);
3912 	spin_lock_irqsave(&xhci->lock, flags);
3913 
3914 	/* Clear PLC */
3915 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3916 
3917 	/* Check PORTSC to make sure the device is in the right state */
3918 	if (!ret) {
3919 		temp = xhci_readl(xhci, addr);
3920 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3921 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3922 				(temp & PORT_PLS_MASK) != XDEV_U0) {
3923 			xhci_dbg(xhci, "port L1 resume fail\n");
3924 			ret = -EINVAL;
3925 		}
3926 	}
3927 
3928 	if (ret) {
3929 		/* Insert dev to lpm_failed_devs list */
3930 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3931 				"re-enumerate\n");
3932 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3933 		if (!dev_info) {
3934 			ret = -ENOMEM;
3935 			goto finish;
3936 		}
3937 		dev_info->dev_id = dev_id;
3938 		INIT_LIST_HEAD(&dev_info->list);
3939 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3940 	} else {
3941 		xhci_ring_device(xhci, udev->slot_id);
3942 	}
3943 
3944 finish:
3945 	spin_unlock_irqrestore(&xhci->lock, flags);
3946 	return ret;
3947 }
3948 
3949 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3950 			struct usb_device *udev, int enable)
3951 {
3952 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3953 	__le32 __iomem	**port_array;
3954 	__le32 __iomem	*pm_addr;
3955 	u32		temp;
3956 	unsigned int	port_num;
3957 	unsigned long	flags;
3958 	int		hird;
3959 
3960 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3961 			!udev->lpm_capable)
3962 		return -EPERM;
3963 
3964 	if (!udev->parent || udev->parent->parent ||
3965 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3966 		return -EPERM;
3967 
3968 	if (udev->usb2_hw_lpm_capable != 1)
3969 		return -EPERM;
3970 
3971 	spin_lock_irqsave(&xhci->lock, flags);
3972 
3973 	port_array = xhci->usb2_ports;
3974 	port_num = udev->portnum - 1;
3975 	pm_addr = port_array[port_num] + 1;
3976 	temp = xhci_readl(xhci, pm_addr);
3977 
3978 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3979 			enable ? "enable" : "disable", port_num);
3980 
3981 	hird = xhci_calculate_hird_besl(xhci, udev);
3982 
3983 	if (enable) {
3984 		temp &= ~PORT_HIRD_MASK;
3985 		temp |= PORT_HIRD(hird) | PORT_RWE;
3986 		xhci_writel(xhci, temp, pm_addr);
3987 		temp = xhci_readl(xhci, pm_addr);
3988 		temp |= PORT_HLE;
3989 		xhci_writel(xhci, temp, pm_addr);
3990 	} else {
3991 		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3992 		xhci_writel(xhci, temp, pm_addr);
3993 	}
3994 
3995 	spin_unlock_irqrestore(&xhci->lock, flags);
3996 	return 0;
3997 }
3998 
3999 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4000 {
4001 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4002 	int		ret;
4003 
4004 	ret = xhci_usb2_software_lpm_test(hcd, udev);
4005 	if (!ret) {
4006 		xhci_dbg(xhci, "software LPM test succeed\n");
4007 		if (xhci->hw_lpm_support == 1) {
4008 			udev->usb2_hw_lpm_capable = 1;
4009 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4010 			if (!ret)
4011 				udev->usb2_hw_lpm_enabled = 1;
4012 		}
4013 	}
4014 
4015 	return 0;
4016 }
4017 
4018 #else
4019 
4020 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4021 				struct usb_device *udev, int enable)
4022 {
4023 	return 0;
4024 }
4025 
4026 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4027 {
4028 	return 0;
4029 }
4030 
4031 #endif /* CONFIG_USB_SUSPEND */
4032 
4033 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4034 
4035 #ifdef CONFIG_PM
4036 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4037 static unsigned long long xhci_service_interval_to_ns(
4038 		struct usb_endpoint_descriptor *desc)
4039 {
4040 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4041 }
4042 
4043 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4044 		enum usb3_link_state state)
4045 {
4046 	unsigned long long sel;
4047 	unsigned long long pel;
4048 	unsigned int max_sel_pel;
4049 	char *state_name;
4050 
4051 	switch (state) {
4052 	case USB3_LPM_U1:
4053 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4054 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4055 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4056 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4057 		state_name = "U1";
4058 		break;
4059 	case USB3_LPM_U2:
4060 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4061 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4062 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4063 		state_name = "U2";
4064 		break;
4065 	default:
4066 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4067 				__func__);
4068 		return USB3_LPM_DISABLED;
4069 	}
4070 
4071 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4072 		return USB3_LPM_DEVICE_INITIATED;
4073 
4074 	if (sel > max_sel_pel)
4075 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4076 				"due to long SEL %llu ms\n",
4077 				state_name, sel);
4078 	else
4079 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4080 				"due to long PEL %llu\n ms",
4081 				state_name, pel);
4082 	return USB3_LPM_DISABLED;
4083 }
4084 
4085 /* Returns the hub-encoded U1 timeout value.
4086  * The U1 timeout should be the maximum of the following values:
4087  *  - For control endpoints, U1 system exit latency (SEL) * 3
4088  *  - For bulk endpoints, U1 SEL * 5
4089  *  - For interrupt endpoints:
4090  *    - Notification EPs, U1 SEL * 3
4091  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4092  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4093  */
4094 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4095 		struct usb_endpoint_descriptor *desc)
4096 {
4097 	unsigned long long timeout_ns;
4098 	int ep_type;
4099 	int intr_type;
4100 
4101 	ep_type = usb_endpoint_type(desc);
4102 	switch (ep_type) {
4103 	case USB_ENDPOINT_XFER_CONTROL:
4104 		timeout_ns = udev->u1_params.sel * 3;
4105 		break;
4106 	case USB_ENDPOINT_XFER_BULK:
4107 		timeout_ns = udev->u1_params.sel * 5;
4108 		break;
4109 	case USB_ENDPOINT_XFER_INT:
4110 		intr_type = usb_endpoint_interrupt_type(desc);
4111 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4112 			timeout_ns = udev->u1_params.sel * 3;
4113 			break;
4114 		}
4115 		/* Otherwise the calculation is the same as isoc eps */
4116 	case USB_ENDPOINT_XFER_ISOC:
4117 		timeout_ns = xhci_service_interval_to_ns(desc);
4118 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4119 		if (timeout_ns < udev->u1_params.sel * 2)
4120 			timeout_ns = udev->u1_params.sel * 2;
4121 		break;
4122 	default:
4123 		return 0;
4124 	}
4125 
4126 	/* The U1 timeout is encoded in 1us intervals. */
4127 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4128 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4129 	if (timeout_ns == USB3_LPM_DISABLED)
4130 		timeout_ns++;
4131 
4132 	/* If the necessary timeout value is bigger than what we can set in the
4133 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4134 	 */
4135 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4136 		return timeout_ns;
4137 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4138 			"due to long timeout %llu ms\n", timeout_ns);
4139 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4140 }
4141 
4142 /* Returns the hub-encoded U2 timeout value.
4143  * The U2 timeout should be the maximum of:
4144  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4145  *  - largest bInterval of any active periodic endpoint (to avoid going
4146  *    into lower power link states between intervals).
4147  *  - the U2 Exit Latency of the device
4148  */
4149 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4150 		struct usb_endpoint_descriptor *desc)
4151 {
4152 	unsigned long long timeout_ns;
4153 	unsigned long long u2_del_ns;
4154 
4155 	timeout_ns = 10 * 1000 * 1000;
4156 
4157 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4158 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4159 		timeout_ns = xhci_service_interval_to_ns(desc);
4160 
4161 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4162 	if (u2_del_ns > timeout_ns)
4163 		timeout_ns = u2_del_ns;
4164 
4165 	/* The U2 timeout is encoded in 256us intervals */
4166 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4167 	/* If the necessary timeout value is bigger than what we can set in the
4168 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4169 	 */
4170 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4171 		return timeout_ns;
4172 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4173 			"due to long timeout %llu ms\n", timeout_ns);
4174 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4175 }
4176 
4177 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4178 		struct usb_device *udev,
4179 		struct usb_endpoint_descriptor *desc,
4180 		enum usb3_link_state state,
4181 		u16 *timeout)
4182 {
4183 	if (state == USB3_LPM_U1) {
4184 		if (xhci->quirks & XHCI_INTEL_HOST)
4185 			return xhci_calculate_intel_u1_timeout(udev, desc);
4186 	} else {
4187 		if (xhci->quirks & XHCI_INTEL_HOST)
4188 			return xhci_calculate_intel_u2_timeout(udev, desc);
4189 	}
4190 
4191 	return USB3_LPM_DISABLED;
4192 }
4193 
4194 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4195 		struct usb_device *udev,
4196 		struct usb_endpoint_descriptor *desc,
4197 		enum usb3_link_state state,
4198 		u16 *timeout)
4199 {
4200 	u16 alt_timeout;
4201 
4202 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4203 		desc, state, timeout);
4204 
4205 	/* If we found we can't enable hub-initiated LPM, or
4206 	 * the U1 or U2 exit latency was too high to allow
4207 	 * device-initiated LPM as well, just stop searching.
4208 	 */
4209 	if (alt_timeout == USB3_LPM_DISABLED ||
4210 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4211 		*timeout = alt_timeout;
4212 		return -E2BIG;
4213 	}
4214 	if (alt_timeout > *timeout)
4215 		*timeout = alt_timeout;
4216 	return 0;
4217 }
4218 
4219 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4220 		struct usb_device *udev,
4221 		struct usb_host_interface *alt,
4222 		enum usb3_link_state state,
4223 		u16 *timeout)
4224 {
4225 	int j;
4226 
4227 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4228 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4229 					&alt->endpoint[j].desc, state, timeout))
4230 			return -E2BIG;
4231 		continue;
4232 	}
4233 	return 0;
4234 }
4235 
4236 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4237 		enum usb3_link_state state)
4238 {
4239 	struct usb_device *parent;
4240 	unsigned int num_hubs;
4241 
4242 	if (state == USB3_LPM_U2)
4243 		return 0;
4244 
4245 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4246 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4247 			parent = parent->parent)
4248 		num_hubs++;
4249 
4250 	if (num_hubs < 2)
4251 		return 0;
4252 
4253 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4254 			" below second-tier hub.\n");
4255 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4256 			"to decrease power consumption.\n");
4257 	return -E2BIG;
4258 }
4259 
4260 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4261 		struct usb_device *udev,
4262 		enum usb3_link_state state)
4263 {
4264 	if (xhci->quirks & XHCI_INTEL_HOST)
4265 		return xhci_check_intel_tier_policy(udev, state);
4266 	return -EINVAL;
4267 }
4268 
4269 /* Returns the U1 or U2 timeout that should be enabled.
4270  * If the tier check or timeout setting functions return with a non-zero exit
4271  * code, that means the timeout value has been finalized and we shouldn't look
4272  * at any more endpoints.
4273  */
4274 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4275 			struct usb_device *udev, enum usb3_link_state state)
4276 {
4277 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4278 	struct usb_host_config *config;
4279 	char *state_name;
4280 	int i;
4281 	u16 timeout = USB3_LPM_DISABLED;
4282 
4283 	if (state == USB3_LPM_U1)
4284 		state_name = "U1";
4285 	else if (state == USB3_LPM_U2)
4286 		state_name = "U2";
4287 	else {
4288 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4289 				state);
4290 		return timeout;
4291 	}
4292 
4293 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4294 		return timeout;
4295 
4296 	/* Gather some information about the currently installed configuration
4297 	 * and alternate interface settings.
4298 	 */
4299 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4300 			state, &timeout))
4301 		return timeout;
4302 
4303 	config = udev->actconfig;
4304 	if (!config)
4305 		return timeout;
4306 
4307 	for (i = 0; i < USB_MAXINTERFACES; i++) {
4308 		struct usb_driver *driver;
4309 		struct usb_interface *intf = config->interface[i];
4310 
4311 		if (!intf)
4312 			continue;
4313 
4314 		/* Check if any currently bound drivers want hub-initiated LPM
4315 		 * disabled.
4316 		 */
4317 		if (intf->dev.driver) {
4318 			driver = to_usb_driver(intf->dev.driver);
4319 			if (driver && driver->disable_hub_initiated_lpm) {
4320 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4321 						"at request of driver %s\n",
4322 						state_name, driver->name);
4323 				return xhci_get_timeout_no_hub_lpm(udev, state);
4324 			}
4325 		}
4326 
4327 		/* Not sure how this could happen... */
4328 		if (!intf->cur_altsetting)
4329 			continue;
4330 
4331 		if (xhci_update_timeout_for_interface(xhci, udev,
4332 					intf->cur_altsetting,
4333 					state, &timeout))
4334 			return timeout;
4335 	}
4336 	return timeout;
4337 }
4338 
4339 /*
4340  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4341  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4342  */
4343 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4344 			struct usb_device *udev, u16 max_exit_latency)
4345 {
4346 	struct xhci_virt_device *virt_dev;
4347 	struct xhci_command *command;
4348 	struct xhci_input_control_ctx *ctrl_ctx;
4349 	struct xhci_slot_ctx *slot_ctx;
4350 	unsigned long flags;
4351 	int ret;
4352 
4353 	spin_lock_irqsave(&xhci->lock, flags);
4354 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4355 		spin_unlock_irqrestore(&xhci->lock, flags);
4356 		return 0;
4357 	}
4358 
4359 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4360 	virt_dev = xhci->devs[udev->slot_id];
4361 	command = xhci->lpm_command;
4362 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4363 	spin_unlock_irqrestore(&xhci->lock, flags);
4364 
4365 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4366 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4367 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4368 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4369 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4370 
4371 	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4372 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4373 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4374 
4375 	/* Issue and wait for the evaluate context command. */
4376 	ret = xhci_configure_endpoint(xhci, udev, command,
4377 			true, true);
4378 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4379 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4380 
4381 	if (!ret) {
4382 		spin_lock_irqsave(&xhci->lock, flags);
4383 		virt_dev->current_mel = max_exit_latency;
4384 		spin_unlock_irqrestore(&xhci->lock, flags);
4385 	}
4386 	return ret;
4387 }
4388 
4389 static int calculate_max_exit_latency(struct usb_device *udev,
4390 		enum usb3_link_state state_changed,
4391 		u16 hub_encoded_timeout)
4392 {
4393 	unsigned long long u1_mel_us = 0;
4394 	unsigned long long u2_mel_us = 0;
4395 	unsigned long long mel_us = 0;
4396 	bool disabling_u1;
4397 	bool disabling_u2;
4398 	bool enabling_u1;
4399 	bool enabling_u2;
4400 
4401 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4402 			hub_encoded_timeout == USB3_LPM_DISABLED);
4403 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4404 			hub_encoded_timeout == USB3_LPM_DISABLED);
4405 
4406 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4407 			hub_encoded_timeout != USB3_LPM_DISABLED);
4408 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4409 			hub_encoded_timeout != USB3_LPM_DISABLED);
4410 
4411 	/* If U1 was already enabled and we're not disabling it,
4412 	 * or we're going to enable U1, account for the U1 max exit latency.
4413 	 */
4414 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4415 			enabling_u1)
4416 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4417 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4418 			enabling_u2)
4419 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4420 
4421 	if (u1_mel_us > u2_mel_us)
4422 		mel_us = u1_mel_us;
4423 	else
4424 		mel_us = u2_mel_us;
4425 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4426 	if (mel_us > MAX_EXIT) {
4427 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4428 				"is too big.\n", mel_us);
4429 		return -E2BIG;
4430 	}
4431 	return mel_us;
4432 }
4433 
4434 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4435 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4436 			struct usb_device *udev, enum usb3_link_state state)
4437 {
4438 	struct xhci_hcd	*xhci;
4439 	u16 hub_encoded_timeout;
4440 	int mel;
4441 	int ret;
4442 
4443 	xhci = hcd_to_xhci(hcd);
4444 	/* The LPM timeout values are pretty host-controller specific, so don't
4445 	 * enable hub-initiated timeouts unless the vendor has provided
4446 	 * information about their timeout algorithm.
4447 	 */
4448 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4449 			!xhci->devs[udev->slot_id])
4450 		return USB3_LPM_DISABLED;
4451 
4452 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4453 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4454 	if (mel < 0) {
4455 		/* Max Exit Latency is too big, disable LPM. */
4456 		hub_encoded_timeout = USB3_LPM_DISABLED;
4457 		mel = 0;
4458 	}
4459 
4460 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4461 	if (ret)
4462 		return ret;
4463 	return hub_encoded_timeout;
4464 }
4465 
4466 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4467 			struct usb_device *udev, enum usb3_link_state state)
4468 {
4469 	struct xhci_hcd	*xhci;
4470 	u16 mel;
4471 	int ret;
4472 
4473 	xhci = hcd_to_xhci(hcd);
4474 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4475 			!xhci->devs[udev->slot_id])
4476 		return 0;
4477 
4478 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4479 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4480 	if (ret)
4481 		return ret;
4482 	return 0;
4483 }
4484 #else /* CONFIG_PM */
4485 
4486 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4487 			struct usb_device *udev, enum usb3_link_state state)
4488 {
4489 	return USB3_LPM_DISABLED;
4490 }
4491 
4492 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4493 			struct usb_device *udev, enum usb3_link_state state)
4494 {
4495 	return 0;
4496 }
4497 #endif	/* CONFIG_PM */
4498 
4499 /*-------------------------------------------------------------------------*/
4500 
4501 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4502  * internal data structures for the device.
4503  */
4504 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4505 			struct usb_tt *tt, gfp_t mem_flags)
4506 {
4507 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4508 	struct xhci_virt_device *vdev;
4509 	struct xhci_command *config_cmd;
4510 	struct xhci_input_control_ctx *ctrl_ctx;
4511 	struct xhci_slot_ctx *slot_ctx;
4512 	unsigned long flags;
4513 	unsigned think_time;
4514 	int ret;
4515 
4516 	/* Ignore root hubs */
4517 	if (!hdev->parent)
4518 		return 0;
4519 
4520 	vdev = xhci->devs[hdev->slot_id];
4521 	if (!vdev) {
4522 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4523 		return -EINVAL;
4524 	}
4525 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4526 	if (!config_cmd) {
4527 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4528 		return -ENOMEM;
4529 	}
4530 
4531 	spin_lock_irqsave(&xhci->lock, flags);
4532 	if (hdev->speed == USB_SPEED_HIGH &&
4533 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4534 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4535 		xhci_free_command(xhci, config_cmd);
4536 		spin_unlock_irqrestore(&xhci->lock, flags);
4537 		return -ENOMEM;
4538 	}
4539 
4540 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4541 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4542 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4543 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4544 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4545 	if (tt->multi)
4546 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4547 	if (xhci->hci_version > 0x95) {
4548 		xhci_dbg(xhci, "xHCI version %x needs hub "
4549 				"TT think time and number of ports\n",
4550 				(unsigned int) xhci->hci_version);
4551 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4552 		/* Set TT think time - convert from ns to FS bit times.
4553 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4554 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4555 		 *
4556 		 * xHCI 1.0: this field shall be 0 if the device is not a
4557 		 * High-spped hub.
4558 		 */
4559 		think_time = tt->think_time;
4560 		if (think_time != 0)
4561 			think_time = (think_time / 666) - 1;
4562 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4563 			slot_ctx->tt_info |=
4564 				cpu_to_le32(TT_THINK_TIME(think_time));
4565 	} else {
4566 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4567 				"TT think time or number of ports\n",
4568 				(unsigned int) xhci->hci_version);
4569 	}
4570 	slot_ctx->dev_state = 0;
4571 	spin_unlock_irqrestore(&xhci->lock, flags);
4572 
4573 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4574 			(xhci->hci_version > 0x95) ?
4575 			"configure endpoint" : "evaluate context");
4576 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4577 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4578 
4579 	/* Issue and wait for the configure endpoint or
4580 	 * evaluate context command.
4581 	 */
4582 	if (xhci->hci_version > 0x95)
4583 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4584 				false, false);
4585 	else
4586 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4587 				true, false);
4588 
4589 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4590 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4591 
4592 	xhci_free_command(xhci, config_cmd);
4593 	return ret;
4594 }
4595 
4596 int xhci_get_frame(struct usb_hcd *hcd)
4597 {
4598 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4599 	/* EHCI mods by the periodic size.  Why? */
4600 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4601 }
4602 
4603 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4604 {
4605 	struct xhci_hcd		*xhci;
4606 	struct device		*dev = hcd->self.controller;
4607 	int			retval;
4608 	u32			temp;
4609 
4610 	/* Accept arbitrarily long scatter-gather lists */
4611 	hcd->self.sg_tablesize = ~0;
4612 	/* XHCI controllers don't stop the ep queue on short packets :| */
4613 	hcd->self.no_stop_on_short = 1;
4614 
4615 	if (usb_hcd_is_primary_hcd(hcd)) {
4616 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4617 		if (!xhci)
4618 			return -ENOMEM;
4619 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4620 		xhci->main_hcd = hcd;
4621 		/* Mark the first roothub as being USB 2.0.
4622 		 * The xHCI driver will register the USB 3.0 roothub.
4623 		 */
4624 		hcd->speed = HCD_USB2;
4625 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4626 		/*
4627 		 * USB 2.0 roothub under xHCI has an integrated TT,
4628 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4629 		 * companion controller.
4630 		 */
4631 		hcd->has_tt = 1;
4632 	} else {
4633 		/* xHCI private pointer was set in xhci_pci_probe for the second
4634 		 * registered roothub.
4635 		 */
4636 		xhci = hcd_to_xhci(hcd);
4637 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4638 		if (HCC_64BIT_ADDR(temp)) {
4639 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4640 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4641 		} else {
4642 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4643 		}
4644 		return 0;
4645 	}
4646 
4647 	xhci->cap_regs = hcd->regs;
4648 	xhci->op_regs = hcd->regs +
4649 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4650 	xhci->run_regs = hcd->regs +
4651 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4652 	/* Cache read-only capability registers */
4653 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4654 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4655 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4656 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4657 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4658 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4659 	xhci_print_registers(xhci);
4660 
4661 	get_quirks(dev, xhci);
4662 
4663 	/* Make sure the HC is halted. */
4664 	retval = xhci_halt(xhci);
4665 	if (retval)
4666 		goto error;
4667 
4668 	xhci_dbg(xhci, "Resetting HCD\n");
4669 	/* Reset the internal HC memory state and registers. */
4670 	retval = xhci_reset(xhci);
4671 	if (retval)
4672 		goto error;
4673 	xhci_dbg(xhci, "Reset complete\n");
4674 
4675 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4676 	if (HCC_64BIT_ADDR(temp)) {
4677 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4678 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4679 	} else {
4680 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4681 	}
4682 
4683 	xhci_dbg(xhci, "Calling HCD init\n");
4684 	/* Initialize HCD and host controller data structures. */
4685 	retval = xhci_init(hcd);
4686 	if (retval)
4687 		goto error;
4688 	xhci_dbg(xhci, "Called HCD init\n");
4689 	return 0;
4690 error:
4691 	kfree(xhci);
4692 	return retval;
4693 }
4694 
4695 MODULE_DESCRIPTION(DRIVER_DESC);
4696 MODULE_AUTHOR(DRIVER_AUTHOR);
4697 MODULE_LICENSE("GPL");
4698 
4699 static int __init xhci_hcd_init(void)
4700 {
4701 	int retval;
4702 
4703 	retval = xhci_register_pci();
4704 	if (retval < 0) {
4705 		printk(KERN_DEBUG "Problem registering PCI driver.");
4706 		return retval;
4707 	}
4708 	retval = xhci_register_plat();
4709 	if (retval < 0) {
4710 		printk(KERN_DEBUG "Problem registering platform driver.");
4711 		goto unreg_pci;
4712 	}
4713 	/*
4714 	 * Check the compiler generated sizes of structures that must be laid
4715 	 * out in specific ways for hardware access.
4716 	 */
4717 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4718 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4719 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4720 	/* xhci_device_control has eight fields, and also
4721 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4722 	 */
4723 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4724 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4725 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4726 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4727 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4728 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4729 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4730 	return 0;
4731 unreg_pci:
4732 	xhci_unregister_pci();
4733 	return retval;
4734 }
4735 module_init(xhci_hcd_init);
4736 
4737 static void __exit xhci_hcd_cleanup(void)
4738 {
4739 	xhci_unregister_pci();
4740 	xhci_unregister_plat();
4741 }
4742 module_exit(xhci_hcd_cleanup);
4743