1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 35 #define DRIVER_AUTHOR "Sarah Sharp" 36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 37 38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 39 static int link_quirk; 40 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 42 43 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 44 /* 45 * xhci_handshake - spin reading hc until handshake completes or fails 46 * @ptr: address of hc register to be read 47 * @mask: bits to look at in result of read 48 * @done: value of those bits when handshake succeeds 49 * @usec: timeout in microseconds 50 * 51 * Returns negative errno, or zero on success 52 * 53 * Success happens when the "mask" bits have the specified value (hardware 54 * handshake done). There are two failure modes: "usec" have passed (major 55 * hardware flakeout), or the register reads as all-ones (hardware removed). 56 */ 57 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr, 58 u32 mask, u32 done, int usec) 59 { 60 u32 result; 61 62 do { 63 result = xhci_readl(xhci, ptr); 64 if (result == ~(u32)0) /* card removed */ 65 return -ENODEV; 66 result &= mask; 67 if (result == done) 68 return 0; 69 udelay(1); 70 usec--; 71 } while (usec > 0); 72 return -ETIMEDOUT; 73 } 74 75 /* 76 * Disable interrupts and begin the xHCI halting process. 77 */ 78 void xhci_quiesce(struct xhci_hcd *xhci) 79 { 80 u32 halted; 81 u32 cmd; 82 u32 mask; 83 84 mask = ~(XHCI_IRQS); 85 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 86 if (!halted) 87 mask &= ~CMD_RUN; 88 89 cmd = xhci_readl(xhci, &xhci->op_regs->command); 90 cmd &= mask; 91 xhci_writel(xhci, cmd, &xhci->op_regs->command); 92 } 93 94 /* 95 * Force HC into halt state. 96 * 97 * Disable any IRQs and clear the run/stop bit. 98 * HC will complete any current and actively pipelined transactions, and 99 * should halt within 16 ms of the run/stop bit being cleared. 100 * Read HC Halted bit in the status register to see when the HC is finished. 101 */ 102 int xhci_halt(struct xhci_hcd *xhci) 103 { 104 int ret; 105 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 106 xhci_quiesce(xhci); 107 108 ret = xhci_handshake(xhci, &xhci->op_regs->status, 109 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 110 if (!ret) { 111 xhci->xhc_state |= XHCI_STATE_HALTED; 112 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 113 } else 114 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 115 XHCI_MAX_HALT_USEC); 116 return ret; 117 } 118 119 /* 120 * Set the run bit and wait for the host to be running. 121 */ 122 static int xhci_start(struct xhci_hcd *xhci) 123 { 124 u32 temp; 125 int ret; 126 127 temp = xhci_readl(xhci, &xhci->op_regs->command); 128 temp |= (CMD_RUN); 129 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 130 temp); 131 xhci_writel(xhci, temp, &xhci->op_regs->command); 132 133 /* 134 * Wait for the HCHalted Status bit to be 0 to indicate the host is 135 * running. 136 */ 137 ret = xhci_handshake(xhci, &xhci->op_regs->status, 138 STS_HALT, 0, XHCI_MAX_HALT_USEC); 139 if (ret == -ETIMEDOUT) 140 xhci_err(xhci, "Host took too long to start, " 141 "waited %u microseconds.\n", 142 XHCI_MAX_HALT_USEC); 143 if (!ret) 144 xhci->xhc_state &= ~XHCI_STATE_HALTED; 145 return ret; 146 } 147 148 /* 149 * Reset a halted HC. 150 * 151 * This resets pipelines, timers, counters, state machines, etc. 152 * Transactions will be terminated immediately, and operational registers 153 * will be set to their defaults. 154 */ 155 int xhci_reset(struct xhci_hcd *xhci) 156 { 157 u32 command; 158 u32 state; 159 int ret, i; 160 161 state = xhci_readl(xhci, &xhci->op_regs->status); 162 if ((state & STS_HALT) == 0) { 163 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 164 return 0; 165 } 166 167 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 168 command = xhci_readl(xhci, &xhci->op_regs->command); 169 command |= CMD_RESET; 170 xhci_writel(xhci, command, &xhci->op_regs->command); 171 172 ret = xhci_handshake(xhci, &xhci->op_regs->command, 173 CMD_RESET, 0, 10 * 1000 * 1000); 174 if (ret) 175 return ret; 176 177 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 178 "Wait for controller to be ready for doorbell rings"); 179 /* 180 * xHCI cannot write to any doorbells or operational registers other 181 * than status until the "Controller Not Ready" flag is cleared. 182 */ 183 ret = xhci_handshake(xhci, &xhci->op_regs->status, 184 STS_CNR, 0, 10 * 1000 * 1000); 185 186 for (i = 0; i < 2; ++i) { 187 xhci->bus_state[i].port_c_suspend = 0; 188 xhci->bus_state[i].suspended_ports = 0; 189 xhci->bus_state[i].resuming_ports = 0; 190 } 191 192 return ret; 193 } 194 195 #ifdef CONFIG_PCI 196 static int xhci_free_msi(struct xhci_hcd *xhci) 197 { 198 int i; 199 200 if (!xhci->msix_entries) 201 return -EINVAL; 202 203 for (i = 0; i < xhci->msix_count; i++) 204 if (xhci->msix_entries[i].vector) 205 free_irq(xhci->msix_entries[i].vector, 206 xhci_to_hcd(xhci)); 207 return 0; 208 } 209 210 /* 211 * Set up MSI 212 */ 213 static int xhci_setup_msi(struct xhci_hcd *xhci) 214 { 215 int ret; 216 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 217 218 ret = pci_enable_msi(pdev); 219 if (ret) { 220 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 221 "failed to allocate MSI entry"); 222 return ret; 223 } 224 225 ret = request_irq(pdev->irq, xhci_msi_irq, 226 0, "xhci_hcd", xhci_to_hcd(xhci)); 227 if (ret) { 228 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 229 "disable MSI interrupt"); 230 pci_disable_msi(pdev); 231 } 232 233 return ret; 234 } 235 236 /* 237 * Free IRQs 238 * free all IRQs request 239 */ 240 static void xhci_free_irq(struct xhci_hcd *xhci) 241 { 242 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 243 int ret; 244 245 /* return if using legacy interrupt */ 246 if (xhci_to_hcd(xhci)->irq > 0) 247 return; 248 249 ret = xhci_free_msi(xhci); 250 if (!ret) 251 return; 252 if (pdev->irq > 0) 253 free_irq(pdev->irq, xhci_to_hcd(xhci)); 254 255 return; 256 } 257 258 /* 259 * Set up MSI-X 260 */ 261 static int xhci_setup_msix(struct xhci_hcd *xhci) 262 { 263 int i, ret = 0; 264 struct usb_hcd *hcd = xhci_to_hcd(xhci); 265 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 266 267 /* 268 * calculate number of msi-x vectors supported. 269 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 270 * with max number of interrupters based on the xhci HCSPARAMS1. 271 * - num_online_cpus: maximum msi-x vectors per CPUs core. 272 * Add additional 1 vector to ensure always available interrupt. 273 */ 274 xhci->msix_count = min(num_online_cpus() + 1, 275 HCS_MAX_INTRS(xhci->hcs_params1)); 276 277 xhci->msix_entries = 278 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 279 GFP_KERNEL); 280 if (!xhci->msix_entries) { 281 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 282 return -ENOMEM; 283 } 284 285 for (i = 0; i < xhci->msix_count; i++) { 286 xhci->msix_entries[i].entry = i; 287 xhci->msix_entries[i].vector = 0; 288 } 289 290 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 291 if (ret) { 292 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 293 "Failed to enable MSI-X"); 294 goto free_entries; 295 } 296 297 for (i = 0; i < xhci->msix_count; i++) { 298 ret = request_irq(xhci->msix_entries[i].vector, 299 xhci_msi_irq, 300 0, "xhci_hcd", xhci_to_hcd(xhci)); 301 if (ret) 302 goto disable_msix; 303 } 304 305 hcd->msix_enabled = 1; 306 return ret; 307 308 disable_msix: 309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 310 xhci_free_irq(xhci); 311 pci_disable_msix(pdev); 312 free_entries: 313 kfree(xhci->msix_entries); 314 xhci->msix_entries = NULL; 315 return ret; 316 } 317 318 /* Free any IRQs and disable MSI-X */ 319 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 320 { 321 struct usb_hcd *hcd = xhci_to_hcd(xhci); 322 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 323 324 xhci_free_irq(xhci); 325 326 if (xhci->msix_entries) { 327 pci_disable_msix(pdev); 328 kfree(xhci->msix_entries); 329 xhci->msix_entries = NULL; 330 } else { 331 pci_disable_msi(pdev); 332 } 333 334 hcd->msix_enabled = 0; 335 return; 336 } 337 338 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 339 { 340 int i; 341 342 if (xhci->msix_entries) { 343 for (i = 0; i < xhci->msix_count; i++) 344 synchronize_irq(xhci->msix_entries[i].vector); 345 } 346 } 347 348 static int xhci_try_enable_msi(struct usb_hcd *hcd) 349 { 350 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 351 struct pci_dev *pdev; 352 int ret; 353 354 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 355 if (xhci->quirks & XHCI_PLAT) 356 return 0; 357 358 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 359 /* 360 * Some Fresco Logic host controllers advertise MSI, but fail to 361 * generate interrupts. Don't even try to enable MSI. 362 */ 363 if (xhci->quirks & XHCI_BROKEN_MSI) 364 goto legacy_irq; 365 366 /* unregister the legacy interrupt */ 367 if (hcd->irq) 368 free_irq(hcd->irq, hcd); 369 hcd->irq = 0; 370 371 ret = xhci_setup_msix(xhci); 372 if (ret) 373 /* fall back to msi*/ 374 ret = xhci_setup_msi(xhci); 375 376 if (!ret) 377 /* hcd->irq is 0, we have MSI */ 378 return 0; 379 380 if (!pdev->irq) { 381 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 382 return -EINVAL; 383 } 384 385 legacy_irq: 386 /* fall back to legacy interrupt*/ 387 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 388 hcd->irq_descr, hcd); 389 if (ret) { 390 xhci_err(xhci, "request interrupt %d failed\n", 391 pdev->irq); 392 return ret; 393 } 394 hcd->irq = pdev->irq; 395 return 0; 396 } 397 398 #else 399 400 static int xhci_try_enable_msi(struct usb_hcd *hcd) 401 { 402 return 0; 403 } 404 405 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 406 { 407 } 408 409 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 410 { 411 } 412 413 #endif 414 415 static void compliance_mode_recovery(unsigned long arg) 416 { 417 struct xhci_hcd *xhci; 418 struct usb_hcd *hcd; 419 u32 temp; 420 int i; 421 422 xhci = (struct xhci_hcd *)arg; 423 424 for (i = 0; i < xhci->num_usb3_ports; i++) { 425 temp = xhci_readl(xhci, xhci->usb3_ports[i]); 426 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 427 /* 428 * Compliance Mode Detected. Letting USB Core 429 * handle the Warm Reset 430 */ 431 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 432 "Compliance mode detected->port %d", 433 i + 1); 434 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 435 "Attempting compliance mode recovery"); 436 hcd = xhci->shared_hcd; 437 438 if (hcd->state == HC_STATE_SUSPENDED) 439 usb_hcd_resume_root_hub(hcd); 440 441 usb_hcd_poll_rh_status(hcd); 442 } 443 } 444 445 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 446 mod_timer(&xhci->comp_mode_recovery_timer, 447 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 448 } 449 450 /* 451 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 452 * that causes ports behind that hardware to enter compliance mode sometimes. 453 * The quirk creates a timer that polls every 2 seconds the link state of 454 * each host controller's port and recovers it by issuing a Warm reset 455 * if Compliance mode is detected, otherwise the port will become "dead" (no 456 * device connections or disconnections will be detected anymore). Becasue no 457 * status event is generated when entering compliance mode (per xhci spec), 458 * this quirk is needed on systems that have the failing hardware installed. 459 */ 460 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 461 { 462 xhci->port_status_u0 = 0; 463 init_timer(&xhci->comp_mode_recovery_timer); 464 465 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci; 466 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery; 467 xhci->comp_mode_recovery_timer.expires = jiffies + 468 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 469 470 set_timer_slack(&xhci->comp_mode_recovery_timer, 471 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 472 add_timer(&xhci->comp_mode_recovery_timer); 473 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 474 "Compliance mode recovery timer initialized"); 475 } 476 477 /* 478 * This function identifies the systems that have installed the SN65LVPE502CP 479 * USB3.0 re-driver and that need the Compliance Mode Quirk. 480 * Systems: 481 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 482 */ 483 bool xhci_compliance_mode_recovery_timer_quirk_check(void) 484 { 485 const char *dmi_product_name, *dmi_sys_vendor; 486 487 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 488 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 489 if (!dmi_product_name || !dmi_sys_vendor) 490 return false; 491 492 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 493 return false; 494 495 if (strstr(dmi_product_name, "Z420") || 496 strstr(dmi_product_name, "Z620") || 497 strstr(dmi_product_name, "Z820") || 498 strstr(dmi_product_name, "Z1 Workstation")) 499 return true; 500 501 return false; 502 } 503 504 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 505 { 506 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 507 } 508 509 510 /* 511 * Initialize memory for HCD and xHC (one-time init). 512 * 513 * Program the PAGESIZE register, initialize the device context array, create 514 * device contexts (?), set up a command ring segment (or two?), create event 515 * ring (one for now). 516 */ 517 int xhci_init(struct usb_hcd *hcd) 518 { 519 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 520 int retval = 0; 521 522 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 523 spin_lock_init(&xhci->lock); 524 if (xhci->hci_version == 0x95 && link_quirk) { 525 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 526 "QUIRK: Not clearing Link TRB chain bits."); 527 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 528 } else { 529 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 530 "xHCI doesn't need link TRB QUIRK"); 531 } 532 retval = xhci_mem_init(xhci, GFP_KERNEL); 533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 534 535 /* Initializing Compliance Mode Recovery Data If Needed */ 536 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 537 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 538 compliance_mode_recovery_timer_init(xhci); 539 } 540 541 return retval; 542 } 543 544 /*-------------------------------------------------------------------------*/ 545 546 547 static int xhci_run_finished(struct xhci_hcd *xhci) 548 { 549 if (xhci_start(xhci)) { 550 xhci_halt(xhci); 551 return -ENODEV; 552 } 553 xhci->shared_hcd->state = HC_STATE_RUNNING; 554 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 555 556 if (xhci->quirks & XHCI_NEC_HOST) 557 xhci_ring_cmd_db(xhci); 558 559 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 560 "Finished xhci_run for USB3 roothub"); 561 return 0; 562 } 563 564 /* 565 * Start the HC after it was halted. 566 * 567 * This function is called by the USB core when the HC driver is added. 568 * Its opposite is xhci_stop(). 569 * 570 * xhci_init() must be called once before this function can be called. 571 * Reset the HC, enable device slot contexts, program DCBAAP, and 572 * set command ring pointer and event ring pointer. 573 * 574 * Setup MSI-X vectors and enable interrupts. 575 */ 576 int xhci_run(struct usb_hcd *hcd) 577 { 578 u32 temp; 579 u64 temp_64; 580 int ret; 581 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 582 583 /* Start the xHCI host controller running only after the USB 2.0 roothub 584 * is setup. 585 */ 586 587 hcd->uses_new_polling = 1; 588 if (!usb_hcd_is_primary_hcd(hcd)) 589 return xhci_run_finished(xhci); 590 591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 592 593 ret = xhci_try_enable_msi(hcd); 594 if (ret) 595 return ret; 596 597 xhci_dbg(xhci, "Command ring memory map follows:\n"); 598 xhci_debug_ring(xhci, xhci->cmd_ring); 599 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 600 xhci_dbg_cmd_ptrs(xhci); 601 602 xhci_dbg(xhci, "ERST memory map follows:\n"); 603 xhci_dbg_erst(xhci, &xhci->erst); 604 xhci_dbg(xhci, "Event ring:\n"); 605 xhci_debug_ring(xhci, xhci->event_ring); 606 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 607 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 608 temp_64 &= ~ERST_PTR_MASK; 609 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 610 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 611 612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 613 "// Set the interrupt modulation register"); 614 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 615 temp &= ~ER_IRQ_INTERVAL_MASK; 616 temp |= (u32) 160; 617 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 618 619 /* Set the HCD state before we enable the irqs */ 620 temp = xhci_readl(xhci, &xhci->op_regs->command); 621 temp |= (CMD_EIE); 622 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 623 "// Enable interrupts, cmd = 0x%x.", temp); 624 xhci_writel(xhci, temp, &xhci->op_regs->command); 625 626 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 627 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 628 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 629 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 630 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 631 &xhci->ir_set->irq_pending); 632 xhci_print_ir_set(xhci, 0); 633 634 if (xhci->quirks & XHCI_NEC_HOST) 635 xhci_queue_vendor_command(xhci, 0, 0, 0, 636 TRB_TYPE(TRB_NEC_GET_FW)); 637 638 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 639 "Finished xhci_run for USB2 roothub"); 640 return 0; 641 } 642 643 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 644 { 645 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 646 647 spin_lock_irq(&xhci->lock); 648 xhci_halt(xhci); 649 650 /* The shared_hcd is going to be deallocated shortly (the USB core only 651 * calls this function when allocation fails in usb_add_hcd(), or 652 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 653 */ 654 xhci->shared_hcd = NULL; 655 spin_unlock_irq(&xhci->lock); 656 } 657 658 /* 659 * Stop xHCI driver. 660 * 661 * This function is called by the USB core when the HC driver is removed. 662 * Its opposite is xhci_run(). 663 * 664 * Disable device contexts, disable IRQs, and quiesce the HC. 665 * Reset the HC, finish any completed transactions, and cleanup memory. 666 */ 667 void xhci_stop(struct usb_hcd *hcd) 668 { 669 u32 temp; 670 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 671 672 if (!usb_hcd_is_primary_hcd(hcd)) { 673 xhci_only_stop_hcd(xhci->shared_hcd); 674 return; 675 } 676 677 spin_lock_irq(&xhci->lock); 678 /* Make sure the xHC is halted for a USB3 roothub 679 * (xhci_stop() could be called as part of failed init). 680 */ 681 xhci_halt(xhci); 682 xhci_reset(xhci); 683 spin_unlock_irq(&xhci->lock); 684 685 xhci_cleanup_msix(xhci); 686 687 /* Deleting Compliance Mode Recovery Timer */ 688 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 689 (!(xhci_all_ports_seen_u0(xhci)))) { 690 del_timer_sync(&xhci->comp_mode_recovery_timer); 691 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 692 "%s: compliance mode recovery timer deleted", 693 __func__); 694 } 695 696 if (xhci->quirks & XHCI_AMD_PLL_FIX) 697 usb_amd_dev_put(); 698 699 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 700 "// Disabling event ring interrupts"); 701 temp = xhci_readl(xhci, &xhci->op_regs->status); 702 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 703 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 704 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 705 &xhci->ir_set->irq_pending); 706 xhci_print_ir_set(xhci, 0); 707 708 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 709 xhci_mem_cleanup(xhci); 710 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 711 "xhci_stop completed - status = %x", 712 xhci_readl(xhci, &xhci->op_regs->status)); 713 } 714 715 /* 716 * Shutdown HC (not bus-specific) 717 * 718 * This is called when the machine is rebooting or halting. We assume that the 719 * machine will be powered off, and the HC's internal state will be reset. 720 * Don't bother to free memory. 721 * 722 * This will only ever be called with the main usb_hcd (the USB3 roothub). 723 */ 724 void xhci_shutdown(struct usb_hcd *hcd) 725 { 726 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 727 728 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 729 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 730 731 spin_lock_irq(&xhci->lock); 732 xhci_halt(xhci); 733 /* Workaround for spurious wakeups at shutdown with HSW */ 734 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 735 xhci_reset(xhci); 736 spin_unlock_irq(&xhci->lock); 737 738 xhci_cleanup_msix(xhci); 739 740 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 741 "xhci_shutdown completed - status = %x", 742 xhci_readl(xhci, &xhci->op_regs->status)); 743 744 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 745 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 746 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 747 } 748 749 #ifdef CONFIG_PM 750 static void xhci_save_registers(struct xhci_hcd *xhci) 751 { 752 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 753 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 754 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 755 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 756 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 757 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 758 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 759 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 760 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 761 } 762 763 static void xhci_restore_registers(struct xhci_hcd *xhci) 764 { 765 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 766 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 767 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 768 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 769 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 770 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 771 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 772 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 773 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 774 } 775 776 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 777 { 778 u64 val_64; 779 780 /* step 2: initialize command ring buffer */ 781 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 782 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 783 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 784 xhci->cmd_ring->dequeue) & 785 (u64) ~CMD_RING_RSVD_BITS) | 786 xhci->cmd_ring->cycle_state; 787 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 788 "// Setting command ring address to 0x%llx", 789 (long unsigned long) val_64); 790 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 791 } 792 793 /* 794 * The whole command ring must be cleared to zero when we suspend the host. 795 * 796 * The host doesn't save the command ring pointer in the suspend well, so we 797 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 798 * aligned, because of the reserved bits in the command ring dequeue pointer 799 * register. Therefore, we can't just set the dequeue pointer back in the 800 * middle of the ring (TRBs are 16-byte aligned). 801 */ 802 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 803 { 804 struct xhci_ring *ring; 805 struct xhci_segment *seg; 806 807 ring = xhci->cmd_ring; 808 seg = ring->deq_seg; 809 do { 810 memset(seg->trbs, 0, 811 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 812 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 813 cpu_to_le32(~TRB_CYCLE); 814 seg = seg->next; 815 } while (seg != ring->deq_seg); 816 817 /* Reset the software enqueue and dequeue pointers */ 818 ring->deq_seg = ring->first_seg; 819 ring->dequeue = ring->first_seg->trbs; 820 ring->enq_seg = ring->deq_seg; 821 ring->enqueue = ring->dequeue; 822 823 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 824 /* 825 * Ring is now zeroed, so the HW should look for change of ownership 826 * when the cycle bit is set to 1. 827 */ 828 ring->cycle_state = 1; 829 830 /* 831 * Reset the hardware dequeue pointer. 832 * Yes, this will need to be re-written after resume, but we're paranoid 833 * and want to make sure the hardware doesn't access bogus memory 834 * because, say, the BIOS or an SMI started the host without changing 835 * the command ring pointers. 836 */ 837 xhci_set_cmd_ring_deq(xhci); 838 } 839 840 /* 841 * Stop HC (not bus-specific) 842 * 843 * This is called when the machine transition into S3/S4 mode. 844 * 845 */ 846 int xhci_suspend(struct xhci_hcd *xhci) 847 { 848 int rc = 0; 849 unsigned int delay = XHCI_MAX_HALT_USEC; 850 struct usb_hcd *hcd = xhci_to_hcd(xhci); 851 u32 command; 852 853 if (hcd->state != HC_STATE_SUSPENDED || 854 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 855 return -EINVAL; 856 857 /* Don't poll the roothubs on bus suspend. */ 858 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 859 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 860 del_timer_sync(&hcd->rh_timer); 861 862 spin_lock_irq(&xhci->lock); 863 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 864 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 865 /* step 1: stop endpoint */ 866 /* skipped assuming that port suspend has done */ 867 868 /* step 2: clear Run/Stop bit */ 869 command = xhci_readl(xhci, &xhci->op_regs->command); 870 command &= ~CMD_RUN; 871 xhci_writel(xhci, command, &xhci->op_regs->command); 872 873 /* Some chips from Fresco Logic need an extraordinary delay */ 874 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 875 876 if (xhci_handshake(xhci, &xhci->op_regs->status, 877 STS_HALT, STS_HALT, delay)) { 878 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 879 spin_unlock_irq(&xhci->lock); 880 return -ETIMEDOUT; 881 } 882 xhci_clear_command_ring(xhci); 883 884 /* step 3: save registers */ 885 xhci_save_registers(xhci); 886 887 /* step 4: set CSS flag */ 888 command = xhci_readl(xhci, &xhci->op_regs->command); 889 command |= CMD_CSS; 890 xhci_writel(xhci, command, &xhci->op_regs->command); 891 if (xhci_handshake(xhci, &xhci->op_regs->status, 892 STS_SAVE, 0, 10 * 1000)) { 893 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 894 spin_unlock_irq(&xhci->lock); 895 return -ETIMEDOUT; 896 } 897 spin_unlock_irq(&xhci->lock); 898 899 /* 900 * Deleting Compliance Mode Recovery Timer because the xHCI Host 901 * is about to be suspended. 902 */ 903 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 904 (!(xhci_all_ports_seen_u0(xhci)))) { 905 del_timer_sync(&xhci->comp_mode_recovery_timer); 906 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 907 "%s: compliance mode recovery timer deleted", 908 __func__); 909 } 910 911 /* step 5: remove core well power */ 912 /* synchronize irq when using MSI-X */ 913 xhci_msix_sync_irqs(xhci); 914 915 return rc; 916 } 917 918 /* 919 * start xHC (not bus-specific) 920 * 921 * This is called when the machine transition from S3/S4 mode. 922 * 923 */ 924 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 925 { 926 u32 command, temp = 0; 927 struct usb_hcd *hcd = xhci_to_hcd(xhci); 928 struct usb_hcd *secondary_hcd; 929 int retval = 0; 930 bool comp_timer_running = false; 931 932 /* Wait a bit if either of the roothubs need to settle from the 933 * transition into bus suspend. 934 */ 935 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 936 time_before(jiffies, 937 xhci->bus_state[1].next_statechange)) 938 msleep(100); 939 940 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 941 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 942 943 spin_lock_irq(&xhci->lock); 944 if (xhci->quirks & XHCI_RESET_ON_RESUME) 945 hibernated = true; 946 947 if (!hibernated) { 948 /* step 1: restore register */ 949 xhci_restore_registers(xhci); 950 /* step 2: initialize command ring buffer */ 951 xhci_set_cmd_ring_deq(xhci); 952 /* step 3: restore state and start state*/ 953 /* step 3: set CRS flag */ 954 command = xhci_readl(xhci, &xhci->op_regs->command); 955 command |= CMD_CRS; 956 xhci_writel(xhci, command, &xhci->op_regs->command); 957 if (xhci_handshake(xhci, &xhci->op_regs->status, 958 STS_RESTORE, 0, 10 * 1000)) { 959 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 960 spin_unlock_irq(&xhci->lock); 961 return -ETIMEDOUT; 962 } 963 temp = xhci_readl(xhci, &xhci->op_regs->status); 964 } 965 966 /* If restore operation fails, re-initialize the HC during resume */ 967 if ((temp & STS_SRE) || hibernated) { 968 969 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 970 !(xhci_all_ports_seen_u0(xhci))) { 971 del_timer_sync(&xhci->comp_mode_recovery_timer); 972 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 973 "Compliance Mode Recovery Timer deleted!"); 974 } 975 976 /* Let the USB core know _both_ roothubs lost power. */ 977 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 978 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 979 980 xhci_dbg(xhci, "Stop HCD\n"); 981 xhci_halt(xhci); 982 xhci_reset(xhci); 983 spin_unlock_irq(&xhci->lock); 984 xhci_cleanup_msix(xhci); 985 986 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 987 temp = xhci_readl(xhci, &xhci->op_regs->status); 988 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 989 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 990 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 991 &xhci->ir_set->irq_pending); 992 xhci_print_ir_set(xhci, 0); 993 994 xhci_dbg(xhci, "cleaning up memory\n"); 995 xhci_mem_cleanup(xhci); 996 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 997 xhci_readl(xhci, &xhci->op_regs->status)); 998 999 /* USB core calls the PCI reinit and start functions twice: 1000 * first with the primary HCD, and then with the secondary HCD. 1001 * If we don't do the same, the host will never be started. 1002 */ 1003 if (!usb_hcd_is_primary_hcd(hcd)) 1004 secondary_hcd = hcd; 1005 else 1006 secondary_hcd = xhci->shared_hcd; 1007 1008 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1009 retval = xhci_init(hcd->primary_hcd); 1010 if (retval) 1011 return retval; 1012 comp_timer_running = true; 1013 1014 xhci_dbg(xhci, "Start the primary HCD\n"); 1015 retval = xhci_run(hcd->primary_hcd); 1016 if (!retval) { 1017 xhci_dbg(xhci, "Start the secondary HCD\n"); 1018 retval = xhci_run(secondary_hcd); 1019 } 1020 hcd->state = HC_STATE_SUSPENDED; 1021 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1022 goto done; 1023 } 1024 1025 /* step 4: set Run/Stop bit */ 1026 command = xhci_readl(xhci, &xhci->op_regs->command); 1027 command |= CMD_RUN; 1028 xhci_writel(xhci, command, &xhci->op_regs->command); 1029 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT, 1030 0, 250 * 1000); 1031 1032 /* step 5: walk topology and initialize portsc, 1033 * portpmsc and portli 1034 */ 1035 /* this is done in bus_resume */ 1036 1037 /* step 6: restart each of the previously 1038 * Running endpoints by ringing their doorbells 1039 */ 1040 1041 spin_unlock_irq(&xhci->lock); 1042 1043 done: 1044 if (retval == 0) { 1045 usb_hcd_resume_root_hub(hcd); 1046 usb_hcd_resume_root_hub(xhci->shared_hcd); 1047 } 1048 1049 /* 1050 * If system is subject to the Quirk, Compliance Mode Timer needs to 1051 * be re-initialized Always after a system resume. Ports are subject 1052 * to suffer the Compliance Mode issue again. It doesn't matter if 1053 * ports have entered previously to U0 before system's suspension. 1054 */ 1055 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1056 compliance_mode_recovery_timer_init(xhci); 1057 1058 /* Re-enable port polling. */ 1059 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1060 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1061 usb_hcd_poll_rh_status(hcd); 1062 1063 return retval; 1064 } 1065 #endif /* CONFIG_PM */ 1066 1067 /*-------------------------------------------------------------------------*/ 1068 1069 /** 1070 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1071 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1072 * value to right shift 1 for the bitmask. 1073 * 1074 * Index = (epnum * 2) + direction - 1, 1075 * where direction = 0 for OUT, 1 for IN. 1076 * For control endpoints, the IN index is used (OUT index is unused), so 1077 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1078 */ 1079 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1080 { 1081 unsigned int index; 1082 if (usb_endpoint_xfer_control(desc)) 1083 index = (unsigned int) (usb_endpoint_num(desc)*2); 1084 else 1085 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1086 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1087 return index; 1088 } 1089 1090 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1091 * address from the XHCI endpoint index. 1092 */ 1093 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1094 { 1095 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1096 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1097 return direction | number; 1098 } 1099 1100 /* Find the flag for this endpoint (for use in the control context). Use the 1101 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1102 * bit 1, etc. 1103 */ 1104 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1105 { 1106 return 1 << (xhci_get_endpoint_index(desc) + 1); 1107 } 1108 1109 /* Find the flag for this endpoint (for use in the control context). Use the 1110 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1111 * bit 1, etc. 1112 */ 1113 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1114 { 1115 return 1 << (ep_index + 1); 1116 } 1117 1118 /* Compute the last valid endpoint context index. Basically, this is the 1119 * endpoint index plus one. For slot contexts with more than valid endpoint, 1120 * we find the most significant bit set in the added contexts flags. 1121 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1122 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1123 */ 1124 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1125 { 1126 return fls(added_ctxs) - 1; 1127 } 1128 1129 /* Returns 1 if the arguments are OK; 1130 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1131 */ 1132 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1133 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1134 const char *func) { 1135 struct xhci_hcd *xhci; 1136 struct xhci_virt_device *virt_dev; 1137 1138 if (!hcd || (check_ep && !ep) || !udev) { 1139 pr_debug("xHCI %s called with invalid args\n", func); 1140 return -EINVAL; 1141 } 1142 if (!udev->parent) { 1143 pr_debug("xHCI %s called for root hub\n", func); 1144 return 0; 1145 } 1146 1147 xhci = hcd_to_xhci(hcd); 1148 if (check_virt_dev) { 1149 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1150 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1151 func); 1152 return -EINVAL; 1153 } 1154 1155 virt_dev = xhci->devs[udev->slot_id]; 1156 if (virt_dev->udev != udev) { 1157 xhci_dbg(xhci, "xHCI %s called with udev and " 1158 "virt_dev does not match\n", func); 1159 return -EINVAL; 1160 } 1161 } 1162 1163 if (xhci->xhc_state & XHCI_STATE_HALTED) 1164 return -ENODEV; 1165 1166 return 1; 1167 } 1168 1169 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1170 struct usb_device *udev, struct xhci_command *command, 1171 bool ctx_change, bool must_succeed); 1172 1173 /* 1174 * Full speed devices may have a max packet size greater than 8 bytes, but the 1175 * USB core doesn't know that until it reads the first 8 bytes of the 1176 * descriptor. If the usb_device's max packet size changes after that point, 1177 * we need to issue an evaluate context command and wait on it. 1178 */ 1179 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1180 unsigned int ep_index, struct urb *urb) 1181 { 1182 struct xhci_container_ctx *in_ctx; 1183 struct xhci_container_ctx *out_ctx; 1184 struct xhci_input_control_ctx *ctrl_ctx; 1185 struct xhci_ep_ctx *ep_ctx; 1186 int max_packet_size; 1187 int hw_max_packet_size; 1188 int ret = 0; 1189 1190 out_ctx = xhci->devs[slot_id]->out_ctx; 1191 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1192 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1193 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1194 if (hw_max_packet_size != max_packet_size) { 1195 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1196 "Max Packet Size for ep 0 changed."); 1197 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1198 "Max packet size in usb_device = %d", 1199 max_packet_size); 1200 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1201 "Max packet size in xHCI HW = %d", 1202 hw_max_packet_size); 1203 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1204 "Issuing evaluate context command."); 1205 1206 /* Set up the input context flags for the command */ 1207 /* FIXME: This won't work if a non-default control endpoint 1208 * changes max packet sizes. 1209 */ 1210 in_ctx = xhci->devs[slot_id]->in_ctx; 1211 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1212 if (!ctrl_ctx) { 1213 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1214 __func__); 1215 return -ENOMEM; 1216 } 1217 /* Set up the modified control endpoint 0 */ 1218 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1219 xhci->devs[slot_id]->out_ctx, ep_index); 1220 1221 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1222 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1223 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1224 1225 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1226 ctrl_ctx->drop_flags = 0; 1227 1228 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1229 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1230 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1231 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1232 1233 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1234 true, false); 1235 1236 /* Clean up the input context for later use by bandwidth 1237 * functions. 1238 */ 1239 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1240 } 1241 return ret; 1242 } 1243 1244 /* 1245 * non-error returns are a promise to giveback() the urb later 1246 * we drop ownership so next owner (or urb unlink) can get it 1247 */ 1248 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1249 { 1250 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1251 struct xhci_td *buffer; 1252 unsigned long flags; 1253 int ret = 0; 1254 unsigned int slot_id, ep_index; 1255 struct urb_priv *urb_priv; 1256 int size, i; 1257 1258 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1259 true, true, __func__) <= 0) 1260 return -EINVAL; 1261 1262 slot_id = urb->dev->slot_id; 1263 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1264 1265 if (!HCD_HW_ACCESSIBLE(hcd)) { 1266 if (!in_interrupt()) 1267 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1268 ret = -ESHUTDOWN; 1269 goto exit; 1270 } 1271 1272 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1273 size = urb->number_of_packets; 1274 else 1275 size = 1; 1276 1277 urb_priv = kzalloc(sizeof(struct urb_priv) + 1278 size * sizeof(struct xhci_td *), mem_flags); 1279 if (!urb_priv) 1280 return -ENOMEM; 1281 1282 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1283 if (!buffer) { 1284 kfree(urb_priv); 1285 return -ENOMEM; 1286 } 1287 1288 for (i = 0; i < size; i++) { 1289 urb_priv->td[i] = buffer; 1290 buffer++; 1291 } 1292 1293 urb_priv->length = size; 1294 urb_priv->td_cnt = 0; 1295 urb->hcpriv = urb_priv; 1296 1297 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1298 /* Check to see if the max packet size for the default control 1299 * endpoint changed during FS device enumeration 1300 */ 1301 if (urb->dev->speed == USB_SPEED_FULL) { 1302 ret = xhci_check_maxpacket(xhci, slot_id, 1303 ep_index, urb); 1304 if (ret < 0) { 1305 xhci_urb_free_priv(xhci, urb_priv); 1306 urb->hcpriv = NULL; 1307 return ret; 1308 } 1309 } 1310 1311 /* We have a spinlock and interrupts disabled, so we must pass 1312 * atomic context to this function, which may allocate memory. 1313 */ 1314 spin_lock_irqsave(&xhci->lock, flags); 1315 if (xhci->xhc_state & XHCI_STATE_DYING) 1316 goto dying; 1317 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1318 slot_id, ep_index); 1319 if (ret) 1320 goto free_priv; 1321 spin_unlock_irqrestore(&xhci->lock, flags); 1322 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1323 spin_lock_irqsave(&xhci->lock, flags); 1324 if (xhci->xhc_state & XHCI_STATE_DYING) 1325 goto dying; 1326 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1327 EP_GETTING_STREAMS) { 1328 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1329 "is transitioning to using streams.\n"); 1330 ret = -EINVAL; 1331 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1332 EP_GETTING_NO_STREAMS) { 1333 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1334 "is transitioning to " 1335 "not having streams.\n"); 1336 ret = -EINVAL; 1337 } else { 1338 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1339 slot_id, ep_index); 1340 } 1341 if (ret) 1342 goto free_priv; 1343 spin_unlock_irqrestore(&xhci->lock, flags); 1344 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1345 spin_lock_irqsave(&xhci->lock, flags); 1346 if (xhci->xhc_state & XHCI_STATE_DYING) 1347 goto dying; 1348 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1349 slot_id, ep_index); 1350 if (ret) 1351 goto free_priv; 1352 spin_unlock_irqrestore(&xhci->lock, flags); 1353 } else { 1354 spin_lock_irqsave(&xhci->lock, flags); 1355 if (xhci->xhc_state & XHCI_STATE_DYING) 1356 goto dying; 1357 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1358 slot_id, ep_index); 1359 if (ret) 1360 goto free_priv; 1361 spin_unlock_irqrestore(&xhci->lock, flags); 1362 } 1363 exit: 1364 return ret; 1365 dying: 1366 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1367 "non-responsive xHCI host.\n", 1368 urb->ep->desc.bEndpointAddress, urb); 1369 ret = -ESHUTDOWN; 1370 free_priv: 1371 xhci_urb_free_priv(xhci, urb_priv); 1372 urb->hcpriv = NULL; 1373 spin_unlock_irqrestore(&xhci->lock, flags); 1374 return ret; 1375 } 1376 1377 /* Get the right ring for the given URB. 1378 * If the endpoint supports streams, boundary check the URB's stream ID. 1379 * If the endpoint doesn't support streams, return the singular endpoint ring. 1380 */ 1381 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1382 struct urb *urb) 1383 { 1384 unsigned int slot_id; 1385 unsigned int ep_index; 1386 unsigned int stream_id; 1387 struct xhci_virt_ep *ep; 1388 1389 slot_id = urb->dev->slot_id; 1390 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1391 stream_id = urb->stream_id; 1392 ep = &xhci->devs[slot_id]->eps[ep_index]; 1393 /* Common case: no streams */ 1394 if (!(ep->ep_state & EP_HAS_STREAMS)) 1395 return ep->ring; 1396 1397 if (stream_id == 0) { 1398 xhci_warn(xhci, 1399 "WARN: Slot ID %u, ep index %u has streams, " 1400 "but URB has no stream ID.\n", 1401 slot_id, ep_index); 1402 return NULL; 1403 } 1404 1405 if (stream_id < ep->stream_info->num_streams) 1406 return ep->stream_info->stream_rings[stream_id]; 1407 1408 xhci_warn(xhci, 1409 "WARN: Slot ID %u, ep index %u has " 1410 "stream IDs 1 to %u allocated, " 1411 "but stream ID %u is requested.\n", 1412 slot_id, ep_index, 1413 ep->stream_info->num_streams - 1, 1414 stream_id); 1415 return NULL; 1416 } 1417 1418 /* 1419 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1420 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1421 * should pick up where it left off in the TD, unless a Set Transfer Ring 1422 * Dequeue Pointer is issued. 1423 * 1424 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1425 * the ring. Since the ring is a contiguous structure, they can't be physically 1426 * removed. Instead, there are two options: 1427 * 1428 * 1) If the HC is in the middle of processing the URB to be canceled, we 1429 * simply move the ring's dequeue pointer past those TRBs using the Set 1430 * Transfer Ring Dequeue Pointer command. This will be the common case, 1431 * when drivers timeout on the last submitted URB and attempt to cancel. 1432 * 1433 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1434 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1435 * HC will need to invalidate the any TRBs it has cached after the stop 1436 * endpoint command, as noted in the xHCI 0.95 errata. 1437 * 1438 * 3) The TD may have completed by the time the Stop Endpoint Command 1439 * completes, so software needs to handle that case too. 1440 * 1441 * This function should protect against the TD enqueueing code ringing the 1442 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1443 * It also needs to account for multiple cancellations on happening at the same 1444 * time for the same endpoint. 1445 * 1446 * Note that this function can be called in any context, or so says 1447 * usb_hcd_unlink_urb() 1448 */ 1449 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1450 { 1451 unsigned long flags; 1452 int ret, i; 1453 u32 temp; 1454 struct xhci_hcd *xhci; 1455 struct urb_priv *urb_priv; 1456 struct xhci_td *td; 1457 unsigned int ep_index; 1458 struct xhci_ring *ep_ring; 1459 struct xhci_virt_ep *ep; 1460 1461 xhci = hcd_to_xhci(hcd); 1462 spin_lock_irqsave(&xhci->lock, flags); 1463 /* Make sure the URB hasn't completed or been unlinked already */ 1464 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1465 if (ret || !urb->hcpriv) 1466 goto done; 1467 temp = xhci_readl(xhci, &xhci->op_regs->status); 1468 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1469 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1470 "HW died, freeing TD."); 1471 urb_priv = urb->hcpriv; 1472 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1473 td = urb_priv->td[i]; 1474 if (!list_empty(&td->td_list)) 1475 list_del_init(&td->td_list); 1476 if (!list_empty(&td->cancelled_td_list)) 1477 list_del_init(&td->cancelled_td_list); 1478 } 1479 1480 usb_hcd_unlink_urb_from_ep(hcd, urb); 1481 spin_unlock_irqrestore(&xhci->lock, flags); 1482 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1483 xhci_urb_free_priv(xhci, urb_priv); 1484 return ret; 1485 } 1486 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1487 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1488 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1489 "Ep 0x%x: URB %p to be canceled on " 1490 "non-responsive xHCI host.", 1491 urb->ep->desc.bEndpointAddress, urb); 1492 /* Let the stop endpoint command watchdog timer (which set this 1493 * state) finish cleaning up the endpoint TD lists. We must 1494 * have caught it in the middle of dropping a lock and giving 1495 * back an URB. 1496 */ 1497 goto done; 1498 } 1499 1500 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1501 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1502 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1503 if (!ep_ring) { 1504 ret = -EINVAL; 1505 goto done; 1506 } 1507 1508 urb_priv = urb->hcpriv; 1509 i = urb_priv->td_cnt; 1510 if (i < urb_priv->length) 1511 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1512 "Cancel URB %p, dev %s, ep 0x%x, " 1513 "starting at offset 0x%llx", 1514 urb, urb->dev->devpath, 1515 urb->ep->desc.bEndpointAddress, 1516 (unsigned long long) xhci_trb_virt_to_dma( 1517 urb_priv->td[i]->start_seg, 1518 urb_priv->td[i]->first_trb)); 1519 1520 for (; i < urb_priv->length; i++) { 1521 td = urb_priv->td[i]; 1522 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1523 } 1524 1525 /* Queue a stop endpoint command, but only if this is 1526 * the first cancellation to be handled. 1527 */ 1528 if (!(ep->ep_state & EP_HALT_PENDING)) { 1529 ep->ep_state |= EP_HALT_PENDING; 1530 ep->stop_cmds_pending++; 1531 ep->stop_cmd_timer.expires = jiffies + 1532 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1533 add_timer(&ep->stop_cmd_timer); 1534 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1535 xhci_ring_cmd_db(xhci); 1536 } 1537 done: 1538 spin_unlock_irqrestore(&xhci->lock, flags); 1539 return ret; 1540 } 1541 1542 /* Drop an endpoint from a new bandwidth configuration for this device. 1543 * Only one call to this function is allowed per endpoint before 1544 * check_bandwidth() or reset_bandwidth() must be called. 1545 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1546 * add the endpoint to the schedule with possibly new parameters denoted by a 1547 * different endpoint descriptor in usb_host_endpoint. 1548 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1549 * not allowed. 1550 * 1551 * The USB core will not allow URBs to be queued to an endpoint that is being 1552 * disabled, so there's no need for mutual exclusion to protect 1553 * the xhci->devs[slot_id] structure. 1554 */ 1555 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1556 struct usb_host_endpoint *ep) 1557 { 1558 struct xhci_hcd *xhci; 1559 struct xhci_container_ctx *in_ctx, *out_ctx; 1560 struct xhci_input_control_ctx *ctrl_ctx; 1561 struct xhci_slot_ctx *slot_ctx; 1562 unsigned int last_ctx; 1563 unsigned int ep_index; 1564 struct xhci_ep_ctx *ep_ctx; 1565 u32 drop_flag; 1566 u32 new_add_flags, new_drop_flags, new_slot_info; 1567 int ret; 1568 1569 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1570 if (ret <= 0) 1571 return ret; 1572 xhci = hcd_to_xhci(hcd); 1573 if (xhci->xhc_state & XHCI_STATE_DYING) 1574 return -ENODEV; 1575 1576 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1577 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1578 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1579 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1580 __func__, drop_flag); 1581 return 0; 1582 } 1583 1584 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1585 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1586 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1587 if (!ctrl_ctx) { 1588 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1589 __func__); 1590 return 0; 1591 } 1592 1593 ep_index = xhci_get_endpoint_index(&ep->desc); 1594 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1595 /* If the HC already knows the endpoint is disabled, 1596 * or the HCD has noted it is disabled, ignore this request 1597 */ 1598 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1599 cpu_to_le32(EP_STATE_DISABLED)) || 1600 le32_to_cpu(ctrl_ctx->drop_flags) & 1601 xhci_get_endpoint_flag(&ep->desc)) { 1602 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1603 __func__, ep); 1604 return 0; 1605 } 1606 1607 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1608 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1609 1610 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1611 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1612 1613 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1614 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1615 /* Update the last valid endpoint context, if we deleted the last one */ 1616 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1617 LAST_CTX(last_ctx)) { 1618 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1619 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1620 } 1621 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1622 1623 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1624 1625 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1626 (unsigned int) ep->desc.bEndpointAddress, 1627 udev->slot_id, 1628 (unsigned int) new_drop_flags, 1629 (unsigned int) new_add_flags, 1630 (unsigned int) new_slot_info); 1631 return 0; 1632 } 1633 1634 /* Add an endpoint to a new possible bandwidth configuration for this device. 1635 * Only one call to this function is allowed per endpoint before 1636 * check_bandwidth() or reset_bandwidth() must be called. 1637 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1638 * add the endpoint to the schedule with possibly new parameters denoted by a 1639 * different endpoint descriptor in usb_host_endpoint. 1640 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1641 * not allowed. 1642 * 1643 * The USB core will not allow URBs to be queued to an endpoint until the 1644 * configuration or alt setting is installed in the device, so there's no need 1645 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1646 */ 1647 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1648 struct usb_host_endpoint *ep) 1649 { 1650 struct xhci_hcd *xhci; 1651 struct xhci_container_ctx *in_ctx, *out_ctx; 1652 unsigned int ep_index; 1653 struct xhci_slot_ctx *slot_ctx; 1654 struct xhci_input_control_ctx *ctrl_ctx; 1655 u32 added_ctxs; 1656 unsigned int last_ctx; 1657 u32 new_add_flags, new_drop_flags, new_slot_info; 1658 struct xhci_virt_device *virt_dev; 1659 int ret = 0; 1660 1661 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1662 if (ret <= 0) { 1663 /* So we won't queue a reset ep command for a root hub */ 1664 ep->hcpriv = NULL; 1665 return ret; 1666 } 1667 xhci = hcd_to_xhci(hcd); 1668 if (xhci->xhc_state & XHCI_STATE_DYING) 1669 return -ENODEV; 1670 1671 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1672 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1673 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1674 /* FIXME when we have to issue an evaluate endpoint command to 1675 * deal with ep0 max packet size changing once we get the 1676 * descriptors 1677 */ 1678 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1679 __func__, added_ctxs); 1680 return 0; 1681 } 1682 1683 virt_dev = xhci->devs[udev->slot_id]; 1684 in_ctx = virt_dev->in_ctx; 1685 out_ctx = virt_dev->out_ctx; 1686 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1687 if (!ctrl_ctx) { 1688 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1689 __func__); 1690 return 0; 1691 } 1692 1693 ep_index = xhci_get_endpoint_index(&ep->desc); 1694 /* If this endpoint is already in use, and the upper layers are trying 1695 * to add it again without dropping it, reject the addition. 1696 */ 1697 if (virt_dev->eps[ep_index].ring && 1698 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1699 xhci_get_endpoint_flag(&ep->desc))) { 1700 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1701 "without dropping it.\n", 1702 (unsigned int) ep->desc.bEndpointAddress); 1703 return -EINVAL; 1704 } 1705 1706 /* If the HCD has already noted the endpoint is enabled, 1707 * ignore this request. 1708 */ 1709 if (le32_to_cpu(ctrl_ctx->add_flags) & 1710 xhci_get_endpoint_flag(&ep->desc)) { 1711 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1712 __func__, ep); 1713 return 0; 1714 } 1715 1716 /* 1717 * Configuration and alternate setting changes must be done in 1718 * process context, not interrupt context (or so documenation 1719 * for usb_set_interface() and usb_set_configuration() claim). 1720 */ 1721 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1722 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1723 __func__, ep->desc.bEndpointAddress); 1724 return -ENOMEM; 1725 } 1726 1727 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1728 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1729 1730 /* If xhci_endpoint_disable() was called for this endpoint, but the 1731 * xHC hasn't been notified yet through the check_bandwidth() call, 1732 * this re-adds a new state for the endpoint from the new endpoint 1733 * descriptors. We must drop and re-add this endpoint, so we leave the 1734 * drop flags alone. 1735 */ 1736 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1737 1738 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1739 /* Update the last valid endpoint context, if we just added one past */ 1740 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1741 LAST_CTX(last_ctx)) { 1742 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1743 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1744 } 1745 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1746 1747 /* Store the usb_device pointer for later use */ 1748 ep->hcpriv = udev; 1749 1750 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1751 (unsigned int) ep->desc.bEndpointAddress, 1752 udev->slot_id, 1753 (unsigned int) new_drop_flags, 1754 (unsigned int) new_add_flags, 1755 (unsigned int) new_slot_info); 1756 return 0; 1757 } 1758 1759 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1760 { 1761 struct xhci_input_control_ctx *ctrl_ctx; 1762 struct xhci_ep_ctx *ep_ctx; 1763 struct xhci_slot_ctx *slot_ctx; 1764 int i; 1765 1766 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1767 if (!ctrl_ctx) { 1768 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1769 __func__); 1770 return; 1771 } 1772 1773 /* When a device's add flag and drop flag are zero, any subsequent 1774 * configure endpoint command will leave that endpoint's state 1775 * untouched. Make sure we don't leave any old state in the input 1776 * endpoint contexts. 1777 */ 1778 ctrl_ctx->drop_flags = 0; 1779 ctrl_ctx->add_flags = 0; 1780 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1781 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1782 /* Endpoint 0 is always valid */ 1783 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1784 for (i = 1; i < 31; ++i) { 1785 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1786 ep_ctx->ep_info = 0; 1787 ep_ctx->ep_info2 = 0; 1788 ep_ctx->deq = 0; 1789 ep_ctx->tx_info = 0; 1790 } 1791 } 1792 1793 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1794 struct usb_device *udev, u32 *cmd_status) 1795 { 1796 int ret; 1797 1798 switch (*cmd_status) { 1799 case COMP_ENOMEM: 1800 dev_warn(&udev->dev, "Not enough host controller resources " 1801 "for new device state.\n"); 1802 ret = -ENOMEM; 1803 /* FIXME: can we allocate more resources for the HC? */ 1804 break; 1805 case COMP_BW_ERR: 1806 case COMP_2ND_BW_ERR: 1807 dev_warn(&udev->dev, "Not enough bandwidth " 1808 "for new device state.\n"); 1809 ret = -ENOSPC; 1810 /* FIXME: can we go back to the old state? */ 1811 break; 1812 case COMP_TRB_ERR: 1813 /* the HCD set up something wrong */ 1814 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1815 "add flag = 1, " 1816 "and endpoint is not disabled.\n"); 1817 ret = -EINVAL; 1818 break; 1819 case COMP_DEV_ERR: 1820 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1821 "configure command.\n"); 1822 ret = -ENODEV; 1823 break; 1824 case COMP_SUCCESS: 1825 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1826 "Successful Endpoint Configure command"); 1827 ret = 0; 1828 break; 1829 default: 1830 xhci_err(xhci, "ERROR: unexpected command completion " 1831 "code 0x%x.\n", *cmd_status); 1832 ret = -EINVAL; 1833 break; 1834 } 1835 return ret; 1836 } 1837 1838 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1839 struct usb_device *udev, u32 *cmd_status) 1840 { 1841 int ret; 1842 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1843 1844 switch (*cmd_status) { 1845 case COMP_EINVAL: 1846 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1847 "context command.\n"); 1848 ret = -EINVAL; 1849 break; 1850 case COMP_EBADSLT: 1851 dev_warn(&udev->dev, "WARN: slot not enabled for" 1852 "evaluate context command.\n"); 1853 ret = -EINVAL; 1854 break; 1855 case COMP_CTX_STATE: 1856 dev_warn(&udev->dev, "WARN: invalid context state for " 1857 "evaluate context command.\n"); 1858 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1859 ret = -EINVAL; 1860 break; 1861 case COMP_DEV_ERR: 1862 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1863 "context command.\n"); 1864 ret = -ENODEV; 1865 break; 1866 case COMP_MEL_ERR: 1867 /* Max Exit Latency too large error */ 1868 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1869 ret = -EINVAL; 1870 break; 1871 case COMP_SUCCESS: 1872 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1873 "Successful evaluate context command"); 1874 ret = 0; 1875 break; 1876 default: 1877 xhci_err(xhci, "ERROR: unexpected command completion " 1878 "code 0x%x.\n", *cmd_status); 1879 ret = -EINVAL; 1880 break; 1881 } 1882 return ret; 1883 } 1884 1885 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1886 struct xhci_input_control_ctx *ctrl_ctx) 1887 { 1888 u32 valid_add_flags; 1889 u32 valid_drop_flags; 1890 1891 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1892 * (bit 1). The default control endpoint is added during the Address 1893 * Device command and is never removed until the slot is disabled. 1894 */ 1895 valid_add_flags = ctrl_ctx->add_flags >> 2; 1896 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1897 1898 /* Use hweight32 to count the number of ones in the add flags, or 1899 * number of endpoints added. Don't count endpoints that are changed 1900 * (both added and dropped). 1901 */ 1902 return hweight32(valid_add_flags) - 1903 hweight32(valid_add_flags & valid_drop_flags); 1904 } 1905 1906 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1907 struct xhci_input_control_ctx *ctrl_ctx) 1908 { 1909 u32 valid_add_flags; 1910 u32 valid_drop_flags; 1911 1912 valid_add_flags = ctrl_ctx->add_flags >> 2; 1913 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1914 1915 return hweight32(valid_drop_flags) - 1916 hweight32(valid_add_flags & valid_drop_flags); 1917 } 1918 1919 /* 1920 * We need to reserve the new number of endpoints before the configure endpoint 1921 * command completes. We can't subtract the dropped endpoints from the number 1922 * of active endpoints until the command completes because we can oversubscribe 1923 * the host in this case: 1924 * 1925 * - the first configure endpoint command drops more endpoints than it adds 1926 * - a second configure endpoint command that adds more endpoints is queued 1927 * - the first configure endpoint command fails, so the config is unchanged 1928 * - the second command may succeed, even though there isn't enough resources 1929 * 1930 * Must be called with xhci->lock held. 1931 */ 1932 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1933 struct xhci_input_control_ctx *ctrl_ctx) 1934 { 1935 u32 added_eps; 1936 1937 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1938 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1939 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1940 "Not enough ep ctxs: " 1941 "%u active, need to add %u, limit is %u.", 1942 xhci->num_active_eps, added_eps, 1943 xhci->limit_active_eps); 1944 return -ENOMEM; 1945 } 1946 xhci->num_active_eps += added_eps; 1947 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1948 "Adding %u ep ctxs, %u now active.", added_eps, 1949 xhci->num_active_eps); 1950 return 0; 1951 } 1952 1953 /* 1954 * The configure endpoint was failed by the xHC for some other reason, so we 1955 * need to revert the resources that failed configuration would have used. 1956 * 1957 * Must be called with xhci->lock held. 1958 */ 1959 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1960 struct xhci_input_control_ctx *ctrl_ctx) 1961 { 1962 u32 num_failed_eps; 1963 1964 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1965 xhci->num_active_eps -= num_failed_eps; 1966 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1967 "Removing %u failed ep ctxs, %u now active.", 1968 num_failed_eps, 1969 xhci->num_active_eps); 1970 } 1971 1972 /* 1973 * Now that the command has completed, clean up the active endpoint count by 1974 * subtracting out the endpoints that were dropped (but not changed). 1975 * 1976 * Must be called with xhci->lock held. 1977 */ 1978 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1979 struct xhci_input_control_ctx *ctrl_ctx) 1980 { 1981 u32 num_dropped_eps; 1982 1983 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1984 xhci->num_active_eps -= num_dropped_eps; 1985 if (num_dropped_eps) 1986 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1987 "Removing %u dropped ep ctxs, %u now active.", 1988 num_dropped_eps, 1989 xhci->num_active_eps); 1990 } 1991 1992 static unsigned int xhci_get_block_size(struct usb_device *udev) 1993 { 1994 switch (udev->speed) { 1995 case USB_SPEED_LOW: 1996 case USB_SPEED_FULL: 1997 return FS_BLOCK; 1998 case USB_SPEED_HIGH: 1999 return HS_BLOCK; 2000 case USB_SPEED_SUPER: 2001 return SS_BLOCK; 2002 case USB_SPEED_UNKNOWN: 2003 case USB_SPEED_WIRELESS: 2004 default: 2005 /* Should never happen */ 2006 return 1; 2007 } 2008 } 2009 2010 static unsigned int 2011 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2012 { 2013 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2014 return LS_OVERHEAD; 2015 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2016 return FS_OVERHEAD; 2017 return HS_OVERHEAD; 2018 } 2019 2020 /* If we are changing a LS/FS device under a HS hub, 2021 * make sure (if we are activating a new TT) that the HS bus has enough 2022 * bandwidth for this new TT. 2023 */ 2024 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2025 struct xhci_virt_device *virt_dev, 2026 int old_active_eps) 2027 { 2028 struct xhci_interval_bw_table *bw_table; 2029 struct xhci_tt_bw_info *tt_info; 2030 2031 /* Find the bandwidth table for the root port this TT is attached to. */ 2032 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2033 tt_info = virt_dev->tt_info; 2034 /* If this TT already had active endpoints, the bandwidth for this TT 2035 * has already been added. Removing all periodic endpoints (and thus 2036 * making the TT enactive) will only decrease the bandwidth used. 2037 */ 2038 if (old_active_eps) 2039 return 0; 2040 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2041 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2042 return -ENOMEM; 2043 return 0; 2044 } 2045 /* Not sure why we would have no new active endpoints... 2046 * 2047 * Maybe because of an Evaluate Context change for a hub update or a 2048 * control endpoint 0 max packet size change? 2049 * FIXME: skip the bandwidth calculation in that case. 2050 */ 2051 return 0; 2052 } 2053 2054 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2055 struct xhci_virt_device *virt_dev) 2056 { 2057 unsigned int bw_reserved; 2058 2059 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2060 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2061 return -ENOMEM; 2062 2063 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2064 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2065 return -ENOMEM; 2066 2067 return 0; 2068 } 2069 2070 /* 2071 * This algorithm is a very conservative estimate of the worst-case scheduling 2072 * scenario for any one interval. The hardware dynamically schedules the 2073 * packets, so we can't tell which microframe could be the limiting factor in 2074 * the bandwidth scheduling. This only takes into account periodic endpoints. 2075 * 2076 * Obviously, we can't solve an NP complete problem to find the minimum worst 2077 * case scenario. Instead, we come up with an estimate that is no less than 2078 * the worst case bandwidth used for any one microframe, but may be an 2079 * over-estimate. 2080 * 2081 * We walk the requirements for each endpoint by interval, starting with the 2082 * smallest interval, and place packets in the schedule where there is only one 2083 * possible way to schedule packets for that interval. In order to simplify 2084 * this algorithm, we record the largest max packet size for each interval, and 2085 * assume all packets will be that size. 2086 * 2087 * For interval 0, we obviously must schedule all packets for each interval. 2088 * The bandwidth for interval 0 is just the amount of data to be transmitted 2089 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2090 * the number of packets). 2091 * 2092 * For interval 1, we have two possible microframes to schedule those packets 2093 * in. For this algorithm, if we can schedule the same number of packets for 2094 * each possible scheduling opportunity (each microframe), we will do so. The 2095 * remaining number of packets will be saved to be transmitted in the gaps in 2096 * the next interval's scheduling sequence. 2097 * 2098 * As we move those remaining packets to be scheduled with interval 2 packets, 2099 * we have to double the number of remaining packets to transmit. This is 2100 * because the intervals are actually powers of 2, and we would be transmitting 2101 * the previous interval's packets twice in this interval. We also have to be 2102 * sure that when we look at the largest max packet size for this interval, we 2103 * also look at the largest max packet size for the remaining packets and take 2104 * the greater of the two. 2105 * 2106 * The algorithm continues to evenly distribute packets in each scheduling 2107 * opportunity, and push the remaining packets out, until we get to the last 2108 * interval. Then those packets and their associated overhead are just added 2109 * to the bandwidth used. 2110 */ 2111 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2112 struct xhci_virt_device *virt_dev, 2113 int old_active_eps) 2114 { 2115 unsigned int bw_reserved; 2116 unsigned int max_bandwidth; 2117 unsigned int bw_used; 2118 unsigned int block_size; 2119 struct xhci_interval_bw_table *bw_table; 2120 unsigned int packet_size = 0; 2121 unsigned int overhead = 0; 2122 unsigned int packets_transmitted = 0; 2123 unsigned int packets_remaining = 0; 2124 unsigned int i; 2125 2126 if (virt_dev->udev->speed == USB_SPEED_SUPER) 2127 return xhci_check_ss_bw(xhci, virt_dev); 2128 2129 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2130 max_bandwidth = HS_BW_LIMIT; 2131 /* Convert percent of bus BW reserved to blocks reserved */ 2132 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2133 } else { 2134 max_bandwidth = FS_BW_LIMIT; 2135 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2136 } 2137 2138 bw_table = virt_dev->bw_table; 2139 /* We need to translate the max packet size and max ESIT payloads into 2140 * the units the hardware uses. 2141 */ 2142 block_size = xhci_get_block_size(virt_dev->udev); 2143 2144 /* If we are manipulating a LS/FS device under a HS hub, double check 2145 * that the HS bus has enough bandwidth if we are activing a new TT. 2146 */ 2147 if (virt_dev->tt_info) { 2148 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2149 "Recalculating BW for rootport %u", 2150 virt_dev->real_port); 2151 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2152 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2153 "newly activated TT.\n"); 2154 return -ENOMEM; 2155 } 2156 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2157 "Recalculating BW for TT slot %u port %u", 2158 virt_dev->tt_info->slot_id, 2159 virt_dev->tt_info->ttport); 2160 } else { 2161 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2162 "Recalculating BW for rootport %u", 2163 virt_dev->real_port); 2164 } 2165 2166 /* Add in how much bandwidth will be used for interval zero, or the 2167 * rounded max ESIT payload + number of packets * largest overhead. 2168 */ 2169 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2170 bw_table->interval_bw[0].num_packets * 2171 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2172 2173 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2174 unsigned int bw_added; 2175 unsigned int largest_mps; 2176 unsigned int interval_overhead; 2177 2178 /* 2179 * How many packets could we transmit in this interval? 2180 * If packets didn't fit in the previous interval, we will need 2181 * to transmit that many packets twice within this interval. 2182 */ 2183 packets_remaining = 2 * packets_remaining + 2184 bw_table->interval_bw[i].num_packets; 2185 2186 /* Find the largest max packet size of this or the previous 2187 * interval. 2188 */ 2189 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2190 largest_mps = 0; 2191 else { 2192 struct xhci_virt_ep *virt_ep; 2193 struct list_head *ep_entry; 2194 2195 ep_entry = bw_table->interval_bw[i].endpoints.next; 2196 virt_ep = list_entry(ep_entry, 2197 struct xhci_virt_ep, bw_endpoint_list); 2198 /* Convert to blocks, rounding up */ 2199 largest_mps = DIV_ROUND_UP( 2200 virt_ep->bw_info.max_packet_size, 2201 block_size); 2202 } 2203 if (largest_mps > packet_size) 2204 packet_size = largest_mps; 2205 2206 /* Use the larger overhead of this or the previous interval. */ 2207 interval_overhead = xhci_get_largest_overhead( 2208 &bw_table->interval_bw[i]); 2209 if (interval_overhead > overhead) 2210 overhead = interval_overhead; 2211 2212 /* How many packets can we evenly distribute across 2213 * (1 << (i + 1)) possible scheduling opportunities? 2214 */ 2215 packets_transmitted = packets_remaining >> (i + 1); 2216 2217 /* Add in the bandwidth used for those scheduled packets */ 2218 bw_added = packets_transmitted * (overhead + packet_size); 2219 2220 /* How many packets do we have remaining to transmit? */ 2221 packets_remaining = packets_remaining % (1 << (i + 1)); 2222 2223 /* What largest max packet size should those packets have? */ 2224 /* If we've transmitted all packets, don't carry over the 2225 * largest packet size. 2226 */ 2227 if (packets_remaining == 0) { 2228 packet_size = 0; 2229 overhead = 0; 2230 } else if (packets_transmitted > 0) { 2231 /* Otherwise if we do have remaining packets, and we've 2232 * scheduled some packets in this interval, take the 2233 * largest max packet size from endpoints with this 2234 * interval. 2235 */ 2236 packet_size = largest_mps; 2237 overhead = interval_overhead; 2238 } 2239 /* Otherwise carry over packet_size and overhead from the last 2240 * time we had a remainder. 2241 */ 2242 bw_used += bw_added; 2243 if (bw_used > max_bandwidth) { 2244 xhci_warn(xhci, "Not enough bandwidth. " 2245 "Proposed: %u, Max: %u\n", 2246 bw_used, max_bandwidth); 2247 return -ENOMEM; 2248 } 2249 } 2250 /* 2251 * Ok, we know we have some packets left over after even-handedly 2252 * scheduling interval 15. We don't know which microframes they will 2253 * fit into, so we over-schedule and say they will be scheduled every 2254 * microframe. 2255 */ 2256 if (packets_remaining > 0) 2257 bw_used += overhead + packet_size; 2258 2259 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2260 unsigned int port_index = virt_dev->real_port - 1; 2261 2262 /* OK, we're manipulating a HS device attached to a 2263 * root port bandwidth domain. Include the number of active TTs 2264 * in the bandwidth used. 2265 */ 2266 bw_used += TT_HS_OVERHEAD * 2267 xhci->rh_bw[port_index].num_active_tts; 2268 } 2269 2270 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2271 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2272 "Available: %u " "percent", 2273 bw_used, max_bandwidth, bw_reserved, 2274 (max_bandwidth - bw_used - bw_reserved) * 100 / 2275 max_bandwidth); 2276 2277 bw_used += bw_reserved; 2278 if (bw_used > max_bandwidth) { 2279 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2280 bw_used, max_bandwidth); 2281 return -ENOMEM; 2282 } 2283 2284 bw_table->bw_used = bw_used; 2285 return 0; 2286 } 2287 2288 static bool xhci_is_async_ep(unsigned int ep_type) 2289 { 2290 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2291 ep_type != ISOC_IN_EP && 2292 ep_type != INT_IN_EP); 2293 } 2294 2295 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2296 { 2297 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2298 } 2299 2300 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2301 { 2302 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2303 2304 if (ep_bw->ep_interval == 0) 2305 return SS_OVERHEAD_BURST + 2306 (ep_bw->mult * ep_bw->num_packets * 2307 (SS_OVERHEAD + mps)); 2308 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2309 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2310 1 << ep_bw->ep_interval); 2311 2312 } 2313 2314 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2315 struct xhci_bw_info *ep_bw, 2316 struct xhci_interval_bw_table *bw_table, 2317 struct usb_device *udev, 2318 struct xhci_virt_ep *virt_ep, 2319 struct xhci_tt_bw_info *tt_info) 2320 { 2321 struct xhci_interval_bw *interval_bw; 2322 int normalized_interval; 2323 2324 if (xhci_is_async_ep(ep_bw->type)) 2325 return; 2326 2327 if (udev->speed == USB_SPEED_SUPER) { 2328 if (xhci_is_sync_in_ep(ep_bw->type)) 2329 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2330 xhci_get_ss_bw_consumed(ep_bw); 2331 else 2332 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2333 xhci_get_ss_bw_consumed(ep_bw); 2334 return; 2335 } 2336 2337 /* SuperSpeed endpoints never get added to intervals in the table, so 2338 * this check is only valid for HS/FS/LS devices. 2339 */ 2340 if (list_empty(&virt_ep->bw_endpoint_list)) 2341 return; 2342 /* For LS/FS devices, we need to translate the interval expressed in 2343 * microframes to frames. 2344 */ 2345 if (udev->speed == USB_SPEED_HIGH) 2346 normalized_interval = ep_bw->ep_interval; 2347 else 2348 normalized_interval = ep_bw->ep_interval - 3; 2349 2350 if (normalized_interval == 0) 2351 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2352 interval_bw = &bw_table->interval_bw[normalized_interval]; 2353 interval_bw->num_packets -= ep_bw->num_packets; 2354 switch (udev->speed) { 2355 case USB_SPEED_LOW: 2356 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2357 break; 2358 case USB_SPEED_FULL: 2359 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2360 break; 2361 case USB_SPEED_HIGH: 2362 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2363 break; 2364 case USB_SPEED_SUPER: 2365 case USB_SPEED_UNKNOWN: 2366 case USB_SPEED_WIRELESS: 2367 /* Should never happen because only LS/FS/HS endpoints will get 2368 * added to the endpoint list. 2369 */ 2370 return; 2371 } 2372 if (tt_info) 2373 tt_info->active_eps -= 1; 2374 list_del_init(&virt_ep->bw_endpoint_list); 2375 } 2376 2377 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2378 struct xhci_bw_info *ep_bw, 2379 struct xhci_interval_bw_table *bw_table, 2380 struct usb_device *udev, 2381 struct xhci_virt_ep *virt_ep, 2382 struct xhci_tt_bw_info *tt_info) 2383 { 2384 struct xhci_interval_bw *interval_bw; 2385 struct xhci_virt_ep *smaller_ep; 2386 int normalized_interval; 2387 2388 if (xhci_is_async_ep(ep_bw->type)) 2389 return; 2390 2391 if (udev->speed == USB_SPEED_SUPER) { 2392 if (xhci_is_sync_in_ep(ep_bw->type)) 2393 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2394 xhci_get_ss_bw_consumed(ep_bw); 2395 else 2396 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2397 xhci_get_ss_bw_consumed(ep_bw); 2398 return; 2399 } 2400 2401 /* For LS/FS devices, we need to translate the interval expressed in 2402 * microframes to frames. 2403 */ 2404 if (udev->speed == USB_SPEED_HIGH) 2405 normalized_interval = ep_bw->ep_interval; 2406 else 2407 normalized_interval = ep_bw->ep_interval - 3; 2408 2409 if (normalized_interval == 0) 2410 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2411 interval_bw = &bw_table->interval_bw[normalized_interval]; 2412 interval_bw->num_packets += ep_bw->num_packets; 2413 switch (udev->speed) { 2414 case USB_SPEED_LOW: 2415 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2416 break; 2417 case USB_SPEED_FULL: 2418 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2419 break; 2420 case USB_SPEED_HIGH: 2421 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2422 break; 2423 case USB_SPEED_SUPER: 2424 case USB_SPEED_UNKNOWN: 2425 case USB_SPEED_WIRELESS: 2426 /* Should never happen because only LS/FS/HS endpoints will get 2427 * added to the endpoint list. 2428 */ 2429 return; 2430 } 2431 2432 if (tt_info) 2433 tt_info->active_eps += 1; 2434 /* Insert the endpoint into the list, largest max packet size first. */ 2435 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2436 bw_endpoint_list) { 2437 if (ep_bw->max_packet_size >= 2438 smaller_ep->bw_info.max_packet_size) { 2439 /* Add the new ep before the smaller endpoint */ 2440 list_add_tail(&virt_ep->bw_endpoint_list, 2441 &smaller_ep->bw_endpoint_list); 2442 return; 2443 } 2444 } 2445 /* Add the new endpoint at the end of the list. */ 2446 list_add_tail(&virt_ep->bw_endpoint_list, 2447 &interval_bw->endpoints); 2448 } 2449 2450 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2451 struct xhci_virt_device *virt_dev, 2452 int old_active_eps) 2453 { 2454 struct xhci_root_port_bw_info *rh_bw_info; 2455 if (!virt_dev->tt_info) 2456 return; 2457 2458 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2459 if (old_active_eps == 0 && 2460 virt_dev->tt_info->active_eps != 0) { 2461 rh_bw_info->num_active_tts += 1; 2462 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2463 } else if (old_active_eps != 0 && 2464 virt_dev->tt_info->active_eps == 0) { 2465 rh_bw_info->num_active_tts -= 1; 2466 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2467 } 2468 } 2469 2470 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2471 struct xhci_virt_device *virt_dev, 2472 struct xhci_container_ctx *in_ctx) 2473 { 2474 struct xhci_bw_info ep_bw_info[31]; 2475 int i; 2476 struct xhci_input_control_ctx *ctrl_ctx; 2477 int old_active_eps = 0; 2478 2479 if (virt_dev->tt_info) 2480 old_active_eps = virt_dev->tt_info->active_eps; 2481 2482 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2483 if (!ctrl_ctx) { 2484 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2485 __func__); 2486 return -ENOMEM; 2487 } 2488 2489 for (i = 0; i < 31; i++) { 2490 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2491 continue; 2492 2493 /* Make a copy of the BW info in case we need to revert this */ 2494 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2495 sizeof(ep_bw_info[i])); 2496 /* Drop the endpoint from the interval table if the endpoint is 2497 * being dropped or changed. 2498 */ 2499 if (EP_IS_DROPPED(ctrl_ctx, i)) 2500 xhci_drop_ep_from_interval_table(xhci, 2501 &virt_dev->eps[i].bw_info, 2502 virt_dev->bw_table, 2503 virt_dev->udev, 2504 &virt_dev->eps[i], 2505 virt_dev->tt_info); 2506 } 2507 /* Overwrite the information stored in the endpoints' bw_info */ 2508 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2509 for (i = 0; i < 31; i++) { 2510 /* Add any changed or added endpoints to the interval table */ 2511 if (EP_IS_ADDED(ctrl_ctx, i)) 2512 xhci_add_ep_to_interval_table(xhci, 2513 &virt_dev->eps[i].bw_info, 2514 virt_dev->bw_table, 2515 virt_dev->udev, 2516 &virt_dev->eps[i], 2517 virt_dev->tt_info); 2518 } 2519 2520 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2521 /* Ok, this fits in the bandwidth we have. 2522 * Update the number of active TTs. 2523 */ 2524 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2525 return 0; 2526 } 2527 2528 /* We don't have enough bandwidth for this, revert the stored info. */ 2529 for (i = 0; i < 31; i++) { 2530 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2531 continue; 2532 2533 /* Drop the new copies of any added or changed endpoints from 2534 * the interval table. 2535 */ 2536 if (EP_IS_ADDED(ctrl_ctx, i)) { 2537 xhci_drop_ep_from_interval_table(xhci, 2538 &virt_dev->eps[i].bw_info, 2539 virt_dev->bw_table, 2540 virt_dev->udev, 2541 &virt_dev->eps[i], 2542 virt_dev->tt_info); 2543 } 2544 /* Revert the endpoint back to its old information */ 2545 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2546 sizeof(ep_bw_info[i])); 2547 /* Add any changed or dropped endpoints back into the table */ 2548 if (EP_IS_DROPPED(ctrl_ctx, i)) 2549 xhci_add_ep_to_interval_table(xhci, 2550 &virt_dev->eps[i].bw_info, 2551 virt_dev->bw_table, 2552 virt_dev->udev, 2553 &virt_dev->eps[i], 2554 virt_dev->tt_info); 2555 } 2556 return -ENOMEM; 2557 } 2558 2559 2560 /* Issue a configure endpoint command or evaluate context command 2561 * and wait for it to finish. 2562 */ 2563 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2564 struct usb_device *udev, 2565 struct xhci_command *command, 2566 bool ctx_change, bool must_succeed) 2567 { 2568 int ret; 2569 int timeleft; 2570 unsigned long flags; 2571 struct xhci_container_ctx *in_ctx; 2572 struct xhci_input_control_ctx *ctrl_ctx; 2573 struct completion *cmd_completion; 2574 u32 *cmd_status; 2575 struct xhci_virt_device *virt_dev; 2576 union xhci_trb *cmd_trb; 2577 2578 spin_lock_irqsave(&xhci->lock, flags); 2579 virt_dev = xhci->devs[udev->slot_id]; 2580 2581 if (command) 2582 in_ctx = command->in_ctx; 2583 else 2584 in_ctx = virt_dev->in_ctx; 2585 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2586 if (!ctrl_ctx) { 2587 spin_unlock_irqrestore(&xhci->lock, flags); 2588 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2589 __func__); 2590 return -ENOMEM; 2591 } 2592 2593 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2594 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2595 spin_unlock_irqrestore(&xhci->lock, flags); 2596 xhci_warn(xhci, "Not enough host resources, " 2597 "active endpoint contexts = %u\n", 2598 xhci->num_active_eps); 2599 return -ENOMEM; 2600 } 2601 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2602 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2603 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2604 xhci_free_host_resources(xhci, ctrl_ctx); 2605 spin_unlock_irqrestore(&xhci->lock, flags); 2606 xhci_warn(xhci, "Not enough bandwidth\n"); 2607 return -ENOMEM; 2608 } 2609 2610 if (command) { 2611 cmd_completion = command->completion; 2612 cmd_status = &command->status; 2613 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring); 2614 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2615 } else { 2616 cmd_completion = &virt_dev->cmd_completion; 2617 cmd_status = &virt_dev->cmd_status; 2618 } 2619 init_completion(cmd_completion); 2620 2621 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring); 2622 if (!ctx_change) 2623 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2624 udev->slot_id, must_succeed); 2625 else 2626 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2627 udev->slot_id, must_succeed); 2628 if (ret < 0) { 2629 if (command) 2630 list_del(&command->cmd_list); 2631 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2632 xhci_free_host_resources(xhci, ctrl_ctx); 2633 spin_unlock_irqrestore(&xhci->lock, flags); 2634 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2635 "FIXME allocate a new ring segment"); 2636 return -ENOMEM; 2637 } 2638 xhci_ring_cmd_db(xhci); 2639 spin_unlock_irqrestore(&xhci->lock, flags); 2640 2641 /* Wait for the configure endpoint command to complete */ 2642 timeleft = wait_for_completion_interruptible_timeout( 2643 cmd_completion, 2644 XHCI_CMD_DEFAULT_TIMEOUT); 2645 if (timeleft <= 0) { 2646 xhci_warn(xhci, "%s while waiting for %s command\n", 2647 timeleft == 0 ? "Timeout" : "Signal", 2648 ctx_change == 0 ? 2649 "configure endpoint" : 2650 "evaluate context"); 2651 /* cancel the configure endpoint command */ 2652 ret = xhci_cancel_cmd(xhci, command, cmd_trb); 2653 if (ret < 0) 2654 return ret; 2655 return -ETIME; 2656 } 2657 2658 if (!ctx_change) 2659 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2660 else 2661 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2662 2663 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2664 spin_lock_irqsave(&xhci->lock, flags); 2665 /* If the command failed, remove the reserved resources. 2666 * Otherwise, clean up the estimate to include dropped eps. 2667 */ 2668 if (ret) 2669 xhci_free_host_resources(xhci, ctrl_ctx); 2670 else 2671 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2672 spin_unlock_irqrestore(&xhci->lock, flags); 2673 } 2674 return ret; 2675 } 2676 2677 /* Called after one or more calls to xhci_add_endpoint() or 2678 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2679 * to call xhci_reset_bandwidth(). 2680 * 2681 * Since we are in the middle of changing either configuration or 2682 * installing a new alt setting, the USB core won't allow URBs to be 2683 * enqueued for any endpoint on the old config or interface. Nothing 2684 * else should be touching the xhci->devs[slot_id] structure, so we 2685 * don't need to take the xhci->lock for manipulating that. 2686 */ 2687 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2688 { 2689 int i; 2690 int ret = 0; 2691 struct xhci_hcd *xhci; 2692 struct xhci_virt_device *virt_dev; 2693 struct xhci_input_control_ctx *ctrl_ctx; 2694 struct xhci_slot_ctx *slot_ctx; 2695 2696 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2697 if (ret <= 0) 2698 return ret; 2699 xhci = hcd_to_xhci(hcd); 2700 if (xhci->xhc_state & XHCI_STATE_DYING) 2701 return -ENODEV; 2702 2703 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2704 virt_dev = xhci->devs[udev->slot_id]; 2705 2706 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2707 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2708 if (!ctrl_ctx) { 2709 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2710 __func__); 2711 return -ENOMEM; 2712 } 2713 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2714 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2715 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2716 2717 /* Don't issue the command if there's no endpoints to update. */ 2718 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2719 ctrl_ctx->drop_flags == 0) 2720 return 0; 2721 2722 xhci_dbg(xhci, "New Input Control Context:\n"); 2723 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2724 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2725 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2726 2727 ret = xhci_configure_endpoint(xhci, udev, NULL, 2728 false, false); 2729 if (ret) { 2730 /* Callee should call reset_bandwidth() */ 2731 return ret; 2732 } 2733 2734 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2735 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2736 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2737 2738 /* Free any rings that were dropped, but not changed. */ 2739 for (i = 1; i < 31; ++i) { 2740 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2741 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2742 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2743 } 2744 xhci_zero_in_ctx(xhci, virt_dev); 2745 /* 2746 * Install any rings for completely new endpoints or changed endpoints, 2747 * and free or cache any old rings from changed endpoints. 2748 */ 2749 for (i = 1; i < 31; ++i) { 2750 if (!virt_dev->eps[i].new_ring) 2751 continue; 2752 /* Only cache or free the old ring if it exists. 2753 * It may not if this is the first add of an endpoint. 2754 */ 2755 if (virt_dev->eps[i].ring) { 2756 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2757 } 2758 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2759 virt_dev->eps[i].new_ring = NULL; 2760 } 2761 2762 return ret; 2763 } 2764 2765 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2766 { 2767 struct xhci_hcd *xhci; 2768 struct xhci_virt_device *virt_dev; 2769 int i, ret; 2770 2771 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2772 if (ret <= 0) 2773 return; 2774 xhci = hcd_to_xhci(hcd); 2775 2776 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2777 virt_dev = xhci->devs[udev->slot_id]; 2778 /* Free any rings allocated for added endpoints */ 2779 for (i = 0; i < 31; ++i) { 2780 if (virt_dev->eps[i].new_ring) { 2781 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2782 virt_dev->eps[i].new_ring = NULL; 2783 } 2784 } 2785 xhci_zero_in_ctx(xhci, virt_dev); 2786 } 2787 2788 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2789 struct xhci_container_ctx *in_ctx, 2790 struct xhci_container_ctx *out_ctx, 2791 struct xhci_input_control_ctx *ctrl_ctx, 2792 u32 add_flags, u32 drop_flags) 2793 { 2794 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2795 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2796 xhci_slot_copy(xhci, in_ctx, out_ctx); 2797 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2798 2799 xhci_dbg(xhci, "Input Context:\n"); 2800 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2801 } 2802 2803 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2804 unsigned int slot_id, unsigned int ep_index, 2805 struct xhci_dequeue_state *deq_state) 2806 { 2807 struct xhci_input_control_ctx *ctrl_ctx; 2808 struct xhci_container_ctx *in_ctx; 2809 struct xhci_ep_ctx *ep_ctx; 2810 u32 added_ctxs; 2811 dma_addr_t addr; 2812 2813 in_ctx = xhci->devs[slot_id]->in_ctx; 2814 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2815 if (!ctrl_ctx) { 2816 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2817 __func__); 2818 return; 2819 } 2820 2821 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2822 xhci->devs[slot_id]->out_ctx, ep_index); 2823 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2824 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2825 deq_state->new_deq_ptr); 2826 if (addr == 0) { 2827 xhci_warn(xhci, "WARN Cannot submit config ep after " 2828 "reset ep command\n"); 2829 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2830 deq_state->new_deq_seg, 2831 deq_state->new_deq_ptr); 2832 return; 2833 } 2834 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2835 2836 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2837 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2838 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2839 added_ctxs, added_ctxs); 2840 } 2841 2842 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2843 struct usb_device *udev, unsigned int ep_index) 2844 { 2845 struct xhci_dequeue_state deq_state; 2846 struct xhci_virt_ep *ep; 2847 2848 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2849 "Cleaning up stalled endpoint ring"); 2850 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2851 /* We need to move the HW's dequeue pointer past this TD, 2852 * or it will attempt to resend it on the next doorbell ring. 2853 */ 2854 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2855 ep_index, ep->stopped_stream, ep->stopped_td, 2856 &deq_state); 2857 2858 /* HW with the reset endpoint quirk will use the saved dequeue state to 2859 * issue a configure endpoint command later. 2860 */ 2861 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2862 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2863 "Queueing new dequeue state"); 2864 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2865 ep_index, ep->stopped_stream, &deq_state); 2866 } else { 2867 /* Better hope no one uses the input context between now and the 2868 * reset endpoint completion! 2869 * XXX: No idea how this hardware will react when stream rings 2870 * are enabled. 2871 */ 2872 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2873 "Setting up input context for " 2874 "configure endpoint command"); 2875 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2876 ep_index, &deq_state); 2877 } 2878 } 2879 2880 /* Deal with stalled endpoints. The core should have sent the control message 2881 * to clear the halt condition. However, we need to make the xHCI hardware 2882 * reset its sequence number, since a device will expect a sequence number of 2883 * zero after the halt condition is cleared. 2884 * Context: in_interrupt 2885 */ 2886 void xhci_endpoint_reset(struct usb_hcd *hcd, 2887 struct usb_host_endpoint *ep) 2888 { 2889 struct xhci_hcd *xhci; 2890 struct usb_device *udev; 2891 unsigned int ep_index; 2892 unsigned long flags; 2893 int ret; 2894 struct xhci_virt_ep *virt_ep; 2895 2896 xhci = hcd_to_xhci(hcd); 2897 udev = (struct usb_device *) ep->hcpriv; 2898 /* Called with a root hub endpoint (or an endpoint that wasn't added 2899 * with xhci_add_endpoint() 2900 */ 2901 if (!ep->hcpriv) 2902 return; 2903 ep_index = xhci_get_endpoint_index(&ep->desc); 2904 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2905 if (!virt_ep->stopped_td) { 2906 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2907 "Endpoint 0x%x not halted, refusing to reset.", 2908 ep->desc.bEndpointAddress); 2909 return; 2910 } 2911 if (usb_endpoint_xfer_control(&ep->desc)) { 2912 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2913 "Control endpoint stall already handled."); 2914 return; 2915 } 2916 2917 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2918 "Queueing reset endpoint command"); 2919 spin_lock_irqsave(&xhci->lock, flags); 2920 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2921 /* 2922 * Can't change the ring dequeue pointer until it's transitioned to the 2923 * stopped state, which is only upon a successful reset endpoint 2924 * command. Better hope that last command worked! 2925 */ 2926 if (!ret) { 2927 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2928 kfree(virt_ep->stopped_td); 2929 xhci_ring_cmd_db(xhci); 2930 } 2931 virt_ep->stopped_td = NULL; 2932 virt_ep->stopped_trb = NULL; 2933 virt_ep->stopped_stream = 0; 2934 spin_unlock_irqrestore(&xhci->lock, flags); 2935 2936 if (ret) 2937 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2938 } 2939 2940 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2941 struct usb_device *udev, struct usb_host_endpoint *ep, 2942 unsigned int slot_id) 2943 { 2944 int ret; 2945 unsigned int ep_index; 2946 unsigned int ep_state; 2947 2948 if (!ep) 2949 return -EINVAL; 2950 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2951 if (ret <= 0) 2952 return -EINVAL; 2953 if (ep->ss_ep_comp.bmAttributes == 0) { 2954 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2955 " descriptor for ep 0x%x does not support streams\n", 2956 ep->desc.bEndpointAddress); 2957 return -EINVAL; 2958 } 2959 2960 ep_index = xhci_get_endpoint_index(&ep->desc); 2961 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2962 if (ep_state & EP_HAS_STREAMS || 2963 ep_state & EP_GETTING_STREAMS) { 2964 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2965 "already has streams set up.\n", 2966 ep->desc.bEndpointAddress); 2967 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2968 "dynamic stream context array reallocation.\n"); 2969 return -EINVAL; 2970 } 2971 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2972 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2973 "endpoint 0x%x; URBs are pending.\n", 2974 ep->desc.bEndpointAddress); 2975 return -EINVAL; 2976 } 2977 return 0; 2978 } 2979 2980 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2981 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2982 { 2983 unsigned int max_streams; 2984 2985 /* The stream context array size must be a power of two */ 2986 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2987 /* 2988 * Find out how many primary stream array entries the host controller 2989 * supports. Later we may use secondary stream arrays (similar to 2nd 2990 * level page entries), but that's an optional feature for xHCI host 2991 * controllers. xHCs must support at least 4 stream IDs. 2992 */ 2993 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2994 if (*num_stream_ctxs > max_streams) { 2995 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2996 max_streams); 2997 *num_stream_ctxs = max_streams; 2998 *num_streams = max_streams; 2999 } 3000 } 3001 3002 /* Returns an error code if one of the endpoint already has streams. 3003 * This does not change any data structures, it only checks and gathers 3004 * information. 3005 */ 3006 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3007 struct usb_device *udev, 3008 struct usb_host_endpoint **eps, unsigned int num_eps, 3009 unsigned int *num_streams, u32 *changed_ep_bitmask) 3010 { 3011 unsigned int max_streams; 3012 unsigned int endpoint_flag; 3013 int i; 3014 int ret; 3015 3016 for (i = 0; i < num_eps; i++) { 3017 ret = xhci_check_streams_endpoint(xhci, udev, 3018 eps[i], udev->slot_id); 3019 if (ret < 0) 3020 return ret; 3021 3022 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3023 if (max_streams < (*num_streams - 1)) { 3024 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3025 eps[i]->desc.bEndpointAddress, 3026 max_streams); 3027 *num_streams = max_streams+1; 3028 } 3029 3030 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3031 if (*changed_ep_bitmask & endpoint_flag) 3032 return -EINVAL; 3033 *changed_ep_bitmask |= endpoint_flag; 3034 } 3035 return 0; 3036 } 3037 3038 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3039 struct usb_device *udev, 3040 struct usb_host_endpoint **eps, unsigned int num_eps) 3041 { 3042 u32 changed_ep_bitmask = 0; 3043 unsigned int slot_id; 3044 unsigned int ep_index; 3045 unsigned int ep_state; 3046 int i; 3047 3048 slot_id = udev->slot_id; 3049 if (!xhci->devs[slot_id]) 3050 return 0; 3051 3052 for (i = 0; i < num_eps; i++) { 3053 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3054 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3055 /* Are streams already being freed for the endpoint? */ 3056 if (ep_state & EP_GETTING_NO_STREAMS) { 3057 xhci_warn(xhci, "WARN Can't disable streams for " 3058 "endpoint 0x%x, " 3059 "streams are being disabled already\n", 3060 eps[i]->desc.bEndpointAddress); 3061 return 0; 3062 } 3063 /* Are there actually any streams to free? */ 3064 if (!(ep_state & EP_HAS_STREAMS) && 3065 !(ep_state & EP_GETTING_STREAMS)) { 3066 xhci_warn(xhci, "WARN Can't disable streams for " 3067 "endpoint 0x%x, " 3068 "streams are already disabled!\n", 3069 eps[i]->desc.bEndpointAddress); 3070 xhci_warn(xhci, "WARN xhci_free_streams() called " 3071 "with non-streams endpoint\n"); 3072 return 0; 3073 } 3074 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3075 } 3076 return changed_ep_bitmask; 3077 } 3078 3079 /* 3080 * The USB device drivers use this function (though the HCD interface in USB 3081 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3082 * coordinate mass storage command queueing across multiple endpoints (basically 3083 * a stream ID == a task ID). 3084 * 3085 * Setting up streams involves allocating the same size stream context array 3086 * for each endpoint and issuing a configure endpoint command for all endpoints. 3087 * 3088 * Don't allow the call to succeed if one endpoint only supports one stream 3089 * (which means it doesn't support streams at all). 3090 * 3091 * Drivers may get less stream IDs than they asked for, if the host controller 3092 * hardware or endpoints claim they can't support the number of requested 3093 * stream IDs. 3094 */ 3095 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3096 struct usb_host_endpoint **eps, unsigned int num_eps, 3097 unsigned int num_streams, gfp_t mem_flags) 3098 { 3099 int i, ret; 3100 struct xhci_hcd *xhci; 3101 struct xhci_virt_device *vdev; 3102 struct xhci_command *config_cmd; 3103 struct xhci_input_control_ctx *ctrl_ctx; 3104 unsigned int ep_index; 3105 unsigned int num_stream_ctxs; 3106 unsigned long flags; 3107 u32 changed_ep_bitmask = 0; 3108 3109 if (!eps) 3110 return -EINVAL; 3111 3112 /* Add one to the number of streams requested to account for 3113 * stream 0 that is reserved for xHCI usage. 3114 */ 3115 num_streams += 1; 3116 xhci = hcd_to_xhci(hcd); 3117 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3118 num_streams); 3119 3120 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3121 if (!config_cmd) { 3122 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3123 return -ENOMEM; 3124 } 3125 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3126 if (!ctrl_ctx) { 3127 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3128 __func__); 3129 xhci_free_command(xhci, config_cmd); 3130 return -ENOMEM; 3131 } 3132 3133 /* Check to make sure all endpoints are not already configured for 3134 * streams. While we're at it, find the maximum number of streams that 3135 * all the endpoints will support and check for duplicate endpoints. 3136 */ 3137 spin_lock_irqsave(&xhci->lock, flags); 3138 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3139 num_eps, &num_streams, &changed_ep_bitmask); 3140 if (ret < 0) { 3141 xhci_free_command(xhci, config_cmd); 3142 spin_unlock_irqrestore(&xhci->lock, flags); 3143 return ret; 3144 } 3145 if (num_streams <= 1) { 3146 xhci_warn(xhci, "WARN: endpoints can't handle " 3147 "more than one stream.\n"); 3148 xhci_free_command(xhci, config_cmd); 3149 spin_unlock_irqrestore(&xhci->lock, flags); 3150 return -EINVAL; 3151 } 3152 vdev = xhci->devs[udev->slot_id]; 3153 /* Mark each endpoint as being in transition, so 3154 * xhci_urb_enqueue() will reject all URBs. 3155 */ 3156 for (i = 0; i < num_eps; i++) { 3157 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3158 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3159 } 3160 spin_unlock_irqrestore(&xhci->lock, flags); 3161 3162 /* Setup internal data structures and allocate HW data structures for 3163 * streams (but don't install the HW structures in the input context 3164 * until we're sure all memory allocation succeeded). 3165 */ 3166 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3167 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3168 num_stream_ctxs, num_streams); 3169 3170 for (i = 0; i < num_eps; i++) { 3171 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3172 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3173 num_stream_ctxs, 3174 num_streams, mem_flags); 3175 if (!vdev->eps[ep_index].stream_info) 3176 goto cleanup; 3177 /* Set maxPstreams in endpoint context and update deq ptr to 3178 * point to stream context array. FIXME 3179 */ 3180 } 3181 3182 /* Set up the input context for a configure endpoint command. */ 3183 for (i = 0; i < num_eps; i++) { 3184 struct xhci_ep_ctx *ep_ctx; 3185 3186 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3187 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3188 3189 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3190 vdev->out_ctx, ep_index); 3191 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3192 vdev->eps[ep_index].stream_info); 3193 } 3194 /* Tell the HW to drop its old copy of the endpoint context info 3195 * and add the updated copy from the input context. 3196 */ 3197 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3198 vdev->out_ctx, ctrl_ctx, 3199 changed_ep_bitmask, changed_ep_bitmask); 3200 3201 /* Issue and wait for the configure endpoint command */ 3202 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3203 false, false); 3204 3205 /* xHC rejected the configure endpoint command for some reason, so we 3206 * leave the old ring intact and free our internal streams data 3207 * structure. 3208 */ 3209 if (ret < 0) 3210 goto cleanup; 3211 3212 spin_lock_irqsave(&xhci->lock, flags); 3213 for (i = 0; i < num_eps; i++) { 3214 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3215 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3216 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3217 udev->slot_id, ep_index); 3218 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3219 } 3220 xhci_free_command(xhci, config_cmd); 3221 spin_unlock_irqrestore(&xhci->lock, flags); 3222 3223 /* Subtract 1 for stream 0, which drivers can't use */ 3224 return num_streams - 1; 3225 3226 cleanup: 3227 /* If it didn't work, free the streams! */ 3228 for (i = 0; i < num_eps; i++) { 3229 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3230 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3231 vdev->eps[ep_index].stream_info = NULL; 3232 /* FIXME Unset maxPstreams in endpoint context and 3233 * update deq ptr to point to normal string ring. 3234 */ 3235 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3236 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3237 xhci_endpoint_zero(xhci, vdev, eps[i]); 3238 } 3239 xhci_free_command(xhci, config_cmd); 3240 return -ENOMEM; 3241 } 3242 3243 /* Transition the endpoint from using streams to being a "normal" endpoint 3244 * without streams. 3245 * 3246 * Modify the endpoint context state, submit a configure endpoint command, 3247 * and free all endpoint rings for streams if that completes successfully. 3248 */ 3249 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3250 struct usb_host_endpoint **eps, unsigned int num_eps, 3251 gfp_t mem_flags) 3252 { 3253 int i, ret; 3254 struct xhci_hcd *xhci; 3255 struct xhci_virt_device *vdev; 3256 struct xhci_command *command; 3257 struct xhci_input_control_ctx *ctrl_ctx; 3258 unsigned int ep_index; 3259 unsigned long flags; 3260 u32 changed_ep_bitmask; 3261 3262 xhci = hcd_to_xhci(hcd); 3263 vdev = xhci->devs[udev->slot_id]; 3264 3265 /* Set up a configure endpoint command to remove the streams rings */ 3266 spin_lock_irqsave(&xhci->lock, flags); 3267 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3268 udev, eps, num_eps); 3269 if (changed_ep_bitmask == 0) { 3270 spin_unlock_irqrestore(&xhci->lock, flags); 3271 return -EINVAL; 3272 } 3273 3274 /* Use the xhci_command structure from the first endpoint. We may have 3275 * allocated too many, but the driver may call xhci_free_streams() for 3276 * each endpoint it grouped into one call to xhci_alloc_streams(). 3277 */ 3278 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3279 command = vdev->eps[ep_index].stream_info->free_streams_command; 3280 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3281 if (!ctrl_ctx) { 3282 spin_unlock_irqrestore(&xhci->lock, flags); 3283 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3284 __func__); 3285 return -EINVAL; 3286 } 3287 3288 for (i = 0; i < num_eps; i++) { 3289 struct xhci_ep_ctx *ep_ctx; 3290 3291 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3292 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3293 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3294 EP_GETTING_NO_STREAMS; 3295 3296 xhci_endpoint_copy(xhci, command->in_ctx, 3297 vdev->out_ctx, ep_index); 3298 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3299 &vdev->eps[ep_index]); 3300 } 3301 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3302 vdev->out_ctx, ctrl_ctx, 3303 changed_ep_bitmask, changed_ep_bitmask); 3304 spin_unlock_irqrestore(&xhci->lock, flags); 3305 3306 /* Issue and wait for the configure endpoint command, 3307 * which must succeed. 3308 */ 3309 ret = xhci_configure_endpoint(xhci, udev, command, 3310 false, true); 3311 3312 /* xHC rejected the configure endpoint command for some reason, so we 3313 * leave the streams rings intact. 3314 */ 3315 if (ret < 0) 3316 return ret; 3317 3318 spin_lock_irqsave(&xhci->lock, flags); 3319 for (i = 0; i < num_eps; i++) { 3320 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3321 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3322 vdev->eps[ep_index].stream_info = NULL; 3323 /* FIXME Unset maxPstreams in endpoint context and 3324 * update deq ptr to point to normal string ring. 3325 */ 3326 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3327 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3328 } 3329 spin_unlock_irqrestore(&xhci->lock, flags); 3330 3331 return 0; 3332 } 3333 3334 /* 3335 * Deletes endpoint resources for endpoints that were active before a Reset 3336 * Device command, or a Disable Slot command. The Reset Device command leaves 3337 * the control endpoint intact, whereas the Disable Slot command deletes it. 3338 * 3339 * Must be called with xhci->lock held. 3340 */ 3341 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3342 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3343 { 3344 int i; 3345 unsigned int num_dropped_eps = 0; 3346 unsigned int drop_flags = 0; 3347 3348 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3349 if (virt_dev->eps[i].ring) { 3350 drop_flags |= 1 << i; 3351 num_dropped_eps++; 3352 } 3353 } 3354 xhci->num_active_eps -= num_dropped_eps; 3355 if (num_dropped_eps) 3356 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3357 "Dropped %u ep ctxs, flags = 0x%x, " 3358 "%u now active.", 3359 num_dropped_eps, drop_flags, 3360 xhci->num_active_eps); 3361 } 3362 3363 /* 3364 * This submits a Reset Device Command, which will set the device state to 0, 3365 * set the device address to 0, and disable all the endpoints except the default 3366 * control endpoint. The USB core should come back and call 3367 * xhci_address_device(), and then re-set up the configuration. If this is 3368 * called because of a usb_reset_and_verify_device(), then the old alternate 3369 * settings will be re-installed through the normal bandwidth allocation 3370 * functions. 3371 * 3372 * Wait for the Reset Device command to finish. Remove all structures 3373 * associated with the endpoints that were disabled. Clear the input device 3374 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3375 * 3376 * If the virt_dev to be reset does not exist or does not match the udev, 3377 * it means the device is lost, possibly due to the xHC restore error and 3378 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3379 * re-allocate the device. 3380 */ 3381 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3382 { 3383 int ret, i; 3384 unsigned long flags; 3385 struct xhci_hcd *xhci; 3386 unsigned int slot_id; 3387 struct xhci_virt_device *virt_dev; 3388 struct xhci_command *reset_device_cmd; 3389 int timeleft; 3390 int last_freed_endpoint; 3391 struct xhci_slot_ctx *slot_ctx; 3392 int old_active_eps = 0; 3393 3394 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3395 if (ret <= 0) 3396 return ret; 3397 xhci = hcd_to_xhci(hcd); 3398 slot_id = udev->slot_id; 3399 virt_dev = xhci->devs[slot_id]; 3400 if (!virt_dev) { 3401 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3402 "not exist. Re-allocate the device\n", slot_id); 3403 ret = xhci_alloc_dev(hcd, udev); 3404 if (ret == 1) 3405 return 0; 3406 else 3407 return -EINVAL; 3408 } 3409 3410 if (virt_dev->udev != udev) { 3411 /* If the virt_dev and the udev does not match, this virt_dev 3412 * may belong to another udev. 3413 * Re-allocate the device. 3414 */ 3415 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3416 "not match the udev. Re-allocate the device\n", 3417 slot_id); 3418 ret = xhci_alloc_dev(hcd, udev); 3419 if (ret == 1) 3420 return 0; 3421 else 3422 return -EINVAL; 3423 } 3424 3425 /* If device is not setup, there is no point in resetting it */ 3426 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3427 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3428 SLOT_STATE_DISABLED) 3429 return 0; 3430 3431 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3432 /* Allocate the command structure that holds the struct completion. 3433 * Assume we're in process context, since the normal device reset 3434 * process has to wait for the device anyway. Storage devices are 3435 * reset as part of error handling, so use GFP_NOIO instead of 3436 * GFP_KERNEL. 3437 */ 3438 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3439 if (!reset_device_cmd) { 3440 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3441 return -ENOMEM; 3442 } 3443 3444 /* Attempt to submit the Reset Device command to the command ring */ 3445 spin_lock_irqsave(&xhci->lock, flags); 3446 reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring); 3447 3448 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3449 ret = xhci_queue_reset_device(xhci, slot_id); 3450 if (ret) { 3451 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3452 list_del(&reset_device_cmd->cmd_list); 3453 spin_unlock_irqrestore(&xhci->lock, flags); 3454 goto command_cleanup; 3455 } 3456 xhci_ring_cmd_db(xhci); 3457 spin_unlock_irqrestore(&xhci->lock, flags); 3458 3459 /* Wait for the Reset Device command to finish */ 3460 timeleft = wait_for_completion_interruptible_timeout( 3461 reset_device_cmd->completion, 3462 USB_CTRL_SET_TIMEOUT); 3463 if (timeleft <= 0) { 3464 xhci_warn(xhci, "%s while waiting for reset device command\n", 3465 timeleft == 0 ? "Timeout" : "Signal"); 3466 spin_lock_irqsave(&xhci->lock, flags); 3467 /* The timeout might have raced with the event ring handler, so 3468 * only delete from the list if the item isn't poisoned. 3469 */ 3470 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3471 list_del(&reset_device_cmd->cmd_list); 3472 spin_unlock_irqrestore(&xhci->lock, flags); 3473 ret = -ETIME; 3474 goto command_cleanup; 3475 } 3476 3477 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3478 * unless we tried to reset a slot ID that wasn't enabled, 3479 * or the device wasn't in the addressed or configured state. 3480 */ 3481 ret = reset_device_cmd->status; 3482 switch (ret) { 3483 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3484 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3485 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3486 slot_id, 3487 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3488 xhci_dbg(xhci, "Not freeing device rings.\n"); 3489 /* Don't treat this as an error. May change my mind later. */ 3490 ret = 0; 3491 goto command_cleanup; 3492 case COMP_SUCCESS: 3493 xhci_dbg(xhci, "Successful reset device command.\n"); 3494 break; 3495 default: 3496 if (xhci_is_vendor_info_code(xhci, ret)) 3497 break; 3498 xhci_warn(xhci, "Unknown completion code %u for " 3499 "reset device command.\n", ret); 3500 ret = -EINVAL; 3501 goto command_cleanup; 3502 } 3503 3504 /* Free up host controller endpoint resources */ 3505 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3506 spin_lock_irqsave(&xhci->lock, flags); 3507 /* Don't delete the default control endpoint resources */ 3508 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3509 spin_unlock_irqrestore(&xhci->lock, flags); 3510 } 3511 3512 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3513 last_freed_endpoint = 1; 3514 for (i = 1; i < 31; ++i) { 3515 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3516 3517 if (ep->ep_state & EP_HAS_STREAMS) { 3518 xhci_free_stream_info(xhci, ep->stream_info); 3519 ep->stream_info = NULL; 3520 ep->ep_state &= ~EP_HAS_STREAMS; 3521 } 3522 3523 if (ep->ring) { 3524 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3525 last_freed_endpoint = i; 3526 } 3527 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3528 xhci_drop_ep_from_interval_table(xhci, 3529 &virt_dev->eps[i].bw_info, 3530 virt_dev->bw_table, 3531 udev, 3532 &virt_dev->eps[i], 3533 virt_dev->tt_info); 3534 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3535 } 3536 /* If necessary, update the number of active TTs on this root port */ 3537 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3538 3539 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3540 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3541 ret = 0; 3542 3543 command_cleanup: 3544 xhci_free_command(xhci, reset_device_cmd); 3545 return ret; 3546 } 3547 3548 /* 3549 * At this point, the struct usb_device is about to go away, the device has 3550 * disconnected, and all traffic has been stopped and the endpoints have been 3551 * disabled. Free any HC data structures associated with that device. 3552 */ 3553 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3554 { 3555 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3556 struct xhci_virt_device *virt_dev; 3557 unsigned long flags; 3558 u32 state; 3559 int i, ret; 3560 3561 #ifndef CONFIG_USB_DEFAULT_PERSIST 3562 /* 3563 * We called pm_runtime_get_noresume when the device was attached. 3564 * Decrement the counter here to allow controller to runtime suspend 3565 * if no devices remain. 3566 */ 3567 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3568 pm_runtime_put_noidle(hcd->self.controller); 3569 #endif 3570 3571 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3572 /* If the host is halted due to driver unload, we still need to free the 3573 * device. 3574 */ 3575 if (ret <= 0 && ret != -ENODEV) 3576 return; 3577 3578 virt_dev = xhci->devs[udev->slot_id]; 3579 3580 /* Stop any wayward timer functions (which may grab the lock) */ 3581 for (i = 0; i < 31; ++i) { 3582 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3583 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3584 } 3585 3586 if (udev->usb2_hw_lpm_enabled) { 3587 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3588 udev->usb2_hw_lpm_enabled = 0; 3589 } 3590 3591 spin_lock_irqsave(&xhci->lock, flags); 3592 /* Don't disable the slot if the host controller is dead. */ 3593 state = xhci_readl(xhci, &xhci->op_regs->status); 3594 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3595 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3596 xhci_free_virt_device(xhci, udev->slot_id); 3597 spin_unlock_irqrestore(&xhci->lock, flags); 3598 return; 3599 } 3600 3601 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3602 spin_unlock_irqrestore(&xhci->lock, flags); 3603 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3604 return; 3605 } 3606 xhci_ring_cmd_db(xhci); 3607 spin_unlock_irqrestore(&xhci->lock, flags); 3608 /* 3609 * Event command completion handler will free any data structures 3610 * associated with the slot. XXX Can free sleep? 3611 */ 3612 } 3613 3614 /* 3615 * Checks if we have enough host controller resources for the default control 3616 * endpoint. 3617 * 3618 * Must be called with xhci->lock held. 3619 */ 3620 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3621 { 3622 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3623 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3624 "Not enough ep ctxs: " 3625 "%u active, need to add 1, limit is %u.", 3626 xhci->num_active_eps, xhci->limit_active_eps); 3627 return -ENOMEM; 3628 } 3629 xhci->num_active_eps += 1; 3630 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3631 "Adding 1 ep ctx, %u now active.", 3632 xhci->num_active_eps); 3633 return 0; 3634 } 3635 3636 3637 /* 3638 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3639 * timed out, or allocating memory failed. Returns 1 on success. 3640 */ 3641 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3642 { 3643 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3644 unsigned long flags; 3645 int timeleft; 3646 int ret; 3647 union xhci_trb *cmd_trb; 3648 3649 spin_lock_irqsave(&xhci->lock, flags); 3650 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring); 3651 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3652 if (ret) { 3653 spin_unlock_irqrestore(&xhci->lock, flags); 3654 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3655 return 0; 3656 } 3657 xhci_ring_cmd_db(xhci); 3658 spin_unlock_irqrestore(&xhci->lock, flags); 3659 3660 /* XXX: how much time for xHC slot assignment? */ 3661 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3662 XHCI_CMD_DEFAULT_TIMEOUT); 3663 if (timeleft <= 0) { 3664 xhci_warn(xhci, "%s while waiting for a slot\n", 3665 timeleft == 0 ? "Timeout" : "Signal"); 3666 /* cancel the enable slot request */ 3667 return xhci_cancel_cmd(xhci, NULL, cmd_trb); 3668 } 3669 3670 if (!xhci->slot_id) { 3671 xhci_err(xhci, "Error while assigning device slot ID\n"); 3672 return 0; 3673 } 3674 3675 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3676 spin_lock_irqsave(&xhci->lock, flags); 3677 ret = xhci_reserve_host_control_ep_resources(xhci); 3678 if (ret) { 3679 spin_unlock_irqrestore(&xhci->lock, flags); 3680 xhci_warn(xhci, "Not enough host resources, " 3681 "active endpoint contexts = %u\n", 3682 xhci->num_active_eps); 3683 goto disable_slot; 3684 } 3685 spin_unlock_irqrestore(&xhci->lock, flags); 3686 } 3687 /* Use GFP_NOIO, since this function can be called from 3688 * xhci_discover_or_reset_device(), which may be called as part of 3689 * mass storage driver error handling. 3690 */ 3691 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3692 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3693 goto disable_slot; 3694 } 3695 udev->slot_id = xhci->slot_id; 3696 3697 #ifndef CONFIG_USB_DEFAULT_PERSIST 3698 /* 3699 * If resetting upon resume, we can't put the controller into runtime 3700 * suspend if there is a device attached. 3701 */ 3702 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3703 pm_runtime_get_noresume(hcd->self.controller); 3704 #endif 3705 3706 /* Is this a LS or FS device under a HS hub? */ 3707 /* Hub or peripherial? */ 3708 return 1; 3709 3710 disable_slot: 3711 /* Disable slot, if we can do it without mem alloc */ 3712 spin_lock_irqsave(&xhci->lock, flags); 3713 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3714 xhci_ring_cmd_db(xhci); 3715 spin_unlock_irqrestore(&xhci->lock, flags); 3716 return 0; 3717 } 3718 3719 /* 3720 * Issue an Address Device command (which will issue a SetAddress request to 3721 * the device). 3722 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3723 * we should only issue and wait on one address command at the same time. 3724 * 3725 * We add one to the device address issued by the hardware because the USB core 3726 * uses address 1 for the root hubs (even though they're not really devices). 3727 */ 3728 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3729 { 3730 unsigned long flags; 3731 int timeleft; 3732 struct xhci_virt_device *virt_dev; 3733 int ret = 0; 3734 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3735 struct xhci_slot_ctx *slot_ctx; 3736 struct xhci_input_control_ctx *ctrl_ctx; 3737 u64 temp_64; 3738 union xhci_trb *cmd_trb; 3739 3740 if (!udev->slot_id) { 3741 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3742 "Bad Slot ID %d", udev->slot_id); 3743 return -EINVAL; 3744 } 3745 3746 virt_dev = xhci->devs[udev->slot_id]; 3747 3748 if (WARN_ON(!virt_dev)) { 3749 /* 3750 * In plug/unplug torture test with an NEC controller, 3751 * a zero-dereference was observed once due to virt_dev = 0. 3752 * Print useful debug rather than crash if it is observed again! 3753 */ 3754 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3755 udev->slot_id); 3756 return -EINVAL; 3757 } 3758 3759 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3760 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3761 if (!ctrl_ctx) { 3762 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3763 __func__); 3764 return -EINVAL; 3765 } 3766 /* 3767 * If this is the first Set Address since device plug-in or 3768 * virt_device realloaction after a resume with an xHCI power loss, 3769 * then set up the slot context. 3770 */ 3771 if (!slot_ctx->dev_info) 3772 xhci_setup_addressable_virt_dev(xhci, udev); 3773 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3774 else 3775 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3776 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3777 ctrl_ctx->drop_flags = 0; 3778 3779 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3780 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3781 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3782 slot_ctx->dev_info >> 27); 3783 3784 spin_lock_irqsave(&xhci->lock, flags); 3785 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring); 3786 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3787 udev->slot_id); 3788 if (ret) { 3789 spin_unlock_irqrestore(&xhci->lock, flags); 3790 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3791 "FIXME: allocate a command ring segment"); 3792 return ret; 3793 } 3794 xhci_ring_cmd_db(xhci); 3795 spin_unlock_irqrestore(&xhci->lock, flags); 3796 3797 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3798 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3799 XHCI_CMD_DEFAULT_TIMEOUT); 3800 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3801 * the SetAddress() "recovery interval" required by USB and aborting the 3802 * command on a timeout. 3803 */ 3804 if (timeleft <= 0) { 3805 xhci_warn(xhci, "%s while waiting for address device command\n", 3806 timeleft == 0 ? "Timeout" : "Signal"); 3807 /* cancel the address device command */ 3808 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb); 3809 if (ret < 0) 3810 return ret; 3811 return -ETIME; 3812 } 3813 3814 switch (virt_dev->cmd_status) { 3815 case COMP_CTX_STATE: 3816 case COMP_EBADSLT: 3817 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3818 udev->slot_id); 3819 ret = -EINVAL; 3820 break; 3821 case COMP_TX_ERR: 3822 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3823 ret = -EPROTO; 3824 break; 3825 case COMP_DEV_ERR: 3826 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3827 "device command.\n"); 3828 ret = -ENODEV; 3829 break; 3830 case COMP_SUCCESS: 3831 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3832 "Successful Address Device command"); 3833 break; 3834 default: 3835 xhci_err(xhci, "ERROR: unexpected command completion " 3836 "code 0x%x.\n", virt_dev->cmd_status); 3837 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3838 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3839 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3840 ret = -EINVAL; 3841 break; 3842 } 3843 if (ret) { 3844 return ret; 3845 } 3846 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3847 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3848 "Op regs DCBAA ptr = %#016llx", temp_64); 3849 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3850 "Slot ID %d dcbaa entry @%p = %#016llx", 3851 udev->slot_id, 3852 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3853 (unsigned long long) 3854 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3855 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3856 "Output Context DMA address = %#08llx", 3857 (unsigned long long)virt_dev->out_ctx->dma); 3858 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3859 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3860 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3861 slot_ctx->dev_info >> 27); 3862 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3863 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3864 /* 3865 * USB core uses address 1 for the roothubs, so we add one to the 3866 * address given back to us by the HC. 3867 */ 3868 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3869 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3870 slot_ctx->dev_info >> 27); 3871 /* Use kernel assigned address for devices; store xHC assigned 3872 * address locally. */ 3873 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3874 + 1; 3875 /* Zero the input context control for later use */ 3876 ctrl_ctx->add_flags = 0; 3877 ctrl_ctx->drop_flags = 0; 3878 3879 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3880 "Internal device address = %d", virt_dev->address); 3881 3882 return 0; 3883 } 3884 3885 /* 3886 * Transfer the port index into real index in the HW port status 3887 * registers. Caculate offset between the port's PORTSC register 3888 * and port status base. Divide the number of per port register 3889 * to get the real index. The raw port number bases 1. 3890 */ 3891 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3892 { 3893 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3894 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3895 __le32 __iomem *addr; 3896 int raw_port; 3897 3898 if (hcd->speed != HCD_USB3) 3899 addr = xhci->usb2_ports[port1 - 1]; 3900 else 3901 addr = xhci->usb3_ports[port1 - 1]; 3902 3903 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3904 return raw_port; 3905 } 3906 3907 /* 3908 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3909 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3910 */ 3911 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3912 struct usb_device *udev, u16 max_exit_latency) 3913 { 3914 struct xhci_virt_device *virt_dev; 3915 struct xhci_command *command; 3916 struct xhci_input_control_ctx *ctrl_ctx; 3917 struct xhci_slot_ctx *slot_ctx; 3918 unsigned long flags; 3919 int ret; 3920 3921 spin_lock_irqsave(&xhci->lock, flags); 3922 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 3923 spin_unlock_irqrestore(&xhci->lock, flags); 3924 return 0; 3925 } 3926 3927 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3928 virt_dev = xhci->devs[udev->slot_id]; 3929 command = xhci->lpm_command; 3930 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 3931 if (!ctrl_ctx) { 3932 spin_unlock_irqrestore(&xhci->lock, flags); 3933 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3934 __func__); 3935 return -ENOMEM; 3936 } 3937 3938 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3939 spin_unlock_irqrestore(&xhci->lock, flags); 3940 3941 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3942 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3943 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3944 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3945 3946 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3947 "Set up evaluate context for LPM MEL change."); 3948 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 3949 xhci_dbg_ctx(xhci, command->in_ctx, 0); 3950 3951 /* Issue and wait for the evaluate context command. */ 3952 ret = xhci_configure_endpoint(xhci, udev, command, 3953 true, true); 3954 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 3955 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 3956 3957 if (!ret) { 3958 spin_lock_irqsave(&xhci->lock, flags); 3959 virt_dev->current_mel = max_exit_latency; 3960 spin_unlock_irqrestore(&xhci->lock, flags); 3961 } 3962 return ret; 3963 } 3964 3965 #ifdef CONFIG_PM_RUNTIME 3966 3967 /* BESL to HIRD Encoding array for USB2 LPM */ 3968 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3969 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3970 3971 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3972 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3973 struct usb_device *udev) 3974 { 3975 int u2del, besl, besl_host; 3976 int besl_device = 0; 3977 u32 field; 3978 3979 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3980 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3981 3982 if (field & USB_BESL_SUPPORT) { 3983 for (besl_host = 0; besl_host < 16; besl_host++) { 3984 if (xhci_besl_encoding[besl_host] >= u2del) 3985 break; 3986 } 3987 /* Use baseline BESL value as default */ 3988 if (field & USB_BESL_BASELINE_VALID) 3989 besl_device = USB_GET_BESL_BASELINE(field); 3990 else if (field & USB_BESL_DEEP_VALID) 3991 besl_device = USB_GET_BESL_DEEP(field); 3992 } else { 3993 if (u2del <= 50) 3994 besl_host = 0; 3995 else 3996 besl_host = (u2del - 51) / 75 + 1; 3997 } 3998 3999 besl = besl_host + besl_device; 4000 if (besl > 15) 4001 besl = 15; 4002 4003 return besl; 4004 } 4005 4006 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4007 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4008 { 4009 u32 field; 4010 int l1; 4011 int besld = 0; 4012 int hirdm = 0; 4013 4014 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4015 4016 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4017 l1 = udev->l1_params.timeout / 256; 4018 4019 /* device has preferred BESLD */ 4020 if (field & USB_BESL_DEEP_VALID) { 4021 besld = USB_GET_BESL_DEEP(field); 4022 hirdm = 1; 4023 } 4024 4025 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4026 } 4027 4028 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 4029 struct usb_device *udev) 4030 { 4031 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4032 struct dev_info *dev_info; 4033 __le32 __iomem **port_array; 4034 __le32 __iomem *addr, *pm_addr; 4035 u32 temp, dev_id; 4036 unsigned int port_num; 4037 unsigned long flags; 4038 int hird; 4039 int ret; 4040 4041 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 4042 !udev->lpm_capable) 4043 return -EINVAL; 4044 4045 /* we only support lpm for non-hub device connected to root hub yet */ 4046 if (!udev->parent || udev->parent->parent || 4047 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4048 return -EINVAL; 4049 4050 spin_lock_irqsave(&xhci->lock, flags); 4051 4052 /* Look for devices in lpm_failed_devs list */ 4053 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 4054 le16_to_cpu(udev->descriptor.idProduct); 4055 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 4056 if (dev_info->dev_id == dev_id) { 4057 ret = -EINVAL; 4058 goto finish; 4059 } 4060 } 4061 4062 port_array = xhci->usb2_ports; 4063 port_num = udev->portnum - 1; 4064 4065 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 4066 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 4067 ret = -EINVAL; 4068 goto finish; 4069 } 4070 4071 /* 4072 * Test USB 2.0 software LPM. 4073 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 4074 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 4075 * in the June 2011 errata release. 4076 */ 4077 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 4078 /* 4079 * Set L1 Device Slot and HIRD/BESL. 4080 * Check device's USB 2.0 extension descriptor to determine whether 4081 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 4082 */ 4083 pm_addr = port_array[port_num] + PORTPMSC; 4084 hird = xhci_calculate_hird_besl(xhci, udev); 4085 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 4086 xhci_writel(xhci, temp, pm_addr); 4087 4088 /* Set port link state to U2(L1) */ 4089 addr = port_array[port_num]; 4090 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 4091 4092 /* wait for ACK */ 4093 spin_unlock_irqrestore(&xhci->lock, flags); 4094 msleep(10); 4095 spin_lock_irqsave(&xhci->lock, flags); 4096 4097 /* Check L1 Status */ 4098 ret = xhci_handshake(xhci, pm_addr, 4099 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 4100 if (ret != -ETIMEDOUT) { 4101 /* enter L1 successfully */ 4102 temp = xhci_readl(xhci, addr); 4103 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 4104 port_num, temp); 4105 ret = 0; 4106 } else { 4107 temp = xhci_readl(xhci, pm_addr); 4108 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 4109 port_num, temp & PORT_L1S_MASK); 4110 ret = -EINVAL; 4111 } 4112 4113 /* Resume the port */ 4114 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 4115 4116 spin_unlock_irqrestore(&xhci->lock, flags); 4117 msleep(10); 4118 spin_lock_irqsave(&xhci->lock, flags); 4119 4120 /* Clear PLC */ 4121 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 4122 4123 /* Check PORTSC to make sure the device is in the right state */ 4124 if (!ret) { 4125 temp = xhci_readl(xhci, addr); 4126 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 4127 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 4128 (temp & PORT_PLS_MASK) != XDEV_U0) { 4129 xhci_dbg(xhci, "port L1 resume fail\n"); 4130 ret = -EINVAL; 4131 } 4132 } 4133 4134 if (ret) { 4135 /* Insert dev to lpm_failed_devs list */ 4136 xhci_warn(xhci, "device LPM test failed, may disconnect and " 4137 "re-enumerate\n"); 4138 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 4139 if (!dev_info) { 4140 ret = -ENOMEM; 4141 goto finish; 4142 } 4143 dev_info->dev_id = dev_id; 4144 INIT_LIST_HEAD(&dev_info->list); 4145 list_add(&dev_info->list, &xhci->lpm_failed_devs); 4146 } else { 4147 xhci_ring_device(xhci, udev->slot_id); 4148 } 4149 4150 finish: 4151 spin_unlock_irqrestore(&xhci->lock, flags); 4152 return ret; 4153 } 4154 4155 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4156 struct usb_device *udev, int enable) 4157 { 4158 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4159 __le32 __iomem **port_array; 4160 __le32 __iomem *pm_addr, *hlpm_addr; 4161 u32 pm_val, hlpm_val, field; 4162 unsigned int port_num; 4163 unsigned long flags; 4164 int hird, exit_latency; 4165 int ret; 4166 4167 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 4168 !udev->lpm_capable) 4169 return -EPERM; 4170 4171 if (!udev->parent || udev->parent->parent || 4172 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4173 return -EPERM; 4174 4175 if (udev->usb2_hw_lpm_capable != 1) 4176 return -EPERM; 4177 4178 spin_lock_irqsave(&xhci->lock, flags); 4179 4180 port_array = xhci->usb2_ports; 4181 port_num = udev->portnum - 1; 4182 pm_addr = port_array[port_num] + PORTPMSC; 4183 pm_val = xhci_readl(xhci, pm_addr); 4184 hlpm_addr = port_array[port_num] + PORTHLPMC; 4185 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4186 4187 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4188 enable ? "enable" : "disable", port_num); 4189 4190 if (enable) { 4191 /* Host supports BESL timeout instead of HIRD */ 4192 if (udev->usb2_hw_lpm_besl_capable) { 4193 /* if device doesn't have a preferred BESL value use a 4194 * default one which works with mixed HIRD and BESL 4195 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4196 */ 4197 if ((field & USB_BESL_SUPPORT) && 4198 (field & USB_BESL_BASELINE_VALID)) 4199 hird = USB_GET_BESL_BASELINE(field); 4200 else 4201 hird = udev->l1_params.besl; 4202 4203 exit_latency = xhci_besl_encoding[hird]; 4204 spin_unlock_irqrestore(&xhci->lock, flags); 4205 4206 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4207 * input context for link powermanagement evaluate 4208 * context commands. It is protected by hcd->bandwidth 4209 * mutex and is shared by all devices. We need to set 4210 * the max ext latency in USB 2 BESL LPM as well, so 4211 * use the same mutex and xhci_change_max_exit_latency() 4212 */ 4213 mutex_lock(hcd->bandwidth_mutex); 4214 ret = xhci_change_max_exit_latency(xhci, udev, 4215 exit_latency); 4216 mutex_unlock(hcd->bandwidth_mutex); 4217 4218 if (ret < 0) 4219 return ret; 4220 spin_lock_irqsave(&xhci->lock, flags); 4221 4222 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4223 xhci_writel(xhci, hlpm_val, hlpm_addr); 4224 /* flush write */ 4225 xhci_readl(xhci, hlpm_addr); 4226 } else { 4227 hird = xhci_calculate_hird_besl(xhci, udev); 4228 } 4229 4230 pm_val &= ~PORT_HIRD_MASK; 4231 pm_val |= PORT_HIRD(hird) | PORT_RWE; 4232 xhci_writel(xhci, pm_val, pm_addr); 4233 pm_val = xhci_readl(xhci, pm_addr); 4234 pm_val |= PORT_HLE; 4235 xhci_writel(xhci, pm_val, pm_addr); 4236 /* flush write */ 4237 xhci_readl(xhci, pm_addr); 4238 } else { 4239 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 4240 xhci_writel(xhci, pm_val, pm_addr); 4241 /* flush write */ 4242 xhci_readl(xhci, pm_addr); 4243 if (udev->usb2_hw_lpm_besl_capable) { 4244 spin_unlock_irqrestore(&xhci->lock, flags); 4245 mutex_lock(hcd->bandwidth_mutex); 4246 xhci_change_max_exit_latency(xhci, udev, 0); 4247 mutex_unlock(hcd->bandwidth_mutex); 4248 return 0; 4249 } 4250 } 4251 4252 spin_unlock_irqrestore(&xhci->lock, flags); 4253 return 0; 4254 } 4255 4256 /* check if a usb2 port supports a given extened capability protocol 4257 * only USB2 ports extended protocol capability values are cached. 4258 * Return 1 if capability is supported 4259 */ 4260 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4261 unsigned capability) 4262 { 4263 u32 port_offset, port_count; 4264 int i; 4265 4266 for (i = 0; i < xhci->num_ext_caps; i++) { 4267 if (xhci->ext_caps[i] & capability) { 4268 /* port offsets starts at 1 */ 4269 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4270 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4271 if (port >= port_offset && 4272 port < port_offset + port_count) 4273 return 1; 4274 } 4275 } 4276 return 0; 4277 } 4278 4279 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4280 { 4281 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4282 int ret; 4283 int portnum = udev->portnum - 1; 4284 4285 ret = xhci_usb2_software_lpm_test(hcd, udev); 4286 if (!ret) { 4287 xhci_dbg(xhci, "software LPM test succeed\n"); 4288 if (xhci->hw_lpm_support == 1 && 4289 xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) { 4290 udev->usb2_hw_lpm_capable = 1; 4291 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4292 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4293 if (xhci_check_usb2_port_capability(xhci, portnum, 4294 XHCI_BLC)) 4295 udev->usb2_hw_lpm_besl_capable = 1; 4296 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 4297 if (!ret) 4298 udev->usb2_hw_lpm_enabled = 1; 4299 } 4300 } 4301 4302 return 0; 4303 } 4304 4305 #else 4306 4307 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4308 struct usb_device *udev, int enable) 4309 { 4310 return 0; 4311 } 4312 4313 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4314 { 4315 return 0; 4316 } 4317 4318 #endif /* CONFIG_PM_RUNTIME */ 4319 4320 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4321 4322 #ifdef CONFIG_PM 4323 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4324 static unsigned long long xhci_service_interval_to_ns( 4325 struct usb_endpoint_descriptor *desc) 4326 { 4327 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4328 } 4329 4330 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4331 enum usb3_link_state state) 4332 { 4333 unsigned long long sel; 4334 unsigned long long pel; 4335 unsigned int max_sel_pel; 4336 char *state_name; 4337 4338 switch (state) { 4339 case USB3_LPM_U1: 4340 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4341 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4342 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4343 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4344 state_name = "U1"; 4345 break; 4346 case USB3_LPM_U2: 4347 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4348 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4349 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4350 state_name = "U2"; 4351 break; 4352 default: 4353 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4354 __func__); 4355 return USB3_LPM_DISABLED; 4356 } 4357 4358 if (sel <= max_sel_pel && pel <= max_sel_pel) 4359 return USB3_LPM_DEVICE_INITIATED; 4360 4361 if (sel > max_sel_pel) 4362 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4363 "due to long SEL %llu ms\n", 4364 state_name, sel); 4365 else 4366 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4367 "due to long PEL %llu ms\n", 4368 state_name, pel); 4369 return USB3_LPM_DISABLED; 4370 } 4371 4372 /* Returns the hub-encoded U1 timeout value. 4373 * The U1 timeout should be the maximum of the following values: 4374 * - For control endpoints, U1 system exit latency (SEL) * 3 4375 * - For bulk endpoints, U1 SEL * 5 4376 * - For interrupt endpoints: 4377 * - Notification EPs, U1 SEL * 3 4378 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4379 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4380 */ 4381 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 4382 struct usb_endpoint_descriptor *desc) 4383 { 4384 unsigned long long timeout_ns; 4385 int ep_type; 4386 int intr_type; 4387 4388 ep_type = usb_endpoint_type(desc); 4389 switch (ep_type) { 4390 case USB_ENDPOINT_XFER_CONTROL: 4391 timeout_ns = udev->u1_params.sel * 3; 4392 break; 4393 case USB_ENDPOINT_XFER_BULK: 4394 timeout_ns = udev->u1_params.sel * 5; 4395 break; 4396 case USB_ENDPOINT_XFER_INT: 4397 intr_type = usb_endpoint_interrupt_type(desc); 4398 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4399 timeout_ns = udev->u1_params.sel * 3; 4400 break; 4401 } 4402 /* Otherwise the calculation is the same as isoc eps */ 4403 case USB_ENDPOINT_XFER_ISOC: 4404 timeout_ns = xhci_service_interval_to_ns(desc); 4405 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4406 if (timeout_ns < udev->u1_params.sel * 2) 4407 timeout_ns = udev->u1_params.sel * 2; 4408 break; 4409 default: 4410 return 0; 4411 } 4412 4413 /* The U1 timeout is encoded in 1us intervals. */ 4414 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4415 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 4416 if (timeout_ns == USB3_LPM_DISABLED) 4417 timeout_ns++; 4418 4419 /* If the necessary timeout value is bigger than what we can set in the 4420 * USB 3.0 hub, we have to disable hub-initiated U1. 4421 */ 4422 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4423 return timeout_ns; 4424 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4425 "due to long timeout %llu ms\n", timeout_ns); 4426 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4427 } 4428 4429 /* Returns the hub-encoded U2 timeout value. 4430 * The U2 timeout should be the maximum of: 4431 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4432 * - largest bInterval of any active periodic endpoint (to avoid going 4433 * into lower power link states between intervals). 4434 * - the U2 Exit Latency of the device 4435 */ 4436 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 4437 struct usb_endpoint_descriptor *desc) 4438 { 4439 unsigned long long timeout_ns; 4440 unsigned long long u2_del_ns; 4441 4442 timeout_ns = 10 * 1000 * 1000; 4443 4444 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4445 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4446 timeout_ns = xhci_service_interval_to_ns(desc); 4447 4448 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4449 if (u2_del_ns > timeout_ns) 4450 timeout_ns = u2_del_ns; 4451 4452 /* The U2 timeout is encoded in 256us intervals */ 4453 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4454 /* If the necessary timeout value is bigger than what we can set in the 4455 * USB 3.0 hub, we have to disable hub-initiated U2. 4456 */ 4457 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4458 return timeout_ns; 4459 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4460 "due to long timeout %llu ms\n", timeout_ns); 4461 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4462 } 4463 4464 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4465 struct usb_device *udev, 4466 struct usb_endpoint_descriptor *desc, 4467 enum usb3_link_state state, 4468 u16 *timeout) 4469 { 4470 if (state == USB3_LPM_U1) { 4471 if (xhci->quirks & XHCI_INTEL_HOST) 4472 return xhci_calculate_intel_u1_timeout(udev, desc); 4473 } else { 4474 if (xhci->quirks & XHCI_INTEL_HOST) 4475 return xhci_calculate_intel_u2_timeout(udev, desc); 4476 } 4477 4478 return USB3_LPM_DISABLED; 4479 } 4480 4481 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4482 struct usb_device *udev, 4483 struct usb_endpoint_descriptor *desc, 4484 enum usb3_link_state state, 4485 u16 *timeout) 4486 { 4487 u16 alt_timeout; 4488 4489 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4490 desc, state, timeout); 4491 4492 /* If we found we can't enable hub-initiated LPM, or 4493 * the U1 or U2 exit latency was too high to allow 4494 * device-initiated LPM as well, just stop searching. 4495 */ 4496 if (alt_timeout == USB3_LPM_DISABLED || 4497 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4498 *timeout = alt_timeout; 4499 return -E2BIG; 4500 } 4501 if (alt_timeout > *timeout) 4502 *timeout = alt_timeout; 4503 return 0; 4504 } 4505 4506 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4507 struct usb_device *udev, 4508 struct usb_host_interface *alt, 4509 enum usb3_link_state state, 4510 u16 *timeout) 4511 { 4512 int j; 4513 4514 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4515 if (xhci_update_timeout_for_endpoint(xhci, udev, 4516 &alt->endpoint[j].desc, state, timeout)) 4517 return -E2BIG; 4518 continue; 4519 } 4520 return 0; 4521 } 4522 4523 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4524 enum usb3_link_state state) 4525 { 4526 struct usb_device *parent; 4527 unsigned int num_hubs; 4528 4529 if (state == USB3_LPM_U2) 4530 return 0; 4531 4532 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4533 for (parent = udev->parent, num_hubs = 0; parent->parent; 4534 parent = parent->parent) 4535 num_hubs++; 4536 4537 if (num_hubs < 2) 4538 return 0; 4539 4540 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4541 " below second-tier hub.\n"); 4542 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4543 "to decrease power consumption.\n"); 4544 return -E2BIG; 4545 } 4546 4547 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4548 struct usb_device *udev, 4549 enum usb3_link_state state) 4550 { 4551 if (xhci->quirks & XHCI_INTEL_HOST) 4552 return xhci_check_intel_tier_policy(udev, state); 4553 return -EINVAL; 4554 } 4555 4556 /* Returns the U1 or U2 timeout that should be enabled. 4557 * If the tier check or timeout setting functions return with a non-zero exit 4558 * code, that means the timeout value has been finalized and we shouldn't look 4559 * at any more endpoints. 4560 */ 4561 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4562 struct usb_device *udev, enum usb3_link_state state) 4563 { 4564 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4565 struct usb_host_config *config; 4566 char *state_name; 4567 int i; 4568 u16 timeout = USB3_LPM_DISABLED; 4569 4570 if (state == USB3_LPM_U1) 4571 state_name = "U1"; 4572 else if (state == USB3_LPM_U2) 4573 state_name = "U2"; 4574 else { 4575 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4576 state); 4577 return timeout; 4578 } 4579 4580 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4581 return timeout; 4582 4583 /* Gather some information about the currently installed configuration 4584 * and alternate interface settings. 4585 */ 4586 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4587 state, &timeout)) 4588 return timeout; 4589 4590 config = udev->actconfig; 4591 if (!config) 4592 return timeout; 4593 4594 for (i = 0; i < USB_MAXINTERFACES; i++) { 4595 struct usb_driver *driver; 4596 struct usb_interface *intf = config->interface[i]; 4597 4598 if (!intf) 4599 continue; 4600 4601 /* Check if any currently bound drivers want hub-initiated LPM 4602 * disabled. 4603 */ 4604 if (intf->dev.driver) { 4605 driver = to_usb_driver(intf->dev.driver); 4606 if (driver && driver->disable_hub_initiated_lpm) { 4607 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4608 "at request of driver %s\n", 4609 state_name, driver->name); 4610 return xhci_get_timeout_no_hub_lpm(udev, state); 4611 } 4612 } 4613 4614 /* Not sure how this could happen... */ 4615 if (!intf->cur_altsetting) 4616 continue; 4617 4618 if (xhci_update_timeout_for_interface(xhci, udev, 4619 intf->cur_altsetting, 4620 state, &timeout)) 4621 return timeout; 4622 } 4623 return timeout; 4624 } 4625 4626 static int calculate_max_exit_latency(struct usb_device *udev, 4627 enum usb3_link_state state_changed, 4628 u16 hub_encoded_timeout) 4629 { 4630 unsigned long long u1_mel_us = 0; 4631 unsigned long long u2_mel_us = 0; 4632 unsigned long long mel_us = 0; 4633 bool disabling_u1; 4634 bool disabling_u2; 4635 bool enabling_u1; 4636 bool enabling_u2; 4637 4638 disabling_u1 = (state_changed == USB3_LPM_U1 && 4639 hub_encoded_timeout == USB3_LPM_DISABLED); 4640 disabling_u2 = (state_changed == USB3_LPM_U2 && 4641 hub_encoded_timeout == USB3_LPM_DISABLED); 4642 4643 enabling_u1 = (state_changed == USB3_LPM_U1 && 4644 hub_encoded_timeout != USB3_LPM_DISABLED); 4645 enabling_u2 = (state_changed == USB3_LPM_U2 && 4646 hub_encoded_timeout != USB3_LPM_DISABLED); 4647 4648 /* If U1 was already enabled and we're not disabling it, 4649 * or we're going to enable U1, account for the U1 max exit latency. 4650 */ 4651 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4652 enabling_u1) 4653 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4654 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4655 enabling_u2) 4656 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4657 4658 if (u1_mel_us > u2_mel_us) 4659 mel_us = u1_mel_us; 4660 else 4661 mel_us = u2_mel_us; 4662 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4663 if (mel_us > MAX_EXIT) { 4664 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4665 "is too big.\n", mel_us); 4666 return -E2BIG; 4667 } 4668 return mel_us; 4669 } 4670 4671 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4672 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4673 struct usb_device *udev, enum usb3_link_state state) 4674 { 4675 struct xhci_hcd *xhci; 4676 u16 hub_encoded_timeout; 4677 int mel; 4678 int ret; 4679 4680 xhci = hcd_to_xhci(hcd); 4681 /* The LPM timeout values are pretty host-controller specific, so don't 4682 * enable hub-initiated timeouts unless the vendor has provided 4683 * information about their timeout algorithm. 4684 */ 4685 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4686 !xhci->devs[udev->slot_id]) 4687 return USB3_LPM_DISABLED; 4688 4689 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4690 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4691 if (mel < 0) { 4692 /* Max Exit Latency is too big, disable LPM. */ 4693 hub_encoded_timeout = USB3_LPM_DISABLED; 4694 mel = 0; 4695 } 4696 4697 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4698 if (ret) 4699 return ret; 4700 return hub_encoded_timeout; 4701 } 4702 4703 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4704 struct usb_device *udev, enum usb3_link_state state) 4705 { 4706 struct xhci_hcd *xhci; 4707 u16 mel; 4708 int ret; 4709 4710 xhci = hcd_to_xhci(hcd); 4711 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4712 !xhci->devs[udev->slot_id]) 4713 return 0; 4714 4715 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4716 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4717 if (ret) 4718 return ret; 4719 return 0; 4720 } 4721 #else /* CONFIG_PM */ 4722 4723 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4724 struct usb_device *udev, enum usb3_link_state state) 4725 { 4726 return USB3_LPM_DISABLED; 4727 } 4728 4729 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4730 struct usb_device *udev, enum usb3_link_state state) 4731 { 4732 return 0; 4733 } 4734 #endif /* CONFIG_PM */ 4735 4736 /*-------------------------------------------------------------------------*/ 4737 4738 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4739 * internal data structures for the device. 4740 */ 4741 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4742 struct usb_tt *tt, gfp_t mem_flags) 4743 { 4744 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4745 struct xhci_virt_device *vdev; 4746 struct xhci_command *config_cmd; 4747 struct xhci_input_control_ctx *ctrl_ctx; 4748 struct xhci_slot_ctx *slot_ctx; 4749 unsigned long flags; 4750 unsigned think_time; 4751 int ret; 4752 4753 /* Ignore root hubs */ 4754 if (!hdev->parent) 4755 return 0; 4756 4757 vdev = xhci->devs[hdev->slot_id]; 4758 if (!vdev) { 4759 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4760 return -EINVAL; 4761 } 4762 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4763 if (!config_cmd) { 4764 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4765 return -ENOMEM; 4766 } 4767 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4768 if (!ctrl_ctx) { 4769 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4770 __func__); 4771 xhci_free_command(xhci, config_cmd); 4772 return -ENOMEM; 4773 } 4774 4775 spin_lock_irqsave(&xhci->lock, flags); 4776 if (hdev->speed == USB_SPEED_HIGH && 4777 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4778 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4779 xhci_free_command(xhci, config_cmd); 4780 spin_unlock_irqrestore(&xhci->lock, flags); 4781 return -ENOMEM; 4782 } 4783 4784 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4785 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4786 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4787 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4788 if (tt->multi) 4789 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4790 if (xhci->hci_version > 0x95) { 4791 xhci_dbg(xhci, "xHCI version %x needs hub " 4792 "TT think time and number of ports\n", 4793 (unsigned int) xhci->hci_version); 4794 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4795 /* Set TT think time - convert from ns to FS bit times. 4796 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4797 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4798 * 4799 * xHCI 1.0: this field shall be 0 if the device is not a 4800 * High-spped hub. 4801 */ 4802 think_time = tt->think_time; 4803 if (think_time != 0) 4804 think_time = (think_time / 666) - 1; 4805 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4806 slot_ctx->tt_info |= 4807 cpu_to_le32(TT_THINK_TIME(think_time)); 4808 } else { 4809 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4810 "TT think time or number of ports\n", 4811 (unsigned int) xhci->hci_version); 4812 } 4813 slot_ctx->dev_state = 0; 4814 spin_unlock_irqrestore(&xhci->lock, flags); 4815 4816 xhci_dbg(xhci, "Set up %s for hub device.\n", 4817 (xhci->hci_version > 0x95) ? 4818 "configure endpoint" : "evaluate context"); 4819 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4820 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4821 4822 /* Issue and wait for the configure endpoint or 4823 * evaluate context command. 4824 */ 4825 if (xhci->hci_version > 0x95) 4826 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4827 false, false); 4828 else 4829 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4830 true, false); 4831 4832 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4833 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4834 4835 xhci_free_command(xhci, config_cmd); 4836 return ret; 4837 } 4838 4839 int xhci_get_frame(struct usb_hcd *hcd) 4840 { 4841 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4842 /* EHCI mods by the periodic size. Why? */ 4843 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 4844 } 4845 4846 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4847 { 4848 struct xhci_hcd *xhci; 4849 struct device *dev = hcd->self.controller; 4850 int retval; 4851 4852 /* Accept arbitrarily long scatter-gather lists */ 4853 hcd->self.sg_tablesize = ~0; 4854 4855 /* support to build packet from discontinuous buffers */ 4856 hcd->self.no_sg_constraint = 1; 4857 4858 /* XHCI controllers don't stop the ep queue on short packets :| */ 4859 hcd->self.no_stop_on_short = 1; 4860 4861 if (usb_hcd_is_primary_hcd(hcd)) { 4862 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4863 if (!xhci) 4864 return -ENOMEM; 4865 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4866 xhci->main_hcd = hcd; 4867 /* Mark the first roothub as being USB 2.0. 4868 * The xHCI driver will register the USB 3.0 roothub. 4869 */ 4870 hcd->speed = HCD_USB2; 4871 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4872 /* 4873 * USB 2.0 roothub under xHCI has an integrated TT, 4874 * (rate matching hub) as opposed to having an OHCI/UHCI 4875 * companion controller. 4876 */ 4877 hcd->has_tt = 1; 4878 } else { 4879 /* xHCI private pointer was set in xhci_pci_probe for the second 4880 * registered roothub. 4881 */ 4882 return 0; 4883 } 4884 4885 xhci->cap_regs = hcd->regs; 4886 xhci->op_regs = hcd->regs + 4887 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 4888 xhci->run_regs = hcd->regs + 4889 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4890 /* Cache read-only capability registers */ 4891 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 4892 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 4893 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 4894 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 4895 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4896 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4897 xhci_print_registers(xhci); 4898 4899 get_quirks(dev, xhci); 4900 4901 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4902 * success event after a short transfer. This quirk will ignore such 4903 * spurious event. 4904 */ 4905 if (xhci->hci_version > 0x96) 4906 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4907 4908 /* Make sure the HC is halted. */ 4909 retval = xhci_halt(xhci); 4910 if (retval) 4911 goto error; 4912 4913 xhci_dbg(xhci, "Resetting HCD\n"); 4914 /* Reset the internal HC memory state and registers. */ 4915 retval = xhci_reset(xhci); 4916 if (retval) 4917 goto error; 4918 xhci_dbg(xhci, "Reset complete\n"); 4919 4920 /* Set dma_mask and coherent_dma_mask to 64-bits, 4921 * if xHC supports 64-bit addressing */ 4922 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4923 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4924 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4925 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4926 } 4927 4928 xhci_dbg(xhci, "Calling HCD init\n"); 4929 /* Initialize HCD and host controller data structures. */ 4930 retval = xhci_init(hcd); 4931 if (retval) 4932 goto error; 4933 xhci_dbg(xhci, "Called HCD init\n"); 4934 return 0; 4935 error: 4936 kfree(xhci); 4937 return retval; 4938 } 4939 4940 MODULE_DESCRIPTION(DRIVER_DESC); 4941 MODULE_AUTHOR(DRIVER_AUTHOR); 4942 MODULE_LICENSE("GPL"); 4943 4944 static int __init xhci_hcd_init(void) 4945 { 4946 int retval; 4947 4948 retval = xhci_register_pci(); 4949 if (retval < 0) { 4950 pr_debug("Problem registering PCI driver.\n"); 4951 return retval; 4952 } 4953 retval = xhci_register_plat(); 4954 if (retval < 0) { 4955 pr_debug("Problem registering platform driver.\n"); 4956 goto unreg_pci; 4957 } 4958 /* 4959 * Check the compiler generated sizes of structures that must be laid 4960 * out in specific ways for hardware access. 4961 */ 4962 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4963 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4964 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4965 /* xhci_device_control has eight fields, and also 4966 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4967 */ 4968 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4969 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4970 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4971 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4972 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4973 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4974 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4975 return 0; 4976 unreg_pci: 4977 xhci_unregister_pci(); 4978 return retval; 4979 } 4980 module_init(xhci_hcd_init); 4981 4982 static void __exit xhci_hcd_cleanup(void) 4983 { 4984 xhci_unregister_pci(); 4985 xhci_unregister_plat(); 4986 } 4987 module_exit(xhci_hcd_cleanup); 4988