1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iopoll.h> 13 #include <linux/irq.h> 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/moduleparam.h> 17 #include <linux/slab.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-mapping.h> 20 21 #include "xhci.h" 22 #include "xhci-trace.h" 23 #include "xhci-debugfs.h" 24 #include "xhci-dbgcap.h" 25 26 #define DRIVER_AUTHOR "Sarah Sharp" 27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 28 29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 30 31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 32 static int link_quirk; 33 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 35 36 static unsigned long long quirks; 37 module_param(quirks, ullong, S_IRUGO); 38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 39 40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 41 { 42 struct xhci_segment *seg = ring->first_seg; 43 44 if (!td || !td->start_seg) 45 return false; 46 do { 47 if (seg == td->start_seg) 48 return true; 49 seg = seg->next; 50 } while (seg && seg != ring->first_seg); 51 52 return false; 53 } 54 55 /* 56 * xhci_handshake - spin reading hc until handshake completes or fails 57 * @ptr: address of hc register to be read 58 * @mask: bits to look at in result of read 59 * @done: value of those bits when handshake succeeds 60 * @usec: timeout in microseconds 61 * 62 * Returns negative errno, or zero on success 63 * 64 * Success happens when the "mask" bits have the specified value (hardware 65 * handshake done). There are two failure modes: "usec" have passed (major 66 * hardware flakeout), or the register reads as all-ones (hardware removed). 67 */ 68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 69 { 70 u32 result; 71 int ret; 72 73 ret = readl_poll_timeout_atomic(ptr, result, 74 (result & mask) == done || 75 result == U32_MAX, 76 1, usec); 77 if (result == U32_MAX) /* card removed */ 78 return -ENODEV; 79 80 return ret; 81 } 82 83 /* 84 * Disable interrupts and begin the xHCI halting process. 85 */ 86 void xhci_quiesce(struct xhci_hcd *xhci) 87 { 88 u32 halted; 89 u32 cmd; 90 u32 mask; 91 92 mask = ~(XHCI_IRQS); 93 halted = readl(&xhci->op_regs->status) & STS_HALT; 94 if (!halted) 95 mask &= ~CMD_RUN; 96 97 cmd = readl(&xhci->op_regs->command); 98 cmd &= mask; 99 writel(cmd, &xhci->op_regs->command); 100 } 101 102 /* 103 * Force HC into halt state. 104 * 105 * Disable any IRQs and clear the run/stop bit. 106 * HC will complete any current and actively pipelined transactions, and 107 * should halt within 16 ms of the run/stop bit being cleared. 108 * Read HC Halted bit in the status register to see when the HC is finished. 109 */ 110 int xhci_halt(struct xhci_hcd *xhci) 111 { 112 int ret; 113 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 114 xhci_quiesce(xhci); 115 116 ret = xhci_handshake(&xhci->op_regs->status, 117 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 118 if (ret) { 119 xhci_warn(xhci, "Host halt failed, %d\n", ret); 120 return ret; 121 } 122 xhci->xhc_state |= XHCI_STATE_HALTED; 123 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 124 return ret; 125 } 126 127 /* 128 * Set the run bit and wait for the host to be running. 129 */ 130 int xhci_start(struct xhci_hcd *xhci) 131 { 132 u32 temp; 133 int ret; 134 135 temp = readl(&xhci->op_regs->command); 136 temp |= (CMD_RUN); 137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 138 temp); 139 writel(temp, &xhci->op_regs->command); 140 141 /* 142 * Wait for the HCHalted Status bit to be 0 to indicate the host is 143 * running. 144 */ 145 ret = xhci_handshake(&xhci->op_regs->status, 146 STS_HALT, 0, XHCI_MAX_HALT_USEC); 147 if (ret == -ETIMEDOUT) 148 xhci_err(xhci, "Host took too long to start, " 149 "waited %u microseconds.\n", 150 XHCI_MAX_HALT_USEC); 151 if (!ret) 152 /* clear state flags. Including dying, halted or removing */ 153 xhci->xhc_state = 0; 154 155 return ret; 156 } 157 158 /* 159 * Reset a halted HC. 160 * 161 * This resets pipelines, timers, counters, state machines, etc. 162 * Transactions will be terminated immediately, and operational registers 163 * will be set to their defaults. 164 */ 165 int xhci_reset(struct xhci_hcd *xhci) 166 { 167 u32 command; 168 u32 state; 169 int ret; 170 171 state = readl(&xhci->op_regs->status); 172 173 if (state == ~(u32)0) { 174 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 175 return -ENODEV; 176 } 177 178 if ((state & STS_HALT) == 0) { 179 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 180 return 0; 181 } 182 183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 184 command = readl(&xhci->op_regs->command); 185 command |= CMD_RESET; 186 writel(command, &xhci->op_regs->command); 187 188 /* Existing Intel xHCI controllers require a delay of 1 mS, 189 * after setting the CMD_RESET bit, and before accessing any 190 * HC registers. This allows the HC to complete the 191 * reset operation and be ready for HC register access. 192 * Without this delay, the subsequent HC register access, 193 * may result in a system hang very rarely. 194 */ 195 if (xhci->quirks & XHCI_INTEL_HOST) 196 udelay(1000); 197 198 ret = xhci_handshake(&xhci->op_regs->command, 199 CMD_RESET, 0, 10 * 1000 * 1000); 200 if (ret) 201 return ret; 202 203 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 204 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 205 206 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 207 "Wait for controller to be ready for doorbell rings"); 208 /* 209 * xHCI cannot write to any doorbells or operational registers other 210 * than status until the "Controller Not Ready" flag is cleared. 211 */ 212 ret = xhci_handshake(&xhci->op_regs->status, 213 STS_CNR, 0, 10 * 1000 * 1000); 214 215 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 216 xhci->usb2_rhub.bus_state.suspended_ports = 0; 217 xhci->usb2_rhub.bus_state.resuming_ports = 0; 218 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 219 xhci->usb3_rhub.bus_state.suspended_ports = 0; 220 xhci->usb3_rhub.bus_state.resuming_ports = 0; 221 222 return ret; 223 } 224 225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 226 { 227 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 228 int err, i; 229 u64 val; 230 u32 intrs; 231 232 /* 233 * Some Renesas controllers get into a weird state if they are 234 * reset while programmed with 64bit addresses (they will preserve 235 * the top half of the address in internal, non visible 236 * registers). You end up with half the address coming from the 237 * kernel, and the other half coming from the firmware. Also, 238 * changing the programming leads to extra accesses even if the 239 * controller is supposed to be halted. The controller ends up with 240 * a fatal fault, and is then ripe for being properly reset. 241 * 242 * Special care is taken to only apply this if the device is behind 243 * an iommu. Doing anything when there is no iommu is definitely 244 * unsafe... 245 */ 246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev)) 247 return; 248 249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 250 251 /* Clear HSEIE so that faults do not get signaled */ 252 val = readl(&xhci->op_regs->command); 253 val &= ~CMD_HSEIE; 254 writel(val, &xhci->op_regs->command); 255 256 /* Clear HSE (aka FATAL) */ 257 val = readl(&xhci->op_regs->status); 258 val |= STS_FATAL; 259 writel(val, &xhci->op_regs->status); 260 261 /* Now zero the registers, and brace for impact */ 262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 263 if (upper_32_bits(val)) 264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 266 if (upper_32_bits(val)) 267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 268 269 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 270 ARRAY_SIZE(xhci->run_regs->ir_set)); 271 272 for (i = 0; i < intrs; i++) { 273 struct xhci_intr_reg __iomem *ir; 274 275 ir = &xhci->run_regs->ir_set[i]; 276 val = xhci_read_64(xhci, &ir->erst_base); 277 if (upper_32_bits(val)) 278 xhci_write_64(xhci, 0, &ir->erst_base); 279 val= xhci_read_64(xhci, &ir->erst_dequeue); 280 if (upper_32_bits(val)) 281 xhci_write_64(xhci, 0, &ir->erst_dequeue); 282 } 283 284 /* Wait for the fault to appear. It will be cleared on reset */ 285 err = xhci_handshake(&xhci->op_regs->status, 286 STS_FATAL, STS_FATAL, 287 XHCI_MAX_HALT_USEC); 288 if (!err) 289 xhci_info(xhci, "Fault detected\n"); 290 } 291 292 #ifdef CONFIG_USB_PCI 293 /* 294 * Set up MSI 295 */ 296 static int xhci_setup_msi(struct xhci_hcd *xhci) 297 { 298 int ret; 299 /* 300 * TODO:Check with MSI Soc for sysdev 301 */ 302 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 303 304 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 305 if (ret < 0) { 306 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 307 "failed to allocate MSI entry"); 308 return ret; 309 } 310 311 ret = request_irq(pdev->irq, xhci_msi_irq, 312 0, "xhci_hcd", xhci_to_hcd(xhci)); 313 if (ret) { 314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 315 "disable MSI interrupt"); 316 pci_free_irq_vectors(pdev); 317 } 318 319 return ret; 320 } 321 322 /* 323 * Set up MSI-X 324 */ 325 static int xhci_setup_msix(struct xhci_hcd *xhci) 326 { 327 int i, ret = 0; 328 struct usb_hcd *hcd = xhci_to_hcd(xhci); 329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 330 331 /* 332 * calculate number of msi-x vectors supported. 333 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 334 * with max number of interrupters based on the xhci HCSPARAMS1. 335 * - num_online_cpus: maximum msi-x vectors per CPUs core. 336 * Add additional 1 vector to ensure always available interrupt. 337 */ 338 xhci->msix_count = min(num_online_cpus() + 1, 339 HCS_MAX_INTRS(xhci->hcs_params1)); 340 341 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 342 PCI_IRQ_MSIX); 343 if (ret < 0) { 344 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 345 "Failed to enable MSI-X"); 346 return ret; 347 } 348 349 for (i = 0; i < xhci->msix_count; i++) { 350 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 351 "xhci_hcd", xhci_to_hcd(xhci)); 352 if (ret) 353 goto disable_msix; 354 } 355 356 hcd->msix_enabled = 1; 357 return ret; 358 359 disable_msix: 360 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 361 while (--i >= 0) 362 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 363 pci_free_irq_vectors(pdev); 364 return ret; 365 } 366 367 /* Free any IRQs and disable MSI-X */ 368 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 369 { 370 struct usb_hcd *hcd = xhci_to_hcd(xhci); 371 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 372 373 if (xhci->quirks & XHCI_PLAT) 374 return; 375 376 /* return if using legacy interrupt */ 377 if (hcd->irq > 0) 378 return; 379 380 if (hcd->msix_enabled) { 381 int i; 382 383 for (i = 0; i < xhci->msix_count; i++) 384 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 385 } else { 386 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 387 } 388 389 pci_free_irq_vectors(pdev); 390 hcd->msix_enabled = 0; 391 } 392 393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 394 { 395 struct usb_hcd *hcd = xhci_to_hcd(xhci); 396 397 if (hcd->msix_enabled) { 398 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 399 int i; 400 401 for (i = 0; i < xhci->msix_count; i++) 402 synchronize_irq(pci_irq_vector(pdev, i)); 403 } 404 } 405 406 static int xhci_try_enable_msi(struct usb_hcd *hcd) 407 { 408 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 409 struct pci_dev *pdev; 410 int ret; 411 412 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 413 if (xhci->quirks & XHCI_PLAT) 414 return 0; 415 416 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 417 /* 418 * Some Fresco Logic host controllers advertise MSI, but fail to 419 * generate interrupts. Don't even try to enable MSI. 420 */ 421 if (xhci->quirks & XHCI_BROKEN_MSI) 422 goto legacy_irq; 423 424 /* unregister the legacy interrupt */ 425 if (hcd->irq) 426 free_irq(hcd->irq, hcd); 427 hcd->irq = 0; 428 429 ret = xhci_setup_msix(xhci); 430 if (ret) 431 /* fall back to msi*/ 432 ret = xhci_setup_msi(xhci); 433 434 if (!ret) { 435 hcd->msi_enabled = 1; 436 return 0; 437 } 438 439 if (!pdev->irq) { 440 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 441 return -EINVAL; 442 } 443 444 legacy_irq: 445 if (!strlen(hcd->irq_descr)) 446 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 447 hcd->driver->description, hcd->self.busnum); 448 449 /* fall back to legacy interrupt*/ 450 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 451 hcd->irq_descr, hcd); 452 if (ret) { 453 xhci_err(xhci, "request interrupt %d failed\n", 454 pdev->irq); 455 return ret; 456 } 457 hcd->irq = pdev->irq; 458 return 0; 459 } 460 461 #else 462 463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 464 { 465 return 0; 466 } 467 468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 469 { 470 } 471 472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 473 { 474 } 475 476 #endif 477 478 static void compliance_mode_recovery(struct timer_list *t) 479 { 480 struct xhci_hcd *xhci; 481 struct usb_hcd *hcd; 482 struct xhci_hub *rhub; 483 u32 temp; 484 int i; 485 486 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 487 rhub = &xhci->usb3_rhub; 488 489 for (i = 0; i < rhub->num_ports; i++) { 490 temp = readl(rhub->ports[i]->addr); 491 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 492 /* 493 * Compliance Mode Detected. Letting USB Core 494 * handle the Warm Reset 495 */ 496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 497 "Compliance mode detected->port %d", 498 i + 1); 499 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 500 "Attempting compliance mode recovery"); 501 hcd = xhci->shared_hcd; 502 503 if (hcd->state == HC_STATE_SUSPENDED) 504 usb_hcd_resume_root_hub(hcd); 505 506 usb_hcd_poll_rh_status(hcd); 507 } 508 } 509 510 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 511 mod_timer(&xhci->comp_mode_recovery_timer, 512 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 513 } 514 515 /* 516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 517 * that causes ports behind that hardware to enter compliance mode sometimes. 518 * The quirk creates a timer that polls every 2 seconds the link state of 519 * each host controller's port and recovers it by issuing a Warm reset 520 * if Compliance mode is detected, otherwise the port will become "dead" (no 521 * device connections or disconnections will be detected anymore). Becasue no 522 * status event is generated when entering compliance mode (per xhci spec), 523 * this quirk is needed on systems that have the failing hardware installed. 524 */ 525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 526 { 527 xhci->port_status_u0 = 0; 528 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 529 0); 530 xhci->comp_mode_recovery_timer.expires = jiffies + 531 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 532 533 add_timer(&xhci->comp_mode_recovery_timer); 534 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 535 "Compliance mode recovery timer initialized"); 536 } 537 538 /* 539 * This function identifies the systems that have installed the SN65LVPE502CP 540 * USB3.0 re-driver and that need the Compliance Mode Quirk. 541 * Systems: 542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 543 */ 544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 545 { 546 const char *dmi_product_name, *dmi_sys_vendor; 547 548 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 549 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 550 if (!dmi_product_name || !dmi_sys_vendor) 551 return false; 552 553 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 554 return false; 555 556 if (strstr(dmi_product_name, "Z420") || 557 strstr(dmi_product_name, "Z620") || 558 strstr(dmi_product_name, "Z820") || 559 strstr(dmi_product_name, "Z1 Workstation")) 560 return true; 561 562 return false; 563 } 564 565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 566 { 567 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 568 } 569 570 571 /* 572 * Initialize memory for HCD and xHC (one-time init). 573 * 574 * Program the PAGESIZE register, initialize the device context array, create 575 * device contexts (?), set up a command ring segment (or two?), create event 576 * ring (one for now). 577 */ 578 static int xhci_init(struct usb_hcd *hcd) 579 { 580 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 581 int retval = 0; 582 583 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 584 spin_lock_init(&xhci->lock); 585 if (xhci->hci_version == 0x95 && link_quirk) { 586 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 587 "QUIRK: Not clearing Link TRB chain bits."); 588 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 589 } else { 590 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 591 "xHCI doesn't need link TRB QUIRK"); 592 } 593 retval = xhci_mem_init(xhci, GFP_KERNEL); 594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 595 596 /* Initializing Compliance Mode Recovery Data If Needed */ 597 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 598 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 599 compliance_mode_recovery_timer_init(xhci); 600 } 601 602 return retval; 603 } 604 605 /*-------------------------------------------------------------------------*/ 606 607 608 static int xhci_run_finished(struct xhci_hcd *xhci) 609 { 610 if (xhci_start(xhci)) { 611 xhci_halt(xhci); 612 return -ENODEV; 613 } 614 xhci->shared_hcd->state = HC_STATE_RUNNING; 615 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 616 617 if (xhci->quirks & XHCI_NEC_HOST) 618 xhci_ring_cmd_db(xhci); 619 620 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 621 "Finished xhci_run for USB3 roothub"); 622 return 0; 623 } 624 625 /* 626 * Start the HC after it was halted. 627 * 628 * This function is called by the USB core when the HC driver is added. 629 * Its opposite is xhci_stop(). 630 * 631 * xhci_init() must be called once before this function can be called. 632 * Reset the HC, enable device slot contexts, program DCBAAP, and 633 * set command ring pointer and event ring pointer. 634 * 635 * Setup MSI-X vectors and enable interrupts. 636 */ 637 int xhci_run(struct usb_hcd *hcd) 638 { 639 u32 temp; 640 u64 temp_64; 641 int ret; 642 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 643 644 /* Start the xHCI host controller running only after the USB 2.0 roothub 645 * is setup. 646 */ 647 648 hcd->uses_new_polling = 1; 649 if (!usb_hcd_is_primary_hcd(hcd)) 650 return xhci_run_finished(xhci); 651 652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 653 654 ret = xhci_try_enable_msi(hcd); 655 if (ret) 656 return ret; 657 658 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 659 temp_64 &= ~ERST_PTR_MASK; 660 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 661 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 662 663 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 664 "// Set the interrupt modulation register"); 665 temp = readl(&xhci->ir_set->irq_control); 666 temp &= ~ER_IRQ_INTERVAL_MASK; 667 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 668 writel(temp, &xhci->ir_set->irq_control); 669 670 /* Set the HCD state before we enable the irqs */ 671 temp = readl(&xhci->op_regs->command); 672 temp |= (CMD_EIE); 673 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 674 "// Enable interrupts, cmd = 0x%x.", temp); 675 writel(temp, &xhci->op_regs->command); 676 677 temp = readl(&xhci->ir_set->irq_pending); 678 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 679 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 680 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 681 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 682 683 if (xhci->quirks & XHCI_NEC_HOST) { 684 struct xhci_command *command; 685 686 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 687 if (!command) 688 return -ENOMEM; 689 690 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 691 TRB_TYPE(TRB_NEC_GET_FW)); 692 if (ret) 693 xhci_free_command(xhci, command); 694 } 695 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 696 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 697 "Finished xhci_run for USB2 roothub"); 698 699 xhci_dbc_init(xhci); 700 701 xhci_debugfs_init(xhci); 702 703 return 0; 704 } 705 EXPORT_SYMBOL_GPL(xhci_run); 706 707 /* 708 * Stop xHCI driver. 709 * 710 * This function is called by the USB core when the HC driver is removed. 711 * Its opposite is xhci_run(). 712 * 713 * Disable device contexts, disable IRQs, and quiesce the HC. 714 * Reset the HC, finish any completed transactions, and cleanup memory. 715 */ 716 static void xhci_stop(struct usb_hcd *hcd) 717 { 718 u32 temp; 719 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 720 721 mutex_lock(&xhci->mutex); 722 723 /* Only halt host and free memory after both hcds are removed */ 724 if (!usb_hcd_is_primary_hcd(hcd)) { 725 mutex_unlock(&xhci->mutex); 726 return; 727 } 728 729 xhci_dbc_exit(xhci); 730 731 spin_lock_irq(&xhci->lock); 732 xhci->xhc_state |= XHCI_STATE_HALTED; 733 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 734 xhci_halt(xhci); 735 xhci_reset(xhci); 736 spin_unlock_irq(&xhci->lock); 737 738 xhci_cleanup_msix(xhci); 739 740 /* Deleting Compliance Mode Recovery Timer */ 741 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 742 (!(xhci_all_ports_seen_u0(xhci)))) { 743 del_timer_sync(&xhci->comp_mode_recovery_timer); 744 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 745 "%s: compliance mode recovery timer deleted", 746 __func__); 747 } 748 749 if (xhci->quirks & XHCI_AMD_PLL_FIX) 750 usb_amd_dev_put(); 751 752 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 753 "// Disabling event ring interrupts"); 754 temp = readl(&xhci->op_regs->status); 755 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 756 temp = readl(&xhci->ir_set->irq_pending); 757 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 758 759 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 760 xhci_mem_cleanup(xhci); 761 xhci_debugfs_exit(xhci); 762 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 763 "xhci_stop completed - status = %x", 764 readl(&xhci->op_regs->status)); 765 mutex_unlock(&xhci->mutex); 766 } 767 768 /* 769 * Shutdown HC (not bus-specific) 770 * 771 * This is called when the machine is rebooting or halting. We assume that the 772 * machine will be powered off, and the HC's internal state will be reset. 773 * Don't bother to free memory. 774 * 775 * This will only ever be called with the main usb_hcd (the USB3 roothub). 776 */ 777 void xhci_shutdown(struct usb_hcd *hcd) 778 { 779 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 780 781 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 782 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 783 784 spin_lock_irq(&xhci->lock); 785 xhci_halt(xhci); 786 /* Workaround for spurious wakeups at shutdown with HSW */ 787 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 788 xhci_reset(xhci); 789 spin_unlock_irq(&xhci->lock); 790 791 xhci_cleanup_msix(xhci); 792 793 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 794 "xhci_shutdown completed - status = %x", 795 readl(&xhci->op_regs->status)); 796 } 797 EXPORT_SYMBOL_GPL(xhci_shutdown); 798 799 #ifdef CONFIG_PM 800 static void xhci_save_registers(struct xhci_hcd *xhci) 801 { 802 xhci->s3.command = readl(&xhci->op_regs->command); 803 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 804 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 805 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 806 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 807 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 808 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 809 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 810 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 811 } 812 813 static void xhci_restore_registers(struct xhci_hcd *xhci) 814 { 815 writel(xhci->s3.command, &xhci->op_regs->command); 816 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 817 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 818 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 819 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 820 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 821 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 822 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 823 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 824 } 825 826 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 827 { 828 u64 val_64; 829 830 /* step 2: initialize command ring buffer */ 831 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 832 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 833 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 834 xhci->cmd_ring->dequeue) & 835 (u64) ~CMD_RING_RSVD_BITS) | 836 xhci->cmd_ring->cycle_state; 837 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 838 "// Setting command ring address to 0x%llx", 839 (long unsigned long) val_64); 840 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 841 } 842 843 /* 844 * The whole command ring must be cleared to zero when we suspend the host. 845 * 846 * The host doesn't save the command ring pointer in the suspend well, so we 847 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 848 * aligned, because of the reserved bits in the command ring dequeue pointer 849 * register. Therefore, we can't just set the dequeue pointer back in the 850 * middle of the ring (TRBs are 16-byte aligned). 851 */ 852 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 853 { 854 struct xhci_ring *ring; 855 struct xhci_segment *seg; 856 857 ring = xhci->cmd_ring; 858 seg = ring->deq_seg; 859 do { 860 memset(seg->trbs, 0, 861 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 862 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 863 cpu_to_le32(~TRB_CYCLE); 864 seg = seg->next; 865 } while (seg != ring->deq_seg); 866 867 /* Reset the software enqueue and dequeue pointers */ 868 ring->deq_seg = ring->first_seg; 869 ring->dequeue = ring->first_seg->trbs; 870 ring->enq_seg = ring->deq_seg; 871 ring->enqueue = ring->dequeue; 872 873 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 874 /* 875 * Ring is now zeroed, so the HW should look for change of ownership 876 * when the cycle bit is set to 1. 877 */ 878 ring->cycle_state = 1; 879 880 /* 881 * Reset the hardware dequeue pointer. 882 * Yes, this will need to be re-written after resume, but we're paranoid 883 * and want to make sure the hardware doesn't access bogus memory 884 * because, say, the BIOS or an SMI started the host without changing 885 * the command ring pointers. 886 */ 887 xhci_set_cmd_ring_deq(xhci); 888 } 889 890 /* 891 * Disable port wake bits if do_wakeup is not set. 892 * 893 * Also clear a possible internal port wake state left hanging for ports that 894 * detected termination but never successfully enumerated (trained to 0U). 895 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 896 * at enumeration clears this wake, force one here as well for unconnected ports 897 */ 898 899 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 900 struct xhci_hub *rhub, 901 bool do_wakeup) 902 { 903 unsigned long flags; 904 u32 t1, t2, portsc; 905 int i; 906 907 spin_lock_irqsave(&xhci->lock, flags); 908 909 for (i = 0; i < rhub->num_ports; i++) { 910 portsc = readl(rhub->ports[i]->addr); 911 t1 = xhci_port_state_to_neutral(portsc); 912 t2 = t1; 913 914 /* clear wake bits if do_wake is not set */ 915 if (!do_wakeup) 916 t2 &= ~PORT_WAKE_BITS; 917 918 /* Don't touch csc bit if connected or connect change is set */ 919 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 920 t2 |= PORT_CSC; 921 922 if (t1 != t2) { 923 writel(t2, rhub->ports[i]->addr); 924 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 925 rhub->hcd->self.busnum, i + 1, portsc, t2); 926 } 927 } 928 spin_unlock_irqrestore(&xhci->lock, flags); 929 } 930 931 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 932 { 933 struct xhci_port **ports; 934 int port_index; 935 u32 status; 936 u32 portsc; 937 938 status = readl(&xhci->op_regs->status); 939 if (status & STS_EINT) 940 return true; 941 /* 942 * Checking STS_EINT is not enough as there is a lag between a change 943 * bit being set and the Port Status Change Event that it generated 944 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 945 */ 946 947 port_index = xhci->usb2_rhub.num_ports; 948 ports = xhci->usb2_rhub.ports; 949 while (port_index--) { 950 portsc = readl(ports[port_index]->addr); 951 if (portsc & PORT_CHANGE_MASK || 952 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 953 return true; 954 } 955 port_index = xhci->usb3_rhub.num_ports; 956 ports = xhci->usb3_rhub.ports; 957 while (port_index--) { 958 portsc = readl(ports[port_index]->addr); 959 if (portsc & PORT_CHANGE_MASK || 960 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 961 return true; 962 } 963 return false; 964 } 965 966 /* 967 * Stop HC (not bus-specific) 968 * 969 * This is called when the machine transition into S3/S4 mode. 970 * 971 */ 972 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 973 { 974 int rc = 0; 975 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 976 struct usb_hcd *hcd = xhci_to_hcd(xhci); 977 u32 command; 978 u32 res; 979 980 if (!hcd->state) 981 return 0; 982 983 if (hcd->state != HC_STATE_SUSPENDED || 984 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 985 return -EINVAL; 986 987 /* Clear root port wake on bits if wakeup not allowed. */ 988 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 989 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 990 991 if (!HCD_HW_ACCESSIBLE(hcd)) 992 return 0; 993 994 xhci_dbc_suspend(xhci); 995 996 /* Don't poll the roothubs on bus suspend. */ 997 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 998 __func__, hcd->self.busnum); 999 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1000 del_timer_sync(&hcd->rh_timer); 1001 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1002 del_timer_sync(&xhci->shared_hcd->rh_timer); 1003 1004 if (xhci->quirks & XHCI_SUSPEND_DELAY) 1005 usleep_range(1000, 1500); 1006 1007 spin_lock_irq(&xhci->lock); 1008 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1009 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1010 /* step 1: stop endpoint */ 1011 /* skipped assuming that port suspend has done */ 1012 1013 /* step 2: clear Run/Stop bit */ 1014 command = readl(&xhci->op_regs->command); 1015 command &= ~CMD_RUN; 1016 writel(command, &xhci->op_regs->command); 1017 1018 /* Some chips from Fresco Logic need an extraordinary delay */ 1019 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 1020 1021 if (xhci_handshake(&xhci->op_regs->status, 1022 STS_HALT, STS_HALT, delay)) { 1023 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 1024 spin_unlock_irq(&xhci->lock); 1025 return -ETIMEDOUT; 1026 } 1027 xhci_clear_command_ring(xhci); 1028 1029 /* step 3: save registers */ 1030 xhci_save_registers(xhci); 1031 1032 /* step 4: set CSS flag */ 1033 command = readl(&xhci->op_regs->command); 1034 command |= CMD_CSS; 1035 writel(command, &xhci->op_regs->command); 1036 xhci->broken_suspend = 0; 1037 if (xhci_handshake(&xhci->op_regs->status, 1038 STS_SAVE, 0, 20 * 1000)) { 1039 /* 1040 * AMD SNPS xHC 3.0 occasionally does not clear the 1041 * SSS bit of USBSTS and when driver tries to poll 1042 * to see if the xHC clears BIT(8) which never happens 1043 * and driver assumes that controller is not responding 1044 * and times out. To workaround this, its good to check 1045 * if SRE and HCE bits are not set (as per xhci 1046 * Section 5.4.2) and bypass the timeout. 1047 */ 1048 res = readl(&xhci->op_regs->status); 1049 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 1050 (((res & STS_SRE) == 0) && 1051 ((res & STS_HCE) == 0))) { 1052 xhci->broken_suspend = 1; 1053 } else { 1054 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 1055 spin_unlock_irq(&xhci->lock); 1056 return -ETIMEDOUT; 1057 } 1058 } 1059 spin_unlock_irq(&xhci->lock); 1060 1061 /* 1062 * Deleting Compliance Mode Recovery Timer because the xHCI Host 1063 * is about to be suspended. 1064 */ 1065 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1066 (!(xhci_all_ports_seen_u0(xhci)))) { 1067 del_timer_sync(&xhci->comp_mode_recovery_timer); 1068 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1069 "%s: compliance mode recovery timer deleted", 1070 __func__); 1071 } 1072 1073 /* step 5: remove core well power */ 1074 /* synchronize irq when using MSI-X */ 1075 xhci_msix_sync_irqs(xhci); 1076 1077 return rc; 1078 } 1079 EXPORT_SYMBOL_GPL(xhci_suspend); 1080 1081 /* 1082 * start xHC (not bus-specific) 1083 * 1084 * This is called when the machine transition from S3/S4 mode. 1085 * 1086 */ 1087 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 1088 { 1089 u32 command, temp = 0; 1090 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1091 struct usb_hcd *secondary_hcd; 1092 int retval = 0; 1093 bool comp_timer_running = false; 1094 bool pending_portevent = false; 1095 1096 if (!hcd->state) 1097 return 0; 1098 1099 /* Wait a bit if either of the roothubs need to settle from the 1100 * transition into bus suspend. 1101 */ 1102 1103 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1104 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1105 msleep(100); 1106 1107 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1108 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1109 1110 spin_lock_irq(&xhci->lock); 1111 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend) 1112 hibernated = true; 1113 1114 if (!hibernated) { 1115 /* 1116 * Some controllers might lose power during suspend, so wait 1117 * for controller not ready bit to clear, just as in xHC init. 1118 */ 1119 retval = xhci_handshake(&xhci->op_regs->status, 1120 STS_CNR, 0, 10 * 1000 * 1000); 1121 if (retval) { 1122 xhci_warn(xhci, "Controller not ready at resume %d\n", 1123 retval); 1124 spin_unlock_irq(&xhci->lock); 1125 return retval; 1126 } 1127 /* step 1: restore register */ 1128 xhci_restore_registers(xhci); 1129 /* step 2: initialize command ring buffer */ 1130 xhci_set_cmd_ring_deq(xhci); 1131 /* step 3: restore state and start state*/ 1132 /* step 3: set CRS flag */ 1133 command = readl(&xhci->op_regs->command); 1134 command |= CMD_CRS; 1135 writel(command, &xhci->op_regs->command); 1136 /* 1137 * Some controllers take up to 55+ ms to complete the controller 1138 * restore so setting the timeout to 100ms. Xhci specification 1139 * doesn't mention any timeout value. 1140 */ 1141 if (xhci_handshake(&xhci->op_regs->status, 1142 STS_RESTORE, 0, 100 * 1000)) { 1143 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1144 spin_unlock_irq(&xhci->lock); 1145 return -ETIMEDOUT; 1146 } 1147 temp = readl(&xhci->op_regs->status); 1148 } 1149 1150 /* If restore operation fails, re-initialize the HC during resume */ 1151 if ((temp & STS_SRE) || hibernated) { 1152 1153 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1154 !(xhci_all_ports_seen_u0(xhci))) { 1155 del_timer_sync(&xhci->comp_mode_recovery_timer); 1156 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1157 "Compliance Mode Recovery Timer deleted!"); 1158 } 1159 1160 /* Let the USB core know _both_ roothubs lost power. */ 1161 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1162 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1163 1164 xhci_dbg(xhci, "Stop HCD\n"); 1165 xhci_halt(xhci); 1166 xhci_zero_64b_regs(xhci); 1167 retval = xhci_reset(xhci); 1168 spin_unlock_irq(&xhci->lock); 1169 if (retval) 1170 return retval; 1171 xhci_cleanup_msix(xhci); 1172 1173 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1174 temp = readl(&xhci->op_regs->status); 1175 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1176 temp = readl(&xhci->ir_set->irq_pending); 1177 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1178 1179 xhci_dbg(xhci, "cleaning up memory\n"); 1180 xhci_mem_cleanup(xhci); 1181 xhci_debugfs_exit(xhci); 1182 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1183 readl(&xhci->op_regs->status)); 1184 1185 /* USB core calls the PCI reinit and start functions twice: 1186 * first with the primary HCD, and then with the secondary HCD. 1187 * If we don't do the same, the host will never be started. 1188 */ 1189 if (!usb_hcd_is_primary_hcd(hcd)) 1190 secondary_hcd = hcd; 1191 else 1192 secondary_hcd = xhci->shared_hcd; 1193 1194 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1195 retval = xhci_init(hcd->primary_hcd); 1196 if (retval) 1197 return retval; 1198 comp_timer_running = true; 1199 1200 xhci_dbg(xhci, "Start the primary HCD\n"); 1201 retval = xhci_run(hcd->primary_hcd); 1202 if (!retval) { 1203 xhci_dbg(xhci, "Start the secondary HCD\n"); 1204 retval = xhci_run(secondary_hcd); 1205 } 1206 hcd->state = HC_STATE_SUSPENDED; 1207 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1208 goto done; 1209 } 1210 1211 /* step 4: set Run/Stop bit */ 1212 command = readl(&xhci->op_regs->command); 1213 command |= CMD_RUN; 1214 writel(command, &xhci->op_regs->command); 1215 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1216 0, 250 * 1000); 1217 1218 /* step 5: walk topology and initialize portsc, 1219 * portpmsc and portli 1220 */ 1221 /* this is done in bus_resume */ 1222 1223 /* step 6: restart each of the previously 1224 * Running endpoints by ringing their doorbells 1225 */ 1226 1227 spin_unlock_irq(&xhci->lock); 1228 1229 xhci_dbc_resume(xhci); 1230 1231 done: 1232 if (retval == 0) { 1233 /* 1234 * Resume roothubs only if there are pending events. 1235 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1236 * the first wake signalling failed, give it that chance. 1237 */ 1238 pending_portevent = xhci_pending_portevent(xhci); 1239 if (!pending_portevent) { 1240 msleep(120); 1241 pending_portevent = xhci_pending_portevent(xhci); 1242 } 1243 1244 if (pending_portevent) { 1245 usb_hcd_resume_root_hub(xhci->shared_hcd); 1246 usb_hcd_resume_root_hub(hcd); 1247 } 1248 } 1249 /* 1250 * If system is subject to the Quirk, Compliance Mode Timer needs to 1251 * be re-initialized Always after a system resume. Ports are subject 1252 * to suffer the Compliance Mode issue again. It doesn't matter if 1253 * ports have entered previously to U0 before system's suspension. 1254 */ 1255 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1256 compliance_mode_recovery_timer_init(xhci); 1257 1258 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1259 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1260 1261 /* Re-enable port polling. */ 1262 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1263 __func__, hcd->self.busnum); 1264 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1265 usb_hcd_poll_rh_status(xhci->shared_hcd); 1266 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1267 usb_hcd_poll_rh_status(hcd); 1268 1269 return retval; 1270 } 1271 EXPORT_SYMBOL_GPL(xhci_resume); 1272 #endif /* CONFIG_PM */ 1273 1274 /*-------------------------------------------------------------------------*/ 1275 1276 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1277 { 1278 void *temp; 1279 int ret = 0; 1280 unsigned int buf_len; 1281 enum dma_data_direction dir; 1282 1283 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1284 buf_len = urb->transfer_buffer_length; 1285 1286 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1287 dev_to_node(hcd->self.sysdev)); 1288 1289 if (usb_urb_dir_out(urb)) 1290 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1291 temp, buf_len, 0); 1292 1293 urb->transfer_buffer = temp; 1294 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1295 urb->transfer_buffer, 1296 urb->transfer_buffer_length, 1297 dir); 1298 1299 if (dma_mapping_error(hcd->self.sysdev, 1300 urb->transfer_dma)) { 1301 ret = -EAGAIN; 1302 kfree(temp); 1303 } else { 1304 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1305 } 1306 1307 return ret; 1308 } 1309 1310 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1311 struct urb *urb) 1312 { 1313 bool ret = false; 1314 unsigned int i; 1315 unsigned int len = 0; 1316 unsigned int trb_size; 1317 unsigned int max_pkt; 1318 struct scatterlist *sg; 1319 struct scatterlist *tail_sg; 1320 1321 tail_sg = urb->sg; 1322 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1323 1324 if (!urb->num_sgs) 1325 return ret; 1326 1327 if (urb->dev->speed >= USB_SPEED_SUPER) 1328 trb_size = TRB_CACHE_SIZE_SS; 1329 else 1330 trb_size = TRB_CACHE_SIZE_HS; 1331 1332 if (urb->transfer_buffer_length != 0 && 1333 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1334 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1335 len = len + sg->length; 1336 if (i > trb_size - 2) { 1337 len = len - tail_sg->length; 1338 if (len < max_pkt) { 1339 ret = true; 1340 break; 1341 } 1342 1343 tail_sg = sg_next(tail_sg); 1344 } 1345 } 1346 } 1347 return ret; 1348 } 1349 1350 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1351 { 1352 unsigned int len; 1353 unsigned int buf_len; 1354 enum dma_data_direction dir; 1355 1356 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1357 1358 buf_len = urb->transfer_buffer_length; 1359 1360 if (IS_ENABLED(CONFIG_HAS_DMA) && 1361 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1362 dma_unmap_single(hcd->self.sysdev, 1363 urb->transfer_dma, 1364 urb->transfer_buffer_length, 1365 dir); 1366 1367 if (usb_urb_dir_in(urb)) { 1368 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1369 urb->transfer_buffer, 1370 buf_len, 1371 0); 1372 if (len != buf_len) { 1373 xhci_dbg(hcd_to_xhci(hcd), 1374 "Copy from tmp buf to urb sg list failed\n"); 1375 urb->actual_length = len; 1376 } 1377 } 1378 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1379 kfree(urb->transfer_buffer); 1380 urb->transfer_buffer = NULL; 1381 } 1382 1383 /* 1384 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1385 * we'll copy the actual data into the TRB address register. This is limited to 1386 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1387 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1388 */ 1389 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1390 gfp_t mem_flags) 1391 { 1392 struct xhci_hcd *xhci; 1393 1394 xhci = hcd_to_xhci(hcd); 1395 1396 if (xhci_urb_suitable_for_idt(urb)) 1397 return 0; 1398 1399 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1400 if (xhci_urb_temp_buffer_required(hcd, urb)) 1401 return xhci_map_temp_buffer(hcd, urb); 1402 } 1403 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1404 } 1405 1406 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1407 { 1408 struct xhci_hcd *xhci; 1409 bool unmap_temp_buf = false; 1410 1411 xhci = hcd_to_xhci(hcd); 1412 1413 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1414 unmap_temp_buf = true; 1415 1416 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1417 xhci_unmap_temp_buf(hcd, urb); 1418 else 1419 usb_hcd_unmap_urb_for_dma(hcd, urb); 1420 } 1421 1422 /** 1423 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1424 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1425 * value to right shift 1 for the bitmask. 1426 * 1427 * Index = (epnum * 2) + direction - 1, 1428 * where direction = 0 for OUT, 1 for IN. 1429 * For control endpoints, the IN index is used (OUT index is unused), so 1430 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1431 */ 1432 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1433 { 1434 unsigned int index; 1435 if (usb_endpoint_xfer_control(desc)) 1436 index = (unsigned int) (usb_endpoint_num(desc)*2); 1437 else 1438 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1439 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1440 return index; 1441 } 1442 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1443 1444 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1445 * address from the XHCI endpoint index. 1446 */ 1447 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1448 { 1449 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1450 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1451 return direction | number; 1452 } 1453 1454 /* Find the flag for this endpoint (for use in the control context). Use the 1455 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1456 * bit 1, etc. 1457 */ 1458 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1459 { 1460 return 1 << (xhci_get_endpoint_index(desc) + 1); 1461 } 1462 1463 /* Compute the last valid endpoint context index. Basically, this is the 1464 * endpoint index plus one. For slot contexts with more than valid endpoint, 1465 * we find the most significant bit set in the added contexts flags. 1466 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1467 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1468 */ 1469 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1470 { 1471 return fls(added_ctxs) - 1; 1472 } 1473 1474 /* Returns 1 if the arguments are OK; 1475 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1476 */ 1477 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1478 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1479 const char *func) { 1480 struct xhci_hcd *xhci; 1481 struct xhci_virt_device *virt_dev; 1482 1483 if (!hcd || (check_ep && !ep) || !udev) { 1484 pr_debug("xHCI %s called with invalid args\n", func); 1485 return -EINVAL; 1486 } 1487 if (!udev->parent) { 1488 pr_debug("xHCI %s called for root hub\n", func); 1489 return 0; 1490 } 1491 1492 xhci = hcd_to_xhci(hcd); 1493 if (check_virt_dev) { 1494 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1495 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1496 func); 1497 return -EINVAL; 1498 } 1499 1500 virt_dev = xhci->devs[udev->slot_id]; 1501 if (virt_dev->udev != udev) { 1502 xhci_dbg(xhci, "xHCI %s called with udev and " 1503 "virt_dev does not match\n", func); 1504 return -EINVAL; 1505 } 1506 } 1507 1508 if (xhci->xhc_state & XHCI_STATE_HALTED) 1509 return -ENODEV; 1510 1511 return 1; 1512 } 1513 1514 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1515 struct usb_device *udev, struct xhci_command *command, 1516 bool ctx_change, bool must_succeed); 1517 1518 /* 1519 * Full speed devices may have a max packet size greater than 8 bytes, but the 1520 * USB core doesn't know that until it reads the first 8 bytes of the 1521 * descriptor. If the usb_device's max packet size changes after that point, 1522 * we need to issue an evaluate context command and wait on it. 1523 */ 1524 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1525 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1526 { 1527 struct xhci_container_ctx *out_ctx; 1528 struct xhci_input_control_ctx *ctrl_ctx; 1529 struct xhci_ep_ctx *ep_ctx; 1530 struct xhci_command *command; 1531 int max_packet_size; 1532 int hw_max_packet_size; 1533 int ret = 0; 1534 1535 out_ctx = xhci->devs[slot_id]->out_ctx; 1536 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1537 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1538 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1539 if (hw_max_packet_size != max_packet_size) { 1540 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1541 "Max Packet Size for ep 0 changed."); 1542 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1543 "Max packet size in usb_device = %d", 1544 max_packet_size); 1545 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1546 "Max packet size in xHCI HW = %d", 1547 hw_max_packet_size); 1548 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1549 "Issuing evaluate context command."); 1550 1551 /* Set up the input context flags for the command */ 1552 /* FIXME: This won't work if a non-default control endpoint 1553 * changes max packet sizes. 1554 */ 1555 1556 command = xhci_alloc_command(xhci, true, mem_flags); 1557 if (!command) 1558 return -ENOMEM; 1559 1560 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1561 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1562 if (!ctrl_ctx) { 1563 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1564 __func__); 1565 ret = -ENOMEM; 1566 goto command_cleanup; 1567 } 1568 /* Set up the modified control endpoint 0 */ 1569 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1570 xhci->devs[slot_id]->out_ctx, ep_index); 1571 1572 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1573 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1574 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1575 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1576 1577 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1578 ctrl_ctx->drop_flags = 0; 1579 1580 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1581 true, false); 1582 1583 /* Clean up the input context for later use by bandwidth 1584 * functions. 1585 */ 1586 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1587 command_cleanup: 1588 kfree(command->completion); 1589 kfree(command); 1590 } 1591 return ret; 1592 } 1593 1594 /* 1595 * non-error returns are a promise to giveback() the urb later 1596 * we drop ownership so next owner (or urb unlink) can get it 1597 */ 1598 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1599 { 1600 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1601 unsigned long flags; 1602 int ret = 0; 1603 unsigned int slot_id, ep_index; 1604 unsigned int *ep_state; 1605 struct urb_priv *urb_priv; 1606 int num_tds; 1607 1608 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1609 true, true, __func__) <= 0) 1610 return -EINVAL; 1611 1612 slot_id = urb->dev->slot_id; 1613 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1614 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1615 1616 if (!HCD_HW_ACCESSIBLE(hcd)) 1617 return -ESHUTDOWN; 1618 1619 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1620 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1621 return -ENODEV; 1622 } 1623 1624 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1625 num_tds = urb->number_of_packets; 1626 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1627 urb->transfer_buffer_length > 0 && 1628 urb->transfer_flags & URB_ZERO_PACKET && 1629 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1630 num_tds = 2; 1631 else 1632 num_tds = 1; 1633 1634 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1635 if (!urb_priv) 1636 return -ENOMEM; 1637 1638 urb_priv->num_tds = num_tds; 1639 urb_priv->num_tds_done = 0; 1640 urb->hcpriv = urb_priv; 1641 1642 trace_xhci_urb_enqueue(urb); 1643 1644 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1645 /* Check to see if the max packet size for the default control 1646 * endpoint changed during FS device enumeration 1647 */ 1648 if (urb->dev->speed == USB_SPEED_FULL) { 1649 ret = xhci_check_maxpacket(xhci, slot_id, 1650 ep_index, urb, mem_flags); 1651 if (ret < 0) { 1652 xhci_urb_free_priv(urb_priv); 1653 urb->hcpriv = NULL; 1654 return ret; 1655 } 1656 } 1657 } 1658 1659 spin_lock_irqsave(&xhci->lock, flags); 1660 1661 if (xhci->xhc_state & XHCI_STATE_DYING) { 1662 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1663 urb->ep->desc.bEndpointAddress, urb); 1664 ret = -ESHUTDOWN; 1665 goto free_priv; 1666 } 1667 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1668 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1669 *ep_state); 1670 ret = -EINVAL; 1671 goto free_priv; 1672 } 1673 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1674 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1675 ret = -EINVAL; 1676 goto free_priv; 1677 } 1678 1679 switch (usb_endpoint_type(&urb->ep->desc)) { 1680 1681 case USB_ENDPOINT_XFER_CONTROL: 1682 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1683 slot_id, ep_index); 1684 break; 1685 case USB_ENDPOINT_XFER_BULK: 1686 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1687 slot_id, ep_index); 1688 break; 1689 case USB_ENDPOINT_XFER_INT: 1690 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1691 slot_id, ep_index); 1692 break; 1693 case USB_ENDPOINT_XFER_ISOC: 1694 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1695 slot_id, ep_index); 1696 } 1697 1698 if (ret) { 1699 free_priv: 1700 xhci_urb_free_priv(urb_priv); 1701 urb->hcpriv = NULL; 1702 } 1703 spin_unlock_irqrestore(&xhci->lock, flags); 1704 return ret; 1705 } 1706 1707 /* 1708 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1709 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1710 * should pick up where it left off in the TD, unless a Set Transfer Ring 1711 * Dequeue Pointer is issued. 1712 * 1713 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1714 * the ring. Since the ring is a contiguous structure, they can't be physically 1715 * removed. Instead, there are two options: 1716 * 1717 * 1) If the HC is in the middle of processing the URB to be canceled, we 1718 * simply move the ring's dequeue pointer past those TRBs using the Set 1719 * Transfer Ring Dequeue Pointer command. This will be the common case, 1720 * when drivers timeout on the last submitted URB and attempt to cancel. 1721 * 1722 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1723 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1724 * HC will need to invalidate the any TRBs it has cached after the stop 1725 * endpoint command, as noted in the xHCI 0.95 errata. 1726 * 1727 * 3) The TD may have completed by the time the Stop Endpoint Command 1728 * completes, so software needs to handle that case too. 1729 * 1730 * This function should protect against the TD enqueueing code ringing the 1731 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1732 * It also needs to account for multiple cancellations on happening at the same 1733 * time for the same endpoint. 1734 * 1735 * Note that this function can be called in any context, or so says 1736 * usb_hcd_unlink_urb() 1737 */ 1738 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1739 { 1740 unsigned long flags; 1741 int ret, i; 1742 u32 temp; 1743 struct xhci_hcd *xhci; 1744 struct urb_priv *urb_priv; 1745 struct xhci_td *td; 1746 unsigned int ep_index; 1747 struct xhci_ring *ep_ring; 1748 struct xhci_virt_ep *ep; 1749 struct xhci_command *command; 1750 struct xhci_virt_device *vdev; 1751 1752 xhci = hcd_to_xhci(hcd); 1753 spin_lock_irqsave(&xhci->lock, flags); 1754 1755 trace_xhci_urb_dequeue(urb); 1756 1757 /* Make sure the URB hasn't completed or been unlinked already */ 1758 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1759 if (ret) 1760 goto done; 1761 1762 /* give back URB now if we can't queue it for cancel */ 1763 vdev = xhci->devs[urb->dev->slot_id]; 1764 urb_priv = urb->hcpriv; 1765 if (!vdev || !urb_priv) 1766 goto err_giveback; 1767 1768 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1769 ep = &vdev->eps[ep_index]; 1770 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1771 if (!ep || !ep_ring) 1772 goto err_giveback; 1773 1774 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1775 temp = readl(&xhci->op_regs->status); 1776 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1777 xhci_hc_died(xhci); 1778 goto done; 1779 } 1780 1781 /* 1782 * check ring is not re-allocated since URB was enqueued. If it is, then 1783 * make sure none of the ring related pointers in this URB private data 1784 * are touched, such as td_list, otherwise we overwrite freed data 1785 */ 1786 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1787 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1788 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1789 td = &urb_priv->td[i]; 1790 if (!list_empty(&td->cancelled_td_list)) 1791 list_del_init(&td->cancelled_td_list); 1792 } 1793 goto err_giveback; 1794 } 1795 1796 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1797 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1798 "HC halted, freeing TD manually."); 1799 for (i = urb_priv->num_tds_done; 1800 i < urb_priv->num_tds; 1801 i++) { 1802 td = &urb_priv->td[i]; 1803 if (!list_empty(&td->td_list)) 1804 list_del_init(&td->td_list); 1805 if (!list_empty(&td->cancelled_td_list)) 1806 list_del_init(&td->cancelled_td_list); 1807 } 1808 goto err_giveback; 1809 } 1810 1811 i = urb_priv->num_tds_done; 1812 if (i < urb_priv->num_tds) 1813 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1814 "Cancel URB %p, dev %s, ep 0x%x, " 1815 "starting at offset 0x%llx", 1816 urb, urb->dev->devpath, 1817 urb->ep->desc.bEndpointAddress, 1818 (unsigned long long) xhci_trb_virt_to_dma( 1819 urb_priv->td[i].start_seg, 1820 urb_priv->td[i].first_trb)); 1821 1822 for (; i < urb_priv->num_tds; i++) { 1823 td = &urb_priv->td[i]; 1824 /* TD can already be on cancelled list if ep halted on it */ 1825 if (list_empty(&td->cancelled_td_list)) { 1826 td->cancel_status = TD_DIRTY; 1827 list_add_tail(&td->cancelled_td_list, 1828 &ep->cancelled_td_list); 1829 } 1830 } 1831 1832 /* Queue a stop endpoint command, but only if this is 1833 * the first cancellation to be handled. 1834 */ 1835 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1836 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1837 if (!command) { 1838 ret = -ENOMEM; 1839 goto done; 1840 } 1841 ep->ep_state |= EP_STOP_CMD_PENDING; 1842 ep->stop_cmd_timer.expires = jiffies + 1843 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1844 add_timer(&ep->stop_cmd_timer); 1845 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1846 ep_index, 0); 1847 xhci_ring_cmd_db(xhci); 1848 } 1849 done: 1850 spin_unlock_irqrestore(&xhci->lock, flags); 1851 return ret; 1852 1853 err_giveback: 1854 if (urb_priv) 1855 xhci_urb_free_priv(urb_priv); 1856 usb_hcd_unlink_urb_from_ep(hcd, urb); 1857 spin_unlock_irqrestore(&xhci->lock, flags); 1858 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1859 return ret; 1860 } 1861 1862 /* Drop an endpoint from a new bandwidth configuration for this device. 1863 * Only one call to this function is allowed per endpoint before 1864 * check_bandwidth() or reset_bandwidth() must be called. 1865 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1866 * add the endpoint to the schedule with possibly new parameters denoted by a 1867 * different endpoint descriptor in usb_host_endpoint. 1868 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1869 * not allowed. 1870 * 1871 * The USB core will not allow URBs to be queued to an endpoint that is being 1872 * disabled, so there's no need for mutual exclusion to protect 1873 * the xhci->devs[slot_id] structure. 1874 */ 1875 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1876 struct usb_host_endpoint *ep) 1877 { 1878 struct xhci_hcd *xhci; 1879 struct xhci_container_ctx *in_ctx, *out_ctx; 1880 struct xhci_input_control_ctx *ctrl_ctx; 1881 unsigned int ep_index; 1882 struct xhci_ep_ctx *ep_ctx; 1883 u32 drop_flag; 1884 u32 new_add_flags, new_drop_flags; 1885 int ret; 1886 1887 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1888 if (ret <= 0) 1889 return ret; 1890 xhci = hcd_to_xhci(hcd); 1891 if (xhci->xhc_state & XHCI_STATE_DYING) 1892 return -ENODEV; 1893 1894 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1895 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1896 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1897 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1898 __func__, drop_flag); 1899 return 0; 1900 } 1901 1902 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1903 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1904 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1905 if (!ctrl_ctx) { 1906 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1907 __func__); 1908 return 0; 1909 } 1910 1911 ep_index = xhci_get_endpoint_index(&ep->desc); 1912 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1913 /* If the HC already knows the endpoint is disabled, 1914 * or the HCD has noted it is disabled, ignore this request 1915 */ 1916 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1917 le32_to_cpu(ctrl_ctx->drop_flags) & 1918 xhci_get_endpoint_flag(&ep->desc)) { 1919 /* Do not warn when called after a usb_device_reset */ 1920 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1921 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1922 __func__, ep); 1923 return 0; 1924 } 1925 1926 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1927 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1928 1929 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1930 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1931 1932 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1933 1934 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1935 1936 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1937 (unsigned int) ep->desc.bEndpointAddress, 1938 udev->slot_id, 1939 (unsigned int) new_drop_flags, 1940 (unsigned int) new_add_flags); 1941 return 0; 1942 } 1943 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1944 1945 /* Add an endpoint to a new possible bandwidth configuration for this device. 1946 * Only one call to this function is allowed per endpoint before 1947 * check_bandwidth() or reset_bandwidth() must be called. 1948 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1949 * add the endpoint to the schedule with possibly new parameters denoted by a 1950 * different endpoint descriptor in usb_host_endpoint. 1951 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1952 * not allowed. 1953 * 1954 * The USB core will not allow URBs to be queued to an endpoint until the 1955 * configuration or alt setting is installed in the device, so there's no need 1956 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1957 */ 1958 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1959 struct usb_host_endpoint *ep) 1960 { 1961 struct xhci_hcd *xhci; 1962 struct xhci_container_ctx *in_ctx; 1963 unsigned int ep_index; 1964 struct xhci_input_control_ctx *ctrl_ctx; 1965 struct xhci_ep_ctx *ep_ctx; 1966 u32 added_ctxs; 1967 u32 new_add_flags, new_drop_flags; 1968 struct xhci_virt_device *virt_dev; 1969 int ret = 0; 1970 1971 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1972 if (ret <= 0) { 1973 /* So we won't queue a reset ep command for a root hub */ 1974 ep->hcpriv = NULL; 1975 return ret; 1976 } 1977 xhci = hcd_to_xhci(hcd); 1978 if (xhci->xhc_state & XHCI_STATE_DYING) 1979 return -ENODEV; 1980 1981 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1982 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1983 /* FIXME when we have to issue an evaluate endpoint command to 1984 * deal with ep0 max packet size changing once we get the 1985 * descriptors 1986 */ 1987 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1988 __func__, added_ctxs); 1989 return 0; 1990 } 1991 1992 virt_dev = xhci->devs[udev->slot_id]; 1993 in_ctx = virt_dev->in_ctx; 1994 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1995 if (!ctrl_ctx) { 1996 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1997 __func__); 1998 return 0; 1999 } 2000 2001 ep_index = xhci_get_endpoint_index(&ep->desc); 2002 /* If this endpoint is already in use, and the upper layers are trying 2003 * to add it again without dropping it, reject the addition. 2004 */ 2005 if (virt_dev->eps[ep_index].ring && 2006 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 2007 xhci_warn(xhci, "Trying to add endpoint 0x%x " 2008 "without dropping it.\n", 2009 (unsigned int) ep->desc.bEndpointAddress); 2010 return -EINVAL; 2011 } 2012 2013 /* If the HCD has already noted the endpoint is enabled, 2014 * ignore this request. 2015 */ 2016 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 2017 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 2018 __func__, ep); 2019 return 0; 2020 } 2021 2022 /* 2023 * Configuration and alternate setting changes must be done in 2024 * process context, not interrupt context (or so documenation 2025 * for usb_set_interface() and usb_set_configuration() claim). 2026 */ 2027 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 2028 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 2029 __func__, ep->desc.bEndpointAddress); 2030 return -ENOMEM; 2031 } 2032 2033 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 2034 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 2035 2036 /* If xhci_endpoint_disable() was called for this endpoint, but the 2037 * xHC hasn't been notified yet through the check_bandwidth() call, 2038 * this re-adds a new state for the endpoint from the new endpoint 2039 * descriptors. We must drop and re-add this endpoint, so we leave the 2040 * drop flags alone. 2041 */ 2042 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 2043 2044 /* Store the usb_device pointer for later use */ 2045 ep->hcpriv = udev; 2046 2047 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 2048 trace_xhci_add_endpoint(ep_ctx); 2049 2050 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 2051 (unsigned int) ep->desc.bEndpointAddress, 2052 udev->slot_id, 2053 (unsigned int) new_drop_flags, 2054 (unsigned int) new_add_flags); 2055 return 0; 2056 } 2057 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 2058 2059 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 2060 { 2061 struct xhci_input_control_ctx *ctrl_ctx; 2062 struct xhci_ep_ctx *ep_ctx; 2063 struct xhci_slot_ctx *slot_ctx; 2064 int i; 2065 2066 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 2067 if (!ctrl_ctx) { 2068 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2069 __func__); 2070 return; 2071 } 2072 2073 /* When a device's add flag and drop flag are zero, any subsequent 2074 * configure endpoint command will leave that endpoint's state 2075 * untouched. Make sure we don't leave any old state in the input 2076 * endpoint contexts. 2077 */ 2078 ctrl_ctx->drop_flags = 0; 2079 ctrl_ctx->add_flags = 0; 2080 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2081 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2082 /* Endpoint 0 is always valid */ 2083 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2084 for (i = 1; i < 31; i++) { 2085 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2086 ep_ctx->ep_info = 0; 2087 ep_ctx->ep_info2 = 0; 2088 ep_ctx->deq = 0; 2089 ep_ctx->tx_info = 0; 2090 } 2091 } 2092 2093 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2094 struct usb_device *udev, u32 *cmd_status) 2095 { 2096 int ret; 2097 2098 switch (*cmd_status) { 2099 case COMP_COMMAND_ABORTED: 2100 case COMP_COMMAND_RING_STOPPED: 2101 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2102 ret = -ETIME; 2103 break; 2104 case COMP_RESOURCE_ERROR: 2105 dev_warn(&udev->dev, 2106 "Not enough host controller resources for new device state.\n"); 2107 ret = -ENOMEM; 2108 /* FIXME: can we allocate more resources for the HC? */ 2109 break; 2110 case COMP_BANDWIDTH_ERROR: 2111 case COMP_SECONDARY_BANDWIDTH_ERROR: 2112 dev_warn(&udev->dev, 2113 "Not enough bandwidth for new device state.\n"); 2114 ret = -ENOSPC; 2115 /* FIXME: can we go back to the old state? */ 2116 break; 2117 case COMP_TRB_ERROR: 2118 /* the HCD set up something wrong */ 2119 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2120 "add flag = 1, " 2121 "and endpoint is not disabled.\n"); 2122 ret = -EINVAL; 2123 break; 2124 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2125 dev_warn(&udev->dev, 2126 "ERROR: Incompatible device for endpoint configure command.\n"); 2127 ret = -ENODEV; 2128 break; 2129 case COMP_SUCCESS: 2130 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2131 "Successful Endpoint Configure command"); 2132 ret = 0; 2133 break; 2134 default: 2135 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2136 *cmd_status); 2137 ret = -EINVAL; 2138 break; 2139 } 2140 return ret; 2141 } 2142 2143 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2144 struct usb_device *udev, u32 *cmd_status) 2145 { 2146 int ret; 2147 2148 switch (*cmd_status) { 2149 case COMP_COMMAND_ABORTED: 2150 case COMP_COMMAND_RING_STOPPED: 2151 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2152 ret = -ETIME; 2153 break; 2154 case COMP_PARAMETER_ERROR: 2155 dev_warn(&udev->dev, 2156 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2157 ret = -EINVAL; 2158 break; 2159 case COMP_SLOT_NOT_ENABLED_ERROR: 2160 dev_warn(&udev->dev, 2161 "WARN: slot not enabled for evaluate context command.\n"); 2162 ret = -EINVAL; 2163 break; 2164 case COMP_CONTEXT_STATE_ERROR: 2165 dev_warn(&udev->dev, 2166 "WARN: invalid context state for evaluate context command.\n"); 2167 ret = -EINVAL; 2168 break; 2169 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2170 dev_warn(&udev->dev, 2171 "ERROR: Incompatible device for evaluate context command.\n"); 2172 ret = -ENODEV; 2173 break; 2174 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2175 /* Max Exit Latency too large error */ 2176 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2177 ret = -EINVAL; 2178 break; 2179 case COMP_SUCCESS: 2180 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2181 "Successful evaluate context command"); 2182 ret = 0; 2183 break; 2184 default: 2185 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2186 *cmd_status); 2187 ret = -EINVAL; 2188 break; 2189 } 2190 return ret; 2191 } 2192 2193 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2194 struct xhci_input_control_ctx *ctrl_ctx) 2195 { 2196 u32 valid_add_flags; 2197 u32 valid_drop_flags; 2198 2199 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2200 * (bit 1). The default control endpoint is added during the Address 2201 * Device command and is never removed until the slot is disabled. 2202 */ 2203 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2204 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2205 2206 /* Use hweight32 to count the number of ones in the add flags, or 2207 * number of endpoints added. Don't count endpoints that are changed 2208 * (both added and dropped). 2209 */ 2210 return hweight32(valid_add_flags) - 2211 hweight32(valid_add_flags & valid_drop_flags); 2212 } 2213 2214 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2215 struct xhci_input_control_ctx *ctrl_ctx) 2216 { 2217 u32 valid_add_flags; 2218 u32 valid_drop_flags; 2219 2220 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2221 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2222 2223 return hweight32(valid_drop_flags) - 2224 hweight32(valid_add_flags & valid_drop_flags); 2225 } 2226 2227 /* 2228 * We need to reserve the new number of endpoints before the configure endpoint 2229 * command completes. We can't subtract the dropped endpoints from the number 2230 * of active endpoints until the command completes because we can oversubscribe 2231 * the host in this case: 2232 * 2233 * - the first configure endpoint command drops more endpoints than it adds 2234 * - a second configure endpoint command that adds more endpoints is queued 2235 * - the first configure endpoint command fails, so the config is unchanged 2236 * - the second command may succeed, even though there isn't enough resources 2237 * 2238 * Must be called with xhci->lock held. 2239 */ 2240 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2241 struct xhci_input_control_ctx *ctrl_ctx) 2242 { 2243 u32 added_eps; 2244 2245 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2246 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2247 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2248 "Not enough ep ctxs: " 2249 "%u active, need to add %u, limit is %u.", 2250 xhci->num_active_eps, added_eps, 2251 xhci->limit_active_eps); 2252 return -ENOMEM; 2253 } 2254 xhci->num_active_eps += added_eps; 2255 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2256 "Adding %u ep ctxs, %u now active.", added_eps, 2257 xhci->num_active_eps); 2258 return 0; 2259 } 2260 2261 /* 2262 * The configure endpoint was failed by the xHC for some other reason, so we 2263 * need to revert the resources that failed configuration would have used. 2264 * 2265 * Must be called with xhci->lock held. 2266 */ 2267 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2268 struct xhci_input_control_ctx *ctrl_ctx) 2269 { 2270 u32 num_failed_eps; 2271 2272 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2273 xhci->num_active_eps -= num_failed_eps; 2274 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2275 "Removing %u failed ep ctxs, %u now active.", 2276 num_failed_eps, 2277 xhci->num_active_eps); 2278 } 2279 2280 /* 2281 * Now that the command has completed, clean up the active endpoint count by 2282 * subtracting out the endpoints that were dropped (but not changed). 2283 * 2284 * Must be called with xhci->lock held. 2285 */ 2286 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2287 struct xhci_input_control_ctx *ctrl_ctx) 2288 { 2289 u32 num_dropped_eps; 2290 2291 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2292 xhci->num_active_eps -= num_dropped_eps; 2293 if (num_dropped_eps) 2294 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2295 "Removing %u dropped ep ctxs, %u now active.", 2296 num_dropped_eps, 2297 xhci->num_active_eps); 2298 } 2299 2300 static unsigned int xhci_get_block_size(struct usb_device *udev) 2301 { 2302 switch (udev->speed) { 2303 case USB_SPEED_LOW: 2304 case USB_SPEED_FULL: 2305 return FS_BLOCK; 2306 case USB_SPEED_HIGH: 2307 return HS_BLOCK; 2308 case USB_SPEED_SUPER: 2309 case USB_SPEED_SUPER_PLUS: 2310 return SS_BLOCK; 2311 case USB_SPEED_UNKNOWN: 2312 case USB_SPEED_WIRELESS: 2313 default: 2314 /* Should never happen */ 2315 return 1; 2316 } 2317 } 2318 2319 static unsigned int 2320 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2321 { 2322 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2323 return LS_OVERHEAD; 2324 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2325 return FS_OVERHEAD; 2326 return HS_OVERHEAD; 2327 } 2328 2329 /* If we are changing a LS/FS device under a HS hub, 2330 * make sure (if we are activating a new TT) that the HS bus has enough 2331 * bandwidth for this new TT. 2332 */ 2333 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2334 struct xhci_virt_device *virt_dev, 2335 int old_active_eps) 2336 { 2337 struct xhci_interval_bw_table *bw_table; 2338 struct xhci_tt_bw_info *tt_info; 2339 2340 /* Find the bandwidth table for the root port this TT is attached to. */ 2341 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2342 tt_info = virt_dev->tt_info; 2343 /* If this TT already had active endpoints, the bandwidth for this TT 2344 * has already been added. Removing all periodic endpoints (and thus 2345 * making the TT enactive) will only decrease the bandwidth used. 2346 */ 2347 if (old_active_eps) 2348 return 0; 2349 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2350 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2351 return -ENOMEM; 2352 return 0; 2353 } 2354 /* Not sure why we would have no new active endpoints... 2355 * 2356 * Maybe because of an Evaluate Context change for a hub update or a 2357 * control endpoint 0 max packet size change? 2358 * FIXME: skip the bandwidth calculation in that case. 2359 */ 2360 return 0; 2361 } 2362 2363 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2364 struct xhci_virt_device *virt_dev) 2365 { 2366 unsigned int bw_reserved; 2367 2368 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2369 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2370 return -ENOMEM; 2371 2372 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2373 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2374 return -ENOMEM; 2375 2376 return 0; 2377 } 2378 2379 /* 2380 * This algorithm is a very conservative estimate of the worst-case scheduling 2381 * scenario for any one interval. The hardware dynamically schedules the 2382 * packets, so we can't tell which microframe could be the limiting factor in 2383 * the bandwidth scheduling. This only takes into account periodic endpoints. 2384 * 2385 * Obviously, we can't solve an NP complete problem to find the minimum worst 2386 * case scenario. Instead, we come up with an estimate that is no less than 2387 * the worst case bandwidth used for any one microframe, but may be an 2388 * over-estimate. 2389 * 2390 * We walk the requirements for each endpoint by interval, starting with the 2391 * smallest interval, and place packets in the schedule where there is only one 2392 * possible way to schedule packets for that interval. In order to simplify 2393 * this algorithm, we record the largest max packet size for each interval, and 2394 * assume all packets will be that size. 2395 * 2396 * For interval 0, we obviously must schedule all packets for each interval. 2397 * The bandwidth for interval 0 is just the amount of data to be transmitted 2398 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2399 * the number of packets). 2400 * 2401 * For interval 1, we have two possible microframes to schedule those packets 2402 * in. For this algorithm, if we can schedule the same number of packets for 2403 * each possible scheduling opportunity (each microframe), we will do so. The 2404 * remaining number of packets will be saved to be transmitted in the gaps in 2405 * the next interval's scheduling sequence. 2406 * 2407 * As we move those remaining packets to be scheduled with interval 2 packets, 2408 * we have to double the number of remaining packets to transmit. This is 2409 * because the intervals are actually powers of 2, and we would be transmitting 2410 * the previous interval's packets twice in this interval. We also have to be 2411 * sure that when we look at the largest max packet size for this interval, we 2412 * also look at the largest max packet size for the remaining packets and take 2413 * the greater of the two. 2414 * 2415 * The algorithm continues to evenly distribute packets in each scheduling 2416 * opportunity, and push the remaining packets out, until we get to the last 2417 * interval. Then those packets and their associated overhead are just added 2418 * to the bandwidth used. 2419 */ 2420 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2421 struct xhci_virt_device *virt_dev, 2422 int old_active_eps) 2423 { 2424 unsigned int bw_reserved; 2425 unsigned int max_bandwidth; 2426 unsigned int bw_used; 2427 unsigned int block_size; 2428 struct xhci_interval_bw_table *bw_table; 2429 unsigned int packet_size = 0; 2430 unsigned int overhead = 0; 2431 unsigned int packets_transmitted = 0; 2432 unsigned int packets_remaining = 0; 2433 unsigned int i; 2434 2435 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2436 return xhci_check_ss_bw(xhci, virt_dev); 2437 2438 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2439 max_bandwidth = HS_BW_LIMIT; 2440 /* Convert percent of bus BW reserved to blocks reserved */ 2441 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2442 } else { 2443 max_bandwidth = FS_BW_LIMIT; 2444 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2445 } 2446 2447 bw_table = virt_dev->bw_table; 2448 /* We need to translate the max packet size and max ESIT payloads into 2449 * the units the hardware uses. 2450 */ 2451 block_size = xhci_get_block_size(virt_dev->udev); 2452 2453 /* If we are manipulating a LS/FS device under a HS hub, double check 2454 * that the HS bus has enough bandwidth if we are activing a new TT. 2455 */ 2456 if (virt_dev->tt_info) { 2457 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2458 "Recalculating BW for rootport %u", 2459 virt_dev->real_port); 2460 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2461 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2462 "newly activated TT.\n"); 2463 return -ENOMEM; 2464 } 2465 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2466 "Recalculating BW for TT slot %u port %u", 2467 virt_dev->tt_info->slot_id, 2468 virt_dev->tt_info->ttport); 2469 } else { 2470 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2471 "Recalculating BW for rootport %u", 2472 virt_dev->real_port); 2473 } 2474 2475 /* Add in how much bandwidth will be used for interval zero, or the 2476 * rounded max ESIT payload + number of packets * largest overhead. 2477 */ 2478 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2479 bw_table->interval_bw[0].num_packets * 2480 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2481 2482 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2483 unsigned int bw_added; 2484 unsigned int largest_mps; 2485 unsigned int interval_overhead; 2486 2487 /* 2488 * How many packets could we transmit in this interval? 2489 * If packets didn't fit in the previous interval, we will need 2490 * to transmit that many packets twice within this interval. 2491 */ 2492 packets_remaining = 2 * packets_remaining + 2493 bw_table->interval_bw[i].num_packets; 2494 2495 /* Find the largest max packet size of this or the previous 2496 * interval. 2497 */ 2498 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2499 largest_mps = 0; 2500 else { 2501 struct xhci_virt_ep *virt_ep; 2502 struct list_head *ep_entry; 2503 2504 ep_entry = bw_table->interval_bw[i].endpoints.next; 2505 virt_ep = list_entry(ep_entry, 2506 struct xhci_virt_ep, bw_endpoint_list); 2507 /* Convert to blocks, rounding up */ 2508 largest_mps = DIV_ROUND_UP( 2509 virt_ep->bw_info.max_packet_size, 2510 block_size); 2511 } 2512 if (largest_mps > packet_size) 2513 packet_size = largest_mps; 2514 2515 /* Use the larger overhead of this or the previous interval. */ 2516 interval_overhead = xhci_get_largest_overhead( 2517 &bw_table->interval_bw[i]); 2518 if (interval_overhead > overhead) 2519 overhead = interval_overhead; 2520 2521 /* How many packets can we evenly distribute across 2522 * (1 << (i + 1)) possible scheduling opportunities? 2523 */ 2524 packets_transmitted = packets_remaining >> (i + 1); 2525 2526 /* Add in the bandwidth used for those scheduled packets */ 2527 bw_added = packets_transmitted * (overhead + packet_size); 2528 2529 /* How many packets do we have remaining to transmit? */ 2530 packets_remaining = packets_remaining % (1 << (i + 1)); 2531 2532 /* What largest max packet size should those packets have? */ 2533 /* If we've transmitted all packets, don't carry over the 2534 * largest packet size. 2535 */ 2536 if (packets_remaining == 0) { 2537 packet_size = 0; 2538 overhead = 0; 2539 } else if (packets_transmitted > 0) { 2540 /* Otherwise if we do have remaining packets, and we've 2541 * scheduled some packets in this interval, take the 2542 * largest max packet size from endpoints with this 2543 * interval. 2544 */ 2545 packet_size = largest_mps; 2546 overhead = interval_overhead; 2547 } 2548 /* Otherwise carry over packet_size and overhead from the last 2549 * time we had a remainder. 2550 */ 2551 bw_used += bw_added; 2552 if (bw_used > max_bandwidth) { 2553 xhci_warn(xhci, "Not enough bandwidth. " 2554 "Proposed: %u, Max: %u\n", 2555 bw_used, max_bandwidth); 2556 return -ENOMEM; 2557 } 2558 } 2559 /* 2560 * Ok, we know we have some packets left over after even-handedly 2561 * scheduling interval 15. We don't know which microframes they will 2562 * fit into, so we over-schedule and say they will be scheduled every 2563 * microframe. 2564 */ 2565 if (packets_remaining > 0) 2566 bw_used += overhead + packet_size; 2567 2568 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2569 unsigned int port_index = virt_dev->real_port - 1; 2570 2571 /* OK, we're manipulating a HS device attached to a 2572 * root port bandwidth domain. Include the number of active TTs 2573 * in the bandwidth used. 2574 */ 2575 bw_used += TT_HS_OVERHEAD * 2576 xhci->rh_bw[port_index].num_active_tts; 2577 } 2578 2579 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2580 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2581 "Available: %u " "percent", 2582 bw_used, max_bandwidth, bw_reserved, 2583 (max_bandwidth - bw_used - bw_reserved) * 100 / 2584 max_bandwidth); 2585 2586 bw_used += bw_reserved; 2587 if (bw_used > max_bandwidth) { 2588 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2589 bw_used, max_bandwidth); 2590 return -ENOMEM; 2591 } 2592 2593 bw_table->bw_used = bw_used; 2594 return 0; 2595 } 2596 2597 static bool xhci_is_async_ep(unsigned int ep_type) 2598 { 2599 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2600 ep_type != ISOC_IN_EP && 2601 ep_type != INT_IN_EP); 2602 } 2603 2604 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2605 { 2606 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2607 } 2608 2609 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2610 { 2611 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2612 2613 if (ep_bw->ep_interval == 0) 2614 return SS_OVERHEAD_BURST + 2615 (ep_bw->mult * ep_bw->num_packets * 2616 (SS_OVERHEAD + mps)); 2617 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2618 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2619 1 << ep_bw->ep_interval); 2620 2621 } 2622 2623 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2624 struct xhci_bw_info *ep_bw, 2625 struct xhci_interval_bw_table *bw_table, 2626 struct usb_device *udev, 2627 struct xhci_virt_ep *virt_ep, 2628 struct xhci_tt_bw_info *tt_info) 2629 { 2630 struct xhci_interval_bw *interval_bw; 2631 int normalized_interval; 2632 2633 if (xhci_is_async_ep(ep_bw->type)) 2634 return; 2635 2636 if (udev->speed >= USB_SPEED_SUPER) { 2637 if (xhci_is_sync_in_ep(ep_bw->type)) 2638 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2639 xhci_get_ss_bw_consumed(ep_bw); 2640 else 2641 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2642 xhci_get_ss_bw_consumed(ep_bw); 2643 return; 2644 } 2645 2646 /* SuperSpeed endpoints never get added to intervals in the table, so 2647 * this check is only valid for HS/FS/LS devices. 2648 */ 2649 if (list_empty(&virt_ep->bw_endpoint_list)) 2650 return; 2651 /* For LS/FS devices, we need to translate the interval expressed in 2652 * microframes to frames. 2653 */ 2654 if (udev->speed == USB_SPEED_HIGH) 2655 normalized_interval = ep_bw->ep_interval; 2656 else 2657 normalized_interval = ep_bw->ep_interval - 3; 2658 2659 if (normalized_interval == 0) 2660 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2661 interval_bw = &bw_table->interval_bw[normalized_interval]; 2662 interval_bw->num_packets -= ep_bw->num_packets; 2663 switch (udev->speed) { 2664 case USB_SPEED_LOW: 2665 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2666 break; 2667 case USB_SPEED_FULL: 2668 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2669 break; 2670 case USB_SPEED_HIGH: 2671 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2672 break; 2673 case USB_SPEED_SUPER: 2674 case USB_SPEED_SUPER_PLUS: 2675 case USB_SPEED_UNKNOWN: 2676 case USB_SPEED_WIRELESS: 2677 /* Should never happen because only LS/FS/HS endpoints will get 2678 * added to the endpoint list. 2679 */ 2680 return; 2681 } 2682 if (tt_info) 2683 tt_info->active_eps -= 1; 2684 list_del_init(&virt_ep->bw_endpoint_list); 2685 } 2686 2687 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2688 struct xhci_bw_info *ep_bw, 2689 struct xhci_interval_bw_table *bw_table, 2690 struct usb_device *udev, 2691 struct xhci_virt_ep *virt_ep, 2692 struct xhci_tt_bw_info *tt_info) 2693 { 2694 struct xhci_interval_bw *interval_bw; 2695 struct xhci_virt_ep *smaller_ep; 2696 int normalized_interval; 2697 2698 if (xhci_is_async_ep(ep_bw->type)) 2699 return; 2700 2701 if (udev->speed == USB_SPEED_SUPER) { 2702 if (xhci_is_sync_in_ep(ep_bw->type)) 2703 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2704 xhci_get_ss_bw_consumed(ep_bw); 2705 else 2706 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2707 xhci_get_ss_bw_consumed(ep_bw); 2708 return; 2709 } 2710 2711 /* For LS/FS devices, we need to translate the interval expressed in 2712 * microframes to frames. 2713 */ 2714 if (udev->speed == USB_SPEED_HIGH) 2715 normalized_interval = ep_bw->ep_interval; 2716 else 2717 normalized_interval = ep_bw->ep_interval - 3; 2718 2719 if (normalized_interval == 0) 2720 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2721 interval_bw = &bw_table->interval_bw[normalized_interval]; 2722 interval_bw->num_packets += ep_bw->num_packets; 2723 switch (udev->speed) { 2724 case USB_SPEED_LOW: 2725 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2726 break; 2727 case USB_SPEED_FULL: 2728 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2729 break; 2730 case USB_SPEED_HIGH: 2731 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2732 break; 2733 case USB_SPEED_SUPER: 2734 case USB_SPEED_SUPER_PLUS: 2735 case USB_SPEED_UNKNOWN: 2736 case USB_SPEED_WIRELESS: 2737 /* Should never happen because only LS/FS/HS endpoints will get 2738 * added to the endpoint list. 2739 */ 2740 return; 2741 } 2742 2743 if (tt_info) 2744 tt_info->active_eps += 1; 2745 /* Insert the endpoint into the list, largest max packet size first. */ 2746 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2747 bw_endpoint_list) { 2748 if (ep_bw->max_packet_size >= 2749 smaller_ep->bw_info.max_packet_size) { 2750 /* Add the new ep before the smaller endpoint */ 2751 list_add_tail(&virt_ep->bw_endpoint_list, 2752 &smaller_ep->bw_endpoint_list); 2753 return; 2754 } 2755 } 2756 /* Add the new endpoint at the end of the list. */ 2757 list_add_tail(&virt_ep->bw_endpoint_list, 2758 &interval_bw->endpoints); 2759 } 2760 2761 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2762 struct xhci_virt_device *virt_dev, 2763 int old_active_eps) 2764 { 2765 struct xhci_root_port_bw_info *rh_bw_info; 2766 if (!virt_dev->tt_info) 2767 return; 2768 2769 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2770 if (old_active_eps == 0 && 2771 virt_dev->tt_info->active_eps != 0) { 2772 rh_bw_info->num_active_tts += 1; 2773 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2774 } else if (old_active_eps != 0 && 2775 virt_dev->tt_info->active_eps == 0) { 2776 rh_bw_info->num_active_tts -= 1; 2777 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2778 } 2779 } 2780 2781 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2782 struct xhci_virt_device *virt_dev, 2783 struct xhci_container_ctx *in_ctx) 2784 { 2785 struct xhci_bw_info ep_bw_info[31]; 2786 int i; 2787 struct xhci_input_control_ctx *ctrl_ctx; 2788 int old_active_eps = 0; 2789 2790 if (virt_dev->tt_info) 2791 old_active_eps = virt_dev->tt_info->active_eps; 2792 2793 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2794 if (!ctrl_ctx) { 2795 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2796 __func__); 2797 return -ENOMEM; 2798 } 2799 2800 for (i = 0; i < 31; i++) { 2801 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2802 continue; 2803 2804 /* Make a copy of the BW info in case we need to revert this */ 2805 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2806 sizeof(ep_bw_info[i])); 2807 /* Drop the endpoint from the interval table if the endpoint is 2808 * being dropped or changed. 2809 */ 2810 if (EP_IS_DROPPED(ctrl_ctx, i)) 2811 xhci_drop_ep_from_interval_table(xhci, 2812 &virt_dev->eps[i].bw_info, 2813 virt_dev->bw_table, 2814 virt_dev->udev, 2815 &virt_dev->eps[i], 2816 virt_dev->tt_info); 2817 } 2818 /* Overwrite the information stored in the endpoints' bw_info */ 2819 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2820 for (i = 0; i < 31; i++) { 2821 /* Add any changed or added endpoints to the interval table */ 2822 if (EP_IS_ADDED(ctrl_ctx, i)) 2823 xhci_add_ep_to_interval_table(xhci, 2824 &virt_dev->eps[i].bw_info, 2825 virt_dev->bw_table, 2826 virt_dev->udev, 2827 &virt_dev->eps[i], 2828 virt_dev->tt_info); 2829 } 2830 2831 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2832 /* Ok, this fits in the bandwidth we have. 2833 * Update the number of active TTs. 2834 */ 2835 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2836 return 0; 2837 } 2838 2839 /* We don't have enough bandwidth for this, revert the stored info. */ 2840 for (i = 0; i < 31; i++) { 2841 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2842 continue; 2843 2844 /* Drop the new copies of any added or changed endpoints from 2845 * the interval table. 2846 */ 2847 if (EP_IS_ADDED(ctrl_ctx, i)) { 2848 xhci_drop_ep_from_interval_table(xhci, 2849 &virt_dev->eps[i].bw_info, 2850 virt_dev->bw_table, 2851 virt_dev->udev, 2852 &virt_dev->eps[i], 2853 virt_dev->tt_info); 2854 } 2855 /* Revert the endpoint back to its old information */ 2856 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2857 sizeof(ep_bw_info[i])); 2858 /* Add any changed or dropped endpoints back into the table */ 2859 if (EP_IS_DROPPED(ctrl_ctx, i)) 2860 xhci_add_ep_to_interval_table(xhci, 2861 &virt_dev->eps[i].bw_info, 2862 virt_dev->bw_table, 2863 virt_dev->udev, 2864 &virt_dev->eps[i], 2865 virt_dev->tt_info); 2866 } 2867 return -ENOMEM; 2868 } 2869 2870 2871 /* Issue a configure endpoint command or evaluate context command 2872 * and wait for it to finish. 2873 */ 2874 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2875 struct usb_device *udev, 2876 struct xhci_command *command, 2877 bool ctx_change, bool must_succeed) 2878 { 2879 int ret; 2880 unsigned long flags; 2881 struct xhci_input_control_ctx *ctrl_ctx; 2882 struct xhci_virt_device *virt_dev; 2883 struct xhci_slot_ctx *slot_ctx; 2884 2885 if (!command) 2886 return -EINVAL; 2887 2888 spin_lock_irqsave(&xhci->lock, flags); 2889 2890 if (xhci->xhc_state & XHCI_STATE_DYING) { 2891 spin_unlock_irqrestore(&xhci->lock, flags); 2892 return -ESHUTDOWN; 2893 } 2894 2895 virt_dev = xhci->devs[udev->slot_id]; 2896 2897 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2898 if (!ctrl_ctx) { 2899 spin_unlock_irqrestore(&xhci->lock, flags); 2900 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2901 __func__); 2902 return -ENOMEM; 2903 } 2904 2905 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2906 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2907 spin_unlock_irqrestore(&xhci->lock, flags); 2908 xhci_warn(xhci, "Not enough host resources, " 2909 "active endpoint contexts = %u\n", 2910 xhci->num_active_eps); 2911 return -ENOMEM; 2912 } 2913 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2914 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2915 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2916 xhci_free_host_resources(xhci, ctrl_ctx); 2917 spin_unlock_irqrestore(&xhci->lock, flags); 2918 xhci_warn(xhci, "Not enough bandwidth\n"); 2919 return -ENOMEM; 2920 } 2921 2922 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2923 2924 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2925 trace_xhci_configure_endpoint(slot_ctx); 2926 2927 if (!ctx_change) 2928 ret = xhci_queue_configure_endpoint(xhci, command, 2929 command->in_ctx->dma, 2930 udev->slot_id, must_succeed); 2931 else 2932 ret = xhci_queue_evaluate_context(xhci, command, 2933 command->in_ctx->dma, 2934 udev->slot_id, must_succeed); 2935 if (ret < 0) { 2936 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2937 xhci_free_host_resources(xhci, ctrl_ctx); 2938 spin_unlock_irqrestore(&xhci->lock, flags); 2939 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2940 "FIXME allocate a new ring segment"); 2941 return -ENOMEM; 2942 } 2943 xhci_ring_cmd_db(xhci); 2944 spin_unlock_irqrestore(&xhci->lock, flags); 2945 2946 /* Wait for the configure endpoint command to complete */ 2947 wait_for_completion(command->completion); 2948 2949 if (!ctx_change) 2950 ret = xhci_configure_endpoint_result(xhci, udev, 2951 &command->status); 2952 else 2953 ret = xhci_evaluate_context_result(xhci, udev, 2954 &command->status); 2955 2956 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2957 spin_lock_irqsave(&xhci->lock, flags); 2958 /* If the command failed, remove the reserved resources. 2959 * Otherwise, clean up the estimate to include dropped eps. 2960 */ 2961 if (ret) 2962 xhci_free_host_resources(xhci, ctrl_ctx); 2963 else 2964 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2965 spin_unlock_irqrestore(&xhci->lock, flags); 2966 } 2967 return ret; 2968 } 2969 2970 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2971 struct xhci_virt_device *vdev, int i) 2972 { 2973 struct xhci_virt_ep *ep = &vdev->eps[i]; 2974 2975 if (ep->ep_state & EP_HAS_STREAMS) { 2976 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2977 xhci_get_endpoint_address(i)); 2978 xhci_free_stream_info(xhci, ep->stream_info); 2979 ep->stream_info = NULL; 2980 ep->ep_state &= ~EP_HAS_STREAMS; 2981 } 2982 } 2983 2984 /* Called after one or more calls to xhci_add_endpoint() or 2985 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2986 * to call xhci_reset_bandwidth(). 2987 * 2988 * Since we are in the middle of changing either configuration or 2989 * installing a new alt setting, the USB core won't allow URBs to be 2990 * enqueued for any endpoint on the old config or interface. Nothing 2991 * else should be touching the xhci->devs[slot_id] structure, so we 2992 * don't need to take the xhci->lock for manipulating that. 2993 */ 2994 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2995 { 2996 int i; 2997 int ret = 0; 2998 struct xhci_hcd *xhci; 2999 struct xhci_virt_device *virt_dev; 3000 struct xhci_input_control_ctx *ctrl_ctx; 3001 struct xhci_slot_ctx *slot_ctx; 3002 struct xhci_command *command; 3003 3004 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3005 if (ret <= 0) 3006 return ret; 3007 xhci = hcd_to_xhci(hcd); 3008 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3009 (xhci->xhc_state & XHCI_STATE_REMOVING)) 3010 return -ENODEV; 3011 3012 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3013 virt_dev = xhci->devs[udev->slot_id]; 3014 3015 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3016 if (!command) 3017 return -ENOMEM; 3018 3019 command->in_ctx = virt_dev->in_ctx; 3020 3021 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 3022 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3023 if (!ctrl_ctx) { 3024 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3025 __func__); 3026 ret = -ENOMEM; 3027 goto command_cleanup; 3028 } 3029 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3030 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 3031 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 3032 3033 /* Don't issue the command if there's no endpoints to update. */ 3034 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 3035 ctrl_ctx->drop_flags == 0) { 3036 ret = 0; 3037 goto command_cleanup; 3038 } 3039 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 3040 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3041 for (i = 31; i >= 1; i--) { 3042 __le32 le32 = cpu_to_le32(BIT(i)); 3043 3044 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 3045 || (ctrl_ctx->add_flags & le32) || i == 1) { 3046 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 3047 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 3048 break; 3049 } 3050 } 3051 3052 ret = xhci_configure_endpoint(xhci, udev, command, 3053 false, false); 3054 if (ret) 3055 /* Callee should call reset_bandwidth() */ 3056 goto command_cleanup; 3057 3058 /* Free any rings that were dropped, but not changed. */ 3059 for (i = 1; i < 31; i++) { 3060 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 3061 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 3062 xhci_free_endpoint_ring(xhci, virt_dev, i); 3063 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3064 } 3065 } 3066 xhci_zero_in_ctx(xhci, virt_dev); 3067 /* 3068 * Install any rings for completely new endpoints or changed endpoints, 3069 * and free any old rings from changed endpoints. 3070 */ 3071 for (i = 1; i < 31; i++) { 3072 if (!virt_dev->eps[i].new_ring) 3073 continue; 3074 /* Only free the old ring if it exists. 3075 * It may not if this is the first add of an endpoint. 3076 */ 3077 if (virt_dev->eps[i].ring) { 3078 xhci_free_endpoint_ring(xhci, virt_dev, i); 3079 } 3080 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 3081 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 3082 virt_dev->eps[i].new_ring = NULL; 3083 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 3084 } 3085 command_cleanup: 3086 kfree(command->completion); 3087 kfree(command); 3088 3089 return ret; 3090 } 3091 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3092 3093 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3094 { 3095 struct xhci_hcd *xhci; 3096 struct xhci_virt_device *virt_dev; 3097 int i, ret; 3098 3099 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3100 if (ret <= 0) 3101 return; 3102 xhci = hcd_to_xhci(hcd); 3103 3104 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3105 virt_dev = xhci->devs[udev->slot_id]; 3106 /* Free any rings allocated for added endpoints */ 3107 for (i = 0; i < 31; i++) { 3108 if (virt_dev->eps[i].new_ring) { 3109 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3110 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3111 virt_dev->eps[i].new_ring = NULL; 3112 } 3113 } 3114 xhci_zero_in_ctx(xhci, virt_dev); 3115 } 3116 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3117 3118 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3119 struct xhci_container_ctx *in_ctx, 3120 struct xhci_container_ctx *out_ctx, 3121 struct xhci_input_control_ctx *ctrl_ctx, 3122 u32 add_flags, u32 drop_flags) 3123 { 3124 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3125 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3126 xhci_slot_copy(xhci, in_ctx, out_ctx); 3127 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3128 } 3129 3130 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3131 struct usb_host_endpoint *host_ep) 3132 { 3133 struct xhci_hcd *xhci; 3134 struct xhci_virt_device *vdev; 3135 struct xhci_virt_ep *ep; 3136 struct usb_device *udev; 3137 unsigned long flags; 3138 unsigned int ep_index; 3139 3140 xhci = hcd_to_xhci(hcd); 3141 rescan: 3142 spin_lock_irqsave(&xhci->lock, flags); 3143 3144 udev = (struct usb_device *)host_ep->hcpriv; 3145 if (!udev || !udev->slot_id) 3146 goto done; 3147 3148 vdev = xhci->devs[udev->slot_id]; 3149 if (!vdev) 3150 goto done; 3151 3152 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3153 ep = &vdev->eps[ep_index]; 3154 if (!ep) 3155 goto done; 3156 3157 /* wait for hub_tt_work to finish clearing hub TT */ 3158 if (ep->ep_state & EP_CLEARING_TT) { 3159 spin_unlock_irqrestore(&xhci->lock, flags); 3160 schedule_timeout_uninterruptible(1); 3161 goto rescan; 3162 } 3163 3164 if (ep->ep_state) 3165 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3166 ep->ep_state); 3167 done: 3168 host_ep->hcpriv = NULL; 3169 spin_unlock_irqrestore(&xhci->lock, flags); 3170 } 3171 3172 /* 3173 * Called after usb core issues a clear halt control message. 3174 * The host side of the halt should already be cleared by a reset endpoint 3175 * command issued when the STALL event was received. 3176 * 3177 * The reset endpoint command may only be issued to endpoints in the halted 3178 * state. For software that wishes to reset the data toggle or sequence number 3179 * of an endpoint that isn't in the halted state this function will issue a 3180 * configure endpoint command with the Drop and Add bits set for the target 3181 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3182 */ 3183 3184 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3185 struct usb_host_endpoint *host_ep) 3186 { 3187 struct xhci_hcd *xhci; 3188 struct usb_device *udev; 3189 struct xhci_virt_device *vdev; 3190 struct xhci_virt_ep *ep; 3191 struct xhci_input_control_ctx *ctrl_ctx; 3192 struct xhci_command *stop_cmd, *cfg_cmd; 3193 unsigned int ep_index; 3194 unsigned long flags; 3195 u32 ep_flag; 3196 int err; 3197 3198 xhci = hcd_to_xhci(hcd); 3199 if (!host_ep->hcpriv) 3200 return; 3201 udev = (struct usb_device *) host_ep->hcpriv; 3202 vdev = xhci->devs[udev->slot_id]; 3203 3204 /* 3205 * vdev may be lost due to xHC restore error and re-initialization 3206 * during S3/S4 resume. A new vdev will be allocated later by 3207 * xhci_discover_or_reset_device() 3208 */ 3209 if (!udev->slot_id || !vdev) 3210 return; 3211 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3212 ep = &vdev->eps[ep_index]; 3213 if (!ep) 3214 return; 3215 3216 /* Bail out if toggle is already being cleared by a endpoint reset */ 3217 spin_lock_irqsave(&xhci->lock, flags); 3218 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3219 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3220 spin_unlock_irqrestore(&xhci->lock, flags); 3221 return; 3222 } 3223 spin_unlock_irqrestore(&xhci->lock, flags); 3224 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3225 if (usb_endpoint_xfer_control(&host_ep->desc) || 3226 usb_endpoint_xfer_isoc(&host_ep->desc)) 3227 return; 3228 3229 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3230 3231 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3232 return; 3233 3234 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3235 if (!stop_cmd) 3236 return; 3237 3238 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3239 if (!cfg_cmd) 3240 goto cleanup; 3241 3242 spin_lock_irqsave(&xhci->lock, flags); 3243 3244 /* block queuing new trbs and ringing ep doorbell */ 3245 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3246 3247 /* 3248 * Make sure endpoint ring is empty before resetting the toggle/seq. 3249 * Driver is required to synchronously cancel all transfer request. 3250 * Stop the endpoint to force xHC to update the output context 3251 */ 3252 3253 if (!list_empty(&ep->ring->td_list)) { 3254 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3255 spin_unlock_irqrestore(&xhci->lock, flags); 3256 xhci_free_command(xhci, cfg_cmd); 3257 goto cleanup; 3258 } 3259 3260 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3261 ep_index, 0); 3262 if (err < 0) { 3263 spin_unlock_irqrestore(&xhci->lock, flags); 3264 xhci_free_command(xhci, cfg_cmd); 3265 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3266 __func__, err); 3267 goto cleanup; 3268 } 3269 3270 xhci_ring_cmd_db(xhci); 3271 spin_unlock_irqrestore(&xhci->lock, flags); 3272 3273 wait_for_completion(stop_cmd->completion); 3274 3275 spin_lock_irqsave(&xhci->lock, flags); 3276 3277 /* config ep command clears toggle if add and drop ep flags are set */ 3278 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3279 if (!ctrl_ctx) { 3280 spin_unlock_irqrestore(&xhci->lock, flags); 3281 xhci_free_command(xhci, cfg_cmd); 3282 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3283 __func__); 3284 goto cleanup; 3285 } 3286 3287 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3288 ctrl_ctx, ep_flag, ep_flag); 3289 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3290 3291 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3292 udev->slot_id, false); 3293 if (err < 0) { 3294 spin_unlock_irqrestore(&xhci->lock, flags); 3295 xhci_free_command(xhci, cfg_cmd); 3296 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3297 __func__, err); 3298 goto cleanup; 3299 } 3300 3301 xhci_ring_cmd_db(xhci); 3302 spin_unlock_irqrestore(&xhci->lock, flags); 3303 3304 wait_for_completion(cfg_cmd->completion); 3305 3306 xhci_free_command(xhci, cfg_cmd); 3307 cleanup: 3308 xhci_free_command(xhci, stop_cmd); 3309 spin_lock_irqsave(&xhci->lock, flags); 3310 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3311 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3312 spin_unlock_irqrestore(&xhci->lock, flags); 3313 } 3314 3315 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3316 struct usb_device *udev, struct usb_host_endpoint *ep, 3317 unsigned int slot_id) 3318 { 3319 int ret; 3320 unsigned int ep_index; 3321 unsigned int ep_state; 3322 3323 if (!ep) 3324 return -EINVAL; 3325 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3326 if (ret <= 0) 3327 return -EINVAL; 3328 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3329 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3330 " descriptor for ep 0x%x does not support streams\n", 3331 ep->desc.bEndpointAddress); 3332 return -EINVAL; 3333 } 3334 3335 ep_index = xhci_get_endpoint_index(&ep->desc); 3336 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3337 if (ep_state & EP_HAS_STREAMS || 3338 ep_state & EP_GETTING_STREAMS) { 3339 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3340 "already has streams set up.\n", 3341 ep->desc.bEndpointAddress); 3342 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3343 "dynamic stream context array reallocation.\n"); 3344 return -EINVAL; 3345 } 3346 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3347 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3348 "endpoint 0x%x; URBs are pending.\n", 3349 ep->desc.bEndpointAddress); 3350 return -EINVAL; 3351 } 3352 return 0; 3353 } 3354 3355 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3356 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3357 { 3358 unsigned int max_streams; 3359 3360 /* The stream context array size must be a power of two */ 3361 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3362 /* 3363 * Find out how many primary stream array entries the host controller 3364 * supports. Later we may use secondary stream arrays (similar to 2nd 3365 * level page entries), but that's an optional feature for xHCI host 3366 * controllers. xHCs must support at least 4 stream IDs. 3367 */ 3368 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3369 if (*num_stream_ctxs > max_streams) { 3370 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3371 max_streams); 3372 *num_stream_ctxs = max_streams; 3373 *num_streams = max_streams; 3374 } 3375 } 3376 3377 /* Returns an error code if one of the endpoint already has streams. 3378 * This does not change any data structures, it only checks and gathers 3379 * information. 3380 */ 3381 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3382 struct usb_device *udev, 3383 struct usb_host_endpoint **eps, unsigned int num_eps, 3384 unsigned int *num_streams, u32 *changed_ep_bitmask) 3385 { 3386 unsigned int max_streams; 3387 unsigned int endpoint_flag; 3388 int i; 3389 int ret; 3390 3391 for (i = 0; i < num_eps; i++) { 3392 ret = xhci_check_streams_endpoint(xhci, udev, 3393 eps[i], udev->slot_id); 3394 if (ret < 0) 3395 return ret; 3396 3397 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3398 if (max_streams < (*num_streams - 1)) { 3399 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3400 eps[i]->desc.bEndpointAddress, 3401 max_streams); 3402 *num_streams = max_streams+1; 3403 } 3404 3405 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3406 if (*changed_ep_bitmask & endpoint_flag) 3407 return -EINVAL; 3408 *changed_ep_bitmask |= endpoint_flag; 3409 } 3410 return 0; 3411 } 3412 3413 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3414 struct usb_device *udev, 3415 struct usb_host_endpoint **eps, unsigned int num_eps) 3416 { 3417 u32 changed_ep_bitmask = 0; 3418 unsigned int slot_id; 3419 unsigned int ep_index; 3420 unsigned int ep_state; 3421 int i; 3422 3423 slot_id = udev->slot_id; 3424 if (!xhci->devs[slot_id]) 3425 return 0; 3426 3427 for (i = 0; i < num_eps; i++) { 3428 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3429 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3430 /* Are streams already being freed for the endpoint? */ 3431 if (ep_state & EP_GETTING_NO_STREAMS) { 3432 xhci_warn(xhci, "WARN Can't disable streams for " 3433 "endpoint 0x%x, " 3434 "streams are being disabled already\n", 3435 eps[i]->desc.bEndpointAddress); 3436 return 0; 3437 } 3438 /* Are there actually any streams to free? */ 3439 if (!(ep_state & EP_HAS_STREAMS) && 3440 !(ep_state & EP_GETTING_STREAMS)) { 3441 xhci_warn(xhci, "WARN Can't disable streams for " 3442 "endpoint 0x%x, " 3443 "streams are already disabled!\n", 3444 eps[i]->desc.bEndpointAddress); 3445 xhci_warn(xhci, "WARN xhci_free_streams() called " 3446 "with non-streams endpoint\n"); 3447 return 0; 3448 } 3449 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3450 } 3451 return changed_ep_bitmask; 3452 } 3453 3454 /* 3455 * The USB device drivers use this function (through the HCD interface in USB 3456 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3457 * coordinate mass storage command queueing across multiple endpoints (basically 3458 * a stream ID == a task ID). 3459 * 3460 * Setting up streams involves allocating the same size stream context array 3461 * for each endpoint and issuing a configure endpoint command for all endpoints. 3462 * 3463 * Don't allow the call to succeed if one endpoint only supports one stream 3464 * (which means it doesn't support streams at all). 3465 * 3466 * Drivers may get less stream IDs than they asked for, if the host controller 3467 * hardware or endpoints claim they can't support the number of requested 3468 * stream IDs. 3469 */ 3470 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3471 struct usb_host_endpoint **eps, unsigned int num_eps, 3472 unsigned int num_streams, gfp_t mem_flags) 3473 { 3474 int i, ret; 3475 struct xhci_hcd *xhci; 3476 struct xhci_virt_device *vdev; 3477 struct xhci_command *config_cmd; 3478 struct xhci_input_control_ctx *ctrl_ctx; 3479 unsigned int ep_index; 3480 unsigned int num_stream_ctxs; 3481 unsigned int max_packet; 3482 unsigned long flags; 3483 u32 changed_ep_bitmask = 0; 3484 3485 if (!eps) 3486 return -EINVAL; 3487 3488 /* Add one to the number of streams requested to account for 3489 * stream 0 that is reserved for xHCI usage. 3490 */ 3491 num_streams += 1; 3492 xhci = hcd_to_xhci(hcd); 3493 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3494 num_streams); 3495 3496 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3497 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3498 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3499 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3500 return -ENOSYS; 3501 } 3502 3503 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3504 if (!config_cmd) 3505 return -ENOMEM; 3506 3507 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3508 if (!ctrl_ctx) { 3509 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3510 __func__); 3511 xhci_free_command(xhci, config_cmd); 3512 return -ENOMEM; 3513 } 3514 3515 /* Check to make sure all endpoints are not already configured for 3516 * streams. While we're at it, find the maximum number of streams that 3517 * all the endpoints will support and check for duplicate endpoints. 3518 */ 3519 spin_lock_irqsave(&xhci->lock, flags); 3520 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3521 num_eps, &num_streams, &changed_ep_bitmask); 3522 if (ret < 0) { 3523 xhci_free_command(xhci, config_cmd); 3524 spin_unlock_irqrestore(&xhci->lock, flags); 3525 return ret; 3526 } 3527 if (num_streams <= 1) { 3528 xhci_warn(xhci, "WARN: endpoints can't handle " 3529 "more than one stream.\n"); 3530 xhci_free_command(xhci, config_cmd); 3531 spin_unlock_irqrestore(&xhci->lock, flags); 3532 return -EINVAL; 3533 } 3534 vdev = xhci->devs[udev->slot_id]; 3535 /* Mark each endpoint as being in transition, so 3536 * xhci_urb_enqueue() will reject all URBs. 3537 */ 3538 for (i = 0; i < num_eps; i++) { 3539 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3540 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3541 } 3542 spin_unlock_irqrestore(&xhci->lock, flags); 3543 3544 /* Setup internal data structures and allocate HW data structures for 3545 * streams (but don't install the HW structures in the input context 3546 * until we're sure all memory allocation succeeded). 3547 */ 3548 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3549 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3550 num_stream_ctxs, num_streams); 3551 3552 for (i = 0; i < num_eps; i++) { 3553 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3554 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3555 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3556 num_stream_ctxs, 3557 num_streams, 3558 max_packet, mem_flags); 3559 if (!vdev->eps[ep_index].stream_info) 3560 goto cleanup; 3561 /* Set maxPstreams in endpoint context and update deq ptr to 3562 * point to stream context array. FIXME 3563 */ 3564 } 3565 3566 /* Set up the input context for a configure endpoint command. */ 3567 for (i = 0; i < num_eps; i++) { 3568 struct xhci_ep_ctx *ep_ctx; 3569 3570 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3571 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3572 3573 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3574 vdev->out_ctx, ep_index); 3575 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3576 vdev->eps[ep_index].stream_info); 3577 } 3578 /* Tell the HW to drop its old copy of the endpoint context info 3579 * and add the updated copy from the input context. 3580 */ 3581 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3582 vdev->out_ctx, ctrl_ctx, 3583 changed_ep_bitmask, changed_ep_bitmask); 3584 3585 /* Issue and wait for the configure endpoint command */ 3586 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3587 false, false); 3588 3589 /* xHC rejected the configure endpoint command for some reason, so we 3590 * leave the old ring intact and free our internal streams data 3591 * structure. 3592 */ 3593 if (ret < 0) 3594 goto cleanup; 3595 3596 spin_lock_irqsave(&xhci->lock, flags); 3597 for (i = 0; i < num_eps; i++) { 3598 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3599 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3600 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3601 udev->slot_id, ep_index); 3602 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3603 } 3604 xhci_free_command(xhci, config_cmd); 3605 spin_unlock_irqrestore(&xhci->lock, flags); 3606 3607 for (i = 0; i < num_eps; i++) { 3608 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3609 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3610 } 3611 /* Subtract 1 for stream 0, which drivers can't use */ 3612 return num_streams - 1; 3613 3614 cleanup: 3615 /* If it didn't work, free the streams! */ 3616 for (i = 0; i < num_eps; i++) { 3617 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3618 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3619 vdev->eps[ep_index].stream_info = NULL; 3620 /* FIXME Unset maxPstreams in endpoint context and 3621 * update deq ptr to point to normal string ring. 3622 */ 3623 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3624 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3625 xhci_endpoint_zero(xhci, vdev, eps[i]); 3626 } 3627 xhci_free_command(xhci, config_cmd); 3628 return -ENOMEM; 3629 } 3630 3631 /* Transition the endpoint from using streams to being a "normal" endpoint 3632 * without streams. 3633 * 3634 * Modify the endpoint context state, submit a configure endpoint command, 3635 * and free all endpoint rings for streams if that completes successfully. 3636 */ 3637 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3638 struct usb_host_endpoint **eps, unsigned int num_eps, 3639 gfp_t mem_flags) 3640 { 3641 int i, ret; 3642 struct xhci_hcd *xhci; 3643 struct xhci_virt_device *vdev; 3644 struct xhci_command *command; 3645 struct xhci_input_control_ctx *ctrl_ctx; 3646 unsigned int ep_index; 3647 unsigned long flags; 3648 u32 changed_ep_bitmask; 3649 3650 xhci = hcd_to_xhci(hcd); 3651 vdev = xhci->devs[udev->slot_id]; 3652 3653 /* Set up a configure endpoint command to remove the streams rings */ 3654 spin_lock_irqsave(&xhci->lock, flags); 3655 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3656 udev, eps, num_eps); 3657 if (changed_ep_bitmask == 0) { 3658 spin_unlock_irqrestore(&xhci->lock, flags); 3659 return -EINVAL; 3660 } 3661 3662 /* Use the xhci_command structure from the first endpoint. We may have 3663 * allocated too many, but the driver may call xhci_free_streams() for 3664 * each endpoint it grouped into one call to xhci_alloc_streams(). 3665 */ 3666 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3667 command = vdev->eps[ep_index].stream_info->free_streams_command; 3668 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3669 if (!ctrl_ctx) { 3670 spin_unlock_irqrestore(&xhci->lock, flags); 3671 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3672 __func__); 3673 return -EINVAL; 3674 } 3675 3676 for (i = 0; i < num_eps; i++) { 3677 struct xhci_ep_ctx *ep_ctx; 3678 3679 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3680 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3681 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3682 EP_GETTING_NO_STREAMS; 3683 3684 xhci_endpoint_copy(xhci, command->in_ctx, 3685 vdev->out_ctx, ep_index); 3686 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3687 &vdev->eps[ep_index]); 3688 } 3689 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3690 vdev->out_ctx, ctrl_ctx, 3691 changed_ep_bitmask, changed_ep_bitmask); 3692 spin_unlock_irqrestore(&xhci->lock, flags); 3693 3694 /* Issue and wait for the configure endpoint command, 3695 * which must succeed. 3696 */ 3697 ret = xhci_configure_endpoint(xhci, udev, command, 3698 false, true); 3699 3700 /* xHC rejected the configure endpoint command for some reason, so we 3701 * leave the streams rings intact. 3702 */ 3703 if (ret < 0) 3704 return ret; 3705 3706 spin_lock_irqsave(&xhci->lock, flags); 3707 for (i = 0; i < num_eps; i++) { 3708 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3709 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3710 vdev->eps[ep_index].stream_info = NULL; 3711 /* FIXME Unset maxPstreams in endpoint context and 3712 * update deq ptr to point to normal string ring. 3713 */ 3714 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3715 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3716 } 3717 spin_unlock_irqrestore(&xhci->lock, flags); 3718 3719 return 0; 3720 } 3721 3722 /* 3723 * Deletes endpoint resources for endpoints that were active before a Reset 3724 * Device command, or a Disable Slot command. The Reset Device command leaves 3725 * the control endpoint intact, whereas the Disable Slot command deletes it. 3726 * 3727 * Must be called with xhci->lock held. 3728 */ 3729 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3730 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3731 { 3732 int i; 3733 unsigned int num_dropped_eps = 0; 3734 unsigned int drop_flags = 0; 3735 3736 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3737 if (virt_dev->eps[i].ring) { 3738 drop_flags |= 1 << i; 3739 num_dropped_eps++; 3740 } 3741 } 3742 xhci->num_active_eps -= num_dropped_eps; 3743 if (num_dropped_eps) 3744 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3745 "Dropped %u ep ctxs, flags = 0x%x, " 3746 "%u now active.", 3747 num_dropped_eps, drop_flags, 3748 xhci->num_active_eps); 3749 } 3750 3751 /* 3752 * This submits a Reset Device Command, which will set the device state to 0, 3753 * set the device address to 0, and disable all the endpoints except the default 3754 * control endpoint. The USB core should come back and call 3755 * xhci_address_device(), and then re-set up the configuration. If this is 3756 * called because of a usb_reset_and_verify_device(), then the old alternate 3757 * settings will be re-installed through the normal bandwidth allocation 3758 * functions. 3759 * 3760 * Wait for the Reset Device command to finish. Remove all structures 3761 * associated with the endpoints that were disabled. Clear the input device 3762 * structure? Reset the control endpoint 0 max packet size? 3763 * 3764 * If the virt_dev to be reset does not exist or does not match the udev, 3765 * it means the device is lost, possibly due to the xHC restore error and 3766 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3767 * re-allocate the device. 3768 */ 3769 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3770 struct usb_device *udev) 3771 { 3772 int ret, i; 3773 unsigned long flags; 3774 struct xhci_hcd *xhci; 3775 unsigned int slot_id; 3776 struct xhci_virt_device *virt_dev; 3777 struct xhci_command *reset_device_cmd; 3778 struct xhci_slot_ctx *slot_ctx; 3779 int old_active_eps = 0; 3780 3781 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3782 if (ret <= 0) 3783 return ret; 3784 xhci = hcd_to_xhci(hcd); 3785 slot_id = udev->slot_id; 3786 virt_dev = xhci->devs[slot_id]; 3787 if (!virt_dev) { 3788 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3789 "not exist. Re-allocate the device\n", slot_id); 3790 ret = xhci_alloc_dev(hcd, udev); 3791 if (ret == 1) 3792 return 0; 3793 else 3794 return -EINVAL; 3795 } 3796 3797 if (virt_dev->tt_info) 3798 old_active_eps = virt_dev->tt_info->active_eps; 3799 3800 if (virt_dev->udev != udev) { 3801 /* If the virt_dev and the udev does not match, this virt_dev 3802 * may belong to another udev. 3803 * Re-allocate the device. 3804 */ 3805 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3806 "not match the udev. Re-allocate the device\n", 3807 slot_id); 3808 ret = xhci_alloc_dev(hcd, udev); 3809 if (ret == 1) 3810 return 0; 3811 else 3812 return -EINVAL; 3813 } 3814 3815 /* If device is not setup, there is no point in resetting it */ 3816 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3817 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3818 SLOT_STATE_DISABLED) 3819 return 0; 3820 3821 trace_xhci_discover_or_reset_device(slot_ctx); 3822 3823 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3824 /* Allocate the command structure that holds the struct completion. 3825 * Assume we're in process context, since the normal device reset 3826 * process has to wait for the device anyway. Storage devices are 3827 * reset as part of error handling, so use GFP_NOIO instead of 3828 * GFP_KERNEL. 3829 */ 3830 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3831 if (!reset_device_cmd) { 3832 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3833 return -ENOMEM; 3834 } 3835 3836 /* Attempt to submit the Reset Device command to the command ring */ 3837 spin_lock_irqsave(&xhci->lock, flags); 3838 3839 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3840 if (ret) { 3841 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3842 spin_unlock_irqrestore(&xhci->lock, flags); 3843 goto command_cleanup; 3844 } 3845 xhci_ring_cmd_db(xhci); 3846 spin_unlock_irqrestore(&xhci->lock, flags); 3847 3848 /* Wait for the Reset Device command to finish */ 3849 wait_for_completion(reset_device_cmd->completion); 3850 3851 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3852 * unless we tried to reset a slot ID that wasn't enabled, 3853 * or the device wasn't in the addressed or configured state. 3854 */ 3855 ret = reset_device_cmd->status; 3856 switch (ret) { 3857 case COMP_COMMAND_ABORTED: 3858 case COMP_COMMAND_RING_STOPPED: 3859 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3860 ret = -ETIME; 3861 goto command_cleanup; 3862 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3863 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3864 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3865 slot_id, 3866 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3867 xhci_dbg(xhci, "Not freeing device rings.\n"); 3868 /* Don't treat this as an error. May change my mind later. */ 3869 ret = 0; 3870 goto command_cleanup; 3871 case COMP_SUCCESS: 3872 xhci_dbg(xhci, "Successful reset device command.\n"); 3873 break; 3874 default: 3875 if (xhci_is_vendor_info_code(xhci, ret)) 3876 break; 3877 xhci_warn(xhci, "Unknown completion code %u for " 3878 "reset device command.\n", ret); 3879 ret = -EINVAL; 3880 goto command_cleanup; 3881 } 3882 3883 /* Free up host controller endpoint resources */ 3884 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3885 spin_lock_irqsave(&xhci->lock, flags); 3886 /* Don't delete the default control endpoint resources */ 3887 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3888 spin_unlock_irqrestore(&xhci->lock, flags); 3889 } 3890 3891 /* Everything but endpoint 0 is disabled, so free the rings. */ 3892 for (i = 1; i < 31; i++) { 3893 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3894 3895 if (ep->ep_state & EP_HAS_STREAMS) { 3896 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3897 xhci_get_endpoint_address(i)); 3898 xhci_free_stream_info(xhci, ep->stream_info); 3899 ep->stream_info = NULL; 3900 ep->ep_state &= ~EP_HAS_STREAMS; 3901 } 3902 3903 if (ep->ring) { 3904 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3905 xhci_free_endpoint_ring(xhci, virt_dev, i); 3906 } 3907 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3908 xhci_drop_ep_from_interval_table(xhci, 3909 &virt_dev->eps[i].bw_info, 3910 virt_dev->bw_table, 3911 udev, 3912 &virt_dev->eps[i], 3913 virt_dev->tt_info); 3914 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3915 } 3916 /* If necessary, update the number of active TTs on this root port */ 3917 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3918 virt_dev->flags = 0; 3919 ret = 0; 3920 3921 command_cleanup: 3922 xhci_free_command(xhci, reset_device_cmd); 3923 return ret; 3924 } 3925 3926 /* 3927 * At this point, the struct usb_device is about to go away, the device has 3928 * disconnected, and all traffic has been stopped and the endpoints have been 3929 * disabled. Free any HC data structures associated with that device. 3930 */ 3931 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3932 { 3933 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3934 struct xhci_virt_device *virt_dev; 3935 struct xhci_slot_ctx *slot_ctx; 3936 int i, ret; 3937 3938 #ifndef CONFIG_USB_DEFAULT_PERSIST 3939 /* 3940 * We called pm_runtime_get_noresume when the device was attached. 3941 * Decrement the counter here to allow controller to runtime suspend 3942 * if no devices remain. 3943 */ 3944 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3945 pm_runtime_put_noidle(hcd->self.controller); 3946 #endif 3947 3948 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3949 /* If the host is halted due to driver unload, we still need to free the 3950 * device. 3951 */ 3952 if (ret <= 0 && ret != -ENODEV) 3953 return; 3954 3955 virt_dev = xhci->devs[udev->slot_id]; 3956 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3957 trace_xhci_free_dev(slot_ctx); 3958 3959 /* Stop any wayward timer functions (which may grab the lock) */ 3960 for (i = 0; i < 31; i++) { 3961 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3962 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3963 } 3964 virt_dev->udev = NULL; 3965 ret = xhci_disable_slot(xhci, udev->slot_id); 3966 if (ret) 3967 xhci_free_virt_device(xhci, udev->slot_id); 3968 } 3969 3970 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3971 { 3972 struct xhci_command *command; 3973 unsigned long flags; 3974 u32 state; 3975 int ret = 0; 3976 3977 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 3978 if (!command) 3979 return -ENOMEM; 3980 3981 xhci_debugfs_remove_slot(xhci, slot_id); 3982 3983 spin_lock_irqsave(&xhci->lock, flags); 3984 /* Don't disable the slot if the host controller is dead. */ 3985 state = readl(&xhci->op_regs->status); 3986 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3987 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3988 spin_unlock_irqrestore(&xhci->lock, flags); 3989 kfree(command); 3990 return -ENODEV; 3991 } 3992 3993 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3994 slot_id); 3995 if (ret) { 3996 spin_unlock_irqrestore(&xhci->lock, flags); 3997 kfree(command); 3998 return ret; 3999 } 4000 xhci_ring_cmd_db(xhci); 4001 spin_unlock_irqrestore(&xhci->lock, flags); 4002 return ret; 4003 } 4004 4005 /* 4006 * Checks if we have enough host controller resources for the default control 4007 * endpoint. 4008 * 4009 * Must be called with xhci->lock held. 4010 */ 4011 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 4012 { 4013 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 4014 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4015 "Not enough ep ctxs: " 4016 "%u active, need to add 1, limit is %u.", 4017 xhci->num_active_eps, xhci->limit_active_eps); 4018 return -ENOMEM; 4019 } 4020 xhci->num_active_eps += 1; 4021 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 4022 "Adding 1 ep ctx, %u now active.", 4023 xhci->num_active_eps); 4024 return 0; 4025 } 4026 4027 4028 /* 4029 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 4030 * timed out, or allocating memory failed. Returns 1 on success. 4031 */ 4032 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 4033 { 4034 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4035 struct xhci_virt_device *vdev; 4036 struct xhci_slot_ctx *slot_ctx; 4037 unsigned long flags; 4038 int ret, slot_id; 4039 struct xhci_command *command; 4040 4041 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4042 if (!command) 4043 return 0; 4044 4045 spin_lock_irqsave(&xhci->lock, flags); 4046 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 4047 if (ret) { 4048 spin_unlock_irqrestore(&xhci->lock, flags); 4049 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 4050 xhci_free_command(xhci, command); 4051 return 0; 4052 } 4053 xhci_ring_cmd_db(xhci); 4054 spin_unlock_irqrestore(&xhci->lock, flags); 4055 4056 wait_for_completion(command->completion); 4057 slot_id = command->slot_id; 4058 4059 if (!slot_id || command->status != COMP_SUCCESS) { 4060 xhci_err(xhci, "Error while assigning device slot ID\n"); 4061 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4062 HCS_MAX_SLOTS( 4063 readl(&xhci->cap_regs->hcs_params1))); 4064 xhci_free_command(xhci, command); 4065 return 0; 4066 } 4067 4068 xhci_free_command(xhci, command); 4069 4070 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4071 spin_lock_irqsave(&xhci->lock, flags); 4072 ret = xhci_reserve_host_control_ep_resources(xhci); 4073 if (ret) { 4074 spin_unlock_irqrestore(&xhci->lock, flags); 4075 xhci_warn(xhci, "Not enough host resources, " 4076 "active endpoint contexts = %u\n", 4077 xhci->num_active_eps); 4078 goto disable_slot; 4079 } 4080 spin_unlock_irqrestore(&xhci->lock, flags); 4081 } 4082 /* Use GFP_NOIO, since this function can be called from 4083 * xhci_discover_or_reset_device(), which may be called as part of 4084 * mass storage driver error handling. 4085 */ 4086 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4087 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4088 goto disable_slot; 4089 } 4090 vdev = xhci->devs[slot_id]; 4091 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4092 trace_xhci_alloc_dev(slot_ctx); 4093 4094 udev->slot_id = slot_id; 4095 4096 xhci_debugfs_create_slot(xhci, slot_id); 4097 4098 #ifndef CONFIG_USB_DEFAULT_PERSIST 4099 /* 4100 * If resetting upon resume, we can't put the controller into runtime 4101 * suspend if there is a device attached. 4102 */ 4103 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4104 pm_runtime_get_noresume(hcd->self.controller); 4105 #endif 4106 4107 /* Is this a LS or FS device under a HS hub? */ 4108 /* Hub or peripherial? */ 4109 return 1; 4110 4111 disable_slot: 4112 ret = xhci_disable_slot(xhci, udev->slot_id); 4113 if (ret) 4114 xhci_free_virt_device(xhci, udev->slot_id); 4115 4116 return 0; 4117 } 4118 4119 /* 4120 * Issue an Address Device command and optionally send a corresponding 4121 * SetAddress request to the device. 4122 */ 4123 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4124 enum xhci_setup_dev setup) 4125 { 4126 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4127 unsigned long flags; 4128 struct xhci_virt_device *virt_dev; 4129 int ret = 0; 4130 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4131 struct xhci_slot_ctx *slot_ctx; 4132 struct xhci_input_control_ctx *ctrl_ctx; 4133 u64 temp_64; 4134 struct xhci_command *command = NULL; 4135 4136 mutex_lock(&xhci->mutex); 4137 4138 if (xhci->xhc_state) { /* dying, removing or halted */ 4139 ret = -ESHUTDOWN; 4140 goto out; 4141 } 4142 4143 if (!udev->slot_id) { 4144 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4145 "Bad Slot ID %d", udev->slot_id); 4146 ret = -EINVAL; 4147 goto out; 4148 } 4149 4150 virt_dev = xhci->devs[udev->slot_id]; 4151 4152 if (WARN_ON(!virt_dev)) { 4153 /* 4154 * In plug/unplug torture test with an NEC controller, 4155 * a zero-dereference was observed once due to virt_dev = 0. 4156 * Print useful debug rather than crash if it is observed again! 4157 */ 4158 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4159 udev->slot_id); 4160 ret = -EINVAL; 4161 goto out; 4162 } 4163 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4164 trace_xhci_setup_device_slot(slot_ctx); 4165 4166 if (setup == SETUP_CONTEXT_ONLY) { 4167 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4168 SLOT_STATE_DEFAULT) { 4169 xhci_dbg(xhci, "Slot already in default state\n"); 4170 goto out; 4171 } 4172 } 4173 4174 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4175 if (!command) { 4176 ret = -ENOMEM; 4177 goto out; 4178 } 4179 4180 command->in_ctx = virt_dev->in_ctx; 4181 4182 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4183 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4184 if (!ctrl_ctx) { 4185 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4186 __func__); 4187 ret = -EINVAL; 4188 goto out; 4189 } 4190 /* 4191 * If this is the first Set Address since device plug-in or 4192 * virt_device realloaction after a resume with an xHCI power loss, 4193 * then set up the slot context. 4194 */ 4195 if (!slot_ctx->dev_info) 4196 xhci_setup_addressable_virt_dev(xhci, udev); 4197 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4198 else 4199 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4200 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4201 ctrl_ctx->drop_flags = 0; 4202 4203 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4204 le32_to_cpu(slot_ctx->dev_info) >> 27); 4205 4206 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4207 spin_lock_irqsave(&xhci->lock, flags); 4208 trace_xhci_setup_device(virt_dev); 4209 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4210 udev->slot_id, setup); 4211 if (ret) { 4212 spin_unlock_irqrestore(&xhci->lock, flags); 4213 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4214 "FIXME: allocate a command ring segment"); 4215 goto out; 4216 } 4217 xhci_ring_cmd_db(xhci); 4218 spin_unlock_irqrestore(&xhci->lock, flags); 4219 4220 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4221 wait_for_completion(command->completion); 4222 4223 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4224 * the SetAddress() "recovery interval" required by USB and aborting the 4225 * command on a timeout. 4226 */ 4227 switch (command->status) { 4228 case COMP_COMMAND_ABORTED: 4229 case COMP_COMMAND_RING_STOPPED: 4230 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4231 ret = -ETIME; 4232 break; 4233 case COMP_CONTEXT_STATE_ERROR: 4234 case COMP_SLOT_NOT_ENABLED_ERROR: 4235 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4236 act, udev->slot_id); 4237 ret = -EINVAL; 4238 break; 4239 case COMP_USB_TRANSACTION_ERROR: 4240 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4241 4242 mutex_unlock(&xhci->mutex); 4243 ret = xhci_disable_slot(xhci, udev->slot_id); 4244 if (!ret) 4245 xhci_alloc_dev(hcd, udev); 4246 kfree(command->completion); 4247 kfree(command); 4248 return -EPROTO; 4249 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4250 dev_warn(&udev->dev, 4251 "ERROR: Incompatible device for setup %s command\n", act); 4252 ret = -ENODEV; 4253 break; 4254 case COMP_SUCCESS: 4255 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4256 "Successful setup %s command", act); 4257 break; 4258 default: 4259 xhci_err(xhci, 4260 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4261 act, command->status); 4262 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4263 ret = -EINVAL; 4264 break; 4265 } 4266 if (ret) 4267 goto out; 4268 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4269 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4270 "Op regs DCBAA ptr = %#016llx", temp_64); 4271 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4272 "Slot ID %d dcbaa entry @%p = %#016llx", 4273 udev->slot_id, 4274 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4275 (unsigned long long) 4276 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4277 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4278 "Output Context DMA address = %#08llx", 4279 (unsigned long long)virt_dev->out_ctx->dma); 4280 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4281 le32_to_cpu(slot_ctx->dev_info) >> 27); 4282 /* 4283 * USB core uses address 1 for the roothubs, so we add one to the 4284 * address given back to us by the HC. 4285 */ 4286 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4287 le32_to_cpu(slot_ctx->dev_info) >> 27); 4288 /* Zero the input context control for later use */ 4289 ctrl_ctx->add_flags = 0; 4290 ctrl_ctx->drop_flags = 0; 4291 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4292 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4293 4294 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4295 "Internal device address = %d", 4296 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4297 out: 4298 mutex_unlock(&xhci->mutex); 4299 if (command) { 4300 kfree(command->completion); 4301 kfree(command); 4302 } 4303 return ret; 4304 } 4305 4306 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4307 { 4308 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4309 } 4310 4311 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4312 { 4313 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4314 } 4315 4316 /* 4317 * Transfer the port index into real index in the HW port status 4318 * registers. Caculate offset between the port's PORTSC register 4319 * and port status base. Divide the number of per port register 4320 * to get the real index. The raw port number bases 1. 4321 */ 4322 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4323 { 4324 struct xhci_hub *rhub; 4325 4326 rhub = xhci_get_rhub(hcd); 4327 return rhub->ports[port1 - 1]->hw_portnum + 1; 4328 } 4329 4330 /* 4331 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4332 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4333 */ 4334 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4335 struct usb_device *udev, u16 max_exit_latency) 4336 { 4337 struct xhci_virt_device *virt_dev; 4338 struct xhci_command *command; 4339 struct xhci_input_control_ctx *ctrl_ctx; 4340 struct xhci_slot_ctx *slot_ctx; 4341 unsigned long flags; 4342 int ret; 4343 4344 spin_lock_irqsave(&xhci->lock, flags); 4345 4346 virt_dev = xhci->devs[udev->slot_id]; 4347 4348 /* 4349 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4350 * xHC was re-initialized. Exit latency will be set later after 4351 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4352 */ 4353 4354 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4355 spin_unlock_irqrestore(&xhci->lock, flags); 4356 return 0; 4357 } 4358 4359 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4360 command = xhci->lpm_command; 4361 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4362 if (!ctrl_ctx) { 4363 spin_unlock_irqrestore(&xhci->lock, flags); 4364 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4365 __func__); 4366 return -ENOMEM; 4367 } 4368 4369 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4370 spin_unlock_irqrestore(&xhci->lock, flags); 4371 4372 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4373 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4374 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4375 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4376 slot_ctx->dev_state = 0; 4377 4378 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4379 "Set up evaluate context for LPM MEL change."); 4380 4381 /* Issue and wait for the evaluate context command. */ 4382 ret = xhci_configure_endpoint(xhci, udev, command, 4383 true, true); 4384 4385 if (!ret) { 4386 spin_lock_irqsave(&xhci->lock, flags); 4387 virt_dev->current_mel = max_exit_latency; 4388 spin_unlock_irqrestore(&xhci->lock, flags); 4389 } 4390 return ret; 4391 } 4392 4393 #ifdef CONFIG_PM 4394 4395 /* BESL to HIRD Encoding array for USB2 LPM */ 4396 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4397 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4398 4399 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4400 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4401 struct usb_device *udev) 4402 { 4403 int u2del, besl, besl_host; 4404 int besl_device = 0; 4405 u32 field; 4406 4407 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4408 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4409 4410 if (field & USB_BESL_SUPPORT) { 4411 for (besl_host = 0; besl_host < 16; besl_host++) { 4412 if (xhci_besl_encoding[besl_host] >= u2del) 4413 break; 4414 } 4415 /* Use baseline BESL value as default */ 4416 if (field & USB_BESL_BASELINE_VALID) 4417 besl_device = USB_GET_BESL_BASELINE(field); 4418 else if (field & USB_BESL_DEEP_VALID) 4419 besl_device = USB_GET_BESL_DEEP(field); 4420 } else { 4421 if (u2del <= 50) 4422 besl_host = 0; 4423 else 4424 besl_host = (u2del - 51) / 75 + 1; 4425 } 4426 4427 besl = besl_host + besl_device; 4428 if (besl > 15) 4429 besl = 15; 4430 4431 return besl; 4432 } 4433 4434 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4435 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4436 { 4437 u32 field; 4438 int l1; 4439 int besld = 0; 4440 int hirdm = 0; 4441 4442 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4443 4444 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4445 l1 = udev->l1_params.timeout / 256; 4446 4447 /* device has preferred BESLD */ 4448 if (field & USB_BESL_DEEP_VALID) { 4449 besld = USB_GET_BESL_DEEP(field); 4450 hirdm = 1; 4451 } 4452 4453 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4454 } 4455 4456 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4457 struct usb_device *udev, int enable) 4458 { 4459 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4460 struct xhci_port **ports; 4461 __le32 __iomem *pm_addr, *hlpm_addr; 4462 u32 pm_val, hlpm_val, field; 4463 unsigned int port_num; 4464 unsigned long flags; 4465 int hird, exit_latency; 4466 int ret; 4467 4468 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4469 return -EPERM; 4470 4471 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4472 !udev->lpm_capable) 4473 return -EPERM; 4474 4475 if (!udev->parent || udev->parent->parent || 4476 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4477 return -EPERM; 4478 4479 if (udev->usb2_hw_lpm_capable != 1) 4480 return -EPERM; 4481 4482 spin_lock_irqsave(&xhci->lock, flags); 4483 4484 ports = xhci->usb2_rhub.ports; 4485 port_num = udev->portnum - 1; 4486 pm_addr = ports[port_num]->addr + PORTPMSC; 4487 pm_val = readl(pm_addr); 4488 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4489 4490 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4491 enable ? "enable" : "disable", port_num + 1); 4492 4493 if (enable) { 4494 /* Host supports BESL timeout instead of HIRD */ 4495 if (udev->usb2_hw_lpm_besl_capable) { 4496 /* if device doesn't have a preferred BESL value use a 4497 * default one which works with mixed HIRD and BESL 4498 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4499 */ 4500 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4501 if ((field & USB_BESL_SUPPORT) && 4502 (field & USB_BESL_BASELINE_VALID)) 4503 hird = USB_GET_BESL_BASELINE(field); 4504 else 4505 hird = udev->l1_params.besl; 4506 4507 exit_latency = xhci_besl_encoding[hird]; 4508 spin_unlock_irqrestore(&xhci->lock, flags); 4509 4510 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4511 * input context for link powermanagement evaluate 4512 * context commands. It is protected by hcd->bandwidth 4513 * mutex and is shared by all devices. We need to set 4514 * the max ext latency in USB 2 BESL LPM as well, so 4515 * use the same mutex and xhci_change_max_exit_latency() 4516 */ 4517 mutex_lock(hcd->bandwidth_mutex); 4518 ret = xhci_change_max_exit_latency(xhci, udev, 4519 exit_latency); 4520 mutex_unlock(hcd->bandwidth_mutex); 4521 4522 if (ret < 0) 4523 return ret; 4524 spin_lock_irqsave(&xhci->lock, flags); 4525 4526 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4527 writel(hlpm_val, hlpm_addr); 4528 /* flush write */ 4529 readl(hlpm_addr); 4530 } else { 4531 hird = xhci_calculate_hird_besl(xhci, udev); 4532 } 4533 4534 pm_val &= ~PORT_HIRD_MASK; 4535 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4536 writel(pm_val, pm_addr); 4537 pm_val = readl(pm_addr); 4538 pm_val |= PORT_HLE; 4539 writel(pm_val, pm_addr); 4540 /* flush write */ 4541 readl(pm_addr); 4542 } else { 4543 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4544 writel(pm_val, pm_addr); 4545 /* flush write */ 4546 readl(pm_addr); 4547 if (udev->usb2_hw_lpm_besl_capable) { 4548 spin_unlock_irqrestore(&xhci->lock, flags); 4549 mutex_lock(hcd->bandwidth_mutex); 4550 xhci_change_max_exit_latency(xhci, udev, 0); 4551 mutex_unlock(hcd->bandwidth_mutex); 4552 readl_poll_timeout(ports[port_num]->addr, pm_val, 4553 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4554 100, 10000); 4555 return 0; 4556 } 4557 } 4558 4559 spin_unlock_irqrestore(&xhci->lock, flags); 4560 return 0; 4561 } 4562 4563 /* check if a usb2 port supports a given extened capability protocol 4564 * only USB2 ports extended protocol capability values are cached. 4565 * Return 1 if capability is supported 4566 */ 4567 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4568 unsigned capability) 4569 { 4570 u32 port_offset, port_count; 4571 int i; 4572 4573 for (i = 0; i < xhci->num_ext_caps; i++) { 4574 if (xhci->ext_caps[i] & capability) { 4575 /* port offsets starts at 1 */ 4576 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4577 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4578 if (port >= port_offset && 4579 port < port_offset + port_count) 4580 return 1; 4581 } 4582 } 4583 return 0; 4584 } 4585 4586 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4587 { 4588 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4589 int portnum = udev->portnum - 1; 4590 4591 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4592 return 0; 4593 4594 /* we only support lpm for non-hub device connected to root hub yet */ 4595 if (!udev->parent || udev->parent->parent || 4596 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4597 return 0; 4598 4599 if (xhci->hw_lpm_support == 1 && 4600 xhci_check_usb2_port_capability( 4601 xhci, portnum, XHCI_HLC)) { 4602 udev->usb2_hw_lpm_capable = 1; 4603 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4604 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4605 if (xhci_check_usb2_port_capability(xhci, portnum, 4606 XHCI_BLC)) 4607 udev->usb2_hw_lpm_besl_capable = 1; 4608 } 4609 4610 return 0; 4611 } 4612 4613 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4614 4615 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4616 static unsigned long long xhci_service_interval_to_ns( 4617 struct usb_endpoint_descriptor *desc) 4618 { 4619 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4620 } 4621 4622 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4623 enum usb3_link_state state) 4624 { 4625 unsigned long long sel; 4626 unsigned long long pel; 4627 unsigned int max_sel_pel; 4628 char *state_name; 4629 4630 switch (state) { 4631 case USB3_LPM_U1: 4632 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4633 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4634 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4635 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4636 state_name = "U1"; 4637 break; 4638 case USB3_LPM_U2: 4639 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4640 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4641 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4642 state_name = "U2"; 4643 break; 4644 default: 4645 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4646 __func__); 4647 return USB3_LPM_DISABLED; 4648 } 4649 4650 if (sel <= max_sel_pel && pel <= max_sel_pel) 4651 return USB3_LPM_DEVICE_INITIATED; 4652 4653 if (sel > max_sel_pel) 4654 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4655 "due to long SEL %llu ms\n", 4656 state_name, sel); 4657 else 4658 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4659 "due to long PEL %llu ms\n", 4660 state_name, pel); 4661 return USB3_LPM_DISABLED; 4662 } 4663 4664 /* The U1 timeout should be the maximum of the following values: 4665 * - For control endpoints, U1 system exit latency (SEL) * 3 4666 * - For bulk endpoints, U1 SEL * 5 4667 * - For interrupt endpoints: 4668 * - Notification EPs, U1 SEL * 3 4669 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4670 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4671 */ 4672 static unsigned long long xhci_calculate_intel_u1_timeout( 4673 struct usb_device *udev, 4674 struct usb_endpoint_descriptor *desc) 4675 { 4676 unsigned long long timeout_ns; 4677 int ep_type; 4678 int intr_type; 4679 4680 ep_type = usb_endpoint_type(desc); 4681 switch (ep_type) { 4682 case USB_ENDPOINT_XFER_CONTROL: 4683 timeout_ns = udev->u1_params.sel * 3; 4684 break; 4685 case USB_ENDPOINT_XFER_BULK: 4686 timeout_ns = udev->u1_params.sel * 5; 4687 break; 4688 case USB_ENDPOINT_XFER_INT: 4689 intr_type = usb_endpoint_interrupt_type(desc); 4690 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4691 timeout_ns = udev->u1_params.sel * 3; 4692 break; 4693 } 4694 /* Otherwise the calculation is the same as isoc eps */ 4695 fallthrough; 4696 case USB_ENDPOINT_XFER_ISOC: 4697 timeout_ns = xhci_service_interval_to_ns(desc); 4698 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4699 if (timeout_ns < udev->u1_params.sel * 2) 4700 timeout_ns = udev->u1_params.sel * 2; 4701 break; 4702 default: 4703 return 0; 4704 } 4705 4706 return timeout_ns; 4707 } 4708 4709 /* Returns the hub-encoded U1 timeout value. */ 4710 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4711 struct usb_device *udev, 4712 struct usb_endpoint_descriptor *desc) 4713 { 4714 unsigned long long timeout_ns; 4715 4716 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4717 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4718 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4719 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4720 return USB3_LPM_DISABLED; 4721 } 4722 } 4723 4724 if (xhci->quirks & XHCI_INTEL_HOST) 4725 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4726 else 4727 timeout_ns = udev->u1_params.sel; 4728 4729 /* The U1 timeout is encoded in 1us intervals. 4730 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4731 */ 4732 if (timeout_ns == USB3_LPM_DISABLED) 4733 timeout_ns = 1; 4734 else 4735 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4736 4737 /* If the necessary timeout value is bigger than what we can set in the 4738 * USB 3.0 hub, we have to disable hub-initiated U1. 4739 */ 4740 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4741 return timeout_ns; 4742 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4743 "due to long timeout %llu ms\n", timeout_ns); 4744 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4745 } 4746 4747 /* The U2 timeout should be the maximum of: 4748 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4749 * - largest bInterval of any active periodic endpoint (to avoid going 4750 * into lower power link states between intervals). 4751 * - the U2 Exit Latency of the device 4752 */ 4753 static unsigned long long xhci_calculate_intel_u2_timeout( 4754 struct usb_device *udev, 4755 struct usb_endpoint_descriptor *desc) 4756 { 4757 unsigned long long timeout_ns; 4758 unsigned long long u2_del_ns; 4759 4760 timeout_ns = 10 * 1000 * 1000; 4761 4762 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4763 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4764 timeout_ns = xhci_service_interval_to_ns(desc); 4765 4766 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4767 if (u2_del_ns > timeout_ns) 4768 timeout_ns = u2_del_ns; 4769 4770 return timeout_ns; 4771 } 4772 4773 /* Returns the hub-encoded U2 timeout value. */ 4774 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4775 struct usb_device *udev, 4776 struct usb_endpoint_descriptor *desc) 4777 { 4778 unsigned long long timeout_ns; 4779 4780 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4781 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4782 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4783 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4784 return USB3_LPM_DISABLED; 4785 } 4786 } 4787 4788 if (xhci->quirks & XHCI_INTEL_HOST) 4789 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4790 else 4791 timeout_ns = udev->u2_params.sel; 4792 4793 /* The U2 timeout is encoded in 256us intervals */ 4794 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4795 /* If the necessary timeout value is bigger than what we can set in the 4796 * USB 3.0 hub, we have to disable hub-initiated U2. 4797 */ 4798 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4799 return timeout_ns; 4800 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4801 "due to long timeout %llu ms\n", timeout_ns); 4802 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4803 } 4804 4805 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4806 struct usb_device *udev, 4807 struct usb_endpoint_descriptor *desc, 4808 enum usb3_link_state state, 4809 u16 *timeout) 4810 { 4811 if (state == USB3_LPM_U1) 4812 return xhci_calculate_u1_timeout(xhci, udev, desc); 4813 else if (state == USB3_LPM_U2) 4814 return xhci_calculate_u2_timeout(xhci, udev, desc); 4815 4816 return USB3_LPM_DISABLED; 4817 } 4818 4819 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4820 struct usb_device *udev, 4821 struct usb_endpoint_descriptor *desc, 4822 enum usb3_link_state state, 4823 u16 *timeout) 4824 { 4825 u16 alt_timeout; 4826 4827 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4828 desc, state, timeout); 4829 4830 /* If we found we can't enable hub-initiated LPM, and 4831 * the U1 or U2 exit latency was too high to allow 4832 * device-initiated LPM as well, then we will disable LPM 4833 * for this device, so stop searching any further. 4834 */ 4835 if (alt_timeout == USB3_LPM_DISABLED) { 4836 *timeout = alt_timeout; 4837 return -E2BIG; 4838 } 4839 if (alt_timeout > *timeout) 4840 *timeout = alt_timeout; 4841 return 0; 4842 } 4843 4844 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4845 struct usb_device *udev, 4846 struct usb_host_interface *alt, 4847 enum usb3_link_state state, 4848 u16 *timeout) 4849 { 4850 int j; 4851 4852 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4853 if (xhci_update_timeout_for_endpoint(xhci, udev, 4854 &alt->endpoint[j].desc, state, timeout)) 4855 return -E2BIG; 4856 } 4857 return 0; 4858 } 4859 4860 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4861 enum usb3_link_state state) 4862 { 4863 struct usb_device *parent; 4864 unsigned int num_hubs; 4865 4866 if (state == USB3_LPM_U2) 4867 return 0; 4868 4869 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4870 for (parent = udev->parent, num_hubs = 0; parent->parent; 4871 parent = parent->parent) 4872 num_hubs++; 4873 4874 if (num_hubs < 2) 4875 return 0; 4876 4877 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4878 " below second-tier hub.\n"); 4879 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4880 "to decrease power consumption.\n"); 4881 return -E2BIG; 4882 } 4883 4884 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4885 struct usb_device *udev, 4886 enum usb3_link_state state) 4887 { 4888 if (xhci->quirks & XHCI_INTEL_HOST) 4889 return xhci_check_intel_tier_policy(udev, state); 4890 else 4891 return 0; 4892 } 4893 4894 /* Returns the U1 or U2 timeout that should be enabled. 4895 * If the tier check or timeout setting functions return with a non-zero exit 4896 * code, that means the timeout value has been finalized and we shouldn't look 4897 * at any more endpoints. 4898 */ 4899 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4900 struct usb_device *udev, enum usb3_link_state state) 4901 { 4902 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4903 struct usb_host_config *config; 4904 char *state_name; 4905 int i; 4906 u16 timeout = USB3_LPM_DISABLED; 4907 4908 if (state == USB3_LPM_U1) 4909 state_name = "U1"; 4910 else if (state == USB3_LPM_U2) 4911 state_name = "U2"; 4912 else { 4913 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4914 state); 4915 return timeout; 4916 } 4917 4918 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4919 return timeout; 4920 4921 /* Gather some information about the currently installed configuration 4922 * and alternate interface settings. 4923 */ 4924 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4925 state, &timeout)) 4926 return timeout; 4927 4928 config = udev->actconfig; 4929 if (!config) 4930 return timeout; 4931 4932 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4933 struct usb_driver *driver; 4934 struct usb_interface *intf = config->interface[i]; 4935 4936 if (!intf) 4937 continue; 4938 4939 /* Check if any currently bound drivers want hub-initiated LPM 4940 * disabled. 4941 */ 4942 if (intf->dev.driver) { 4943 driver = to_usb_driver(intf->dev.driver); 4944 if (driver && driver->disable_hub_initiated_lpm) { 4945 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4946 state_name, driver->name); 4947 timeout = xhci_get_timeout_no_hub_lpm(udev, 4948 state); 4949 if (timeout == USB3_LPM_DISABLED) 4950 return timeout; 4951 } 4952 } 4953 4954 /* Not sure how this could happen... */ 4955 if (!intf->cur_altsetting) 4956 continue; 4957 4958 if (xhci_update_timeout_for_interface(xhci, udev, 4959 intf->cur_altsetting, 4960 state, &timeout)) 4961 return timeout; 4962 } 4963 return timeout; 4964 } 4965 4966 static int calculate_max_exit_latency(struct usb_device *udev, 4967 enum usb3_link_state state_changed, 4968 u16 hub_encoded_timeout) 4969 { 4970 unsigned long long u1_mel_us = 0; 4971 unsigned long long u2_mel_us = 0; 4972 unsigned long long mel_us = 0; 4973 bool disabling_u1; 4974 bool disabling_u2; 4975 bool enabling_u1; 4976 bool enabling_u2; 4977 4978 disabling_u1 = (state_changed == USB3_LPM_U1 && 4979 hub_encoded_timeout == USB3_LPM_DISABLED); 4980 disabling_u2 = (state_changed == USB3_LPM_U2 && 4981 hub_encoded_timeout == USB3_LPM_DISABLED); 4982 4983 enabling_u1 = (state_changed == USB3_LPM_U1 && 4984 hub_encoded_timeout != USB3_LPM_DISABLED); 4985 enabling_u2 = (state_changed == USB3_LPM_U2 && 4986 hub_encoded_timeout != USB3_LPM_DISABLED); 4987 4988 /* If U1 was already enabled and we're not disabling it, 4989 * or we're going to enable U1, account for the U1 max exit latency. 4990 */ 4991 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4992 enabling_u1) 4993 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4994 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4995 enabling_u2) 4996 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4997 4998 if (u1_mel_us > u2_mel_us) 4999 mel_us = u1_mel_us; 5000 else 5001 mel_us = u2_mel_us; 5002 /* xHCI host controller max exit latency field is only 16 bits wide. */ 5003 if (mel_us > MAX_EXIT) { 5004 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 5005 "is too big.\n", mel_us); 5006 return -E2BIG; 5007 } 5008 return mel_us; 5009 } 5010 5011 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 5012 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5013 struct usb_device *udev, enum usb3_link_state state) 5014 { 5015 struct xhci_hcd *xhci; 5016 u16 hub_encoded_timeout; 5017 int mel; 5018 int ret; 5019 5020 xhci = hcd_to_xhci(hcd); 5021 /* The LPM timeout values are pretty host-controller specific, so don't 5022 * enable hub-initiated timeouts unless the vendor has provided 5023 * information about their timeout algorithm. 5024 */ 5025 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5026 !xhci->devs[udev->slot_id]) 5027 return USB3_LPM_DISABLED; 5028 5029 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 5030 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 5031 if (mel < 0) { 5032 /* Max Exit Latency is too big, disable LPM. */ 5033 hub_encoded_timeout = USB3_LPM_DISABLED; 5034 mel = 0; 5035 } 5036 5037 ret = xhci_change_max_exit_latency(xhci, udev, mel); 5038 if (ret) 5039 return ret; 5040 return hub_encoded_timeout; 5041 } 5042 5043 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5044 struct usb_device *udev, enum usb3_link_state state) 5045 { 5046 struct xhci_hcd *xhci; 5047 u16 mel; 5048 5049 xhci = hcd_to_xhci(hcd); 5050 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 5051 !xhci->devs[udev->slot_id]) 5052 return 0; 5053 5054 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 5055 return xhci_change_max_exit_latency(xhci, udev, mel); 5056 } 5057 #else /* CONFIG_PM */ 5058 5059 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5060 struct usb_device *udev, int enable) 5061 { 5062 return 0; 5063 } 5064 5065 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5066 { 5067 return 0; 5068 } 5069 5070 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5071 struct usb_device *udev, enum usb3_link_state state) 5072 { 5073 return USB3_LPM_DISABLED; 5074 } 5075 5076 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5077 struct usb_device *udev, enum usb3_link_state state) 5078 { 5079 return 0; 5080 } 5081 #endif /* CONFIG_PM */ 5082 5083 /*-------------------------------------------------------------------------*/ 5084 5085 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5086 * internal data structures for the device. 5087 */ 5088 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5089 struct usb_tt *tt, gfp_t mem_flags) 5090 { 5091 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5092 struct xhci_virt_device *vdev; 5093 struct xhci_command *config_cmd; 5094 struct xhci_input_control_ctx *ctrl_ctx; 5095 struct xhci_slot_ctx *slot_ctx; 5096 unsigned long flags; 5097 unsigned think_time; 5098 int ret; 5099 5100 /* Ignore root hubs */ 5101 if (!hdev->parent) 5102 return 0; 5103 5104 vdev = xhci->devs[hdev->slot_id]; 5105 if (!vdev) { 5106 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5107 return -EINVAL; 5108 } 5109 5110 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5111 if (!config_cmd) 5112 return -ENOMEM; 5113 5114 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5115 if (!ctrl_ctx) { 5116 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5117 __func__); 5118 xhci_free_command(xhci, config_cmd); 5119 return -ENOMEM; 5120 } 5121 5122 spin_lock_irqsave(&xhci->lock, flags); 5123 if (hdev->speed == USB_SPEED_HIGH && 5124 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5125 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5126 xhci_free_command(xhci, config_cmd); 5127 spin_unlock_irqrestore(&xhci->lock, flags); 5128 return -ENOMEM; 5129 } 5130 5131 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5132 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5133 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5134 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5135 /* 5136 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5137 * but it may be already set to 1 when setup an xHCI virtual 5138 * device, so clear it anyway. 5139 */ 5140 if (tt->multi) 5141 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5142 else if (hdev->speed == USB_SPEED_FULL) 5143 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5144 5145 if (xhci->hci_version > 0x95) { 5146 xhci_dbg(xhci, "xHCI version %x needs hub " 5147 "TT think time and number of ports\n", 5148 (unsigned int) xhci->hci_version); 5149 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5150 /* Set TT think time - convert from ns to FS bit times. 5151 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5152 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5153 * 5154 * xHCI 1.0: this field shall be 0 if the device is not a 5155 * High-spped hub. 5156 */ 5157 think_time = tt->think_time; 5158 if (think_time != 0) 5159 think_time = (think_time / 666) - 1; 5160 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5161 slot_ctx->tt_info |= 5162 cpu_to_le32(TT_THINK_TIME(think_time)); 5163 } else { 5164 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5165 "TT think time or number of ports\n", 5166 (unsigned int) xhci->hci_version); 5167 } 5168 slot_ctx->dev_state = 0; 5169 spin_unlock_irqrestore(&xhci->lock, flags); 5170 5171 xhci_dbg(xhci, "Set up %s for hub device.\n", 5172 (xhci->hci_version > 0x95) ? 5173 "configure endpoint" : "evaluate context"); 5174 5175 /* Issue and wait for the configure endpoint or 5176 * evaluate context command. 5177 */ 5178 if (xhci->hci_version > 0x95) 5179 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5180 false, false); 5181 else 5182 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5183 true, false); 5184 5185 xhci_free_command(xhci, config_cmd); 5186 return ret; 5187 } 5188 5189 static int xhci_get_frame(struct usb_hcd *hcd) 5190 { 5191 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5192 /* EHCI mods by the periodic size. Why? */ 5193 return readl(&xhci->run_regs->microframe_index) >> 3; 5194 } 5195 5196 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5197 { 5198 struct xhci_hcd *xhci; 5199 /* 5200 * TODO: Check with DWC3 clients for sysdev according to 5201 * quirks 5202 */ 5203 struct device *dev = hcd->self.sysdev; 5204 unsigned int minor_rev; 5205 int retval; 5206 5207 /* Accept arbitrarily long scatter-gather lists */ 5208 hcd->self.sg_tablesize = ~0; 5209 5210 /* support to build packet from discontinuous buffers */ 5211 hcd->self.no_sg_constraint = 1; 5212 5213 /* XHCI controllers don't stop the ep queue on short packets :| */ 5214 hcd->self.no_stop_on_short = 1; 5215 5216 xhci = hcd_to_xhci(hcd); 5217 5218 if (usb_hcd_is_primary_hcd(hcd)) { 5219 xhci->main_hcd = hcd; 5220 xhci->usb2_rhub.hcd = hcd; 5221 /* Mark the first roothub as being USB 2.0. 5222 * The xHCI driver will register the USB 3.0 roothub. 5223 */ 5224 hcd->speed = HCD_USB2; 5225 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5226 /* 5227 * USB 2.0 roothub under xHCI has an integrated TT, 5228 * (rate matching hub) as opposed to having an OHCI/UHCI 5229 * companion controller. 5230 */ 5231 hcd->has_tt = 1; 5232 } else { 5233 /* 5234 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5235 * should return 0x31 for sbrn, or that the minor revision 5236 * is a two digit BCD containig minor and sub-minor numbers. 5237 * This was later clarified in xHCI 1.2. 5238 * 5239 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5240 * minor revision set to 0x1 instead of 0x10. 5241 */ 5242 if (xhci->usb3_rhub.min_rev == 0x1) 5243 minor_rev = 1; 5244 else 5245 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5246 5247 switch (minor_rev) { 5248 case 2: 5249 hcd->speed = HCD_USB32; 5250 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5251 hcd->self.root_hub->rx_lanes = 2; 5252 hcd->self.root_hub->tx_lanes = 2; 5253 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5254 break; 5255 case 1: 5256 hcd->speed = HCD_USB31; 5257 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5258 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5259 break; 5260 } 5261 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5262 minor_rev, 5263 minor_rev ? "Enhanced " : ""); 5264 5265 xhci->usb3_rhub.hcd = hcd; 5266 /* xHCI private pointer was set in xhci_pci_probe for the second 5267 * registered roothub. 5268 */ 5269 return 0; 5270 } 5271 5272 mutex_init(&xhci->mutex); 5273 xhci->cap_regs = hcd->regs; 5274 xhci->op_regs = hcd->regs + 5275 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5276 xhci->run_regs = hcd->regs + 5277 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5278 /* Cache read-only capability registers */ 5279 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5280 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5281 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5282 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 5283 xhci->hci_version = HC_VERSION(xhci->hcc_params); 5284 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5285 if (xhci->hci_version > 0x100) 5286 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5287 5288 xhci->quirks |= quirks; 5289 5290 get_quirks(dev, xhci); 5291 5292 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5293 * success event after a short transfer. This quirk will ignore such 5294 * spurious event. 5295 */ 5296 if (xhci->hci_version > 0x96) 5297 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5298 5299 /* Make sure the HC is halted. */ 5300 retval = xhci_halt(xhci); 5301 if (retval) 5302 return retval; 5303 5304 xhci_zero_64b_regs(xhci); 5305 5306 xhci_dbg(xhci, "Resetting HCD\n"); 5307 /* Reset the internal HC memory state and registers. */ 5308 retval = xhci_reset(xhci); 5309 if (retval) 5310 return retval; 5311 xhci_dbg(xhci, "Reset complete\n"); 5312 5313 /* 5314 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5315 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5316 * address memory pointers actually. So, this driver clears the AC64 5317 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5318 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5319 */ 5320 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5321 xhci->hcc_params &= ~BIT(0); 5322 5323 /* Set dma_mask and coherent_dma_mask to 64-bits, 5324 * if xHC supports 64-bit addressing */ 5325 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5326 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5327 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5328 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5329 } else { 5330 /* 5331 * This is to avoid error in cases where a 32-bit USB 5332 * controller is used on a 64-bit capable system. 5333 */ 5334 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5335 if (retval) 5336 return retval; 5337 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5338 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5339 } 5340 5341 xhci_dbg(xhci, "Calling HCD init\n"); 5342 /* Initialize HCD and host controller data structures. */ 5343 retval = xhci_init(hcd); 5344 if (retval) 5345 return retval; 5346 xhci_dbg(xhci, "Called HCD init\n"); 5347 5348 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5349 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5350 5351 return 0; 5352 } 5353 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5354 5355 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5356 struct usb_host_endpoint *ep) 5357 { 5358 struct xhci_hcd *xhci; 5359 struct usb_device *udev; 5360 unsigned int slot_id; 5361 unsigned int ep_index; 5362 unsigned long flags; 5363 5364 xhci = hcd_to_xhci(hcd); 5365 5366 spin_lock_irqsave(&xhci->lock, flags); 5367 udev = (struct usb_device *)ep->hcpriv; 5368 slot_id = udev->slot_id; 5369 ep_index = xhci_get_endpoint_index(&ep->desc); 5370 5371 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5372 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5373 spin_unlock_irqrestore(&xhci->lock, flags); 5374 } 5375 5376 static const struct hc_driver xhci_hc_driver = { 5377 .description = "xhci-hcd", 5378 .product_desc = "xHCI Host Controller", 5379 .hcd_priv_size = sizeof(struct xhci_hcd), 5380 5381 /* 5382 * generic hardware linkage 5383 */ 5384 .irq = xhci_irq, 5385 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5386 HCD_BH, 5387 5388 /* 5389 * basic lifecycle operations 5390 */ 5391 .reset = NULL, /* set in xhci_init_driver() */ 5392 .start = xhci_run, 5393 .stop = xhci_stop, 5394 .shutdown = xhci_shutdown, 5395 5396 /* 5397 * managing i/o requests and associated device resources 5398 */ 5399 .map_urb_for_dma = xhci_map_urb_for_dma, 5400 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5401 .urb_enqueue = xhci_urb_enqueue, 5402 .urb_dequeue = xhci_urb_dequeue, 5403 .alloc_dev = xhci_alloc_dev, 5404 .free_dev = xhci_free_dev, 5405 .alloc_streams = xhci_alloc_streams, 5406 .free_streams = xhci_free_streams, 5407 .add_endpoint = xhci_add_endpoint, 5408 .drop_endpoint = xhci_drop_endpoint, 5409 .endpoint_disable = xhci_endpoint_disable, 5410 .endpoint_reset = xhci_endpoint_reset, 5411 .check_bandwidth = xhci_check_bandwidth, 5412 .reset_bandwidth = xhci_reset_bandwidth, 5413 .address_device = xhci_address_device, 5414 .enable_device = xhci_enable_device, 5415 .update_hub_device = xhci_update_hub_device, 5416 .reset_device = xhci_discover_or_reset_device, 5417 5418 /* 5419 * scheduling support 5420 */ 5421 .get_frame_number = xhci_get_frame, 5422 5423 /* 5424 * root hub support 5425 */ 5426 .hub_control = xhci_hub_control, 5427 .hub_status_data = xhci_hub_status_data, 5428 .bus_suspend = xhci_bus_suspend, 5429 .bus_resume = xhci_bus_resume, 5430 .get_resuming_ports = xhci_get_resuming_ports, 5431 5432 /* 5433 * call back when device connected and addressed 5434 */ 5435 .update_device = xhci_update_device, 5436 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5437 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5438 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5439 .find_raw_port_number = xhci_find_raw_port_number, 5440 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5441 }; 5442 5443 void xhci_init_driver(struct hc_driver *drv, 5444 const struct xhci_driver_overrides *over) 5445 { 5446 BUG_ON(!over); 5447 5448 /* Copy the generic table to drv then apply the overrides */ 5449 *drv = xhci_hc_driver; 5450 5451 if (over) { 5452 drv->hcd_priv_size += over->extra_priv_size; 5453 if (over->reset) 5454 drv->reset = over->reset; 5455 if (over->start) 5456 drv->start = over->start; 5457 if (over->add_endpoint) 5458 drv->add_endpoint = over->add_endpoint; 5459 if (over->drop_endpoint) 5460 drv->drop_endpoint = over->drop_endpoint; 5461 if (over->check_bandwidth) 5462 drv->check_bandwidth = over->check_bandwidth; 5463 if (over->reset_bandwidth) 5464 drv->reset_bandwidth = over->reset_bandwidth; 5465 } 5466 } 5467 EXPORT_SYMBOL_GPL(xhci_init_driver); 5468 5469 MODULE_DESCRIPTION(DRIVER_DESC); 5470 MODULE_AUTHOR(DRIVER_AUTHOR); 5471 MODULE_LICENSE("GPL"); 5472 5473 static int __init xhci_hcd_init(void) 5474 { 5475 /* 5476 * Check the compiler generated sizes of structures that must be laid 5477 * out in specific ways for hardware access. 5478 */ 5479 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5480 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5481 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5482 /* xhci_device_control has eight fields, and also 5483 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5484 */ 5485 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5486 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5487 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5488 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5489 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5490 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5491 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5492 5493 if (usb_disabled()) 5494 return -ENODEV; 5495 5496 xhci_debugfs_create_root(); 5497 5498 return 0; 5499 } 5500 5501 /* 5502 * If an init function is provided, an exit function must also be provided 5503 * to allow module unload. 5504 */ 5505 static void __exit xhci_hcd_fini(void) 5506 { 5507 xhci_debugfs_remove_root(); 5508 } 5509 5510 module_init(xhci_hcd_init); 5511 module_exit(xhci_hcd_fini); 5512