xref: /openbmc/linux/drivers/usb/host/xhci.c (revision bc000245)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42 
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
44 /*
45  * xhci_handshake - spin reading hc until handshake completes or fails
46  * @ptr: address of hc register to be read
47  * @mask: bits to look at in result of read
48  * @done: value of those bits when handshake succeeds
49  * @usec: timeout in microseconds
50  *
51  * Returns negative errno, or zero on success
52  *
53  * Success happens when the "mask" bits have the specified value (hardware
54  * handshake done).  There are two failure modes:  "usec" have passed (major
55  * hardware flakeout), or the register reads as all-ones (hardware removed).
56  */
57 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58 		      u32 mask, u32 done, int usec)
59 {
60 	u32	result;
61 
62 	do {
63 		result = xhci_readl(xhci, ptr);
64 		if (result == ~(u32)0)		/* card removed */
65 			return -ENODEV;
66 		result &= mask;
67 		if (result == done)
68 			return 0;
69 		udelay(1);
70 		usec--;
71 	} while (usec > 0);
72 	return -ETIMEDOUT;
73 }
74 
75 /*
76  * Disable interrupts and begin the xHCI halting process.
77  */
78 void xhci_quiesce(struct xhci_hcd *xhci)
79 {
80 	u32 halted;
81 	u32 cmd;
82 	u32 mask;
83 
84 	mask = ~(XHCI_IRQS);
85 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
86 	if (!halted)
87 		mask &= ~CMD_RUN;
88 
89 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
90 	cmd &= mask;
91 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 }
93 
94 /*
95  * Force HC into halt state.
96  *
97  * Disable any IRQs and clear the run/stop bit.
98  * HC will complete any current and actively pipelined transactions, and
99  * should halt within 16 ms of the run/stop bit being cleared.
100  * Read HC Halted bit in the status register to see when the HC is finished.
101  */
102 int xhci_halt(struct xhci_hcd *xhci)
103 {
104 	int ret;
105 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
106 	xhci_quiesce(xhci);
107 
108 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
109 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
110 	if (!ret) {
111 		xhci->xhc_state |= XHCI_STATE_HALTED;
112 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
113 	} else
114 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
115 				XHCI_MAX_HALT_USEC);
116 	return ret;
117 }
118 
119 /*
120  * Set the run bit and wait for the host to be running.
121  */
122 static int xhci_start(struct xhci_hcd *xhci)
123 {
124 	u32 temp;
125 	int ret;
126 
127 	temp = xhci_readl(xhci, &xhci->op_regs->command);
128 	temp |= (CMD_RUN);
129 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
130 			temp);
131 	xhci_writel(xhci, temp, &xhci->op_regs->command);
132 
133 	/*
134 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
135 	 * running.
136 	 */
137 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
138 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
139 	if (ret == -ETIMEDOUT)
140 		xhci_err(xhci, "Host took too long to start, "
141 				"waited %u microseconds.\n",
142 				XHCI_MAX_HALT_USEC);
143 	if (!ret)
144 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
145 	return ret;
146 }
147 
148 /*
149  * Reset a halted HC.
150  *
151  * This resets pipelines, timers, counters, state machines, etc.
152  * Transactions will be terminated immediately, and operational registers
153  * will be set to their defaults.
154  */
155 int xhci_reset(struct xhci_hcd *xhci)
156 {
157 	u32 command;
158 	u32 state;
159 	int ret, i;
160 
161 	state = xhci_readl(xhci, &xhci->op_regs->status);
162 	if ((state & STS_HALT) == 0) {
163 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
164 		return 0;
165 	}
166 
167 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
168 	command = xhci_readl(xhci, &xhci->op_regs->command);
169 	command |= CMD_RESET;
170 	xhci_writel(xhci, command, &xhci->op_regs->command);
171 
172 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
173 			CMD_RESET, 0, 10 * 1000 * 1000);
174 	if (ret)
175 		return ret;
176 
177 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
178 			 "Wait for controller to be ready for doorbell rings");
179 	/*
180 	 * xHCI cannot write to any doorbells or operational registers other
181 	 * than status until the "Controller Not Ready" flag is cleared.
182 	 */
183 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
184 			STS_CNR, 0, 10 * 1000 * 1000);
185 
186 	for (i = 0; i < 2; ++i) {
187 		xhci->bus_state[i].port_c_suspend = 0;
188 		xhci->bus_state[i].suspended_ports = 0;
189 		xhci->bus_state[i].resuming_ports = 0;
190 	}
191 
192 	return ret;
193 }
194 
195 #ifdef CONFIG_PCI
196 static int xhci_free_msi(struct xhci_hcd *xhci)
197 {
198 	int i;
199 
200 	if (!xhci->msix_entries)
201 		return -EINVAL;
202 
203 	for (i = 0; i < xhci->msix_count; i++)
204 		if (xhci->msix_entries[i].vector)
205 			free_irq(xhci->msix_entries[i].vector,
206 					xhci_to_hcd(xhci));
207 	return 0;
208 }
209 
210 /*
211  * Set up MSI
212  */
213 static int xhci_setup_msi(struct xhci_hcd *xhci)
214 {
215 	int ret;
216 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
217 
218 	ret = pci_enable_msi(pdev);
219 	if (ret) {
220 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
221 				"failed to allocate MSI entry");
222 		return ret;
223 	}
224 
225 	ret = request_irq(pdev->irq, xhci_msi_irq,
226 				0, "xhci_hcd", xhci_to_hcd(xhci));
227 	if (ret) {
228 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
229 				"disable MSI interrupt");
230 		pci_disable_msi(pdev);
231 	}
232 
233 	return ret;
234 }
235 
236 /*
237  * Free IRQs
238  * free all IRQs request
239  */
240 static void xhci_free_irq(struct xhci_hcd *xhci)
241 {
242 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
243 	int ret;
244 
245 	/* return if using legacy interrupt */
246 	if (xhci_to_hcd(xhci)->irq > 0)
247 		return;
248 
249 	ret = xhci_free_msi(xhci);
250 	if (!ret)
251 		return;
252 	if (pdev->irq > 0)
253 		free_irq(pdev->irq, xhci_to_hcd(xhci));
254 
255 	return;
256 }
257 
258 /*
259  * Set up MSI-X
260  */
261 static int xhci_setup_msix(struct xhci_hcd *xhci)
262 {
263 	int i, ret = 0;
264 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
265 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
266 
267 	/*
268 	 * calculate number of msi-x vectors supported.
269 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
270 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
271 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
272 	 *   Add additional 1 vector to ensure always available interrupt.
273 	 */
274 	xhci->msix_count = min(num_online_cpus() + 1,
275 				HCS_MAX_INTRS(xhci->hcs_params1));
276 
277 	xhci->msix_entries =
278 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
279 				GFP_KERNEL);
280 	if (!xhci->msix_entries) {
281 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
282 		return -ENOMEM;
283 	}
284 
285 	for (i = 0; i < xhci->msix_count; i++) {
286 		xhci->msix_entries[i].entry = i;
287 		xhci->msix_entries[i].vector = 0;
288 	}
289 
290 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
291 	if (ret) {
292 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
293 				"Failed to enable MSI-X");
294 		goto free_entries;
295 	}
296 
297 	for (i = 0; i < xhci->msix_count; i++) {
298 		ret = request_irq(xhci->msix_entries[i].vector,
299 				xhci_msi_irq,
300 				0, "xhci_hcd", xhci_to_hcd(xhci));
301 		if (ret)
302 			goto disable_msix;
303 	}
304 
305 	hcd->msix_enabled = 1;
306 	return ret;
307 
308 disable_msix:
309 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
310 	xhci_free_irq(xhci);
311 	pci_disable_msix(pdev);
312 free_entries:
313 	kfree(xhci->msix_entries);
314 	xhci->msix_entries = NULL;
315 	return ret;
316 }
317 
318 /* Free any IRQs and disable MSI-X */
319 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
320 {
321 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
322 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
323 
324 	xhci_free_irq(xhci);
325 
326 	if (xhci->msix_entries) {
327 		pci_disable_msix(pdev);
328 		kfree(xhci->msix_entries);
329 		xhci->msix_entries = NULL;
330 	} else {
331 		pci_disable_msi(pdev);
332 	}
333 
334 	hcd->msix_enabled = 0;
335 	return;
336 }
337 
338 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
339 {
340 	int i;
341 
342 	if (xhci->msix_entries) {
343 		for (i = 0; i < xhci->msix_count; i++)
344 			synchronize_irq(xhci->msix_entries[i].vector);
345 	}
346 }
347 
348 static int xhci_try_enable_msi(struct usb_hcd *hcd)
349 {
350 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
351 	struct pci_dev  *pdev;
352 	int ret;
353 
354 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
355 	if (xhci->quirks & XHCI_PLAT)
356 		return 0;
357 
358 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
359 	/*
360 	 * Some Fresco Logic host controllers advertise MSI, but fail to
361 	 * generate interrupts.  Don't even try to enable MSI.
362 	 */
363 	if (xhci->quirks & XHCI_BROKEN_MSI)
364 		goto legacy_irq;
365 
366 	/* unregister the legacy interrupt */
367 	if (hcd->irq)
368 		free_irq(hcd->irq, hcd);
369 	hcd->irq = 0;
370 
371 	ret = xhci_setup_msix(xhci);
372 	if (ret)
373 		/* fall back to msi*/
374 		ret = xhci_setup_msi(xhci);
375 
376 	if (!ret)
377 		/* hcd->irq is 0, we have MSI */
378 		return 0;
379 
380 	if (!pdev->irq) {
381 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
382 		return -EINVAL;
383 	}
384 
385  legacy_irq:
386 	/* fall back to legacy interrupt*/
387 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
388 			hcd->irq_descr, hcd);
389 	if (ret) {
390 		xhci_err(xhci, "request interrupt %d failed\n",
391 				pdev->irq);
392 		return ret;
393 	}
394 	hcd->irq = pdev->irq;
395 	return 0;
396 }
397 
398 #else
399 
400 static int xhci_try_enable_msi(struct usb_hcd *hcd)
401 {
402 	return 0;
403 }
404 
405 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
406 {
407 }
408 
409 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
410 {
411 }
412 
413 #endif
414 
415 static void compliance_mode_recovery(unsigned long arg)
416 {
417 	struct xhci_hcd *xhci;
418 	struct usb_hcd *hcd;
419 	u32 temp;
420 	int i;
421 
422 	xhci = (struct xhci_hcd *)arg;
423 
424 	for (i = 0; i < xhci->num_usb3_ports; i++) {
425 		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
426 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
427 			/*
428 			 * Compliance Mode Detected. Letting USB Core
429 			 * handle the Warm Reset
430 			 */
431 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
432 					"Compliance mode detected->port %d",
433 					i + 1);
434 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
435 					"Attempting compliance mode recovery");
436 			hcd = xhci->shared_hcd;
437 
438 			if (hcd->state == HC_STATE_SUSPENDED)
439 				usb_hcd_resume_root_hub(hcd);
440 
441 			usb_hcd_poll_rh_status(hcd);
442 		}
443 	}
444 
445 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
446 		mod_timer(&xhci->comp_mode_recovery_timer,
447 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
448 }
449 
450 /*
451  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
452  * that causes ports behind that hardware to enter compliance mode sometimes.
453  * The quirk creates a timer that polls every 2 seconds the link state of
454  * each host controller's port and recovers it by issuing a Warm reset
455  * if Compliance mode is detected, otherwise the port will become "dead" (no
456  * device connections or disconnections will be detected anymore). Becasue no
457  * status event is generated when entering compliance mode (per xhci spec),
458  * this quirk is needed on systems that have the failing hardware installed.
459  */
460 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
461 {
462 	xhci->port_status_u0 = 0;
463 	init_timer(&xhci->comp_mode_recovery_timer);
464 
465 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
466 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
467 	xhci->comp_mode_recovery_timer.expires = jiffies +
468 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
469 
470 	set_timer_slack(&xhci->comp_mode_recovery_timer,
471 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 	add_timer(&xhci->comp_mode_recovery_timer);
473 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
474 			"Compliance mode recovery timer initialized");
475 }
476 
477 /*
478  * This function identifies the systems that have installed the SN65LVPE502CP
479  * USB3.0 re-driver and that need the Compliance Mode Quirk.
480  * Systems:
481  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
482  */
483 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
484 {
485 	const char *dmi_product_name, *dmi_sys_vendor;
486 
487 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
488 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
489 	if (!dmi_product_name || !dmi_sys_vendor)
490 		return false;
491 
492 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
493 		return false;
494 
495 	if (strstr(dmi_product_name, "Z420") ||
496 			strstr(dmi_product_name, "Z620") ||
497 			strstr(dmi_product_name, "Z820") ||
498 			strstr(dmi_product_name, "Z1 Workstation"))
499 		return true;
500 
501 	return false;
502 }
503 
504 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
505 {
506 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
507 }
508 
509 
510 /*
511  * Initialize memory for HCD and xHC (one-time init).
512  *
513  * Program the PAGESIZE register, initialize the device context array, create
514  * device contexts (?), set up a command ring segment (or two?), create event
515  * ring (one for now).
516  */
517 int xhci_init(struct usb_hcd *hcd)
518 {
519 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
520 	int retval = 0;
521 
522 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
523 	spin_lock_init(&xhci->lock);
524 	if (xhci->hci_version == 0x95 && link_quirk) {
525 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
526 				"QUIRK: Not clearing Link TRB chain bits.");
527 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
528 	} else {
529 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
530 				"xHCI doesn't need link TRB QUIRK");
531 	}
532 	retval = xhci_mem_init(xhci, GFP_KERNEL);
533 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
534 
535 	/* Initializing Compliance Mode Recovery Data If Needed */
536 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
537 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
538 		compliance_mode_recovery_timer_init(xhci);
539 	}
540 
541 	return retval;
542 }
543 
544 /*-------------------------------------------------------------------------*/
545 
546 
547 static int xhci_run_finished(struct xhci_hcd *xhci)
548 {
549 	if (xhci_start(xhci)) {
550 		xhci_halt(xhci);
551 		return -ENODEV;
552 	}
553 	xhci->shared_hcd->state = HC_STATE_RUNNING;
554 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
555 
556 	if (xhci->quirks & XHCI_NEC_HOST)
557 		xhci_ring_cmd_db(xhci);
558 
559 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
560 			"Finished xhci_run for USB3 roothub");
561 	return 0;
562 }
563 
564 /*
565  * Start the HC after it was halted.
566  *
567  * This function is called by the USB core when the HC driver is added.
568  * Its opposite is xhci_stop().
569  *
570  * xhci_init() must be called once before this function can be called.
571  * Reset the HC, enable device slot contexts, program DCBAAP, and
572  * set command ring pointer and event ring pointer.
573  *
574  * Setup MSI-X vectors and enable interrupts.
575  */
576 int xhci_run(struct usb_hcd *hcd)
577 {
578 	u32 temp;
579 	u64 temp_64;
580 	int ret;
581 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582 
583 	/* Start the xHCI host controller running only after the USB 2.0 roothub
584 	 * is setup.
585 	 */
586 
587 	hcd->uses_new_polling = 1;
588 	if (!usb_hcd_is_primary_hcd(hcd))
589 		return xhci_run_finished(xhci);
590 
591 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
592 
593 	ret = xhci_try_enable_msi(hcd);
594 	if (ret)
595 		return ret;
596 
597 	xhci_dbg(xhci, "Command ring memory map follows:\n");
598 	xhci_debug_ring(xhci, xhci->cmd_ring);
599 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
600 	xhci_dbg_cmd_ptrs(xhci);
601 
602 	xhci_dbg(xhci, "ERST memory map follows:\n");
603 	xhci_dbg_erst(xhci, &xhci->erst);
604 	xhci_dbg(xhci, "Event ring:\n");
605 	xhci_debug_ring(xhci, xhci->event_ring);
606 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
607 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
608 	temp_64 &= ~ERST_PTR_MASK;
609 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
610 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
611 
612 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613 			"// Set the interrupt modulation register");
614 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
615 	temp &= ~ER_IRQ_INTERVAL_MASK;
616 	temp |= (u32) 160;
617 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
618 
619 	/* Set the HCD state before we enable the irqs */
620 	temp = xhci_readl(xhci, &xhci->op_regs->command);
621 	temp |= (CMD_EIE);
622 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623 			"// Enable interrupts, cmd = 0x%x.", temp);
624 	xhci_writel(xhci, temp, &xhci->op_regs->command);
625 
626 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
627 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
628 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
629 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
630 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
631 			&xhci->ir_set->irq_pending);
632 	xhci_print_ir_set(xhci, 0);
633 
634 	if (xhci->quirks & XHCI_NEC_HOST)
635 		xhci_queue_vendor_command(xhci, 0, 0, 0,
636 				TRB_TYPE(TRB_NEC_GET_FW));
637 
638 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 			"Finished xhci_run for USB2 roothub");
640 	return 0;
641 }
642 
643 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
644 {
645 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
646 
647 	spin_lock_irq(&xhci->lock);
648 	xhci_halt(xhci);
649 
650 	/* The shared_hcd is going to be deallocated shortly (the USB core only
651 	 * calls this function when allocation fails in usb_add_hcd(), or
652 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
653 	 */
654 	xhci->shared_hcd = NULL;
655 	spin_unlock_irq(&xhci->lock);
656 }
657 
658 /*
659  * Stop xHCI driver.
660  *
661  * This function is called by the USB core when the HC driver is removed.
662  * Its opposite is xhci_run().
663  *
664  * Disable device contexts, disable IRQs, and quiesce the HC.
665  * Reset the HC, finish any completed transactions, and cleanup memory.
666  */
667 void xhci_stop(struct usb_hcd *hcd)
668 {
669 	u32 temp;
670 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
671 
672 	if (!usb_hcd_is_primary_hcd(hcd)) {
673 		xhci_only_stop_hcd(xhci->shared_hcd);
674 		return;
675 	}
676 
677 	spin_lock_irq(&xhci->lock);
678 	/* Make sure the xHC is halted for a USB3 roothub
679 	 * (xhci_stop() could be called as part of failed init).
680 	 */
681 	xhci_halt(xhci);
682 	xhci_reset(xhci);
683 	spin_unlock_irq(&xhci->lock);
684 
685 	xhci_cleanup_msix(xhci);
686 
687 	/* Deleting Compliance Mode Recovery Timer */
688 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
689 			(!(xhci_all_ports_seen_u0(xhci)))) {
690 		del_timer_sync(&xhci->comp_mode_recovery_timer);
691 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
692 				"%s: compliance mode recovery timer deleted",
693 				__func__);
694 	}
695 
696 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
697 		usb_amd_dev_put();
698 
699 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
700 			"// Disabling event ring interrupts");
701 	temp = xhci_readl(xhci, &xhci->op_regs->status);
702 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
703 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
704 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
705 			&xhci->ir_set->irq_pending);
706 	xhci_print_ir_set(xhci, 0);
707 
708 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
709 	xhci_mem_cleanup(xhci);
710 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
711 			"xhci_stop completed - status = %x",
712 			xhci_readl(xhci, &xhci->op_regs->status));
713 }
714 
715 /*
716  * Shutdown HC (not bus-specific)
717  *
718  * This is called when the machine is rebooting or halting.  We assume that the
719  * machine will be powered off, and the HC's internal state will be reset.
720  * Don't bother to free memory.
721  *
722  * This will only ever be called with the main usb_hcd (the USB3 roothub).
723  */
724 void xhci_shutdown(struct usb_hcd *hcd)
725 {
726 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
727 
728 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
729 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
730 
731 	spin_lock_irq(&xhci->lock);
732 	xhci_halt(xhci);
733 	/* Workaround for spurious wakeups at shutdown with HSW */
734 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
735 		xhci_reset(xhci);
736 	spin_unlock_irq(&xhci->lock);
737 
738 	xhci_cleanup_msix(xhci);
739 
740 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
741 			"xhci_shutdown completed - status = %x",
742 			xhci_readl(xhci, &xhci->op_regs->status));
743 
744 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
745 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
746 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
747 }
748 
749 #ifdef CONFIG_PM
750 static void xhci_save_registers(struct xhci_hcd *xhci)
751 {
752 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
753 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
754 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
755 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
756 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
757 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
758 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
759 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
760 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
761 }
762 
763 static void xhci_restore_registers(struct xhci_hcd *xhci)
764 {
765 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
766 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
767 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
768 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
769 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
770 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
771 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
772 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
773 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
774 }
775 
776 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
777 {
778 	u64	val_64;
779 
780 	/* step 2: initialize command ring buffer */
781 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
782 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
783 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
784 				      xhci->cmd_ring->dequeue) &
785 		 (u64) ~CMD_RING_RSVD_BITS) |
786 		xhci->cmd_ring->cycle_state;
787 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
788 			"// Setting command ring address to 0x%llx",
789 			(long unsigned long) val_64);
790 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
791 }
792 
793 /*
794  * The whole command ring must be cleared to zero when we suspend the host.
795  *
796  * The host doesn't save the command ring pointer in the suspend well, so we
797  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
798  * aligned, because of the reserved bits in the command ring dequeue pointer
799  * register.  Therefore, we can't just set the dequeue pointer back in the
800  * middle of the ring (TRBs are 16-byte aligned).
801  */
802 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
803 {
804 	struct xhci_ring *ring;
805 	struct xhci_segment *seg;
806 
807 	ring = xhci->cmd_ring;
808 	seg = ring->deq_seg;
809 	do {
810 		memset(seg->trbs, 0,
811 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
812 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
813 			cpu_to_le32(~TRB_CYCLE);
814 		seg = seg->next;
815 	} while (seg != ring->deq_seg);
816 
817 	/* Reset the software enqueue and dequeue pointers */
818 	ring->deq_seg = ring->first_seg;
819 	ring->dequeue = ring->first_seg->trbs;
820 	ring->enq_seg = ring->deq_seg;
821 	ring->enqueue = ring->dequeue;
822 
823 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
824 	/*
825 	 * Ring is now zeroed, so the HW should look for change of ownership
826 	 * when the cycle bit is set to 1.
827 	 */
828 	ring->cycle_state = 1;
829 
830 	/*
831 	 * Reset the hardware dequeue pointer.
832 	 * Yes, this will need to be re-written after resume, but we're paranoid
833 	 * and want to make sure the hardware doesn't access bogus memory
834 	 * because, say, the BIOS or an SMI started the host without changing
835 	 * the command ring pointers.
836 	 */
837 	xhci_set_cmd_ring_deq(xhci);
838 }
839 
840 /*
841  * Stop HC (not bus-specific)
842  *
843  * This is called when the machine transition into S3/S4 mode.
844  *
845  */
846 int xhci_suspend(struct xhci_hcd *xhci)
847 {
848 	int			rc = 0;
849 	unsigned int		delay = XHCI_MAX_HALT_USEC;
850 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
851 	u32			command;
852 
853 	if (hcd->state != HC_STATE_SUSPENDED ||
854 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
855 		return -EINVAL;
856 
857 	/* Don't poll the roothubs on bus suspend. */
858 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
859 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
860 	del_timer_sync(&hcd->rh_timer);
861 
862 	spin_lock_irq(&xhci->lock);
863 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
864 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
865 	/* step 1: stop endpoint */
866 	/* skipped assuming that port suspend has done */
867 
868 	/* step 2: clear Run/Stop bit */
869 	command = xhci_readl(xhci, &xhci->op_regs->command);
870 	command &= ~CMD_RUN;
871 	xhci_writel(xhci, command, &xhci->op_regs->command);
872 
873 	/* Some chips from Fresco Logic need an extraordinary delay */
874 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
875 
876 	if (xhci_handshake(xhci, &xhci->op_regs->status,
877 		      STS_HALT, STS_HALT, delay)) {
878 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
879 		spin_unlock_irq(&xhci->lock);
880 		return -ETIMEDOUT;
881 	}
882 	xhci_clear_command_ring(xhci);
883 
884 	/* step 3: save registers */
885 	xhci_save_registers(xhci);
886 
887 	/* step 4: set CSS flag */
888 	command = xhci_readl(xhci, &xhci->op_regs->command);
889 	command |= CMD_CSS;
890 	xhci_writel(xhci, command, &xhci->op_regs->command);
891 	if (xhci_handshake(xhci, &xhci->op_regs->status,
892 				STS_SAVE, 0, 10 * 1000)) {
893 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
894 		spin_unlock_irq(&xhci->lock);
895 		return -ETIMEDOUT;
896 	}
897 	spin_unlock_irq(&xhci->lock);
898 
899 	/*
900 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
901 	 * is about to be suspended.
902 	 */
903 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
904 			(!(xhci_all_ports_seen_u0(xhci)))) {
905 		del_timer_sync(&xhci->comp_mode_recovery_timer);
906 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
907 				"%s: compliance mode recovery timer deleted",
908 				__func__);
909 	}
910 
911 	/* step 5: remove core well power */
912 	/* synchronize irq when using MSI-X */
913 	xhci_msix_sync_irqs(xhci);
914 
915 	return rc;
916 }
917 
918 /*
919  * start xHC (not bus-specific)
920  *
921  * This is called when the machine transition from S3/S4 mode.
922  *
923  */
924 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
925 {
926 	u32			command, temp = 0;
927 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
928 	struct usb_hcd		*secondary_hcd;
929 	int			retval = 0;
930 	bool			comp_timer_running = false;
931 
932 	/* Wait a bit if either of the roothubs need to settle from the
933 	 * transition into bus suspend.
934 	 */
935 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
936 			time_before(jiffies,
937 				xhci->bus_state[1].next_statechange))
938 		msleep(100);
939 
940 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
941 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
942 
943 	spin_lock_irq(&xhci->lock);
944 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
945 		hibernated = true;
946 
947 	if (!hibernated) {
948 		/* step 1: restore register */
949 		xhci_restore_registers(xhci);
950 		/* step 2: initialize command ring buffer */
951 		xhci_set_cmd_ring_deq(xhci);
952 		/* step 3: restore state and start state*/
953 		/* step 3: set CRS flag */
954 		command = xhci_readl(xhci, &xhci->op_regs->command);
955 		command |= CMD_CRS;
956 		xhci_writel(xhci, command, &xhci->op_regs->command);
957 		if (xhci_handshake(xhci, &xhci->op_regs->status,
958 			      STS_RESTORE, 0, 10 * 1000)) {
959 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
960 			spin_unlock_irq(&xhci->lock);
961 			return -ETIMEDOUT;
962 		}
963 		temp = xhci_readl(xhci, &xhci->op_regs->status);
964 	}
965 
966 	/* If restore operation fails, re-initialize the HC during resume */
967 	if ((temp & STS_SRE) || hibernated) {
968 
969 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
970 				!(xhci_all_ports_seen_u0(xhci))) {
971 			del_timer_sync(&xhci->comp_mode_recovery_timer);
972 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
973 				"Compliance Mode Recovery Timer deleted!");
974 		}
975 
976 		/* Let the USB core know _both_ roothubs lost power. */
977 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
978 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
979 
980 		xhci_dbg(xhci, "Stop HCD\n");
981 		xhci_halt(xhci);
982 		xhci_reset(xhci);
983 		spin_unlock_irq(&xhci->lock);
984 		xhci_cleanup_msix(xhci);
985 
986 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
987 		temp = xhci_readl(xhci, &xhci->op_regs->status);
988 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
989 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
990 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
991 				&xhci->ir_set->irq_pending);
992 		xhci_print_ir_set(xhci, 0);
993 
994 		xhci_dbg(xhci, "cleaning up memory\n");
995 		xhci_mem_cleanup(xhci);
996 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
997 			    xhci_readl(xhci, &xhci->op_regs->status));
998 
999 		/* USB core calls the PCI reinit and start functions twice:
1000 		 * first with the primary HCD, and then with the secondary HCD.
1001 		 * If we don't do the same, the host will never be started.
1002 		 */
1003 		if (!usb_hcd_is_primary_hcd(hcd))
1004 			secondary_hcd = hcd;
1005 		else
1006 			secondary_hcd = xhci->shared_hcd;
1007 
1008 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1009 		retval = xhci_init(hcd->primary_hcd);
1010 		if (retval)
1011 			return retval;
1012 		comp_timer_running = true;
1013 
1014 		xhci_dbg(xhci, "Start the primary HCD\n");
1015 		retval = xhci_run(hcd->primary_hcd);
1016 		if (!retval) {
1017 			xhci_dbg(xhci, "Start the secondary HCD\n");
1018 			retval = xhci_run(secondary_hcd);
1019 		}
1020 		hcd->state = HC_STATE_SUSPENDED;
1021 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1022 		goto done;
1023 	}
1024 
1025 	/* step 4: set Run/Stop bit */
1026 	command = xhci_readl(xhci, &xhci->op_regs->command);
1027 	command |= CMD_RUN;
1028 	xhci_writel(xhci, command, &xhci->op_regs->command);
1029 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1030 		  0, 250 * 1000);
1031 
1032 	/* step 5: walk topology and initialize portsc,
1033 	 * portpmsc and portli
1034 	 */
1035 	/* this is done in bus_resume */
1036 
1037 	/* step 6: restart each of the previously
1038 	 * Running endpoints by ringing their doorbells
1039 	 */
1040 
1041 	spin_unlock_irq(&xhci->lock);
1042 
1043  done:
1044 	if (retval == 0) {
1045 		usb_hcd_resume_root_hub(hcd);
1046 		usb_hcd_resume_root_hub(xhci->shared_hcd);
1047 	}
1048 
1049 	/*
1050 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1051 	 * be re-initialized Always after a system resume. Ports are subject
1052 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1053 	 * ports have entered previously to U0 before system's suspension.
1054 	 */
1055 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1056 		compliance_mode_recovery_timer_init(xhci);
1057 
1058 	/* Re-enable port polling. */
1059 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1060 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1061 	usb_hcd_poll_rh_status(hcd);
1062 
1063 	return retval;
1064 }
1065 #endif	/* CONFIG_PM */
1066 
1067 /*-------------------------------------------------------------------------*/
1068 
1069 /**
1070  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1071  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1072  * value to right shift 1 for the bitmask.
1073  *
1074  * Index  = (epnum * 2) + direction - 1,
1075  * where direction = 0 for OUT, 1 for IN.
1076  * For control endpoints, the IN index is used (OUT index is unused), so
1077  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1078  */
1079 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1080 {
1081 	unsigned int index;
1082 	if (usb_endpoint_xfer_control(desc))
1083 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1084 	else
1085 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1086 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1087 	return index;
1088 }
1089 
1090 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1091  * address from the XHCI endpoint index.
1092  */
1093 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1094 {
1095 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1096 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1097 	return direction | number;
1098 }
1099 
1100 /* Find the flag for this endpoint (for use in the control context).  Use the
1101  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1102  * bit 1, etc.
1103  */
1104 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1105 {
1106 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1107 }
1108 
1109 /* Find the flag for this endpoint (for use in the control context).  Use the
1110  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1111  * bit 1, etc.
1112  */
1113 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1114 {
1115 	return 1 << (ep_index + 1);
1116 }
1117 
1118 /* Compute the last valid endpoint context index.  Basically, this is the
1119  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1120  * we find the most significant bit set in the added contexts flags.
1121  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1122  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1123  */
1124 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1125 {
1126 	return fls(added_ctxs) - 1;
1127 }
1128 
1129 /* Returns 1 if the arguments are OK;
1130  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1131  */
1132 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1133 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1134 		const char *func) {
1135 	struct xhci_hcd	*xhci;
1136 	struct xhci_virt_device	*virt_dev;
1137 
1138 	if (!hcd || (check_ep && !ep) || !udev) {
1139 		pr_debug("xHCI %s called with invalid args\n", func);
1140 		return -EINVAL;
1141 	}
1142 	if (!udev->parent) {
1143 		pr_debug("xHCI %s called for root hub\n", func);
1144 		return 0;
1145 	}
1146 
1147 	xhci = hcd_to_xhci(hcd);
1148 	if (check_virt_dev) {
1149 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1150 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1151 					func);
1152 			return -EINVAL;
1153 		}
1154 
1155 		virt_dev = xhci->devs[udev->slot_id];
1156 		if (virt_dev->udev != udev) {
1157 			xhci_dbg(xhci, "xHCI %s called with udev and "
1158 					  "virt_dev does not match\n", func);
1159 			return -EINVAL;
1160 		}
1161 	}
1162 
1163 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1164 		return -ENODEV;
1165 
1166 	return 1;
1167 }
1168 
1169 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1170 		struct usb_device *udev, struct xhci_command *command,
1171 		bool ctx_change, bool must_succeed);
1172 
1173 /*
1174  * Full speed devices may have a max packet size greater than 8 bytes, but the
1175  * USB core doesn't know that until it reads the first 8 bytes of the
1176  * descriptor.  If the usb_device's max packet size changes after that point,
1177  * we need to issue an evaluate context command and wait on it.
1178  */
1179 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1180 		unsigned int ep_index, struct urb *urb)
1181 {
1182 	struct xhci_container_ctx *in_ctx;
1183 	struct xhci_container_ctx *out_ctx;
1184 	struct xhci_input_control_ctx *ctrl_ctx;
1185 	struct xhci_ep_ctx *ep_ctx;
1186 	int max_packet_size;
1187 	int hw_max_packet_size;
1188 	int ret = 0;
1189 
1190 	out_ctx = xhci->devs[slot_id]->out_ctx;
1191 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1192 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1193 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1194 	if (hw_max_packet_size != max_packet_size) {
1195 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1196 				"Max Packet Size for ep 0 changed.");
1197 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1198 				"Max packet size in usb_device = %d",
1199 				max_packet_size);
1200 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1201 				"Max packet size in xHCI HW = %d",
1202 				hw_max_packet_size);
1203 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1204 				"Issuing evaluate context command.");
1205 
1206 		/* Set up the input context flags for the command */
1207 		/* FIXME: This won't work if a non-default control endpoint
1208 		 * changes max packet sizes.
1209 		 */
1210 		in_ctx = xhci->devs[slot_id]->in_ctx;
1211 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1212 		if (!ctrl_ctx) {
1213 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1214 					__func__);
1215 			return -ENOMEM;
1216 		}
1217 		/* Set up the modified control endpoint 0 */
1218 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1219 				xhci->devs[slot_id]->out_ctx, ep_index);
1220 
1221 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1222 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1223 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1224 
1225 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1226 		ctrl_ctx->drop_flags = 0;
1227 
1228 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1229 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1230 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1231 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1232 
1233 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1234 				true, false);
1235 
1236 		/* Clean up the input context for later use by bandwidth
1237 		 * functions.
1238 		 */
1239 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1240 	}
1241 	return ret;
1242 }
1243 
1244 /*
1245  * non-error returns are a promise to giveback() the urb later
1246  * we drop ownership so next owner (or urb unlink) can get it
1247  */
1248 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1249 {
1250 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1251 	struct xhci_td *buffer;
1252 	unsigned long flags;
1253 	int ret = 0;
1254 	unsigned int slot_id, ep_index;
1255 	struct urb_priv	*urb_priv;
1256 	int size, i;
1257 
1258 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1259 					true, true, __func__) <= 0)
1260 		return -EINVAL;
1261 
1262 	slot_id = urb->dev->slot_id;
1263 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1264 
1265 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1266 		if (!in_interrupt())
1267 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1268 		ret = -ESHUTDOWN;
1269 		goto exit;
1270 	}
1271 
1272 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1273 		size = urb->number_of_packets;
1274 	else
1275 		size = 1;
1276 
1277 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1278 				  size * sizeof(struct xhci_td *), mem_flags);
1279 	if (!urb_priv)
1280 		return -ENOMEM;
1281 
1282 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1283 	if (!buffer) {
1284 		kfree(urb_priv);
1285 		return -ENOMEM;
1286 	}
1287 
1288 	for (i = 0; i < size; i++) {
1289 		urb_priv->td[i] = buffer;
1290 		buffer++;
1291 	}
1292 
1293 	urb_priv->length = size;
1294 	urb_priv->td_cnt = 0;
1295 	urb->hcpriv = urb_priv;
1296 
1297 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1298 		/* Check to see if the max packet size for the default control
1299 		 * endpoint changed during FS device enumeration
1300 		 */
1301 		if (urb->dev->speed == USB_SPEED_FULL) {
1302 			ret = xhci_check_maxpacket(xhci, slot_id,
1303 					ep_index, urb);
1304 			if (ret < 0) {
1305 				xhci_urb_free_priv(xhci, urb_priv);
1306 				urb->hcpriv = NULL;
1307 				return ret;
1308 			}
1309 		}
1310 
1311 		/* We have a spinlock and interrupts disabled, so we must pass
1312 		 * atomic context to this function, which may allocate memory.
1313 		 */
1314 		spin_lock_irqsave(&xhci->lock, flags);
1315 		if (xhci->xhc_state & XHCI_STATE_DYING)
1316 			goto dying;
1317 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1318 				slot_id, ep_index);
1319 		if (ret)
1320 			goto free_priv;
1321 		spin_unlock_irqrestore(&xhci->lock, flags);
1322 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1323 		spin_lock_irqsave(&xhci->lock, flags);
1324 		if (xhci->xhc_state & XHCI_STATE_DYING)
1325 			goto dying;
1326 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1327 				EP_GETTING_STREAMS) {
1328 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1329 					"is transitioning to using streams.\n");
1330 			ret = -EINVAL;
1331 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1332 				EP_GETTING_NO_STREAMS) {
1333 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1334 					"is transitioning to "
1335 					"not having streams.\n");
1336 			ret = -EINVAL;
1337 		} else {
1338 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1339 					slot_id, ep_index);
1340 		}
1341 		if (ret)
1342 			goto free_priv;
1343 		spin_unlock_irqrestore(&xhci->lock, flags);
1344 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1345 		spin_lock_irqsave(&xhci->lock, flags);
1346 		if (xhci->xhc_state & XHCI_STATE_DYING)
1347 			goto dying;
1348 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1349 				slot_id, ep_index);
1350 		if (ret)
1351 			goto free_priv;
1352 		spin_unlock_irqrestore(&xhci->lock, flags);
1353 	} else {
1354 		spin_lock_irqsave(&xhci->lock, flags);
1355 		if (xhci->xhc_state & XHCI_STATE_DYING)
1356 			goto dying;
1357 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1358 				slot_id, ep_index);
1359 		if (ret)
1360 			goto free_priv;
1361 		spin_unlock_irqrestore(&xhci->lock, flags);
1362 	}
1363 exit:
1364 	return ret;
1365 dying:
1366 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1367 			"non-responsive xHCI host.\n",
1368 			urb->ep->desc.bEndpointAddress, urb);
1369 	ret = -ESHUTDOWN;
1370 free_priv:
1371 	xhci_urb_free_priv(xhci, urb_priv);
1372 	urb->hcpriv = NULL;
1373 	spin_unlock_irqrestore(&xhci->lock, flags);
1374 	return ret;
1375 }
1376 
1377 /* Get the right ring for the given URB.
1378  * If the endpoint supports streams, boundary check the URB's stream ID.
1379  * If the endpoint doesn't support streams, return the singular endpoint ring.
1380  */
1381 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1382 		struct urb *urb)
1383 {
1384 	unsigned int slot_id;
1385 	unsigned int ep_index;
1386 	unsigned int stream_id;
1387 	struct xhci_virt_ep *ep;
1388 
1389 	slot_id = urb->dev->slot_id;
1390 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1391 	stream_id = urb->stream_id;
1392 	ep = &xhci->devs[slot_id]->eps[ep_index];
1393 	/* Common case: no streams */
1394 	if (!(ep->ep_state & EP_HAS_STREAMS))
1395 		return ep->ring;
1396 
1397 	if (stream_id == 0) {
1398 		xhci_warn(xhci,
1399 				"WARN: Slot ID %u, ep index %u has streams, "
1400 				"but URB has no stream ID.\n",
1401 				slot_id, ep_index);
1402 		return NULL;
1403 	}
1404 
1405 	if (stream_id < ep->stream_info->num_streams)
1406 		return ep->stream_info->stream_rings[stream_id];
1407 
1408 	xhci_warn(xhci,
1409 			"WARN: Slot ID %u, ep index %u has "
1410 			"stream IDs 1 to %u allocated, "
1411 			"but stream ID %u is requested.\n",
1412 			slot_id, ep_index,
1413 			ep->stream_info->num_streams - 1,
1414 			stream_id);
1415 	return NULL;
1416 }
1417 
1418 /*
1419  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1420  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1421  * should pick up where it left off in the TD, unless a Set Transfer Ring
1422  * Dequeue Pointer is issued.
1423  *
1424  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1425  * the ring.  Since the ring is a contiguous structure, they can't be physically
1426  * removed.  Instead, there are two options:
1427  *
1428  *  1) If the HC is in the middle of processing the URB to be canceled, we
1429  *     simply move the ring's dequeue pointer past those TRBs using the Set
1430  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1431  *     when drivers timeout on the last submitted URB and attempt to cancel.
1432  *
1433  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1434  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1435  *     HC will need to invalidate the any TRBs it has cached after the stop
1436  *     endpoint command, as noted in the xHCI 0.95 errata.
1437  *
1438  *  3) The TD may have completed by the time the Stop Endpoint Command
1439  *     completes, so software needs to handle that case too.
1440  *
1441  * This function should protect against the TD enqueueing code ringing the
1442  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1443  * It also needs to account for multiple cancellations on happening at the same
1444  * time for the same endpoint.
1445  *
1446  * Note that this function can be called in any context, or so says
1447  * usb_hcd_unlink_urb()
1448  */
1449 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1450 {
1451 	unsigned long flags;
1452 	int ret, i;
1453 	u32 temp;
1454 	struct xhci_hcd *xhci;
1455 	struct urb_priv	*urb_priv;
1456 	struct xhci_td *td;
1457 	unsigned int ep_index;
1458 	struct xhci_ring *ep_ring;
1459 	struct xhci_virt_ep *ep;
1460 
1461 	xhci = hcd_to_xhci(hcd);
1462 	spin_lock_irqsave(&xhci->lock, flags);
1463 	/* Make sure the URB hasn't completed or been unlinked already */
1464 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1465 	if (ret || !urb->hcpriv)
1466 		goto done;
1467 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1468 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1469 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1470 				"HW died, freeing TD.");
1471 		urb_priv = urb->hcpriv;
1472 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1473 			td = urb_priv->td[i];
1474 			if (!list_empty(&td->td_list))
1475 				list_del_init(&td->td_list);
1476 			if (!list_empty(&td->cancelled_td_list))
1477 				list_del_init(&td->cancelled_td_list);
1478 		}
1479 
1480 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1481 		spin_unlock_irqrestore(&xhci->lock, flags);
1482 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1483 		xhci_urb_free_priv(xhci, urb_priv);
1484 		return ret;
1485 	}
1486 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1487 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1488 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1489 				"Ep 0x%x: URB %p to be canceled on "
1490 				"non-responsive xHCI host.",
1491 				urb->ep->desc.bEndpointAddress, urb);
1492 		/* Let the stop endpoint command watchdog timer (which set this
1493 		 * state) finish cleaning up the endpoint TD lists.  We must
1494 		 * have caught it in the middle of dropping a lock and giving
1495 		 * back an URB.
1496 		 */
1497 		goto done;
1498 	}
1499 
1500 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1501 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1502 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1503 	if (!ep_ring) {
1504 		ret = -EINVAL;
1505 		goto done;
1506 	}
1507 
1508 	urb_priv = urb->hcpriv;
1509 	i = urb_priv->td_cnt;
1510 	if (i < urb_priv->length)
1511 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1512 				"Cancel URB %p, dev %s, ep 0x%x, "
1513 				"starting at offset 0x%llx",
1514 				urb, urb->dev->devpath,
1515 				urb->ep->desc.bEndpointAddress,
1516 				(unsigned long long) xhci_trb_virt_to_dma(
1517 					urb_priv->td[i]->start_seg,
1518 					urb_priv->td[i]->first_trb));
1519 
1520 	for (; i < urb_priv->length; i++) {
1521 		td = urb_priv->td[i];
1522 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1523 	}
1524 
1525 	/* Queue a stop endpoint command, but only if this is
1526 	 * the first cancellation to be handled.
1527 	 */
1528 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1529 		ep->ep_state |= EP_HALT_PENDING;
1530 		ep->stop_cmds_pending++;
1531 		ep->stop_cmd_timer.expires = jiffies +
1532 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1533 		add_timer(&ep->stop_cmd_timer);
1534 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1535 		xhci_ring_cmd_db(xhci);
1536 	}
1537 done:
1538 	spin_unlock_irqrestore(&xhci->lock, flags);
1539 	return ret;
1540 }
1541 
1542 /* Drop an endpoint from a new bandwidth configuration for this device.
1543  * Only one call to this function is allowed per endpoint before
1544  * check_bandwidth() or reset_bandwidth() must be called.
1545  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1546  * add the endpoint to the schedule with possibly new parameters denoted by a
1547  * different endpoint descriptor in usb_host_endpoint.
1548  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1549  * not allowed.
1550  *
1551  * The USB core will not allow URBs to be queued to an endpoint that is being
1552  * disabled, so there's no need for mutual exclusion to protect
1553  * the xhci->devs[slot_id] structure.
1554  */
1555 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1556 		struct usb_host_endpoint *ep)
1557 {
1558 	struct xhci_hcd *xhci;
1559 	struct xhci_container_ctx *in_ctx, *out_ctx;
1560 	struct xhci_input_control_ctx *ctrl_ctx;
1561 	struct xhci_slot_ctx *slot_ctx;
1562 	unsigned int last_ctx;
1563 	unsigned int ep_index;
1564 	struct xhci_ep_ctx *ep_ctx;
1565 	u32 drop_flag;
1566 	u32 new_add_flags, new_drop_flags, new_slot_info;
1567 	int ret;
1568 
1569 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1570 	if (ret <= 0)
1571 		return ret;
1572 	xhci = hcd_to_xhci(hcd);
1573 	if (xhci->xhc_state & XHCI_STATE_DYING)
1574 		return -ENODEV;
1575 
1576 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1577 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1578 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1579 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1580 				__func__, drop_flag);
1581 		return 0;
1582 	}
1583 
1584 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1585 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1586 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1587 	if (!ctrl_ctx) {
1588 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1589 				__func__);
1590 		return 0;
1591 	}
1592 
1593 	ep_index = xhci_get_endpoint_index(&ep->desc);
1594 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1595 	/* If the HC already knows the endpoint is disabled,
1596 	 * or the HCD has noted it is disabled, ignore this request
1597 	 */
1598 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1599 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1600 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1601 	    xhci_get_endpoint_flag(&ep->desc)) {
1602 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1603 				__func__, ep);
1604 		return 0;
1605 	}
1606 
1607 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1608 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1609 
1610 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1611 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1612 
1613 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1614 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1615 	/* Update the last valid endpoint context, if we deleted the last one */
1616 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1617 	    LAST_CTX(last_ctx)) {
1618 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1619 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1620 	}
1621 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1622 
1623 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1624 
1625 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1626 			(unsigned int) ep->desc.bEndpointAddress,
1627 			udev->slot_id,
1628 			(unsigned int) new_drop_flags,
1629 			(unsigned int) new_add_flags,
1630 			(unsigned int) new_slot_info);
1631 	return 0;
1632 }
1633 
1634 /* Add an endpoint to a new possible bandwidth configuration for this device.
1635  * Only one call to this function is allowed per endpoint before
1636  * check_bandwidth() or reset_bandwidth() must be called.
1637  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1638  * add the endpoint to the schedule with possibly new parameters denoted by a
1639  * different endpoint descriptor in usb_host_endpoint.
1640  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1641  * not allowed.
1642  *
1643  * The USB core will not allow URBs to be queued to an endpoint until the
1644  * configuration or alt setting is installed in the device, so there's no need
1645  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1646  */
1647 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1648 		struct usb_host_endpoint *ep)
1649 {
1650 	struct xhci_hcd *xhci;
1651 	struct xhci_container_ctx *in_ctx, *out_ctx;
1652 	unsigned int ep_index;
1653 	struct xhci_slot_ctx *slot_ctx;
1654 	struct xhci_input_control_ctx *ctrl_ctx;
1655 	u32 added_ctxs;
1656 	unsigned int last_ctx;
1657 	u32 new_add_flags, new_drop_flags, new_slot_info;
1658 	struct xhci_virt_device *virt_dev;
1659 	int ret = 0;
1660 
1661 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1662 	if (ret <= 0) {
1663 		/* So we won't queue a reset ep command for a root hub */
1664 		ep->hcpriv = NULL;
1665 		return ret;
1666 	}
1667 	xhci = hcd_to_xhci(hcd);
1668 	if (xhci->xhc_state & XHCI_STATE_DYING)
1669 		return -ENODEV;
1670 
1671 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1672 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1673 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1674 		/* FIXME when we have to issue an evaluate endpoint command to
1675 		 * deal with ep0 max packet size changing once we get the
1676 		 * descriptors
1677 		 */
1678 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1679 				__func__, added_ctxs);
1680 		return 0;
1681 	}
1682 
1683 	virt_dev = xhci->devs[udev->slot_id];
1684 	in_ctx = virt_dev->in_ctx;
1685 	out_ctx = virt_dev->out_ctx;
1686 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1687 	if (!ctrl_ctx) {
1688 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1689 				__func__);
1690 		return 0;
1691 	}
1692 
1693 	ep_index = xhci_get_endpoint_index(&ep->desc);
1694 	/* If this endpoint is already in use, and the upper layers are trying
1695 	 * to add it again without dropping it, reject the addition.
1696 	 */
1697 	if (virt_dev->eps[ep_index].ring &&
1698 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1699 				xhci_get_endpoint_flag(&ep->desc))) {
1700 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1701 				"without dropping it.\n",
1702 				(unsigned int) ep->desc.bEndpointAddress);
1703 		return -EINVAL;
1704 	}
1705 
1706 	/* If the HCD has already noted the endpoint is enabled,
1707 	 * ignore this request.
1708 	 */
1709 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1710 	    xhci_get_endpoint_flag(&ep->desc)) {
1711 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1712 				__func__, ep);
1713 		return 0;
1714 	}
1715 
1716 	/*
1717 	 * Configuration and alternate setting changes must be done in
1718 	 * process context, not interrupt context (or so documenation
1719 	 * for usb_set_interface() and usb_set_configuration() claim).
1720 	 */
1721 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1722 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1723 				__func__, ep->desc.bEndpointAddress);
1724 		return -ENOMEM;
1725 	}
1726 
1727 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1728 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1729 
1730 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1731 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1732 	 * this re-adds a new state for the endpoint from the new endpoint
1733 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1734 	 * drop flags alone.
1735 	 */
1736 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1737 
1738 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1739 	/* Update the last valid endpoint context, if we just added one past */
1740 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1741 	    LAST_CTX(last_ctx)) {
1742 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1743 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1744 	}
1745 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1746 
1747 	/* Store the usb_device pointer for later use */
1748 	ep->hcpriv = udev;
1749 
1750 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1751 			(unsigned int) ep->desc.bEndpointAddress,
1752 			udev->slot_id,
1753 			(unsigned int) new_drop_flags,
1754 			(unsigned int) new_add_flags,
1755 			(unsigned int) new_slot_info);
1756 	return 0;
1757 }
1758 
1759 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1760 {
1761 	struct xhci_input_control_ctx *ctrl_ctx;
1762 	struct xhci_ep_ctx *ep_ctx;
1763 	struct xhci_slot_ctx *slot_ctx;
1764 	int i;
1765 
1766 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1767 	if (!ctrl_ctx) {
1768 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1769 				__func__);
1770 		return;
1771 	}
1772 
1773 	/* When a device's add flag and drop flag are zero, any subsequent
1774 	 * configure endpoint command will leave that endpoint's state
1775 	 * untouched.  Make sure we don't leave any old state in the input
1776 	 * endpoint contexts.
1777 	 */
1778 	ctrl_ctx->drop_flags = 0;
1779 	ctrl_ctx->add_flags = 0;
1780 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1781 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1782 	/* Endpoint 0 is always valid */
1783 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1784 	for (i = 1; i < 31; ++i) {
1785 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1786 		ep_ctx->ep_info = 0;
1787 		ep_ctx->ep_info2 = 0;
1788 		ep_ctx->deq = 0;
1789 		ep_ctx->tx_info = 0;
1790 	}
1791 }
1792 
1793 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1794 		struct usb_device *udev, u32 *cmd_status)
1795 {
1796 	int ret;
1797 
1798 	switch (*cmd_status) {
1799 	case COMP_ENOMEM:
1800 		dev_warn(&udev->dev, "Not enough host controller resources "
1801 				"for new device state.\n");
1802 		ret = -ENOMEM;
1803 		/* FIXME: can we allocate more resources for the HC? */
1804 		break;
1805 	case COMP_BW_ERR:
1806 	case COMP_2ND_BW_ERR:
1807 		dev_warn(&udev->dev, "Not enough bandwidth "
1808 				"for new device state.\n");
1809 		ret = -ENOSPC;
1810 		/* FIXME: can we go back to the old state? */
1811 		break;
1812 	case COMP_TRB_ERR:
1813 		/* the HCD set up something wrong */
1814 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1815 				"add flag = 1, "
1816 				"and endpoint is not disabled.\n");
1817 		ret = -EINVAL;
1818 		break;
1819 	case COMP_DEV_ERR:
1820 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1821 				"configure command.\n");
1822 		ret = -ENODEV;
1823 		break;
1824 	case COMP_SUCCESS:
1825 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1826 				"Successful Endpoint Configure command");
1827 		ret = 0;
1828 		break;
1829 	default:
1830 		xhci_err(xhci, "ERROR: unexpected command completion "
1831 				"code 0x%x.\n", *cmd_status);
1832 		ret = -EINVAL;
1833 		break;
1834 	}
1835 	return ret;
1836 }
1837 
1838 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1839 		struct usb_device *udev, u32 *cmd_status)
1840 {
1841 	int ret;
1842 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1843 
1844 	switch (*cmd_status) {
1845 	case COMP_EINVAL:
1846 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1847 				"context command.\n");
1848 		ret = -EINVAL;
1849 		break;
1850 	case COMP_EBADSLT:
1851 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1852 				"evaluate context command.\n");
1853 		ret = -EINVAL;
1854 		break;
1855 	case COMP_CTX_STATE:
1856 		dev_warn(&udev->dev, "WARN: invalid context state for "
1857 				"evaluate context command.\n");
1858 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1859 		ret = -EINVAL;
1860 		break;
1861 	case COMP_DEV_ERR:
1862 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1863 				"context command.\n");
1864 		ret = -ENODEV;
1865 		break;
1866 	case COMP_MEL_ERR:
1867 		/* Max Exit Latency too large error */
1868 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1869 		ret = -EINVAL;
1870 		break;
1871 	case COMP_SUCCESS:
1872 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1873 				"Successful evaluate context command");
1874 		ret = 0;
1875 		break;
1876 	default:
1877 		xhci_err(xhci, "ERROR: unexpected command completion "
1878 				"code 0x%x.\n", *cmd_status);
1879 		ret = -EINVAL;
1880 		break;
1881 	}
1882 	return ret;
1883 }
1884 
1885 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1886 		struct xhci_input_control_ctx *ctrl_ctx)
1887 {
1888 	u32 valid_add_flags;
1889 	u32 valid_drop_flags;
1890 
1891 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1892 	 * (bit 1).  The default control endpoint is added during the Address
1893 	 * Device command and is never removed until the slot is disabled.
1894 	 */
1895 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1896 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1897 
1898 	/* Use hweight32 to count the number of ones in the add flags, or
1899 	 * number of endpoints added.  Don't count endpoints that are changed
1900 	 * (both added and dropped).
1901 	 */
1902 	return hweight32(valid_add_flags) -
1903 		hweight32(valid_add_flags & valid_drop_flags);
1904 }
1905 
1906 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1907 		struct xhci_input_control_ctx *ctrl_ctx)
1908 {
1909 	u32 valid_add_flags;
1910 	u32 valid_drop_flags;
1911 
1912 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1913 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1914 
1915 	return hweight32(valid_drop_flags) -
1916 		hweight32(valid_add_flags & valid_drop_flags);
1917 }
1918 
1919 /*
1920  * We need to reserve the new number of endpoints before the configure endpoint
1921  * command completes.  We can't subtract the dropped endpoints from the number
1922  * of active endpoints until the command completes because we can oversubscribe
1923  * the host in this case:
1924  *
1925  *  - the first configure endpoint command drops more endpoints than it adds
1926  *  - a second configure endpoint command that adds more endpoints is queued
1927  *  - the first configure endpoint command fails, so the config is unchanged
1928  *  - the second command may succeed, even though there isn't enough resources
1929  *
1930  * Must be called with xhci->lock held.
1931  */
1932 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1933 		struct xhci_input_control_ctx *ctrl_ctx)
1934 {
1935 	u32 added_eps;
1936 
1937 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1938 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1939 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1940 				"Not enough ep ctxs: "
1941 				"%u active, need to add %u, limit is %u.",
1942 				xhci->num_active_eps, added_eps,
1943 				xhci->limit_active_eps);
1944 		return -ENOMEM;
1945 	}
1946 	xhci->num_active_eps += added_eps;
1947 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1948 			"Adding %u ep ctxs, %u now active.", added_eps,
1949 			xhci->num_active_eps);
1950 	return 0;
1951 }
1952 
1953 /*
1954  * The configure endpoint was failed by the xHC for some other reason, so we
1955  * need to revert the resources that failed configuration would have used.
1956  *
1957  * Must be called with xhci->lock held.
1958  */
1959 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1960 		struct xhci_input_control_ctx *ctrl_ctx)
1961 {
1962 	u32 num_failed_eps;
1963 
1964 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1965 	xhci->num_active_eps -= num_failed_eps;
1966 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1967 			"Removing %u failed ep ctxs, %u now active.",
1968 			num_failed_eps,
1969 			xhci->num_active_eps);
1970 }
1971 
1972 /*
1973  * Now that the command has completed, clean up the active endpoint count by
1974  * subtracting out the endpoints that were dropped (but not changed).
1975  *
1976  * Must be called with xhci->lock held.
1977  */
1978 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1979 		struct xhci_input_control_ctx *ctrl_ctx)
1980 {
1981 	u32 num_dropped_eps;
1982 
1983 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1984 	xhci->num_active_eps -= num_dropped_eps;
1985 	if (num_dropped_eps)
1986 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1987 				"Removing %u dropped ep ctxs, %u now active.",
1988 				num_dropped_eps,
1989 				xhci->num_active_eps);
1990 }
1991 
1992 static unsigned int xhci_get_block_size(struct usb_device *udev)
1993 {
1994 	switch (udev->speed) {
1995 	case USB_SPEED_LOW:
1996 	case USB_SPEED_FULL:
1997 		return FS_BLOCK;
1998 	case USB_SPEED_HIGH:
1999 		return HS_BLOCK;
2000 	case USB_SPEED_SUPER:
2001 		return SS_BLOCK;
2002 	case USB_SPEED_UNKNOWN:
2003 	case USB_SPEED_WIRELESS:
2004 	default:
2005 		/* Should never happen */
2006 		return 1;
2007 	}
2008 }
2009 
2010 static unsigned int
2011 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2012 {
2013 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2014 		return LS_OVERHEAD;
2015 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2016 		return FS_OVERHEAD;
2017 	return HS_OVERHEAD;
2018 }
2019 
2020 /* If we are changing a LS/FS device under a HS hub,
2021  * make sure (if we are activating a new TT) that the HS bus has enough
2022  * bandwidth for this new TT.
2023  */
2024 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2025 		struct xhci_virt_device *virt_dev,
2026 		int old_active_eps)
2027 {
2028 	struct xhci_interval_bw_table *bw_table;
2029 	struct xhci_tt_bw_info *tt_info;
2030 
2031 	/* Find the bandwidth table for the root port this TT is attached to. */
2032 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2033 	tt_info = virt_dev->tt_info;
2034 	/* If this TT already had active endpoints, the bandwidth for this TT
2035 	 * has already been added.  Removing all periodic endpoints (and thus
2036 	 * making the TT enactive) will only decrease the bandwidth used.
2037 	 */
2038 	if (old_active_eps)
2039 		return 0;
2040 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2041 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2042 			return -ENOMEM;
2043 		return 0;
2044 	}
2045 	/* Not sure why we would have no new active endpoints...
2046 	 *
2047 	 * Maybe because of an Evaluate Context change for a hub update or a
2048 	 * control endpoint 0 max packet size change?
2049 	 * FIXME: skip the bandwidth calculation in that case.
2050 	 */
2051 	return 0;
2052 }
2053 
2054 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2055 		struct xhci_virt_device *virt_dev)
2056 {
2057 	unsigned int bw_reserved;
2058 
2059 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2060 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2061 		return -ENOMEM;
2062 
2063 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2064 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2065 		return -ENOMEM;
2066 
2067 	return 0;
2068 }
2069 
2070 /*
2071  * This algorithm is a very conservative estimate of the worst-case scheduling
2072  * scenario for any one interval.  The hardware dynamically schedules the
2073  * packets, so we can't tell which microframe could be the limiting factor in
2074  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2075  *
2076  * Obviously, we can't solve an NP complete problem to find the minimum worst
2077  * case scenario.  Instead, we come up with an estimate that is no less than
2078  * the worst case bandwidth used for any one microframe, but may be an
2079  * over-estimate.
2080  *
2081  * We walk the requirements for each endpoint by interval, starting with the
2082  * smallest interval, and place packets in the schedule where there is only one
2083  * possible way to schedule packets for that interval.  In order to simplify
2084  * this algorithm, we record the largest max packet size for each interval, and
2085  * assume all packets will be that size.
2086  *
2087  * For interval 0, we obviously must schedule all packets for each interval.
2088  * The bandwidth for interval 0 is just the amount of data to be transmitted
2089  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2090  * the number of packets).
2091  *
2092  * For interval 1, we have two possible microframes to schedule those packets
2093  * in.  For this algorithm, if we can schedule the same number of packets for
2094  * each possible scheduling opportunity (each microframe), we will do so.  The
2095  * remaining number of packets will be saved to be transmitted in the gaps in
2096  * the next interval's scheduling sequence.
2097  *
2098  * As we move those remaining packets to be scheduled with interval 2 packets,
2099  * we have to double the number of remaining packets to transmit.  This is
2100  * because the intervals are actually powers of 2, and we would be transmitting
2101  * the previous interval's packets twice in this interval.  We also have to be
2102  * sure that when we look at the largest max packet size for this interval, we
2103  * also look at the largest max packet size for the remaining packets and take
2104  * the greater of the two.
2105  *
2106  * The algorithm continues to evenly distribute packets in each scheduling
2107  * opportunity, and push the remaining packets out, until we get to the last
2108  * interval.  Then those packets and their associated overhead are just added
2109  * to the bandwidth used.
2110  */
2111 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2112 		struct xhci_virt_device *virt_dev,
2113 		int old_active_eps)
2114 {
2115 	unsigned int bw_reserved;
2116 	unsigned int max_bandwidth;
2117 	unsigned int bw_used;
2118 	unsigned int block_size;
2119 	struct xhci_interval_bw_table *bw_table;
2120 	unsigned int packet_size = 0;
2121 	unsigned int overhead = 0;
2122 	unsigned int packets_transmitted = 0;
2123 	unsigned int packets_remaining = 0;
2124 	unsigned int i;
2125 
2126 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2127 		return xhci_check_ss_bw(xhci, virt_dev);
2128 
2129 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2130 		max_bandwidth = HS_BW_LIMIT;
2131 		/* Convert percent of bus BW reserved to blocks reserved */
2132 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2133 	} else {
2134 		max_bandwidth = FS_BW_LIMIT;
2135 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2136 	}
2137 
2138 	bw_table = virt_dev->bw_table;
2139 	/* We need to translate the max packet size and max ESIT payloads into
2140 	 * the units the hardware uses.
2141 	 */
2142 	block_size = xhci_get_block_size(virt_dev->udev);
2143 
2144 	/* If we are manipulating a LS/FS device under a HS hub, double check
2145 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2146 	 */
2147 	if (virt_dev->tt_info) {
2148 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2149 				"Recalculating BW for rootport %u",
2150 				virt_dev->real_port);
2151 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2152 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2153 					"newly activated TT.\n");
2154 			return -ENOMEM;
2155 		}
2156 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157 				"Recalculating BW for TT slot %u port %u",
2158 				virt_dev->tt_info->slot_id,
2159 				virt_dev->tt_info->ttport);
2160 	} else {
2161 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2162 				"Recalculating BW for rootport %u",
2163 				virt_dev->real_port);
2164 	}
2165 
2166 	/* Add in how much bandwidth will be used for interval zero, or the
2167 	 * rounded max ESIT payload + number of packets * largest overhead.
2168 	 */
2169 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2170 		bw_table->interval_bw[0].num_packets *
2171 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2172 
2173 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2174 		unsigned int bw_added;
2175 		unsigned int largest_mps;
2176 		unsigned int interval_overhead;
2177 
2178 		/*
2179 		 * How many packets could we transmit in this interval?
2180 		 * If packets didn't fit in the previous interval, we will need
2181 		 * to transmit that many packets twice within this interval.
2182 		 */
2183 		packets_remaining = 2 * packets_remaining +
2184 			bw_table->interval_bw[i].num_packets;
2185 
2186 		/* Find the largest max packet size of this or the previous
2187 		 * interval.
2188 		 */
2189 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2190 			largest_mps = 0;
2191 		else {
2192 			struct xhci_virt_ep *virt_ep;
2193 			struct list_head *ep_entry;
2194 
2195 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2196 			virt_ep = list_entry(ep_entry,
2197 					struct xhci_virt_ep, bw_endpoint_list);
2198 			/* Convert to blocks, rounding up */
2199 			largest_mps = DIV_ROUND_UP(
2200 					virt_ep->bw_info.max_packet_size,
2201 					block_size);
2202 		}
2203 		if (largest_mps > packet_size)
2204 			packet_size = largest_mps;
2205 
2206 		/* Use the larger overhead of this or the previous interval. */
2207 		interval_overhead = xhci_get_largest_overhead(
2208 				&bw_table->interval_bw[i]);
2209 		if (interval_overhead > overhead)
2210 			overhead = interval_overhead;
2211 
2212 		/* How many packets can we evenly distribute across
2213 		 * (1 << (i + 1)) possible scheduling opportunities?
2214 		 */
2215 		packets_transmitted = packets_remaining >> (i + 1);
2216 
2217 		/* Add in the bandwidth used for those scheduled packets */
2218 		bw_added = packets_transmitted * (overhead + packet_size);
2219 
2220 		/* How many packets do we have remaining to transmit? */
2221 		packets_remaining = packets_remaining % (1 << (i + 1));
2222 
2223 		/* What largest max packet size should those packets have? */
2224 		/* If we've transmitted all packets, don't carry over the
2225 		 * largest packet size.
2226 		 */
2227 		if (packets_remaining == 0) {
2228 			packet_size = 0;
2229 			overhead = 0;
2230 		} else if (packets_transmitted > 0) {
2231 			/* Otherwise if we do have remaining packets, and we've
2232 			 * scheduled some packets in this interval, take the
2233 			 * largest max packet size from endpoints with this
2234 			 * interval.
2235 			 */
2236 			packet_size = largest_mps;
2237 			overhead = interval_overhead;
2238 		}
2239 		/* Otherwise carry over packet_size and overhead from the last
2240 		 * time we had a remainder.
2241 		 */
2242 		bw_used += bw_added;
2243 		if (bw_used > max_bandwidth) {
2244 			xhci_warn(xhci, "Not enough bandwidth. "
2245 					"Proposed: %u, Max: %u\n",
2246 				bw_used, max_bandwidth);
2247 			return -ENOMEM;
2248 		}
2249 	}
2250 	/*
2251 	 * Ok, we know we have some packets left over after even-handedly
2252 	 * scheduling interval 15.  We don't know which microframes they will
2253 	 * fit into, so we over-schedule and say they will be scheduled every
2254 	 * microframe.
2255 	 */
2256 	if (packets_remaining > 0)
2257 		bw_used += overhead + packet_size;
2258 
2259 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2260 		unsigned int port_index = virt_dev->real_port - 1;
2261 
2262 		/* OK, we're manipulating a HS device attached to a
2263 		 * root port bandwidth domain.  Include the number of active TTs
2264 		 * in the bandwidth used.
2265 		 */
2266 		bw_used += TT_HS_OVERHEAD *
2267 			xhci->rh_bw[port_index].num_active_tts;
2268 	}
2269 
2270 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2271 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2272 		"Available: %u " "percent",
2273 		bw_used, max_bandwidth, bw_reserved,
2274 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2275 		max_bandwidth);
2276 
2277 	bw_used += bw_reserved;
2278 	if (bw_used > max_bandwidth) {
2279 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2280 				bw_used, max_bandwidth);
2281 		return -ENOMEM;
2282 	}
2283 
2284 	bw_table->bw_used = bw_used;
2285 	return 0;
2286 }
2287 
2288 static bool xhci_is_async_ep(unsigned int ep_type)
2289 {
2290 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2291 					ep_type != ISOC_IN_EP &&
2292 					ep_type != INT_IN_EP);
2293 }
2294 
2295 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2296 {
2297 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2298 }
2299 
2300 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2301 {
2302 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2303 
2304 	if (ep_bw->ep_interval == 0)
2305 		return SS_OVERHEAD_BURST +
2306 			(ep_bw->mult * ep_bw->num_packets *
2307 					(SS_OVERHEAD + mps));
2308 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2309 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2310 				1 << ep_bw->ep_interval);
2311 
2312 }
2313 
2314 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2315 		struct xhci_bw_info *ep_bw,
2316 		struct xhci_interval_bw_table *bw_table,
2317 		struct usb_device *udev,
2318 		struct xhci_virt_ep *virt_ep,
2319 		struct xhci_tt_bw_info *tt_info)
2320 {
2321 	struct xhci_interval_bw	*interval_bw;
2322 	int normalized_interval;
2323 
2324 	if (xhci_is_async_ep(ep_bw->type))
2325 		return;
2326 
2327 	if (udev->speed == USB_SPEED_SUPER) {
2328 		if (xhci_is_sync_in_ep(ep_bw->type))
2329 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2330 				xhci_get_ss_bw_consumed(ep_bw);
2331 		else
2332 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2333 				xhci_get_ss_bw_consumed(ep_bw);
2334 		return;
2335 	}
2336 
2337 	/* SuperSpeed endpoints never get added to intervals in the table, so
2338 	 * this check is only valid for HS/FS/LS devices.
2339 	 */
2340 	if (list_empty(&virt_ep->bw_endpoint_list))
2341 		return;
2342 	/* For LS/FS devices, we need to translate the interval expressed in
2343 	 * microframes to frames.
2344 	 */
2345 	if (udev->speed == USB_SPEED_HIGH)
2346 		normalized_interval = ep_bw->ep_interval;
2347 	else
2348 		normalized_interval = ep_bw->ep_interval - 3;
2349 
2350 	if (normalized_interval == 0)
2351 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2352 	interval_bw = &bw_table->interval_bw[normalized_interval];
2353 	interval_bw->num_packets -= ep_bw->num_packets;
2354 	switch (udev->speed) {
2355 	case USB_SPEED_LOW:
2356 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2357 		break;
2358 	case USB_SPEED_FULL:
2359 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2360 		break;
2361 	case USB_SPEED_HIGH:
2362 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2363 		break;
2364 	case USB_SPEED_SUPER:
2365 	case USB_SPEED_UNKNOWN:
2366 	case USB_SPEED_WIRELESS:
2367 		/* Should never happen because only LS/FS/HS endpoints will get
2368 		 * added to the endpoint list.
2369 		 */
2370 		return;
2371 	}
2372 	if (tt_info)
2373 		tt_info->active_eps -= 1;
2374 	list_del_init(&virt_ep->bw_endpoint_list);
2375 }
2376 
2377 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2378 		struct xhci_bw_info *ep_bw,
2379 		struct xhci_interval_bw_table *bw_table,
2380 		struct usb_device *udev,
2381 		struct xhci_virt_ep *virt_ep,
2382 		struct xhci_tt_bw_info *tt_info)
2383 {
2384 	struct xhci_interval_bw	*interval_bw;
2385 	struct xhci_virt_ep *smaller_ep;
2386 	int normalized_interval;
2387 
2388 	if (xhci_is_async_ep(ep_bw->type))
2389 		return;
2390 
2391 	if (udev->speed == USB_SPEED_SUPER) {
2392 		if (xhci_is_sync_in_ep(ep_bw->type))
2393 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2394 				xhci_get_ss_bw_consumed(ep_bw);
2395 		else
2396 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2397 				xhci_get_ss_bw_consumed(ep_bw);
2398 		return;
2399 	}
2400 
2401 	/* For LS/FS devices, we need to translate the interval expressed in
2402 	 * microframes to frames.
2403 	 */
2404 	if (udev->speed == USB_SPEED_HIGH)
2405 		normalized_interval = ep_bw->ep_interval;
2406 	else
2407 		normalized_interval = ep_bw->ep_interval - 3;
2408 
2409 	if (normalized_interval == 0)
2410 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2411 	interval_bw = &bw_table->interval_bw[normalized_interval];
2412 	interval_bw->num_packets += ep_bw->num_packets;
2413 	switch (udev->speed) {
2414 	case USB_SPEED_LOW:
2415 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2416 		break;
2417 	case USB_SPEED_FULL:
2418 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2419 		break;
2420 	case USB_SPEED_HIGH:
2421 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2422 		break;
2423 	case USB_SPEED_SUPER:
2424 	case USB_SPEED_UNKNOWN:
2425 	case USB_SPEED_WIRELESS:
2426 		/* Should never happen because only LS/FS/HS endpoints will get
2427 		 * added to the endpoint list.
2428 		 */
2429 		return;
2430 	}
2431 
2432 	if (tt_info)
2433 		tt_info->active_eps += 1;
2434 	/* Insert the endpoint into the list, largest max packet size first. */
2435 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2436 			bw_endpoint_list) {
2437 		if (ep_bw->max_packet_size >=
2438 				smaller_ep->bw_info.max_packet_size) {
2439 			/* Add the new ep before the smaller endpoint */
2440 			list_add_tail(&virt_ep->bw_endpoint_list,
2441 					&smaller_ep->bw_endpoint_list);
2442 			return;
2443 		}
2444 	}
2445 	/* Add the new endpoint at the end of the list. */
2446 	list_add_tail(&virt_ep->bw_endpoint_list,
2447 			&interval_bw->endpoints);
2448 }
2449 
2450 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2451 		struct xhci_virt_device *virt_dev,
2452 		int old_active_eps)
2453 {
2454 	struct xhci_root_port_bw_info *rh_bw_info;
2455 	if (!virt_dev->tt_info)
2456 		return;
2457 
2458 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2459 	if (old_active_eps == 0 &&
2460 				virt_dev->tt_info->active_eps != 0) {
2461 		rh_bw_info->num_active_tts += 1;
2462 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2463 	} else if (old_active_eps != 0 &&
2464 				virt_dev->tt_info->active_eps == 0) {
2465 		rh_bw_info->num_active_tts -= 1;
2466 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2467 	}
2468 }
2469 
2470 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2471 		struct xhci_virt_device *virt_dev,
2472 		struct xhci_container_ctx *in_ctx)
2473 {
2474 	struct xhci_bw_info ep_bw_info[31];
2475 	int i;
2476 	struct xhci_input_control_ctx *ctrl_ctx;
2477 	int old_active_eps = 0;
2478 
2479 	if (virt_dev->tt_info)
2480 		old_active_eps = virt_dev->tt_info->active_eps;
2481 
2482 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2483 	if (!ctrl_ctx) {
2484 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2485 				__func__);
2486 		return -ENOMEM;
2487 	}
2488 
2489 	for (i = 0; i < 31; i++) {
2490 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2491 			continue;
2492 
2493 		/* Make a copy of the BW info in case we need to revert this */
2494 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2495 				sizeof(ep_bw_info[i]));
2496 		/* Drop the endpoint from the interval table if the endpoint is
2497 		 * being dropped or changed.
2498 		 */
2499 		if (EP_IS_DROPPED(ctrl_ctx, i))
2500 			xhci_drop_ep_from_interval_table(xhci,
2501 					&virt_dev->eps[i].bw_info,
2502 					virt_dev->bw_table,
2503 					virt_dev->udev,
2504 					&virt_dev->eps[i],
2505 					virt_dev->tt_info);
2506 	}
2507 	/* Overwrite the information stored in the endpoints' bw_info */
2508 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2509 	for (i = 0; i < 31; i++) {
2510 		/* Add any changed or added endpoints to the interval table */
2511 		if (EP_IS_ADDED(ctrl_ctx, i))
2512 			xhci_add_ep_to_interval_table(xhci,
2513 					&virt_dev->eps[i].bw_info,
2514 					virt_dev->bw_table,
2515 					virt_dev->udev,
2516 					&virt_dev->eps[i],
2517 					virt_dev->tt_info);
2518 	}
2519 
2520 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2521 		/* Ok, this fits in the bandwidth we have.
2522 		 * Update the number of active TTs.
2523 		 */
2524 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2525 		return 0;
2526 	}
2527 
2528 	/* We don't have enough bandwidth for this, revert the stored info. */
2529 	for (i = 0; i < 31; i++) {
2530 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2531 			continue;
2532 
2533 		/* Drop the new copies of any added or changed endpoints from
2534 		 * the interval table.
2535 		 */
2536 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2537 			xhci_drop_ep_from_interval_table(xhci,
2538 					&virt_dev->eps[i].bw_info,
2539 					virt_dev->bw_table,
2540 					virt_dev->udev,
2541 					&virt_dev->eps[i],
2542 					virt_dev->tt_info);
2543 		}
2544 		/* Revert the endpoint back to its old information */
2545 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2546 				sizeof(ep_bw_info[i]));
2547 		/* Add any changed or dropped endpoints back into the table */
2548 		if (EP_IS_DROPPED(ctrl_ctx, i))
2549 			xhci_add_ep_to_interval_table(xhci,
2550 					&virt_dev->eps[i].bw_info,
2551 					virt_dev->bw_table,
2552 					virt_dev->udev,
2553 					&virt_dev->eps[i],
2554 					virt_dev->tt_info);
2555 	}
2556 	return -ENOMEM;
2557 }
2558 
2559 
2560 /* Issue a configure endpoint command or evaluate context command
2561  * and wait for it to finish.
2562  */
2563 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2564 		struct usb_device *udev,
2565 		struct xhci_command *command,
2566 		bool ctx_change, bool must_succeed)
2567 {
2568 	int ret;
2569 	int timeleft;
2570 	unsigned long flags;
2571 	struct xhci_container_ctx *in_ctx;
2572 	struct xhci_input_control_ctx *ctrl_ctx;
2573 	struct completion *cmd_completion;
2574 	u32 *cmd_status;
2575 	struct xhci_virt_device *virt_dev;
2576 	union xhci_trb *cmd_trb;
2577 
2578 	spin_lock_irqsave(&xhci->lock, flags);
2579 	virt_dev = xhci->devs[udev->slot_id];
2580 
2581 	if (command)
2582 		in_ctx = command->in_ctx;
2583 	else
2584 		in_ctx = virt_dev->in_ctx;
2585 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2586 	if (!ctrl_ctx) {
2587 		spin_unlock_irqrestore(&xhci->lock, flags);
2588 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2589 				__func__);
2590 		return -ENOMEM;
2591 	}
2592 
2593 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2594 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2595 		spin_unlock_irqrestore(&xhci->lock, flags);
2596 		xhci_warn(xhci, "Not enough host resources, "
2597 				"active endpoint contexts = %u\n",
2598 				xhci->num_active_eps);
2599 		return -ENOMEM;
2600 	}
2601 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2602 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2603 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2604 			xhci_free_host_resources(xhci, ctrl_ctx);
2605 		spin_unlock_irqrestore(&xhci->lock, flags);
2606 		xhci_warn(xhci, "Not enough bandwidth\n");
2607 		return -ENOMEM;
2608 	}
2609 
2610 	if (command) {
2611 		cmd_completion = command->completion;
2612 		cmd_status = &command->status;
2613 		command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2614 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2615 	} else {
2616 		cmd_completion = &virt_dev->cmd_completion;
2617 		cmd_status = &virt_dev->cmd_status;
2618 	}
2619 	init_completion(cmd_completion);
2620 
2621 	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2622 	if (!ctx_change)
2623 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2624 				udev->slot_id, must_succeed);
2625 	else
2626 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2627 				udev->slot_id, must_succeed);
2628 	if (ret < 0) {
2629 		if (command)
2630 			list_del(&command->cmd_list);
2631 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2632 			xhci_free_host_resources(xhci, ctrl_ctx);
2633 		spin_unlock_irqrestore(&xhci->lock, flags);
2634 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2635 				"FIXME allocate a new ring segment");
2636 		return -ENOMEM;
2637 	}
2638 	xhci_ring_cmd_db(xhci);
2639 	spin_unlock_irqrestore(&xhci->lock, flags);
2640 
2641 	/* Wait for the configure endpoint command to complete */
2642 	timeleft = wait_for_completion_interruptible_timeout(
2643 			cmd_completion,
2644 			XHCI_CMD_DEFAULT_TIMEOUT);
2645 	if (timeleft <= 0) {
2646 		xhci_warn(xhci, "%s while waiting for %s command\n",
2647 				timeleft == 0 ? "Timeout" : "Signal",
2648 				ctx_change == 0 ?
2649 					"configure endpoint" :
2650 					"evaluate context");
2651 		/* cancel the configure endpoint command */
2652 		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2653 		if (ret < 0)
2654 			return ret;
2655 		return -ETIME;
2656 	}
2657 
2658 	if (!ctx_change)
2659 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2660 	else
2661 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2662 
2663 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2664 		spin_lock_irqsave(&xhci->lock, flags);
2665 		/* If the command failed, remove the reserved resources.
2666 		 * Otherwise, clean up the estimate to include dropped eps.
2667 		 */
2668 		if (ret)
2669 			xhci_free_host_resources(xhci, ctrl_ctx);
2670 		else
2671 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2672 		spin_unlock_irqrestore(&xhci->lock, flags);
2673 	}
2674 	return ret;
2675 }
2676 
2677 /* Called after one or more calls to xhci_add_endpoint() or
2678  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2679  * to call xhci_reset_bandwidth().
2680  *
2681  * Since we are in the middle of changing either configuration or
2682  * installing a new alt setting, the USB core won't allow URBs to be
2683  * enqueued for any endpoint on the old config or interface.  Nothing
2684  * else should be touching the xhci->devs[slot_id] structure, so we
2685  * don't need to take the xhci->lock for manipulating that.
2686  */
2687 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2688 {
2689 	int i;
2690 	int ret = 0;
2691 	struct xhci_hcd *xhci;
2692 	struct xhci_virt_device	*virt_dev;
2693 	struct xhci_input_control_ctx *ctrl_ctx;
2694 	struct xhci_slot_ctx *slot_ctx;
2695 
2696 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2697 	if (ret <= 0)
2698 		return ret;
2699 	xhci = hcd_to_xhci(hcd);
2700 	if (xhci->xhc_state & XHCI_STATE_DYING)
2701 		return -ENODEV;
2702 
2703 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2704 	virt_dev = xhci->devs[udev->slot_id];
2705 
2706 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2707 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2708 	if (!ctrl_ctx) {
2709 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2710 				__func__);
2711 		return -ENOMEM;
2712 	}
2713 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2714 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2715 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2716 
2717 	/* Don't issue the command if there's no endpoints to update. */
2718 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2719 			ctrl_ctx->drop_flags == 0)
2720 		return 0;
2721 
2722 	xhci_dbg(xhci, "New Input Control Context:\n");
2723 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2724 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2725 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2726 
2727 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2728 			false, false);
2729 	if (ret) {
2730 		/* Callee should call reset_bandwidth() */
2731 		return ret;
2732 	}
2733 
2734 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2735 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2736 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2737 
2738 	/* Free any rings that were dropped, but not changed. */
2739 	for (i = 1; i < 31; ++i) {
2740 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2741 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2742 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2743 	}
2744 	xhci_zero_in_ctx(xhci, virt_dev);
2745 	/*
2746 	 * Install any rings for completely new endpoints or changed endpoints,
2747 	 * and free or cache any old rings from changed endpoints.
2748 	 */
2749 	for (i = 1; i < 31; ++i) {
2750 		if (!virt_dev->eps[i].new_ring)
2751 			continue;
2752 		/* Only cache or free the old ring if it exists.
2753 		 * It may not if this is the first add of an endpoint.
2754 		 */
2755 		if (virt_dev->eps[i].ring) {
2756 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2757 		}
2758 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2759 		virt_dev->eps[i].new_ring = NULL;
2760 	}
2761 
2762 	return ret;
2763 }
2764 
2765 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2766 {
2767 	struct xhci_hcd *xhci;
2768 	struct xhci_virt_device	*virt_dev;
2769 	int i, ret;
2770 
2771 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2772 	if (ret <= 0)
2773 		return;
2774 	xhci = hcd_to_xhci(hcd);
2775 
2776 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2777 	virt_dev = xhci->devs[udev->slot_id];
2778 	/* Free any rings allocated for added endpoints */
2779 	for (i = 0; i < 31; ++i) {
2780 		if (virt_dev->eps[i].new_ring) {
2781 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2782 			virt_dev->eps[i].new_ring = NULL;
2783 		}
2784 	}
2785 	xhci_zero_in_ctx(xhci, virt_dev);
2786 }
2787 
2788 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2789 		struct xhci_container_ctx *in_ctx,
2790 		struct xhci_container_ctx *out_ctx,
2791 		struct xhci_input_control_ctx *ctrl_ctx,
2792 		u32 add_flags, u32 drop_flags)
2793 {
2794 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2795 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2796 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2797 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2798 
2799 	xhci_dbg(xhci, "Input Context:\n");
2800 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2801 }
2802 
2803 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2804 		unsigned int slot_id, unsigned int ep_index,
2805 		struct xhci_dequeue_state *deq_state)
2806 {
2807 	struct xhci_input_control_ctx *ctrl_ctx;
2808 	struct xhci_container_ctx *in_ctx;
2809 	struct xhci_ep_ctx *ep_ctx;
2810 	u32 added_ctxs;
2811 	dma_addr_t addr;
2812 
2813 	in_ctx = xhci->devs[slot_id]->in_ctx;
2814 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2815 	if (!ctrl_ctx) {
2816 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2817 				__func__);
2818 		return;
2819 	}
2820 
2821 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2822 			xhci->devs[slot_id]->out_ctx, ep_index);
2823 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2824 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2825 			deq_state->new_deq_ptr);
2826 	if (addr == 0) {
2827 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2828 				"reset ep command\n");
2829 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2830 				deq_state->new_deq_seg,
2831 				deq_state->new_deq_ptr);
2832 		return;
2833 	}
2834 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2835 
2836 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2837 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2838 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2839 			added_ctxs, added_ctxs);
2840 }
2841 
2842 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2843 		struct usb_device *udev, unsigned int ep_index)
2844 {
2845 	struct xhci_dequeue_state deq_state;
2846 	struct xhci_virt_ep *ep;
2847 
2848 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2849 			"Cleaning up stalled endpoint ring");
2850 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2851 	/* We need to move the HW's dequeue pointer past this TD,
2852 	 * or it will attempt to resend it on the next doorbell ring.
2853 	 */
2854 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2855 			ep_index, ep->stopped_stream, ep->stopped_td,
2856 			&deq_state);
2857 
2858 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2859 	 * issue a configure endpoint command later.
2860 	 */
2861 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2862 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2863 				"Queueing new dequeue state");
2864 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2865 				ep_index, ep->stopped_stream, &deq_state);
2866 	} else {
2867 		/* Better hope no one uses the input context between now and the
2868 		 * reset endpoint completion!
2869 		 * XXX: No idea how this hardware will react when stream rings
2870 		 * are enabled.
2871 		 */
2872 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2873 				"Setting up input context for "
2874 				"configure endpoint command");
2875 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2876 				ep_index, &deq_state);
2877 	}
2878 }
2879 
2880 /* Deal with stalled endpoints.  The core should have sent the control message
2881  * to clear the halt condition.  However, we need to make the xHCI hardware
2882  * reset its sequence number, since a device will expect a sequence number of
2883  * zero after the halt condition is cleared.
2884  * Context: in_interrupt
2885  */
2886 void xhci_endpoint_reset(struct usb_hcd *hcd,
2887 		struct usb_host_endpoint *ep)
2888 {
2889 	struct xhci_hcd *xhci;
2890 	struct usb_device *udev;
2891 	unsigned int ep_index;
2892 	unsigned long flags;
2893 	int ret;
2894 	struct xhci_virt_ep *virt_ep;
2895 
2896 	xhci = hcd_to_xhci(hcd);
2897 	udev = (struct usb_device *) ep->hcpriv;
2898 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2899 	 * with xhci_add_endpoint()
2900 	 */
2901 	if (!ep->hcpriv)
2902 		return;
2903 	ep_index = xhci_get_endpoint_index(&ep->desc);
2904 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2905 	if (!virt_ep->stopped_td) {
2906 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2907 			"Endpoint 0x%x not halted, refusing to reset.",
2908 			ep->desc.bEndpointAddress);
2909 		return;
2910 	}
2911 	if (usb_endpoint_xfer_control(&ep->desc)) {
2912 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2913 				"Control endpoint stall already handled.");
2914 		return;
2915 	}
2916 
2917 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2918 			"Queueing reset endpoint command");
2919 	spin_lock_irqsave(&xhci->lock, flags);
2920 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2921 	/*
2922 	 * Can't change the ring dequeue pointer until it's transitioned to the
2923 	 * stopped state, which is only upon a successful reset endpoint
2924 	 * command.  Better hope that last command worked!
2925 	 */
2926 	if (!ret) {
2927 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2928 		kfree(virt_ep->stopped_td);
2929 		xhci_ring_cmd_db(xhci);
2930 	}
2931 	virt_ep->stopped_td = NULL;
2932 	virt_ep->stopped_trb = NULL;
2933 	virt_ep->stopped_stream = 0;
2934 	spin_unlock_irqrestore(&xhci->lock, flags);
2935 
2936 	if (ret)
2937 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2938 }
2939 
2940 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2941 		struct usb_device *udev, struct usb_host_endpoint *ep,
2942 		unsigned int slot_id)
2943 {
2944 	int ret;
2945 	unsigned int ep_index;
2946 	unsigned int ep_state;
2947 
2948 	if (!ep)
2949 		return -EINVAL;
2950 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2951 	if (ret <= 0)
2952 		return -EINVAL;
2953 	if (ep->ss_ep_comp.bmAttributes == 0) {
2954 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2955 				" descriptor for ep 0x%x does not support streams\n",
2956 				ep->desc.bEndpointAddress);
2957 		return -EINVAL;
2958 	}
2959 
2960 	ep_index = xhci_get_endpoint_index(&ep->desc);
2961 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2962 	if (ep_state & EP_HAS_STREAMS ||
2963 			ep_state & EP_GETTING_STREAMS) {
2964 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2965 				"already has streams set up.\n",
2966 				ep->desc.bEndpointAddress);
2967 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2968 				"dynamic stream context array reallocation.\n");
2969 		return -EINVAL;
2970 	}
2971 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2972 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2973 				"endpoint 0x%x; URBs are pending.\n",
2974 				ep->desc.bEndpointAddress);
2975 		return -EINVAL;
2976 	}
2977 	return 0;
2978 }
2979 
2980 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2981 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2982 {
2983 	unsigned int max_streams;
2984 
2985 	/* The stream context array size must be a power of two */
2986 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2987 	/*
2988 	 * Find out how many primary stream array entries the host controller
2989 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2990 	 * level page entries), but that's an optional feature for xHCI host
2991 	 * controllers. xHCs must support at least 4 stream IDs.
2992 	 */
2993 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2994 	if (*num_stream_ctxs > max_streams) {
2995 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2996 				max_streams);
2997 		*num_stream_ctxs = max_streams;
2998 		*num_streams = max_streams;
2999 	}
3000 }
3001 
3002 /* Returns an error code if one of the endpoint already has streams.
3003  * This does not change any data structures, it only checks and gathers
3004  * information.
3005  */
3006 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3007 		struct usb_device *udev,
3008 		struct usb_host_endpoint **eps, unsigned int num_eps,
3009 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3010 {
3011 	unsigned int max_streams;
3012 	unsigned int endpoint_flag;
3013 	int i;
3014 	int ret;
3015 
3016 	for (i = 0; i < num_eps; i++) {
3017 		ret = xhci_check_streams_endpoint(xhci, udev,
3018 				eps[i], udev->slot_id);
3019 		if (ret < 0)
3020 			return ret;
3021 
3022 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3023 		if (max_streams < (*num_streams - 1)) {
3024 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3025 					eps[i]->desc.bEndpointAddress,
3026 					max_streams);
3027 			*num_streams = max_streams+1;
3028 		}
3029 
3030 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3031 		if (*changed_ep_bitmask & endpoint_flag)
3032 			return -EINVAL;
3033 		*changed_ep_bitmask |= endpoint_flag;
3034 	}
3035 	return 0;
3036 }
3037 
3038 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3039 		struct usb_device *udev,
3040 		struct usb_host_endpoint **eps, unsigned int num_eps)
3041 {
3042 	u32 changed_ep_bitmask = 0;
3043 	unsigned int slot_id;
3044 	unsigned int ep_index;
3045 	unsigned int ep_state;
3046 	int i;
3047 
3048 	slot_id = udev->slot_id;
3049 	if (!xhci->devs[slot_id])
3050 		return 0;
3051 
3052 	for (i = 0; i < num_eps; i++) {
3053 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3054 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3055 		/* Are streams already being freed for the endpoint? */
3056 		if (ep_state & EP_GETTING_NO_STREAMS) {
3057 			xhci_warn(xhci, "WARN Can't disable streams for "
3058 					"endpoint 0x%x, "
3059 					"streams are being disabled already\n",
3060 					eps[i]->desc.bEndpointAddress);
3061 			return 0;
3062 		}
3063 		/* Are there actually any streams to free? */
3064 		if (!(ep_state & EP_HAS_STREAMS) &&
3065 				!(ep_state & EP_GETTING_STREAMS)) {
3066 			xhci_warn(xhci, "WARN Can't disable streams for "
3067 					"endpoint 0x%x, "
3068 					"streams are already disabled!\n",
3069 					eps[i]->desc.bEndpointAddress);
3070 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3071 					"with non-streams endpoint\n");
3072 			return 0;
3073 		}
3074 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3075 	}
3076 	return changed_ep_bitmask;
3077 }
3078 
3079 /*
3080  * The USB device drivers use this function (though the HCD interface in USB
3081  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3082  * coordinate mass storage command queueing across multiple endpoints (basically
3083  * a stream ID == a task ID).
3084  *
3085  * Setting up streams involves allocating the same size stream context array
3086  * for each endpoint and issuing a configure endpoint command for all endpoints.
3087  *
3088  * Don't allow the call to succeed if one endpoint only supports one stream
3089  * (which means it doesn't support streams at all).
3090  *
3091  * Drivers may get less stream IDs than they asked for, if the host controller
3092  * hardware or endpoints claim they can't support the number of requested
3093  * stream IDs.
3094  */
3095 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3096 		struct usb_host_endpoint **eps, unsigned int num_eps,
3097 		unsigned int num_streams, gfp_t mem_flags)
3098 {
3099 	int i, ret;
3100 	struct xhci_hcd *xhci;
3101 	struct xhci_virt_device *vdev;
3102 	struct xhci_command *config_cmd;
3103 	struct xhci_input_control_ctx *ctrl_ctx;
3104 	unsigned int ep_index;
3105 	unsigned int num_stream_ctxs;
3106 	unsigned long flags;
3107 	u32 changed_ep_bitmask = 0;
3108 
3109 	if (!eps)
3110 		return -EINVAL;
3111 
3112 	/* Add one to the number of streams requested to account for
3113 	 * stream 0 that is reserved for xHCI usage.
3114 	 */
3115 	num_streams += 1;
3116 	xhci = hcd_to_xhci(hcd);
3117 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3118 			num_streams);
3119 
3120 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3121 	if (!config_cmd) {
3122 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3123 		return -ENOMEM;
3124 	}
3125 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3126 	if (!ctrl_ctx) {
3127 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3128 				__func__);
3129 		xhci_free_command(xhci, config_cmd);
3130 		return -ENOMEM;
3131 	}
3132 
3133 	/* Check to make sure all endpoints are not already configured for
3134 	 * streams.  While we're at it, find the maximum number of streams that
3135 	 * all the endpoints will support and check for duplicate endpoints.
3136 	 */
3137 	spin_lock_irqsave(&xhci->lock, flags);
3138 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3139 			num_eps, &num_streams, &changed_ep_bitmask);
3140 	if (ret < 0) {
3141 		xhci_free_command(xhci, config_cmd);
3142 		spin_unlock_irqrestore(&xhci->lock, flags);
3143 		return ret;
3144 	}
3145 	if (num_streams <= 1) {
3146 		xhci_warn(xhci, "WARN: endpoints can't handle "
3147 				"more than one stream.\n");
3148 		xhci_free_command(xhci, config_cmd);
3149 		spin_unlock_irqrestore(&xhci->lock, flags);
3150 		return -EINVAL;
3151 	}
3152 	vdev = xhci->devs[udev->slot_id];
3153 	/* Mark each endpoint as being in transition, so
3154 	 * xhci_urb_enqueue() will reject all URBs.
3155 	 */
3156 	for (i = 0; i < num_eps; i++) {
3157 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3158 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3159 	}
3160 	spin_unlock_irqrestore(&xhci->lock, flags);
3161 
3162 	/* Setup internal data structures and allocate HW data structures for
3163 	 * streams (but don't install the HW structures in the input context
3164 	 * until we're sure all memory allocation succeeded).
3165 	 */
3166 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3167 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3168 			num_stream_ctxs, num_streams);
3169 
3170 	for (i = 0; i < num_eps; i++) {
3171 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3172 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3173 				num_stream_ctxs,
3174 				num_streams, mem_flags);
3175 		if (!vdev->eps[ep_index].stream_info)
3176 			goto cleanup;
3177 		/* Set maxPstreams in endpoint context and update deq ptr to
3178 		 * point to stream context array. FIXME
3179 		 */
3180 	}
3181 
3182 	/* Set up the input context for a configure endpoint command. */
3183 	for (i = 0; i < num_eps; i++) {
3184 		struct xhci_ep_ctx *ep_ctx;
3185 
3186 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3187 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3188 
3189 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3190 				vdev->out_ctx, ep_index);
3191 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3192 				vdev->eps[ep_index].stream_info);
3193 	}
3194 	/* Tell the HW to drop its old copy of the endpoint context info
3195 	 * and add the updated copy from the input context.
3196 	 */
3197 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3198 			vdev->out_ctx, ctrl_ctx,
3199 			changed_ep_bitmask, changed_ep_bitmask);
3200 
3201 	/* Issue and wait for the configure endpoint command */
3202 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3203 			false, false);
3204 
3205 	/* xHC rejected the configure endpoint command for some reason, so we
3206 	 * leave the old ring intact and free our internal streams data
3207 	 * structure.
3208 	 */
3209 	if (ret < 0)
3210 		goto cleanup;
3211 
3212 	spin_lock_irqsave(&xhci->lock, flags);
3213 	for (i = 0; i < num_eps; i++) {
3214 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3215 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3216 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3217 			 udev->slot_id, ep_index);
3218 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3219 	}
3220 	xhci_free_command(xhci, config_cmd);
3221 	spin_unlock_irqrestore(&xhci->lock, flags);
3222 
3223 	/* Subtract 1 for stream 0, which drivers can't use */
3224 	return num_streams - 1;
3225 
3226 cleanup:
3227 	/* If it didn't work, free the streams! */
3228 	for (i = 0; i < num_eps; i++) {
3229 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3230 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3231 		vdev->eps[ep_index].stream_info = NULL;
3232 		/* FIXME Unset maxPstreams in endpoint context and
3233 		 * update deq ptr to point to normal string ring.
3234 		 */
3235 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3236 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3237 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3238 	}
3239 	xhci_free_command(xhci, config_cmd);
3240 	return -ENOMEM;
3241 }
3242 
3243 /* Transition the endpoint from using streams to being a "normal" endpoint
3244  * without streams.
3245  *
3246  * Modify the endpoint context state, submit a configure endpoint command,
3247  * and free all endpoint rings for streams if that completes successfully.
3248  */
3249 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3250 		struct usb_host_endpoint **eps, unsigned int num_eps,
3251 		gfp_t mem_flags)
3252 {
3253 	int i, ret;
3254 	struct xhci_hcd *xhci;
3255 	struct xhci_virt_device *vdev;
3256 	struct xhci_command *command;
3257 	struct xhci_input_control_ctx *ctrl_ctx;
3258 	unsigned int ep_index;
3259 	unsigned long flags;
3260 	u32 changed_ep_bitmask;
3261 
3262 	xhci = hcd_to_xhci(hcd);
3263 	vdev = xhci->devs[udev->slot_id];
3264 
3265 	/* Set up a configure endpoint command to remove the streams rings */
3266 	spin_lock_irqsave(&xhci->lock, flags);
3267 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3268 			udev, eps, num_eps);
3269 	if (changed_ep_bitmask == 0) {
3270 		spin_unlock_irqrestore(&xhci->lock, flags);
3271 		return -EINVAL;
3272 	}
3273 
3274 	/* Use the xhci_command structure from the first endpoint.  We may have
3275 	 * allocated too many, but the driver may call xhci_free_streams() for
3276 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3277 	 */
3278 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3279 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3280 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3281 	if (!ctrl_ctx) {
3282 		spin_unlock_irqrestore(&xhci->lock, flags);
3283 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3284 				__func__);
3285 		return -EINVAL;
3286 	}
3287 
3288 	for (i = 0; i < num_eps; i++) {
3289 		struct xhci_ep_ctx *ep_ctx;
3290 
3291 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3292 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3293 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3294 			EP_GETTING_NO_STREAMS;
3295 
3296 		xhci_endpoint_copy(xhci, command->in_ctx,
3297 				vdev->out_ctx, ep_index);
3298 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3299 				&vdev->eps[ep_index]);
3300 	}
3301 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3302 			vdev->out_ctx, ctrl_ctx,
3303 			changed_ep_bitmask, changed_ep_bitmask);
3304 	spin_unlock_irqrestore(&xhci->lock, flags);
3305 
3306 	/* Issue and wait for the configure endpoint command,
3307 	 * which must succeed.
3308 	 */
3309 	ret = xhci_configure_endpoint(xhci, udev, command,
3310 			false, true);
3311 
3312 	/* xHC rejected the configure endpoint command for some reason, so we
3313 	 * leave the streams rings intact.
3314 	 */
3315 	if (ret < 0)
3316 		return ret;
3317 
3318 	spin_lock_irqsave(&xhci->lock, flags);
3319 	for (i = 0; i < num_eps; i++) {
3320 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3321 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3322 		vdev->eps[ep_index].stream_info = NULL;
3323 		/* FIXME Unset maxPstreams in endpoint context and
3324 		 * update deq ptr to point to normal string ring.
3325 		 */
3326 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3327 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3328 	}
3329 	spin_unlock_irqrestore(&xhci->lock, flags);
3330 
3331 	return 0;
3332 }
3333 
3334 /*
3335  * Deletes endpoint resources for endpoints that were active before a Reset
3336  * Device command, or a Disable Slot command.  The Reset Device command leaves
3337  * the control endpoint intact, whereas the Disable Slot command deletes it.
3338  *
3339  * Must be called with xhci->lock held.
3340  */
3341 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3342 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3343 {
3344 	int i;
3345 	unsigned int num_dropped_eps = 0;
3346 	unsigned int drop_flags = 0;
3347 
3348 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3349 		if (virt_dev->eps[i].ring) {
3350 			drop_flags |= 1 << i;
3351 			num_dropped_eps++;
3352 		}
3353 	}
3354 	xhci->num_active_eps -= num_dropped_eps;
3355 	if (num_dropped_eps)
3356 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3357 				"Dropped %u ep ctxs, flags = 0x%x, "
3358 				"%u now active.",
3359 				num_dropped_eps, drop_flags,
3360 				xhci->num_active_eps);
3361 }
3362 
3363 /*
3364  * This submits a Reset Device Command, which will set the device state to 0,
3365  * set the device address to 0, and disable all the endpoints except the default
3366  * control endpoint.  The USB core should come back and call
3367  * xhci_address_device(), and then re-set up the configuration.  If this is
3368  * called because of a usb_reset_and_verify_device(), then the old alternate
3369  * settings will be re-installed through the normal bandwidth allocation
3370  * functions.
3371  *
3372  * Wait for the Reset Device command to finish.  Remove all structures
3373  * associated with the endpoints that were disabled.  Clear the input device
3374  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3375  *
3376  * If the virt_dev to be reset does not exist or does not match the udev,
3377  * it means the device is lost, possibly due to the xHC restore error and
3378  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3379  * re-allocate the device.
3380  */
3381 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3382 {
3383 	int ret, i;
3384 	unsigned long flags;
3385 	struct xhci_hcd *xhci;
3386 	unsigned int slot_id;
3387 	struct xhci_virt_device *virt_dev;
3388 	struct xhci_command *reset_device_cmd;
3389 	int timeleft;
3390 	int last_freed_endpoint;
3391 	struct xhci_slot_ctx *slot_ctx;
3392 	int old_active_eps = 0;
3393 
3394 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3395 	if (ret <= 0)
3396 		return ret;
3397 	xhci = hcd_to_xhci(hcd);
3398 	slot_id = udev->slot_id;
3399 	virt_dev = xhci->devs[slot_id];
3400 	if (!virt_dev) {
3401 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3402 				"not exist. Re-allocate the device\n", slot_id);
3403 		ret = xhci_alloc_dev(hcd, udev);
3404 		if (ret == 1)
3405 			return 0;
3406 		else
3407 			return -EINVAL;
3408 	}
3409 
3410 	if (virt_dev->udev != udev) {
3411 		/* If the virt_dev and the udev does not match, this virt_dev
3412 		 * may belong to another udev.
3413 		 * Re-allocate the device.
3414 		 */
3415 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3416 				"not match the udev. Re-allocate the device\n",
3417 				slot_id);
3418 		ret = xhci_alloc_dev(hcd, udev);
3419 		if (ret == 1)
3420 			return 0;
3421 		else
3422 			return -EINVAL;
3423 	}
3424 
3425 	/* If device is not setup, there is no point in resetting it */
3426 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3427 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3428 						SLOT_STATE_DISABLED)
3429 		return 0;
3430 
3431 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3432 	/* Allocate the command structure that holds the struct completion.
3433 	 * Assume we're in process context, since the normal device reset
3434 	 * process has to wait for the device anyway.  Storage devices are
3435 	 * reset as part of error handling, so use GFP_NOIO instead of
3436 	 * GFP_KERNEL.
3437 	 */
3438 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3439 	if (!reset_device_cmd) {
3440 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3441 		return -ENOMEM;
3442 	}
3443 
3444 	/* Attempt to submit the Reset Device command to the command ring */
3445 	spin_lock_irqsave(&xhci->lock, flags);
3446 	reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3447 
3448 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3449 	ret = xhci_queue_reset_device(xhci, slot_id);
3450 	if (ret) {
3451 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3452 		list_del(&reset_device_cmd->cmd_list);
3453 		spin_unlock_irqrestore(&xhci->lock, flags);
3454 		goto command_cleanup;
3455 	}
3456 	xhci_ring_cmd_db(xhci);
3457 	spin_unlock_irqrestore(&xhci->lock, flags);
3458 
3459 	/* Wait for the Reset Device command to finish */
3460 	timeleft = wait_for_completion_interruptible_timeout(
3461 			reset_device_cmd->completion,
3462 			XHCI_CMD_DEFAULT_TIMEOUT);
3463 	if (timeleft <= 0) {
3464 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3465 				timeleft == 0 ? "Timeout" : "Signal");
3466 		spin_lock_irqsave(&xhci->lock, flags);
3467 		/* The timeout might have raced with the event ring handler, so
3468 		 * only delete from the list if the item isn't poisoned.
3469 		 */
3470 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3471 			list_del(&reset_device_cmd->cmd_list);
3472 		spin_unlock_irqrestore(&xhci->lock, flags);
3473 		ret = -ETIME;
3474 		goto command_cleanup;
3475 	}
3476 
3477 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3478 	 * unless we tried to reset a slot ID that wasn't enabled,
3479 	 * or the device wasn't in the addressed or configured state.
3480 	 */
3481 	ret = reset_device_cmd->status;
3482 	switch (ret) {
3483 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3484 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3485 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3486 				slot_id,
3487 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3488 		xhci_dbg(xhci, "Not freeing device rings.\n");
3489 		/* Don't treat this as an error.  May change my mind later. */
3490 		ret = 0;
3491 		goto command_cleanup;
3492 	case COMP_SUCCESS:
3493 		xhci_dbg(xhci, "Successful reset device command.\n");
3494 		break;
3495 	default:
3496 		if (xhci_is_vendor_info_code(xhci, ret))
3497 			break;
3498 		xhci_warn(xhci, "Unknown completion code %u for "
3499 				"reset device command.\n", ret);
3500 		ret = -EINVAL;
3501 		goto command_cleanup;
3502 	}
3503 
3504 	/* Free up host controller endpoint resources */
3505 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3506 		spin_lock_irqsave(&xhci->lock, flags);
3507 		/* Don't delete the default control endpoint resources */
3508 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3509 		spin_unlock_irqrestore(&xhci->lock, flags);
3510 	}
3511 
3512 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3513 	last_freed_endpoint = 1;
3514 	for (i = 1; i < 31; ++i) {
3515 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3516 
3517 		if (ep->ep_state & EP_HAS_STREAMS) {
3518 			xhci_free_stream_info(xhci, ep->stream_info);
3519 			ep->stream_info = NULL;
3520 			ep->ep_state &= ~EP_HAS_STREAMS;
3521 		}
3522 
3523 		if (ep->ring) {
3524 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3525 			last_freed_endpoint = i;
3526 		}
3527 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3528 			xhci_drop_ep_from_interval_table(xhci,
3529 					&virt_dev->eps[i].bw_info,
3530 					virt_dev->bw_table,
3531 					udev,
3532 					&virt_dev->eps[i],
3533 					virt_dev->tt_info);
3534 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3535 	}
3536 	/* If necessary, update the number of active TTs on this root port */
3537 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3538 
3539 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3540 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3541 	ret = 0;
3542 
3543 command_cleanup:
3544 	xhci_free_command(xhci, reset_device_cmd);
3545 	return ret;
3546 }
3547 
3548 /*
3549  * At this point, the struct usb_device is about to go away, the device has
3550  * disconnected, and all traffic has been stopped and the endpoints have been
3551  * disabled.  Free any HC data structures associated with that device.
3552  */
3553 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3554 {
3555 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3556 	struct xhci_virt_device *virt_dev;
3557 	unsigned long flags;
3558 	u32 state;
3559 	int i, ret;
3560 
3561 #ifndef CONFIG_USB_DEFAULT_PERSIST
3562 	/*
3563 	 * We called pm_runtime_get_noresume when the device was attached.
3564 	 * Decrement the counter here to allow controller to runtime suspend
3565 	 * if no devices remain.
3566 	 */
3567 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3568 		pm_runtime_put_noidle(hcd->self.controller);
3569 #endif
3570 
3571 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3572 	/* If the host is halted due to driver unload, we still need to free the
3573 	 * device.
3574 	 */
3575 	if (ret <= 0 && ret != -ENODEV)
3576 		return;
3577 
3578 	virt_dev = xhci->devs[udev->slot_id];
3579 
3580 	/* Stop any wayward timer functions (which may grab the lock) */
3581 	for (i = 0; i < 31; ++i) {
3582 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3583 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3584 	}
3585 
3586 	spin_lock_irqsave(&xhci->lock, flags);
3587 	/* Don't disable the slot if the host controller is dead. */
3588 	state = xhci_readl(xhci, &xhci->op_regs->status);
3589 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3590 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3591 		xhci_free_virt_device(xhci, udev->slot_id);
3592 		spin_unlock_irqrestore(&xhci->lock, flags);
3593 		return;
3594 	}
3595 
3596 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3597 		spin_unlock_irqrestore(&xhci->lock, flags);
3598 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3599 		return;
3600 	}
3601 	xhci_ring_cmd_db(xhci);
3602 	spin_unlock_irqrestore(&xhci->lock, flags);
3603 	/*
3604 	 * Event command completion handler will free any data structures
3605 	 * associated with the slot.  XXX Can free sleep?
3606 	 */
3607 }
3608 
3609 /*
3610  * Checks if we have enough host controller resources for the default control
3611  * endpoint.
3612  *
3613  * Must be called with xhci->lock held.
3614  */
3615 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3616 {
3617 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3618 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3619 				"Not enough ep ctxs: "
3620 				"%u active, need to add 1, limit is %u.",
3621 				xhci->num_active_eps, xhci->limit_active_eps);
3622 		return -ENOMEM;
3623 	}
3624 	xhci->num_active_eps += 1;
3625 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3626 			"Adding 1 ep ctx, %u now active.",
3627 			xhci->num_active_eps);
3628 	return 0;
3629 }
3630 
3631 
3632 /*
3633  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3634  * timed out, or allocating memory failed.  Returns 1 on success.
3635  */
3636 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3637 {
3638 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3639 	unsigned long flags;
3640 	int timeleft;
3641 	int ret;
3642 	union xhci_trb *cmd_trb;
3643 
3644 	spin_lock_irqsave(&xhci->lock, flags);
3645 	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3646 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3647 	if (ret) {
3648 		spin_unlock_irqrestore(&xhci->lock, flags);
3649 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3650 		return 0;
3651 	}
3652 	xhci_ring_cmd_db(xhci);
3653 	spin_unlock_irqrestore(&xhci->lock, flags);
3654 
3655 	/* XXX: how much time for xHC slot assignment? */
3656 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3657 			XHCI_CMD_DEFAULT_TIMEOUT);
3658 	if (timeleft <= 0) {
3659 		xhci_warn(xhci, "%s while waiting for a slot\n",
3660 				timeleft == 0 ? "Timeout" : "Signal");
3661 		/* cancel the enable slot request */
3662 		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3663 	}
3664 
3665 	if (!xhci->slot_id) {
3666 		xhci_err(xhci, "Error while assigning device slot ID\n");
3667 		return 0;
3668 	}
3669 
3670 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3671 		spin_lock_irqsave(&xhci->lock, flags);
3672 		ret = xhci_reserve_host_control_ep_resources(xhci);
3673 		if (ret) {
3674 			spin_unlock_irqrestore(&xhci->lock, flags);
3675 			xhci_warn(xhci, "Not enough host resources, "
3676 					"active endpoint contexts = %u\n",
3677 					xhci->num_active_eps);
3678 			goto disable_slot;
3679 		}
3680 		spin_unlock_irqrestore(&xhci->lock, flags);
3681 	}
3682 	/* Use GFP_NOIO, since this function can be called from
3683 	 * xhci_discover_or_reset_device(), which may be called as part of
3684 	 * mass storage driver error handling.
3685 	 */
3686 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3687 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3688 		goto disable_slot;
3689 	}
3690 	udev->slot_id = xhci->slot_id;
3691 
3692 #ifndef CONFIG_USB_DEFAULT_PERSIST
3693 	/*
3694 	 * If resetting upon resume, we can't put the controller into runtime
3695 	 * suspend if there is a device attached.
3696 	 */
3697 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3698 		pm_runtime_get_noresume(hcd->self.controller);
3699 #endif
3700 
3701 	/* Is this a LS or FS device under a HS hub? */
3702 	/* Hub or peripherial? */
3703 	return 1;
3704 
3705 disable_slot:
3706 	/* Disable slot, if we can do it without mem alloc */
3707 	spin_lock_irqsave(&xhci->lock, flags);
3708 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3709 		xhci_ring_cmd_db(xhci);
3710 	spin_unlock_irqrestore(&xhci->lock, flags);
3711 	return 0;
3712 }
3713 
3714 /*
3715  * Issue an Address Device command (which will issue a SetAddress request to
3716  * the device).
3717  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3718  * we should only issue and wait on one address command at the same time.
3719  */
3720 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3721 {
3722 	unsigned long flags;
3723 	int timeleft;
3724 	struct xhci_virt_device *virt_dev;
3725 	int ret = 0;
3726 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3727 	struct xhci_slot_ctx *slot_ctx;
3728 	struct xhci_input_control_ctx *ctrl_ctx;
3729 	u64 temp_64;
3730 	union xhci_trb *cmd_trb;
3731 
3732 	if (!udev->slot_id) {
3733 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3734 				"Bad Slot ID %d", udev->slot_id);
3735 		return -EINVAL;
3736 	}
3737 
3738 	virt_dev = xhci->devs[udev->slot_id];
3739 
3740 	if (WARN_ON(!virt_dev)) {
3741 		/*
3742 		 * In plug/unplug torture test with an NEC controller,
3743 		 * a zero-dereference was observed once due to virt_dev = 0.
3744 		 * Print useful debug rather than crash if it is observed again!
3745 		 */
3746 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3747 			udev->slot_id);
3748 		return -EINVAL;
3749 	}
3750 
3751 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3752 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3753 	if (!ctrl_ctx) {
3754 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3755 				__func__);
3756 		return -EINVAL;
3757 	}
3758 	/*
3759 	 * If this is the first Set Address since device plug-in or
3760 	 * virt_device realloaction after a resume with an xHCI power loss,
3761 	 * then set up the slot context.
3762 	 */
3763 	if (!slot_ctx->dev_info)
3764 		xhci_setup_addressable_virt_dev(xhci, udev);
3765 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3766 	else
3767 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3768 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3769 	ctrl_ctx->drop_flags = 0;
3770 
3771 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3772 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3773 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3774 				slot_ctx->dev_info >> 27);
3775 
3776 	spin_lock_irqsave(&xhci->lock, flags);
3777 	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3778 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3779 					udev->slot_id);
3780 	if (ret) {
3781 		spin_unlock_irqrestore(&xhci->lock, flags);
3782 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3783 				"FIXME: allocate a command ring segment");
3784 		return ret;
3785 	}
3786 	xhci_ring_cmd_db(xhci);
3787 	spin_unlock_irqrestore(&xhci->lock, flags);
3788 
3789 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3790 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3791 			XHCI_CMD_DEFAULT_TIMEOUT);
3792 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3793 	 * the SetAddress() "recovery interval" required by USB and aborting the
3794 	 * command on a timeout.
3795 	 */
3796 	if (timeleft <= 0) {
3797 		xhci_warn(xhci, "%s while waiting for address device command\n",
3798 				timeleft == 0 ? "Timeout" : "Signal");
3799 		/* cancel the address device command */
3800 		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3801 		if (ret < 0)
3802 			return ret;
3803 		return -ETIME;
3804 	}
3805 
3806 	switch (virt_dev->cmd_status) {
3807 	case COMP_CTX_STATE:
3808 	case COMP_EBADSLT:
3809 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3810 				udev->slot_id);
3811 		ret = -EINVAL;
3812 		break;
3813 	case COMP_TX_ERR:
3814 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3815 		ret = -EPROTO;
3816 		break;
3817 	case COMP_DEV_ERR:
3818 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3819 				"device command.\n");
3820 		ret = -ENODEV;
3821 		break;
3822 	case COMP_SUCCESS:
3823 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3824 				"Successful Address Device command");
3825 		break;
3826 	default:
3827 		xhci_err(xhci, "ERROR: unexpected command completion "
3828 				"code 0x%x.\n", virt_dev->cmd_status);
3829 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3830 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3831 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3832 		ret = -EINVAL;
3833 		break;
3834 	}
3835 	if (ret) {
3836 		return ret;
3837 	}
3838 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3839 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3840 			"Op regs DCBAA ptr = %#016llx", temp_64);
3841 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3842 		"Slot ID %d dcbaa entry @%p = %#016llx",
3843 		udev->slot_id,
3844 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3845 		(unsigned long long)
3846 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3847 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3848 			"Output Context DMA address = %#08llx",
3849 			(unsigned long long)virt_dev->out_ctx->dma);
3850 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3851 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3852 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3853 				slot_ctx->dev_info >> 27);
3854 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3855 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3856 	/*
3857 	 * USB core uses address 1 for the roothubs, so we add one to the
3858 	 * address given back to us by the HC.
3859 	 */
3860 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3861 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3862 				slot_ctx->dev_info >> 27);
3863 	/* Zero the input context control for later use */
3864 	ctrl_ctx->add_flags = 0;
3865 	ctrl_ctx->drop_flags = 0;
3866 
3867 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3868 		       "Internal device address = %d",
3869 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3870 
3871 	return 0;
3872 }
3873 
3874 /*
3875  * Transfer the port index into real index in the HW port status
3876  * registers. Caculate offset between the port's PORTSC register
3877  * and port status base. Divide the number of per port register
3878  * to get the real index. The raw port number bases 1.
3879  */
3880 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3881 {
3882 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3883 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3884 	__le32 __iomem *addr;
3885 	int raw_port;
3886 
3887 	if (hcd->speed != HCD_USB3)
3888 		addr = xhci->usb2_ports[port1 - 1];
3889 	else
3890 		addr = xhci->usb3_ports[port1 - 1];
3891 
3892 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3893 	return raw_port;
3894 }
3895 
3896 /*
3897  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3898  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3899  */
3900 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3901 			struct usb_device *udev, u16 max_exit_latency)
3902 {
3903 	struct xhci_virt_device *virt_dev;
3904 	struct xhci_command *command;
3905 	struct xhci_input_control_ctx *ctrl_ctx;
3906 	struct xhci_slot_ctx *slot_ctx;
3907 	unsigned long flags;
3908 	int ret;
3909 
3910 	spin_lock_irqsave(&xhci->lock, flags);
3911 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3912 		spin_unlock_irqrestore(&xhci->lock, flags);
3913 		return 0;
3914 	}
3915 
3916 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3917 	virt_dev = xhci->devs[udev->slot_id];
3918 	command = xhci->lpm_command;
3919 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3920 	if (!ctrl_ctx) {
3921 		spin_unlock_irqrestore(&xhci->lock, flags);
3922 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3923 				__func__);
3924 		return -ENOMEM;
3925 	}
3926 
3927 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3928 	spin_unlock_irqrestore(&xhci->lock, flags);
3929 
3930 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3931 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3932 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3933 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3934 
3935 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3936 			"Set up evaluate context for LPM MEL change.");
3937 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3938 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
3939 
3940 	/* Issue and wait for the evaluate context command. */
3941 	ret = xhci_configure_endpoint(xhci, udev, command,
3942 			true, true);
3943 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3944 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3945 
3946 	if (!ret) {
3947 		spin_lock_irqsave(&xhci->lock, flags);
3948 		virt_dev->current_mel = max_exit_latency;
3949 		spin_unlock_irqrestore(&xhci->lock, flags);
3950 	}
3951 	return ret;
3952 }
3953 
3954 #ifdef CONFIG_PM_RUNTIME
3955 
3956 /* BESL to HIRD Encoding array for USB2 LPM */
3957 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3958 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3959 
3960 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3961 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3962 					struct usb_device *udev)
3963 {
3964 	int u2del, besl, besl_host;
3965 	int besl_device = 0;
3966 	u32 field;
3967 
3968 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3969 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3970 
3971 	if (field & USB_BESL_SUPPORT) {
3972 		for (besl_host = 0; besl_host < 16; besl_host++) {
3973 			if (xhci_besl_encoding[besl_host] >= u2del)
3974 				break;
3975 		}
3976 		/* Use baseline BESL value as default */
3977 		if (field & USB_BESL_BASELINE_VALID)
3978 			besl_device = USB_GET_BESL_BASELINE(field);
3979 		else if (field & USB_BESL_DEEP_VALID)
3980 			besl_device = USB_GET_BESL_DEEP(field);
3981 	} else {
3982 		if (u2del <= 50)
3983 			besl_host = 0;
3984 		else
3985 			besl_host = (u2del - 51) / 75 + 1;
3986 	}
3987 
3988 	besl = besl_host + besl_device;
3989 	if (besl > 15)
3990 		besl = 15;
3991 
3992 	return besl;
3993 }
3994 
3995 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
3996 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
3997 {
3998 	u32 field;
3999 	int l1;
4000 	int besld = 0;
4001 	int hirdm = 0;
4002 
4003 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4004 
4005 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4006 	l1 = udev->l1_params.timeout / 256;
4007 
4008 	/* device has preferred BESLD */
4009 	if (field & USB_BESL_DEEP_VALID) {
4010 		besld = USB_GET_BESL_DEEP(field);
4011 		hirdm = 1;
4012 	}
4013 
4014 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4015 }
4016 
4017 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4018 			struct usb_device *udev, int enable)
4019 {
4020 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4021 	__le32 __iomem	**port_array;
4022 	__le32 __iomem	*pm_addr, *hlpm_addr;
4023 	u32		pm_val, hlpm_val, field;
4024 	unsigned int	port_num;
4025 	unsigned long	flags;
4026 	int		hird, exit_latency;
4027 	int		ret;
4028 
4029 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4030 			!udev->lpm_capable)
4031 		return -EPERM;
4032 
4033 	if (!udev->parent || udev->parent->parent ||
4034 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4035 		return -EPERM;
4036 
4037 	if (udev->usb2_hw_lpm_capable != 1)
4038 		return -EPERM;
4039 
4040 	spin_lock_irqsave(&xhci->lock, flags);
4041 
4042 	port_array = xhci->usb2_ports;
4043 	port_num = udev->portnum - 1;
4044 	pm_addr = port_array[port_num] + PORTPMSC;
4045 	pm_val = xhci_readl(xhci, pm_addr);
4046 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4047 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4048 
4049 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4050 			enable ? "enable" : "disable", port_num);
4051 
4052 	if (enable) {
4053 		/* Host supports BESL timeout instead of HIRD */
4054 		if (udev->usb2_hw_lpm_besl_capable) {
4055 			/* if device doesn't have a preferred BESL value use a
4056 			 * default one which works with mixed HIRD and BESL
4057 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4058 			 */
4059 			if ((field & USB_BESL_SUPPORT) &&
4060 			    (field & USB_BESL_BASELINE_VALID))
4061 				hird = USB_GET_BESL_BASELINE(field);
4062 			else
4063 				hird = udev->l1_params.besl;
4064 
4065 			exit_latency = xhci_besl_encoding[hird];
4066 			spin_unlock_irqrestore(&xhci->lock, flags);
4067 
4068 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4069 			 * input context for link powermanagement evaluate
4070 			 * context commands. It is protected by hcd->bandwidth
4071 			 * mutex and is shared by all devices. We need to set
4072 			 * the max ext latency in USB 2 BESL LPM as well, so
4073 			 * use the same mutex and xhci_change_max_exit_latency()
4074 			 */
4075 			mutex_lock(hcd->bandwidth_mutex);
4076 			ret = xhci_change_max_exit_latency(xhci, udev,
4077 							   exit_latency);
4078 			mutex_unlock(hcd->bandwidth_mutex);
4079 
4080 			if (ret < 0)
4081 				return ret;
4082 			spin_lock_irqsave(&xhci->lock, flags);
4083 
4084 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4085 			xhci_writel(xhci, hlpm_val, hlpm_addr);
4086 			/* flush write */
4087 			xhci_readl(xhci, hlpm_addr);
4088 		} else {
4089 			hird = xhci_calculate_hird_besl(xhci, udev);
4090 		}
4091 
4092 		pm_val &= ~PORT_HIRD_MASK;
4093 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4094 		xhci_writel(xhci, pm_val, pm_addr);
4095 		pm_val = xhci_readl(xhci, pm_addr);
4096 		pm_val |= PORT_HLE;
4097 		xhci_writel(xhci, pm_val, pm_addr);
4098 		/* flush write */
4099 		xhci_readl(xhci, pm_addr);
4100 	} else {
4101 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4102 		xhci_writel(xhci, pm_val, pm_addr);
4103 		/* flush write */
4104 		xhci_readl(xhci, pm_addr);
4105 		if (udev->usb2_hw_lpm_besl_capable) {
4106 			spin_unlock_irqrestore(&xhci->lock, flags);
4107 			mutex_lock(hcd->bandwidth_mutex);
4108 			xhci_change_max_exit_latency(xhci, udev, 0);
4109 			mutex_unlock(hcd->bandwidth_mutex);
4110 			return 0;
4111 		}
4112 	}
4113 
4114 	spin_unlock_irqrestore(&xhci->lock, flags);
4115 	return 0;
4116 }
4117 
4118 /* check if a usb2 port supports a given extened capability protocol
4119  * only USB2 ports extended protocol capability values are cached.
4120  * Return 1 if capability is supported
4121  */
4122 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4123 					   unsigned capability)
4124 {
4125 	u32 port_offset, port_count;
4126 	int i;
4127 
4128 	for (i = 0; i < xhci->num_ext_caps; i++) {
4129 		if (xhci->ext_caps[i] & capability) {
4130 			/* port offsets starts at 1 */
4131 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4132 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4133 			if (port >= port_offset &&
4134 			    port < port_offset + port_count)
4135 				return 1;
4136 		}
4137 	}
4138 	return 0;
4139 }
4140 
4141 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4142 {
4143 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4144 	int		portnum = udev->portnum - 1;
4145 
4146 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4147 			!udev->lpm_capable)
4148 		return 0;
4149 
4150 	/* we only support lpm for non-hub device connected to root hub yet */
4151 	if (!udev->parent || udev->parent->parent ||
4152 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4153 		return 0;
4154 
4155 	if (xhci->hw_lpm_support == 1 &&
4156 			xhci_check_usb2_port_capability(
4157 				xhci, portnum, XHCI_HLC)) {
4158 		udev->usb2_hw_lpm_capable = 1;
4159 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4160 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4161 		if (xhci_check_usb2_port_capability(xhci, portnum,
4162 					XHCI_BLC))
4163 			udev->usb2_hw_lpm_besl_capable = 1;
4164 	}
4165 
4166 	return 0;
4167 }
4168 
4169 #else
4170 
4171 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4172 				struct usb_device *udev, int enable)
4173 {
4174 	return 0;
4175 }
4176 
4177 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4178 {
4179 	return 0;
4180 }
4181 
4182 #endif /* CONFIG_PM_RUNTIME */
4183 
4184 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4185 
4186 #ifdef CONFIG_PM
4187 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4188 static unsigned long long xhci_service_interval_to_ns(
4189 		struct usb_endpoint_descriptor *desc)
4190 {
4191 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4192 }
4193 
4194 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4195 		enum usb3_link_state state)
4196 {
4197 	unsigned long long sel;
4198 	unsigned long long pel;
4199 	unsigned int max_sel_pel;
4200 	char *state_name;
4201 
4202 	switch (state) {
4203 	case USB3_LPM_U1:
4204 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4205 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4206 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4207 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4208 		state_name = "U1";
4209 		break;
4210 	case USB3_LPM_U2:
4211 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4212 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4213 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4214 		state_name = "U2";
4215 		break;
4216 	default:
4217 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4218 				__func__);
4219 		return USB3_LPM_DISABLED;
4220 	}
4221 
4222 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4223 		return USB3_LPM_DEVICE_INITIATED;
4224 
4225 	if (sel > max_sel_pel)
4226 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4227 				"due to long SEL %llu ms\n",
4228 				state_name, sel);
4229 	else
4230 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4231 				"due to long PEL %llu ms\n",
4232 				state_name, pel);
4233 	return USB3_LPM_DISABLED;
4234 }
4235 
4236 /* Returns the hub-encoded U1 timeout value.
4237  * The U1 timeout should be the maximum of the following values:
4238  *  - For control endpoints, U1 system exit latency (SEL) * 3
4239  *  - For bulk endpoints, U1 SEL * 5
4240  *  - For interrupt endpoints:
4241  *    - Notification EPs, U1 SEL * 3
4242  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4243  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4244  */
4245 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4246 		struct usb_endpoint_descriptor *desc)
4247 {
4248 	unsigned long long timeout_ns;
4249 	int ep_type;
4250 	int intr_type;
4251 
4252 	ep_type = usb_endpoint_type(desc);
4253 	switch (ep_type) {
4254 	case USB_ENDPOINT_XFER_CONTROL:
4255 		timeout_ns = udev->u1_params.sel * 3;
4256 		break;
4257 	case USB_ENDPOINT_XFER_BULK:
4258 		timeout_ns = udev->u1_params.sel * 5;
4259 		break;
4260 	case USB_ENDPOINT_XFER_INT:
4261 		intr_type = usb_endpoint_interrupt_type(desc);
4262 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4263 			timeout_ns = udev->u1_params.sel * 3;
4264 			break;
4265 		}
4266 		/* Otherwise the calculation is the same as isoc eps */
4267 	case USB_ENDPOINT_XFER_ISOC:
4268 		timeout_ns = xhci_service_interval_to_ns(desc);
4269 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4270 		if (timeout_ns < udev->u1_params.sel * 2)
4271 			timeout_ns = udev->u1_params.sel * 2;
4272 		break;
4273 	default:
4274 		return 0;
4275 	}
4276 
4277 	/* The U1 timeout is encoded in 1us intervals. */
4278 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4279 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4280 	if (timeout_ns == USB3_LPM_DISABLED)
4281 		timeout_ns++;
4282 
4283 	/* If the necessary timeout value is bigger than what we can set in the
4284 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4285 	 */
4286 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4287 		return timeout_ns;
4288 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4289 			"due to long timeout %llu ms\n", timeout_ns);
4290 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4291 }
4292 
4293 /* Returns the hub-encoded U2 timeout value.
4294  * The U2 timeout should be the maximum of:
4295  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4296  *  - largest bInterval of any active periodic endpoint (to avoid going
4297  *    into lower power link states between intervals).
4298  *  - the U2 Exit Latency of the device
4299  */
4300 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4301 		struct usb_endpoint_descriptor *desc)
4302 {
4303 	unsigned long long timeout_ns;
4304 	unsigned long long u2_del_ns;
4305 
4306 	timeout_ns = 10 * 1000 * 1000;
4307 
4308 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4309 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4310 		timeout_ns = xhci_service_interval_to_ns(desc);
4311 
4312 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4313 	if (u2_del_ns > timeout_ns)
4314 		timeout_ns = u2_del_ns;
4315 
4316 	/* The U2 timeout is encoded in 256us intervals */
4317 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4318 	/* If the necessary timeout value is bigger than what we can set in the
4319 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4320 	 */
4321 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4322 		return timeout_ns;
4323 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4324 			"due to long timeout %llu ms\n", timeout_ns);
4325 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4326 }
4327 
4328 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4329 		struct usb_device *udev,
4330 		struct usb_endpoint_descriptor *desc,
4331 		enum usb3_link_state state,
4332 		u16 *timeout)
4333 {
4334 	if (state == USB3_LPM_U1) {
4335 		if (xhci->quirks & XHCI_INTEL_HOST)
4336 			return xhci_calculate_intel_u1_timeout(udev, desc);
4337 	} else {
4338 		if (xhci->quirks & XHCI_INTEL_HOST)
4339 			return xhci_calculate_intel_u2_timeout(udev, desc);
4340 	}
4341 
4342 	return USB3_LPM_DISABLED;
4343 }
4344 
4345 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4346 		struct usb_device *udev,
4347 		struct usb_endpoint_descriptor *desc,
4348 		enum usb3_link_state state,
4349 		u16 *timeout)
4350 {
4351 	u16 alt_timeout;
4352 
4353 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4354 		desc, state, timeout);
4355 
4356 	/* If we found we can't enable hub-initiated LPM, or
4357 	 * the U1 or U2 exit latency was too high to allow
4358 	 * device-initiated LPM as well, just stop searching.
4359 	 */
4360 	if (alt_timeout == USB3_LPM_DISABLED ||
4361 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4362 		*timeout = alt_timeout;
4363 		return -E2BIG;
4364 	}
4365 	if (alt_timeout > *timeout)
4366 		*timeout = alt_timeout;
4367 	return 0;
4368 }
4369 
4370 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4371 		struct usb_device *udev,
4372 		struct usb_host_interface *alt,
4373 		enum usb3_link_state state,
4374 		u16 *timeout)
4375 {
4376 	int j;
4377 
4378 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4379 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4380 					&alt->endpoint[j].desc, state, timeout))
4381 			return -E2BIG;
4382 		continue;
4383 	}
4384 	return 0;
4385 }
4386 
4387 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4388 		enum usb3_link_state state)
4389 {
4390 	struct usb_device *parent;
4391 	unsigned int num_hubs;
4392 
4393 	if (state == USB3_LPM_U2)
4394 		return 0;
4395 
4396 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4397 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4398 			parent = parent->parent)
4399 		num_hubs++;
4400 
4401 	if (num_hubs < 2)
4402 		return 0;
4403 
4404 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4405 			" below second-tier hub.\n");
4406 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4407 			"to decrease power consumption.\n");
4408 	return -E2BIG;
4409 }
4410 
4411 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4412 		struct usb_device *udev,
4413 		enum usb3_link_state state)
4414 {
4415 	if (xhci->quirks & XHCI_INTEL_HOST)
4416 		return xhci_check_intel_tier_policy(udev, state);
4417 	return -EINVAL;
4418 }
4419 
4420 /* Returns the U1 or U2 timeout that should be enabled.
4421  * If the tier check or timeout setting functions return with a non-zero exit
4422  * code, that means the timeout value has been finalized and we shouldn't look
4423  * at any more endpoints.
4424  */
4425 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4426 			struct usb_device *udev, enum usb3_link_state state)
4427 {
4428 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4429 	struct usb_host_config *config;
4430 	char *state_name;
4431 	int i;
4432 	u16 timeout = USB3_LPM_DISABLED;
4433 
4434 	if (state == USB3_LPM_U1)
4435 		state_name = "U1";
4436 	else if (state == USB3_LPM_U2)
4437 		state_name = "U2";
4438 	else {
4439 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4440 				state);
4441 		return timeout;
4442 	}
4443 
4444 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4445 		return timeout;
4446 
4447 	/* Gather some information about the currently installed configuration
4448 	 * and alternate interface settings.
4449 	 */
4450 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4451 			state, &timeout))
4452 		return timeout;
4453 
4454 	config = udev->actconfig;
4455 	if (!config)
4456 		return timeout;
4457 
4458 	for (i = 0; i < USB_MAXINTERFACES; i++) {
4459 		struct usb_driver *driver;
4460 		struct usb_interface *intf = config->interface[i];
4461 
4462 		if (!intf)
4463 			continue;
4464 
4465 		/* Check if any currently bound drivers want hub-initiated LPM
4466 		 * disabled.
4467 		 */
4468 		if (intf->dev.driver) {
4469 			driver = to_usb_driver(intf->dev.driver);
4470 			if (driver && driver->disable_hub_initiated_lpm) {
4471 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4472 						"at request of driver %s\n",
4473 						state_name, driver->name);
4474 				return xhci_get_timeout_no_hub_lpm(udev, state);
4475 			}
4476 		}
4477 
4478 		/* Not sure how this could happen... */
4479 		if (!intf->cur_altsetting)
4480 			continue;
4481 
4482 		if (xhci_update_timeout_for_interface(xhci, udev,
4483 					intf->cur_altsetting,
4484 					state, &timeout))
4485 			return timeout;
4486 	}
4487 	return timeout;
4488 }
4489 
4490 static int calculate_max_exit_latency(struct usb_device *udev,
4491 		enum usb3_link_state state_changed,
4492 		u16 hub_encoded_timeout)
4493 {
4494 	unsigned long long u1_mel_us = 0;
4495 	unsigned long long u2_mel_us = 0;
4496 	unsigned long long mel_us = 0;
4497 	bool disabling_u1;
4498 	bool disabling_u2;
4499 	bool enabling_u1;
4500 	bool enabling_u2;
4501 
4502 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4503 			hub_encoded_timeout == USB3_LPM_DISABLED);
4504 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4505 			hub_encoded_timeout == USB3_LPM_DISABLED);
4506 
4507 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4508 			hub_encoded_timeout != USB3_LPM_DISABLED);
4509 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4510 			hub_encoded_timeout != USB3_LPM_DISABLED);
4511 
4512 	/* If U1 was already enabled and we're not disabling it,
4513 	 * or we're going to enable U1, account for the U1 max exit latency.
4514 	 */
4515 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4516 			enabling_u1)
4517 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4518 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4519 			enabling_u2)
4520 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4521 
4522 	if (u1_mel_us > u2_mel_us)
4523 		mel_us = u1_mel_us;
4524 	else
4525 		mel_us = u2_mel_us;
4526 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4527 	if (mel_us > MAX_EXIT) {
4528 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4529 				"is too big.\n", mel_us);
4530 		return -E2BIG;
4531 	}
4532 	return mel_us;
4533 }
4534 
4535 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4536 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4537 			struct usb_device *udev, enum usb3_link_state state)
4538 {
4539 	struct xhci_hcd	*xhci;
4540 	u16 hub_encoded_timeout;
4541 	int mel;
4542 	int ret;
4543 
4544 	xhci = hcd_to_xhci(hcd);
4545 	/* The LPM timeout values are pretty host-controller specific, so don't
4546 	 * enable hub-initiated timeouts unless the vendor has provided
4547 	 * information about their timeout algorithm.
4548 	 */
4549 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4550 			!xhci->devs[udev->slot_id])
4551 		return USB3_LPM_DISABLED;
4552 
4553 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4554 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4555 	if (mel < 0) {
4556 		/* Max Exit Latency is too big, disable LPM. */
4557 		hub_encoded_timeout = USB3_LPM_DISABLED;
4558 		mel = 0;
4559 	}
4560 
4561 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4562 	if (ret)
4563 		return ret;
4564 	return hub_encoded_timeout;
4565 }
4566 
4567 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4568 			struct usb_device *udev, enum usb3_link_state state)
4569 {
4570 	struct xhci_hcd	*xhci;
4571 	u16 mel;
4572 	int ret;
4573 
4574 	xhci = hcd_to_xhci(hcd);
4575 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4576 			!xhci->devs[udev->slot_id])
4577 		return 0;
4578 
4579 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4580 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4581 	if (ret)
4582 		return ret;
4583 	return 0;
4584 }
4585 #else /* CONFIG_PM */
4586 
4587 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4588 			struct usb_device *udev, enum usb3_link_state state)
4589 {
4590 	return USB3_LPM_DISABLED;
4591 }
4592 
4593 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4594 			struct usb_device *udev, enum usb3_link_state state)
4595 {
4596 	return 0;
4597 }
4598 #endif	/* CONFIG_PM */
4599 
4600 /*-------------------------------------------------------------------------*/
4601 
4602 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4603  * internal data structures for the device.
4604  */
4605 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4606 			struct usb_tt *tt, gfp_t mem_flags)
4607 {
4608 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4609 	struct xhci_virt_device *vdev;
4610 	struct xhci_command *config_cmd;
4611 	struct xhci_input_control_ctx *ctrl_ctx;
4612 	struct xhci_slot_ctx *slot_ctx;
4613 	unsigned long flags;
4614 	unsigned think_time;
4615 	int ret;
4616 
4617 	/* Ignore root hubs */
4618 	if (!hdev->parent)
4619 		return 0;
4620 
4621 	vdev = xhci->devs[hdev->slot_id];
4622 	if (!vdev) {
4623 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4624 		return -EINVAL;
4625 	}
4626 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4627 	if (!config_cmd) {
4628 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4629 		return -ENOMEM;
4630 	}
4631 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4632 	if (!ctrl_ctx) {
4633 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4634 				__func__);
4635 		xhci_free_command(xhci, config_cmd);
4636 		return -ENOMEM;
4637 	}
4638 
4639 	spin_lock_irqsave(&xhci->lock, flags);
4640 	if (hdev->speed == USB_SPEED_HIGH &&
4641 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4642 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4643 		xhci_free_command(xhci, config_cmd);
4644 		spin_unlock_irqrestore(&xhci->lock, flags);
4645 		return -ENOMEM;
4646 	}
4647 
4648 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4649 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4650 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4651 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4652 	if (tt->multi)
4653 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4654 	if (xhci->hci_version > 0x95) {
4655 		xhci_dbg(xhci, "xHCI version %x needs hub "
4656 				"TT think time and number of ports\n",
4657 				(unsigned int) xhci->hci_version);
4658 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4659 		/* Set TT think time - convert from ns to FS bit times.
4660 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4661 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4662 		 *
4663 		 * xHCI 1.0: this field shall be 0 if the device is not a
4664 		 * High-spped hub.
4665 		 */
4666 		think_time = tt->think_time;
4667 		if (think_time != 0)
4668 			think_time = (think_time / 666) - 1;
4669 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4670 			slot_ctx->tt_info |=
4671 				cpu_to_le32(TT_THINK_TIME(think_time));
4672 	} else {
4673 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4674 				"TT think time or number of ports\n",
4675 				(unsigned int) xhci->hci_version);
4676 	}
4677 	slot_ctx->dev_state = 0;
4678 	spin_unlock_irqrestore(&xhci->lock, flags);
4679 
4680 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4681 			(xhci->hci_version > 0x95) ?
4682 			"configure endpoint" : "evaluate context");
4683 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4684 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4685 
4686 	/* Issue and wait for the configure endpoint or
4687 	 * evaluate context command.
4688 	 */
4689 	if (xhci->hci_version > 0x95)
4690 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4691 				false, false);
4692 	else
4693 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4694 				true, false);
4695 
4696 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4697 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4698 
4699 	xhci_free_command(xhci, config_cmd);
4700 	return ret;
4701 }
4702 
4703 int xhci_get_frame(struct usb_hcd *hcd)
4704 {
4705 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4706 	/* EHCI mods by the periodic size.  Why? */
4707 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4708 }
4709 
4710 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4711 {
4712 	struct xhci_hcd		*xhci;
4713 	struct device		*dev = hcd->self.controller;
4714 	int			retval;
4715 
4716 	/* Accept arbitrarily long scatter-gather lists */
4717 	hcd->self.sg_tablesize = ~0;
4718 
4719 	/* support to build packet from discontinuous buffers */
4720 	hcd->self.no_sg_constraint = 1;
4721 
4722 	/* XHCI controllers don't stop the ep queue on short packets :| */
4723 	hcd->self.no_stop_on_short = 1;
4724 
4725 	if (usb_hcd_is_primary_hcd(hcd)) {
4726 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4727 		if (!xhci)
4728 			return -ENOMEM;
4729 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4730 		xhci->main_hcd = hcd;
4731 		/* Mark the first roothub as being USB 2.0.
4732 		 * The xHCI driver will register the USB 3.0 roothub.
4733 		 */
4734 		hcd->speed = HCD_USB2;
4735 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4736 		/*
4737 		 * USB 2.0 roothub under xHCI has an integrated TT,
4738 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4739 		 * companion controller.
4740 		 */
4741 		hcd->has_tt = 1;
4742 	} else {
4743 		/* xHCI private pointer was set in xhci_pci_probe for the second
4744 		 * registered roothub.
4745 		 */
4746 		return 0;
4747 	}
4748 
4749 	xhci->cap_regs = hcd->regs;
4750 	xhci->op_regs = hcd->regs +
4751 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4752 	xhci->run_regs = hcd->regs +
4753 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4754 	/* Cache read-only capability registers */
4755 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4756 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4757 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4758 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4759 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4760 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4761 	xhci_print_registers(xhci);
4762 
4763 	get_quirks(dev, xhci);
4764 
4765 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4766 	 * success event after a short transfer. This quirk will ignore such
4767 	 * spurious event.
4768 	 */
4769 	if (xhci->hci_version > 0x96)
4770 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4771 
4772 	/* Make sure the HC is halted. */
4773 	retval = xhci_halt(xhci);
4774 	if (retval)
4775 		goto error;
4776 
4777 	xhci_dbg(xhci, "Resetting HCD\n");
4778 	/* Reset the internal HC memory state and registers. */
4779 	retval = xhci_reset(xhci);
4780 	if (retval)
4781 		goto error;
4782 	xhci_dbg(xhci, "Reset complete\n");
4783 
4784 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4785 	 * if xHC supports 64-bit addressing */
4786 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4787 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4788 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4789 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4790 	}
4791 
4792 	xhci_dbg(xhci, "Calling HCD init\n");
4793 	/* Initialize HCD and host controller data structures. */
4794 	retval = xhci_init(hcd);
4795 	if (retval)
4796 		goto error;
4797 	xhci_dbg(xhci, "Called HCD init\n");
4798 	return 0;
4799 error:
4800 	kfree(xhci);
4801 	return retval;
4802 }
4803 
4804 MODULE_DESCRIPTION(DRIVER_DESC);
4805 MODULE_AUTHOR(DRIVER_AUTHOR);
4806 MODULE_LICENSE("GPL");
4807 
4808 static int __init xhci_hcd_init(void)
4809 {
4810 	int retval;
4811 
4812 	retval = xhci_register_pci();
4813 	if (retval < 0) {
4814 		pr_debug("Problem registering PCI driver.\n");
4815 		return retval;
4816 	}
4817 	retval = xhci_register_plat();
4818 	if (retval < 0) {
4819 		pr_debug("Problem registering platform driver.\n");
4820 		goto unreg_pci;
4821 	}
4822 	/*
4823 	 * Check the compiler generated sizes of structures that must be laid
4824 	 * out in specific ways for hardware access.
4825 	 */
4826 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4827 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4828 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4829 	/* xhci_device_control has eight fields, and also
4830 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4831 	 */
4832 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4833 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4834 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4835 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4836 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4837 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4838 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4839 	return 0;
4840 unreg_pci:
4841 	xhci_unregister_pci();
4842 	return retval;
4843 }
4844 module_init(xhci_hcd_init);
4845 
4846 static void __exit xhci_hcd_cleanup(void)
4847 {
4848 	xhci_unregister_pci();
4849 	xhci_unregister_plat();
4850 }
4851 module_exit(xhci_hcd_cleanup);
4852