xref: /openbmc/linux/drivers/usb/host/xhci.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19 
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned int quirks;
37 module_param(quirks, uint, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * xhci_handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55 {
56 	u32	result;
57 
58 	do {
59 		result = readl(ptr);
60 		if (result == ~(u32)0)		/* card removed */
61 			return -ENODEV;
62 		result &= mask;
63 		if (result == done)
64 			return 0;
65 		udelay(1);
66 		usec--;
67 	} while (usec > 0);
68 	return -ETIMEDOUT;
69 }
70 
71 /*
72  * Disable interrupts and begin the xHCI halting process.
73  */
74 void xhci_quiesce(struct xhci_hcd *xhci)
75 {
76 	u32 halted;
77 	u32 cmd;
78 	u32 mask;
79 
80 	mask = ~(XHCI_IRQS);
81 	halted = readl(&xhci->op_regs->status) & STS_HALT;
82 	if (!halted)
83 		mask &= ~CMD_RUN;
84 
85 	cmd = readl(&xhci->op_regs->command);
86 	cmd &= mask;
87 	writel(cmd, &xhci->op_regs->command);
88 }
89 
90 /*
91  * Force HC into halt state.
92  *
93  * Disable any IRQs and clear the run/stop bit.
94  * HC will complete any current and actively pipelined transactions, and
95  * should halt within 16 ms of the run/stop bit being cleared.
96  * Read HC Halted bit in the status register to see when the HC is finished.
97  */
98 int xhci_halt(struct xhci_hcd *xhci)
99 {
100 	int ret;
101 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102 	xhci_quiesce(xhci);
103 
104 	ret = xhci_handshake(&xhci->op_regs->status,
105 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106 	if (ret) {
107 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
108 		return ret;
109 	}
110 	xhci->xhc_state |= XHCI_STATE_HALTED;
111 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112 	return ret;
113 }
114 
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 int xhci_start(struct xhci_hcd *xhci)
119 {
120 	u32 temp;
121 	int ret;
122 
123 	temp = readl(&xhci->op_regs->command);
124 	temp |= (CMD_RUN);
125 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126 			temp);
127 	writel(temp, &xhci->op_regs->command);
128 
129 	/*
130 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 	 * running.
132 	 */
133 	ret = xhci_handshake(&xhci->op_regs->status,
134 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 	if (ret == -ETIMEDOUT)
136 		xhci_err(xhci, "Host took too long to start, "
137 				"waited %u microseconds.\n",
138 				XHCI_MAX_HALT_USEC);
139 	if (!ret)
140 		/* clear state flags. Including dying, halted or removing */
141 		xhci->xhc_state = 0;
142 
143 	return ret;
144 }
145 
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 	u32 command;
156 	u32 state;
157 	int ret, i;
158 
159 	state = readl(&xhci->op_regs->status);
160 
161 	if (state == ~(u32)0) {
162 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
163 		return -ENODEV;
164 	}
165 
166 	if ((state & STS_HALT) == 0) {
167 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 		return 0;
169 	}
170 
171 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 	command = readl(&xhci->op_regs->command);
173 	command |= CMD_RESET;
174 	writel(command, &xhci->op_regs->command);
175 
176 	/* Existing Intel xHCI controllers require a delay of 1 mS,
177 	 * after setting the CMD_RESET bit, and before accessing any
178 	 * HC registers. This allows the HC to complete the
179 	 * reset operation and be ready for HC register access.
180 	 * Without this delay, the subsequent HC register access,
181 	 * may result in a system hang very rarely.
182 	 */
183 	if (xhci->quirks & XHCI_INTEL_HOST)
184 		udelay(1000);
185 
186 	ret = xhci_handshake(&xhci->op_regs->command,
187 			CMD_RESET, 0, 10 * 1000 * 1000);
188 	if (ret)
189 		return ret;
190 
191 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193 
194 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 			 "Wait for controller to be ready for doorbell rings");
196 	/*
197 	 * xHCI cannot write to any doorbells or operational registers other
198 	 * than status until the "Controller Not Ready" flag is cleared.
199 	 */
200 	ret = xhci_handshake(&xhci->op_regs->status,
201 			STS_CNR, 0, 10 * 1000 * 1000);
202 
203 	for (i = 0; i < 2; i++) {
204 		xhci->bus_state[i].port_c_suspend = 0;
205 		xhci->bus_state[i].suspended_ports = 0;
206 		xhci->bus_state[i].resuming_ports = 0;
207 	}
208 
209 	return ret;
210 }
211 
212 
213 #ifdef CONFIG_USB_PCI
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 	int ret;
220 	/*
221 	 * TODO:Check with MSI Soc for sysdev
222 	 */
223 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224 
225 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
226 	if (ret < 0) {
227 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228 				"failed to allocate MSI entry");
229 		return ret;
230 	}
231 
232 	ret = request_irq(pdev->irq, xhci_msi_irq,
233 				0, "xhci_hcd", xhci_to_hcd(xhci));
234 	if (ret) {
235 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 				"disable MSI interrupt");
237 		pci_free_irq_vectors(pdev);
238 	}
239 
240 	return ret;
241 }
242 
243 /*
244  * Set up MSI-X
245  */
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
247 {
248 	int i, ret = 0;
249 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
250 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
251 
252 	/*
253 	 * calculate number of msi-x vectors supported.
254 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
256 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
257 	 *   Add additional 1 vector to ensure always available interrupt.
258 	 */
259 	xhci->msix_count = min(num_online_cpus() + 1,
260 				HCS_MAX_INTRS(xhci->hcs_params1));
261 
262 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
263 			PCI_IRQ_MSIX);
264 	if (ret < 0) {
265 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266 				"Failed to enable MSI-X");
267 		return ret;
268 	}
269 
270 	for (i = 0; i < xhci->msix_count; i++) {
271 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272 				"xhci_hcd", xhci_to_hcd(xhci));
273 		if (ret)
274 			goto disable_msix;
275 	}
276 
277 	hcd->msix_enabled = 1;
278 	return ret;
279 
280 disable_msix:
281 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
282 	while (--i >= 0)
283 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284 	pci_free_irq_vectors(pdev);
285 	return ret;
286 }
287 
288 /* Free any IRQs and disable MSI-X */
289 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
290 {
291 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
292 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
293 
294 	if (xhci->quirks & XHCI_PLAT)
295 		return;
296 
297 	/* return if using legacy interrupt */
298 	if (hcd->irq > 0)
299 		return;
300 
301 	if (hcd->msix_enabled) {
302 		int i;
303 
304 		for (i = 0; i < xhci->msix_count; i++)
305 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
306 	} else {
307 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
308 	}
309 
310 	pci_free_irq_vectors(pdev);
311 	hcd->msix_enabled = 0;
312 }
313 
314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
315 {
316 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
317 
318 	if (hcd->msix_enabled) {
319 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320 		int i;
321 
322 		for (i = 0; i < xhci->msix_count; i++)
323 			synchronize_irq(pci_irq_vector(pdev, i));
324 	}
325 }
326 
327 static int xhci_try_enable_msi(struct usb_hcd *hcd)
328 {
329 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330 	struct pci_dev  *pdev;
331 	int ret;
332 
333 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
334 	if (xhci->quirks & XHCI_PLAT)
335 		return 0;
336 
337 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338 	/*
339 	 * Some Fresco Logic host controllers advertise MSI, but fail to
340 	 * generate interrupts.  Don't even try to enable MSI.
341 	 */
342 	if (xhci->quirks & XHCI_BROKEN_MSI)
343 		goto legacy_irq;
344 
345 	/* unregister the legacy interrupt */
346 	if (hcd->irq)
347 		free_irq(hcd->irq, hcd);
348 	hcd->irq = 0;
349 
350 	ret = xhci_setup_msix(xhci);
351 	if (ret)
352 		/* fall back to msi*/
353 		ret = xhci_setup_msi(xhci);
354 
355 	if (!ret) {
356 		hcd->msi_enabled = 1;
357 		return 0;
358 	}
359 
360 	if (!pdev->irq) {
361 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
362 		return -EINVAL;
363 	}
364 
365  legacy_irq:
366 	if (!strlen(hcd->irq_descr))
367 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368 			 hcd->driver->description, hcd->self.busnum);
369 
370 	/* fall back to legacy interrupt*/
371 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372 			hcd->irq_descr, hcd);
373 	if (ret) {
374 		xhci_err(xhci, "request interrupt %d failed\n",
375 				pdev->irq);
376 		return ret;
377 	}
378 	hcd->irq = pdev->irq;
379 	return 0;
380 }
381 
382 #else
383 
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
385 {
386 	return 0;
387 }
388 
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
390 {
391 }
392 
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 }
396 
397 #endif
398 
399 static void compliance_mode_recovery(struct timer_list *t)
400 {
401 	struct xhci_hcd *xhci;
402 	struct usb_hcd *hcd;
403 	u32 temp;
404 	int i;
405 
406 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
407 
408 	for (i = 0; i < xhci->num_usb3_ports; i++) {
409 		temp = readl(xhci->usb3_ports[i]);
410 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
411 			/*
412 			 * Compliance Mode Detected. Letting USB Core
413 			 * handle the Warm Reset
414 			 */
415 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416 					"Compliance mode detected->port %d",
417 					i + 1);
418 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
419 					"Attempting compliance mode recovery");
420 			hcd = xhci->shared_hcd;
421 
422 			if (hcd->state == HC_STATE_SUSPENDED)
423 				usb_hcd_resume_root_hub(hcd);
424 
425 			usb_hcd_poll_rh_status(hcd);
426 		}
427 	}
428 
429 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
430 		mod_timer(&xhci->comp_mode_recovery_timer,
431 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
432 }
433 
434 /*
435  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
436  * that causes ports behind that hardware to enter compliance mode sometimes.
437  * The quirk creates a timer that polls every 2 seconds the link state of
438  * each host controller's port and recovers it by issuing a Warm reset
439  * if Compliance mode is detected, otherwise the port will become "dead" (no
440  * device connections or disconnections will be detected anymore). Becasue no
441  * status event is generated when entering compliance mode (per xhci spec),
442  * this quirk is needed on systems that have the failing hardware installed.
443  */
444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
445 {
446 	xhci->port_status_u0 = 0;
447 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
448 		    0);
449 	xhci->comp_mode_recovery_timer.expires = jiffies +
450 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
451 
452 	add_timer(&xhci->comp_mode_recovery_timer);
453 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454 			"Compliance mode recovery timer initialized");
455 }
456 
457 /*
458  * This function identifies the systems that have installed the SN65LVPE502CP
459  * USB3.0 re-driver and that need the Compliance Mode Quirk.
460  * Systems:
461  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
462  */
463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
464 {
465 	const char *dmi_product_name, *dmi_sys_vendor;
466 
467 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469 	if (!dmi_product_name || !dmi_sys_vendor)
470 		return false;
471 
472 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
473 		return false;
474 
475 	if (strstr(dmi_product_name, "Z420") ||
476 			strstr(dmi_product_name, "Z620") ||
477 			strstr(dmi_product_name, "Z820") ||
478 			strstr(dmi_product_name, "Z1 Workstation"))
479 		return true;
480 
481 	return false;
482 }
483 
484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
485 {
486 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
487 }
488 
489 
490 /*
491  * Initialize memory for HCD and xHC (one-time init).
492  *
493  * Program the PAGESIZE register, initialize the device context array, create
494  * device contexts (?), set up a command ring segment (or two?), create event
495  * ring (one for now).
496  */
497 static int xhci_init(struct usb_hcd *hcd)
498 {
499 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
500 	int retval = 0;
501 
502 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
503 	spin_lock_init(&xhci->lock);
504 	if (xhci->hci_version == 0x95 && link_quirk) {
505 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506 				"QUIRK: Not clearing Link TRB chain bits.");
507 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508 	} else {
509 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
510 				"xHCI doesn't need link TRB QUIRK");
511 	}
512 	retval = xhci_mem_init(xhci, GFP_KERNEL);
513 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
514 
515 	/* Initializing Compliance Mode Recovery Data If Needed */
516 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
517 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518 		compliance_mode_recovery_timer_init(xhci);
519 	}
520 
521 	return retval;
522 }
523 
524 /*-------------------------------------------------------------------------*/
525 
526 
527 static int xhci_run_finished(struct xhci_hcd *xhci)
528 {
529 	if (xhci_start(xhci)) {
530 		xhci_halt(xhci);
531 		return -ENODEV;
532 	}
533 	xhci->shared_hcd->state = HC_STATE_RUNNING;
534 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
535 
536 	if (xhci->quirks & XHCI_NEC_HOST)
537 		xhci_ring_cmd_db(xhci);
538 
539 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540 			"Finished xhci_run for USB3 roothub");
541 	return 0;
542 }
543 
544 /*
545  * Start the HC after it was halted.
546  *
547  * This function is called by the USB core when the HC driver is added.
548  * Its opposite is xhci_stop().
549  *
550  * xhci_init() must be called once before this function can be called.
551  * Reset the HC, enable device slot contexts, program DCBAAP, and
552  * set command ring pointer and event ring pointer.
553  *
554  * Setup MSI-X vectors and enable interrupts.
555  */
556 int xhci_run(struct usb_hcd *hcd)
557 {
558 	u32 temp;
559 	u64 temp_64;
560 	int ret;
561 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
562 
563 	/* Start the xHCI host controller running only after the USB 2.0 roothub
564 	 * is setup.
565 	 */
566 
567 	hcd->uses_new_polling = 1;
568 	if (!usb_hcd_is_primary_hcd(hcd))
569 		return xhci_run_finished(xhci);
570 
571 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
572 
573 	ret = xhci_try_enable_msi(hcd);
574 	if (ret)
575 		return ret;
576 
577 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
578 	temp_64 &= ~ERST_PTR_MASK;
579 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
581 
582 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583 			"// Set the interrupt modulation register");
584 	temp = readl(&xhci->ir_set->irq_control);
585 	temp &= ~ER_IRQ_INTERVAL_MASK;
586 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
587 	writel(temp, &xhci->ir_set->irq_control);
588 
589 	/* Set the HCD state before we enable the irqs */
590 	temp = readl(&xhci->op_regs->command);
591 	temp |= (CMD_EIE);
592 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
593 			"// Enable interrupts, cmd = 0x%x.", temp);
594 	writel(temp, &xhci->op_regs->command);
595 
596 	temp = readl(&xhci->ir_set->irq_pending);
597 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
598 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
599 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
600 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
601 
602 	if (xhci->quirks & XHCI_NEC_HOST) {
603 		struct xhci_command *command;
604 
605 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
606 		if (!command)
607 			return -ENOMEM;
608 
609 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
610 				TRB_TYPE(TRB_NEC_GET_FW));
611 		if (ret)
612 			xhci_free_command(xhci, command);
613 	}
614 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
615 			"Finished xhci_run for USB2 roothub");
616 
617 	xhci_dbc_init(xhci);
618 
619 	xhci_debugfs_init(xhci);
620 
621 	return 0;
622 }
623 EXPORT_SYMBOL_GPL(xhci_run);
624 
625 /*
626  * Stop xHCI driver.
627  *
628  * This function is called by the USB core when the HC driver is removed.
629  * Its opposite is xhci_run().
630  *
631  * Disable device contexts, disable IRQs, and quiesce the HC.
632  * Reset the HC, finish any completed transactions, and cleanup memory.
633  */
634 static void xhci_stop(struct usb_hcd *hcd)
635 {
636 	u32 temp;
637 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
638 
639 	mutex_lock(&xhci->mutex);
640 
641 	/* Only halt host and free memory after both hcds are removed */
642 	if (!usb_hcd_is_primary_hcd(hcd)) {
643 		/* usb core will free this hcd shortly, unset pointer */
644 		xhci->shared_hcd = NULL;
645 		mutex_unlock(&xhci->mutex);
646 		return;
647 	}
648 
649 	xhci_dbc_exit(xhci);
650 
651 	spin_lock_irq(&xhci->lock);
652 	xhci->xhc_state |= XHCI_STATE_HALTED;
653 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
654 	xhci_halt(xhci);
655 	xhci_reset(xhci);
656 	spin_unlock_irq(&xhci->lock);
657 
658 	xhci_cleanup_msix(xhci);
659 
660 	/* Deleting Compliance Mode Recovery Timer */
661 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
662 			(!(xhci_all_ports_seen_u0(xhci)))) {
663 		del_timer_sync(&xhci->comp_mode_recovery_timer);
664 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
665 				"%s: compliance mode recovery timer deleted",
666 				__func__);
667 	}
668 
669 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
670 		usb_amd_dev_put();
671 
672 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673 			"// Disabling event ring interrupts");
674 	temp = readl(&xhci->op_regs->status);
675 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
676 	temp = readl(&xhci->ir_set->irq_pending);
677 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
678 
679 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
680 	xhci_mem_cleanup(xhci);
681 	xhci_debugfs_exit(xhci);
682 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
683 			"xhci_stop completed - status = %x",
684 			readl(&xhci->op_regs->status));
685 	mutex_unlock(&xhci->mutex);
686 }
687 
688 /*
689  * Shutdown HC (not bus-specific)
690  *
691  * This is called when the machine is rebooting or halting.  We assume that the
692  * machine will be powered off, and the HC's internal state will be reset.
693  * Don't bother to free memory.
694  *
695  * This will only ever be called with the main usb_hcd (the USB3 roothub).
696  */
697 static void xhci_shutdown(struct usb_hcd *hcd)
698 {
699 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
700 
701 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
702 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
703 
704 	spin_lock_irq(&xhci->lock);
705 	xhci_halt(xhci);
706 	/* Workaround for spurious wakeups at shutdown with HSW */
707 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
708 		xhci_reset(xhci);
709 	spin_unlock_irq(&xhci->lock);
710 
711 	xhci_cleanup_msix(xhci);
712 
713 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714 			"xhci_shutdown completed - status = %x",
715 			readl(&xhci->op_regs->status));
716 
717 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
718 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
719 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
720 }
721 
722 #ifdef CONFIG_PM
723 static void xhci_save_registers(struct xhci_hcd *xhci)
724 {
725 	xhci->s3.command = readl(&xhci->op_regs->command);
726 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
727 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
728 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
729 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
730 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
731 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
732 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
733 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
734 }
735 
736 static void xhci_restore_registers(struct xhci_hcd *xhci)
737 {
738 	writel(xhci->s3.command, &xhci->op_regs->command);
739 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
740 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
741 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
742 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
743 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
744 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
745 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
746 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
747 }
748 
749 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
750 {
751 	u64	val_64;
752 
753 	/* step 2: initialize command ring buffer */
754 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
755 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
756 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
757 				      xhci->cmd_ring->dequeue) &
758 		 (u64) ~CMD_RING_RSVD_BITS) |
759 		xhci->cmd_ring->cycle_state;
760 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761 			"// Setting command ring address to 0x%llx",
762 			(long unsigned long) val_64);
763 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
764 }
765 
766 /*
767  * The whole command ring must be cleared to zero when we suspend the host.
768  *
769  * The host doesn't save the command ring pointer in the suspend well, so we
770  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
771  * aligned, because of the reserved bits in the command ring dequeue pointer
772  * register.  Therefore, we can't just set the dequeue pointer back in the
773  * middle of the ring (TRBs are 16-byte aligned).
774  */
775 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
776 {
777 	struct xhci_ring *ring;
778 	struct xhci_segment *seg;
779 
780 	ring = xhci->cmd_ring;
781 	seg = ring->deq_seg;
782 	do {
783 		memset(seg->trbs, 0,
784 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
785 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
786 			cpu_to_le32(~TRB_CYCLE);
787 		seg = seg->next;
788 	} while (seg != ring->deq_seg);
789 
790 	/* Reset the software enqueue and dequeue pointers */
791 	ring->deq_seg = ring->first_seg;
792 	ring->dequeue = ring->first_seg->trbs;
793 	ring->enq_seg = ring->deq_seg;
794 	ring->enqueue = ring->dequeue;
795 
796 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
797 	/*
798 	 * Ring is now zeroed, so the HW should look for change of ownership
799 	 * when the cycle bit is set to 1.
800 	 */
801 	ring->cycle_state = 1;
802 
803 	/*
804 	 * Reset the hardware dequeue pointer.
805 	 * Yes, this will need to be re-written after resume, but we're paranoid
806 	 * and want to make sure the hardware doesn't access bogus memory
807 	 * because, say, the BIOS or an SMI started the host without changing
808 	 * the command ring pointers.
809 	 */
810 	xhci_set_cmd_ring_deq(xhci);
811 }
812 
813 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
814 {
815 	int port_index;
816 	__le32 __iomem **port_array;
817 	unsigned long flags;
818 	u32 t1, t2;
819 
820 	spin_lock_irqsave(&xhci->lock, flags);
821 
822 	/* disable usb3 ports Wake bits */
823 	port_index = xhci->num_usb3_ports;
824 	port_array = xhci->usb3_ports;
825 	while (port_index--) {
826 		t1 = readl(port_array[port_index]);
827 		t1 = xhci_port_state_to_neutral(t1);
828 		t2 = t1 & ~PORT_WAKE_BITS;
829 		if (t1 != t2)
830 			writel(t2, port_array[port_index]);
831 	}
832 
833 	/* disable usb2 ports Wake bits */
834 	port_index = xhci->num_usb2_ports;
835 	port_array = xhci->usb2_ports;
836 	while (port_index--) {
837 		t1 = readl(port_array[port_index]);
838 		t1 = xhci_port_state_to_neutral(t1);
839 		t2 = t1 & ~PORT_WAKE_BITS;
840 		if (t1 != t2)
841 			writel(t2, port_array[port_index]);
842 	}
843 
844 	spin_unlock_irqrestore(&xhci->lock, flags);
845 }
846 
847 /*
848  * Stop HC (not bus-specific)
849  *
850  * This is called when the machine transition into S3/S4 mode.
851  *
852  */
853 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
854 {
855 	int			rc = 0;
856 	unsigned int		delay = XHCI_MAX_HALT_USEC;
857 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
858 	u32			command;
859 
860 	if (!hcd->state)
861 		return 0;
862 
863 	if (hcd->state != HC_STATE_SUSPENDED ||
864 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
865 		return -EINVAL;
866 
867 	xhci_dbc_suspend(xhci);
868 
869 	/* Clear root port wake on bits if wakeup not allowed. */
870 	if (!do_wakeup)
871 		xhci_disable_port_wake_on_bits(xhci);
872 
873 	/* Don't poll the roothubs on bus suspend. */
874 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
875 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
876 	del_timer_sync(&hcd->rh_timer);
877 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
878 	del_timer_sync(&xhci->shared_hcd->rh_timer);
879 
880 	spin_lock_irq(&xhci->lock);
881 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
882 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
883 	/* step 1: stop endpoint */
884 	/* skipped assuming that port suspend has done */
885 
886 	/* step 2: clear Run/Stop bit */
887 	command = readl(&xhci->op_regs->command);
888 	command &= ~CMD_RUN;
889 	writel(command, &xhci->op_regs->command);
890 
891 	/* Some chips from Fresco Logic need an extraordinary delay */
892 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
893 
894 	if (xhci_handshake(&xhci->op_regs->status,
895 		      STS_HALT, STS_HALT, delay)) {
896 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
897 		spin_unlock_irq(&xhci->lock);
898 		return -ETIMEDOUT;
899 	}
900 	xhci_clear_command_ring(xhci);
901 
902 	/* step 3: save registers */
903 	xhci_save_registers(xhci);
904 
905 	/* step 4: set CSS flag */
906 	command = readl(&xhci->op_regs->command);
907 	command |= CMD_CSS;
908 	writel(command, &xhci->op_regs->command);
909 	if (xhci_handshake(&xhci->op_regs->status,
910 				STS_SAVE, 0, 10 * 1000)) {
911 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
912 		spin_unlock_irq(&xhci->lock);
913 		return -ETIMEDOUT;
914 	}
915 	spin_unlock_irq(&xhci->lock);
916 
917 	/*
918 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
919 	 * is about to be suspended.
920 	 */
921 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
922 			(!(xhci_all_ports_seen_u0(xhci)))) {
923 		del_timer_sync(&xhci->comp_mode_recovery_timer);
924 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
925 				"%s: compliance mode recovery timer deleted",
926 				__func__);
927 	}
928 
929 	/* step 5: remove core well power */
930 	/* synchronize irq when using MSI-X */
931 	xhci_msix_sync_irqs(xhci);
932 
933 	return rc;
934 }
935 EXPORT_SYMBOL_GPL(xhci_suspend);
936 
937 /*
938  * start xHC (not bus-specific)
939  *
940  * This is called when the machine transition from S3/S4 mode.
941  *
942  */
943 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
944 {
945 	u32			command, temp = 0, status;
946 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
947 	struct usb_hcd		*secondary_hcd;
948 	int			retval = 0;
949 	bool			comp_timer_running = false;
950 
951 	if (!hcd->state)
952 		return 0;
953 
954 	/* Wait a bit if either of the roothubs need to settle from the
955 	 * transition into bus suspend.
956 	 */
957 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
958 			time_before(jiffies,
959 				xhci->bus_state[1].next_statechange))
960 		msleep(100);
961 
962 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
963 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
964 
965 	spin_lock_irq(&xhci->lock);
966 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
967 		hibernated = true;
968 
969 	if (!hibernated) {
970 		/* step 1: restore register */
971 		xhci_restore_registers(xhci);
972 		/* step 2: initialize command ring buffer */
973 		xhci_set_cmd_ring_deq(xhci);
974 		/* step 3: restore state and start state*/
975 		/* step 3: set CRS flag */
976 		command = readl(&xhci->op_regs->command);
977 		command |= CMD_CRS;
978 		writel(command, &xhci->op_regs->command);
979 		if (xhci_handshake(&xhci->op_regs->status,
980 			      STS_RESTORE, 0, 10 * 1000)) {
981 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
982 			spin_unlock_irq(&xhci->lock);
983 			return -ETIMEDOUT;
984 		}
985 		temp = readl(&xhci->op_regs->status);
986 	}
987 
988 	/* If restore operation fails, re-initialize the HC during resume */
989 	if ((temp & STS_SRE) || hibernated) {
990 
991 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
992 				!(xhci_all_ports_seen_u0(xhci))) {
993 			del_timer_sync(&xhci->comp_mode_recovery_timer);
994 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
995 				"Compliance Mode Recovery Timer deleted!");
996 		}
997 
998 		/* Let the USB core know _both_ roothubs lost power. */
999 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1000 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1001 
1002 		xhci_dbg(xhci, "Stop HCD\n");
1003 		xhci_halt(xhci);
1004 		xhci_reset(xhci);
1005 		spin_unlock_irq(&xhci->lock);
1006 		xhci_cleanup_msix(xhci);
1007 
1008 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1009 		temp = readl(&xhci->op_regs->status);
1010 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1011 		temp = readl(&xhci->ir_set->irq_pending);
1012 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1013 
1014 		xhci_dbg(xhci, "cleaning up memory\n");
1015 		xhci_mem_cleanup(xhci);
1016 		xhci_debugfs_exit(xhci);
1017 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1018 			    readl(&xhci->op_regs->status));
1019 
1020 		/* USB core calls the PCI reinit and start functions twice:
1021 		 * first with the primary HCD, and then with the secondary HCD.
1022 		 * If we don't do the same, the host will never be started.
1023 		 */
1024 		if (!usb_hcd_is_primary_hcd(hcd))
1025 			secondary_hcd = hcd;
1026 		else
1027 			secondary_hcd = xhci->shared_hcd;
1028 
1029 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1030 		retval = xhci_init(hcd->primary_hcd);
1031 		if (retval)
1032 			return retval;
1033 		comp_timer_running = true;
1034 
1035 		xhci_dbg(xhci, "Start the primary HCD\n");
1036 		retval = xhci_run(hcd->primary_hcd);
1037 		if (!retval) {
1038 			xhci_dbg(xhci, "Start the secondary HCD\n");
1039 			retval = xhci_run(secondary_hcd);
1040 		}
1041 		hcd->state = HC_STATE_SUSPENDED;
1042 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1043 		goto done;
1044 	}
1045 
1046 	/* step 4: set Run/Stop bit */
1047 	command = readl(&xhci->op_regs->command);
1048 	command |= CMD_RUN;
1049 	writel(command, &xhci->op_regs->command);
1050 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1051 		  0, 250 * 1000);
1052 
1053 	/* step 5: walk topology and initialize portsc,
1054 	 * portpmsc and portli
1055 	 */
1056 	/* this is done in bus_resume */
1057 
1058 	/* step 6: restart each of the previously
1059 	 * Running endpoints by ringing their doorbells
1060 	 */
1061 
1062 	spin_unlock_irq(&xhci->lock);
1063 
1064 	xhci_dbc_resume(xhci);
1065 
1066  done:
1067 	if (retval == 0) {
1068 		/* Resume root hubs only when have pending events. */
1069 		status = readl(&xhci->op_regs->status);
1070 		if (status & STS_EINT) {
1071 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1072 			usb_hcd_resume_root_hub(hcd);
1073 		}
1074 	}
1075 
1076 	/*
1077 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1078 	 * be re-initialized Always after a system resume. Ports are subject
1079 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1080 	 * ports have entered previously to U0 before system's suspension.
1081 	 */
1082 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1083 		compliance_mode_recovery_timer_init(xhci);
1084 
1085 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1086 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1087 
1088 	/* Re-enable port polling. */
1089 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1090 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1091 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1092 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1093 	usb_hcd_poll_rh_status(hcd);
1094 
1095 	return retval;
1096 }
1097 EXPORT_SYMBOL_GPL(xhci_resume);
1098 #endif	/* CONFIG_PM */
1099 
1100 /*-------------------------------------------------------------------------*/
1101 
1102 /**
1103  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1104  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1105  * value to right shift 1 for the bitmask.
1106  *
1107  * Index  = (epnum * 2) + direction - 1,
1108  * where direction = 0 for OUT, 1 for IN.
1109  * For control endpoints, the IN index is used (OUT index is unused), so
1110  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1111  */
1112 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1113 {
1114 	unsigned int index;
1115 	if (usb_endpoint_xfer_control(desc))
1116 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1117 	else
1118 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1119 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1120 	return index;
1121 }
1122 
1123 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1124  * address from the XHCI endpoint index.
1125  */
1126 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1127 {
1128 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1129 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1130 	return direction | number;
1131 }
1132 
1133 /* Find the flag for this endpoint (for use in the control context).  Use the
1134  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1135  * bit 1, etc.
1136  */
1137 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1138 {
1139 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1140 }
1141 
1142 /* Find the flag for this endpoint (for use in the control context).  Use the
1143  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1144  * bit 1, etc.
1145  */
1146 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1147 {
1148 	return 1 << (ep_index + 1);
1149 }
1150 
1151 /* Compute the last valid endpoint context index.  Basically, this is the
1152  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1153  * we find the most significant bit set in the added contexts flags.
1154  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1155  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1156  */
1157 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1158 {
1159 	return fls(added_ctxs) - 1;
1160 }
1161 
1162 /* Returns 1 if the arguments are OK;
1163  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1164  */
1165 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1166 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1167 		const char *func) {
1168 	struct xhci_hcd	*xhci;
1169 	struct xhci_virt_device	*virt_dev;
1170 
1171 	if (!hcd || (check_ep && !ep) || !udev) {
1172 		pr_debug("xHCI %s called with invalid args\n", func);
1173 		return -EINVAL;
1174 	}
1175 	if (!udev->parent) {
1176 		pr_debug("xHCI %s called for root hub\n", func);
1177 		return 0;
1178 	}
1179 
1180 	xhci = hcd_to_xhci(hcd);
1181 	if (check_virt_dev) {
1182 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1183 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1184 					func);
1185 			return -EINVAL;
1186 		}
1187 
1188 		virt_dev = xhci->devs[udev->slot_id];
1189 		if (virt_dev->udev != udev) {
1190 			xhci_dbg(xhci, "xHCI %s called with udev and "
1191 					  "virt_dev does not match\n", func);
1192 			return -EINVAL;
1193 		}
1194 	}
1195 
1196 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1197 		return -ENODEV;
1198 
1199 	return 1;
1200 }
1201 
1202 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1203 		struct usb_device *udev, struct xhci_command *command,
1204 		bool ctx_change, bool must_succeed);
1205 
1206 /*
1207  * Full speed devices may have a max packet size greater than 8 bytes, but the
1208  * USB core doesn't know that until it reads the first 8 bytes of the
1209  * descriptor.  If the usb_device's max packet size changes after that point,
1210  * we need to issue an evaluate context command and wait on it.
1211  */
1212 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1213 		unsigned int ep_index, struct urb *urb)
1214 {
1215 	struct xhci_container_ctx *out_ctx;
1216 	struct xhci_input_control_ctx *ctrl_ctx;
1217 	struct xhci_ep_ctx *ep_ctx;
1218 	struct xhci_command *command;
1219 	int max_packet_size;
1220 	int hw_max_packet_size;
1221 	int ret = 0;
1222 
1223 	out_ctx = xhci->devs[slot_id]->out_ctx;
1224 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1225 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1226 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1227 	if (hw_max_packet_size != max_packet_size) {
1228 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1229 				"Max Packet Size for ep 0 changed.");
1230 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1231 				"Max packet size in usb_device = %d",
1232 				max_packet_size);
1233 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1234 				"Max packet size in xHCI HW = %d",
1235 				hw_max_packet_size);
1236 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237 				"Issuing evaluate context command.");
1238 
1239 		/* Set up the input context flags for the command */
1240 		/* FIXME: This won't work if a non-default control endpoint
1241 		 * changes max packet sizes.
1242 		 */
1243 
1244 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1245 		if (!command)
1246 			return -ENOMEM;
1247 
1248 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1249 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1250 		if (!ctrl_ctx) {
1251 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1252 					__func__);
1253 			ret = -ENOMEM;
1254 			goto command_cleanup;
1255 		}
1256 		/* Set up the modified control endpoint 0 */
1257 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1258 				xhci->devs[slot_id]->out_ctx, ep_index);
1259 
1260 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1261 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1262 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1263 
1264 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1265 		ctrl_ctx->drop_flags = 0;
1266 
1267 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1268 				true, false);
1269 
1270 		/* Clean up the input context for later use by bandwidth
1271 		 * functions.
1272 		 */
1273 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1274 command_cleanup:
1275 		kfree(command->completion);
1276 		kfree(command);
1277 	}
1278 	return ret;
1279 }
1280 
1281 /*
1282  * non-error returns are a promise to giveback() the urb later
1283  * we drop ownership so next owner (or urb unlink) can get it
1284  */
1285 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1286 {
1287 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1288 	unsigned long flags;
1289 	int ret = 0;
1290 	unsigned int slot_id, ep_index, ep_state;
1291 	struct urb_priv	*urb_priv;
1292 	int num_tds;
1293 
1294 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1295 					true, true, __func__) <= 0)
1296 		return -EINVAL;
1297 
1298 	slot_id = urb->dev->slot_id;
1299 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1300 
1301 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1302 		if (!in_interrupt())
1303 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1304 		return -ESHUTDOWN;
1305 	}
1306 
1307 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1308 		num_tds = urb->number_of_packets;
1309 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1310 	    urb->transfer_buffer_length > 0 &&
1311 	    urb->transfer_flags & URB_ZERO_PACKET &&
1312 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1313 		num_tds = 2;
1314 	else
1315 		num_tds = 1;
1316 
1317 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1318 			   num_tds * sizeof(struct xhci_td), mem_flags);
1319 	if (!urb_priv)
1320 		return -ENOMEM;
1321 
1322 	urb_priv->num_tds = num_tds;
1323 	urb_priv->num_tds_done = 0;
1324 	urb->hcpriv = urb_priv;
1325 
1326 	trace_xhci_urb_enqueue(urb);
1327 
1328 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1329 		/* Check to see if the max packet size for the default control
1330 		 * endpoint changed during FS device enumeration
1331 		 */
1332 		if (urb->dev->speed == USB_SPEED_FULL) {
1333 			ret = xhci_check_maxpacket(xhci, slot_id,
1334 					ep_index, urb);
1335 			if (ret < 0) {
1336 				xhci_urb_free_priv(urb_priv);
1337 				urb->hcpriv = NULL;
1338 				return ret;
1339 			}
1340 		}
1341 	}
1342 
1343 	spin_lock_irqsave(&xhci->lock, flags);
1344 
1345 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1346 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1347 			 urb->ep->desc.bEndpointAddress, urb);
1348 		ret = -ESHUTDOWN;
1349 		goto free_priv;
1350 	}
1351 
1352 	switch (usb_endpoint_type(&urb->ep->desc)) {
1353 
1354 	case USB_ENDPOINT_XFER_CONTROL:
1355 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1356 					 slot_id, ep_index);
1357 		break;
1358 	case USB_ENDPOINT_XFER_BULK:
1359 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1360 		if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1361 			xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1362 				  ep_state);
1363 			ret = -EINVAL;
1364 			break;
1365 		}
1366 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1367 					 slot_id, ep_index);
1368 		break;
1369 
1370 
1371 	case USB_ENDPOINT_XFER_INT:
1372 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1373 				slot_id, ep_index);
1374 		break;
1375 
1376 	case USB_ENDPOINT_XFER_ISOC:
1377 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1378 				slot_id, ep_index);
1379 	}
1380 
1381 	if (ret) {
1382 free_priv:
1383 		xhci_urb_free_priv(urb_priv);
1384 		urb->hcpriv = NULL;
1385 	}
1386 	spin_unlock_irqrestore(&xhci->lock, flags);
1387 	return ret;
1388 }
1389 
1390 /*
1391  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1392  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1393  * should pick up where it left off in the TD, unless a Set Transfer Ring
1394  * Dequeue Pointer is issued.
1395  *
1396  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1397  * the ring.  Since the ring is a contiguous structure, they can't be physically
1398  * removed.  Instead, there are two options:
1399  *
1400  *  1) If the HC is in the middle of processing the URB to be canceled, we
1401  *     simply move the ring's dequeue pointer past those TRBs using the Set
1402  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1403  *     when drivers timeout on the last submitted URB and attempt to cancel.
1404  *
1405  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1406  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1407  *     HC will need to invalidate the any TRBs it has cached after the stop
1408  *     endpoint command, as noted in the xHCI 0.95 errata.
1409  *
1410  *  3) The TD may have completed by the time the Stop Endpoint Command
1411  *     completes, so software needs to handle that case too.
1412  *
1413  * This function should protect against the TD enqueueing code ringing the
1414  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1415  * It also needs to account for multiple cancellations on happening at the same
1416  * time for the same endpoint.
1417  *
1418  * Note that this function can be called in any context, or so says
1419  * usb_hcd_unlink_urb()
1420  */
1421 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1422 {
1423 	unsigned long flags;
1424 	int ret, i;
1425 	u32 temp;
1426 	struct xhci_hcd *xhci;
1427 	struct urb_priv	*urb_priv;
1428 	struct xhci_td *td;
1429 	unsigned int ep_index;
1430 	struct xhci_ring *ep_ring;
1431 	struct xhci_virt_ep *ep;
1432 	struct xhci_command *command;
1433 	struct xhci_virt_device *vdev;
1434 
1435 	xhci = hcd_to_xhci(hcd);
1436 	spin_lock_irqsave(&xhci->lock, flags);
1437 
1438 	trace_xhci_urb_dequeue(urb);
1439 
1440 	/* Make sure the URB hasn't completed or been unlinked already */
1441 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1442 	if (ret)
1443 		goto done;
1444 
1445 	/* give back URB now if we can't queue it for cancel */
1446 	vdev = xhci->devs[urb->dev->slot_id];
1447 	urb_priv = urb->hcpriv;
1448 	if (!vdev || !urb_priv)
1449 		goto err_giveback;
1450 
1451 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1452 	ep = &vdev->eps[ep_index];
1453 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1454 	if (!ep || !ep_ring)
1455 		goto err_giveback;
1456 
1457 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1458 	temp = readl(&xhci->op_regs->status);
1459 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1460 		xhci_hc_died(xhci);
1461 		goto done;
1462 	}
1463 
1464 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1465 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1466 				"HC halted, freeing TD manually.");
1467 		for (i = urb_priv->num_tds_done;
1468 		     i < urb_priv->num_tds;
1469 		     i++) {
1470 			td = &urb_priv->td[i];
1471 			if (!list_empty(&td->td_list))
1472 				list_del_init(&td->td_list);
1473 			if (!list_empty(&td->cancelled_td_list))
1474 				list_del_init(&td->cancelled_td_list);
1475 		}
1476 		goto err_giveback;
1477 	}
1478 
1479 	i = urb_priv->num_tds_done;
1480 	if (i < urb_priv->num_tds)
1481 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1482 				"Cancel URB %p, dev %s, ep 0x%x, "
1483 				"starting at offset 0x%llx",
1484 				urb, urb->dev->devpath,
1485 				urb->ep->desc.bEndpointAddress,
1486 				(unsigned long long) xhci_trb_virt_to_dma(
1487 					urb_priv->td[i].start_seg,
1488 					urb_priv->td[i].first_trb));
1489 
1490 	for (; i < urb_priv->num_tds; i++) {
1491 		td = &urb_priv->td[i];
1492 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1493 	}
1494 
1495 	/* Queue a stop endpoint command, but only if this is
1496 	 * the first cancellation to be handled.
1497 	 */
1498 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1499 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1500 		if (!command) {
1501 			ret = -ENOMEM;
1502 			goto done;
1503 		}
1504 		ep->ep_state |= EP_STOP_CMD_PENDING;
1505 		ep->stop_cmd_timer.expires = jiffies +
1506 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1507 		add_timer(&ep->stop_cmd_timer);
1508 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1509 					 ep_index, 0);
1510 		xhci_ring_cmd_db(xhci);
1511 	}
1512 done:
1513 	spin_unlock_irqrestore(&xhci->lock, flags);
1514 	return ret;
1515 
1516 err_giveback:
1517 	if (urb_priv)
1518 		xhci_urb_free_priv(urb_priv);
1519 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1520 	spin_unlock_irqrestore(&xhci->lock, flags);
1521 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1522 	return ret;
1523 }
1524 
1525 /* Drop an endpoint from a new bandwidth configuration for this device.
1526  * Only one call to this function is allowed per endpoint before
1527  * check_bandwidth() or reset_bandwidth() must be called.
1528  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1529  * add the endpoint to the schedule with possibly new parameters denoted by a
1530  * different endpoint descriptor in usb_host_endpoint.
1531  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1532  * not allowed.
1533  *
1534  * The USB core will not allow URBs to be queued to an endpoint that is being
1535  * disabled, so there's no need for mutual exclusion to protect
1536  * the xhci->devs[slot_id] structure.
1537  */
1538 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1539 		struct usb_host_endpoint *ep)
1540 {
1541 	struct xhci_hcd *xhci;
1542 	struct xhci_container_ctx *in_ctx, *out_ctx;
1543 	struct xhci_input_control_ctx *ctrl_ctx;
1544 	unsigned int ep_index;
1545 	struct xhci_ep_ctx *ep_ctx;
1546 	u32 drop_flag;
1547 	u32 new_add_flags, new_drop_flags;
1548 	int ret;
1549 
1550 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1551 	if (ret <= 0)
1552 		return ret;
1553 	xhci = hcd_to_xhci(hcd);
1554 	if (xhci->xhc_state & XHCI_STATE_DYING)
1555 		return -ENODEV;
1556 
1557 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1558 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1559 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1560 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1561 				__func__, drop_flag);
1562 		return 0;
1563 	}
1564 
1565 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1566 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1567 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1568 	if (!ctrl_ctx) {
1569 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1570 				__func__);
1571 		return 0;
1572 	}
1573 
1574 	ep_index = xhci_get_endpoint_index(&ep->desc);
1575 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1576 	/* If the HC already knows the endpoint is disabled,
1577 	 * or the HCD has noted it is disabled, ignore this request
1578 	 */
1579 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1580 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1581 	    xhci_get_endpoint_flag(&ep->desc)) {
1582 		/* Do not warn when called after a usb_device_reset */
1583 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1584 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1585 				  __func__, ep);
1586 		return 0;
1587 	}
1588 
1589 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1590 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1591 
1592 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1593 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1594 
1595 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1596 
1597 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1598 
1599 	if (xhci->quirks & XHCI_MTK_HOST)
1600 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1601 
1602 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1603 			(unsigned int) ep->desc.bEndpointAddress,
1604 			udev->slot_id,
1605 			(unsigned int) new_drop_flags,
1606 			(unsigned int) new_add_flags);
1607 	return 0;
1608 }
1609 
1610 /* Add an endpoint to a new possible bandwidth configuration for this device.
1611  * Only one call to this function is allowed per endpoint before
1612  * check_bandwidth() or reset_bandwidth() must be called.
1613  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1614  * add the endpoint to the schedule with possibly new parameters denoted by a
1615  * different endpoint descriptor in usb_host_endpoint.
1616  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1617  * not allowed.
1618  *
1619  * The USB core will not allow URBs to be queued to an endpoint until the
1620  * configuration or alt setting is installed in the device, so there's no need
1621  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1622  */
1623 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1624 		struct usb_host_endpoint *ep)
1625 {
1626 	struct xhci_hcd *xhci;
1627 	struct xhci_container_ctx *in_ctx;
1628 	unsigned int ep_index;
1629 	struct xhci_input_control_ctx *ctrl_ctx;
1630 	u32 added_ctxs;
1631 	u32 new_add_flags, new_drop_flags;
1632 	struct xhci_virt_device *virt_dev;
1633 	int ret = 0;
1634 
1635 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1636 	if (ret <= 0) {
1637 		/* So we won't queue a reset ep command for a root hub */
1638 		ep->hcpriv = NULL;
1639 		return ret;
1640 	}
1641 	xhci = hcd_to_xhci(hcd);
1642 	if (xhci->xhc_state & XHCI_STATE_DYING)
1643 		return -ENODEV;
1644 
1645 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1646 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1647 		/* FIXME when we have to issue an evaluate endpoint command to
1648 		 * deal with ep0 max packet size changing once we get the
1649 		 * descriptors
1650 		 */
1651 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1652 				__func__, added_ctxs);
1653 		return 0;
1654 	}
1655 
1656 	virt_dev = xhci->devs[udev->slot_id];
1657 	in_ctx = virt_dev->in_ctx;
1658 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1659 	if (!ctrl_ctx) {
1660 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1661 				__func__);
1662 		return 0;
1663 	}
1664 
1665 	ep_index = xhci_get_endpoint_index(&ep->desc);
1666 	/* If this endpoint is already in use, and the upper layers are trying
1667 	 * to add it again without dropping it, reject the addition.
1668 	 */
1669 	if (virt_dev->eps[ep_index].ring &&
1670 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1671 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1672 				"without dropping it.\n",
1673 				(unsigned int) ep->desc.bEndpointAddress);
1674 		return -EINVAL;
1675 	}
1676 
1677 	/* If the HCD has already noted the endpoint is enabled,
1678 	 * ignore this request.
1679 	 */
1680 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1681 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1682 				__func__, ep);
1683 		return 0;
1684 	}
1685 
1686 	/*
1687 	 * Configuration and alternate setting changes must be done in
1688 	 * process context, not interrupt context (or so documenation
1689 	 * for usb_set_interface() and usb_set_configuration() claim).
1690 	 */
1691 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1692 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1693 				__func__, ep->desc.bEndpointAddress);
1694 		return -ENOMEM;
1695 	}
1696 
1697 	if (xhci->quirks & XHCI_MTK_HOST) {
1698 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1699 		if (ret < 0) {
1700 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1701 			virt_dev->eps[ep_index].new_ring = NULL;
1702 			return ret;
1703 		}
1704 	}
1705 
1706 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1707 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1708 
1709 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1710 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1711 	 * this re-adds a new state for the endpoint from the new endpoint
1712 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1713 	 * drop flags alone.
1714 	 */
1715 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1716 
1717 	/* Store the usb_device pointer for later use */
1718 	ep->hcpriv = udev;
1719 
1720 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1721 
1722 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1723 			(unsigned int) ep->desc.bEndpointAddress,
1724 			udev->slot_id,
1725 			(unsigned int) new_drop_flags,
1726 			(unsigned int) new_add_flags);
1727 	return 0;
1728 }
1729 
1730 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1731 {
1732 	struct xhci_input_control_ctx *ctrl_ctx;
1733 	struct xhci_ep_ctx *ep_ctx;
1734 	struct xhci_slot_ctx *slot_ctx;
1735 	int i;
1736 
1737 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1738 	if (!ctrl_ctx) {
1739 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1740 				__func__);
1741 		return;
1742 	}
1743 
1744 	/* When a device's add flag and drop flag are zero, any subsequent
1745 	 * configure endpoint command will leave that endpoint's state
1746 	 * untouched.  Make sure we don't leave any old state in the input
1747 	 * endpoint contexts.
1748 	 */
1749 	ctrl_ctx->drop_flags = 0;
1750 	ctrl_ctx->add_flags = 0;
1751 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1752 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1753 	/* Endpoint 0 is always valid */
1754 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1755 	for (i = 1; i < 31; i++) {
1756 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1757 		ep_ctx->ep_info = 0;
1758 		ep_ctx->ep_info2 = 0;
1759 		ep_ctx->deq = 0;
1760 		ep_ctx->tx_info = 0;
1761 	}
1762 }
1763 
1764 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1765 		struct usb_device *udev, u32 *cmd_status)
1766 {
1767 	int ret;
1768 
1769 	switch (*cmd_status) {
1770 	case COMP_COMMAND_ABORTED:
1771 	case COMP_COMMAND_RING_STOPPED:
1772 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1773 		ret = -ETIME;
1774 		break;
1775 	case COMP_RESOURCE_ERROR:
1776 		dev_warn(&udev->dev,
1777 			 "Not enough host controller resources for new device state.\n");
1778 		ret = -ENOMEM;
1779 		/* FIXME: can we allocate more resources for the HC? */
1780 		break;
1781 	case COMP_BANDWIDTH_ERROR:
1782 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1783 		dev_warn(&udev->dev,
1784 			 "Not enough bandwidth for new device state.\n");
1785 		ret = -ENOSPC;
1786 		/* FIXME: can we go back to the old state? */
1787 		break;
1788 	case COMP_TRB_ERROR:
1789 		/* the HCD set up something wrong */
1790 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1791 				"add flag = 1, "
1792 				"and endpoint is not disabled.\n");
1793 		ret = -EINVAL;
1794 		break;
1795 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1796 		dev_warn(&udev->dev,
1797 			 "ERROR: Incompatible device for endpoint configure command.\n");
1798 		ret = -ENODEV;
1799 		break;
1800 	case COMP_SUCCESS:
1801 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1802 				"Successful Endpoint Configure command");
1803 		ret = 0;
1804 		break;
1805 	default:
1806 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1807 				*cmd_status);
1808 		ret = -EINVAL;
1809 		break;
1810 	}
1811 	return ret;
1812 }
1813 
1814 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1815 		struct usb_device *udev, u32 *cmd_status)
1816 {
1817 	int ret;
1818 
1819 	switch (*cmd_status) {
1820 	case COMP_COMMAND_ABORTED:
1821 	case COMP_COMMAND_RING_STOPPED:
1822 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1823 		ret = -ETIME;
1824 		break;
1825 	case COMP_PARAMETER_ERROR:
1826 		dev_warn(&udev->dev,
1827 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1828 		ret = -EINVAL;
1829 		break;
1830 	case COMP_SLOT_NOT_ENABLED_ERROR:
1831 		dev_warn(&udev->dev,
1832 			"WARN: slot not enabled for evaluate context command.\n");
1833 		ret = -EINVAL;
1834 		break;
1835 	case COMP_CONTEXT_STATE_ERROR:
1836 		dev_warn(&udev->dev,
1837 			"WARN: invalid context state for evaluate context command.\n");
1838 		ret = -EINVAL;
1839 		break;
1840 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1841 		dev_warn(&udev->dev,
1842 			"ERROR: Incompatible device for evaluate context command.\n");
1843 		ret = -ENODEV;
1844 		break;
1845 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1846 		/* Max Exit Latency too large error */
1847 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1848 		ret = -EINVAL;
1849 		break;
1850 	case COMP_SUCCESS:
1851 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1852 				"Successful evaluate context command");
1853 		ret = 0;
1854 		break;
1855 	default:
1856 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1857 			*cmd_status);
1858 		ret = -EINVAL;
1859 		break;
1860 	}
1861 	return ret;
1862 }
1863 
1864 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1865 		struct xhci_input_control_ctx *ctrl_ctx)
1866 {
1867 	u32 valid_add_flags;
1868 	u32 valid_drop_flags;
1869 
1870 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1871 	 * (bit 1).  The default control endpoint is added during the Address
1872 	 * Device command and is never removed until the slot is disabled.
1873 	 */
1874 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1875 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1876 
1877 	/* Use hweight32 to count the number of ones in the add flags, or
1878 	 * number of endpoints added.  Don't count endpoints that are changed
1879 	 * (both added and dropped).
1880 	 */
1881 	return hweight32(valid_add_flags) -
1882 		hweight32(valid_add_flags & valid_drop_flags);
1883 }
1884 
1885 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1886 		struct xhci_input_control_ctx *ctrl_ctx)
1887 {
1888 	u32 valid_add_flags;
1889 	u32 valid_drop_flags;
1890 
1891 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1892 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1893 
1894 	return hweight32(valid_drop_flags) -
1895 		hweight32(valid_add_flags & valid_drop_flags);
1896 }
1897 
1898 /*
1899  * We need to reserve the new number of endpoints before the configure endpoint
1900  * command completes.  We can't subtract the dropped endpoints from the number
1901  * of active endpoints until the command completes because we can oversubscribe
1902  * the host in this case:
1903  *
1904  *  - the first configure endpoint command drops more endpoints than it adds
1905  *  - a second configure endpoint command that adds more endpoints is queued
1906  *  - the first configure endpoint command fails, so the config is unchanged
1907  *  - the second command may succeed, even though there isn't enough resources
1908  *
1909  * Must be called with xhci->lock held.
1910  */
1911 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1912 		struct xhci_input_control_ctx *ctrl_ctx)
1913 {
1914 	u32 added_eps;
1915 
1916 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1917 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1918 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1919 				"Not enough ep ctxs: "
1920 				"%u active, need to add %u, limit is %u.",
1921 				xhci->num_active_eps, added_eps,
1922 				xhci->limit_active_eps);
1923 		return -ENOMEM;
1924 	}
1925 	xhci->num_active_eps += added_eps;
1926 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1927 			"Adding %u ep ctxs, %u now active.", added_eps,
1928 			xhci->num_active_eps);
1929 	return 0;
1930 }
1931 
1932 /*
1933  * The configure endpoint was failed by the xHC for some other reason, so we
1934  * need to revert the resources that failed configuration would have used.
1935  *
1936  * Must be called with xhci->lock held.
1937  */
1938 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1939 		struct xhci_input_control_ctx *ctrl_ctx)
1940 {
1941 	u32 num_failed_eps;
1942 
1943 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1944 	xhci->num_active_eps -= num_failed_eps;
1945 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1946 			"Removing %u failed ep ctxs, %u now active.",
1947 			num_failed_eps,
1948 			xhci->num_active_eps);
1949 }
1950 
1951 /*
1952  * Now that the command has completed, clean up the active endpoint count by
1953  * subtracting out the endpoints that were dropped (but not changed).
1954  *
1955  * Must be called with xhci->lock held.
1956  */
1957 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1958 		struct xhci_input_control_ctx *ctrl_ctx)
1959 {
1960 	u32 num_dropped_eps;
1961 
1962 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1963 	xhci->num_active_eps -= num_dropped_eps;
1964 	if (num_dropped_eps)
1965 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1966 				"Removing %u dropped ep ctxs, %u now active.",
1967 				num_dropped_eps,
1968 				xhci->num_active_eps);
1969 }
1970 
1971 static unsigned int xhci_get_block_size(struct usb_device *udev)
1972 {
1973 	switch (udev->speed) {
1974 	case USB_SPEED_LOW:
1975 	case USB_SPEED_FULL:
1976 		return FS_BLOCK;
1977 	case USB_SPEED_HIGH:
1978 		return HS_BLOCK;
1979 	case USB_SPEED_SUPER:
1980 	case USB_SPEED_SUPER_PLUS:
1981 		return SS_BLOCK;
1982 	case USB_SPEED_UNKNOWN:
1983 	case USB_SPEED_WIRELESS:
1984 	default:
1985 		/* Should never happen */
1986 		return 1;
1987 	}
1988 }
1989 
1990 static unsigned int
1991 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1992 {
1993 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1994 		return LS_OVERHEAD;
1995 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1996 		return FS_OVERHEAD;
1997 	return HS_OVERHEAD;
1998 }
1999 
2000 /* If we are changing a LS/FS device under a HS hub,
2001  * make sure (if we are activating a new TT) that the HS bus has enough
2002  * bandwidth for this new TT.
2003  */
2004 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2005 		struct xhci_virt_device *virt_dev,
2006 		int old_active_eps)
2007 {
2008 	struct xhci_interval_bw_table *bw_table;
2009 	struct xhci_tt_bw_info *tt_info;
2010 
2011 	/* Find the bandwidth table for the root port this TT is attached to. */
2012 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2013 	tt_info = virt_dev->tt_info;
2014 	/* If this TT already had active endpoints, the bandwidth for this TT
2015 	 * has already been added.  Removing all periodic endpoints (and thus
2016 	 * making the TT enactive) will only decrease the bandwidth used.
2017 	 */
2018 	if (old_active_eps)
2019 		return 0;
2020 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2021 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2022 			return -ENOMEM;
2023 		return 0;
2024 	}
2025 	/* Not sure why we would have no new active endpoints...
2026 	 *
2027 	 * Maybe because of an Evaluate Context change for a hub update or a
2028 	 * control endpoint 0 max packet size change?
2029 	 * FIXME: skip the bandwidth calculation in that case.
2030 	 */
2031 	return 0;
2032 }
2033 
2034 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2035 		struct xhci_virt_device *virt_dev)
2036 {
2037 	unsigned int bw_reserved;
2038 
2039 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2040 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2041 		return -ENOMEM;
2042 
2043 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2044 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2045 		return -ENOMEM;
2046 
2047 	return 0;
2048 }
2049 
2050 /*
2051  * This algorithm is a very conservative estimate of the worst-case scheduling
2052  * scenario for any one interval.  The hardware dynamically schedules the
2053  * packets, so we can't tell which microframe could be the limiting factor in
2054  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2055  *
2056  * Obviously, we can't solve an NP complete problem to find the minimum worst
2057  * case scenario.  Instead, we come up with an estimate that is no less than
2058  * the worst case bandwidth used for any one microframe, but may be an
2059  * over-estimate.
2060  *
2061  * We walk the requirements for each endpoint by interval, starting with the
2062  * smallest interval, and place packets in the schedule where there is only one
2063  * possible way to schedule packets for that interval.  In order to simplify
2064  * this algorithm, we record the largest max packet size for each interval, and
2065  * assume all packets will be that size.
2066  *
2067  * For interval 0, we obviously must schedule all packets for each interval.
2068  * The bandwidth for interval 0 is just the amount of data to be transmitted
2069  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2070  * the number of packets).
2071  *
2072  * For interval 1, we have two possible microframes to schedule those packets
2073  * in.  For this algorithm, if we can schedule the same number of packets for
2074  * each possible scheduling opportunity (each microframe), we will do so.  The
2075  * remaining number of packets will be saved to be transmitted in the gaps in
2076  * the next interval's scheduling sequence.
2077  *
2078  * As we move those remaining packets to be scheduled with interval 2 packets,
2079  * we have to double the number of remaining packets to transmit.  This is
2080  * because the intervals are actually powers of 2, and we would be transmitting
2081  * the previous interval's packets twice in this interval.  We also have to be
2082  * sure that when we look at the largest max packet size for this interval, we
2083  * also look at the largest max packet size for the remaining packets and take
2084  * the greater of the two.
2085  *
2086  * The algorithm continues to evenly distribute packets in each scheduling
2087  * opportunity, and push the remaining packets out, until we get to the last
2088  * interval.  Then those packets and their associated overhead are just added
2089  * to the bandwidth used.
2090  */
2091 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2092 		struct xhci_virt_device *virt_dev,
2093 		int old_active_eps)
2094 {
2095 	unsigned int bw_reserved;
2096 	unsigned int max_bandwidth;
2097 	unsigned int bw_used;
2098 	unsigned int block_size;
2099 	struct xhci_interval_bw_table *bw_table;
2100 	unsigned int packet_size = 0;
2101 	unsigned int overhead = 0;
2102 	unsigned int packets_transmitted = 0;
2103 	unsigned int packets_remaining = 0;
2104 	unsigned int i;
2105 
2106 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2107 		return xhci_check_ss_bw(xhci, virt_dev);
2108 
2109 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2110 		max_bandwidth = HS_BW_LIMIT;
2111 		/* Convert percent of bus BW reserved to blocks reserved */
2112 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2113 	} else {
2114 		max_bandwidth = FS_BW_LIMIT;
2115 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2116 	}
2117 
2118 	bw_table = virt_dev->bw_table;
2119 	/* We need to translate the max packet size and max ESIT payloads into
2120 	 * the units the hardware uses.
2121 	 */
2122 	block_size = xhci_get_block_size(virt_dev->udev);
2123 
2124 	/* If we are manipulating a LS/FS device under a HS hub, double check
2125 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2126 	 */
2127 	if (virt_dev->tt_info) {
2128 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2129 				"Recalculating BW for rootport %u",
2130 				virt_dev->real_port);
2131 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2132 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2133 					"newly activated TT.\n");
2134 			return -ENOMEM;
2135 		}
2136 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2137 				"Recalculating BW for TT slot %u port %u",
2138 				virt_dev->tt_info->slot_id,
2139 				virt_dev->tt_info->ttport);
2140 	} else {
2141 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2142 				"Recalculating BW for rootport %u",
2143 				virt_dev->real_port);
2144 	}
2145 
2146 	/* Add in how much bandwidth will be used for interval zero, or the
2147 	 * rounded max ESIT payload + number of packets * largest overhead.
2148 	 */
2149 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2150 		bw_table->interval_bw[0].num_packets *
2151 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2152 
2153 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2154 		unsigned int bw_added;
2155 		unsigned int largest_mps;
2156 		unsigned int interval_overhead;
2157 
2158 		/*
2159 		 * How many packets could we transmit in this interval?
2160 		 * If packets didn't fit in the previous interval, we will need
2161 		 * to transmit that many packets twice within this interval.
2162 		 */
2163 		packets_remaining = 2 * packets_remaining +
2164 			bw_table->interval_bw[i].num_packets;
2165 
2166 		/* Find the largest max packet size of this or the previous
2167 		 * interval.
2168 		 */
2169 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2170 			largest_mps = 0;
2171 		else {
2172 			struct xhci_virt_ep *virt_ep;
2173 			struct list_head *ep_entry;
2174 
2175 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2176 			virt_ep = list_entry(ep_entry,
2177 					struct xhci_virt_ep, bw_endpoint_list);
2178 			/* Convert to blocks, rounding up */
2179 			largest_mps = DIV_ROUND_UP(
2180 					virt_ep->bw_info.max_packet_size,
2181 					block_size);
2182 		}
2183 		if (largest_mps > packet_size)
2184 			packet_size = largest_mps;
2185 
2186 		/* Use the larger overhead of this or the previous interval. */
2187 		interval_overhead = xhci_get_largest_overhead(
2188 				&bw_table->interval_bw[i]);
2189 		if (interval_overhead > overhead)
2190 			overhead = interval_overhead;
2191 
2192 		/* How many packets can we evenly distribute across
2193 		 * (1 << (i + 1)) possible scheduling opportunities?
2194 		 */
2195 		packets_transmitted = packets_remaining >> (i + 1);
2196 
2197 		/* Add in the bandwidth used for those scheduled packets */
2198 		bw_added = packets_transmitted * (overhead + packet_size);
2199 
2200 		/* How many packets do we have remaining to transmit? */
2201 		packets_remaining = packets_remaining % (1 << (i + 1));
2202 
2203 		/* What largest max packet size should those packets have? */
2204 		/* If we've transmitted all packets, don't carry over the
2205 		 * largest packet size.
2206 		 */
2207 		if (packets_remaining == 0) {
2208 			packet_size = 0;
2209 			overhead = 0;
2210 		} else if (packets_transmitted > 0) {
2211 			/* Otherwise if we do have remaining packets, and we've
2212 			 * scheduled some packets in this interval, take the
2213 			 * largest max packet size from endpoints with this
2214 			 * interval.
2215 			 */
2216 			packet_size = largest_mps;
2217 			overhead = interval_overhead;
2218 		}
2219 		/* Otherwise carry over packet_size and overhead from the last
2220 		 * time we had a remainder.
2221 		 */
2222 		bw_used += bw_added;
2223 		if (bw_used > max_bandwidth) {
2224 			xhci_warn(xhci, "Not enough bandwidth. "
2225 					"Proposed: %u, Max: %u\n",
2226 				bw_used, max_bandwidth);
2227 			return -ENOMEM;
2228 		}
2229 	}
2230 	/*
2231 	 * Ok, we know we have some packets left over after even-handedly
2232 	 * scheduling interval 15.  We don't know which microframes they will
2233 	 * fit into, so we over-schedule and say they will be scheduled every
2234 	 * microframe.
2235 	 */
2236 	if (packets_remaining > 0)
2237 		bw_used += overhead + packet_size;
2238 
2239 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2240 		unsigned int port_index = virt_dev->real_port - 1;
2241 
2242 		/* OK, we're manipulating a HS device attached to a
2243 		 * root port bandwidth domain.  Include the number of active TTs
2244 		 * in the bandwidth used.
2245 		 */
2246 		bw_used += TT_HS_OVERHEAD *
2247 			xhci->rh_bw[port_index].num_active_tts;
2248 	}
2249 
2250 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2251 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2252 		"Available: %u " "percent",
2253 		bw_used, max_bandwidth, bw_reserved,
2254 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2255 		max_bandwidth);
2256 
2257 	bw_used += bw_reserved;
2258 	if (bw_used > max_bandwidth) {
2259 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2260 				bw_used, max_bandwidth);
2261 		return -ENOMEM;
2262 	}
2263 
2264 	bw_table->bw_used = bw_used;
2265 	return 0;
2266 }
2267 
2268 static bool xhci_is_async_ep(unsigned int ep_type)
2269 {
2270 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2271 					ep_type != ISOC_IN_EP &&
2272 					ep_type != INT_IN_EP);
2273 }
2274 
2275 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2276 {
2277 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2278 }
2279 
2280 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2281 {
2282 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2283 
2284 	if (ep_bw->ep_interval == 0)
2285 		return SS_OVERHEAD_BURST +
2286 			(ep_bw->mult * ep_bw->num_packets *
2287 					(SS_OVERHEAD + mps));
2288 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2289 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2290 				1 << ep_bw->ep_interval);
2291 
2292 }
2293 
2294 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2295 		struct xhci_bw_info *ep_bw,
2296 		struct xhci_interval_bw_table *bw_table,
2297 		struct usb_device *udev,
2298 		struct xhci_virt_ep *virt_ep,
2299 		struct xhci_tt_bw_info *tt_info)
2300 {
2301 	struct xhci_interval_bw	*interval_bw;
2302 	int normalized_interval;
2303 
2304 	if (xhci_is_async_ep(ep_bw->type))
2305 		return;
2306 
2307 	if (udev->speed >= USB_SPEED_SUPER) {
2308 		if (xhci_is_sync_in_ep(ep_bw->type))
2309 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2310 				xhci_get_ss_bw_consumed(ep_bw);
2311 		else
2312 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2313 				xhci_get_ss_bw_consumed(ep_bw);
2314 		return;
2315 	}
2316 
2317 	/* SuperSpeed endpoints never get added to intervals in the table, so
2318 	 * this check is only valid for HS/FS/LS devices.
2319 	 */
2320 	if (list_empty(&virt_ep->bw_endpoint_list))
2321 		return;
2322 	/* For LS/FS devices, we need to translate the interval expressed in
2323 	 * microframes to frames.
2324 	 */
2325 	if (udev->speed == USB_SPEED_HIGH)
2326 		normalized_interval = ep_bw->ep_interval;
2327 	else
2328 		normalized_interval = ep_bw->ep_interval - 3;
2329 
2330 	if (normalized_interval == 0)
2331 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2332 	interval_bw = &bw_table->interval_bw[normalized_interval];
2333 	interval_bw->num_packets -= ep_bw->num_packets;
2334 	switch (udev->speed) {
2335 	case USB_SPEED_LOW:
2336 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2337 		break;
2338 	case USB_SPEED_FULL:
2339 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2340 		break;
2341 	case USB_SPEED_HIGH:
2342 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2343 		break;
2344 	case USB_SPEED_SUPER:
2345 	case USB_SPEED_SUPER_PLUS:
2346 	case USB_SPEED_UNKNOWN:
2347 	case USB_SPEED_WIRELESS:
2348 		/* Should never happen because only LS/FS/HS endpoints will get
2349 		 * added to the endpoint list.
2350 		 */
2351 		return;
2352 	}
2353 	if (tt_info)
2354 		tt_info->active_eps -= 1;
2355 	list_del_init(&virt_ep->bw_endpoint_list);
2356 }
2357 
2358 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2359 		struct xhci_bw_info *ep_bw,
2360 		struct xhci_interval_bw_table *bw_table,
2361 		struct usb_device *udev,
2362 		struct xhci_virt_ep *virt_ep,
2363 		struct xhci_tt_bw_info *tt_info)
2364 {
2365 	struct xhci_interval_bw	*interval_bw;
2366 	struct xhci_virt_ep *smaller_ep;
2367 	int normalized_interval;
2368 
2369 	if (xhci_is_async_ep(ep_bw->type))
2370 		return;
2371 
2372 	if (udev->speed == USB_SPEED_SUPER) {
2373 		if (xhci_is_sync_in_ep(ep_bw->type))
2374 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2375 				xhci_get_ss_bw_consumed(ep_bw);
2376 		else
2377 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2378 				xhci_get_ss_bw_consumed(ep_bw);
2379 		return;
2380 	}
2381 
2382 	/* For LS/FS devices, we need to translate the interval expressed in
2383 	 * microframes to frames.
2384 	 */
2385 	if (udev->speed == USB_SPEED_HIGH)
2386 		normalized_interval = ep_bw->ep_interval;
2387 	else
2388 		normalized_interval = ep_bw->ep_interval - 3;
2389 
2390 	if (normalized_interval == 0)
2391 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2392 	interval_bw = &bw_table->interval_bw[normalized_interval];
2393 	interval_bw->num_packets += ep_bw->num_packets;
2394 	switch (udev->speed) {
2395 	case USB_SPEED_LOW:
2396 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2397 		break;
2398 	case USB_SPEED_FULL:
2399 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2400 		break;
2401 	case USB_SPEED_HIGH:
2402 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2403 		break;
2404 	case USB_SPEED_SUPER:
2405 	case USB_SPEED_SUPER_PLUS:
2406 	case USB_SPEED_UNKNOWN:
2407 	case USB_SPEED_WIRELESS:
2408 		/* Should never happen because only LS/FS/HS endpoints will get
2409 		 * added to the endpoint list.
2410 		 */
2411 		return;
2412 	}
2413 
2414 	if (tt_info)
2415 		tt_info->active_eps += 1;
2416 	/* Insert the endpoint into the list, largest max packet size first. */
2417 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2418 			bw_endpoint_list) {
2419 		if (ep_bw->max_packet_size >=
2420 				smaller_ep->bw_info.max_packet_size) {
2421 			/* Add the new ep before the smaller endpoint */
2422 			list_add_tail(&virt_ep->bw_endpoint_list,
2423 					&smaller_ep->bw_endpoint_list);
2424 			return;
2425 		}
2426 	}
2427 	/* Add the new endpoint at the end of the list. */
2428 	list_add_tail(&virt_ep->bw_endpoint_list,
2429 			&interval_bw->endpoints);
2430 }
2431 
2432 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2433 		struct xhci_virt_device *virt_dev,
2434 		int old_active_eps)
2435 {
2436 	struct xhci_root_port_bw_info *rh_bw_info;
2437 	if (!virt_dev->tt_info)
2438 		return;
2439 
2440 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2441 	if (old_active_eps == 0 &&
2442 				virt_dev->tt_info->active_eps != 0) {
2443 		rh_bw_info->num_active_tts += 1;
2444 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2445 	} else if (old_active_eps != 0 &&
2446 				virt_dev->tt_info->active_eps == 0) {
2447 		rh_bw_info->num_active_tts -= 1;
2448 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2449 	}
2450 }
2451 
2452 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2453 		struct xhci_virt_device *virt_dev,
2454 		struct xhci_container_ctx *in_ctx)
2455 {
2456 	struct xhci_bw_info ep_bw_info[31];
2457 	int i;
2458 	struct xhci_input_control_ctx *ctrl_ctx;
2459 	int old_active_eps = 0;
2460 
2461 	if (virt_dev->tt_info)
2462 		old_active_eps = virt_dev->tt_info->active_eps;
2463 
2464 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2465 	if (!ctrl_ctx) {
2466 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2467 				__func__);
2468 		return -ENOMEM;
2469 	}
2470 
2471 	for (i = 0; i < 31; i++) {
2472 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2473 			continue;
2474 
2475 		/* Make a copy of the BW info in case we need to revert this */
2476 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2477 				sizeof(ep_bw_info[i]));
2478 		/* Drop the endpoint from the interval table if the endpoint is
2479 		 * being dropped or changed.
2480 		 */
2481 		if (EP_IS_DROPPED(ctrl_ctx, i))
2482 			xhci_drop_ep_from_interval_table(xhci,
2483 					&virt_dev->eps[i].bw_info,
2484 					virt_dev->bw_table,
2485 					virt_dev->udev,
2486 					&virt_dev->eps[i],
2487 					virt_dev->tt_info);
2488 	}
2489 	/* Overwrite the information stored in the endpoints' bw_info */
2490 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2491 	for (i = 0; i < 31; i++) {
2492 		/* Add any changed or added endpoints to the interval table */
2493 		if (EP_IS_ADDED(ctrl_ctx, i))
2494 			xhci_add_ep_to_interval_table(xhci,
2495 					&virt_dev->eps[i].bw_info,
2496 					virt_dev->bw_table,
2497 					virt_dev->udev,
2498 					&virt_dev->eps[i],
2499 					virt_dev->tt_info);
2500 	}
2501 
2502 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2503 		/* Ok, this fits in the bandwidth we have.
2504 		 * Update the number of active TTs.
2505 		 */
2506 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2507 		return 0;
2508 	}
2509 
2510 	/* We don't have enough bandwidth for this, revert the stored info. */
2511 	for (i = 0; i < 31; i++) {
2512 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2513 			continue;
2514 
2515 		/* Drop the new copies of any added or changed endpoints from
2516 		 * the interval table.
2517 		 */
2518 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2519 			xhci_drop_ep_from_interval_table(xhci,
2520 					&virt_dev->eps[i].bw_info,
2521 					virt_dev->bw_table,
2522 					virt_dev->udev,
2523 					&virt_dev->eps[i],
2524 					virt_dev->tt_info);
2525 		}
2526 		/* Revert the endpoint back to its old information */
2527 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2528 				sizeof(ep_bw_info[i]));
2529 		/* Add any changed or dropped endpoints back into the table */
2530 		if (EP_IS_DROPPED(ctrl_ctx, i))
2531 			xhci_add_ep_to_interval_table(xhci,
2532 					&virt_dev->eps[i].bw_info,
2533 					virt_dev->bw_table,
2534 					virt_dev->udev,
2535 					&virt_dev->eps[i],
2536 					virt_dev->tt_info);
2537 	}
2538 	return -ENOMEM;
2539 }
2540 
2541 
2542 /* Issue a configure endpoint command or evaluate context command
2543  * and wait for it to finish.
2544  */
2545 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2546 		struct usb_device *udev,
2547 		struct xhci_command *command,
2548 		bool ctx_change, bool must_succeed)
2549 {
2550 	int ret;
2551 	unsigned long flags;
2552 	struct xhci_input_control_ctx *ctrl_ctx;
2553 	struct xhci_virt_device *virt_dev;
2554 	struct xhci_slot_ctx *slot_ctx;
2555 
2556 	if (!command)
2557 		return -EINVAL;
2558 
2559 	spin_lock_irqsave(&xhci->lock, flags);
2560 
2561 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2562 		spin_unlock_irqrestore(&xhci->lock, flags);
2563 		return -ESHUTDOWN;
2564 	}
2565 
2566 	virt_dev = xhci->devs[udev->slot_id];
2567 
2568 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2569 	if (!ctrl_ctx) {
2570 		spin_unlock_irqrestore(&xhci->lock, flags);
2571 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2572 				__func__);
2573 		return -ENOMEM;
2574 	}
2575 
2576 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2577 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2578 		spin_unlock_irqrestore(&xhci->lock, flags);
2579 		xhci_warn(xhci, "Not enough host resources, "
2580 				"active endpoint contexts = %u\n",
2581 				xhci->num_active_eps);
2582 		return -ENOMEM;
2583 	}
2584 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2585 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2586 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2587 			xhci_free_host_resources(xhci, ctrl_ctx);
2588 		spin_unlock_irqrestore(&xhci->lock, flags);
2589 		xhci_warn(xhci, "Not enough bandwidth\n");
2590 		return -ENOMEM;
2591 	}
2592 
2593 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2594 	trace_xhci_configure_endpoint(slot_ctx);
2595 
2596 	if (!ctx_change)
2597 		ret = xhci_queue_configure_endpoint(xhci, command,
2598 				command->in_ctx->dma,
2599 				udev->slot_id, must_succeed);
2600 	else
2601 		ret = xhci_queue_evaluate_context(xhci, command,
2602 				command->in_ctx->dma,
2603 				udev->slot_id, must_succeed);
2604 	if (ret < 0) {
2605 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2606 			xhci_free_host_resources(xhci, ctrl_ctx);
2607 		spin_unlock_irqrestore(&xhci->lock, flags);
2608 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2609 				"FIXME allocate a new ring segment");
2610 		return -ENOMEM;
2611 	}
2612 	xhci_ring_cmd_db(xhci);
2613 	spin_unlock_irqrestore(&xhci->lock, flags);
2614 
2615 	/* Wait for the configure endpoint command to complete */
2616 	wait_for_completion(command->completion);
2617 
2618 	if (!ctx_change)
2619 		ret = xhci_configure_endpoint_result(xhci, udev,
2620 						     &command->status);
2621 	else
2622 		ret = xhci_evaluate_context_result(xhci, udev,
2623 						   &command->status);
2624 
2625 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2626 		spin_lock_irqsave(&xhci->lock, flags);
2627 		/* If the command failed, remove the reserved resources.
2628 		 * Otherwise, clean up the estimate to include dropped eps.
2629 		 */
2630 		if (ret)
2631 			xhci_free_host_resources(xhci, ctrl_ctx);
2632 		else
2633 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2634 		spin_unlock_irqrestore(&xhci->lock, flags);
2635 	}
2636 	return ret;
2637 }
2638 
2639 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2640 	struct xhci_virt_device *vdev, int i)
2641 {
2642 	struct xhci_virt_ep *ep = &vdev->eps[i];
2643 
2644 	if (ep->ep_state & EP_HAS_STREAMS) {
2645 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2646 				xhci_get_endpoint_address(i));
2647 		xhci_free_stream_info(xhci, ep->stream_info);
2648 		ep->stream_info = NULL;
2649 		ep->ep_state &= ~EP_HAS_STREAMS;
2650 	}
2651 }
2652 
2653 /* Called after one or more calls to xhci_add_endpoint() or
2654  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2655  * to call xhci_reset_bandwidth().
2656  *
2657  * Since we are in the middle of changing either configuration or
2658  * installing a new alt setting, the USB core won't allow URBs to be
2659  * enqueued for any endpoint on the old config or interface.  Nothing
2660  * else should be touching the xhci->devs[slot_id] structure, so we
2661  * don't need to take the xhci->lock for manipulating that.
2662  */
2663 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2664 {
2665 	int i;
2666 	int ret = 0;
2667 	struct xhci_hcd *xhci;
2668 	struct xhci_virt_device	*virt_dev;
2669 	struct xhci_input_control_ctx *ctrl_ctx;
2670 	struct xhci_slot_ctx *slot_ctx;
2671 	struct xhci_command *command;
2672 
2673 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2674 	if (ret <= 0)
2675 		return ret;
2676 	xhci = hcd_to_xhci(hcd);
2677 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2678 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2679 		return -ENODEV;
2680 
2681 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2682 	virt_dev = xhci->devs[udev->slot_id];
2683 
2684 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2685 	if (!command)
2686 		return -ENOMEM;
2687 
2688 	command->in_ctx = virt_dev->in_ctx;
2689 
2690 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2691 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2692 	if (!ctrl_ctx) {
2693 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2694 				__func__);
2695 		ret = -ENOMEM;
2696 		goto command_cleanup;
2697 	}
2698 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2699 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2700 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2701 
2702 	/* Don't issue the command if there's no endpoints to update. */
2703 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2704 	    ctrl_ctx->drop_flags == 0) {
2705 		ret = 0;
2706 		goto command_cleanup;
2707 	}
2708 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2709 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2710 	for (i = 31; i >= 1; i--) {
2711 		__le32 le32 = cpu_to_le32(BIT(i));
2712 
2713 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2714 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2715 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2716 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2717 			break;
2718 		}
2719 	}
2720 
2721 	ret = xhci_configure_endpoint(xhci, udev, command,
2722 			false, false);
2723 	if (ret)
2724 		/* Callee should call reset_bandwidth() */
2725 		goto command_cleanup;
2726 
2727 	/* Free any rings that were dropped, but not changed. */
2728 	for (i = 1; i < 31; i++) {
2729 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2730 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2731 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2732 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2733 		}
2734 	}
2735 	xhci_zero_in_ctx(xhci, virt_dev);
2736 	/*
2737 	 * Install any rings for completely new endpoints or changed endpoints,
2738 	 * and free any old rings from changed endpoints.
2739 	 */
2740 	for (i = 1; i < 31; i++) {
2741 		if (!virt_dev->eps[i].new_ring)
2742 			continue;
2743 		/* Only free the old ring if it exists.
2744 		 * It may not if this is the first add of an endpoint.
2745 		 */
2746 		if (virt_dev->eps[i].ring) {
2747 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2748 		}
2749 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2750 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2751 		virt_dev->eps[i].new_ring = NULL;
2752 	}
2753 command_cleanup:
2754 	kfree(command->completion);
2755 	kfree(command);
2756 
2757 	return ret;
2758 }
2759 
2760 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2761 {
2762 	struct xhci_hcd *xhci;
2763 	struct xhci_virt_device	*virt_dev;
2764 	int i, ret;
2765 
2766 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2767 	if (ret <= 0)
2768 		return;
2769 	xhci = hcd_to_xhci(hcd);
2770 
2771 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2772 	virt_dev = xhci->devs[udev->slot_id];
2773 	/* Free any rings allocated for added endpoints */
2774 	for (i = 0; i < 31; i++) {
2775 		if (virt_dev->eps[i].new_ring) {
2776 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2777 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2778 			virt_dev->eps[i].new_ring = NULL;
2779 		}
2780 	}
2781 	xhci_zero_in_ctx(xhci, virt_dev);
2782 }
2783 
2784 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2785 		struct xhci_container_ctx *in_ctx,
2786 		struct xhci_container_ctx *out_ctx,
2787 		struct xhci_input_control_ctx *ctrl_ctx,
2788 		u32 add_flags, u32 drop_flags)
2789 {
2790 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2791 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2792 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2793 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2794 }
2795 
2796 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2797 		unsigned int slot_id, unsigned int ep_index,
2798 		struct xhci_dequeue_state *deq_state)
2799 {
2800 	struct xhci_input_control_ctx *ctrl_ctx;
2801 	struct xhci_container_ctx *in_ctx;
2802 	struct xhci_ep_ctx *ep_ctx;
2803 	u32 added_ctxs;
2804 	dma_addr_t addr;
2805 
2806 	in_ctx = xhci->devs[slot_id]->in_ctx;
2807 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2808 	if (!ctrl_ctx) {
2809 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2810 				__func__);
2811 		return;
2812 	}
2813 
2814 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2815 			xhci->devs[slot_id]->out_ctx, ep_index);
2816 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2817 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2818 			deq_state->new_deq_ptr);
2819 	if (addr == 0) {
2820 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2821 				"reset ep command\n");
2822 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2823 				deq_state->new_deq_seg,
2824 				deq_state->new_deq_ptr);
2825 		return;
2826 	}
2827 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2828 
2829 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2830 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2831 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2832 			added_ctxs, added_ctxs);
2833 }
2834 
2835 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2836 			       unsigned int stream_id, struct xhci_td *td)
2837 {
2838 	struct xhci_dequeue_state deq_state;
2839 	struct usb_device *udev = td->urb->dev;
2840 
2841 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2842 			"Cleaning up stalled endpoint ring");
2843 	/* We need to move the HW's dequeue pointer past this TD,
2844 	 * or it will attempt to resend it on the next doorbell ring.
2845 	 */
2846 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2847 			ep_index, stream_id, td, &deq_state);
2848 
2849 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2850 		return;
2851 
2852 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2853 	 * issue a configure endpoint command later.
2854 	 */
2855 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2856 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2857 				"Queueing new dequeue state");
2858 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2859 				ep_index, &deq_state);
2860 	} else {
2861 		/* Better hope no one uses the input context between now and the
2862 		 * reset endpoint completion!
2863 		 * XXX: No idea how this hardware will react when stream rings
2864 		 * are enabled.
2865 		 */
2866 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2867 				"Setting up input context for "
2868 				"configure endpoint command");
2869 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2870 				ep_index, &deq_state);
2871 	}
2872 }
2873 
2874 /* Called when clearing halted device. The core should have sent the control
2875  * message to clear the device halt condition. The host side of the halt should
2876  * already be cleared with a reset endpoint command issued when the STALL tx
2877  * event was received.
2878  *
2879  * Context: in_interrupt
2880  */
2881 
2882 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2883 		struct usb_host_endpoint *ep)
2884 {
2885 	struct xhci_hcd *xhci;
2886 
2887 	xhci = hcd_to_xhci(hcd);
2888 
2889 	/*
2890 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2891 	 * The Reset Endpoint Command may only be issued to endpoints in the
2892 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2893 	 * Number of an endpoint that isn't in the Halted state, then software
2894 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2895 	 * for the target endpoint. that is in the Stopped state.
2896 	 */
2897 
2898 	/* For now just print debug to follow the situation */
2899 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2900 		 ep->desc.bEndpointAddress);
2901 }
2902 
2903 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2904 		struct usb_device *udev, struct usb_host_endpoint *ep,
2905 		unsigned int slot_id)
2906 {
2907 	int ret;
2908 	unsigned int ep_index;
2909 	unsigned int ep_state;
2910 
2911 	if (!ep)
2912 		return -EINVAL;
2913 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2914 	if (ret <= 0)
2915 		return -EINVAL;
2916 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2917 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2918 				" descriptor for ep 0x%x does not support streams\n",
2919 				ep->desc.bEndpointAddress);
2920 		return -EINVAL;
2921 	}
2922 
2923 	ep_index = xhci_get_endpoint_index(&ep->desc);
2924 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2925 	if (ep_state & EP_HAS_STREAMS ||
2926 			ep_state & EP_GETTING_STREAMS) {
2927 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2928 				"already has streams set up.\n",
2929 				ep->desc.bEndpointAddress);
2930 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2931 				"dynamic stream context array reallocation.\n");
2932 		return -EINVAL;
2933 	}
2934 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2935 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2936 				"endpoint 0x%x; URBs are pending.\n",
2937 				ep->desc.bEndpointAddress);
2938 		return -EINVAL;
2939 	}
2940 	return 0;
2941 }
2942 
2943 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2944 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2945 {
2946 	unsigned int max_streams;
2947 
2948 	/* The stream context array size must be a power of two */
2949 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2950 	/*
2951 	 * Find out how many primary stream array entries the host controller
2952 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2953 	 * level page entries), but that's an optional feature for xHCI host
2954 	 * controllers. xHCs must support at least 4 stream IDs.
2955 	 */
2956 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2957 	if (*num_stream_ctxs > max_streams) {
2958 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2959 				max_streams);
2960 		*num_stream_ctxs = max_streams;
2961 		*num_streams = max_streams;
2962 	}
2963 }
2964 
2965 /* Returns an error code if one of the endpoint already has streams.
2966  * This does not change any data structures, it only checks and gathers
2967  * information.
2968  */
2969 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2970 		struct usb_device *udev,
2971 		struct usb_host_endpoint **eps, unsigned int num_eps,
2972 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2973 {
2974 	unsigned int max_streams;
2975 	unsigned int endpoint_flag;
2976 	int i;
2977 	int ret;
2978 
2979 	for (i = 0; i < num_eps; i++) {
2980 		ret = xhci_check_streams_endpoint(xhci, udev,
2981 				eps[i], udev->slot_id);
2982 		if (ret < 0)
2983 			return ret;
2984 
2985 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2986 		if (max_streams < (*num_streams - 1)) {
2987 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2988 					eps[i]->desc.bEndpointAddress,
2989 					max_streams);
2990 			*num_streams = max_streams+1;
2991 		}
2992 
2993 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2994 		if (*changed_ep_bitmask & endpoint_flag)
2995 			return -EINVAL;
2996 		*changed_ep_bitmask |= endpoint_flag;
2997 	}
2998 	return 0;
2999 }
3000 
3001 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3002 		struct usb_device *udev,
3003 		struct usb_host_endpoint **eps, unsigned int num_eps)
3004 {
3005 	u32 changed_ep_bitmask = 0;
3006 	unsigned int slot_id;
3007 	unsigned int ep_index;
3008 	unsigned int ep_state;
3009 	int i;
3010 
3011 	slot_id = udev->slot_id;
3012 	if (!xhci->devs[slot_id])
3013 		return 0;
3014 
3015 	for (i = 0; i < num_eps; i++) {
3016 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3017 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3018 		/* Are streams already being freed for the endpoint? */
3019 		if (ep_state & EP_GETTING_NO_STREAMS) {
3020 			xhci_warn(xhci, "WARN Can't disable streams for "
3021 					"endpoint 0x%x, "
3022 					"streams are being disabled already\n",
3023 					eps[i]->desc.bEndpointAddress);
3024 			return 0;
3025 		}
3026 		/* Are there actually any streams to free? */
3027 		if (!(ep_state & EP_HAS_STREAMS) &&
3028 				!(ep_state & EP_GETTING_STREAMS)) {
3029 			xhci_warn(xhci, "WARN Can't disable streams for "
3030 					"endpoint 0x%x, "
3031 					"streams are already disabled!\n",
3032 					eps[i]->desc.bEndpointAddress);
3033 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3034 					"with non-streams endpoint\n");
3035 			return 0;
3036 		}
3037 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3038 	}
3039 	return changed_ep_bitmask;
3040 }
3041 
3042 /*
3043  * The USB device drivers use this function (through the HCD interface in USB
3044  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3045  * coordinate mass storage command queueing across multiple endpoints (basically
3046  * a stream ID == a task ID).
3047  *
3048  * Setting up streams involves allocating the same size stream context array
3049  * for each endpoint and issuing a configure endpoint command for all endpoints.
3050  *
3051  * Don't allow the call to succeed if one endpoint only supports one stream
3052  * (which means it doesn't support streams at all).
3053  *
3054  * Drivers may get less stream IDs than they asked for, if the host controller
3055  * hardware or endpoints claim they can't support the number of requested
3056  * stream IDs.
3057  */
3058 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3059 		struct usb_host_endpoint **eps, unsigned int num_eps,
3060 		unsigned int num_streams, gfp_t mem_flags)
3061 {
3062 	int i, ret;
3063 	struct xhci_hcd *xhci;
3064 	struct xhci_virt_device *vdev;
3065 	struct xhci_command *config_cmd;
3066 	struct xhci_input_control_ctx *ctrl_ctx;
3067 	unsigned int ep_index;
3068 	unsigned int num_stream_ctxs;
3069 	unsigned int max_packet;
3070 	unsigned long flags;
3071 	u32 changed_ep_bitmask = 0;
3072 
3073 	if (!eps)
3074 		return -EINVAL;
3075 
3076 	/* Add one to the number of streams requested to account for
3077 	 * stream 0 that is reserved for xHCI usage.
3078 	 */
3079 	num_streams += 1;
3080 	xhci = hcd_to_xhci(hcd);
3081 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3082 			num_streams);
3083 
3084 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3085 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3086 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3087 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3088 		return -ENOSYS;
3089 	}
3090 
3091 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3092 	if (!config_cmd)
3093 		return -ENOMEM;
3094 
3095 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3096 	if (!ctrl_ctx) {
3097 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3098 				__func__);
3099 		xhci_free_command(xhci, config_cmd);
3100 		return -ENOMEM;
3101 	}
3102 
3103 	/* Check to make sure all endpoints are not already configured for
3104 	 * streams.  While we're at it, find the maximum number of streams that
3105 	 * all the endpoints will support and check for duplicate endpoints.
3106 	 */
3107 	spin_lock_irqsave(&xhci->lock, flags);
3108 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3109 			num_eps, &num_streams, &changed_ep_bitmask);
3110 	if (ret < 0) {
3111 		xhci_free_command(xhci, config_cmd);
3112 		spin_unlock_irqrestore(&xhci->lock, flags);
3113 		return ret;
3114 	}
3115 	if (num_streams <= 1) {
3116 		xhci_warn(xhci, "WARN: endpoints can't handle "
3117 				"more than one stream.\n");
3118 		xhci_free_command(xhci, config_cmd);
3119 		spin_unlock_irqrestore(&xhci->lock, flags);
3120 		return -EINVAL;
3121 	}
3122 	vdev = xhci->devs[udev->slot_id];
3123 	/* Mark each endpoint as being in transition, so
3124 	 * xhci_urb_enqueue() will reject all URBs.
3125 	 */
3126 	for (i = 0; i < num_eps; i++) {
3127 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3128 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3129 	}
3130 	spin_unlock_irqrestore(&xhci->lock, flags);
3131 
3132 	/* Setup internal data structures and allocate HW data structures for
3133 	 * streams (but don't install the HW structures in the input context
3134 	 * until we're sure all memory allocation succeeded).
3135 	 */
3136 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3137 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3138 			num_stream_ctxs, num_streams);
3139 
3140 	for (i = 0; i < num_eps; i++) {
3141 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3142 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3143 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3144 				num_stream_ctxs,
3145 				num_streams,
3146 				max_packet, mem_flags);
3147 		if (!vdev->eps[ep_index].stream_info)
3148 			goto cleanup;
3149 		/* Set maxPstreams in endpoint context and update deq ptr to
3150 		 * point to stream context array. FIXME
3151 		 */
3152 	}
3153 
3154 	/* Set up the input context for a configure endpoint command. */
3155 	for (i = 0; i < num_eps; i++) {
3156 		struct xhci_ep_ctx *ep_ctx;
3157 
3158 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3159 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3160 
3161 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3162 				vdev->out_ctx, ep_index);
3163 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3164 				vdev->eps[ep_index].stream_info);
3165 	}
3166 	/* Tell the HW to drop its old copy of the endpoint context info
3167 	 * and add the updated copy from the input context.
3168 	 */
3169 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3170 			vdev->out_ctx, ctrl_ctx,
3171 			changed_ep_bitmask, changed_ep_bitmask);
3172 
3173 	/* Issue and wait for the configure endpoint command */
3174 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3175 			false, false);
3176 
3177 	/* xHC rejected the configure endpoint command for some reason, so we
3178 	 * leave the old ring intact and free our internal streams data
3179 	 * structure.
3180 	 */
3181 	if (ret < 0)
3182 		goto cleanup;
3183 
3184 	spin_lock_irqsave(&xhci->lock, flags);
3185 	for (i = 0; i < num_eps; i++) {
3186 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3187 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3188 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3189 			 udev->slot_id, ep_index);
3190 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3191 	}
3192 	xhci_free_command(xhci, config_cmd);
3193 	spin_unlock_irqrestore(&xhci->lock, flags);
3194 
3195 	/* Subtract 1 for stream 0, which drivers can't use */
3196 	return num_streams - 1;
3197 
3198 cleanup:
3199 	/* If it didn't work, free the streams! */
3200 	for (i = 0; i < num_eps; i++) {
3201 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3203 		vdev->eps[ep_index].stream_info = NULL;
3204 		/* FIXME Unset maxPstreams in endpoint context and
3205 		 * update deq ptr to point to normal string ring.
3206 		 */
3207 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3208 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3209 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3210 	}
3211 	xhci_free_command(xhci, config_cmd);
3212 	return -ENOMEM;
3213 }
3214 
3215 /* Transition the endpoint from using streams to being a "normal" endpoint
3216  * without streams.
3217  *
3218  * Modify the endpoint context state, submit a configure endpoint command,
3219  * and free all endpoint rings for streams if that completes successfully.
3220  */
3221 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3222 		struct usb_host_endpoint **eps, unsigned int num_eps,
3223 		gfp_t mem_flags)
3224 {
3225 	int i, ret;
3226 	struct xhci_hcd *xhci;
3227 	struct xhci_virt_device *vdev;
3228 	struct xhci_command *command;
3229 	struct xhci_input_control_ctx *ctrl_ctx;
3230 	unsigned int ep_index;
3231 	unsigned long flags;
3232 	u32 changed_ep_bitmask;
3233 
3234 	xhci = hcd_to_xhci(hcd);
3235 	vdev = xhci->devs[udev->slot_id];
3236 
3237 	/* Set up a configure endpoint command to remove the streams rings */
3238 	spin_lock_irqsave(&xhci->lock, flags);
3239 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3240 			udev, eps, num_eps);
3241 	if (changed_ep_bitmask == 0) {
3242 		spin_unlock_irqrestore(&xhci->lock, flags);
3243 		return -EINVAL;
3244 	}
3245 
3246 	/* Use the xhci_command structure from the first endpoint.  We may have
3247 	 * allocated too many, but the driver may call xhci_free_streams() for
3248 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3249 	 */
3250 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3251 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3252 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3253 	if (!ctrl_ctx) {
3254 		spin_unlock_irqrestore(&xhci->lock, flags);
3255 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3256 				__func__);
3257 		return -EINVAL;
3258 	}
3259 
3260 	for (i = 0; i < num_eps; i++) {
3261 		struct xhci_ep_ctx *ep_ctx;
3262 
3263 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3264 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3265 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3266 			EP_GETTING_NO_STREAMS;
3267 
3268 		xhci_endpoint_copy(xhci, command->in_ctx,
3269 				vdev->out_ctx, ep_index);
3270 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3271 				&vdev->eps[ep_index]);
3272 	}
3273 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3274 			vdev->out_ctx, ctrl_ctx,
3275 			changed_ep_bitmask, changed_ep_bitmask);
3276 	spin_unlock_irqrestore(&xhci->lock, flags);
3277 
3278 	/* Issue and wait for the configure endpoint command,
3279 	 * which must succeed.
3280 	 */
3281 	ret = xhci_configure_endpoint(xhci, udev, command,
3282 			false, true);
3283 
3284 	/* xHC rejected the configure endpoint command for some reason, so we
3285 	 * leave the streams rings intact.
3286 	 */
3287 	if (ret < 0)
3288 		return ret;
3289 
3290 	spin_lock_irqsave(&xhci->lock, flags);
3291 	for (i = 0; i < num_eps; i++) {
3292 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3293 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3294 		vdev->eps[ep_index].stream_info = NULL;
3295 		/* FIXME Unset maxPstreams in endpoint context and
3296 		 * update deq ptr to point to normal string ring.
3297 		 */
3298 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3299 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3300 	}
3301 	spin_unlock_irqrestore(&xhci->lock, flags);
3302 
3303 	return 0;
3304 }
3305 
3306 /*
3307  * Deletes endpoint resources for endpoints that were active before a Reset
3308  * Device command, or a Disable Slot command.  The Reset Device command leaves
3309  * the control endpoint intact, whereas the Disable Slot command deletes it.
3310  *
3311  * Must be called with xhci->lock held.
3312  */
3313 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3314 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3315 {
3316 	int i;
3317 	unsigned int num_dropped_eps = 0;
3318 	unsigned int drop_flags = 0;
3319 
3320 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3321 		if (virt_dev->eps[i].ring) {
3322 			drop_flags |= 1 << i;
3323 			num_dropped_eps++;
3324 		}
3325 	}
3326 	xhci->num_active_eps -= num_dropped_eps;
3327 	if (num_dropped_eps)
3328 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3329 				"Dropped %u ep ctxs, flags = 0x%x, "
3330 				"%u now active.",
3331 				num_dropped_eps, drop_flags,
3332 				xhci->num_active_eps);
3333 }
3334 
3335 /*
3336  * This submits a Reset Device Command, which will set the device state to 0,
3337  * set the device address to 0, and disable all the endpoints except the default
3338  * control endpoint.  The USB core should come back and call
3339  * xhci_address_device(), and then re-set up the configuration.  If this is
3340  * called because of a usb_reset_and_verify_device(), then the old alternate
3341  * settings will be re-installed through the normal bandwidth allocation
3342  * functions.
3343  *
3344  * Wait for the Reset Device command to finish.  Remove all structures
3345  * associated with the endpoints that were disabled.  Clear the input device
3346  * structure? Reset the control endpoint 0 max packet size?
3347  *
3348  * If the virt_dev to be reset does not exist or does not match the udev,
3349  * it means the device is lost, possibly due to the xHC restore error and
3350  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3351  * re-allocate the device.
3352  */
3353 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3354 		struct usb_device *udev)
3355 {
3356 	int ret, i;
3357 	unsigned long flags;
3358 	struct xhci_hcd *xhci;
3359 	unsigned int slot_id;
3360 	struct xhci_virt_device *virt_dev;
3361 	struct xhci_command *reset_device_cmd;
3362 	struct xhci_slot_ctx *slot_ctx;
3363 	int old_active_eps = 0;
3364 
3365 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3366 	if (ret <= 0)
3367 		return ret;
3368 	xhci = hcd_to_xhci(hcd);
3369 	slot_id = udev->slot_id;
3370 	virt_dev = xhci->devs[slot_id];
3371 	if (!virt_dev) {
3372 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3373 				"not exist. Re-allocate the device\n", slot_id);
3374 		ret = xhci_alloc_dev(hcd, udev);
3375 		if (ret == 1)
3376 			return 0;
3377 		else
3378 			return -EINVAL;
3379 	}
3380 
3381 	if (virt_dev->tt_info)
3382 		old_active_eps = virt_dev->tt_info->active_eps;
3383 
3384 	if (virt_dev->udev != udev) {
3385 		/* If the virt_dev and the udev does not match, this virt_dev
3386 		 * may belong to another udev.
3387 		 * Re-allocate the device.
3388 		 */
3389 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3390 				"not match the udev. Re-allocate the device\n",
3391 				slot_id);
3392 		ret = xhci_alloc_dev(hcd, udev);
3393 		if (ret == 1)
3394 			return 0;
3395 		else
3396 			return -EINVAL;
3397 	}
3398 
3399 	/* If device is not setup, there is no point in resetting it */
3400 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3401 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3402 						SLOT_STATE_DISABLED)
3403 		return 0;
3404 
3405 	trace_xhci_discover_or_reset_device(slot_ctx);
3406 
3407 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3408 	/* Allocate the command structure that holds the struct completion.
3409 	 * Assume we're in process context, since the normal device reset
3410 	 * process has to wait for the device anyway.  Storage devices are
3411 	 * reset as part of error handling, so use GFP_NOIO instead of
3412 	 * GFP_KERNEL.
3413 	 */
3414 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3415 	if (!reset_device_cmd) {
3416 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3417 		return -ENOMEM;
3418 	}
3419 
3420 	/* Attempt to submit the Reset Device command to the command ring */
3421 	spin_lock_irqsave(&xhci->lock, flags);
3422 
3423 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3424 	if (ret) {
3425 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3426 		spin_unlock_irqrestore(&xhci->lock, flags);
3427 		goto command_cleanup;
3428 	}
3429 	xhci_ring_cmd_db(xhci);
3430 	spin_unlock_irqrestore(&xhci->lock, flags);
3431 
3432 	/* Wait for the Reset Device command to finish */
3433 	wait_for_completion(reset_device_cmd->completion);
3434 
3435 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3436 	 * unless we tried to reset a slot ID that wasn't enabled,
3437 	 * or the device wasn't in the addressed or configured state.
3438 	 */
3439 	ret = reset_device_cmd->status;
3440 	switch (ret) {
3441 	case COMP_COMMAND_ABORTED:
3442 	case COMP_COMMAND_RING_STOPPED:
3443 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3444 		ret = -ETIME;
3445 		goto command_cleanup;
3446 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3447 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3448 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3449 				slot_id,
3450 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3451 		xhci_dbg(xhci, "Not freeing device rings.\n");
3452 		/* Don't treat this as an error.  May change my mind later. */
3453 		ret = 0;
3454 		goto command_cleanup;
3455 	case COMP_SUCCESS:
3456 		xhci_dbg(xhci, "Successful reset device command.\n");
3457 		break;
3458 	default:
3459 		if (xhci_is_vendor_info_code(xhci, ret))
3460 			break;
3461 		xhci_warn(xhci, "Unknown completion code %u for "
3462 				"reset device command.\n", ret);
3463 		ret = -EINVAL;
3464 		goto command_cleanup;
3465 	}
3466 
3467 	/* Free up host controller endpoint resources */
3468 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3469 		spin_lock_irqsave(&xhci->lock, flags);
3470 		/* Don't delete the default control endpoint resources */
3471 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3472 		spin_unlock_irqrestore(&xhci->lock, flags);
3473 	}
3474 
3475 	/* Everything but endpoint 0 is disabled, so free the rings. */
3476 	for (i = 1; i < 31; i++) {
3477 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3478 
3479 		if (ep->ep_state & EP_HAS_STREAMS) {
3480 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3481 					xhci_get_endpoint_address(i));
3482 			xhci_free_stream_info(xhci, ep->stream_info);
3483 			ep->stream_info = NULL;
3484 			ep->ep_state &= ~EP_HAS_STREAMS;
3485 		}
3486 
3487 		if (ep->ring) {
3488 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3489 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3490 		}
3491 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3492 			xhci_drop_ep_from_interval_table(xhci,
3493 					&virt_dev->eps[i].bw_info,
3494 					virt_dev->bw_table,
3495 					udev,
3496 					&virt_dev->eps[i],
3497 					virt_dev->tt_info);
3498 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3499 	}
3500 	/* If necessary, update the number of active TTs on this root port */
3501 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3502 	ret = 0;
3503 
3504 command_cleanup:
3505 	xhci_free_command(xhci, reset_device_cmd);
3506 	return ret;
3507 }
3508 
3509 /*
3510  * At this point, the struct usb_device is about to go away, the device has
3511  * disconnected, and all traffic has been stopped and the endpoints have been
3512  * disabled.  Free any HC data structures associated with that device.
3513  */
3514 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3515 {
3516 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3517 	struct xhci_virt_device *virt_dev;
3518 	struct xhci_slot_ctx *slot_ctx;
3519 	int i, ret;
3520 
3521 #ifndef CONFIG_USB_DEFAULT_PERSIST
3522 	/*
3523 	 * We called pm_runtime_get_noresume when the device was attached.
3524 	 * Decrement the counter here to allow controller to runtime suspend
3525 	 * if no devices remain.
3526 	 */
3527 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3528 		pm_runtime_put_noidle(hcd->self.controller);
3529 #endif
3530 
3531 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3532 	/* If the host is halted due to driver unload, we still need to free the
3533 	 * device.
3534 	 */
3535 	if (ret <= 0 && ret != -ENODEV)
3536 		return;
3537 
3538 	virt_dev = xhci->devs[udev->slot_id];
3539 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3540 	trace_xhci_free_dev(slot_ctx);
3541 
3542 	/* Stop any wayward timer functions (which may grab the lock) */
3543 	for (i = 0; i < 31; i++) {
3544 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3545 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3546 	}
3547 	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3548 	ret = xhci_disable_slot(xhci, udev->slot_id);
3549 	if (ret)
3550 		xhci_free_virt_device(xhci, udev->slot_id);
3551 }
3552 
3553 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3554 {
3555 	struct xhci_command *command;
3556 	unsigned long flags;
3557 	u32 state;
3558 	int ret = 0;
3559 
3560 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3561 	if (!command)
3562 		return -ENOMEM;
3563 
3564 	spin_lock_irqsave(&xhci->lock, flags);
3565 	/* Don't disable the slot if the host controller is dead. */
3566 	state = readl(&xhci->op_regs->status);
3567 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3568 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3569 		spin_unlock_irqrestore(&xhci->lock, flags);
3570 		kfree(command);
3571 		return -ENODEV;
3572 	}
3573 
3574 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3575 				slot_id);
3576 	if (ret) {
3577 		spin_unlock_irqrestore(&xhci->lock, flags);
3578 		kfree(command);
3579 		return ret;
3580 	}
3581 	xhci_ring_cmd_db(xhci);
3582 	spin_unlock_irqrestore(&xhci->lock, flags);
3583 	return ret;
3584 }
3585 
3586 /*
3587  * Checks if we have enough host controller resources for the default control
3588  * endpoint.
3589  *
3590  * Must be called with xhci->lock held.
3591  */
3592 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3593 {
3594 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3595 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3596 				"Not enough ep ctxs: "
3597 				"%u active, need to add 1, limit is %u.",
3598 				xhci->num_active_eps, xhci->limit_active_eps);
3599 		return -ENOMEM;
3600 	}
3601 	xhci->num_active_eps += 1;
3602 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3603 			"Adding 1 ep ctx, %u now active.",
3604 			xhci->num_active_eps);
3605 	return 0;
3606 }
3607 
3608 
3609 /*
3610  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3611  * timed out, or allocating memory failed.  Returns 1 on success.
3612  */
3613 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3614 {
3615 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3616 	struct xhci_virt_device *vdev;
3617 	struct xhci_slot_ctx *slot_ctx;
3618 	unsigned long flags;
3619 	int ret, slot_id;
3620 	struct xhci_command *command;
3621 
3622 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3623 	if (!command)
3624 		return 0;
3625 
3626 	spin_lock_irqsave(&xhci->lock, flags);
3627 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3628 	if (ret) {
3629 		spin_unlock_irqrestore(&xhci->lock, flags);
3630 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3631 		xhci_free_command(xhci, command);
3632 		return 0;
3633 	}
3634 	xhci_ring_cmd_db(xhci);
3635 	spin_unlock_irqrestore(&xhci->lock, flags);
3636 
3637 	wait_for_completion(command->completion);
3638 	slot_id = command->slot_id;
3639 
3640 	if (!slot_id || command->status != COMP_SUCCESS) {
3641 		xhci_err(xhci, "Error while assigning device slot ID\n");
3642 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3643 				HCS_MAX_SLOTS(
3644 					readl(&xhci->cap_regs->hcs_params1)));
3645 		xhci_free_command(xhci, command);
3646 		return 0;
3647 	}
3648 
3649 	xhci_free_command(xhci, command);
3650 
3651 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3652 		spin_lock_irqsave(&xhci->lock, flags);
3653 		ret = xhci_reserve_host_control_ep_resources(xhci);
3654 		if (ret) {
3655 			spin_unlock_irqrestore(&xhci->lock, flags);
3656 			xhci_warn(xhci, "Not enough host resources, "
3657 					"active endpoint contexts = %u\n",
3658 					xhci->num_active_eps);
3659 			goto disable_slot;
3660 		}
3661 		spin_unlock_irqrestore(&xhci->lock, flags);
3662 	}
3663 	/* Use GFP_NOIO, since this function can be called from
3664 	 * xhci_discover_or_reset_device(), which may be called as part of
3665 	 * mass storage driver error handling.
3666 	 */
3667 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3668 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3669 		goto disable_slot;
3670 	}
3671 	vdev = xhci->devs[slot_id];
3672 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3673 	trace_xhci_alloc_dev(slot_ctx);
3674 
3675 	udev->slot_id = slot_id;
3676 
3677 	xhci_debugfs_create_slot(xhci, slot_id);
3678 
3679 #ifndef CONFIG_USB_DEFAULT_PERSIST
3680 	/*
3681 	 * If resetting upon resume, we can't put the controller into runtime
3682 	 * suspend if there is a device attached.
3683 	 */
3684 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3685 		pm_runtime_get_noresume(hcd->self.controller);
3686 #endif
3687 
3688 	/* Is this a LS or FS device under a HS hub? */
3689 	/* Hub or peripherial? */
3690 	return 1;
3691 
3692 disable_slot:
3693 	ret = xhci_disable_slot(xhci, udev->slot_id);
3694 	if (ret)
3695 		xhci_free_virt_device(xhci, udev->slot_id);
3696 
3697 	return 0;
3698 }
3699 
3700 /*
3701  * Issue an Address Device command and optionally send a corresponding
3702  * SetAddress request to the device.
3703  */
3704 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3705 			     enum xhci_setup_dev setup)
3706 {
3707 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3708 	unsigned long flags;
3709 	struct xhci_virt_device *virt_dev;
3710 	int ret = 0;
3711 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3712 	struct xhci_slot_ctx *slot_ctx;
3713 	struct xhci_input_control_ctx *ctrl_ctx;
3714 	u64 temp_64;
3715 	struct xhci_command *command = NULL;
3716 
3717 	mutex_lock(&xhci->mutex);
3718 
3719 	if (xhci->xhc_state) {	/* dying, removing or halted */
3720 		ret = -ESHUTDOWN;
3721 		goto out;
3722 	}
3723 
3724 	if (!udev->slot_id) {
3725 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3726 				"Bad Slot ID %d", udev->slot_id);
3727 		ret = -EINVAL;
3728 		goto out;
3729 	}
3730 
3731 	virt_dev = xhci->devs[udev->slot_id];
3732 
3733 	if (WARN_ON(!virt_dev)) {
3734 		/*
3735 		 * In plug/unplug torture test with an NEC controller,
3736 		 * a zero-dereference was observed once due to virt_dev = 0.
3737 		 * Print useful debug rather than crash if it is observed again!
3738 		 */
3739 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3740 			udev->slot_id);
3741 		ret = -EINVAL;
3742 		goto out;
3743 	}
3744 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3745 	trace_xhci_setup_device_slot(slot_ctx);
3746 
3747 	if (setup == SETUP_CONTEXT_ONLY) {
3748 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3749 		    SLOT_STATE_DEFAULT) {
3750 			xhci_dbg(xhci, "Slot already in default state\n");
3751 			goto out;
3752 		}
3753 	}
3754 
3755 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3756 	if (!command) {
3757 		ret = -ENOMEM;
3758 		goto out;
3759 	}
3760 
3761 	command->in_ctx = virt_dev->in_ctx;
3762 
3763 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3764 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3765 	if (!ctrl_ctx) {
3766 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3767 				__func__);
3768 		ret = -EINVAL;
3769 		goto out;
3770 	}
3771 	/*
3772 	 * If this is the first Set Address since device plug-in or
3773 	 * virt_device realloaction after a resume with an xHCI power loss,
3774 	 * then set up the slot context.
3775 	 */
3776 	if (!slot_ctx->dev_info)
3777 		xhci_setup_addressable_virt_dev(xhci, udev);
3778 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3779 	else
3780 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3781 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3782 	ctrl_ctx->drop_flags = 0;
3783 
3784 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3785 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3786 
3787 	spin_lock_irqsave(&xhci->lock, flags);
3788 	trace_xhci_setup_device(virt_dev);
3789 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3790 					udev->slot_id, setup);
3791 	if (ret) {
3792 		spin_unlock_irqrestore(&xhci->lock, flags);
3793 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3794 				"FIXME: allocate a command ring segment");
3795 		goto out;
3796 	}
3797 	xhci_ring_cmd_db(xhci);
3798 	spin_unlock_irqrestore(&xhci->lock, flags);
3799 
3800 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3801 	wait_for_completion(command->completion);
3802 
3803 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3804 	 * the SetAddress() "recovery interval" required by USB and aborting the
3805 	 * command on a timeout.
3806 	 */
3807 	switch (command->status) {
3808 	case COMP_COMMAND_ABORTED:
3809 	case COMP_COMMAND_RING_STOPPED:
3810 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3811 		ret = -ETIME;
3812 		break;
3813 	case COMP_CONTEXT_STATE_ERROR:
3814 	case COMP_SLOT_NOT_ENABLED_ERROR:
3815 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3816 			 act, udev->slot_id);
3817 		ret = -EINVAL;
3818 		break;
3819 	case COMP_USB_TRANSACTION_ERROR:
3820 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3821 
3822 		mutex_unlock(&xhci->mutex);
3823 		ret = xhci_disable_slot(xhci, udev->slot_id);
3824 		if (!ret)
3825 			xhci_alloc_dev(hcd, udev);
3826 		kfree(command->completion);
3827 		kfree(command);
3828 		return -EPROTO;
3829 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3830 		dev_warn(&udev->dev,
3831 			 "ERROR: Incompatible device for setup %s command\n", act);
3832 		ret = -ENODEV;
3833 		break;
3834 	case COMP_SUCCESS:
3835 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3836 			       "Successful setup %s command", act);
3837 		break;
3838 	default:
3839 		xhci_err(xhci,
3840 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3841 			 act, command->status);
3842 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3843 		ret = -EINVAL;
3844 		break;
3845 	}
3846 	if (ret)
3847 		goto out;
3848 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3849 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3850 			"Op regs DCBAA ptr = %#016llx", temp_64);
3851 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3852 		"Slot ID %d dcbaa entry @%p = %#016llx",
3853 		udev->slot_id,
3854 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3855 		(unsigned long long)
3856 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3857 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858 			"Output Context DMA address = %#08llx",
3859 			(unsigned long long)virt_dev->out_ctx->dma);
3860 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3861 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3862 	/*
3863 	 * USB core uses address 1 for the roothubs, so we add one to the
3864 	 * address given back to us by the HC.
3865 	 */
3866 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3867 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3868 	/* Zero the input context control for later use */
3869 	ctrl_ctx->add_flags = 0;
3870 	ctrl_ctx->drop_flags = 0;
3871 
3872 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3873 		       "Internal device address = %d",
3874 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3875 out:
3876 	mutex_unlock(&xhci->mutex);
3877 	if (command) {
3878 		kfree(command->completion);
3879 		kfree(command);
3880 	}
3881 	return ret;
3882 }
3883 
3884 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3885 {
3886 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3887 }
3888 
3889 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3890 {
3891 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3892 }
3893 
3894 /*
3895  * Transfer the port index into real index in the HW port status
3896  * registers. Caculate offset between the port's PORTSC register
3897  * and port status base. Divide the number of per port register
3898  * to get the real index. The raw port number bases 1.
3899  */
3900 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3901 {
3902 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3903 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3904 	__le32 __iomem *addr;
3905 	int raw_port;
3906 
3907 	if (hcd->speed < HCD_USB3)
3908 		addr = xhci->usb2_ports[port1 - 1];
3909 	else
3910 		addr = xhci->usb3_ports[port1 - 1];
3911 
3912 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3913 	return raw_port;
3914 }
3915 
3916 /*
3917  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3918  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3919  */
3920 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3921 			struct usb_device *udev, u16 max_exit_latency)
3922 {
3923 	struct xhci_virt_device *virt_dev;
3924 	struct xhci_command *command;
3925 	struct xhci_input_control_ctx *ctrl_ctx;
3926 	struct xhci_slot_ctx *slot_ctx;
3927 	unsigned long flags;
3928 	int ret;
3929 
3930 	spin_lock_irqsave(&xhci->lock, flags);
3931 
3932 	virt_dev = xhci->devs[udev->slot_id];
3933 
3934 	/*
3935 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3936 	 * xHC was re-initialized. Exit latency will be set later after
3937 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3938 	 */
3939 
3940 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3941 		spin_unlock_irqrestore(&xhci->lock, flags);
3942 		return 0;
3943 	}
3944 
3945 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3946 	command = xhci->lpm_command;
3947 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3948 	if (!ctrl_ctx) {
3949 		spin_unlock_irqrestore(&xhci->lock, flags);
3950 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3951 				__func__);
3952 		return -ENOMEM;
3953 	}
3954 
3955 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3956 	spin_unlock_irqrestore(&xhci->lock, flags);
3957 
3958 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3959 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3960 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3961 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3962 	slot_ctx->dev_state = 0;
3963 
3964 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3965 			"Set up evaluate context for LPM MEL change.");
3966 
3967 	/* Issue and wait for the evaluate context command. */
3968 	ret = xhci_configure_endpoint(xhci, udev, command,
3969 			true, true);
3970 
3971 	if (!ret) {
3972 		spin_lock_irqsave(&xhci->lock, flags);
3973 		virt_dev->current_mel = max_exit_latency;
3974 		spin_unlock_irqrestore(&xhci->lock, flags);
3975 	}
3976 	return ret;
3977 }
3978 
3979 #ifdef CONFIG_PM
3980 
3981 /* BESL to HIRD Encoding array for USB2 LPM */
3982 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3983 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3984 
3985 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3986 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3987 					struct usb_device *udev)
3988 {
3989 	int u2del, besl, besl_host;
3990 	int besl_device = 0;
3991 	u32 field;
3992 
3993 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3994 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3995 
3996 	if (field & USB_BESL_SUPPORT) {
3997 		for (besl_host = 0; besl_host < 16; besl_host++) {
3998 			if (xhci_besl_encoding[besl_host] >= u2del)
3999 				break;
4000 		}
4001 		/* Use baseline BESL value as default */
4002 		if (field & USB_BESL_BASELINE_VALID)
4003 			besl_device = USB_GET_BESL_BASELINE(field);
4004 		else if (field & USB_BESL_DEEP_VALID)
4005 			besl_device = USB_GET_BESL_DEEP(field);
4006 	} else {
4007 		if (u2del <= 50)
4008 			besl_host = 0;
4009 		else
4010 			besl_host = (u2del - 51) / 75 + 1;
4011 	}
4012 
4013 	besl = besl_host + besl_device;
4014 	if (besl > 15)
4015 		besl = 15;
4016 
4017 	return besl;
4018 }
4019 
4020 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4021 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4022 {
4023 	u32 field;
4024 	int l1;
4025 	int besld = 0;
4026 	int hirdm = 0;
4027 
4028 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4029 
4030 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4031 	l1 = udev->l1_params.timeout / 256;
4032 
4033 	/* device has preferred BESLD */
4034 	if (field & USB_BESL_DEEP_VALID) {
4035 		besld = USB_GET_BESL_DEEP(field);
4036 		hirdm = 1;
4037 	}
4038 
4039 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4040 }
4041 
4042 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4043 			struct usb_device *udev, int enable)
4044 {
4045 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4046 	__le32 __iomem	**port_array;
4047 	__le32 __iomem	*pm_addr, *hlpm_addr;
4048 	u32		pm_val, hlpm_val, field;
4049 	unsigned int	port_num;
4050 	unsigned long	flags;
4051 	int		hird, exit_latency;
4052 	int		ret;
4053 
4054 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4055 			!udev->lpm_capable)
4056 		return -EPERM;
4057 
4058 	if (!udev->parent || udev->parent->parent ||
4059 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4060 		return -EPERM;
4061 
4062 	if (udev->usb2_hw_lpm_capable != 1)
4063 		return -EPERM;
4064 
4065 	spin_lock_irqsave(&xhci->lock, flags);
4066 
4067 	port_array = xhci->usb2_ports;
4068 	port_num = udev->portnum - 1;
4069 	pm_addr = port_array[port_num] + PORTPMSC;
4070 	pm_val = readl(pm_addr);
4071 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4072 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4073 
4074 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4075 			enable ? "enable" : "disable", port_num + 1);
4076 
4077 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4078 		/* Host supports BESL timeout instead of HIRD */
4079 		if (udev->usb2_hw_lpm_besl_capable) {
4080 			/* if device doesn't have a preferred BESL value use a
4081 			 * default one which works with mixed HIRD and BESL
4082 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4083 			 */
4084 			if ((field & USB_BESL_SUPPORT) &&
4085 			    (field & USB_BESL_BASELINE_VALID))
4086 				hird = USB_GET_BESL_BASELINE(field);
4087 			else
4088 				hird = udev->l1_params.besl;
4089 
4090 			exit_latency = xhci_besl_encoding[hird];
4091 			spin_unlock_irqrestore(&xhci->lock, flags);
4092 
4093 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4094 			 * input context for link powermanagement evaluate
4095 			 * context commands. It is protected by hcd->bandwidth
4096 			 * mutex and is shared by all devices. We need to set
4097 			 * the max ext latency in USB 2 BESL LPM as well, so
4098 			 * use the same mutex and xhci_change_max_exit_latency()
4099 			 */
4100 			mutex_lock(hcd->bandwidth_mutex);
4101 			ret = xhci_change_max_exit_latency(xhci, udev,
4102 							   exit_latency);
4103 			mutex_unlock(hcd->bandwidth_mutex);
4104 
4105 			if (ret < 0)
4106 				return ret;
4107 			spin_lock_irqsave(&xhci->lock, flags);
4108 
4109 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4110 			writel(hlpm_val, hlpm_addr);
4111 			/* flush write */
4112 			readl(hlpm_addr);
4113 		} else {
4114 			hird = xhci_calculate_hird_besl(xhci, udev);
4115 		}
4116 
4117 		pm_val &= ~PORT_HIRD_MASK;
4118 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4119 		writel(pm_val, pm_addr);
4120 		pm_val = readl(pm_addr);
4121 		pm_val |= PORT_HLE;
4122 		writel(pm_val, pm_addr);
4123 		/* flush write */
4124 		readl(pm_addr);
4125 	} else {
4126 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4127 		writel(pm_val, pm_addr);
4128 		/* flush write */
4129 		readl(pm_addr);
4130 		if (udev->usb2_hw_lpm_besl_capable) {
4131 			spin_unlock_irqrestore(&xhci->lock, flags);
4132 			mutex_lock(hcd->bandwidth_mutex);
4133 			xhci_change_max_exit_latency(xhci, udev, 0);
4134 			mutex_unlock(hcd->bandwidth_mutex);
4135 			return 0;
4136 		}
4137 	}
4138 
4139 	spin_unlock_irqrestore(&xhci->lock, flags);
4140 	return 0;
4141 }
4142 
4143 /* check if a usb2 port supports a given extened capability protocol
4144  * only USB2 ports extended protocol capability values are cached.
4145  * Return 1 if capability is supported
4146  */
4147 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4148 					   unsigned capability)
4149 {
4150 	u32 port_offset, port_count;
4151 	int i;
4152 
4153 	for (i = 0; i < xhci->num_ext_caps; i++) {
4154 		if (xhci->ext_caps[i] & capability) {
4155 			/* port offsets starts at 1 */
4156 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4157 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4158 			if (port >= port_offset &&
4159 			    port < port_offset + port_count)
4160 				return 1;
4161 		}
4162 	}
4163 	return 0;
4164 }
4165 
4166 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4167 {
4168 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4169 	int		portnum = udev->portnum - 1;
4170 
4171 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4172 			!udev->lpm_capable)
4173 		return 0;
4174 
4175 	/* we only support lpm for non-hub device connected to root hub yet */
4176 	if (!udev->parent || udev->parent->parent ||
4177 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4178 		return 0;
4179 
4180 	if (xhci->hw_lpm_support == 1 &&
4181 			xhci_check_usb2_port_capability(
4182 				xhci, portnum, XHCI_HLC)) {
4183 		udev->usb2_hw_lpm_capable = 1;
4184 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4185 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4186 		if (xhci_check_usb2_port_capability(xhci, portnum,
4187 					XHCI_BLC))
4188 			udev->usb2_hw_lpm_besl_capable = 1;
4189 	}
4190 
4191 	return 0;
4192 }
4193 
4194 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4195 
4196 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4197 static unsigned long long xhci_service_interval_to_ns(
4198 		struct usb_endpoint_descriptor *desc)
4199 {
4200 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4201 }
4202 
4203 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4204 		enum usb3_link_state state)
4205 {
4206 	unsigned long long sel;
4207 	unsigned long long pel;
4208 	unsigned int max_sel_pel;
4209 	char *state_name;
4210 
4211 	switch (state) {
4212 	case USB3_LPM_U1:
4213 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4214 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4215 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4216 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4217 		state_name = "U1";
4218 		break;
4219 	case USB3_LPM_U2:
4220 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4221 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4222 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4223 		state_name = "U2";
4224 		break;
4225 	default:
4226 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4227 				__func__);
4228 		return USB3_LPM_DISABLED;
4229 	}
4230 
4231 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4232 		return USB3_LPM_DEVICE_INITIATED;
4233 
4234 	if (sel > max_sel_pel)
4235 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4236 				"due to long SEL %llu ms\n",
4237 				state_name, sel);
4238 	else
4239 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4240 				"due to long PEL %llu ms\n",
4241 				state_name, pel);
4242 	return USB3_LPM_DISABLED;
4243 }
4244 
4245 /* The U1 timeout should be the maximum of the following values:
4246  *  - For control endpoints, U1 system exit latency (SEL) * 3
4247  *  - For bulk endpoints, U1 SEL * 5
4248  *  - For interrupt endpoints:
4249  *    - Notification EPs, U1 SEL * 3
4250  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4251  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4252  */
4253 static unsigned long long xhci_calculate_intel_u1_timeout(
4254 		struct usb_device *udev,
4255 		struct usb_endpoint_descriptor *desc)
4256 {
4257 	unsigned long long timeout_ns;
4258 	int ep_type;
4259 	int intr_type;
4260 
4261 	ep_type = usb_endpoint_type(desc);
4262 	switch (ep_type) {
4263 	case USB_ENDPOINT_XFER_CONTROL:
4264 		timeout_ns = udev->u1_params.sel * 3;
4265 		break;
4266 	case USB_ENDPOINT_XFER_BULK:
4267 		timeout_ns = udev->u1_params.sel * 5;
4268 		break;
4269 	case USB_ENDPOINT_XFER_INT:
4270 		intr_type = usb_endpoint_interrupt_type(desc);
4271 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4272 			timeout_ns = udev->u1_params.sel * 3;
4273 			break;
4274 		}
4275 		/* Otherwise the calculation is the same as isoc eps */
4276 		/* fall through */
4277 	case USB_ENDPOINT_XFER_ISOC:
4278 		timeout_ns = xhci_service_interval_to_ns(desc);
4279 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4280 		if (timeout_ns < udev->u1_params.sel * 2)
4281 			timeout_ns = udev->u1_params.sel * 2;
4282 		break;
4283 	default:
4284 		return 0;
4285 	}
4286 
4287 	return timeout_ns;
4288 }
4289 
4290 /* Returns the hub-encoded U1 timeout value. */
4291 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4292 		struct usb_device *udev,
4293 		struct usb_endpoint_descriptor *desc)
4294 {
4295 	unsigned long long timeout_ns;
4296 
4297 	if (xhci->quirks & XHCI_INTEL_HOST)
4298 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4299 	else
4300 		timeout_ns = udev->u1_params.sel;
4301 
4302 	/* The U1 timeout is encoded in 1us intervals.
4303 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4304 	 */
4305 	if (timeout_ns == USB3_LPM_DISABLED)
4306 		timeout_ns = 1;
4307 	else
4308 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4309 
4310 	/* If the necessary timeout value is bigger than what we can set in the
4311 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4312 	 */
4313 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4314 		return timeout_ns;
4315 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4316 			"due to long timeout %llu ms\n", timeout_ns);
4317 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4318 }
4319 
4320 /* The U2 timeout should be the maximum of:
4321  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4322  *  - largest bInterval of any active periodic endpoint (to avoid going
4323  *    into lower power link states between intervals).
4324  *  - the U2 Exit Latency of the device
4325  */
4326 static unsigned long long xhci_calculate_intel_u2_timeout(
4327 		struct usb_device *udev,
4328 		struct usb_endpoint_descriptor *desc)
4329 {
4330 	unsigned long long timeout_ns;
4331 	unsigned long long u2_del_ns;
4332 
4333 	timeout_ns = 10 * 1000 * 1000;
4334 
4335 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4336 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4337 		timeout_ns = xhci_service_interval_to_ns(desc);
4338 
4339 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4340 	if (u2_del_ns > timeout_ns)
4341 		timeout_ns = u2_del_ns;
4342 
4343 	return timeout_ns;
4344 }
4345 
4346 /* Returns the hub-encoded U2 timeout value. */
4347 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4348 		struct usb_device *udev,
4349 		struct usb_endpoint_descriptor *desc)
4350 {
4351 	unsigned long long timeout_ns;
4352 
4353 	if (xhci->quirks & XHCI_INTEL_HOST)
4354 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4355 	else
4356 		timeout_ns = udev->u2_params.sel;
4357 
4358 	/* The U2 timeout is encoded in 256us intervals */
4359 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4360 	/* If the necessary timeout value is bigger than what we can set in the
4361 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4362 	 */
4363 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4364 		return timeout_ns;
4365 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4366 			"due to long timeout %llu ms\n", timeout_ns);
4367 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4368 }
4369 
4370 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4371 		struct usb_device *udev,
4372 		struct usb_endpoint_descriptor *desc,
4373 		enum usb3_link_state state,
4374 		u16 *timeout)
4375 {
4376 	if (state == USB3_LPM_U1)
4377 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4378 	else if (state == USB3_LPM_U2)
4379 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4380 
4381 	return USB3_LPM_DISABLED;
4382 }
4383 
4384 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4385 		struct usb_device *udev,
4386 		struct usb_endpoint_descriptor *desc,
4387 		enum usb3_link_state state,
4388 		u16 *timeout)
4389 {
4390 	u16 alt_timeout;
4391 
4392 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4393 		desc, state, timeout);
4394 
4395 	/* If we found we can't enable hub-initiated LPM, or
4396 	 * the U1 or U2 exit latency was too high to allow
4397 	 * device-initiated LPM as well, just stop searching.
4398 	 */
4399 	if (alt_timeout == USB3_LPM_DISABLED ||
4400 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4401 		*timeout = alt_timeout;
4402 		return -E2BIG;
4403 	}
4404 	if (alt_timeout > *timeout)
4405 		*timeout = alt_timeout;
4406 	return 0;
4407 }
4408 
4409 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4410 		struct usb_device *udev,
4411 		struct usb_host_interface *alt,
4412 		enum usb3_link_state state,
4413 		u16 *timeout)
4414 {
4415 	int j;
4416 
4417 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4418 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4419 					&alt->endpoint[j].desc, state, timeout))
4420 			return -E2BIG;
4421 		continue;
4422 	}
4423 	return 0;
4424 }
4425 
4426 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4427 		enum usb3_link_state state)
4428 {
4429 	struct usb_device *parent;
4430 	unsigned int num_hubs;
4431 
4432 	if (state == USB3_LPM_U2)
4433 		return 0;
4434 
4435 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4436 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4437 			parent = parent->parent)
4438 		num_hubs++;
4439 
4440 	if (num_hubs < 2)
4441 		return 0;
4442 
4443 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4444 			" below second-tier hub.\n");
4445 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4446 			"to decrease power consumption.\n");
4447 	return -E2BIG;
4448 }
4449 
4450 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4451 		struct usb_device *udev,
4452 		enum usb3_link_state state)
4453 {
4454 	if (xhci->quirks & XHCI_INTEL_HOST)
4455 		return xhci_check_intel_tier_policy(udev, state);
4456 	else
4457 		return 0;
4458 }
4459 
4460 /* Returns the U1 or U2 timeout that should be enabled.
4461  * If the tier check or timeout setting functions return with a non-zero exit
4462  * code, that means the timeout value has been finalized and we shouldn't look
4463  * at any more endpoints.
4464  */
4465 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4466 			struct usb_device *udev, enum usb3_link_state state)
4467 {
4468 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4469 	struct usb_host_config *config;
4470 	char *state_name;
4471 	int i;
4472 	u16 timeout = USB3_LPM_DISABLED;
4473 
4474 	if (state == USB3_LPM_U1)
4475 		state_name = "U1";
4476 	else if (state == USB3_LPM_U2)
4477 		state_name = "U2";
4478 	else {
4479 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4480 				state);
4481 		return timeout;
4482 	}
4483 
4484 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4485 		return timeout;
4486 
4487 	/* Gather some information about the currently installed configuration
4488 	 * and alternate interface settings.
4489 	 */
4490 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4491 			state, &timeout))
4492 		return timeout;
4493 
4494 	config = udev->actconfig;
4495 	if (!config)
4496 		return timeout;
4497 
4498 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4499 		struct usb_driver *driver;
4500 		struct usb_interface *intf = config->interface[i];
4501 
4502 		if (!intf)
4503 			continue;
4504 
4505 		/* Check if any currently bound drivers want hub-initiated LPM
4506 		 * disabled.
4507 		 */
4508 		if (intf->dev.driver) {
4509 			driver = to_usb_driver(intf->dev.driver);
4510 			if (driver && driver->disable_hub_initiated_lpm) {
4511 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4512 						"at request of driver %s\n",
4513 						state_name, driver->name);
4514 				return xhci_get_timeout_no_hub_lpm(udev, state);
4515 			}
4516 		}
4517 
4518 		/* Not sure how this could happen... */
4519 		if (!intf->cur_altsetting)
4520 			continue;
4521 
4522 		if (xhci_update_timeout_for_interface(xhci, udev,
4523 					intf->cur_altsetting,
4524 					state, &timeout))
4525 			return timeout;
4526 	}
4527 	return timeout;
4528 }
4529 
4530 static int calculate_max_exit_latency(struct usb_device *udev,
4531 		enum usb3_link_state state_changed,
4532 		u16 hub_encoded_timeout)
4533 {
4534 	unsigned long long u1_mel_us = 0;
4535 	unsigned long long u2_mel_us = 0;
4536 	unsigned long long mel_us = 0;
4537 	bool disabling_u1;
4538 	bool disabling_u2;
4539 	bool enabling_u1;
4540 	bool enabling_u2;
4541 
4542 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4543 			hub_encoded_timeout == USB3_LPM_DISABLED);
4544 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4545 			hub_encoded_timeout == USB3_LPM_DISABLED);
4546 
4547 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4548 			hub_encoded_timeout != USB3_LPM_DISABLED);
4549 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4550 			hub_encoded_timeout != USB3_LPM_DISABLED);
4551 
4552 	/* If U1 was already enabled and we're not disabling it,
4553 	 * or we're going to enable U1, account for the U1 max exit latency.
4554 	 */
4555 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4556 			enabling_u1)
4557 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4558 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4559 			enabling_u2)
4560 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4561 
4562 	if (u1_mel_us > u2_mel_us)
4563 		mel_us = u1_mel_us;
4564 	else
4565 		mel_us = u2_mel_us;
4566 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4567 	if (mel_us > MAX_EXIT) {
4568 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4569 				"is too big.\n", mel_us);
4570 		return -E2BIG;
4571 	}
4572 	return mel_us;
4573 }
4574 
4575 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4576 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4577 			struct usb_device *udev, enum usb3_link_state state)
4578 {
4579 	struct xhci_hcd	*xhci;
4580 	u16 hub_encoded_timeout;
4581 	int mel;
4582 	int ret;
4583 
4584 	xhci = hcd_to_xhci(hcd);
4585 	/* The LPM timeout values are pretty host-controller specific, so don't
4586 	 * enable hub-initiated timeouts unless the vendor has provided
4587 	 * information about their timeout algorithm.
4588 	 */
4589 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4590 			!xhci->devs[udev->slot_id])
4591 		return USB3_LPM_DISABLED;
4592 
4593 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4594 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4595 	if (mel < 0) {
4596 		/* Max Exit Latency is too big, disable LPM. */
4597 		hub_encoded_timeout = USB3_LPM_DISABLED;
4598 		mel = 0;
4599 	}
4600 
4601 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4602 	if (ret)
4603 		return ret;
4604 	return hub_encoded_timeout;
4605 }
4606 
4607 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4608 			struct usb_device *udev, enum usb3_link_state state)
4609 {
4610 	struct xhci_hcd	*xhci;
4611 	u16 mel;
4612 
4613 	xhci = hcd_to_xhci(hcd);
4614 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4615 			!xhci->devs[udev->slot_id])
4616 		return 0;
4617 
4618 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4619 	return xhci_change_max_exit_latency(xhci, udev, mel);
4620 }
4621 #else /* CONFIG_PM */
4622 
4623 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4624 				struct usb_device *udev, int enable)
4625 {
4626 	return 0;
4627 }
4628 
4629 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4630 {
4631 	return 0;
4632 }
4633 
4634 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4635 			struct usb_device *udev, enum usb3_link_state state)
4636 {
4637 	return USB3_LPM_DISABLED;
4638 }
4639 
4640 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4641 			struct usb_device *udev, enum usb3_link_state state)
4642 {
4643 	return 0;
4644 }
4645 #endif	/* CONFIG_PM */
4646 
4647 /*-------------------------------------------------------------------------*/
4648 
4649 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4650  * internal data structures for the device.
4651  */
4652 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4653 			struct usb_tt *tt, gfp_t mem_flags)
4654 {
4655 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4656 	struct xhci_virt_device *vdev;
4657 	struct xhci_command *config_cmd;
4658 	struct xhci_input_control_ctx *ctrl_ctx;
4659 	struct xhci_slot_ctx *slot_ctx;
4660 	unsigned long flags;
4661 	unsigned think_time;
4662 	int ret;
4663 
4664 	/* Ignore root hubs */
4665 	if (!hdev->parent)
4666 		return 0;
4667 
4668 	vdev = xhci->devs[hdev->slot_id];
4669 	if (!vdev) {
4670 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4671 		return -EINVAL;
4672 	}
4673 
4674 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4675 	if (!config_cmd)
4676 		return -ENOMEM;
4677 
4678 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4679 	if (!ctrl_ctx) {
4680 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4681 				__func__);
4682 		xhci_free_command(xhci, config_cmd);
4683 		return -ENOMEM;
4684 	}
4685 
4686 	spin_lock_irqsave(&xhci->lock, flags);
4687 	if (hdev->speed == USB_SPEED_HIGH &&
4688 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4689 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4690 		xhci_free_command(xhci, config_cmd);
4691 		spin_unlock_irqrestore(&xhci->lock, flags);
4692 		return -ENOMEM;
4693 	}
4694 
4695 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4696 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4697 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4698 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4699 	/*
4700 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4701 	 * but it may be already set to 1 when setup an xHCI virtual
4702 	 * device, so clear it anyway.
4703 	 */
4704 	if (tt->multi)
4705 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4706 	else if (hdev->speed == USB_SPEED_FULL)
4707 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4708 
4709 	if (xhci->hci_version > 0x95) {
4710 		xhci_dbg(xhci, "xHCI version %x needs hub "
4711 				"TT think time and number of ports\n",
4712 				(unsigned int) xhci->hci_version);
4713 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4714 		/* Set TT think time - convert from ns to FS bit times.
4715 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4716 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4717 		 *
4718 		 * xHCI 1.0: this field shall be 0 if the device is not a
4719 		 * High-spped hub.
4720 		 */
4721 		think_time = tt->think_time;
4722 		if (think_time != 0)
4723 			think_time = (think_time / 666) - 1;
4724 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4725 			slot_ctx->tt_info |=
4726 				cpu_to_le32(TT_THINK_TIME(think_time));
4727 	} else {
4728 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4729 				"TT think time or number of ports\n",
4730 				(unsigned int) xhci->hci_version);
4731 	}
4732 	slot_ctx->dev_state = 0;
4733 	spin_unlock_irqrestore(&xhci->lock, flags);
4734 
4735 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4736 			(xhci->hci_version > 0x95) ?
4737 			"configure endpoint" : "evaluate context");
4738 
4739 	/* Issue and wait for the configure endpoint or
4740 	 * evaluate context command.
4741 	 */
4742 	if (xhci->hci_version > 0x95)
4743 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4744 				false, false);
4745 	else
4746 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4747 				true, false);
4748 
4749 	xhci_free_command(xhci, config_cmd);
4750 	return ret;
4751 }
4752 
4753 static int xhci_get_frame(struct usb_hcd *hcd)
4754 {
4755 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4756 	/* EHCI mods by the periodic size.  Why? */
4757 	return readl(&xhci->run_regs->microframe_index) >> 3;
4758 }
4759 
4760 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4761 {
4762 	struct xhci_hcd		*xhci;
4763 	/*
4764 	 * TODO: Check with DWC3 clients for sysdev according to
4765 	 * quirks
4766 	 */
4767 	struct device		*dev = hcd->self.sysdev;
4768 	int			retval;
4769 
4770 	/* Accept arbitrarily long scatter-gather lists */
4771 	hcd->self.sg_tablesize = ~0;
4772 
4773 	/* support to build packet from discontinuous buffers */
4774 	hcd->self.no_sg_constraint = 1;
4775 
4776 	/* XHCI controllers don't stop the ep queue on short packets :| */
4777 	hcd->self.no_stop_on_short = 1;
4778 
4779 	xhci = hcd_to_xhci(hcd);
4780 
4781 	if (usb_hcd_is_primary_hcd(hcd)) {
4782 		xhci->main_hcd = hcd;
4783 		/* Mark the first roothub as being USB 2.0.
4784 		 * The xHCI driver will register the USB 3.0 roothub.
4785 		 */
4786 		hcd->speed = HCD_USB2;
4787 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4788 		/*
4789 		 * USB 2.0 roothub under xHCI has an integrated TT,
4790 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4791 		 * companion controller.
4792 		 */
4793 		hcd->has_tt = 1;
4794 	} else {
4795 		/* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4796 		if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4797 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4798 			hcd->speed = HCD_USB31;
4799 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4800 		}
4801 		/* xHCI private pointer was set in xhci_pci_probe for the second
4802 		 * registered roothub.
4803 		 */
4804 		return 0;
4805 	}
4806 
4807 	mutex_init(&xhci->mutex);
4808 	xhci->cap_regs = hcd->regs;
4809 	xhci->op_regs = hcd->regs +
4810 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4811 	xhci->run_regs = hcd->regs +
4812 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4813 	/* Cache read-only capability registers */
4814 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4815 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4816 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4817 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4818 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4819 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4820 	if (xhci->hci_version > 0x100)
4821 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4822 
4823 	xhci->quirks |= quirks;
4824 
4825 	get_quirks(dev, xhci);
4826 
4827 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4828 	 * success event after a short transfer. This quirk will ignore such
4829 	 * spurious event.
4830 	 */
4831 	if (xhci->hci_version > 0x96)
4832 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4833 
4834 	/* Make sure the HC is halted. */
4835 	retval = xhci_halt(xhci);
4836 	if (retval)
4837 		return retval;
4838 
4839 	xhci_dbg(xhci, "Resetting HCD\n");
4840 	/* Reset the internal HC memory state and registers. */
4841 	retval = xhci_reset(xhci);
4842 	if (retval)
4843 		return retval;
4844 	xhci_dbg(xhci, "Reset complete\n");
4845 
4846 	/*
4847 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4848 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4849 	 * address memory pointers actually. So, this driver clears the AC64
4850 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4851 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4852 	 */
4853 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4854 		xhci->hcc_params &= ~BIT(0);
4855 
4856 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4857 	 * if xHC supports 64-bit addressing */
4858 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4859 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4860 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4861 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4862 	} else {
4863 		/*
4864 		 * This is to avoid error in cases where a 32-bit USB
4865 		 * controller is used on a 64-bit capable system.
4866 		 */
4867 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4868 		if (retval)
4869 			return retval;
4870 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4871 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4872 	}
4873 
4874 	xhci_dbg(xhci, "Calling HCD init\n");
4875 	/* Initialize HCD and host controller data structures. */
4876 	retval = xhci_init(hcd);
4877 	if (retval)
4878 		return retval;
4879 	xhci_dbg(xhci, "Called HCD init\n");
4880 
4881 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4882 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4883 
4884 	return 0;
4885 }
4886 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4887 
4888 static const struct hc_driver xhci_hc_driver = {
4889 	.description =		"xhci-hcd",
4890 	.product_desc =		"xHCI Host Controller",
4891 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4892 
4893 	/*
4894 	 * generic hardware linkage
4895 	 */
4896 	.irq =			xhci_irq,
4897 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4898 
4899 	/*
4900 	 * basic lifecycle operations
4901 	 */
4902 	.reset =		NULL, /* set in xhci_init_driver() */
4903 	.start =		xhci_run,
4904 	.stop =			xhci_stop,
4905 	.shutdown =		xhci_shutdown,
4906 
4907 	/*
4908 	 * managing i/o requests and associated device resources
4909 	 */
4910 	.urb_enqueue =		xhci_urb_enqueue,
4911 	.urb_dequeue =		xhci_urb_dequeue,
4912 	.alloc_dev =		xhci_alloc_dev,
4913 	.free_dev =		xhci_free_dev,
4914 	.alloc_streams =	xhci_alloc_streams,
4915 	.free_streams =		xhci_free_streams,
4916 	.add_endpoint =		xhci_add_endpoint,
4917 	.drop_endpoint =	xhci_drop_endpoint,
4918 	.endpoint_reset =	xhci_endpoint_reset,
4919 	.check_bandwidth =	xhci_check_bandwidth,
4920 	.reset_bandwidth =	xhci_reset_bandwidth,
4921 	.address_device =	xhci_address_device,
4922 	.enable_device =	xhci_enable_device,
4923 	.update_hub_device =	xhci_update_hub_device,
4924 	.reset_device =		xhci_discover_or_reset_device,
4925 
4926 	/*
4927 	 * scheduling support
4928 	 */
4929 	.get_frame_number =	xhci_get_frame,
4930 
4931 	/*
4932 	 * root hub support
4933 	 */
4934 	.hub_control =		xhci_hub_control,
4935 	.hub_status_data =	xhci_hub_status_data,
4936 	.bus_suspend =		xhci_bus_suspend,
4937 	.bus_resume =		xhci_bus_resume,
4938 
4939 	/*
4940 	 * call back when device connected and addressed
4941 	 */
4942 	.update_device =        xhci_update_device,
4943 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4944 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4945 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
4946 	.find_raw_port_number =	xhci_find_raw_port_number,
4947 };
4948 
4949 void xhci_init_driver(struct hc_driver *drv,
4950 		      const struct xhci_driver_overrides *over)
4951 {
4952 	BUG_ON(!over);
4953 
4954 	/* Copy the generic table to drv then apply the overrides */
4955 	*drv = xhci_hc_driver;
4956 
4957 	if (over) {
4958 		drv->hcd_priv_size += over->extra_priv_size;
4959 		if (over->reset)
4960 			drv->reset = over->reset;
4961 		if (over->start)
4962 			drv->start = over->start;
4963 	}
4964 }
4965 EXPORT_SYMBOL_GPL(xhci_init_driver);
4966 
4967 MODULE_DESCRIPTION(DRIVER_DESC);
4968 MODULE_AUTHOR(DRIVER_AUTHOR);
4969 MODULE_LICENSE("GPL");
4970 
4971 static int __init xhci_hcd_init(void)
4972 {
4973 	/*
4974 	 * Check the compiler generated sizes of structures that must be laid
4975 	 * out in specific ways for hardware access.
4976 	 */
4977 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4978 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4979 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4980 	/* xhci_device_control has eight fields, and also
4981 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4982 	 */
4983 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4984 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4985 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4986 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4987 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4988 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4989 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4990 
4991 	if (usb_disabled())
4992 		return -ENODEV;
4993 
4994 	xhci_debugfs_create_root();
4995 
4996 	return 0;
4997 }
4998 
4999 /*
5000  * If an init function is provided, an exit function must also be provided
5001  * to allow module unload.
5002  */
5003 static void __exit xhci_hcd_fini(void)
5004 {
5005 	xhci_debugfs_remove_root();
5006 }
5007 
5008 module_init(xhci_hcd_init);
5009 module_exit(xhci_hcd_fini);
5010