xref: /openbmc/linux/drivers/usb/host/xhci.c (revision bcb84fb4)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (ret) {
117 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 		return ret;
119 	}
120 	xhci->xhc_state |= XHCI_STATE_HALTED;
121 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		/* clear state flags. Including dying, halted or removing */
151 		xhci->xhc_state = 0;
152 
153 	return ret;
154 }
155 
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 	u32 command;
166 	u32 state;
167 	int ret, i;
168 
169 	state = readl(&xhci->op_regs->status);
170 
171 	if (state == ~(u32)0) {
172 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 		return -ENODEV;
174 	}
175 
176 	if ((state & STS_HALT) == 0) {
177 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 		return 0;
179 	}
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 	command = readl(&xhci->op_regs->command);
183 	command |= CMD_RESET;
184 	writel(command, &xhci->op_regs->command);
185 
186 	/* Existing Intel xHCI controllers require a delay of 1 mS,
187 	 * after setting the CMD_RESET bit, and before accessing any
188 	 * HC registers. This allows the HC to complete the
189 	 * reset operation and be ready for HC register access.
190 	 * Without this delay, the subsequent HC register access,
191 	 * may result in a system hang very rarely.
192 	 */
193 	if (xhci->quirks & XHCI_INTEL_HOST)
194 		udelay(1000);
195 
196 	ret = xhci_handshake(&xhci->op_regs->command,
197 			CMD_RESET, 0, 10 * 1000 * 1000);
198 	if (ret)
199 		return ret;
200 
201 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202 			 "Wait for controller to be ready for doorbell rings");
203 	/*
204 	 * xHCI cannot write to any doorbells or operational registers other
205 	 * than status until the "Controller Not Ready" flag is cleared.
206 	 */
207 	ret = xhci_handshake(&xhci->op_regs->status,
208 			STS_CNR, 0, 10 * 1000 * 1000);
209 
210 	for (i = 0; i < 2; i++) {
211 		xhci->bus_state[i].port_c_suspend = 0;
212 		xhci->bus_state[i].suspended_ports = 0;
213 		xhci->bus_state[i].resuming_ports = 0;
214 	}
215 
216 	return ret;
217 }
218 
219 #ifdef CONFIG_PCI
220 static int xhci_free_msi(struct xhci_hcd *xhci)
221 {
222 	int i;
223 
224 	if (!xhci->msix_entries)
225 		return -EINVAL;
226 
227 	for (i = 0; i < xhci->msix_count; i++)
228 		if (xhci->msix_entries[i].vector)
229 			free_irq(xhci->msix_entries[i].vector,
230 					xhci_to_hcd(xhci));
231 	return 0;
232 }
233 
234 /*
235  * Set up MSI
236  */
237 static int xhci_setup_msi(struct xhci_hcd *xhci)
238 {
239 	int ret;
240 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
241 
242 	ret = pci_enable_msi(pdev);
243 	if (ret) {
244 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245 				"failed to allocate MSI entry");
246 		return ret;
247 	}
248 
249 	ret = request_irq(pdev->irq, xhci_msi_irq,
250 				0, "xhci_hcd", xhci_to_hcd(xhci));
251 	if (ret) {
252 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
253 				"disable MSI interrupt");
254 		pci_disable_msi(pdev);
255 	}
256 
257 	return ret;
258 }
259 
260 /*
261  * Free IRQs
262  * free all IRQs request
263  */
264 static void xhci_free_irq(struct xhci_hcd *xhci)
265 {
266 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
267 	int ret;
268 
269 	/* return if using legacy interrupt */
270 	if (xhci_to_hcd(xhci)->irq > 0)
271 		return;
272 
273 	ret = xhci_free_msi(xhci);
274 	if (!ret)
275 		return;
276 	if (pdev->irq > 0)
277 		free_irq(pdev->irq, xhci_to_hcd(xhci));
278 
279 	return;
280 }
281 
282 /*
283  * Set up MSI-X
284  */
285 static int xhci_setup_msix(struct xhci_hcd *xhci)
286 {
287 	int i, ret = 0;
288 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290 
291 	/*
292 	 * calculate number of msi-x vectors supported.
293 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
294 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
295 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
296 	 *   Add additional 1 vector to ensure always available interrupt.
297 	 */
298 	xhci->msix_count = min(num_online_cpus() + 1,
299 				HCS_MAX_INTRS(xhci->hcs_params1));
300 
301 	xhci->msix_entries =
302 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
303 				GFP_KERNEL);
304 	if (!xhci->msix_entries)
305 		return -ENOMEM;
306 
307 	for (i = 0; i < xhci->msix_count; i++) {
308 		xhci->msix_entries[i].entry = i;
309 		xhci->msix_entries[i].vector = 0;
310 	}
311 
312 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
313 	if (ret) {
314 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 				"Failed to enable MSI-X");
316 		goto free_entries;
317 	}
318 
319 	for (i = 0; i < xhci->msix_count; i++) {
320 		ret = request_irq(xhci->msix_entries[i].vector,
321 				xhci_msi_irq,
322 				0, "xhci_hcd", xhci_to_hcd(xhci));
323 		if (ret)
324 			goto disable_msix;
325 	}
326 
327 	hcd->msix_enabled = 1;
328 	return ret;
329 
330 disable_msix:
331 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
332 	xhci_free_irq(xhci);
333 	pci_disable_msix(pdev);
334 free_entries:
335 	kfree(xhci->msix_entries);
336 	xhci->msix_entries = NULL;
337 	return ret;
338 }
339 
340 /* Free any IRQs and disable MSI-X */
341 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
342 {
343 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
344 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
345 
346 	if (xhci->quirks & XHCI_PLAT)
347 		return;
348 
349 	xhci_free_irq(xhci);
350 
351 	if (xhci->msix_entries) {
352 		pci_disable_msix(pdev);
353 		kfree(xhci->msix_entries);
354 		xhci->msix_entries = NULL;
355 	} else {
356 		pci_disable_msi(pdev);
357 	}
358 
359 	hcd->msix_enabled = 0;
360 	return;
361 }
362 
363 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
364 {
365 	int i;
366 
367 	if (xhci->msix_entries) {
368 		for (i = 0; i < xhci->msix_count; i++)
369 			synchronize_irq(xhci->msix_entries[i].vector);
370 	}
371 }
372 
373 static int xhci_try_enable_msi(struct usb_hcd *hcd)
374 {
375 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
376 	struct pci_dev  *pdev;
377 	int ret;
378 
379 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
380 	if (xhci->quirks & XHCI_PLAT)
381 		return 0;
382 
383 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
384 	/*
385 	 * Some Fresco Logic host controllers advertise MSI, but fail to
386 	 * generate interrupts.  Don't even try to enable MSI.
387 	 */
388 	if (xhci->quirks & XHCI_BROKEN_MSI)
389 		goto legacy_irq;
390 
391 	/* unregister the legacy interrupt */
392 	if (hcd->irq)
393 		free_irq(hcd->irq, hcd);
394 	hcd->irq = 0;
395 
396 	ret = xhci_setup_msix(xhci);
397 	if (ret)
398 		/* fall back to msi*/
399 		ret = xhci_setup_msi(xhci);
400 
401 	if (!ret)
402 		/* hcd->irq is 0, we have MSI */
403 		return 0;
404 
405 	if (!pdev->irq) {
406 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
407 		return -EINVAL;
408 	}
409 
410  legacy_irq:
411 	if (!strlen(hcd->irq_descr))
412 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
413 			 hcd->driver->description, hcd->self.busnum);
414 
415 	/* fall back to legacy interrupt*/
416 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
417 			hcd->irq_descr, hcd);
418 	if (ret) {
419 		xhci_err(xhci, "request interrupt %d failed\n",
420 				pdev->irq);
421 		return ret;
422 	}
423 	hcd->irq = pdev->irq;
424 	return 0;
425 }
426 
427 #else
428 
429 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
430 {
431 	return 0;
432 }
433 
434 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
435 {
436 }
437 
438 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
439 {
440 }
441 
442 #endif
443 
444 static void compliance_mode_recovery(unsigned long arg)
445 {
446 	struct xhci_hcd *xhci;
447 	struct usb_hcd *hcd;
448 	u32 temp;
449 	int i;
450 
451 	xhci = (struct xhci_hcd *)arg;
452 
453 	for (i = 0; i < xhci->num_usb3_ports; i++) {
454 		temp = readl(xhci->usb3_ports[i]);
455 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
456 			/*
457 			 * Compliance Mode Detected. Letting USB Core
458 			 * handle the Warm Reset
459 			 */
460 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461 					"Compliance mode detected->port %d",
462 					i + 1);
463 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464 					"Attempting compliance mode recovery");
465 			hcd = xhci->shared_hcd;
466 
467 			if (hcd->state == HC_STATE_SUSPENDED)
468 				usb_hcd_resume_root_hub(hcd);
469 
470 			usb_hcd_poll_rh_status(hcd);
471 		}
472 	}
473 
474 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
475 		mod_timer(&xhci->comp_mode_recovery_timer,
476 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
477 }
478 
479 /*
480  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
481  * that causes ports behind that hardware to enter compliance mode sometimes.
482  * The quirk creates a timer that polls every 2 seconds the link state of
483  * each host controller's port and recovers it by issuing a Warm reset
484  * if Compliance mode is detected, otherwise the port will become "dead" (no
485  * device connections or disconnections will be detected anymore). Becasue no
486  * status event is generated when entering compliance mode (per xhci spec),
487  * this quirk is needed on systems that have the failing hardware installed.
488  */
489 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
490 {
491 	xhci->port_status_u0 = 0;
492 	setup_timer(&xhci->comp_mode_recovery_timer,
493 		    compliance_mode_recovery, (unsigned long)xhci);
494 	xhci->comp_mode_recovery_timer.expires = jiffies +
495 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
496 
497 	add_timer(&xhci->comp_mode_recovery_timer);
498 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499 			"Compliance mode recovery timer initialized");
500 }
501 
502 /*
503  * This function identifies the systems that have installed the SN65LVPE502CP
504  * USB3.0 re-driver and that need the Compliance Mode Quirk.
505  * Systems:
506  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
507  */
508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
509 {
510 	const char *dmi_product_name, *dmi_sys_vendor;
511 
512 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
513 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
514 	if (!dmi_product_name || !dmi_sys_vendor)
515 		return false;
516 
517 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
518 		return false;
519 
520 	if (strstr(dmi_product_name, "Z420") ||
521 			strstr(dmi_product_name, "Z620") ||
522 			strstr(dmi_product_name, "Z820") ||
523 			strstr(dmi_product_name, "Z1 Workstation"))
524 		return true;
525 
526 	return false;
527 }
528 
529 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
530 {
531 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
532 }
533 
534 
535 /*
536  * Initialize memory for HCD and xHC (one-time init).
537  *
538  * Program the PAGESIZE register, initialize the device context array, create
539  * device contexts (?), set up a command ring segment (or two?), create event
540  * ring (one for now).
541  */
542 int xhci_init(struct usb_hcd *hcd)
543 {
544 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
545 	int retval = 0;
546 
547 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
548 	spin_lock_init(&xhci->lock);
549 	if (xhci->hci_version == 0x95 && link_quirk) {
550 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
551 				"QUIRK: Not clearing Link TRB chain bits.");
552 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
553 	} else {
554 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
555 				"xHCI doesn't need link TRB QUIRK");
556 	}
557 	retval = xhci_mem_init(xhci, GFP_KERNEL);
558 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
559 
560 	/* Initializing Compliance Mode Recovery Data If Needed */
561 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
562 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
563 		compliance_mode_recovery_timer_init(xhci);
564 	}
565 
566 	return retval;
567 }
568 
569 /*-------------------------------------------------------------------------*/
570 
571 
572 static int xhci_run_finished(struct xhci_hcd *xhci)
573 {
574 	if (xhci_start(xhci)) {
575 		xhci_halt(xhci);
576 		return -ENODEV;
577 	}
578 	xhci->shared_hcd->state = HC_STATE_RUNNING;
579 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
580 
581 	if (xhci->quirks & XHCI_NEC_HOST)
582 		xhci_ring_cmd_db(xhci);
583 
584 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585 			"Finished xhci_run for USB3 roothub");
586 	return 0;
587 }
588 
589 /*
590  * Start the HC after it was halted.
591  *
592  * This function is called by the USB core when the HC driver is added.
593  * Its opposite is xhci_stop().
594  *
595  * xhci_init() must be called once before this function can be called.
596  * Reset the HC, enable device slot contexts, program DCBAAP, and
597  * set command ring pointer and event ring pointer.
598  *
599  * Setup MSI-X vectors and enable interrupts.
600  */
601 int xhci_run(struct usb_hcd *hcd)
602 {
603 	u32 temp;
604 	u64 temp_64;
605 	int ret;
606 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
607 
608 	/* Start the xHCI host controller running only after the USB 2.0 roothub
609 	 * is setup.
610 	 */
611 
612 	hcd->uses_new_polling = 1;
613 	if (!usb_hcd_is_primary_hcd(hcd))
614 		return xhci_run_finished(xhci);
615 
616 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
617 
618 	ret = xhci_try_enable_msi(hcd);
619 	if (ret)
620 		return ret;
621 
622 	xhci_dbg(xhci, "Command ring memory map follows:\n");
623 	xhci_debug_ring(xhci, xhci->cmd_ring);
624 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
625 	xhci_dbg_cmd_ptrs(xhci);
626 
627 	xhci_dbg(xhci, "ERST memory map follows:\n");
628 	xhci_dbg_erst(xhci, &xhci->erst);
629 	xhci_dbg(xhci, "Event ring:\n");
630 	xhci_debug_ring(xhci, xhci->event_ring);
631 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
632 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
633 	temp_64 &= ~ERST_PTR_MASK;
634 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
636 
637 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638 			"// Set the interrupt modulation register");
639 	temp = readl(&xhci->ir_set->irq_control);
640 	temp &= ~ER_IRQ_INTERVAL_MASK;
641 	/*
642 	 * the increment interval is 8 times as much as that defined
643 	 * in xHCI spec on MTK's controller
644 	 */
645 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
646 	writel(temp, &xhci->ir_set->irq_control);
647 
648 	/* Set the HCD state before we enable the irqs */
649 	temp = readl(&xhci->op_regs->command);
650 	temp |= (CMD_EIE);
651 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652 			"// Enable interrupts, cmd = 0x%x.", temp);
653 	writel(temp, &xhci->op_regs->command);
654 
655 	temp = readl(&xhci->ir_set->irq_pending);
656 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
657 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
658 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
659 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
660 	xhci_print_ir_set(xhci, 0);
661 
662 	if (xhci->quirks & XHCI_NEC_HOST) {
663 		struct xhci_command *command;
664 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
665 		if (!command)
666 			return -ENOMEM;
667 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
668 				TRB_TYPE(TRB_NEC_GET_FW));
669 	}
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"Finished xhci_run for USB2 roothub");
672 	return 0;
673 }
674 EXPORT_SYMBOL_GPL(xhci_run);
675 
676 /*
677  * Stop xHCI driver.
678  *
679  * This function is called by the USB core when the HC driver is removed.
680  * Its opposite is xhci_run().
681  *
682  * Disable device contexts, disable IRQs, and quiesce the HC.
683  * Reset the HC, finish any completed transactions, and cleanup memory.
684  */
685 void xhci_stop(struct usb_hcd *hcd)
686 {
687 	u32 temp;
688 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
689 
690 	mutex_lock(&xhci->mutex);
691 
692 	if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
693 		spin_lock_irq(&xhci->lock);
694 
695 		xhci->xhc_state |= XHCI_STATE_HALTED;
696 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
697 		xhci_halt(xhci);
698 		xhci_reset(xhci);
699 		spin_unlock_irq(&xhci->lock);
700 	}
701 
702 	if (!usb_hcd_is_primary_hcd(hcd)) {
703 		mutex_unlock(&xhci->mutex);
704 		return;
705 	}
706 
707 	xhci_cleanup_msix(xhci);
708 
709 	/* Deleting Compliance Mode Recovery Timer */
710 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
711 			(!(xhci_all_ports_seen_u0(xhci)))) {
712 		del_timer_sync(&xhci->comp_mode_recovery_timer);
713 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
714 				"%s: compliance mode recovery timer deleted",
715 				__func__);
716 	}
717 
718 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
719 		usb_amd_dev_put();
720 
721 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722 			"// Disabling event ring interrupts");
723 	temp = readl(&xhci->op_regs->status);
724 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
725 	temp = readl(&xhci->ir_set->irq_pending);
726 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
727 	xhci_print_ir_set(xhci, 0);
728 
729 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
730 	xhci_mem_cleanup(xhci);
731 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
732 			"xhci_stop completed - status = %x",
733 			readl(&xhci->op_regs->status));
734 	mutex_unlock(&xhci->mutex);
735 }
736 
737 /*
738  * Shutdown HC (not bus-specific)
739  *
740  * This is called when the machine is rebooting or halting.  We assume that the
741  * machine will be powered off, and the HC's internal state will be reset.
742  * Don't bother to free memory.
743  *
744  * This will only ever be called with the main usb_hcd (the USB3 roothub).
745  */
746 void xhci_shutdown(struct usb_hcd *hcd)
747 {
748 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
749 
750 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
751 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
752 
753 	spin_lock_irq(&xhci->lock);
754 	xhci_halt(xhci);
755 	/* Workaround for spurious wakeups at shutdown with HSW */
756 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
757 		xhci_reset(xhci);
758 	spin_unlock_irq(&xhci->lock);
759 
760 	xhci_cleanup_msix(xhci);
761 
762 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 			"xhci_shutdown completed - status = %x",
764 			readl(&xhci->op_regs->status));
765 
766 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
767 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
768 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
769 }
770 
771 #ifdef CONFIG_PM
772 static void xhci_save_registers(struct xhci_hcd *xhci)
773 {
774 	xhci->s3.command = readl(&xhci->op_regs->command);
775 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
776 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
777 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
778 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
779 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
780 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
781 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
782 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
783 }
784 
785 static void xhci_restore_registers(struct xhci_hcd *xhci)
786 {
787 	writel(xhci->s3.command, &xhci->op_regs->command);
788 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
789 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
790 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
791 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
792 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
793 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
794 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
795 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
796 }
797 
798 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
799 {
800 	u64	val_64;
801 
802 	/* step 2: initialize command ring buffer */
803 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
804 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
805 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
806 				      xhci->cmd_ring->dequeue) &
807 		 (u64) ~CMD_RING_RSVD_BITS) |
808 		xhci->cmd_ring->cycle_state;
809 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
810 			"// Setting command ring address to 0x%llx",
811 			(long unsigned long) val_64);
812 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
813 }
814 
815 /*
816  * The whole command ring must be cleared to zero when we suspend the host.
817  *
818  * The host doesn't save the command ring pointer in the suspend well, so we
819  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
820  * aligned, because of the reserved bits in the command ring dequeue pointer
821  * register.  Therefore, we can't just set the dequeue pointer back in the
822  * middle of the ring (TRBs are 16-byte aligned).
823  */
824 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
825 {
826 	struct xhci_ring *ring;
827 	struct xhci_segment *seg;
828 
829 	ring = xhci->cmd_ring;
830 	seg = ring->deq_seg;
831 	do {
832 		memset(seg->trbs, 0,
833 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
834 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
835 			cpu_to_le32(~TRB_CYCLE);
836 		seg = seg->next;
837 	} while (seg != ring->deq_seg);
838 
839 	/* Reset the software enqueue and dequeue pointers */
840 	ring->deq_seg = ring->first_seg;
841 	ring->dequeue = ring->first_seg->trbs;
842 	ring->enq_seg = ring->deq_seg;
843 	ring->enqueue = ring->dequeue;
844 
845 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
846 	/*
847 	 * Ring is now zeroed, so the HW should look for change of ownership
848 	 * when the cycle bit is set to 1.
849 	 */
850 	ring->cycle_state = 1;
851 
852 	/*
853 	 * Reset the hardware dequeue pointer.
854 	 * Yes, this will need to be re-written after resume, but we're paranoid
855 	 * and want to make sure the hardware doesn't access bogus memory
856 	 * because, say, the BIOS or an SMI started the host without changing
857 	 * the command ring pointers.
858 	 */
859 	xhci_set_cmd_ring_deq(xhci);
860 }
861 
862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
863 {
864 	int port_index;
865 	__le32 __iomem **port_array;
866 	unsigned long flags;
867 	u32 t1, t2;
868 
869 	spin_lock_irqsave(&xhci->lock, flags);
870 
871 	/* disble usb3 ports Wake bits*/
872 	port_index = xhci->num_usb3_ports;
873 	port_array = xhci->usb3_ports;
874 	while (port_index--) {
875 		t1 = readl(port_array[port_index]);
876 		t1 = xhci_port_state_to_neutral(t1);
877 		t2 = t1 & ~PORT_WAKE_BITS;
878 		if (t1 != t2)
879 			writel(t2, port_array[port_index]);
880 	}
881 
882 	/* disble usb2 ports Wake bits*/
883 	port_index = xhci->num_usb2_ports;
884 	port_array = xhci->usb2_ports;
885 	while (port_index--) {
886 		t1 = readl(port_array[port_index]);
887 		t1 = xhci_port_state_to_neutral(t1);
888 		t2 = t1 & ~PORT_WAKE_BITS;
889 		if (t1 != t2)
890 			writel(t2, port_array[port_index]);
891 	}
892 
893 	spin_unlock_irqrestore(&xhci->lock, flags);
894 }
895 
896 /*
897  * Stop HC (not bus-specific)
898  *
899  * This is called when the machine transition into S3/S4 mode.
900  *
901  */
902 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
903 {
904 	int			rc = 0;
905 	unsigned int		delay = XHCI_MAX_HALT_USEC;
906 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
907 	u32			command;
908 
909 	if (!hcd->state)
910 		return 0;
911 
912 	if (hcd->state != HC_STATE_SUSPENDED ||
913 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
914 		return -EINVAL;
915 
916 	/* Clear root port wake on bits if wakeup not allowed. */
917 	if (!do_wakeup)
918 		xhci_disable_port_wake_on_bits(xhci);
919 
920 	/* Don't poll the roothubs on bus suspend. */
921 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
922 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
923 	del_timer_sync(&hcd->rh_timer);
924 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
925 	del_timer_sync(&xhci->shared_hcd->rh_timer);
926 
927 	spin_lock_irq(&xhci->lock);
928 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
930 	/* step 1: stop endpoint */
931 	/* skipped assuming that port suspend has done */
932 
933 	/* step 2: clear Run/Stop bit */
934 	command = readl(&xhci->op_regs->command);
935 	command &= ~CMD_RUN;
936 	writel(command, &xhci->op_regs->command);
937 
938 	/* Some chips from Fresco Logic need an extraordinary delay */
939 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
940 
941 	if (xhci_handshake(&xhci->op_regs->status,
942 		      STS_HALT, STS_HALT, delay)) {
943 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
944 		spin_unlock_irq(&xhci->lock);
945 		return -ETIMEDOUT;
946 	}
947 	xhci_clear_command_ring(xhci);
948 
949 	/* step 3: save registers */
950 	xhci_save_registers(xhci);
951 
952 	/* step 4: set CSS flag */
953 	command = readl(&xhci->op_regs->command);
954 	command |= CMD_CSS;
955 	writel(command, &xhci->op_regs->command);
956 	if (xhci_handshake(&xhci->op_regs->status,
957 				STS_SAVE, 0, 10 * 1000)) {
958 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
959 		spin_unlock_irq(&xhci->lock);
960 		return -ETIMEDOUT;
961 	}
962 	spin_unlock_irq(&xhci->lock);
963 
964 	/*
965 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
966 	 * is about to be suspended.
967 	 */
968 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
969 			(!(xhci_all_ports_seen_u0(xhci)))) {
970 		del_timer_sync(&xhci->comp_mode_recovery_timer);
971 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
972 				"%s: compliance mode recovery timer deleted",
973 				__func__);
974 	}
975 
976 	/* step 5: remove core well power */
977 	/* synchronize irq when using MSI-X */
978 	xhci_msix_sync_irqs(xhci);
979 
980 	return rc;
981 }
982 EXPORT_SYMBOL_GPL(xhci_suspend);
983 
984 /*
985  * start xHC (not bus-specific)
986  *
987  * This is called when the machine transition from S3/S4 mode.
988  *
989  */
990 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
991 {
992 	u32			command, temp = 0, status;
993 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
994 	struct usb_hcd		*secondary_hcd;
995 	int			retval = 0;
996 	bool			comp_timer_running = false;
997 
998 	if (!hcd->state)
999 		return 0;
1000 
1001 	/* Wait a bit if either of the roothubs need to settle from the
1002 	 * transition into bus suspend.
1003 	 */
1004 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1005 			time_before(jiffies,
1006 				xhci->bus_state[1].next_statechange))
1007 		msleep(100);
1008 
1009 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1010 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1011 
1012 	spin_lock_irq(&xhci->lock);
1013 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1014 		hibernated = true;
1015 
1016 	if (!hibernated) {
1017 		/* step 1: restore register */
1018 		xhci_restore_registers(xhci);
1019 		/* step 2: initialize command ring buffer */
1020 		xhci_set_cmd_ring_deq(xhci);
1021 		/* step 3: restore state and start state*/
1022 		/* step 3: set CRS flag */
1023 		command = readl(&xhci->op_regs->command);
1024 		command |= CMD_CRS;
1025 		writel(command, &xhci->op_regs->command);
1026 		if (xhci_handshake(&xhci->op_regs->status,
1027 			      STS_RESTORE, 0, 10 * 1000)) {
1028 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1029 			spin_unlock_irq(&xhci->lock);
1030 			return -ETIMEDOUT;
1031 		}
1032 		temp = readl(&xhci->op_regs->status);
1033 	}
1034 
1035 	/* If restore operation fails, re-initialize the HC during resume */
1036 	if ((temp & STS_SRE) || hibernated) {
1037 
1038 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039 				!(xhci_all_ports_seen_u0(xhci))) {
1040 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1041 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042 				"Compliance Mode Recovery Timer deleted!");
1043 		}
1044 
1045 		/* Let the USB core know _both_ roothubs lost power. */
1046 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1047 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1048 
1049 		xhci_dbg(xhci, "Stop HCD\n");
1050 		xhci_halt(xhci);
1051 		xhci_reset(xhci);
1052 		spin_unlock_irq(&xhci->lock);
1053 		xhci_cleanup_msix(xhci);
1054 
1055 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1056 		temp = readl(&xhci->op_regs->status);
1057 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1058 		temp = readl(&xhci->ir_set->irq_pending);
1059 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1060 		xhci_print_ir_set(xhci, 0);
1061 
1062 		xhci_dbg(xhci, "cleaning up memory\n");
1063 		xhci_mem_cleanup(xhci);
1064 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1065 			    readl(&xhci->op_regs->status));
1066 
1067 		/* USB core calls the PCI reinit and start functions twice:
1068 		 * first with the primary HCD, and then with the secondary HCD.
1069 		 * If we don't do the same, the host will never be started.
1070 		 */
1071 		if (!usb_hcd_is_primary_hcd(hcd))
1072 			secondary_hcd = hcd;
1073 		else
1074 			secondary_hcd = xhci->shared_hcd;
1075 
1076 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077 		retval = xhci_init(hcd->primary_hcd);
1078 		if (retval)
1079 			return retval;
1080 		comp_timer_running = true;
1081 
1082 		xhci_dbg(xhci, "Start the primary HCD\n");
1083 		retval = xhci_run(hcd->primary_hcd);
1084 		if (!retval) {
1085 			xhci_dbg(xhci, "Start the secondary HCD\n");
1086 			retval = xhci_run(secondary_hcd);
1087 		}
1088 		hcd->state = HC_STATE_SUSPENDED;
1089 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090 		goto done;
1091 	}
1092 
1093 	/* step 4: set Run/Stop bit */
1094 	command = readl(&xhci->op_regs->command);
1095 	command |= CMD_RUN;
1096 	writel(command, &xhci->op_regs->command);
1097 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098 		  0, 250 * 1000);
1099 
1100 	/* step 5: walk topology and initialize portsc,
1101 	 * portpmsc and portli
1102 	 */
1103 	/* this is done in bus_resume */
1104 
1105 	/* step 6: restart each of the previously
1106 	 * Running endpoints by ringing their doorbells
1107 	 */
1108 
1109 	spin_unlock_irq(&xhci->lock);
1110 
1111  done:
1112 	if (retval == 0) {
1113 		/* Resume root hubs only when have pending events. */
1114 		status = readl(&xhci->op_regs->status);
1115 		if (status & STS_EINT) {
1116 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1117 			usb_hcd_resume_root_hub(hcd);
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1123 	 * be re-initialized Always after a system resume. Ports are subject
1124 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1125 	 * ports have entered previously to U0 before system's suspension.
1126 	 */
1127 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1128 		compliance_mode_recovery_timer_init(xhci);
1129 
1130 	/* Re-enable port polling. */
1131 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1132 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1133 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1134 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1135 	usb_hcd_poll_rh_status(hcd);
1136 
1137 	return retval;
1138 }
1139 EXPORT_SYMBOL_GPL(xhci_resume);
1140 #endif	/* CONFIG_PM */
1141 
1142 /*-------------------------------------------------------------------------*/
1143 
1144 /**
1145  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1146  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1147  * value to right shift 1 for the bitmask.
1148  *
1149  * Index  = (epnum * 2) + direction - 1,
1150  * where direction = 0 for OUT, 1 for IN.
1151  * For control endpoints, the IN index is used (OUT index is unused), so
1152  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1153  */
1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1155 {
1156 	unsigned int index;
1157 	if (usb_endpoint_xfer_control(desc))
1158 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1159 	else
1160 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1161 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1162 	return index;
1163 }
1164 
1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1166  * address from the XHCI endpoint index.
1167  */
1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1169 {
1170 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1171 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1172 	return direction | number;
1173 }
1174 
1175 /* Find the flag for this endpoint (for use in the control context).  Use the
1176  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1177  * bit 1, etc.
1178  */
1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1180 {
1181 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1182 }
1183 
1184 /* Find the flag for this endpoint (for use in the control context).  Use the
1185  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1186  * bit 1, etc.
1187  */
1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1189 {
1190 	return 1 << (ep_index + 1);
1191 }
1192 
1193 /* Compute the last valid endpoint context index.  Basically, this is the
1194  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1195  * we find the most significant bit set in the added contexts flags.
1196  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1197  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1198  */
1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1200 {
1201 	return fls(added_ctxs) - 1;
1202 }
1203 
1204 /* Returns 1 if the arguments are OK;
1205  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1206  */
1207 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1208 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1209 		const char *func) {
1210 	struct xhci_hcd	*xhci;
1211 	struct xhci_virt_device	*virt_dev;
1212 
1213 	if (!hcd || (check_ep && !ep) || !udev) {
1214 		pr_debug("xHCI %s called with invalid args\n", func);
1215 		return -EINVAL;
1216 	}
1217 	if (!udev->parent) {
1218 		pr_debug("xHCI %s called for root hub\n", func);
1219 		return 0;
1220 	}
1221 
1222 	xhci = hcd_to_xhci(hcd);
1223 	if (check_virt_dev) {
1224 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1226 					func);
1227 			return -EINVAL;
1228 		}
1229 
1230 		virt_dev = xhci->devs[udev->slot_id];
1231 		if (virt_dev->udev != udev) {
1232 			xhci_dbg(xhci, "xHCI %s called with udev and "
1233 					  "virt_dev does not match\n", func);
1234 			return -EINVAL;
1235 		}
1236 	}
1237 
1238 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1239 		return -ENODEV;
1240 
1241 	return 1;
1242 }
1243 
1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245 		struct usb_device *udev, struct xhci_command *command,
1246 		bool ctx_change, bool must_succeed);
1247 
1248 /*
1249  * Full speed devices may have a max packet size greater than 8 bytes, but the
1250  * USB core doesn't know that until it reads the first 8 bytes of the
1251  * descriptor.  If the usb_device's max packet size changes after that point,
1252  * we need to issue an evaluate context command and wait on it.
1253  */
1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255 		unsigned int ep_index, struct urb *urb)
1256 {
1257 	struct xhci_container_ctx *out_ctx;
1258 	struct xhci_input_control_ctx *ctrl_ctx;
1259 	struct xhci_ep_ctx *ep_ctx;
1260 	struct xhci_command *command;
1261 	int max_packet_size;
1262 	int hw_max_packet_size;
1263 	int ret = 0;
1264 
1265 	out_ctx = xhci->devs[slot_id]->out_ctx;
1266 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269 	if (hw_max_packet_size != max_packet_size) {
1270 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271 				"Max Packet Size for ep 0 changed.");
1272 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273 				"Max packet size in usb_device = %d",
1274 				max_packet_size);
1275 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276 				"Max packet size in xHCI HW = %d",
1277 				hw_max_packet_size);
1278 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1279 				"Issuing evaluate context command.");
1280 
1281 		/* Set up the input context flags for the command */
1282 		/* FIXME: This won't work if a non-default control endpoint
1283 		 * changes max packet sizes.
1284 		 */
1285 
1286 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1287 		if (!command)
1288 			return -ENOMEM;
1289 
1290 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1291 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1292 		if (!ctrl_ctx) {
1293 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1294 					__func__);
1295 			ret = -ENOMEM;
1296 			goto command_cleanup;
1297 		}
1298 		/* Set up the modified control endpoint 0 */
1299 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1300 				xhci->devs[slot_id]->out_ctx, ep_index);
1301 
1302 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1303 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1304 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1305 
1306 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1307 		ctrl_ctx->drop_flags = 0;
1308 
1309 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1310 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1311 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1312 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1313 
1314 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1315 				true, false);
1316 
1317 		/* Clean up the input context for later use by bandwidth
1318 		 * functions.
1319 		 */
1320 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1321 command_cleanup:
1322 		kfree(command->completion);
1323 		kfree(command);
1324 	}
1325 	return ret;
1326 }
1327 
1328 /*
1329  * non-error returns are a promise to giveback() the urb later
1330  * we drop ownership so next owner (or urb unlink) can get it
1331  */
1332 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1333 {
1334 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1335 	unsigned long flags;
1336 	int ret = 0;
1337 	unsigned int slot_id, ep_index, ep_state;
1338 	struct urb_priv	*urb_priv;
1339 	int num_tds;
1340 
1341 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1342 					true, true, __func__) <= 0)
1343 		return -EINVAL;
1344 
1345 	slot_id = urb->dev->slot_id;
1346 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1347 
1348 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1349 		if (!in_interrupt())
1350 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1351 		return -ESHUTDOWN;
1352 	}
1353 
1354 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1355 		num_tds = urb->number_of_packets;
1356 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1357 	    urb->transfer_buffer_length > 0 &&
1358 	    urb->transfer_flags & URB_ZERO_PACKET &&
1359 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1360 		num_tds = 2;
1361 	else
1362 		num_tds = 1;
1363 
1364 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1365 			   num_tds * sizeof(struct xhci_td), mem_flags);
1366 	if (!urb_priv)
1367 		return -ENOMEM;
1368 
1369 	urb_priv->num_tds = num_tds;
1370 	urb_priv->num_tds_done = 0;
1371 	urb->hcpriv = urb_priv;
1372 
1373 	trace_xhci_urb_enqueue(urb);
1374 
1375 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1376 		/* Check to see if the max packet size for the default control
1377 		 * endpoint changed during FS device enumeration
1378 		 */
1379 		if (urb->dev->speed == USB_SPEED_FULL) {
1380 			ret = xhci_check_maxpacket(xhci, slot_id,
1381 					ep_index, urb);
1382 			if (ret < 0) {
1383 				xhci_urb_free_priv(urb_priv);
1384 				urb->hcpriv = NULL;
1385 				return ret;
1386 			}
1387 		}
1388 	}
1389 
1390 	spin_lock_irqsave(&xhci->lock, flags);
1391 
1392 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1393 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1394 			 urb->ep->desc.bEndpointAddress, urb);
1395 		ret = -ESHUTDOWN;
1396 		goto free_priv;
1397 	}
1398 
1399 	switch (usb_endpoint_type(&urb->ep->desc)) {
1400 
1401 	case USB_ENDPOINT_XFER_CONTROL:
1402 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1403 					 slot_id, ep_index);
1404 		break;
1405 	case USB_ENDPOINT_XFER_BULK:
1406 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1407 		if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1408 			xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1409 				  ep_state);
1410 			ret = -EINVAL;
1411 			break;
1412 		}
1413 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1414 					 slot_id, ep_index);
1415 		break;
1416 
1417 
1418 	case USB_ENDPOINT_XFER_INT:
1419 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1420 				slot_id, ep_index);
1421 		break;
1422 
1423 	case USB_ENDPOINT_XFER_ISOC:
1424 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1425 				slot_id, ep_index);
1426 	}
1427 
1428 	if (ret) {
1429 free_priv:
1430 		xhci_urb_free_priv(urb_priv);
1431 		urb->hcpriv = NULL;
1432 	}
1433 	spin_unlock_irqrestore(&xhci->lock, flags);
1434 	return ret;
1435 }
1436 
1437 /*
1438  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1439  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1440  * should pick up where it left off in the TD, unless a Set Transfer Ring
1441  * Dequeue Pointer is issued.
1442  *
1443  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1444  * the ring.  Since the ring is a contiguous structure, they can't be physically
1445  * removed.  Instead, there are two options:
1446  *
1447  *  1) If the HC is in the middle of processing the URB to be canceled, we
1448  *     simply move the ring's dequeue pointer past those TRBs using the Set
1449  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1450  *     when drivers timeout on the last submitted URB and attempt to cancel.
1451  *
1452  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1453  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1454  *     HC will need to invalidate the any TRBs it has cached after the stop
1455  *     endpoint command, as noted in the xHCI 0.95 errata.
1456  *
1457  *  3) The TD may have completed by the time the Stop Endpoint Command
1458  *     completes, so software needs to handle that case too.
1459  *
1460  * This function should protect against the TD enqueueing code ringing the
1461  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1462  * It also needs to account for multiple cancellations on happening at the same
1463  * time for the same endpoint.
1464  *
1465  * Note that this function can be called in any context, or so says
1466  * usb_hcd_unlink_urb()
1467  */
1468 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1469 {
1470 	unsigned long flags;
1471 	int ret, i;
1472 	u32 temp;
1473 	struct xhci_hcd *xhci;
1474 	struct urb_priv	*urb_priv;
1475 	struct xhci_td *td;
1476 	unsigned int ep_index;
1477 	struct xhci_ring *ep_ring;
1478 	struct xhci_virt_ep *ep;
1479 	struct xhci_command *command;
1480 
1481 	xhci = hcd_to_xhci(hcd);
1482 	spin_lock_irqsave(&xhci->lock, flags);
1483 
1484 	trace_xhci_urb_dequeue(urb);
1485 
1486 	/* Make sure the URB hasn't completed or been unlinked already */
1487 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1488 	if (ret || !urb->hcpriv)
1489 		goto done;
1490 	temp = readl(&xhci->op_regs->status);
1491 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1492 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1493 				"HW died, freeing TD.");
1494 		urb_priv = urb->hcpriv;
1495 		for (i = urb_priv->num_tds_done;
1496 		     i < urb_priv->num_tds && xhci->devs[urb->dev->slot_id];
1497 		     i++) {
1498 			td = &urb_priv->td[i];
1499 			if (!list_empty(&td->td_list))
1500 				list_del_init(&td->td_list);
1501 			if (!list_empty(&td->cancelled_td_list))
1502 				list_del_init(&td->cancelled_td_list);
1503 		}
1504 
1505 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1506 		spin_unlock_irqrestore(&xhci->lock, flags);
1507 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1508 		xhci_urb_free_priv(urb_priv);
1509 		return ret;
1510 	}
1511 
1512 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1513 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1514 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1515 	if (!ep_ring) {
1516 		ret = -EINVAL;
1517 		goto done;
1518 	}
1519 
1520 	urb_priv = urb->hcpriv;
1521 	i = urb_priv->num_tds_done;
1522 	if (i < urb_priv->num_tds)
1523 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1524 				"Cancel URB %p, dev %s, ep 0x%x, "
1525 				"starting at offset 0x%llx",
1526 				urb, urb->dev->devpath,
1527 				urb->ep->desc.bEndpointAddress,
1528 				(unsigned long long) xhci_trb_virt_to_dma(
1529 					urb_priv->td[i].start_seg,
1530 					urb_priv->td[i].first_trb));
1531 
1532 	for (; i < urb_priv->num_tds; i++) {
1533 		td = &urb_priv->td[i];
1534 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1535 	}
1536 
1537 	/* Queue a stop endpoint command, but only if this is
1538 	 * the first cancellation to be handled.
1539 	 */
1540 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1541 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1542 		if (!command) {
1543 			ret = -ENOMEM;
1544 			goto done;
1545 		}
1546 		ep->ep_state |= EP_STOP_CMD_PENDING;
1547 		ep->stop_cmd_timer.expires = jiffies +
1548 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1549 		add_timer(&ep->stop_cmd_timer);
1550 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1551 					 ep_index, 0);
1552 		xhci_ring_cmd_db(xhci);
1553 	}
1554 done:
1555 	spin_unlock_irqrestore(&xhci->lock, flags);
1556 	return ret;
1557 }
1558 
1559 /* Drop an endpoint from a new bandwidth configuration for this device.
1560  * Only one call to this function is allowed per endpoint before
1561  * check_bandwidth() or reset_bandwidth() must be called.
1562  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1563  * add the endpoint to the schedule with possibly new parameters denoted by a
1564  * different endpoint descriptor in usb_host_endpoint.
1565  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1566  * not allowed.
1567  *
1568  * The USB core will not allow URBs to be queued to an endpoint that is being
1569  * disabled, so there's no need for mutual exclusion to protect
1570  * the xhci->devs[slot_id] structure.
1571  */
1572 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1573 		struct usb_host_endpoint *ep)
1574 {
1575 	struct xhci_hcd *xhci;
1576 	struct xhci_container_ctx *in_ctx, *out_ctx;
1577 	struct xhci_input_control_ctx *ctrl_ctx;
1578 	unsigned int ep_index;
1579 	struct xhci_ep_ctx *ep_ctx;
1580 	u32 drop_flag;
1581 	u32 new_add_flags, new_drop_flags;
1582 	int ret;
1583 
1584 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1585 	if (ret <= 0)
1586 		return ret;
1587 	xhci = hcd_to_xhci(hcd);
1588 	if (xhci->xhc_state & XHCI_STATE_DYING)
1589 		return -ENODEV;
1590 
1591 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1592 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1593 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1594 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1595 				__func__, drop_flag);
1596 		return 0;
1597 	}
1598 
1599 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1600 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1601 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1602 	if (!ctrl_ctx) {
1603 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1604 				__func__);
1605 		return 0;
1606 	}
1607 
1608 	ep_index = xhci_get_endpoint_index(&ep->desc);
1609 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1610 	/* If the HC already knows the endpoint is disabled,
1611 	 * or the HCD has noted it is disabled, ignore this request
1612 	 */
1613 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1614 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1615 	    xhci_get_endpoint_flag(&ep->desc)) {
1616 		/* Do not warn when called after a usb_device_reset */
1617 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1618 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1619 				  __func__, ep);
1620 		return 0;
1621 	}
1622 
1623 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1624 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1625 
1626 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1627 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1628 
1629 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1630 
1631 	if (xhci->quirks & XHCI_MTK_HOST)
1632 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1633 
1634 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1635 			(unsigned int) ep->desc.bEndpointAddress,
1636 			udev->slot_id,
1637 			(unsigned int) new_drop_flags,
1638 			(unsigned int) new_add_flags);
1639 	return 0;
1640 }
1641 
1642 /* Add an endpoint to a new possible bandwidth configuration for this device.
1643  * Only one call to this function is allowed per endpoint before
1644  * check_bandwidth() or reset_bandwidth() must be called.
1645  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1646  * add the endpoint to the schedule with possibly new parameters denoted by a
1647  * different endpoint descriptor in usb_host_endpoint.
1648  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1649  * not allowed.
1650  *
1651  * The USB core will not allow URBs to be queued to an endpoint until the
1652  * configuration or alt setting is installed in the device, so there's no need
1653  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1654  */
1655 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1656 		struct usb_host_endpoint *ep)
1657 {
1658 	struct xhci_hcd *xhci;
1659 	struct xhci_container_ctx *in_ctx;
1660 	unsigned int ep_index;
1661 	struct xhci_input_control_ctx *ctrl_ctx;
1662 	u32 added_ctxs;
1663 	u32 new_add_flags, new_drop_flags;
1664 	struct xhci_virt_device *virt_dev;
1665 	int ret = 0;
1666 
1667 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1668 	if (ret <= 0) {
1669 		/* So we won't queue a reset ep command for a root hub */
1670 		ep->hcpriv = NULL;
1671 		return ret;
1672 	}
1673 	xhci = hcd_to_xhci(hcd);
1674 	if (xhci->xhc_state & XHCI_STATE_DYING)
1675 		return -ENODEV;
1676 
1677 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1678 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1679 		/* FIXME when we have to issue an evaluate endpoint command to
1680 		 * deal with ep0 max packet size changing once we get the
1681 		 * descriptors
1682 		 */
1683 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1684 				__func__, added_ctxs);
1685 		return 0;
1686 	}
1687 
1688 	virt_dev = xhci->devs[udev->slot_id];
1689 	in_ctx = virt_dev->in_ctx;
1690 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1691 	if (!ctrl_ctx) {
1692 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1693 				__func__);
1694 		return 0;
1695 	}
1696 
1697 	ep_index = xhci_get_endpoint_index(&ep->desc);
1698 	/* If this endpoint is already in use, and the upper layers are trying
1699 	 * to add it again without dropping it, reject the addition.
1700 	 */
1701 	if (virt_dev->eps[ep_index].ring &&
1702 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1703 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1704 				"without dropping it.\n",
1705 				(unsigned int) ep->desc.bEndpointAddress);
1706 		return -EINVAL;
1707 	}
1708 
1709 	/* If the HCD has already noted the endpoint is enabled,
1710 	 * ignore this request.
1711 	 */
1712 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1713 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1714 				__func__, ep);
1715 		return 0;
1716 	}
1717 
1718 	/*
1719 	 * Configuration and alternate setting changes must be done in
1720 	 * process context, not interrupt context (or so documenation
1721 	 * for usb_set_interface() and usb_set_configuration() claim).
1722 	 */
1723 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1724 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1725 				__func__, ep->desc.bEndpointAddress);
1726 		return -ENOMEM;
1727 	}
1728 
1729 	if (xhci->quirks & XHCI_MTK_HOST) {
1730 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1731 		if (ret < 0) {
1732 			xhci_free_or_cache_endpoint_ring(xhci,
1733 				virt_dev, ep_index);
1734 			return ret;
1735 		}
1736 	}
1737 
1738 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1739 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1740 
1741 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1742 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1743 	 * this re-adds a new state for the endpoint from the new endpoint
1744 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1745 	 * drop flags alone.
1746 	 */
1747 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1748 
1749 	/* Store the usb_device pointer for later use */
1750 	ep->hcpriv = udev;
1751 
1752 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1753 			(unsigned int) ep->desc.bEndpointAddress,
1754 			udev->slot_id,
1755 			(unsigned int) new_drop_flags,
1756 			(unsigned int) new_add_flags);
1757 	return 0;
1758 }
1759 
1760 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1761 {
1762 	struct xhci_input_control_ctx *ctrl_ctx;
1763 	struct xhci_ep_ctx *ep_ctx;
1764 	struct xhci_slot_ctx *slot_ctx;
1765 	int i;
1766 
1767 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1768 	if (!ctrl_ctx) {
1769 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1770 				__func__);
1771 		return;
1772 	}
1773 
1774 	/* When a device's add flag and drop flag are zero, any subsequent
1775 	 * configure endpoint command will leave that endpoint's state
1776 	 * untouched.  Make sure we don't leave any old state in the input
1777 	 * endpoint contexts.
1778 	 */
1779 	ctrl_ctx->drop_flags = 0;
1780 	ctrl_ctx->add_flags = 0;
1781 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1782 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1783 	/* Endpoint 0 is always valid */
1784 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1785 	for (i = 1; i < 31; i++) {
1786 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1787 		ep_ctx->ep_info = 0;
1788 		ep_ctx->ep_info2 = 0;
1789 		ep_ctx->deq = 0;
1790 		ep_ctx->tx_info = 0;
1791 	}
1792 }
1793 
1794 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1795 		struct usb_device *udev, u32 *cmd_status)
1796 {
1797 	int ret;
1798 
1799 	switch (*cmd_status) {
1800 	case COMP_COMMAND_ABORTED:
1801 	case COMP_STOPPED:
1802 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1803 		ret = -ETIME;
1804 		break;
1805 	case COMP_RESOURCE_ERROR:
1806 		dev_warn(&udev->dev,
1807 			 "Not enough host controller resources for new device state.\n");
1808 		ret = -ENOMEM;
1809 		/* FIXME: can we allocate more resources for the HC? */
1810 		break;
1811 	case COMP_BANDWIDTH_ERROR:
1812 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1813 		dev_warn(&udev->dev,
1814 			 "Not enough bandwidth for new device state.\n");
1815 		ret = -ENOSPC;
1816 		/* FIXME: can we go back to the old state? */
1817 		break;
1818 	case COMP_TRB_ERROR:
1819 		/* the HCD set up something wrong */
1820 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1821 				"add flag = 1, "
1822 				"and endpoint is not disabled.\n");
1823 		ret = -EINVAL;
1824 		break;
1825 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1826 		dev_warn(&udev->dev,
1827 			 "ERROR: Incompatible device for endpoint configure command.\n");
1828 		ret = -ENODEV;
1829 		break;
1830 	case COMP_SUCCESS:
1831 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1832 				"Successful Endpoint Configure command");
1833 		ret = 0;
1834 		break;
1835 	default:
1836 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1837 				*cmd_status);
1838 		ret = -EINVAL;
1839 		break;
1840 	}
1841 	return ret;
1842 }
1843 
1844 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1845 		struct usb_device *udev, u32 *cmd_status)
1846 {
1847 	int ret;
1848 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1849 
1850 	switch (*cmd_status) {
1851 	case COMP_COMMAND_ABORTED:
1852 	case COMP_STOPPED:
1853 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1854 		ret = -ETIME;
1855 		break;
1856 	case COMP_PARAMETER_ERROR:
1857 		dev_warn(&udev->dev,
1858 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1859 		ret = -EINVAL;
1860 		break;
1861 	case COMP_SLOT_NOT_ENABLED_ERROR:
1862 		dev_warn(&udev->dev,
1863 			"WARN: slot not enabled for evaluate context command.\n");
1864 		ret = -EINVAL;
1865 		break;
1866 	case COMP_CONTEXT_STATE_ERROR:
1867 		dev_warn(&udev->dev,
1868 			"WARN: invalid context state for evaluate context command.\n");
1869 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1870 		ret = -EINVAL;
1871 		break;
1872 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1873 		dev_warn(&udev->dev,
1874 			"ERROR: Incompatible device for evaluate context command.\n");
1875 		ret = -ENODEV;
1876 		break;
1877 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1878 		/* Max Exit Latency too large error */
1879 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1880 		ret = -EINVAL;
1881 		break;
1882 	case COMP_SUCCESS:
1883 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1884 				"Successful evaluate context command");
1885 		ret = 0;
1886 		break;
1887 	default:
1888 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1889 			*cmd_status);
1890 		ret = -EINVAL;
1891 		break;
1892 	}
1893 	return ret;
1894 }
1895 
1896 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1897 		struct xhci_input_control_ctx *ctrl_ctx)
1898 {
1899 	u32 valid_add_flags;
1900 	u32 valid_drop_flags;
1901 
1902 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1903 	 * (bit 1).  The default control endpoint is added during the Address
1904 	 * Device command and is never removed until the slot is disabled.
1905 	 */
1906 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1907 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1908 
1909 	/* Use hweight32 to count the number of ones in the add flags, or
1910 	 * number of endpoints added.  Don't count endpoints that are changed
1911 	 * (both added and dropped).
1912 	 */
1913 	return hweight32(valid_add_flags) -
1914 		hweight32(valid_add_flags & valid_drop_flags);
1915 }
1916 
1917 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1918 		struct xhci_input_control_ctx *ctrl_ctx)
1919 {
1920 	u32 valid_add_flags;
1921 	u32 valid_drop_flags;
1922 
1923 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1924 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1925 
1926 	return hweight32(valid_drop_flags) -
1927 		hweight32(valid_add_flags & valid_drop_flags);
1928 }
1929 
1930 /*
1931  * We need to reserve the new number of endpoints before the configure endpoint
1932  * command completes.  We can't subtract the dropped endpoints from the number
1933  * of active endpoints until the command completes because we can oversubscribe
1934  * the host in this case:
1935  *
1936  *  - the first configure endpoint command drops more endpoints than it adds
1937  *  - a second configure endpoint command that adds more endpoints is queued
1938  *  - the first configure endpoint command fails, so the config is unchanged
1939  *  - the second command may succeed, even though there isn't enough resources
1940  *
1941  * Must be called with xhci->lock held.
1942  */
1943 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1944 		struct xhci_input_control_ctx *ctrl_ctx)
1945 {
1946 	u32 added_eps;
1947 
1948 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1949 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1950 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1951 				"Not enough ep ctxs: "
1952 				"%u active, need to add %u, limit is %u.",
1953 				xhci->num_active_eps, added_eps,
1954 				xhci->limit_active_eps);
1955 		return -ENOMEM;
1956 	}
1957 	xhci->num_active_eps += added_eps;
1958 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1959 			"Adding %u ep ctxs, %u now active.", added_eps,
1960 			xhci->num_active_eps);
1961 	return 0;
1962 }
1963 
1964 /*
1965  * The configure endpoint was failed by the xHC for some other reason, so we
1966  * need to revert the resources that failed configuration would have used.
1967  *
1968  * Must be called with xhci->lock held.
1969  */
1970 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1971 		struct xhci_input_control_ctx *ctrl_ctx)
1972 {
1973 	u32 num_failed_eps;
1974 
1975 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1976 	xhci->num_active_eps -= num_failed_eps;
1977 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1978 			"Removing %u failed ep ctxs, %u now active.",
1979 			num_failed_eps,
1980 			xhci->num_active_eps);
1981 }
1982 
1983 /*
1984  * Now that the command has completed, clean up the active endpoint count by
1985  * subtracting out the endpoints that were dropped (but not changed).
1986  *
1987  * Must be called with xhci->lock held.
1988  */
1989 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1990 		struct xhci_input_control_ctx *ctrl_ctx)
1991 {
1992 	u32 num_dropped_eps;
1993 
1994 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1995 	xhci->num_active_eps -= num_dropped_eps;
1996 	if (num_dropped_eps)
1997 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1998 				"Removing %u dropped ep ctxs, %u now active.",
1999 				num_dropped_eps,
2000 				xhci->num_active_eps);
2001 }
2002 
2003 static unsigned int xhci_get_block_size(struct usb_device *udev)
2004 {
2005 	switch (udev->speed) {
2006 	case USB_SPEED_LOW:
2007 	case USB_SPEED_FULL:
2008 		return FS_BLOCK;
2009 	case USB_SPEED_HIGH:
2010 		return HS_BLOCK;
2011 	case USB_SPEED_SUPER:
2012 	case USB_SPEED_SUPER_PLUS:
2013 		return SS_BLOCK;
2014 	case USB_SPEED_UNKNOWN:
2015 	case USB_SPEED_WIRELESS:
2016 	default:
2017 		/* Should never happen */
2018 		return 1;
2019 	}
2020 }
2021 
2022 static unsigned int
2023 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2024 {
2025 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2026 		return LS_OVERHEAD;
2027 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2028 		return FS_OVERHEAD;
2029 	return HS_OVERHEAD;
2030 }
2031 
2032 /* If we are changing a LS/FS device under a HS hub,
2033  * make sure (if we are activating a new TT) that the HS bus has enough
2034  * bandwidth for this new TT.
2035  */
2036 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2037 		struct xhci_virt_device *virt_dev,
2038 		int old_active_eps)
2039 {
2040 	struct xhci_interval_bw_table *bw_table;
2041 	struct xhci_tt_bw_info *tt_info;
2042 
2043 	/* Find the bandwidth table for the root port this TT is attached to. */
2044 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2045 	tt_info = virt_dev->tt_info;
2046 	/* If this TT already had active endpoints, the bandwidth for this TT
2047 	 * has already been added.  Removing all periodic endpoints (and thus
2048 	 * making the TT enactive) will only decrease the bandwidth used.
2049 	 */
2050 	if (old_active_eps)
2051 		return 0;
2052 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2053 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2054 			return -ENOMEM;
2055 		return 0;
2056 	}
2057 	/* Not sure why we would have no new active endpoints...
2058 	 *
2059 	 * Maybe because of an Evaluate Context change for a hub update or a
2060 	 * control endpoint 0 max packet size change?
2061 	 * FIXME: skip the bandwidth calculation in that case.
2062 	 */
2063 	return 0;
2064 }
2065 
2066 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2067 		struct xhci_virt_device *virt_dev)
2068 {
2069 	unsigned int bw_reserved;
2070 
2071 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2072 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2073 		return -ENOMEM;
2074 
2075 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2076 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2077 		return -ENOMEM;
2078 
2079 	return 0;
2080 }
2081 
2082 /*
2083  * This algorithm is a very conservative estimate of the worst-case scheduling
2084  * scenario for any one interval.  The hardware dynamically schedules the
2085  * packets, so we can't tell which microframe could be the limiting factor in
2086  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2087  *
2088  * Obviously, we can't solve an NP complete problem to find the minimum worst
2089  * case scenario.  Instead, we come up with an estimate that is no less than
2090  * the worst case bandwidth used for any one microframe, but may be an
2091  * over-estimate.
2092  *
2093  * We walk the requirements for each endpoint by interval, starting with the
2094  * smallest interval, and place packets in the schedule where there is only one
2095  * possible way to schedule packets for that interval.  In order to simplify
2096  * this algorithm, we record the largest max packet size for each interval, and
2097  * assume all packets will be that size.
2098  *
2099  * For interval 0, we obviously must schedule all packets for each interval.
2100  * The bandwidth for interval 0 is just the amount of data to be transmitted
2101  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2102  * the number of packets).
2103  *
2104  * For interval 1, we have two possible microframes to schedule those packets
2105  * in.  For this algorithm, if we can schedule the same number of packets for
2106  * each possible scheduling opportunity (each microframe), we will do so.  The
2107  * remaining number of packets will be saved to be transmitted in the gaps in
2108  * the next interval's scheduling sequence.
2109  *
2110  * As we move those remaining packets to be scheduled with interval 2 packets,
2111  * we have to double the number of remaining packets to transmit.  This is
2112  * because the intervals are actually powers of 2, and we would be transmitting
2113  * the previous interval's packets twice in this interval.  We also have to be
2114  * sure that when we look at the largest max packet size for this interval, we
2115  * also look at the largest max packet size for the remaining packets and take
2116  * the greater of the two.
2117  *
2118  * The algorithm continues to evenly distribute packets in each scheduling
2119  * opportunity, and push the remaining packets out, until we get to the last
2120  * interval.  Then those packets and their associated overhead are just added
2121  * to the bandwidth used.
2122  */
2123 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2124 		struct xhci_virt_device *virt_dev,
2125 		int old_active_eps)
2126 {
2127 	unsigned int bw_reserved;
2128 	unsigned int max_bandwidth;
2129 	unsigned int bw_used;
2130 	unsigned int block_size;
2131 	struct xhci_interval_bw_table *bw_table;
2132 	unsigned int packet_size = 0;
2133 	unsigned int overhead = 0;
2134 	unsigned int packets_transmitted = 0;
2135 	unsigned int packets_remaining = 0;
2136 	unsigned int i;
2137 
2138 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2139 		return xhci_check_ss_bw(xhci, virt_dev);
2140 
2141 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2142 		max_bandwidth = HS_BW_LIMIT;
2143 		/* Convert percent of bus BW reserved to blocks reserved */
2144 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2145 	} else {
2146 		max_bandwidth = FS_BW_LIMIT;
2147 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2148 	}
2149 
2150 	bw_table = virt_dev->bw_table;
2151 	/* We need to translate the max packet size and max ESIT payloads into
2152 	 * the units the hardware uses.
2153 	 */
2154 	block_size = xhci_get_block_size(virt_dev->udev);
2155 
2156 	/* If we are manipulating a LS/FS device under a HS hub, double check
2157 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2158 	 */
2159 	if (virt_dev->tt_info) {
2160 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2161 				"Recalculating BW for rootport %u",
2162 				virt_dev->real_port);
2163 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2164 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2165 					"newly activated TT.\n");
2166 			return -ENOMEM;
2167 		}
2168 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2169 				"Recalculating BW for TT slot %u port %u",
2170 				virt_dev->tt_info->slot_id,
2171 				virt_dev->tt_info->ttport);
2172 	} else {
2173 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2174 				"Recalculating BW for rootport %u",
2175 				virt_dev->real_port);
2176 	}
2177 
2178 	/* Add in how much bandwidth will be used for interval zero, or the
2179 	 * rounded max ESIT payload + number of packets * largest overhead.
2180 	 */
2181 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2182 		bw_table->interval_bw[0].num_packets *
2183 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2184 
2185 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2186 		unsigned int bw_added;
2187 		unsigned int largest_mps;
2188 		unsigned int interval_overhead;
2189 
2190 		/*
2191 		 * How many packets could we transmit in this interval?
2192 		 * If packets didn't fit in the previous interval, we will need
2193 		 * to transmit that many packets twice within this interval.
2194 		 */
2195 		packets_remaining = 2 * packets_remaining +
2196 			bw_table->interval_bw[i].num_packets;
2197 
2198 		/* Find the largest max packet size of this or the previous
2199 		 * interval.
2200 		 */
2201 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2202 			largest_mps = 0;
2203 		else {
2204 			struct xhci_virt_ep *virt_ep;
2205 			struct list_head *ep_entry;
2206 
2207 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2208 			virt_ep = list_entry(ep_entry,
2209 					struct xhci_virt_ep, bw_endpoint_list);
2210 			/* Convert to blocks, rounding up */
2211 			largest_mps = DIV_ROUND_UP(
2212 					virt_ep->bw_info.max_packet_size,
2213 					block_size);
2214 		}
2215 		if (largest_mps > packet_size)
2216 			packet_size = largest_mps;
2217 
2218 		/* Use the larger overhead of this or the previous interval. */
2219 		interval_overhead = xhci_get_largest_overhead(
2220 				&bw_table->interval_bw[i]);
2221 		if (interval_overhead > overhead)
2222 			overhead = interval_overhead;
2223 
2224 		/* How many packets can we evenly distribute across
2225 		 * (1 << (i + 1)) possible scheduling opportunities?
2226 		 */
2227 		packets_transmitted = packets_remaining >> (i + 1);
2228 
2229 		/* Add in the bandwidth used for those scheduled packets */
2230 		bw_added = packets_transmitted * (overhead + packet_size);
2231 
2232 		/* How many packets do we have remaining to transmit? */
2233 		packets_remaining = packets_remaining % (1 << (i + 1));
2234 
2235 		/* What largest max packet size should those packets have? */
2236 		/* If we've transmitted all packets, don't carry over the
2237 		 * largest packet size.
2238 		 */
2239 		if (packets_remaining == 0) {
2240 			packet_size = 0;
2241 			overhead = 0;
2242 		} else if (packets_transmitted > 0) {
2243 			/* Otherwise if we do have remaining packets, and we've
2244 			 * scheduled some packets in this interval, take the
2245 			 * largest max packet size from endpoints with this
2246 			 * interval.
2247 			 */
2248 			packet_size = largest_mps;
2249 			overhead = interval_overhead;
2250 		}
2251 		/* Otherwise carry over packet_size and overhead from the last
2252 		 * time we had a remainder.
2253 		 */
2254 		bw_used += bw_added;
2255 		if (bw_used > max_bandwidth) {
2256 			xhci_warn(xhci, "Not enough bandwidth. "
2257 					"Proposed: %u, Max: %u\n",
2258 				bw_used, max_bandwidth);
2259 			return -ENOMEM;
2260 		}
2261 	}
2262 	/*
2263 	 * Ok, we know we have some packets left over after even-handedly
2264 	 * scheduling interval 15.  We don't know which microframes they will
2265 	 * fit into, so we over-schedule and say they will be scheduled every
2266 	 * microframe.
2267 	 */
2268 	if (packets_remaining > 0)
2269 		bw_used += overhead + packet_size;
2270 
2271 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2272 		unsigned int port_index = virt_dev->real_port - 1;
2273 
2274 		/* OK, we're manipulating a HS device attached to a
2275 		 * root port bandwidth domain.  Include the number of active TTs
2276 		 * in the bandwidth used.
2277 		 */
2278 		bw_used += TT_HS_OVERHEAD *
2279 			xhci->rh_bw[port_index].num_active_tts;
2280 	}
2281 
2282 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2283 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2284 		"Available: %u " "percent",
2285 		bw_used, max_bandwidth, bw_reserved,
2286 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2287 		max_bandwidth);
2288 
2289 	bw_used += bw_reserved;
2290 	if (bw_used > max_bandwidth) {
2291 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2292 				bw_used, max_bandwidth);
2293 		return -ENOMEM;
2294 	}
2295 
2296 	bw_table->bw_used = bw_used;
2297 	return 0;
2298 }
2299 
2300 static bool xhci_is_async_ep(unsigned int ep_type)
2301 {
2302 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2303 					ep_type != ISOC_IN_EP &&
2304 					ep_type != INT_IN_EP);
2305 }
2306 
2307 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2308 {
2309 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2310 }
2311 
2312 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2313 {
2314 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2315 
2316 	if (ep_bw->ep_interval == 0)
2317 		return SS_OVERHEAD_BURST +
2318 			(ep_bw->mult * ep_bw->num_packets *
2319 					(SS_OVERHEAD + mps));
2320 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2321 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2322 				1 << ep_bw->ep_interval);
2323 
2324 }
2325 
2326 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2327 		struct xhci_bw_info *ep_bw,
2328 		struct xhci_interval_bw_table *bw_table,
2329 		struct usb_device *udev,
2330 		struct xhci_virt_ep *virt_ep,
2331 		struct xhci_tt_bw_info *tt_info)
2332 {
2333 	struct xhci_interval_bw	*interval_bw;
2334 	int normalized_interval;
2335 
2336 	if (xhci_is_async_ep(ep_bw->type))
2337 		return;
2338 
2339 	if (udev->speed >= USB_SPEED_SUPER) {
2340 		if (xhci_is_sync_in_ep(ep_bw->type))
2341 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2342 				xhci_get_ss_bw_consumed(ep_bw);
2343 		else
2344 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2345 				xhci_get_ss_bw_consumed(ep_bw);
2346 		return;
2347 	}
2348 
2349 	/* SuperSpeed endpoints never get added to intervals in the table, so
2350 	 * this check is only valid for HS/FS/LS devices.
2351 	 */
2352 	if (list_empty(&virt_ep->bw_endpoint_list))
2353 		return;
2354 	/* For LS/FS devices, we need to translate the interval expressed in
2355 	 * microframes to frames.
2356 	 */
2357 	if (udev->speed == USB_SPEED_HIGH)
2358 		normalized_interval = ep_bw->ep_interval;
2359 	else
2360 		normalized_interval = ep_bw->ep_interval - 3;
2361 
2362 	if (normalized_interval == 0)
2363 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2364 	interval_bw = &bw_table->interval_bw[normalized_interval];
2365 	interval_bw->num_packets -= ep_bw->num_packets;
2366 	switch (udev->speed) {
2367 	case USB_SPEED_LOW:
2368 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2369 		break;
2370 	case USB_SPEED_FULL:
2371 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2372 		break;
2373 	case USB_SPEED_HIGH:
2374 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2375 		break;
2376 	case USB_SPEED_SUPER:
2377 	case USB_SPEED_SUPER_PLUS:
2378 	case USB_SPEED_UNKNOWN:
2379 	case USB_SPEED_WIRELESS:
2380 		/* Should never happen because only LS/FS/HS endpoints will get
2381 		 * added to the endpoint list.
2382 		 */
2383 		return;
2384 	}
2385 	if (tt_info)
2386 		tt_info->active_eps -= 1;
2387 	list_del_init(&virt_ep->bw_endpoint_list);
2388 }
2389 
2390 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2391 		struct xhci_bw_info *ep_bw,
2392 		struct xhci_interval_bw_table *bw_table,
2393 		struct usb_device *udev,
2394 		struct xhci_virt_ep *virt_ep,
2395 		struct xhci_tt_bw_info *tt_info)
2396 {
2397 	struct xhci_interval_bw	*interval_bw;
2398 	struct xhci_virt_ep *smaller_ep;
2399 	int normalized_interval;
2400 
2401 	if (xhci_is_async_ep(ep_bw->type))
2402 		return;
2403 
2404 	if (udev->speed == USB_SPEED_SUPER) {
2405 		if (xhci_is_sync_in_ep(ep_bw->type))
2406 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2407 				xhci_get_ss_bw_consumed(ep_bw);
2408 		else
2409 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2410 				xhci_get_ss_bw_consumed(ep_bw);
2411 		return;
2412 	}
2413 
2414 	/* For LS/FS devices, we need to translate the interval expressed in
2415 	 * microframes to frames.
2416 	 */
2417 	if (udev->speed == USB_SPEED_HIGH)
2418 		normalized_interval = ep_bw->ep_interval;
2419 	else
2420 		normalized_interval = ep_bw->ep_interval - 3;
2421 
2422 	if (normalized_interval == 0)
2423 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2424 	interval_bw = &bw_table->interval_bw[normalized_interval];
2425 	interval_bw->num_packets += ep_bw->num_packets;
2426 	switch (udev->speed) {
2427 	case USB_SPEED_LOW:
2428 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2429 		break;
2430 	case USB_SPEED_FULL:
2431 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2432 		break;
2433 	case USB_SPEED_HIGH:
2434 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2435 		break;
2436 	case USB_SPEED_SUPER:
2437 	case USB_SPEED_SUPER_PLUS:
2438 	case USB_SPEED_UNKNOWN:
2439 	case USB_SPEED_WIRELESS:
2440 		/* Should never happen because only LS/FS/HS endpoints will get
2441 		 * added to the endpoint list.
2442 		 */
2443 		return;
2444 	}
2445 
2446 	if (tt_info)
2447 		tt_info->active_eps += 1;
2448 	/* Insert the endpoint into the list, largest max packet size first. */
2449 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2450 			bw_endpoint_list) {
2451 		if (ep_bw->max_packet_size >=
2452 				smaller_ep->bw_info.max_packet_size) {
2453 			/* Add the new ep before the smaller endpoint */
2454 			list_add_tail(&virt_ep->bw_endpoint_list,
2455 					&smaller_ep->bw_endpoint_list);
2456 			return;
2457 		}
2458 	}
2459 	/* Add the new endpoint at the end of the list. */
2460 	list_add_tail(&virt_ep->bw_endpoint_list,
2461 			&interval_bw->endpoints);
2462 }
2463 
2464 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2465 		struct xhci_virt_device *virt_dev,
2466 		int old_active_eps)
2467 {
2468 	struct xhci_root_port_bw_info *rh_bw_info;
2469 	if (!virt_dev->tt_info)
2470 		return;
2471 
2472 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2473 	if (old_active_eps == 0 &&
2474 				virt_dev->tt_info->active_eps != 0) {
2475 		rh_bw_info->num_active_tts += 1;
2476 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2477 	} else if (old_active_eps != 0 &&
2478 				virt_dev->tt_info->active_eps == 0) {
2479 		rh_bw_info->num_active_tts -= 1;
2480 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2481 	}
2482 }
2483 
2484 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2485 		struct xhci_virt_device *virt_dev,
2486 		struct xhci_container_ctx *in_ctx)
2487 {
2488 	struct xhci_bw_info ep_bw_info[31];
2489 	int i;
2490 	struct xhci_input_control_ctx *ctrl_ctx;
2491 	int old_active_eps = 0;
2492 
2493 	if (virt_dev->tt_info)
2494 		old_active_eps = virt_dev->tt_info->active_eps;
2495 
2496 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2497 	if (!ctrl_ctx) {
2498 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2499 				__func__);
2500 		return -ENOMEM;
2501 	}
2502 
2503 	for (i = 0; i < 31; i++) {
2504 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2505 			continue;
2506 
2507 		/* Make a copy of the BW info in case we need to revert this */
2508 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2509 				sizeof(ep_bw_info[i]));
2510 		/* Drop the endpoint from the interval table if the endpoint is
2511 		 * being dropped or changed.
2512 		 */
2513 		if (EP_IS_DROPPED(ctrl_ctx, i))
2514 			xhci_drop_ep_from_interval_table(xhci,
2515 					&virt_dev->eps[i].bw_info,
2516 					virt_dev->bw_table,
2517 					virt_dev->udev,
2518 					&virt_dev->eps[i],
2519 					virt_dev->tt_info);
2520 	}
2521 	/* Overwrite the information stored in the endpoints' bw_info */
2522 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2523 	for (i = 0; i < 31; i++) {
2524 		/* Add any changed or added endpoints to the interval table */
2525 		if (EP_IS_ADDED(ctrl_ctx, i))
2526 			xhci_add_ep_to_interval_table(xhci,
2527 					&virt_dev->eps[i].bw_info,
2528 					virt_dev->bw_table,
2529 					virt_dev->udev,
2530 					&virt_dev->eps[i],
2531 					virt_dev->tt_info);
2532 	}
2533 
2534 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2535 		/* Ok, this fits in the bandwidth we have.
2536 		 * Update the number of active TTs.
2537 		 */
2538 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2539 		return 0;
2540 	}
2541 
2542 	/* We don't have enough bandwidth for this, revert the stored info. */
2543 	for (i = 0; i < 31; i++) {
2544 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2545 			continue;
2546 
2547 		/* Drop the new copies of any added or changed endpoints from
2548 		 * the interval table.
2549 		 */
2550 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2551 			xhci_drop_ep_from_interval_table(xhci,
2552 					&virt_dev->eps[i].bw_info,
2553 					virt_dev->bw_table,
2554 					virt_dev->udev,
2555 					&virt_dev->eps[i],
2556 					virt_dev->tt_info);
2557 		}
2558 		/* Revert the endpoint back to its old information */
2559 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2560 				sizeof(ep_bw_info[i]));
2561 		/* Add any changed or dropped endpoints back into the table */
2562 		if (EP_IS_DROPPED(ctrl_ctx, i))
2563 			xhci_add_ep_to_interval_table(xhci,
2564 					&virt_dev->eps[i].bw_info,
2565 					virt_dev->bw_table,
2566 					virt_dev->udev,
2567 					&virt_dev->eps[i],
2568 					virt_dev->tt_info);
2569 	}
2570 	return -ENOMEM;
2571 }
2572 
2573 
2574 /* Issue a configure endpoint command or evaluate context command
2575  * and wait for it to finish.
2576  */
2577 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2578 		struct usb_device *udev,
2579 		struct xhci_command *command,
2580 		bool ctx_change, bool must_succeed)
2581 {
2582 	int ret;
2583 	unsigned long flags;
2584 	struct xhci_input_control_ctx *ctrl_ctx;
2585 	struct xhci_virt_device *virt_dev;
2586 
2587 	if (!command)
2588 		return -EINVAL;
2589 
2590 	spin_lock_irqsave(&xhci->lock, flags);
2591 	virt_dev = xhci->devs[udev->slot_id];
2592 
2593 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2594 	if (!ctrl_ctx) {
2595 		spin_unlock_irqrestore(&xhci->lock, flags);
2596 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2597 				__func__);
2598 		return -ENOMEM;
2599 	}
2600 
2601 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2602 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2603 		spin_unlock_irqrestore(&xhci->lock, flags);
2604 		xhci_warn(xhci, "Not enough host resources, "
2605 				"active endpoint contexts = %u\n",
2606 				xhci->num_active_eps);
2607 		return -ENOMEM;
2608 	}
2609 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2610 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2611 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612 			xhci_free_host_resources(xhci, ctrl_ctx);
2613 		spin_unlock_irqrestore(&xhci->lock, flags);
2614 		xhci_warn(xhci, "Not enough bandwidth\n");
2615 		return -ENOMEM;
2616 	}
2617 
2618 	if (!ctx_change)
2619 		ret = xhci_queue_configure_endpoint(xhci, command,
2620 				command->in_ctx->dma,
2621 				udev->slot_id, must_succeed);
2622 	else
2623 		ret = xhci_queue_evaluate_context(xhci, command,
2624 				command->in_ctx->dma,
2625 				udev->slot_id, must_succeed);
2626 	if (ret < 0) {
2627 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2628 			xhci_free_host_resources(xhci, ctrl_ctx);
2629 		spin_unlock_irqrestore(&xhci->lock, flags);
2630 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2631 				"FIXME allocate a new ring segment");
2632 		return -ENOMEM;
2633 	}
2634 	xhci_ring_cmd_db(xhci);
2635 	spin_unlock_irqrestore(&xhci->lock, flags);
2636 
2637 	/* Wait for the configure endpoint command to complete */
2638 	wait_for_completion(command->completion);
2639 
2640 	if (!ctx_change)
2641 		ret = xhci_configure_endpoint_result(xhci, udev,
2642 						     &command->status);
2643 	else
2644 		ret = xhci_evaluate_context_result(xhci, udev,
2645 						   &command->status);
2646 
2647 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2648 		spin_lock_irqsave(&xhci->lock, flags);
2649 		/* If the command failed, remove the reserved resources.
2650 		 * Otherwise, clean up the estimate to include dropped eps.
2651 		 */
2652 		if (ret)
2653 			xhci_free_host_resources(xhci, ctrl_ctx);
2654 		else
2655 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2656 		spin_unlock_irqrestore(&xhci->lock, flags);
2657 	}
2658 	return ret;
2659 }
2660 
2661 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2662 	struct xhci_virt_device *vdev, int i)
2663 {
2664 	struct xhci_virt_ep *ep = &vdev->eps[i];
2665 
2666 	if (ep->ep_state & EP_HAS_STREAMS) {
2667 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2668 				xhci_get_endpoint_address(i));
2669 		xhci_free_stream_info(xhci, ep->stream_info);
2670 		ep->stream_info = NULL;
2671 		ep->ep_state &= ~EP_HAS_STREAMS;
2672 	}
2673 }
2674 
2675 /* Called after one or more calls to xhci_add_endpoint() or
2676  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2677  * to call xhci_reset_bandwidth().
2678  *
2679  * Since we are in the middle of changing either configuration or
2680  * installing a new alt setting, the USB core won't allow URBs to be
2681  * enqueued for any endpoint on the old config or interface.  Nothing
2682  * else should be touching the xhci->devs[slot_id] structure, so we
2683  * don't need to take the xhci->lock for manipulating that.
2684  */
2685 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2686 {
2687 	int i;
2688 	int ret = 0;
2689 	struct xhci_hcd *xhci;
2690 	struct xhci_virt_device	*virt_dev;
2691 	struct xhci_input_control_ctx *ctrl_ctx;
2692 	struct xhci_slot_ctx *slot_ctx;
2693 	struct xhci_command *command;
2694 
2695 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2696 	if (ret <= 0)
2697 		return ret;
2698 	xhci = hcd_to_xhci(hcd);
2699 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2700 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2701 		return -ENODEV;
2702 
2703 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2704 	virt_dev = xhci->devs[udev->slot_id];
2705 
2706 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2707 	if (!command)
2708 		return -ENOMEM;
2709 
2710 	command->in_ctx = virt_dev->in_ctx;
2711 
2712 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2713 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2714 	if (!ctrl_ctx) {
2715 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2716 				__func__);
2717 		ret = -ENOMEM;
2718 		goto command_cleanup;
2719 	}
2720 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2721 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2722 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2723 
2724 	/* Don't issue the command if there's no endpoints to update. */
2725 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2726 	    ctrl_ctx->drop_flags == 0) {
2727 		ret = 0;
2728 		goto command_cleanup;
2729 	}
2730 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2731 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2732 	for (i = 31; i >= 1; i--) {
2733 		__le32 le32 = cpu_to_le32(BIT(i));
2734 
2735 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2736 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2737 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2738 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2739 			break;
2740 		}
2741 	}
2742 	xhci_dbg(xhci, "New Input Control Context:\n");
2743 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2744 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2745 
2746 	ret = xhci_configure_endpoint(xhci, udev, command,
2747 			false, false);
2748 	if (ret)
2749 		/* Callee should call reset_bandwidth() */
2750 		goto command_cleanup;
2751 
2752 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2753 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2754 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2755 
2756 	/* Free any rings that were dropped, but not changed. */
2757 	for (i = 1; i < 31; i++) {
2758 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2759 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2760 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2761 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2762 		}
2763 	}
2764 	xhci_zero_in_ctx(xhci, virt_dev);
2765 	/*
2766 	 * Install any rings for completely new endpoints or changed endpoints,
2767 	 * and free or cache any old rings from changed endpoints.
2768 	 */
2769 	for (i = 1; i < 31; i++) {
2770 		if (!virt_dev->eps[i].new_ring)
2771 			continue;
2772 		/* Only cache or free the old ring if it exists.
2773 		 * It may not if this is the first add of an endpoint.
2774 		 */
2775 		if (virt_dev->eps[i].ring) {
2776 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2777 		}
2778 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2779 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2780 		virt_dev->eps[i].new_ring = NULL;
2781 	}
2782 command_cleanup:
2783 	kfree(command->completion);
2784 	kfree(command);
2785 
2786 	return ret;
2787 }
2788 
2789 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2790 {
2791 	struct xhci_hcd *xhci;
2792 	struct xhci_virt_device	*virt_dev;
2793 	int i, ret;
2794 
2795 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2796 	if (ret <= 0)
2797 		return;
2798 	xhci = hcd_to_xhci(hcd);
2799 
2800 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2801 	virt_dev = xhci->devs[udev->slot_id];
2802 	/* Free any rings allocated for added endpoints */
2803 	for (i = 0; i < 31; i++) {
2804 		if (virt_dev->eps[i].new_ring) {
2805 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2806 			virt_dev->eps[i].new_ring = NULL;
2807 		}
2808 	}
2809 	xhci_zero_in_ctx(xhci, virt_dev);
2810 }
2811 
2812 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2813 		struct xhci_container_ctx *in_ctx,
2814 		struct xhci_container_ctx *out_ctx,
2815 		struct xhci_input_control_ctx *ctrl_ctx,
2816 		u32 add_flags, u32 drop_flags)
2817 {
2818 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2819 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2820 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2821 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2822 
2823 	xhci_dbg(xhci, "Input Context:\n");
2824 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2825 }
2826 
2827 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2828 		unsigned int slot_id, unsigned int ep_index,
2829 		struct xhci_dequeue_state *deq_state)
2830 {
2831 	struct xhci_input_control_ctx *ctrl_ctx;
2832 	struct xhci_container_ctx *in_ctx;
2833 	struct xhci_ep_ctx *ep_ctx;
2834 	u32 added_ctxs;
2835 	dma_addr_t addr;
2836 
2837 	in_ctx = xhci->devs[slot_id]->in_ctx;
2838 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2839 	if (!ctrl_ctx) {
2840 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2841 				__func__);
2842 		return;
2843 	}
2844 
2845 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2846 			xhci->devs[slot_id]->out_ctx, ep_index);
2847 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2848 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2849 			deq_state->new_deq_ptr);
2850 	if (addr == 0) {
2851 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2852 				"reset ep command\n");
2853 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2854 				deq_state->new_deq_seg,
2855 				deq_state->new_deq_ptr);
2856 		return;
2857 	}
2858 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2859 
2860 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2861 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2862 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2863 			added_ctxs, added_ctxs);
2864 }
2865 
2866 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2867 			unsigned int ep_index, struct xhci_td *td)
2868 {
2869 	struct xhci_dequeue_state deq_state;
2870 	struct xhci_virt_ep *ep;
2871 	struct usb_device *udev = td->urb->dev;
2872 
2873 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2874 			"Cleaning up stalled endpoint ring");
2875 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2876 	/* We need to move the HW's dequeue pointer past this TD,
2877 	 * or it will attempt to resend it on the next doorbell ring.
2878 	 */
2879 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2880 			ep_index, ep->stopped_stream, td, &deq_state);
2881 
2882 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2883 		return;
2884 
2885 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2886 	 * issue a configure endpoint command later.
2887 	 */
2888 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2889 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2890 				"Queueing new dequeue state");
2891 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2892 				ep_index, ep->stopped_stream, &deq_state);
2893 	} else {
2894 		/* Better hope no one uses the input context between now and the
2895 		 * reset endpoint completion!
2896 		 * XXX: No idea how this hardware will react when stream rings
2897 		 * are enabled.
2898 		 */
2899 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2900 				"Setting up input context for "
2901 				"configure endpoint command");
2902 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2903 				ep_index, &deq_state);
2904 	}
2905 }
2906 
2907 /* Called when clearing halted device. The core should have sent the control
2908  * message to clear the device halt condition. The host side of the halt should
2909  * already be cleared with a reset endpoint command issued when the STALL tx
2910  * event was received.
2911  *
2912  * Context: in_interrupt
2913  */
2914 
2915 void xhci_endpoint_reset(struct usb_hcd *hcd,
2916 		struct usb_host_endpoint *ep)
2917 {
2918 	struct xhci_hcd *xhci;
2919 
2920 	xhci = hcd_to_xhci(hcd);
2921 
2922 	/*
2923 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2924 	 * The Reset Endpoint Command may only be issued to endpoints in the
2925 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2926 	 * Number of an endpoint that isn't in the Halted state, then software
2927 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2928 	 * for the target endpoint. that is in the Stopped state.
2929 	 */
2930 
2931 	/* For now just print debug to follow the situation */
2932 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2933 		 ep->desc.bEndpointAddress);
2934 }
2935 
2936 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2937 		struct usb_device *udev, struct usb_host_endpoint *ep,
2938 		unsigned int slot_id)
2939 {
2940 	int ret;
2941 	unsigned int ep_index;
2942 	unsigned int ep_state;
2943 
2944 	if (!ep)
2945 		return -EINVAL;
2946 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2947 	if (ret <= 0)
2948 		return -EINVAL;
2949 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2950 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2951 				" descriptor for ep 0x%x does not support streams\n",
2952 				ep->desc.bEndpointAddress);
2953 		return -EINVAL;
2954 	}
2955 
2956 	ep_index = xhci_get_endpoint_index(&ep->desc);
2957 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2958 	if (ep_state & EP_HAS_STREAMS ||
2959 			ep_state & EP_GETTING_STREAMS) {
2960 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2961 				"already has streams set up.\n",
2962 				ep->desc.bEndpointAddress);
2963 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2964 				"dynamic stream context array reallocation.\n");
2965 		return -EINVAL;
2966 	}
2967 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2968 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2969 				"endpoint 0x%x; URBs are pending.\n",
2970 				ep->desc.bEndpointAddress);
2971 		return -EINVAL;
2972 	}
2973 	return 0;
2974 }
2975 
2976 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2977 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2978 {
2979 	unsigned int max_streams;
2980 
2981 	/* The stream context array size must be a power of two */
2982 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2983 	/*
2984 	 * Find out how many primary stream array entries the host controller
2985 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2986 	 * level page entries), but that's an optional feature for xHCI host
2987 	 * controllers. xHCs must support at least 4 stream IDs.
2988 	 */
2989 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2990 	if (*num_stream_ctxs > max_streams) {
2991 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2992 				max_streams);
2993 		*num_stream_ctxs = max_streams;
2994 		*num_streams = max_streams;
2995 	}
2996 }
2997 
2998 /* Returns an error code if one of the endpoint already has streams.
2999  * This does not change any data structures, it only checks and gathers
3000  * information.
3001  */
3002 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3003 		struct usb_device *udev,
3004 		struct usb_host_endpoint **eps, unsigned int num_eps,
3005 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3006 {
3007 	unsigned int max_streams;
3008 	unsigned int endpoint_flag;
3009 	int i;
3010 	int ret;
3011 
3012 	for (i = 0; i < num_eps; i++) {
3013 		ret = xhci_check_streams_endpoint(xhci, udev,
3014 				eps[i], udev->slot_id);
3015 		if (ret < 0)
3016 			return ret;
3017 
3018 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3019 		if (max_streams < (*num_streams - 1)) {
3020 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3021 					eps[i]->desc.bEndpointAddress,
3022 					max_streams);
3023 			*num_streams = max_streams+1;
3024 		}
3025 
3026 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3027 		if (*changed_ep_bitmask & endpoint_flag)
3028 			return -EINVAL;
3029 		*changed_ep_bitmask |= endpoint_flag;
3030 	}
3031 	return 0;
3032 }
3033 
3034 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3035 		struct usb_device *udev,
3036 		struct usb_host_endpoint **eps, unsigned int num_eps)
3037 {
3038 	u32 changed_ep_bitmask = 0;
3039 	unsigned int slot_id;
3040 	unsigned int ep_index;
3041 	unsigned int ep_state;
3042 	int i;
3043 
3044 	slot_id = udev->slot_id;
3045 	if (!xhci->devs[slot_id])
3046 		return 0;
3047 
3048 	for (i = 0; i < num_eps; i++) {
3049 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3050 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3051 		/* Are streams already being freed for the endpoint? */
3052 		if (ep_state & EP_GETTING_NO_STREAMS) {
3053 			xhci_warn(xhci, "WARN Can't disable streams for "
3054 					"endpoint 0x%x, "
3055 					"streams are being disabled already\n",
3056 					eps[i]->desc.bEndpointAddress);
3057 			return 0;
3058 		}
3059 		/* Are there actually any streams to free? */
3060 		if (!(ep_state & EP_HAS_STREAMS) &&
3061 				!(ep_state & EP_GETTING_STREAMS)) {
3062 			xhci_warn(xhci, "WARN Can't disable streams for "
3063 					"endpoint 0x%x, "
3064 					"streams are already disabled!\n",
3065 					eps[i]->desc.bEndpointAddress);
3066 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3067 					"with non-streams endpoint\n");
3068 			return 0;
3069 		}
3070 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3071 	}
3072 	return changed_ep_bitmask;
3073 }
3074 
3075 /*
3076  * The USB device drivers use this function (through the HCD interface in USB
3077  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3078  * coordinate mass storage command queueing across multiple endpoints (basically
3079  * a stream ID == a task ID).
3080  *
3081  * Setting up streams involves allocating the same size stream context array
3082  * for each endpoint and issuing a configure endpoint command for all endpoints.
3083  *
3084  * Don't allow the call to succeed if one endpoint only supports one stream
3085  * (which means it doesn't support streams at all).
3086  *
3087  * Drivers may get less stream IDs than they asked for, if the host controller
3088  * hardware or endpoints claim they can't support the number of requested
3089  * stream IDs.
3090  */
3091 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3092 		struct usb_host_endpoint **eps, unsigned int num_eps,
3093 		unsigned int num_streams, gfp_t mem_flags)
3094 {
3095 	int i, ret;
3096 	struct xhci_hcd *xhci;
3097 	struct xhci_virt_device *vdev;
3098 	struct xhci_command *config_cmd;
3099 	struct xhci_input_control_ctx *ctrl_ctx;
3100 	unsigned int ep_index;
3101 	unsigned int num_stream_ctxs;
3102 	unsigned int max_packet;
3103 	unsigned long flags;
3104 	u32 changed_ep_bitmask = 0;
3105 
3106 	if (!eps)
3107 		return -EINVAL;
3108 
3109 	/* Add one to the number of streams requested to account for
3110 	 * stream 0 that is reserved for xHCI usage.
3111 	 */
3112 	num_streams += 1;
3113 	xhci = hcd_to_xhci(hcd);
3114 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3115 			num_streams);
3116 
3117 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3118 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3119 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3120 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3121 		return -ENOSYS;
3122 	}
3123 
3124 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3125 	if (!config_cmd) {
3126 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3127 		return -ENOMEM;
3128 	}
3129 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3130 	if (!ctrl_ctx) {
3131 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3132 				__func__);
3133 		xhci_free_command(xhci, config_cmd);
3134 		return -ENOMEM;
3135 	}
3136 
3137 	/* Check to make sure all endpoints are not already configured for
3138 	 * streams.  While we're at it, find the maximum number of streams that
3139 	 * all the endpoints will support and check for duplicate endpoints.
3140 	 */
3141 	spin_lock_irqsave(&xhci->lock, flags);
3142 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3143 			num_eps, &num_streams, &changed_ep_bitmask);
3144 	if (ret < 0) {
3145 		xhci_free_command(xhci, config_cmd);
3146 		spin_unlock_irqrestore(&xhci->lock, flags);
3147 		return ret;
3148 	}
3149 	if (num_streams <= 1) {
3150 		xhci_warn(xhci, "WARN: endpoints can't handle "
3151 				"more than one stream.\n");
3152 		xhci_free_command(xhci, config_cmd);
3153 		spin_unlock_irqrestore(&xhci->lock, flags);
3154 		return -EINVAL;
3155 	}
3156 	vdev = xhci->devs[udev->slot_id];
3157 	/* Mark each endpoint as being in transition, so
3158 	 * xhci_urb_enqueue() will reject all URBs.
3159 	 */
3160 	for (i = 0; i < num_eps; i++) {
3161 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3162 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3163 	}
3164 	spin_unlock_irqrestore(&xhci->lock, flags);
3165 
3166 	/* Setup internal data structures and allocate HW data structures for
3167 	 * streams (but don't install the HW structures in the input context
3168 	 * until we're sure all memory allocation succeeded).
3169 	 */
3170 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3171 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3172 			num_stream_ctxs, num_streams);
3173 
3174 	for (i = 0; i < num_eps; i++) {
3175 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3176 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3177 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3178 				num_stream_ctxs,
3179 				num_streams,
3180 				max_packet, mem_flags);
3181 		if (!vdev->eps[ep_index].stream_info)
3182 			goto cleanup;
3183 		/* Set maxPstreams in endpoint context and update deq ptr to
3184 		 * point to stream context array. FIXME
3185 		 */
3186 	}
3187 
3188 	/* Set up the input context for a configure endpoint command. */
3189 	for (i = 0; i < num_eps; i++) {
3190 		struct xhci_ep_ctx *ep_ctx;
3191 
3192 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3193 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3194 
3195 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3196 				vdev->out_ctx, ep_index);
3197 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3198 				vdev->eps[ep_index].stream_info);
3199 	}
3200 	/* Tell the HW to drop its old copy of the endpoint context info
3201 	 * and add the updated copy from the input context.
3202 	 */
3203 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3204 			vdev->out_ctx, ctrl_ctx,
3205 			changed_ep_bitmask, changed_ep_bitmask);
3206 
3207 	/* Issue and wait for the configure endpoint command */
3208 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3209 			false, false);
3210 
3211 	/* xHC rejected the configure endpoint command for some reason, so we
3212 	 * leave the old ring intact and free our internal streams data
3213 	 * structure.
3214 	 */
3215 	if (ret < 0)
3216 		goto cleanup;
3217 
3218 	spin_lock_irqsave(&xhci->lock, flags);
3219 	for (i = 0; i < num_eps; i++) {
3220 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3221 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3222 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3223 			 udev->slot_id, ep_index);
3224 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3225 	}
3226 	xhci_free_command(xhci, config_cmd);
3227 	spin_unlock_irqrestore(&xhci->lock, flags);
3228 
3229 	/* Subtract 1 for stream 0, which drivers can't use */
3230 	return num_streams - 1;
3231 
3232 cleanup:
3233 	/* If it didn't work, free the streams! */
3234 	for (i = 0; i < num_eps; i++) {
3235 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3236 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3237 		vdev->eps[ep_index].stream_info = NULL;
3238 		/* FIXME Unset maxPstreams in endpoint context and
3239 		 * update deq ptr to point to normal string ring.
3240 		 */
3241 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3242 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3243 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3244 	}
3245 	xhci_free_command(xhci, config_cmd);
3246 	return -ENOMEM;
3247 }
3248 
3249 /* Transition the endpoint from using streams to being a "normal" endpoint
3250  * without streams.
3251  *
3252  * Modify the endpoint context state, submit a configure endpoint command,
3253  * and free all endpoint rings for streams if that completes successfully.
3254  */
3255 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3256 		struct usb_host_endpoint **eps, unsigned int num_eps,
3257 		gfp_t mem_flags)
3258 {
3259 	int i, ret;
3260 	struct xhci_hcd *xhci;
3261 	struct xhci_virt_device *vdev;
3262 	struct xhci_command *command;
3263 	struct xhci_input_control_ctx *ctrl_ctx;
3264 	unsigned int ep_index;
3265 	unsigned long flags;
3266 	u32 changed_ep_bitmask;
3267 
3268 	xhci = hcd_to_xhci(hcd);
3269 	vdev = xhci->devs[udev->slot_id];
3270 
3271 	/* Set up a configure endpoint command to remove the streams rings */
3272 	spin_lock_irqsave(&xhci->lock, flags);
3273 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3274 			udev, eps, num_eps);
3275 	if (changed_ep_bitmask == 0) {
3276 		spin_unlock_irqrestore(&xhci->lock, flags);
3277 		return -EINVAL;
3278 	}
3279 
3280 	/* Use the xhci_command structure from the first endpoint.  We may have
3281 	 * allocated too many, but the driver may call xhci_free_streams() for
3282 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3283 	 */
3284 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3285 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3286 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3287 	if (!ctrl_ctx) {
3288 		spin_unlock_irqrestore(&xhci->lock, flags);
3289 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3290 				__func__);
3291 		return -EINVAL;
3292 	}
3293 
3294 	for (i = 0; i < num_eps; i++) {
3295 		struct xhci_ep_ctx *ep_ctx;
3296 
3297 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3298 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3299 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3300 			EP_GETTING_NO_STREAMS;
3301 
3302 		xhci_endpoint_copy(xhci, command->in_ctx,
3303 				vdev->out_ctx, ep_index);
3304 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3305 				&vdev->eps[ep_index]);
3306 	}
3307 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3308 			vdev->out_ctx, ctrl_ctx,
3309 			changed_ep_bitmask, changed_ep_bitmask);
3310 	spin_unlock_irqrestore(&xhci->lock, flags);
3311 
3312 	/* Issue and wait for the configure endpoint command,
3313 	 * which must succeed.
3314 	 */
3315 	ret = xhci_configure_endpoint(xhci, udev, command,
3316 			false, true);
3317 
3318 	/* xHC rejected the configure endpoint command for some reason, so we
3319 	 * leave the streams rings intact.
3320 	 */
3321 	if (ret < 0)
3322 		return ret;
3323 
3324 	spin_lock_irqsave(&xhci->lock, flags);
3325 	for (i = 0; i < num_eps; i++) {
3326 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3327 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3328 		vdev->eps[ep_index].stream_info = NULL;
3329 		/* FIXME Unset maxPstreams in endpoint context and
3330 		 * update deq ptr to point to normal string ring.
3331 		 */
3332 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3333 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3334 	}
3335 	spin_unlock_irqrestore(&xhci->lock, flags);
3336 
3337 	return 0;
3338 }
3339 
3340 /*
3341  * Deletes endpoint resources for endpoints that were active before a Reset
3342  * Device command, or a Disable Slot command.  The Reset Device command leaves
3343  * the control endpoint intact, whereas the Disable Slot command deletes it.
3344  *
3345  * Must be called with xhci->lock held.
3346  */
3347 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3348 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3349 {
3350 	int i;
3351 	unsigned int num_dropped_eps = 0;
3352 	unsigned int drop_flags = 0;
3353 
3354 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3355 		if (virt_dev->eps[i].ring) {
3356 			drop_flags |= 1 << i;
3357 			num_dropped_eps++;
3358 		}
3359 	}
3360 	xhci->num_active_eps -= num_dropped_eps;
3361 	if (num_dropped_eps)
3362 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3363 				"Dropped %u ep ctxs, flags = 0x%x, "
3364 				"%u now active.",
3365 				num_dropped_eps, drop_flags,
3366 				xhci->num_active_eps);
3367 }
3368 
3369 /*
3370  * This submits a Reset Device Command, which will set the device state to 0,
3371  * set the device address to 0, and disable all the endpoints except the default
3372  * control endpoint.  The USB core should come back and call
3373  * xhci_address_device(), and then re-set up the configuration.  If this is
3374  * called because of a usb_reset_and_verify_device(), then the old alternate
3375  * settings will be re-installed through the normal bandwidth allocation
3376  * functions.
3377  *
3378  * Wait for the Reset Device command to finish.  Remove all structures
3379  * associated with the endpoints that were disabled.  Clear the input device
3380  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3381  *
3382  * If the virt_dev to be reset does not exist or does not match the udev,
3383  * it means the device is lost, possibly due to the xHC restore error and
3384  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3385  * re-allocate the device.
3386  */
3387 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3388 {
3389 	int ret, i;
3390 	unsigned long flags;
3391 	struct xhci_hcd *xhci;
3392 	unsigned int slot_id;
3393 	struct xhci_virt_device *virt_dev;
3394 	struct xhci_command *reset_device_cmd;
3395 	int last_freed_endpoint;
3396 	struct xhci_slot_ctx *slot_ctx;
3397 	int old_active_eps = 0;
3398 
3399 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3400 	if (ret <= 0)
3401 		return ret;
3402 	xhci = hcd_to_xhci(hcd);
3403 	slot_id = udev->slot_id;
3404 	virt_dev = xhci->devs[slot_id];
3405 	if (!virt_dev) {
3406 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3407 				"not exist. Re-allocate the device\n", slot_id);
3408 		ret = xhci_alloc_dev(hcd, udev);
3409 		if (ret == 1)
3410 			return 0;
3411 		else
3412 			return -EINVAL;
3413 	}
3414 
3415 	if (virt_dev->tt_info)
3416 		old_active_eps = virt_dev->tt_info->active_eps;
3417 
3418 	if (virt_dev->udev != udev) {
3419 		/* If the virt_dev and the udev does not match, this virt_dev
3420 		 * may belong to another udev.
3421 		 * Re-allocate the device.
3422 		 */
3423 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3424 				"not match the udev. Re-allocate the device\n",
3425 				slot_id);
3426 		ret = xhci_alloc_dev(hcd, udev);
3427 		if (ret == 1)
3428 			return 0;
3429 		else
3430 			return -EINVAL;
3431 	}
3432 
3433 	/* If device is not setup, there is no point in resetting it */
3434 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3435 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3436 						SLOT_STATE_DISABLED)
3437 		return 0;
3438 
3439 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3440 	/* Allocate the command structure that holds the struct completion.
3441 	 * Assume we're in process context, since the normal device reset
3442 	 * process has to wait for the device anyway.  Storage devices are
3443 	 * reset as part of error handling, so use GFP_NOIO instead of
3444 	 * GFP_KERNEL.
3445 	 */
3446 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3447 	if (!reset_device_cmd) {
3448 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3449 		return -ENOMEM;
3450 	}
3451 
3452 	/* Attempt to submit the Reset Device command to the command ring */
3453 	spin_lock_irqsave(&xhci->lock, flags);
3454 
3455 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3456 	if (ret) {
3457 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3458 		spin_unlock_irqrestore(&xhci->lock, flags);
3459 		goto command_cleanup;
3460 	}
3461 	xhci_ring_cmd_db(xhci);
3462 	spin_unlock_irqrestore(&xhci->lock, flags);
3463 
3464 	/* Wait for the Reset Device command to finish */
3465 	wait_for_completion(reset_device_cmd->completion);
3466 
3467 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3468 	 * unless we tried to reset a slot ID that wasn't enabled,
3469 	 * or the device wasn't in the addressed or configured state.
3470 	 */
3471 	ret = reset_device_cmd->status;
3472 	switch (ret) {
3473 	case COMP_COMMAND_ABORTED:
3474 	case COMP_STOPPED:
3475 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3476 		ret = -ETIME;
3477 		goto command_cleanup;
3478 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3479 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3480 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3481 				slot_id,
3482 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3483 		xhci_dbg(xhci, "Not freeing device rings.\n");
3484 		/* Don't treat this as an error.  May change my mind later. */
3485 		ret = 0;
3486 		goto command_cleanup;
3487 	case COMP_SUCCESS:
3488 		xhci_dbg(xhci, "Successful reset device command.\n");
3489 		break;
3490 	default:
3491 		if (xhci_is_vendor_info_code(xhci, ret))
3492 			break;
3493 		xhci_warn(xhci, "Unknown completion code %u for "
3494 				"reset device command.\n", ret);
3495 		ret = -EINVAL;
3496 		goto command_cleanup;
3497 	}
3498 
3499 	/* Free up host controller endpoint resources */
3500 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3501 		spin_lock_irqsave(&xhci->lock, flags);
3502 		/* Don't delete the default control endpoint resources */
3503 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3504 		spin_unlock_irqrestore(&xhci->lock, flags);
3505 	}
3506 
3507 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3508 	last_freed_endpoint = 1;
3509 	for (i = 1; i < 31; i++) {
3510 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3511 
3512 		if (ep->ep_state & EP_HAS_STREAMS) {
3513 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3514 					xhci_get_endpoint_address(i));
3515 			xhci_free_stream_info(xhci, ep->stream_info);
3516 			ep->stream_info = NULL;
3517 			ep->ep_state &= ~EP_HAS_STREAMS;
3518 		}
3519 
3520 		if (ep->ring) {
3521 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3522 			last_freed_endpoint = i;
3523 		}
3524 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3525 			xhci_drop_ep_from_interval_table(xhci,
3526 					&virt_dev->eps[i].bw_info,
3527 					virt_dev->bw_table,
3528 					udev,
3529 					&virt_dev->eps[i],
3530 					virt_dev->tt_info);
3531 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3532 	}
3533 	/* If necessary, update the number of active TTs on this root port */
3534 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3535 
3536 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3537 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3538 	ret = 0;
3539 
3540 command_cleanup:
3541 	xhci_free_command(xhci, reset_device_cmd);
3542 	return ret;
3543 }
3544 
3545 /*
3546  * At this point, the struct usb_device is about to go away, the device has
3547  * disconnected, and all traffic has been stopped and the endpoints have been
3548  * disabled.  Free any HC data structures associated with that device.
3549  */
3550 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3551 {
3552 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3553 	struct xhci_virt_device *virt_dev;
3554 	unsigned long flags;
3555 	u32 state;
3556 	int i, ret;
3557 	struct xhci_command *command;
3558 
3559 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3560 	if (!command)
3561 		return;
3562 
3563 #ifndef CONFIG_USB_DEFAULT_PERSIST
3564 	/*
3565 	 * We called pm_runtime_get_noresume when the device was attached.
3566 	 * Decrement the counter here to allow controller to runtime suspend
3567 	 * if no devices remain.
3568 	 */
3569 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3570 		pm_runtime_put_noidle(hcd->self.controller);
3571 #endif
3572 
3573 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3574 	/* If the host is halted due to driver unload, we still need to free the
3575 	 * device.
3576 	 */
3577 	if (ret <= 0 && ret != -ENODEV) {
3578 		kfree(command);
3579 		return;
3580 	}
3581 
3582 	virt_dev = xhci->devs[udev->slot_id];
3583 
3584 	/* Stop any wayward timer functions (which may grab the lock) */
3585 	for (i = 0; i < 31; i++) {
3586 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3587 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3588 	}
3589 
3590 	spin_lock_irqsave(&xhci->lock, flags);
3591 	/* Don't disable the slot if the host controller is dead. */
3592 	state = readl(&xhci->op_regs->status);
3593 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3594 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3595 		xhci_free_virt_device(xhci, udev->slot_id);
3596 		spin_unlock_irqrestore(&xhci->lock, flags);
3597 		kfree(command);
3598 		return;
3599 	}
3600 
3601 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3602 				    udev->slot_id)) {
3603 		spin_unlock_irqrestore(&xhci->lock, flags);
3604 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3605 		return;
3606 	}
3607 	xhci_ring_cmd_db(xhci);
3608 	spin_unlock_irqrestore(&xhci->lock, flags);
3609 
3610 	/*
3611 	 * Event command completion handler will free any data structures
3612 	 * associated with the slot.  XXX Can free sleep?
3613 	 */
3614 }
3615 
3616 /*
3617  * Checks if we have enough host controller resources for the default control
3618  * endpoint.
3619  *
3620  * Must be called with xhci->lock held.
3621  */
3622 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3623 {
3624 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3625 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3626 				"Not enough ep ctxs: "
3627 				"%u active, need to add 1, limit is %u.",
3628 				xhci->num_active_eps, xhci->limit_active_eps);
3629 		return -ENOMEM;
3630 	}
3631 	xhci->num_active_eps += 1;
3632 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3633 			"Adding 1 ep ctx, %u now active.",
3634 			xhci->num_active_eps);
3635 	return 0;
3636 }
3637 
3638 
3639 /*
3640  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3641  * timed out, or allocating memory failed.  Returns 1 on success.
3642  */
3643 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3644 {
3645 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3646 	unsigned long flags;
3647 	int ret, slot_id;
3648 	struct xhci_command *command;
3649 
3650 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3651 	if (!command)
3652 		return 0;
3653 
3654 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3655 	mutex_lock(&xhci->mutex);
3656 	spin_lock_irqsave(&xhci->lock, flags);
3657 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3658 	if (ret) {
3659 		spin_unlock_irqrestore(&xhci->lock, flags);
3660 		mutex_unlock(&xhci->mutex);
3661 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3662 		xhci_free_command(xhci, command);
3663 		return 0;
3664 	}
3665 	xhci_ring_cmd_db(xhci);
3666 	spin_unlock_irqrestore(&xhci->lock, flags);
3667 
3668 	wait_for_completion(command->completion);
3669 	slot_id = command->slot_id;
3670 	mutex_unlock(&xhci->mutex);
3671 
3672 	if (!slot_id || command->status != COMP_SUCCESS) {
3673 		xhci_err(xhci, "Error while assigning device slot ID\n");
3674 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3675 				HCS_MAX_SLOTS(
3676 					readl(&xhci->cap_regs->hcs_params1)));
3677 		xhci_free_command(xhci, command);
3678 		return 0;
3679 	}
3680 
3681 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3682 		spin_lock_irqsave(&xhci->lock, flags);
3683 		ret = xhci_reserve_host_control_ep_resources(xhci);
3684 		if (ret) {
3685 			spin_unlock_irqrestore(&xhci->lock, flags);
3686 			xhci_warn(xhci, "Not enough host resources, "
3687 					"active endpoint contexts = %u\n",
3688 					xhci->num_active_eps);
3689 			goto disable_slot;
3690 		}
3691 		spin_unlock_irqrestore(&xhci->lock, flags);
3692 	}
3693 	/* Use GFP_NOIO, since this function can be called from
3694 	 * xhci_discover_or_reset_device(), which may be called as part of
3695 	 * mass storage driver error handling.
3696 	 */
3697 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3698 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3699 		goto disable_slot;
3700 	}
3701 	udev->slot_id = slot_id;
3702 
3703 #ifndef CONFIG_USB_DEFAULT_PERSIST
3704 	/*
3705 	 * If resetting upon resume, we can't put the controller into runtime
3706 	 * suspend if there is a device attached.
3707 	 */
3708 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3709 		pm_runtime_get_noresume(hcd->self.controller);
3710 #endif
3711 
3712 
3713 	xhci_free_command(xhci, command);
3714 	/* Is this a LS or FS device under a HS hub? */
3715 	/* Hub or peripherial? */
3716 	return 1;
3717 
3718 disable_slot:
3719 	/* Disable slot, if we can do it without mem alloc */
3720 	spin_lock_irqsave(&xhci->lock, flags);
3721 	kfree(command->completion);
3722 	command->completion = NULL;
3723 	command->status = 0;
3724 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3725 				     udev->slot_id))
3726 		xhci_ring_cmd_db(xhci);
3727 	spin_unlock_irqrestore(&xhci->lock, flags);
3728 	return 0;
3729 }
3730 
3731 /*
3732  * Issue an Address Device command and optionally send a corresponding
3733  * SetAddress request to the device.
3734  */
3735 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3736 			     enum xhci_setup_dev setup)
3737 {
3738 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3739 	unsigned long flags;
3740 	struct xhci_virt_device *virt_dev;
3741 	int ret = 0;
3742 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3743 	struct xhci_slot_ctx *slot_ctx;
3744 	struct xhci_input_control_ctx *ctrl_ctx;
3745 	u64 temp_64;
3746 	struct xhci_command *command = NULL;
3747 
3748 	mutex_lock(&xhci->mutex);
3749 
3750 	if (xhci->xhc_state) {	/* dying, removing or halted */
3751 		ret = -ESHUTDOWN;
3752 		goto out;
3753 	}
3754 
3755 	if (!udev->slot_id) {
3756 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3757 				"Bad Slot ID %d", udev->slot_id);
3758 		ret = -EINVAL;
3759 		goto out;
3760 	}
3761 
3762 	virt_dev = xhci->devs[udev->slot_id];
3763 
3764 	if (WARN_ON(!virt_dev)) {
3765 		/*
3766 		 * In plug/unplug torture test with an NEC controller,
3767 		 * a zero-dereference was observed once due to virt_dev = 0.
3768 		 * Print useful debug rather than crash if it is observed again!
3769 		 */
3770 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3771 			udev->slot_id);
3772 		ret = -EINVAL;
3773 		goto out;
3774 	}
3775 
3776 	if (setup == SETUP_CONTEXT_ONLY) {
3777 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3778 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3779 		    SLOT_STATE_DEFAULT) {
3780 			xhci_dbg(xhci, "Slot already in default state\n");
3781 			goto out;
3782 		}
3783 	}
3784 
3785 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3786 	if (!command) {
3787 		ret = -ENOMEM;
3788 		goto out;
3789 	}
3790 
3791 	command->in_ctx = virt_dev->in_ctx;
3792 
3793 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3794 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3795 	if (!ctrl_ctx) {
3796 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3797 				__func__);
3798 		ret = -EINVAL;
3799 		goto out;
3800 	}
3801 	/*
3802 	 * If this is the first Set Address since device plug-in or
3803 	 * virt_device realloaction after a resume with an xHCI power loss,
3804 	 * then set up the slot context.
3805 	 */
3806 	if (!slot_ctx->dev_info)
3807 		xhci_setup_addressable_virt_dev(xhci, udev);
3808 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3809 	else
3810 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3811 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3812 	ctrl_ctx->drop_flags = 0;
3813 
3814 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3815 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3816 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3817 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3818 
3819 	spin_lock_irqsave(&xhci->lock, flags);
3820 	trace_xhci_setup_device(virt_dev);
3821 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3822 					udev->slot_id, setup);
3823 	if (ret) {
3824 		spin_unlock_irqrestore(&xhci->lock, flags);
3825 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3826 				"FIXME: allocate a command ring segment");
3827 		goto out;
3828 	}
3829 	xhci_ring_cmd_db(xhci);
3830 	spin_unlock_irqrestore(&xhci->lock, flags);
3831 
3832 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3833 	wait_for_completion(command->completion);
3834 
3835 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3836 	 * the SetAddress() "recovery interval" required by USB and aborting the
3837 	 * command on a timeout.
3838 	 */
3839 	switch (command->status) {
3840 	case COMP_COMMAND_ABORTED:
3841 	case COMP_STOPPED:
3842 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3843 		ret = -ETIME;
3844 		break;
3845 	case COMP_CONTEXT_STATE_ERROR:
3846 	case COMP_SLOT_NOT_ENABLED_ERROR:
3847 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3848 			 act, udev->slot_id);
3849 		ret = -EINVAL;
3850 		break;
3851 	case COMP_USB_TRANSACTION_ERROR:
3852 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3853 		ret = -EPROTO;
3854 		break;
3855 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3856 		dev_warn(&udev->dev,
3857 			 "ERROR: Incompatible device for setup %s command\n", act);
3858 		ret = -ENODEV;
3859 		break;
3860 	case COMP_SUCCESS:
3861 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3862 			       "Successful setup %s command", act);
3863 		break;
3864 	default:
3865 		xhci_err(xhci,
3866 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3867 			 act, command->status);
3868 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3869 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3870 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3871 		ret = -EINVAL;
3872 		break;
3873 	}
3874 	if (ret)
3875 		goto out;
3876 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3877 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3878 			"Op regs DCBAA ptr = %#016llx", temp_64);
3879 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3880 		"Slot ID %d dcbaa entry @%p = %#016llx",
3881 		udev->slot_id,
3882 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3883 		(unsigned long long)
3884 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3885 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3886 			"Output Context DMA address = %#08llx",
3887 			(unsigned long long)virt_dev->out_ctx->dma);
3888 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3889 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3890 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3891 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3892 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3893 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3894 	/*
3895 	 * USB core uses address 1 for the roothubs, so we add one to the
3896 	 * address given back to us by the HC.
3897 	 */
3898 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3899 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3900 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3901 	/* Zero the input context control for later use */
3902 	ctrl_ctx->add_flags = 0;
3903 	ctrl_ctx->drop_flags = 0;
3904 
3905 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3906 		       "Internal device address = %d",
3907 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3908 out:
3909 	mutex_unlock(&xhci->mutex);
3910 	if (command) {
3911 		kfree(command->completion);
3912 		kfree(command);
3913 	}
3914 	return ret;
3915 }
3916 
3917 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3918 {
3919 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3920 }
3921 
3922 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3923 {
3924 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3925 }
3926 
3927 /*
3928  * Transfer the port index into real index in the HW port status
3929  * registers. Caculate offset between the port's PORTSC register
3930  * and port status base. Divide the number of per port register
3931  * to get the real index. The raw port number bases 1.
3932  */
3933 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3934 {
3935 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3936 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3937 	__le32 __iomem *addr;
3938 	int raw_port;
3939 
3940 	if (hcd->speed < HCD_USB3)
3941 		addr = xhci->usb2_ports[port1 - 1];
3942 	else
3943 		addr = xhci->usb3_ports[port1 - 1];
3944 
3945 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3946 	return raw_port;
3947 }
3948 
3949 /*
3950  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3951  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3952  */
3953 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3954 			struct usb_device *udev, u16 max_exit_latency)
3955 {
3956 	struct xhci_virt_device *virt_dev;
3957 	struct xhci_command *command;
3958 	struct xhci_input_control_ctx *ctrl_ctx;
3959 	struct xhci_slot_ctx *slot_ctx;
3960 	unsigned long flags;
3961 	int ret;
3962 
3963 	spin_lock_irqsave(&xhci->lock, flags);
3964 
3965 	virt_dev = xhci->devs[udev->slot_id];
3966 
3967 	/*
3968 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3969 	 * xHC was re-initialized. Exit latency will be set later after
3970 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3971 	 */
3972 
3973 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3974 		spin_unlock_irqrestore(&xhci->lock, flags);
3975 		return 0;
3976 	}
3977 
3978 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3979 	command = xhci->lpm_command;
3980 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3981 	if (!ctrl_ctx) {
3982 		spin_unlock_irqrestore(&xhci->lock, flags);
3983 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3984 				__func__);
3985 		return -ENOMEM;
3986 	}
3987 
3988 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3989 	spin_unlock_irqrestore(&xhci->lock, flags);
3990 
3991 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3992 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3993 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3994 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3995 	slot_ctx->dev_state = 0;
3996 
3997 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3998 			"Set up evaluate context for LPM MEL change.");
3999 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4000 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4001 
4002 	/* Issue and wait for the evaluate context command. */
4003 	ret = xhci_configure_endpoint(xhci, udev, command,
4004 			true, true);
4005 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4006 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4007 
4008 	if (!ret) {
4009 		spin_lock_irqsave(&xhci->lock, flags);
4010 		virt_dev->current_mel = max_exit_latency;
4011 		spin_unlock_irqrestore(&xhci->lock, flags);
4012 	}
4013 	return ret;
4014 }
4015 
4016 #ifdef CONFIG_PM
4017 
4018 /* BESL to HIRD Encoding array for USB2 LPM */
4019 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4020 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4021 
4022 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4023 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4024 					struct usb_device *udev)
4025 {
4026 	int u2del, besl, besl_host;
4027 	int besl_device = 0;
4028 	u32 field;
4029 
4030 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4031 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4032 
4033 	if (field & USB_BESL_SUPPORT) {
4034 		for (besl_host = 0; besl_host < 16; besl_host++) {
4035 			if (xhci_besl_encoding[besl_host] >= u2del)
4036 				break;
4037 		}
4038 		/* Use baseline BESL value as default */
4039 		if (field & USB_BESL_BASELINE_VALID)
4040 			besl_device = USB_GET_BESL_BASELINE(field);
4041 		else if (field & USB_BESL_DEEP_VALID)
4042 			besl_device = USB_GET_BESL_DEEP(field);
4043 	} else {
4044 		if (u2del <= 50)
4045 			besl_host = 0;
4046 		else
4047 			besl_host = (u2del - 51) / 75 + 1;
4048 	}
4049 
4050 	besl = besl_host + besl_device;
4051 	if (besl > 15)
4052 		besl = 15;
4053 
4054 	return besl;
4055 }
4056 
4057 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4058 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4059 {
4060 	u32 field;
4061 	int l1;
4062 	int besld = 0;
4063 	int hirdm = 0;
4064 
4065 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4066 
4067 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4068 	l1 = udev->l1_params.timeout / 256;
4069 
4070 	/* device has preferred BESLD */
4071 	if (field & USB_BESL_DEEP_VALID) {
4072 		besld = USB_GET_BESL_DEEP(field);
4073 		hirdm = 1;
4074 	}
4075 
4076 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4077 }
4078 
4079 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4080 			struct usb_device *udev, int enable)
4081 {
4082 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4083 	__le32 __iomem	**port_array;
4084 	__le32 __iomem	*pm_addr, *hlpm_addr;
4085 	u32		pm_val, hlpm_val, field;
4086 	unsigned int	port_num;
4087 	unsigned long	flags;
4088 	int		hird, exit_latency;
4089 	int		ret;
4090 
4091 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4092 			!udev->lpm_capable)
4093 		return -EPERM;
4094 
4095 	if (!udev->parent || udev->parent->parent ||
4096 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4097 		return -EPERM;
4098 
4099 	if (udev->usb2_hw_lpm_capable != 1)
4100 		return -EPERM;
4101 
4102 	spin_lock_irqsave(&xhci->lock, flags);
4103 
4104 	port_array = xhci->usb2_ports;
4105 	port_num = udev->portnum - 1;
4106 	pm_addr = port_array[port_num] + PORTPMSC;
4107 	pm_val = readl(pm_addr);
4108 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4109 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4110 
4111 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4112 			enable ? "enable" : "disable", port_num + 1);
4113 
4114 	if (enable) {
4115 		/* Host supports BESL timeout instead of HIRD */
4116 		if (udev->usb2_hw_lpm_besl_capable) {
4117 			/* if device doesn't have a preferred BESL value use a
4118 			 * default one which works with mixed HIRD and BESL
4119 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4120 			 */
4121 			if ((field & USB_BESL_SUPPORT) &&
4122 			    (field & USB_BESL_BASELINE_VALID))
4123 				hird = USB_GET_BESL_BASELINE(field);
4124 			else
4125 				hird = udev->l1_params.besl;
4126 
4127 			exit_latency = xhci_besl_encoding[hird];
4128 			spin_unlock_irqrestore(&xhci->lock, flags);
4129 
4130 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4131 			 * input context for link powermanagement evaluate
4132 			 * context commands. It is protected by hcd->bandwidth
4133 			 * mutex and is shared by all devices. We need to set
4134 			 * the max ext latency in USB 2 BESL LPM as well, so
4135 			 * use the same mutex and xhci_change_max_exit_latency()
4136 			 */
4137 			mutex_lock(hcd->bandwidth_mutex);
4138 			ret = xhci_change_max_exit_latency(xhci, udev,
4139 							   exit_latency);
4140 			mutex_unlock(hcd->bandwidth_mutex);
4141 
4142 			if (ret < 0)
4143 				return ret;
4144 			spin_lock_irqsave(&xhci->lock, flags);
4145 
4146 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4147 			writel(hlpm_val, hlpm_addr);
4148 			/* flush write */
4149 			readl(hlpm_addr);
4150 		} else {
4151 			hird = xhci_calculate_hird_besl(xhci, udev);
4152 		}
4153 
4154 		pm_val &= ~PORT_HIRD_MASK;
4155 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4156 		writel(pm_val, pm_addr);
4157 		pm_val = readl(pm_addr);
4158 		pm_val |= PORT_HLE;
4159 		writel(pm_val, pm_addr);
4160 		/* flush write */
4161 		readl(pm_addr);
4162 	} else {
4163 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4164 		writel(pm_val, pm_addr);
4165 		/* flush write */
4166 		readl(pm_addr);
4167 		if (udev->usb2_hw_lpm_besl_capable) {
4168 			spin_unlock_irqrestore(&xhci->lock, flags);
4169 			mutex_lock(hcd->bandwidth_mutex);
4170 			xhci_change_max_exit_latency(xhci, udev, 0);
4171 			mutex_unlock(hcd->bandwidth_mutex);
4172 			return 0;
4173 		}
4174 	}
4175 
4176 	spin_unlock_irqrestore(&xhci->lock, flags);
4177 	return 0;
4178 }
4179 
4180 /* check if a usb2 port supports a given extened capability protocol
4181  * only USB2 ports extended protocol capability values are cached.
4182  * Return 1 if capability is supported
4183  */
4184 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4185 					   unsigned capability)
4186 {
4187 	u32 port_offset, port_count;
4188 	int i;
4189 
4190 	for (i = 0; i < xhci->num_ext_caps; i++) {
4191 		if (xhci->ext_caps[i] & capability) {
4192 			/* port offsets starts at 1 */
4193 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4194 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4195 			if (port >= port_offset &&
4196 			    port < port_offset + port_count)
4197 				return 1;
4198 		}
4199 	}
4200 	return 0;
4201 }
4202 
4203 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4204 {
4205 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4206 	int		portnum = udev->portnum - 1;
4207 
4208 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4209 			!udev->lpm_capable)
4210 		return 0;
4211 
4212 	/* we only support lpm for non-hub device connected to root hub yet */
4213 	if (!udev->parent || udev->parent->parent ||
4214 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4215 		return 0;
4216 
4217 	if (xhci->hw_lpm_support == 1 &&
4218 			xhci_check_usb2_port_capability(
4219 				xhci, portnum, XHCI_HLC)) {
4220 		udev->usb2_hw_lpm_capable = 1;
4221 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4222 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4223 		if (xhci_check_usb2_port_capability(xhci, portnum,
4224 					XHCI_BLC))
4225 			udev->usb2_hw_lpm_besl_capable = 1;
4226 	}
4227 
4228 	return 0;
4229 }
4230 
4231 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4232 
4233 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4234 static unsigned long long xhci_service_interval_to_ns(
4235 		struct usb_endpoint_descriptor *desc)
4236 {
4237 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4238 }
4239 
4240 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4241 		enum usb3_link_state state)
4242 {
4243 	unsigned long long sel;
4244 	unsigned long long pel;
4245 	unsigned int max_sel_pel;
4246 	char *state_name;
4247 
4248 	switch (state) {
4249 	case USB3_LPM_U1:
4250 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4251 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4252 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4253 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4254 		state_name = "U1";
4255 		break;
4256 	case USB3_LPM_U2:
4257 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4258 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4259 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4260 		state_name = "U2";
4261 		break;
4262 	default:
4263 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4264 				__func__);
4265 		return USB3_LPM_DISABLED;
4266 	}
4267 
4268 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4269 		return USB3_LPM_DEVICE_INITIATED;
4270 
4271 	if (sel > max_sel_pel)
4272 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4273 				"due to long SEL %llu ms\n",
4274 				state_name, sel);
4275 	else
4276 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4277 				"due to long PEL %llu ms\n",
4278 				state_name, pel);
4279 	return USB3_LPM_DISABLED;
4280 }
4281 
4282 /* The U1 timeout should be the maximum of the following values:
4283  *  - For control endpoints, U1 system exit latency (SEL) * 3
4284  *  - For bulk endpoints, U1 SEL * 5
4285  *  - For interrupt endpoints:
4286  *    - Notification EPs, U1 SEL * 3
4287  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4288  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4289  */
4290 static unsigned long long xhci_calculate_intel_u1_timeout(
4291 		struct usb_device *udev,
4292 		struct usb_endpoint_descriptor *desc)
4293 {
4294 	unsigned long long timeout_ns;
4295 	int ep_type;
4296 	int intr_type;
4297 
4298 	ep_type = usb_endpoint_type(desc);
4299 	switch (ep_type) {
4300 	case USB_ENDPOINT_XFER_CONTROL:
4301 		timeout_ns = udev->u1_params.sel * 3;
4302 		break;
4303 	case USB_ENDPOINT_XFER_BULK:
4304 		timeout_ns = udev->u1_params.sel * 5;
4305 		break;
4306 	case USB_ENDPOINT_XFER_INT:
4307 		intr_type = usb_endpoint_interrupt_type(desc);
4308 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4309 			timeout_ns = udev->u1_params.sel * 3;
4310 			break;
4311 		}
4312 		/* Otherwise the calculation is the same as isoc eps */
4313 	case USB_ENDPOINT_XFER_ISOC:
4314 		timeout_ns = xhci_service_interval_to_ns(desc);
4315 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4316 		if (timeout_ns < udev->u1_params.sel * 2)
4317 			timeout_ns = udev->u1_params.sel * 2;
4318 		break;
4319 	default:
4320 		return 0;
4321 	}
4322 
4323 	return timeout_ns;
4324 }
4325 
4326 /* Returns the hub-encoded U1 timeout value. */
4327 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4328 		struct usb_device *udev,
4329 		struct usb_endpoint_descriptor *desc)
4330 {
4331 	unsigned long long timeout_ns;
4332 
4333 	if (xhci->quirks & XHCI_INTEL_HOST)
4334 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4335 	else
4336 		timeout_ns = udev->u1_params.sel;
4337 
4338 	/* The U1 timeout is encoded in 1us intervals.
4339 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4340 	 */
4341 	if (timeout_ns == USB3_LPM_DISABLED)
4342 		timeout_ns = 1;
4343 	else
4344 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4345 
4346 	/* If the necessary timeout value is bigger than what we can set in the
4347 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4348 	 */
4349 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4350 		return timeout_ns;
4351 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4352 			"due to long timeout %llu ms\n", timeout_ns);
4353 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4354 }
4355 
4356 /* The U2 timeout should be the maximum of:
4357  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4358  *  - largest bInterval of any active periodic endpoint (to avoid going
4359  *    into lower power link states between intervals).
4360  *  - the U2 Exit Latency of the device
4361  */
4362 static unsigned long long xhci_calculate_intel_u2_timeout(
4363 		struct usb_device *udev,
4364 		struct usb_endpoint_descriptor *desc)
4365 {
4366 	unsigned long long timeout_ns;
4367 	unsigned long long u2_del_ns;
4368 
4369 	timeout_ns = 10 * 1000 * 1000;
4370 
4371 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4372 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4373 		timeout_ns = xhci_service_interval_to_ns(desc);
4374 
4375 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4376 	if (u2_del_ns > timeout_ns)
4377 		timeout_ns = u2_del_ns;
4378 
4379 	return timeout_ns;
4380 }
4381 
4382 /* Returns the hub-encoded U2 timeout value. */
4383 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4384 		struct usb_device *udev,
4385 		struct usb_endpoint_descriptor *desc)
4386 {
4387 	unsigned long long timeout_ns;
4388 
4389 	if (xhci->quirks & XHCI_INTEL_HOST)
4390 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4391 	else
4392 		timeout_ns = udev->u2_params.sel;
4393 
4394 	/* The U2 timeout is encoded in 256us intervals */
4395 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4396 	/* If the necessary timeout value is bigger than what we can set in the
4397 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4398 	 */
4399 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4400 		return timeout_ns;
4401 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4402 			"due to long timeout %llu ms\n", timeout_ns);
4403 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4404 }
4405 
4406 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4407 		struct usb_device *udev,
4408 		struct usb_endpoint_descriptor *desc,
4409 		enum usb3_link_state state,
4410 		u16 *timeout)
4411 {
4412 	if (state == USB3_LPM_U1)
4413 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4414 	else if (state == USB3_LPM_U2)
4415 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4416 
4417 	return USB3_LPM_DISABLED;
4418 }
4419 
4420 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4421 		struct usb_device *udev,
4422 		struct usb_endpoint_descriptor *desc,
4423 		enum usb3_link_state state,
4424 		u16 *timeout)
4425 {
4426 	u16 alt_timeout;
4427 
4428 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4429 		desc, state, timeout);
4430 
4431 	/* If we found we can't enable hub-initiated LPM, or
4432 	 * the U1 or U2 exit latency was too high to allow
4433 	 * device-initiated LPM as well, just stop searching.
4434 	 */
4435 	if (alt_timeout == USB3_LPM_DISABLED ||
4436 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4437 		*timeout = alt_timeout;
4438 		return -E2BIG;
4439 	}
4440 	if (alt_timeout > *timeout)
4441 		*timeout = alt_timeout;
4442 	return 0;
4443 }
4444 
4445 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4446 		struct usb_device *udev,
4447 		struct usb_host_interface *alt,
4448 		enum usb3_link_state state,
4449 		u16 *timeout)
4450 {
4451 	int j;
4452 
4453 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4454 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4455 					&alt->endpoint[j].desc, state, timeout))
4456 			return -E2BIG;
4457 		continue;
4458 	}
4459 	return 0;
4460 }
4461 
4462 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4463 		enum usb3_link_state state)
4464 {
4465 	struct usb_device *parent;
4466 	unsigned int num_hubs;
4467 
4468 	if (state == USB3_LPM_U2)
4469 		return 0;
4470 
4471 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4472 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4473 			parent = parent->parent)
4474 		num_hubs++;
4475 
4476 	if (num_hubs < 2)
4477 		return 0;
4478 
4479 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4480 			" below second-tier hub.\n");
4481 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4482 			"to decrease power consumption.\n");
4483 	return -E2BIG;
4484 }
4485 
4486 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4487 		struct usb_device *udev,
4488 		enum usb3_link_state state)
4489 {
4490 	if (xhci->quirks & XHCI_INTEL_HOST)
4491 		return xhci_check_intel_tier_policy(udev, state);
4492 	else
4493 		return 0;
4494 }
4495 
4496 /* Returns the U1 or U2 timeout that should be enabled.
4497  * If the tier check or timeout setting functions return with a non-zero exit
4498  * code, that means the timeout value has been finalized and we shouldn't look
4499  * at any more endpoints.
4500  */
4501 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4502 			struct usb_device *udev, enum usb3_link_state state)
4503 {
4504 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4505 	struct usb_host_config *config;
4506 	char *state_name;
4507 	int i;
4508 	u16 timeout = USB3_LPM_DISABLED;
4509 
4510 	if (state == USB3_LPM_U1)
4511 		state_name = "U1";
4512 	else if (state == USB3_LPM_U2)
4513 		state_name = "U2";
4514 	else {
4515 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4516 				state);
4517 		return timeout;
4518 	}
4519 
4520 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4521 		return timeout;
4522 
4523 	/* Gather some information about the currently installed configuration
4524 	 * and alternate interface settings.
4525 	 */
4526 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4527 			state, &timeout))
4528 		return timeout;
4529 
4530 	config = udev->actconfig;
4531 	if (!config)
4532 		return timeout;
4533 
4534 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4535 		struct usb_driver *driver;
4536 		struct usb_interface *intf = config->interface[i];
4537 
4538 		if (!intf)
4539 			continue;
4540 
4541 		/* Check if any currently bound drivers want hub-initiated LPM
4542 		 * disabled.
4543 		 */
4544 		if (intf->dev.driver) {
4545 			driver = to_usb_driver(intf->dev.driver);
4546 			if (driver && driver->disable_hub_initiated_lpm) {
4547 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4548 						"at request of driver %s\n",
4549 						state_name, driver->name);
4550 				return xhci_get_timeout_no_hub_lpm(udev, state);
4551 			}
4552 		}
4553 
4554 		/* Not sure how this could happen... */
4555 		if (!intf->cur_altsetting)
4556 			continue;
4557 
4558 		if (xhci_update_timeout_for_interface(xhci, udev,
4559 					intf->cur_altsetting,
4560 					state, &timeout))
4561 			return timeout;
4562 	}
4563 	return timeout;
4564 }
4565 
4566 static int calculate_max_exit_latency(struct usb_device *udev,
4567 		enum usb3_link_state state_changed,
4568 		u16 hub_encoded_timeout)
4569 {
4570 	unsigned long long u1_mel_us = 0;
4571 	unsigned long long u2_mel_us = 0;
4572 	unsigned long long mel_us = 0;
4573 	bool disabling_u1;
4574 	bool disabling_u2;
4575 	bool enabling_u1;
4576 	bool enabling_u2;
4577 
4578 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4579 			hub_encoded_timeout == USB3_LPM_DISABLED);
4580 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4581 			hub_encoded_timeout == USB3_LPM_DISABLED);
4582 
4583 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4584 			hub_encoded_timeout != USB3_LPM_DISABLED);
4585 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4586 			hub_encoded_timeout != USB3_LPM_DISABLED);
4587 
4588 	/* If U1 was already enabled and we're not disabling it,
4589 	 * or we're going to enable U1, account for the U1 max exit latency.
4590 	 */
4591 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4592 			enabling_u1)
4593 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4594 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4595 			enabling_u2)
4596 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4597 
4598 	if (u1_mel_us > u2_mel_us)
4599 		mel_us = u1_mel_us;
4600 	else
4601 		mel_us = u2_mel_us;
4602 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4603 	if (mel_us > MAX_EXIT) {
4604 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4605 				"is too big.\n", mel_us);
4606 		return -E2BIG;
4607 	}
4608 	return mel_us;
4609 }
4610 
4611 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4612 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4613 			struct usb_device *udev, enum usb3_link_state state)
4614 {
4615 	struct xhci_hcd	*xhci;
4616 	u16 hub_encoded_timeout;
4617 	int mel;
4618 	int ret;
4619 
4620 	xhci = hcd_to_xhci(hcd);
4621 	/* The LPM timeout values are pretty host-controller specific, so don't
4622 	 * enable hub-initiated timeouts unless the vendor has provided
4623 	 * information about their timeout algorithm.
4624 	 */
4625 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4626 			!xhci->devs[udev->slot_id])
4627 		return USB3_LPM_DISABLED;
4628 
4629 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4630 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4631 	if (mel < 0) {
4632 		/* Max Exit Latency is too big, disable LPM. */
4633 		hub_encoded_timeout = USB3_LPM_DISABLED;
4634 		mel = 0;
4635 	}
4636 
4637 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4638 	if (ret)
4639 		return ret;
4640 	return hub_encoded_timeout;
4641 }
4642 
4643 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4644 			struct usb_device *udev, enum usb3_link_state state)
4645 {
4646 	struct xhci_hcd	*xhci;
4647 	u16 mel;
4648 
4649 	xhci = hcd_to_xhci(hcd);
4650 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4651 			!xhci->devs[udev->slot_id])
4652 		return 0;
4653 
4654 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4655 	return xhci_change_max_exit_latency(xhci, udev, mel);
4656 }
4657 #else /* CONFIG_PM */
4658 
4659 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4660 				struct usb_device *udev, int enable)
4661 {
4662 	return 0;
4663 }
4664 
4665 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4666 {
4667 	return 0;
4668 }
4669 
4670 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4671 			struct usb_device *udev, enum usb3_link_state state)
4672 {
4673 	return USB3_LPM_DISABLED;
4674 }
4675 
4676 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4677 			struct usb_device *udev, enum usb3_link_state state)
4678 {
4679 	return 0;
4680 }
4681 #endif	/* CONFIG_PM */
4682 
4683 /*-------------------------------------------------------------------------*/
4684 
4685 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4686  * internal data structures for the device.
4687  */
4688 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4689 			struct usb_tt *tt, gfp_t mem_flags)
4690 {
4691 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4692 	struct xhci_virt_device *vdev;
4693 	struct xhci_command *config_cmd;
4694 	struct xhci_input_control_ctx *ctrl_ctx;
4695 	struct xhci_slot_ctx *slot_ctx;
4696 	unsigned long flags;
4697 	unsigned think_time;
4698 	int ret;
4699 
4700 	/* Ignore root hubs */
4701 	if (!hdev->parent)
4702 		return 0;
4703 
4704 	vdev = xhci->devs[hdev->slot_id];
4705 	if (!vdev) {
4706 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4707 		return -EINVAL;
4708 	}
4709 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4710 	if (!config_cmd) {
4711 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4712 		return -ENOMEM;
4713 	}
4714 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4715 	if (!ctrl_ctx) {
4716 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4717 				__func__);
4718 		xhci_free_command(xhci, config_cmd);
4719 		return -ENOMEM;
4720 	}
4721 
4722 	spin_lock_irqsave(&xhci->lock, flags);
4723 	if (hdev->speed == USB_SPEED_HIGH &&
4724 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4725 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4726 		xhci_free_command(xhci, config_cmd);
4727 		spin_unlock_irqrestore(&xhci->lock, flags);
4728 		return -ENOMEM;
4729 	}
4730 
4731 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4732 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4733 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4734 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4735 	/*
4736 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4737 	 * but it may be already set to 1 when setup an xHCI virtual
4738 	 * device, so clear it anyway.
4739 	 */
4740 	if (tt->multi)
4741 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4742 	else if (hdev->speed == USB_SPEED_FULL)
4743 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4744 
4745 	if (xhci->hci_version > 0x95) {
4746 		xhci_dbg(xhci, "xHCI version %x needs hub "
4747 				"TT think time and number of ports\n",
4748 				(unsigned int) xhci->hci_version);
4749 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4750 		/* Set TT think time - convert from ns to FS bit times.
4751 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4752 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4753 		 *
4754 		 * xHCI 1.0: this field shall be 0 if the device is not a
4755 		 * High-spped hub.
4756 		 */
4757 		think_time = tt->think_time;
4758 		if (think_time != 0)
4759 			think_time = (think_time / 666) - 1;
4760 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4761 			slot_ctx->tt_info |=
4762 				cpu_to_le32(TT_THINK_TIME(think_time));
4763 	} else {
4764 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4765 				"TT think time or number of ports\n",
4766 				(unsigned int) xhci->hci_version);
4767 	}
4768 	slot_ctx->dev_state = 0;
4769 	spin_unlock_irqrestore(&xhci->lock, flags);
4770 
4771 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4772 			(xhci->hci_version > 0x95) ?
4773 			"configure endpoint" : "evaluate context");
4774 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4775 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4776 
4777 	/* Issue and wait for the configure endpoint or
4778 	 * evaluate context command.
4779 	 */
4780 	if (xhci->hci_version > 0x95)
4781 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4782 				false, false);
4783 	else
4784 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4785 				true, false);
4786 
4787 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4788 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4789 
4790 	xhci_free_command(xhci, config_cmd);
4791 	return ret;
4792 }
4793 
4794 int xhci_get_frame(struct usb_hcd *hcd)
4795 {
4796 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4797 	/* EHCI mods by the periodic size.  Why? */
4798 	return readl(&xhci->run_regs->microframe_index) >> 3;
4799 }
4800 
4801 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4802 {
4803 	struct xhci_hcd		*xhci;
4804 	struct device		*dev = hcd->self.controller;
4805 	int			retval;
4806 
4807 	/* Accept arbitrarily long scatter-gather lists */
4808 	hcd->self.sg_tablesize = ~0;
4809 
4810 	/* support to build packet from discontinuous buffers */
4811 	hcd->self.no_sg_constraint = 1;
4812 
4813 	/* XHCI controllers don't stop the ep queue on short packets :| */
4814 	hcd->self.no_stop_on_short = 1;
4815 
4816 	xhci = hcd_to_xhci(hcd);
4817 
4818 	if (usb_hcd_is_primary_hcd(hcd)) {
4819 		xhci->main_hcd = hcd;
4820 		/* Mark the first roothub as being USB 2.0.
4821 		 * The xHCI driver will register the USB 3.0 roothub.
4822 		 */
4823 		hcd->speed = HCD_USB2;
4824 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4825 		/*
4826 		 * USB 2.0 roothub under xHCI has an integrated TT,
4827 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4828 		 * companion controller.
4829 		 */
4830 		hcd->has_tt = 1;
4831 	} else {
4832 		if (xhci->sbrn == 0x31) {
4833 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4834 			hcd->speed = HCD_USB31;
4835 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4836 		}
4837 		/* xHCI private pointer was set in xhci_pci_probe for the second
4838 		 * registered roothub.
4839 		 */
4840 		return 0;
4841 	}
4842 
4843 	mutex_init(&xhci->mutex);
4844 	xhci->cap_regs = hcd->regs;
4845 	xhci->op_regs = hcd->regs +
4846 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4847 	xhci->run_regs = hcd->regs +
4848 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4849 	/* Cache read-only capability registers */
4850 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4851 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4852 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4853 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4854 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4855 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4856 	if (xhci->hci_version > 0x100)
4857 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4858 	xhci_print_registers(xhci);
4859 
4860 	xhci->quirks |= quirks;
4861 
4862 	get_quirks(dev, xhci);
4863 
4864 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4865 	 * success event after a short transfer. This quirk will ignore such
4866 	 * spurious event.
4867 	 */
4868 	if (xhci->hci_version > 0x96)
4869 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4870 
4871 	/* Make sure the HC is halted. */
4872 	retval = xhci_halt(xhci);
4873 	if (retval)
4874 		return retval;
4875 
4876 	xhci_dbg(xhci, "Resetting HCD\n");
4877 	/* Reset the internal HC memory state and registers. */
4878 	retval = xhci_reset(xhci);
4879 	if (retval)
4880 		return retval;
4881 	xhci_dbg(xhci, "Reset complete\n");
4882 
4883 	/*
4884 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4885 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4886 	 * address memory pointers actually. So, this driver clears the AC64
4887 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4888 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4889 	 */
4890 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4891 		xhci->hcc_params &= ~BIT(0);
4892 
4893 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4894 	 * if xHC supports 64-bit addressing */
4895 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4896 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4897 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4898 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4899 	} else {
4900 		/*
4901 		 * This is to avoid error in cases where a 32-bit USB
4902 		 * controller is used on a 64-bit capable system.
4903 		 */
4904 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4905 		if (retval)
4906 			return retval;
4907 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4908 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4909 	}
4910 
4911 	xhci_dbg(xhci, "Calling HCD init\n");
4912 	/* Initialize HCD and host controller data structures. */
4913 	retval = xhci_init(hcd);
4914 	if (retval)
4915 		return retval;
4916 	xhci_dbg(xhci, "Called HCD init\n");
4917 
4918 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4919 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4920 
4921 	return 0;
4922 }
4923 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4924 
4925 static const struct hc_driver xhci_hc_driver = {
4926 	.description =		"xhci-hcd",
4927 	.product_desc =		"xHCI Host Controller",
4928 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4929 
4930 	/*
4931 	 * generic hardware linkage
4932 	 */
4933 	.irq =			xhci_irq,
4934 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4935 
4936 	/*
4937 	 * basic lifecycle operations
4938 	 */
4939 	.reset =		NULL, /* set in xhci_init_driver() */
4940 	.start =		xhci_run,
4941 	.stop =			xhci_stop,
4942 	.shutdown =		xhci_shutdown,
4943 
4944 	/*
4945 	 * managing i/o requests and associated device resources
4946 	 */
4947 	.urb_enqueue =		xhci_urb_enqueue,
4948 	.urb_dequeue =		xhci_urb_dequeue,
4949 	.alloc_dev =		xhci_alloc_dev,
4950 	.free_dev =		xhci_free_dev,
4951 	.alloc_streams =	xhci_alloc_streams,
4952 	.free_streams =		xhci_free_streams,
4953 	.add_endpoint =		xhci_add_endpoint,
4954 	.drop_endpoint =	xhci_drop_endpoint,
4955 	.endpoint_reset =	xhci_endpoint_reset,
4956 	.check_bandwidth =	xhci_check_bandwidth,
4957 	.reset_bandwidth =	xhci_reset_bandwidth,
4958 	.address_device =	xhci_address_device,
4959 	.enable_device =	xhci_enable_device,
4960 	.update_hub_device =	xhci_update_hub_device,
4961 	.reset_device =		xhci_discover_or_reset_device,
4962 
4963 	/*
4964 	 * scheduling support
4965 	 */
4966 	.get_frame_number =	xhci_get_frame,
4967 
4968 	/*
4969 	 * root hub support
4970 	 */
4971 	.hub_control =		xhci_hub_control,
4972 	.hub_status_data =	xhci_hub_status_data,
4973 	.bus_suspend =		xhci_bus_suspend,
4974 	.bus_resume =		xhci_bus_resume,
4975 
4976 	/*
4977 	 * call back when device connected and addressed
4978 	 */
4979 	.update_device =        xhci_update_device,
4980 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4981 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4982 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
4983 	.find_raw_port_number =	xhci_find_raw_port_number,
4984 };
4985 
4986 void xhci_init_driver(struct hc_driver *drv,
4987 		      const struct xhci_driver_overrides *over)
4988 {
4989 	BUG_ON(!over);
4990 
4991 	/* Copy the generic table to drv then apply the overrides */
4992 	*drv = xhci_hc_driver;
4993 
4994 	if (over) {
4995 		drv->hcd_priv_size += over->extra_priv_size;
4996 		if (over->reset)
4997 			drv->reset = over->reset;
4998 		if (over->start)
4999 			drv->start = over->start;
5000 	}
5001 }
5002 EXPORT_SYMBOL_GPL(xhci_init_driver);
5003 
5004 MODULE_DESCRIPTION(DRIVER_DESC);
5005 MODULE_AUTHOR(DRIVER_AUTHOR);
5006 MODULE_LICENSE("GPL");
5007 
5008 static int __init xhci_hcd_init(void)
5009 {
5010 	/*
5011 	 * Check the compiler generated sizes of structures that must be laid
5012 	 * out in specific ways for hardware access.
5013 	 */
5014 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5015 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5016 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5017 	/* xhci_device_control has eight fields, and also
5018 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5019 	 */
5020 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5021 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5022 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5023 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5024 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5025 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5026 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5027 
5028 	if (usb_disabled())
5029 		return -ENODEV;
5030 
5031 	return 0;
5032 }
5033 
5034 /*
5035  * If an init function is provided, an exit function must also be provided
5036  * to allow module unload.
5037  */
5038 static void __exit xhci_hcd_fini(void) { }
5039 
5040 module_init(xhci_hcd_init);
5041 module_exit(xhci_hcd_fini);
5042