xref: /openbmc/linux/drivers/usb/host/xhci.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 
30 #include "xhci.h"
31 
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 		      u32 mask, u32 done, int usec)
56 {
57 	u32	result;
58 
59 	do {
60 		result = xhci_readl(xhci, ptr);
61 		if (result == ~(u32)0)		/* card removed */
62 			return -ENODEV;
63 		result &= mask;
64 		if (result == done)
65 			return 0;
66 		udelay(1);
67 		usec--;
68 	} while (usec > 0);
69 	return -ETIMEDOUT;
70 }
71 
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 	u32 halted;
78 	u32 cmd;
79 	u32 mask;
80 
81 	mask = ~(XHCI_IRQS);
82 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 	if (!halted)
84 		mask &= ~CMD_RUN;
85 
86 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 	cmd &= mask;
88 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90 
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 microframes of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  * XXX: shouldn't we set HC_STATE_HALT here somewhere?
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 	xhci_dbg(xhci, "// Halt the HC\n");
103 	xhci_quiesce(xhci);
104 
105 	return handshake(xhci, &xhci->op_regs->status,
106 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 }
108 
109 /*
110  * Set the run bit and wait for the host to be running.
111  */
112 int xhci_start(struct xhci_hcd *xhci)
113 {
114 	u32 temp;
115 	int ret;
116 
117 	temp = xhci_readl(xhci, &xhci->op_regs->command);
118 	temp |= (CMD_RUN);
119 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
120 			temp);
121 	xhci_writel(xhci, temp, &xhci->op_regs->command);
122 
123 	/*
124 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
125 	 * running.
126 	 */
127 	ret = handshake(xhci, &xhci->op_regs->status,
128 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
129 	if (ret == -ETIMEDOUT)
130 		xhci_err(xhci, "Host took too long to start, "
131 				"waited %u microseconds.\n",
132 				XHCI_MAX_HALT_USEC);
133 	return ret;
134 }
135 
136 /*
137  * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
138  *
139  * This resets pipelines, timers, counters, state machines, etc.
140  * Transactions will be terminated immediately, and operational registers
141  * will be set to their defaults.
142  */
143 int xhci_reset(struct xhci_hcd *xhci)
144 {
145 	u32 command;
146 	u32 state;
147 	int ret;
148 
149 	state = xhci_readl(xhci, &xhci->op_regs->status);
150 	if ((state & STS_HALT) == 0) {
151 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
152 		return 0;
153 	}
154 
155 	xhci_dbg(xhci, "// Reset the HC\n");
156 	command = xhci_readl(xhci, &xhci->op_regs->command);
157 	command |= CMD_RESET;
158 	xhci_writel(xhci, command, &xhci->op_regs->command);
159 	/* XXX: Why does EHCI set this here?  Shouldn't other code do this? */
160 	xhci_to_hcd(xhci)->state = HC_STATE_HALT;
161 
162 	ret = handshake(xhci, &xhci->op_regs->command,
163 			CMD_RESET, 0, 250 * 1000);
164 	if (ret)
165 		return ret;
166 
167 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
168 	/*
169 	 * xHCI cannot write to any doorbells or operational registers other
170 	 * than status until the "Controller Not Ready" flag is cleared.
171 	 */
172 	return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
173 }
174 
175 /*
176  * Free IRQs
177  * free all IRQs request
178  */
179 static void xhci_free_irq(struct xhci_hcd *xhci)
180 {
181 	int i;
182 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
183 
184 	/* return if using legacy interrupt */
185 	if (xhci_to_hcd(xhci)->irq >= 0)
186 		return;
187 
188 	if (xhci->msix_entries) {
189 		for (i = 0; i < xhci->msix_count; i++)
190 			if (xhci->msix_entries[i].vector)
191 				free_irq(xhci->msix_entries[i].vector,
192 						xhci_to_hcd(xhci));
193 	} else if (pdev->irq >= 0)
194 		free_irq(pdev->irq, xhci_to_hcd(xhci));
195 
196 	return;
197 }
198 
199 /*
200  * Set up MSI
201  */
202 static int xhci_setup_msi(struct xhci_hcd *xhci)
203 {
204 	int ret;
205 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
206 
207 	ret = pci_enable_msi(pdev);
208 	if (ret) {
209 		xhci_err(xhci, "failed to allocate MSI entry\n");
210 		return ret;
211 	}
212 
213 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
214 				0, "xhci_hcd", xhci_to_hcd(xhci));
215 	if (ret) {
216 		xhci_err(xhci, "disable MSI interrupt\n");
217 		pci_disable_msi(pdev);
218 	}
219 
220 	return ret;
221 }
222 
223 /*
224  * Set up MSI-X
225  */
226 static int xhci_setup_msix(struct xhci_hcd *xhci)
227 {
228 	int i, ret = 0;
229 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
230 
231 	/*
232 	 * calculate number of msi-x vectors supported.
233 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
234 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
235 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
236 	 *   Add additional 1 vector to ensure always available interrupt.
237 	 */
238 	xhci->msix_count = min(num_online_cpus() + 1,
239 				HCS_MAX_INTRS(xhci->hcs_params1));
240 
241 	xhci->msix_entries =
242 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
243 				GFP_KERNEL);
244 	if (!xhci->msix_entries) {
245 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
246 		return -ENOMEM;
247 	}
248 
249 	for (i = 0; i < xhci->msix_count; i++) {
250 		xhci->msix_entries[i].entry = i;
251 		xhci->msix_entries[i].vector = 0;
252 	}
253 
254 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
255 	if (ret) {
256 		xhci_err(xhci, "Failed to enable MSI-X\n");
257 		goto free_entries;
258 	}
259 
260 	for (i = 0; i < xhci->msix_count; i++) {
261 		ret = request_irq(xhci->msix_entries[i].vector,
262 				(irq_handler_t)xhci_msi_irq,
263 				0, "xhci_hcd", xhci_to_hcd(xhci));
264 		if (ret)
265 			goto disable_msix;
266 	}
267 
268 	return ret;
269 
270 disable_msix:
271 	xhci_err(xhci, "disable MSI-X interrupt\n");
272 	xhci_free_irq(xhci);
273 	pci_disable_msix(pdev);
274 free_entries:
275 	kfree(xhci->msix_entries);
276 	xhci->msix_entries = NULL;
277 	return ret;
278 }
279 
280 /* Free any IRQs and disable MSI-X */
281 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
282 {
283 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
284 
285 	xhci_free_irq(xhci);
286 
287 	if (xhci->msix_entries) {
288 		pci_disable_msix(pdev);
289 		kfree(xhci->msix_entries);
290 		xhci->msix_entries = NULL;
291 	} else {
292 		pci_disable_msi(pdev);
293 	}
294 
295 	return;
296 }
297 
298 /*
299  * Initialize memory for HCD and xHC (one-time init).
300  *
301  * Program the PAGESIZE register, initialize the device context array, create
302  * device contexts (?), set up a command ring segment (or two?), create event
303  * ring (one for now).
304  */
305 int xhci_init(struct usb_hcd *hcd)
306 {
307 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
308 	int retval = 0;
309 
310 	xhci_dbg(xhci, "xhci_init\n");
311 	spin_lock_init(&xhci->lock);
312 	if (link_quirk) {
313 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
314 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
315 	} else {
316 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
317 	}
318 	retval = xhci_mem_init(xhci, GFP_KERNEL);
319 	xhci_dbg(xhci, "Finished xhci_init\n");
320 
321 	return retval;
322 }
323 
324 /*-------------------------------------------------------------------------*/
325 
326 
327 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
328 void xhci_event_ring_work(unsigned long arg)
329 {
330 	unsigned long flags;
331 	int temp;
332 	u64 temp_64;
333 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
334 	int i, j;
335 
336 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
337 
338 	spin_lock_irqsave(&xhci->lock, flags);
339 	temp = xhci_readl(xhci, &xhci->op_regs->status);
340 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
341 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
342 		xhci_dbg(xhci, "HW died, polling stopped.\n");
343 		spin_unlock_irqrestore(&xhci->lock, flags);
344 		return;
345 	}
346 
347 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
348 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
349 	xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
350 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
351 	xhci->error_bitmask = 0;
352 	xhci_dbg(xhci, "Event ring:\n");
353 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
354 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
355 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
356 	temp_64 &= ~ERST_PTR_MASK;
357 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
358 	xhci_dbg(xhci, "Command ring:\n");
359 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
360 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
361 	xhci_dbg_cmd_ptrs(xhci);
362 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
363 		if (!xhci->devs[i])
364 			continue;
365 		for (j = 0; j < 31; ++j) {
366 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
367 		}
368 	}
369 
370 	if (xhci->noops_submitted != NUM_TEST_NOOPS)
371 		if (xhci_setup_one_noop(xhci))
372 			xhci_ring_cmd_db(xhci);
373 	spin_unlock_irqrestore(&xhci->lock, flags);
374 
375 	if (!xhci->zombie)
376 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
377 	else
378 		xhci_dbg(xhci, "Quit polling the event ring.\n");
379 }
380 #endif
381 
382 /*
383  * Start the HC after it was halted.
384  *
385  * This function is called by the USB core when the HC driver is added.
386  * Its opposite is xhci_stop().
387  *
388  * xhci_init() must be called once before this function can be called.
389  * Reset the HC, enable device slot contexts, program DCBAAP, and
390  * set command ring pointer and event ring pointer.
391  *
392  * Setup MSI-X vectors and enable interrupts.
393  */
394 int xhci_run(struct usb_hcd *hcd)
395 {
396 	u32 temp;
397 	u64 temp_64;
398 	u32 ret;
399 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
400 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
401 	void (*doorbell)(struct xhci_hcd *) = NULL;
402 
403 	hcd->uses_new_polling = 1;
404 
405 	xhci_dbg(xhci, "xhci_run\n");
406 	/* unregister the legacy interrupt */
407 	if (hcd->irq)
408 		free_irq(hcd->irq, hcd);
409 	hcd->irq = -1;
410 
411 	ret = xhci_setup_msix(xhci);
412 	if (ret)
413 		/* fall back to msi*/
414 		ret = xhci_setup_msi(xhci);
415 
416 	if (ret) {
417 		/* fall back to legacy interrupt*/
418 		ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
419 					hcd->irq_descr, hcd);
420 		if (ret) {
421 			xhci_err(xhci, "request interrupt %d failed\n",
422 					pdev->irq);
423 			return ret;
424 		}
425 		hcd->irq = pdev->irq;
426 	}
427 
428 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
429 	init_timer(&xhci->event_ring_timer);
430 	xhci->event_ring_timer.data = (unsigned long) xhci;
431 	xhci->event_ring_timer.function = xhci_event_ring_work;
432 	/* Poll the event ring */
433 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
434 	xhci->zombie = 0;
435 	xhci_dbg(xhci, "Setting event ring polling timer\n");
436 	add_timer(&xhci->event_ring_timer);
437 #endif
438 
439 	xhci_dbg(xhci, "Command ring memory map follows:\n");
440 	xhci_debug_ring(xhci, xhci->cmd_ring);
441 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
442 	xhci_dbg_cmd_ptrs(xhci);
443 
444 	xhci_dbg(xhci, "ERST memory map follows:\n");
445 	xhci_dbg_erst(xhci, &xhci->erst);
446 	xhci_dbg(xhci, "Event ring:\n");
447 	xhci_debug_ring(xhci, xhci->event_ring);
448 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
449 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
450 	temp_64 &= ~ERST_PTR_MASK;
451 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
452 
453 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
454 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
455 	temp &= ~ER_IRQ_INTERVAL_MASK;
456 	temp |= (u32) 160;
457 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
458 
459 	/* Set the HCD state before we enable the irqs */
460 	hcd->state = HC_STATE_RUNNING;
461 	temp = xhci_readl(xhci, &xhci->op_regs->command);
462 	temp |= (CMD_EIE);
463 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
464 			temp);
465 	xhci_writel(xhci, temp, &xhci->op_regs->command);
466 
467 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
468 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
469 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
470 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
471 			&xhci->ir_set->irq_pending);
472 	xhci_print_ir_set(xhci, xhci->ir_set, 0);
473 
474 	if (NUM_TEST_NOOPS > 0)
475 		doorbell = xhci_setup_one_noop(xhci);
476 	if (xhci->quirks & XHCI_NEC_HOST)
477 		xhci_queue_vendor_command(xhci, 0, 0, 0,
478 				TRB_TYPE(TRB_NEC_GET_FW));
479 
480 	if (xhci_start(xhci)) {
481 		xhci_halt(xhci);
482 		return -ENODEV;
483 	}
484 
485 	if (doorbell)
486 		(*doorbell)(xhci);
487 	if (xhci->quirks & XHCI_NEC_HOST)
488 		xhci_ring_cmd_db(xhci);
489 
490 	xhci_dbg(xhci, "Finished xhci_run\n");
491 	return 0;
492 }
493 
494 /*
495  * Stop xHCI driver.
496  *
497  * This function is called by the USB core when the HC driver is removed.
498  * Its opposite is xhci_run().
499  *
500  * Disable device contexts, disable IRQs, and quiesce the HC.
501  * Reset the HC, finish any completed transactions, and cleanup memory.
502  */
503 void xhci_stop(struct usb_hcd *hcd)
504 {
505 	u32 temp;
506 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
507 
508 	spin_lock_irq(&xhci->lock);
509 	xhci_halt(xhci);
510 	xhci_reset(xhci);
511 	xhci_cleanup_msix(xhci);
512 	spin_unlock_irq(&xhci->lock);
513 
514 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
515 	/* Tell the event ring poll function not to reschedule */
516 	xhci->zombie = 1;
517 	del_timer_sync(&xhci->event_ring_timer);
518 #endif
519 
520 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
521 	temp = xhci_readl(xhci, &xhci->op_regs->status);
522 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
523 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
524 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
525 			&xhci->ir_set->irq_pending);
526 	xhci_print_ir_set(xhci, xhci->ir_set, 0);
527 
528 	xhci_dbg(xhci, "cleaning up memory\n");
529 	xhci_mem_cleanup(xhci);
530 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
531 		    xhci_readl(xhci, &xhci->op_regs->status));
532 }
533 
534 /*
535  * Shutdown HC (not bus-specific)
536  *
537  * This is called when the machine is rebooting or halting.  We assume that the
538  * machine will be powered off, and the HC's internal state will be reset.
539  * Don't bother to free memory.
540  */
541 void xhci_shutdown(struct usb_hcd *hcd)
542 {
543 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
544 
545 	spin_lock_irq(&xhci->lock);
546 	xhci_halt(xhci);
547 	xhci_cleanup_msix(xhci);
548 	spin_unlock_irq(&xhci->lock);
549 
550 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
551 		    xhci_readl(xhci, &xhci->op_regs->status));
552 }
553 
554 #ifdef CONFIG_PM
555 static void xhci_save_registers(struct xhci_hcd *xhci)
556 {
557 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
558 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
559 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
560 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
561 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
562 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
563 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
564 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
565 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
566 }
567 
568 static void xhci_restore_registers(struct xhci_hcd *xhci)
569 {
570 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
571 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
572 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
573 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
574 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
575 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
576 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
577 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
578 }
579 
580 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
581 {
582 	u64	val_64;
583 
584 	/* step 2: initialize command ring buffer */
585 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
586 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
587 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
588 				      xhci->cmd_ring->dequeue) &
589 		 (u64) ~CMD_RING_RSVD_BITS) |
590 		xhci->cmd_ring->cycle_state;
591 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
592 			(long unsigned long) val_64);
593 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
594 }
595 
596 /*
597  * The whole command ring must be cleared to zero when we suspend the host.
598  *
599  * The host doesn't save the command ring pointer in the suspend well, so we
600  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
601  * aligned, because of the reserved bits in the command ring dequeue pointer
602  * register.  Therefore, we can't just set the dequeue pointer back in the
603  * middle of the ring (TRBs are 16-byte aligned).
604  */
605 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
606 {
607 	struct xhci_ring *ring;
608 	struct xhci_segment *seg;
609 
610 	ring = xhci->cmd_ring;
611 	seg = ring->deq_seg;
612 	do {
613 		memset(seg->trbs, 0, SEGMENT_SIZE);
614 		seg = seg->next;
615 	} while (seg != ring->deq_seg);
616 
617 	/* Reset the software enqueue and dequeue pointers */
618 	ring->deq_seg = ring->first_seg;
619 	ring->dequeue = ring->first_seg->trbs;
620 	ring->enq_seg = ring->deq_seg;
621 	ring->enqueue = ring->dequeue;
622 
623 	/*
624 	 * Ring is now zeroed, so the HW should look for change of ownership
625 	 * when the cycle bit is set to 1.
626 	 */
627 	ring->cycle_state = 1;
628 
629 	/*
630 	 * Reset the hardware dequeue pointer.
631 	 * Yes, this will need to be re-written after resume, but we're paranoid
632 	 * and want to make sure the hardware doesn't access bogus memory
633 	 * because, say, the BIOS or an SMI started the host without changing
634 	 * the command ring pointers.
635 	 */
636 	xhci_set_cmd_ring_deq(xhci);
637 }
638 
639 /*
640  * Stop HC (not bus-specific)
641  *
642  * This is called when the machine transition into S3/S4 mode.
643  *
644  */
645 int xhci_suspend(struct xhci_hcd *xhci)
646 {
647 	int			rc = 0;
648 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
649 	u32			command;
650 
651 	spin_lock_irq(&xhci->lock);
652 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
653 	/* step 1: stop endpoint */
654 	/* skipped assuming that port suspend has done */
655 
656 	/* step 2: clear Run/Stop bit */
657 	command = xhci_readl(xhci, &xhci->op_regs->command);
658 	command &= ~CMD_RUN;
659 	xhci_writel(xhci, command, &xhci->op_regs->command);
660 	if (handshake(xhci, &xhci->op_regs->status,
661 		      STS_HALT, STS_HALT, 100*100)) {
662 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
663 		spin_unlock_irq(&xhci->lock);
664 		return -ETIMEDOUT;
665 	}
666 	xhci_clear_command_ring(xhci);
667 
668 	/* step 3: save registers */
669 	xhci_save_registers(xhci);
670 
671 	/* step 4: set CSS flag */
672 	command = xhci_readl(xhci, &xhci->op_regs->command);
673 	command |= CMD_CSS;
674 	xhci_writel(xhci, command, &xhci->op_regs->command);
675 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
676 		xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
677 		spin_unlock_irq(&xhci->lock);
678 		return -ETIMEDOUT;
679 	}
680 	/* step 5: remove core well power */
681 	xhci_cleanup_msix(xhci);
682 	spin_unlock_irq(&xhci->lock);
683 
684 	return rc;
685 }
686 
687 /*
688  * start xHC (not bus-specific)
689  *
690  * This is called when the machine transition from S3/S4 mode.
691  *
692  */
693 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
694 {
695 	u32			command, temp = 0;
696 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
697 	struct pci_dev		*pdev = to_pci_dev(hcd->self.controller);
698 	int	old_state, retval;
699 
700 	old_state = hcd->state;
701 	if (time_before(jiffies, xhci->next_statechange))
702 		msleep(100);
703 
704 	spin_lock_irq(&xhci->lock);
705 
706 	if (!hibernated) {
707 		/* step 1: restore register */
708 		xhci_restore_registers(xhci);
709 		/* step 2: initialize command ring buffer */
710 		xhci_set_cmd_ring_deq(xhci);
711 		/* step 3: restore state and start state*/
712 		/* step 3: set CRS flag */
713 		command = xhci_readl(xhci, &xhci->op_regs->command);
714 		command |= CMD_CRS;
715 		xhci_writel(xhci, command, &xhci->op_regs->command);
716 		if (handshake(xhci, &xhci->op_regs->status,
717 			      STS_RESTORE, 0, 10*100)) {
718 			xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
719 			spin_unlock_irq(&xhci->lock);
720 			return -ETIMEDOUT;
721 		}
722 		temp = xhci_readl(xhci, &xhci->op_regs->status);
723 	}
724 
725 	/* If restore operation fails, re-initialize the HC during resume */
726 	if ((temp & STS_SRE) || hibernated) {
727 		usb_root_hub_lost_power(hcd->self.root_hub);
728 
729 		xhci_dbg(xhci, "Stop HCD\n");
730 		xhci_halt(xhci);
731 		xhci_reset(xhci);
732 		if (hibernated)
733 			xhci_cleanup_msix(xhci);
734 		spin_unlock_irq(&xhci->lock);
735 
736 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
737 		/* Tell the event ring poll function not to reschedule */
738 		xhci->zombie = 1;
739 		del_timer_sync(&xhci->event_ring_timer);
740 #endif
741 
742 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
743 		temp = xhci_readl(xhci, &xhci->op_regs->status);
744 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
745 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
746 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
747 				&xhci->ir_set->irq_pending);
748 		xhci_print_ir_set(xhci, xhci->ir_set, 0);
749 
750 		xhci_dbg(xhci, "cleaning up memory\n");
751 		xhci_mem_cleanup(xhci);
752 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
753 			    xhci_readl(xhci, &xhci->op_regs->status));
754 
755 		xhci_dbg(xhci, "Initialize the HCD\n");
756 		retval = xhci_init(hcd);
757 		if (retval)
758 			return retval;
759 
760 		xhci_dbg(xhci, "Start the HCD\n");
761 		retval = xhci_run(hcd);
762 		if (!retval)
763 			set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
764 		hcd->state = HC_STATE_SUSPENDED;
765 		return retval;
766 	}
767 
768 	spin_unlock_irq(&xhci->lock);
769 	/* Re-setup MSI-X */
770 	if (hcd->irq)
771 		free_irq(hcd->irq, hcd);
772 	hcd->irq = -1;
773 
774 	retval = xhci_setup_msix(xhci);
775 	if (retval)
776 		/* fall back to msi*/
777 		retval = xhci_setup_msi(xhci);
778 
779 	if (retval) {
780 		/* fall back to legacy interrupt*/
781 		retval = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
782 					hcd->irq_descr, hcd);
783 		if (retval) {
784 			xhci_err(xhci, "request interrupt %d failed\n",
785 					pdev->irq);
786 			return retval;
787 		}
788 		hcd->irq = pdev->irq;
789 	}
790 
791 	spin_lock_irq(&xhci->lock);
792 	/* step 4: set Run/Stop bit */
793 	command = xhci_readl(xhci, &xhci->op_regs->command);
794 	command |= CMD_RUN;
795 	xhci_writel(xhci, command, &xhci->op_regs->command);
796 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
797 		  0, 250 * 1000);
798 
799 	/* step 5: walk topology and initialize portsc,
800 	 * portpmsc and portli
801 	 */
802 	/* this is done in bus_resume */
803 
804 	/* step 6: restart each of the previously
805 	 * Running endpoints by ringing their doorbells
806 	 */
807 
808 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
809 	if (!hibernated)
810 		hcd->state = old_state;
811 	else
812 		hcd->state = HC_STATE_SUSPENDED;
813 
814 	spin_unlock_irq(&xhci->lock);
815 	return 0;
816 }
817 #endif	/* CONFIG_PM */
818 
819 /*-------------------------------------------------------------------------*/
820 
821 /**
822  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
823  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
824  * value to right shift 1 for the bitmask.
825  *
826  * Index  = (epnum * 2) + direction - 1,
827  * where direction = 0 for OUT, 1 for IN.
828  * For control endpoints, the IN index is used (OUT index is unused), so
829  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
830  */
831 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
832 {
833 	unsigned int index;
834 	if (usb_endpoint_xfer_control(desc))
835 		index = (unsigned int) (usb_endpoint_num(desc)*2);
836 	else
837 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
838 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
839 	return index;
840 }
841 
842 /* Find the flag for this endpoint (for use in the control context).  Use the
843  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
844  * bit 1, etc.
845  */
846 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
847 {
848 	return 1 << (xhci_get_endpoint_index(desc) + 1);
849 }
850 
851 /* Find the flag for this endpoint (for use in the control context).  Use the
852  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
853  * bit 1, etc.
854  */
855 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
856 {
857 	return 1 << (ep_index + 1);
858 }
859 
860 /* Compute the last valid endpoint context index.  Basically, this is the
861  * endpoint index plus one.  For slot contexts with more than valid endpoint,
862  * we find the most significant bit set in the added contexts flags.
863  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
864  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
865  */
866 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
867 {
868 	return fls(added_ctxs) - 1;
869 }
870 
871 /* Returns 1 if the arguments are OK;
872  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
873  */
874 int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
875 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
876 		const char *func) {
877 	struct xhci_hcd	*xhci;
878 	struct xhci_virt_device	*virt_dev;
879 
880 	if (!hcd || (check_ep && !ep) || !udev) {
881 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
882 				func);
883 		return -EINVAL;
884 	}
885 	if (!udev->parent) {
886 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
887 				func);
888 		return 0;
889 	}
890 
891 	if (check_virt_dev) {
892 		xhci = hcd_to_xhci(hcd);
893 		if (!udev->slot_id || !xhci->devs
894 			|| !xhci->devs[udev->slot_id]) {
895 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
896 						"device\n", func);
897 			return -EINVAL;
898 		}
899 
900 		virt_dev = xhci->devs[udev->slot_id];
901 		if (virt_dev->udev != udev) {
902 			printk(KERN_DEBUG "xHCI %s called with udev and "
903 					  "virt_dev does not match\n", func);
904 			return -EINVAL;
905 		}
906 	}
907 
908 	return 1;
909 }
910 
911 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
912 		struct usb_device *udev, struct xhci_command *command,
913 		bool ctx_change, bool must_succeed);
914 
915 /*
916  * Full speed devices may have a max packet size greater than 8 bytes, but the
917  * USB core doesn't know that until it reads the first 8 bytes of the
918  * descriptor.  If the usb_device's max packet size changes after that point,
919  * we need to issue an evaluate context command and wait on it.
920  */
921 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
922 		unsigned int ep_index, struct urb *urb)
923 {
924 	struct xhci_container_ctx *in_ctx;
925 	struct xhci_container_ctx *out_ctx;
926 	struct xhci_input_control_ctx *ctrl_ctx;
927 	struct xhci_ep_ctx *ep_ctx;
928 	int max_packet_size;
929 	int hw_max_packet_size;
930 	int ret = 0;
931 
932 	out_ctx = xhci->devs[slot_id]->out_ctx;
933 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
934 	hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
935 	max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
936 	if (hw_max_packet_size != max_packet_size) {
937 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
938 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
939 				max_packet_size);
940 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
941 				hw_max_packet_size);
942 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
943 
944 		/* Set up the modified control endpoint 0 */
945 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
946 				xhci->devs[slot_id]->out_ctx, ep_index);
947 		in_ctx = xhci->devs[slot_id]->in_ctx;
948 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
949 		ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
950 		ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);
951 
952 		/* Set up the input context flags for the command */
953 		/* FIXME: This won't work if a non-default control endpoint
954 		 * changes max packet sizes.
955 		 */
956 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
957 		ctrl_ctx->add_flags = EP0_FLAG;
958 		ctrl_ctx->drop_flags = 0;
959 
960 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
961 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
962 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
963 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
964 
965 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
966 				true, false);
967 
968 		/* Clean up the input context for later use by bandwidth
969 		 * functions.
970 		 */
971 		ctrl_ctx->add_flags = SLOT_FLAG;
972 	}
973 	return ret;
974 }
975 
976 /*
977  * non-error returns are a promise to giveback() the urb later
978  * we drop ownership so next owner (or urb unlink) can get it
979  */
980 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
981 {
982 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
983 	unsigned long flags;
984 	int ret = 0;
985 	unsigned int slot_id, ep_index;
986 	struct urb_priv	*urb_priv;
987 	int size, i;
988 
989 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
990 					true, true, __func__) <= 0)
991 		return -EINVAL;
992 
993 	slot_id = urb->dev->slot_id;
994 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
995 
996 	if (!HCD_HW_ACCESSIBLE(hcd)) {
997 		if (!in_interrupt())
998 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
999 		ret = -ESHUTDOWN;
1000 		goto exit;
1001 	}
1002 
1003 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1004 		size = urb->number_of_packets;
1005 	else
1006 		size = 1;
1007 
1008 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1009 				  size * sizeof(struct xhci_td *), mem_flags);
1010 	if (!urb_priv)
1011 		return -ENOMEM;
1012 
1013 	for (i = 0; i < size; i++) {
1014 		urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1015 		if (!urb_priv->td[i]) {
1016 			urb_priv->length = i;
1017 			xhci_urb_free_priv(xhci, urb_priv);
1018 			return -ENOMEM;
1019 		}
1020 	}
1021 
1022 	urb_priv->length = size;
1023 	urb_priv->td_cnt = 0;
1024 	urb->hcpriv = urb_priv;
1025 
1026 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1027 		/* Check to see if the max packet size for the default control
1028 		 * endpoint changed during FS device enumeration
1029 		 */
1030 		if (urb->dev->speed == USB_SPEED_FULL) {
1031 			ret = xhci_check_maxpacket(xhci, slot_id,
1032 					ep_index, urb);
1033 			if (ret < 0)
1034 				return ret;
1035 		}
1036 
1037 		/* We have a spinlock and interrupts disabled, so we must pass
1038 		 * atomic context to this function, which may allocate memory.
1039 		 */
1040 		spin_lock_irqsave(&xhci->lock, flags);
1041 		if (xhci->xhc_state & XHCI_STATE_DYING)
1042 			goto dying;
1043 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1044 				slot_id, ep_index);
1045 		spin_unlock_irqrestore(&xhci->lock, flags);
1046 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1047 		spin_lock_irqsave(&xhci->lock, flags);
1048 		if (xhci->xhc_state & XHCI_STATE_DYING)
1049 			goto dying;
1050 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1051 				EP_GETTING_STREAMS) {
1052 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1053 					"is transitioning to using streams.\n");
1054 			ret = -EINVAL;
1055 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1056 				EP_GETTING_NO_STREAMS) {
1057 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1058 					"is transitioning to "
1059 					"not having streams.\n");
1060 			ret = -EINVAL;
1061 		} else {
1062 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1063 					slot_id, ep_index);
1064 		}
1065 		spin_unlock_irqrestore(&xhci->lock, flags);
1066 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1067 		spin_lock_irqsave(&xhci->lock, flags);
1068 		if (xhci->xhc_state & XHCI_STATE_DYING)
1069 			goto dying;
1070 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1071 				slot_id, ep_index);
1072 		spin_unlock_irqrestore(&xhci->lock, flags);
1073 	} else {
1074 		spin_lock_irqsave(&xhci->lock, flags);
1075 		if (xhci->xhc_state & XHCI_STATE_DYING)
1076 			goto dying;
1077 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1078 				slot_id, ep_index);
1079 		spin_unlock_irqrestore(&xhci->lock, flags);
1080 	}
1081 exit:
1082 	return ret;
1083 dying:
1084 	xhci_urb_free_priv(xhci, urb_priv);
1085 	urb->hcpriv = NULL;
1086 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1087 			"non-responsive xHCI host.\n",
1088 			urb->ep->desc.bEndpointAddress, urb);
1089 	spin_unlock_irqrestore(&xhci->lock, flags);
1090 	return -ESHUTDOWN;
1091 }
1092 
1093 /* Get the right ring for the given URB.
1094  * If the endpoint supports streams, boundary check the URB's stream ID.
1095  * If the endpoint doesn't support streams, return the singular endpoint ring.
1096  */
1097 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1098 		struct urb *urb)
1099 {
1100 	unsigned int slot_id;
1101 	unsigned int ep_index;
1102 	unsigned int stream_id;
1103 	struct xhci_virt_ep *ep;
1104 
1105 	slot_id = urb->dev->slot_id;
1106 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1107 	stream_id = urb->stream_id;
1108 	ep = &xhci->devs[slot_id]->eps[ep_index];
1109 	/* Common case: no streams */
1110 	if (!(ep->ep_state & EP_HAS_STREAMS))
1111 		return ep->ring;
1112 
1113 	if (stream_id == 0) {
1114 		xhci_warn(xhci,
1115 				"WARN: Slot ID %u, ep index %u has streams, "
1116 				"but URB has no stream ID.\n",
1117 				slot_id, ep_index);
1118 		return NULL;
1119 	}
1120 
1121 	if (stream_id < ep->stream_info->num_streams)
1122 		return ep->stream_info->stream_rings[stream_id];
1123 
1124 	xhci_warn(xhci,
1125 			"WARN: Slot ID %u, ep index %u has "
1126 			"stream IDs 1 to %u allocated, "
1127 			"but stream ID %u is requested.\n",
1128 			slot_id, ep_index,
1129 			ep->stream_info->num_streams - 1,
1130 			stream_id);
1131 	return NULL;
1132 }
1133 
1134 /*
1135  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1136  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1137  * should pick up where it left off in the TD, unless a Set Transfer Ring
1138  * Dequeue Pointer is issued.
1139  *
1140  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1141  * the ring.  Since the ring is a contiguous structure, they can't be physically
1142  * removed.  Instead, there are two options:
1143  *
1144  *  1) If the HC is in the middle of processing the URB to be canceled, we
1145  *     simply move the ring's dequeue pointer past those TRBs using the Set
1146  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1147  *     when drivers timeout on the last submitted URB and attempt to cancel.
1148  *
1149  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1150  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1151  *     HC will need to invalidate the any TRBs it has cached after the stop
1152  *     endpoint command, as noted in the xHCI 0.95 errata.
1153  *
1154  *  3) The TD may have completed by the time the Stop Endpoint Command
1155  *     completes, so software needs to handle that case too.
1156  *
1157  * This function should protect against the TD enqueueing code ringing the
1158  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1159  * It also needs to account for multiple cancellations on happening at the same
1160  * time for the same endpoint.
1161  *
1162  * Note that this function can be called in any context, or so says
1163  * usb_hcd_unlink_urb()
1164  */
1165 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1166 {
1167 	unsigned long flags;
1168 	int ret, i;
1169 	u32 temp;
1170 	struct xhci_hcd *xhci;
1171 	struct urb_priv	*urb_priv;
1172 	struct xhci_td *td;
1173 	unsigned int ep_index;
1174 	struct xhci_ring *ep_ring;
1175 	struct xhci_virt_ep *ep;
1176 
1177 	xhci = hcd_to_xhci(hcd);
1178 	spin_lock_irqsave(&xhci->lock, flags);
1179 	/* Make sure the URB hasn't completed or been unlinked already */
1180 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1181 	if (ret || !urb->hcpriv)
1182 		goto done;
1183 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1184 	if (temp == 0xffffffff) {
1185 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1186 		urb_priv = urb->hcpriv;
1187 
1188 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1189 		spin_unlock_irqrestore(&xhci->lock, flags);
1190 		usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, -ESHUTDOWN);
1191 		xhci_urb_free_priv(xhci, urb_priv);
1192 		return ret;
1193 	}
1194 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1195 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1196 				"non-responsive xHCI host.\n",
1197 				urb->ep->desc.bEndpointAddress, urb);
1198 		/* Let the stop endpoint command watchdog timer (which set this
1199 		 * state) finish cleaning up the endpoint TD lists.  We must
1200 		 * have caught it in the middle of dropping a lock and giving
1201 		 * back an URB.
1202 		 */
1203 		goto done;
1204 	}
1205 
1206 	xhci_dbg(xhci, "Cancel URB %p\n", urb);
1207 	xhci_dbg(xhci, "Event ring:\n");
1208 	xhci_debug_ring(xhci, xhci->event_ring);
1209 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1210 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1211 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1212 	if (!ep_ring) {
1213 		ret = -EINVAL;
1214 		goto done;
1215 	}
1216 
1217 	xhci_dbg(xhci, "Endpoint ring:\n");
1218 	xhci_debug_ring(xhci, ep_ring);
1219 
1220 	urb_priv = urb->hcpriv;
1221 
1222 	for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1223 		td = urb_priv->td[i];
1224 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1225 	}
1226 
1227 	/* Queue a stop endpoint command, but only if this is
1228 	 * the first cancellation to be handled.
1229 	 */
1230 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1231 		ep->ep_state |= EP_HALT_PENDING;
1232 		ep->stop_cmds_pending++;
1233 		ep->stop_cmd_timer.expires = jiffies +
1234 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1235 		add_timer(&ep->stop_cmd_timer);
1236 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1237 		xhci_ring_cmd_db(xhci);
1238 	}
1239 done:
1240 	spin_unlock_irqrestore(&xhci->lock, flags);
1241 	return ret;
1242 }
1243 
1244 /* Drop an endpoint from a new bandwidth configuration for this device.
1245  * Only one call to this function is allowed per endpoint before
1246  * check_bandwidth() or reset_bandwidth() must be called.
1247  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1248  * add the endpoint to the schedule with possibly new parameters denoted by a
1249  * different endpoint descriptor in usb_host_endpoint.
1250  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1251  * not allowed.
1252  *
1253  * The USB core will not allow URBs to be queued to an endpoint that is being
1254  * disabled, so there's no need for mutual exclusion to protect
1255  * the xhci->devs[slot_id] structure.
1256  */
1257 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1258 		struct usb_host_endpoint *ep)
1259 {
1260 	struct xhci_hcd *xhci;
1261 	struct xhci_container_ctx *in_ctx, *out_ctx;
1262 	struct xhci_input_control_ctx *ctrl_ctx;
1263 	struct xhci_slot_ctx *slot_ctx;
1264 	unsigned int last_ctx;
1265 	unsigned int ep_index;
1266 	struct xhci_ep_ctx *ep_ctx;
1267 	u32 drop_flag;
1268 	u32 new_add_flags, new_drop_flags, new_slot_info;
1269 	int ret;
1270 
1271 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1272 	if (ret <= 0)
1273 		return ret;
1274 	xhci = hcd_to_xhci(hcd);
1275 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1276 
1277 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1278 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1279 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1280 				__func__, drop_flag);
1281 		return 0;
1282 	}
1283 
1284 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1285 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1286 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1287 	ep_index = xhci_get_endpoint_index(&ep->desc);
1288 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1289 	/* If the HC already knows the endpoint is disabled,
1290 	 * or the HCD has noted it is disabled, ignore this request
1291 	 */
1292 	if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
1293 			ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
1294 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1295 				__func__, ep);
1296 		return 0;
1297 	}
1298 
1299 	ctrl_ctx->drop_flags |= drop_flag;
1300 	new_drop_flags = ctrl_ctx->drop_flags;
1301 
1302 	ctrl_ctx->add_flags &= ~drop_flag;
1303 	new_add_flags = ctrl_ctx->add_flags;
1304 
1305 	last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
1306 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1307 	/* Update the last valid endpoint context, if we deleted the last one */
1308 	if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
1309 		slot_ctx->dev_info &= ~LAST_CTX_MASK;
1310 		slot_ctx->dev_info |= LAST_CTX(last_ctx);
1311 	}
1312 	new_slot_info = slot_ctx->dev_info;
1313 
1314 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1315 
1316 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1317 			(unsigned int) ep->desc.bEndpointAddress,
1318 			udev->slot_id,
1319 			(unsigned int) new_drop_flags,
1320 			(unsigned int) new_add_flags,
1321 			(unsigned int) new_slot_info);
1322 	return 0;
1323 }
1324 
1325 /* Add an endpoint to a new possible bandwidth configuration for this device.
1326  * Only one call to this function is allowed per endpoint before
1327  * check_bandwidth() or reset_bandwidth() must be called.
1328  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1329  * add the endpoint to the schedule with possibly new parameters denoted by a
1330  * different endpoint descriptor in usb_host_endpoint.
1331  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1332  * not allowed.
1333  *
1334  * The USB core will not allow URBs to be queued to an endpoint until the
1335  * configuration or alt setting is installed in the device, so there's no need
1336  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1337  */
1338 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1339 		struct usb_host_endpoint *ep)
1340 {
1341 	struct xhci_hcd *xhci;
1342 	struct xhci_container_ctx *in_ctx, *out_ctx;
1343 	unsigned int ep_index;
1344 	struct xhci_ep_ctx *ep_ctx;
1345 	struct xhci_slot_ctx *slot_ctx;
1346 	struct xhci_input_control_ctx *ctrl_ctx;
1347 	u32 added_ctxs;
1348 	unsigned int last_ctx;
1349 	u32 new_add_flags, new_drop_flags, new_slot_info;
1350 	int ret = 0;
1351 
1352 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1353 	if (ret <= 0) {
1354 		/* So we won't queue a reset ep command for a root hub */
1355 		ep->hcpriv = NULL;
1356 		return ret;
1357 	}
1358 	xhci = hcd_to_xhci(hcd);
1359 
1360 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1361 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1362 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1363 		/* FIXME when we have to issue an evaluate endpoint command to
1364 		 * deal with ep0 max packet size changing once we get the
1365 		 * descriptors
1366 		 */
1367 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1368 				__func__, added_ctxs);
1369 		return 0;
1370 	}
1371 
1372 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1373 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1374 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1375 	ep_index = xhci_get_endpoint_index(&ep->desc);
1376 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1377 	/* If the HCD has already noted the endpoint is enabled,
1378 	 * ignore this request.
1379 	 */
1380 	if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
1381 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1382 				__func__, ep);
1383 		return 0;
1384 	}
1385 
1386 	/*
1387 	 * Configuration and alternate setting changes must be done in
1388 	 * process context, not interrupt context (or so documenation
1389 	 * for usb_set_interface() and usb_set_configuration() claim).
1390 	 */
1391 	if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
1392 				udev, ep, GFP_NOIO) < 0) {
1393 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1394 				__func__, ep->desc.bEndpointAddress);
1395 		return -ENOMEM;
1396 	}
1397 
1398 	ctrl_ctx->add_flags |= added_ctxs;
1399 	new_add_flags = ctrl_ctx->add_flags;
1400 
1401 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1402 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1403 	 * this re-adds a new state for the endpoint from the new endpoint
1404 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1405 	 * drop flags alone.
1406 	 */
1407 	new_drop_flags = ctrl_ctx->drop_flags;
1408 
1409 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1410 	/* Update the last valid endpoint context, if we just added one past */
1411 	if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
1412 		slot_ctx->dev_info &= ~LAST_CTX_MASK;
1413 		slot_ctx->dev_info |= LAST_CTX(last_ctx);
1414 	}
1415 	new_slot_info = slot_ctx->dev_info;
1416 
1417 	/* Store the usb_device pointer for later use */
1418 	ep->hcpriv = udev;
1419 
1420 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1421 			(unsigned int) ep->desc.bEndpointAddress,
1422 			udev->slot_id,
1423 			(unsigned int) new_drop_flags,
1424 			(unsigned int) new_add_flags,
1425 			(unsigned int) new_slot_info);
1426 	return 0;
1427 }
1428 
1429 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1430 {
1431 	struct xhci_input_control_ctx *ctrl_ctx;
1432 	struct xhci_ep_ctx *ep_ctx;
1433 	struct xhci_slot_ctx *slot_ctx;
1434 	int i;
1435 
1436 	/* When a device's add flag and drop flag are zero, any subsequent
1437 	 * configure endpoint command will leave that endpoint's state
1438 	 * untouched.  Make sure we don't leave any old state in the input
1439 	 * endpoint contexts.
1440 	 */
1441 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1442 	ctrl_ctx->drop_flags = 0;
1443 	ctrl_ctx->add_flags = 0;
1444 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1445 	slot_ctx->dev_info &= ~LAST_CTX_MASK;
1446 	/* Endpoint 0 is always valid */
1447 	slot_ctx->dev_info |= LAST_CTX(1);
1448 	for (i = 1; i < 31; ++i) {
1449 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1450 		ep_ctx->ep_info = 0;
1451 		ep_ctx->ep_info2 = 0;
1452 		ep_ctx->deq = 0;
1453 		ep_ctx->tx_info = 0;
1454 	}
1455 }
1456 
1457 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1458 		struct usb_device *udev, int *cmd_status)
1459 {
1460 	int ret;
1461 
1462 	switch (*cmd_status) {
1463 	case COMP_ENOMEM:
1464 		dev_warn(&udev->dev, "Not enough host controller resources "
1465 				"for new device state.\n");
1466 		ret = -ENOMEM;
1467 		/* FIXME: can we allocate more resources for the HC? */
1468 		break;
1469 	case COMP_BW_ERR:
1470 		dev_warn(&udev->dev, "Not enough bandwidth "
1471 				"for new device state.\n");
1472 		ret = -ENOSPC;
1473 		/* FIXME: can we go back to the old state? */
1474 		break;
1475 	case COMP_TRB_ERR:
1476 		/* the HCD set up something wrong */
1477 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1478 				"add flag = 1, "
1479 				"and endpoint is not disabled.\n");
1480 		ret = -EINVAL;
1481 		break;
1482 	case COMP_SUCCESS:
1483 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1484 		ret = 0;
1485 		break;
1486 	default:
1487 		xhci_err(xhci, "ERROR: unexpected command completion "
1488 				"code 0x%x.\n", *cmd_status);
1489 		ret = -EINVAL;
1490 		break;
1491 	}
1492 	return ret;
1493 }
1494 
1495 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1496 		struct usb_device *udev, int *cmd_status)
1497 {
1498 	int ret;
1499 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1500 
1501 	switch (*cmd_status) {
1502 	case COMP_EINVAL:
1503 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1504 				"context command.\n");
1505 		ret = -EINVAL;
1506 		break;
1507 	case COMP_EBADSLT:
1508 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1509 				"evaluate context command.\n");
1510 	case COMP_CTX_STATE:
1511 		dev_warn(&udev->dev, "WARN: invalid context state for "
1512 				"evaluate context command.\n");
1513 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1514 		ret = -EINVAL;
1515 		break;
1516 	case COMP_SUCCESS:
1517 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1518 		ret = 0;
1519 		break;
1520 	default:
1521 		xhci_err(xhci, "ERROR: unexpected command completion "
1522 				"code 0x%x.\n", *cmd_status);
1523 		ret = -EINVAL;
1524 		break;
1525 	}
1526 	return ret;
1527 }
1528 
1529 /* Issue a configure endpoint command or evaluate context command
1530  * and wait for it to finish.
1531  */
1532 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1533 		struct usb_device *udev,
1534 		struct xhci_command *command,
1535 		bool ctx_change, bool must_succeed)
1536 {
1537 	int ret;
1538 	int timeleft;
1539 	unsigned long flags;
1540 	struct xhci_container_ctx *in_ctx;
1541 	struct completion *cmd_completion;
1542 	int *cmd_status;
1543 	struct xhci_virt_device *virt_dev;
1544 
1545 	spin_lock_irqsave(&xhci->lock, flags);
1546 	virt_dev = xhci->devs[udev->slot_id];
1547 	if (command) {
1548 		in_ctx = command->in_ctx;
1549 		cmd_completion = command->completion;
1550 		cmd_status = &command->status;
1551 		command->command_trb = xhci->cmd_ring->enqueue;
1552 
1553 		/* Enqueue pointer can be left pointing to the link TRB,
1554 		 * we must handle that
1555 		 */
1556 		if ((command->command_trb->link.control & TRB_TYPE_BITMASK)
1557 				== TRB_TYPE(TRB_LINK))
1558 			command->command_trb =
1559 				xhci->cmd_ring->enq_seg->next->trbs;
1560 
1561 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1562 	} else {
1563 		in_ctx = virt_dev->in_ctx;
1564 		cmd_completion = &virt_dev->cmd_completion;
1565 		cmd_status = &virt_dev->cmd_status;
1566 	}
1567 	init_completion(cmd_completion);
1568 
1569 	if (!ctx_change)
1570 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1571 				udev->slot_id, must_succeed);
1572 	else
1573 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1574 				udev->slot_id);
1575 	if (ret < 0) {
1576 		if (command)
1577 			list_del(&command->cmd_list);
1578 		spin_unlock_irqrestore(&xhci->lock, flags);
1579 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1580 		return -ENOMEM;
1581 	}
1582 	xhci_ring_cmd_db(xhci);
1583 	spin_unlock_irqrestore(&xhci->lock, flags);
1584 
1585 	/* Wait for the configure endpoint command to complete */
1586 	timeleft = wait_for_completion_interruptible_timeout(
1587 			cmd_completion,
1588 			USB_CTRL_SET_TIMEOUT);
1589 	if (timeleft <= 0) {
1590 		xhci_warn(xhci, "%s while waiting for %s command\n",
1591 				timeleft == 0 ? "Timeout" : "Signal",
1592 				ctx_change == 0 ?
1593 					"configure endpoint" :
1594 					"evaluate context");
1595 		/* FIXME cancel the configure endpoint command */
1596 		return -ETIME;
1597 	}
1598 
1599 	if (!ctx_change)
1600 		return xhci_configure_endpoint_result(xhci, udev, cmd_status);
1601 	return xhci_evaluate_context_result(xhci, udev, cmd_status);
1602 }
1603 
1604 /* Called after one or more calls to xhci_add_endpoint() or
1605  * xhci_drop_endpoint().  If this call fails, the USB core is expected
1606  * to call xhci_reset_bandwidth().
1607  *
1608  * Since we are in the middle of changing either configuration or
1609  * installing a new alt setting, the USB core won't allow URBs to be
1610  * enqueued for any endpoint on the old config or interface.  Nothing
1611  * else should be touching the xhci->devs[slot_id] structure, so we
1612  * don't need to take the xhci->lock for manipulating that.
1613  */
1614 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1615 {
1616 	int i;
1617 	int ret = 0;
1618 	struct xhci_hcd *xhci;
1619 	struct xhci_virt_device	*virt_dev;
1620 	struct xhci_input_control_ctx *ctrl_ctx;
1621 	struct xhci_slot_ctx *slot_ctx;
1622 
1623 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1624 	if (ret <= 0)
1625 		return ret;
1626 	xhci = hcd_to_xhci(hcd);
1627 
1628 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1629 	virt_dev = xhci->devs[udev->slot_id];
1630 
1631 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1632 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1633 	ctrl_ctx->add_flags |= SLOT_FLAG;
1634 	ctrl_ctx->add_flags &= ~EP0_FLAG;
1635 	ctrl_ctx->drop_flags &= ~SLOT_FLAG;
1636 	ctrl_ctx->drop_flags &= ~EP0_FLAG;
1637 	xhci_dbg(xhci, "New Input Control Context:\n");
1638 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1639 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1640 			LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1641 
1642 	ret = xhci_configure_endpoint(xhci, udev, NULL,
1643 			false, false);
1644 	if (ret) {
1645 		/* Callee should call reset_bandwidth() */
1646 		return ret;
1647 	}
1648 
1649 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1650 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1651 			LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1652 
1653 	xhci_zero_in_ctx(xhci, virt_dev);
1654 	/* Install new rings and free or cache any old rings */
1655 	for (i = 1; i < 31; ++i) {
1656 		if (!virt_dev->eps[i].new_ring)
1657 			continue;
1658 		/* Only cache or free the old ring if it exists.
1659 		 * It may not if this is the first add of an endpoint.
1660 		 */
1661 		if (virt_dev->eps[i].ring) {
1662 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1663 		}
1664 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1665 		virt_dev->eps[i].new_ring = NULL;
1666 	}
1667 
1668 	return ret;
1669 }
1670 
1671 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1672 {
1673 	struct xhci_hcd *xhci;
1674 	struct xhci_virt_device	*virt_dev;
1675 	int i, ret;
1676 
1677 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1678 	if (ret <= 0)
1679 		return;
1680 	xhci = hcd_to_xhci(hcd);
1681 
1682 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1683 	virt_dev = xhci->devs[udev->slot_id];
1684 	/* Free any rings allocated for added endpoints */
1685 	for (i = 0; i < 31; ++i) {
1686 		if (virt_dev->eps[i].new_ring) {
1687 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1688 			virt_dev->eps[i].new_ring = NULL;
1689 		}
1690 	}
1691 	xhci_zero_in_ctx(xhci, virt_dev);
1692 }
1693 
1694 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1695 		struct xhci_container_ctx *in_ctx,
1696 		struct xhci_container_ctx *out_ctx,
1697 		u32 add_flags, u32 drop_flags)
1698 {
1699 	struct xhci_input_control_ctx *ctrl_ctx;
1700 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1701 	ctrl_ctx->add_flags = add_flags;
1702 	ctrl_ctx->drop_flags = drop_flags;
1703 	xhci_slot_copy(xhci, in_ctx, out_ctx);
1704 	ctrl_ctx->add_flags |= SLOT_FLAG;
1705 
1706 	xhci_dbg(xhci, "Input Context:\n");
1707 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1708 }
1709 
1710 void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1711 		unsigned int slot_id, unsigned int ep_index,
1712 		struct xhci_dequeue_state *deq_state)
1713 {
1714 	struct xhci_container_ctx *in_ctx;
1715 	struct xhci_ep_ctx *ep_ctx;
1716 	u32 added_ctxs;
1717 	dma_addr_t addr;
1718 
1719 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1720 			xhci->devs[slot_id]->out_ctx, ep_index);
1721 	in_ctx = xhci->devs[slot_id]->in_ctx;
1722 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1723 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1724 			deq_state->new_deq_ptr);
1725 	if (addr == 0) {
1726 		xhci_warn(xhci, "WARN Cannot submit config ep after "
1727 				"reset ep command\n");
1728 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1729 				deq_state->new_deq_seg,
1730 				deq_state->new_deq_ptr);
1731 		return;
1732 	}
1733 	ep_ctx->deq = addr | deq_state->new_cycle_state;
1734 
1735 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1736 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1737 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1738 }
1739 
1740 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1741 		struct usb_device *udev, unsigned int ep_index)
1742 {
1743 	struct xhci_dequeue_state deq_state;
1744 	struct xhci_virt_ep *ep;
1745 
1746 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1747 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1748 	/* We need to move the HW's dequeue pointer past this TD,
1749 	 * or it will attempt to resend it on the next doorbell ring.
1750 	 */
1751 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
1752 			ep_index, ep->stopped_stream, ep->stopped_td,
1753 			&deq_state);
1754 
1755 	/* HW with the reset endpoint quirk will use the saved dequeue state to
1756 	 * issue a configure endpoint command later.
1757 	 */
1758 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1759 		xhci_dbg(xhci, "Queueing new dequeue state\n");
1760 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1761 				ep_index, ep->stopped_stream, &deq_state);
1762 	} else {
1763 		/* Better hope no one uses the input context between now and the
1764 		 * reset endpoint completion!
1765 		 * XXX: No idea how this hardware will react when stream rings
1766 		 * are enabled.
1767 		 */
1768 		xhci_dbg(xhci, "Setting up input context for "
1769 				"configure endpoint command\n");
1770 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1771 				ep_index, &deq_state);
1772 	}
1773 }
1774 
1775 /* Deal with stalled endpoints.  The core should have sent the control message
1776  * to clear the halt condition.  However, we need to make the xHCI hardware
1777  * reset its sequence number, since a device will expect a sequence number of
1778  * zero after the halt condition is cleared.
1779  * Context: in_interrupt
1780  */
1781 void xhci_endpoint_reset(struct usb_hcd *hcd,
1782 		struct usb_host_endpoint *ep)
1783 {
1784 	struct xhci_hcd *xhci;
1785 	struct usb_device *udev;
1786 	unsigned int ep_index;
1787 	unsigned long flags;
1788 	int ret;
1789 	struct xhci_virt_ep *virt_ep;
1790 
1791 	xhci = hcd_to_xhci(hcd);
1792 	udev = (struct usb_device *) ep->hcpriv;
1793 	/* Called with a root hub endpoint (or an endpoint that wasn't added
1794 	 * with xhci_add_endpoint()
1795 	 */
1796 	if (!ep->hcpriv)
1797 		return;
1798 	ep_index = xhci_get_endpoint_index(&ep->desc);
1799 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1800 	if (!virt_ep->stopped_td) {
1801 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1802 				ep->desc.bEndpointAddress);
1803 		return;
1804 	}
1805 	if (usb_endpoint_xfer_control(&ep->desc)) {
1806 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
1807 		return;
1808 	}
1809 
1810 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
1811 	spin_lock_irqsave(&xhci->lock, flags);
1812 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1813 	/*
1814 	 * Can't change the ring dequeue pointer until it's transitioned to the
1815 	 * stopped state, which is only upon a successful reset endpoint
1816 	 * command.  Better hope that last command worked!
1817 	 */
1818 	if (!ret) {
1819 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
1820 		kfree(virt_ep->stopped_td);
1821 		xhci_ring_cmd_db(xhci);
1822 	}
1823 	virt_ep->stopped_td = NULL;
1824 	virt_ep->stopped_trb = NULL;
1825 	virt_ep->stopped_stream = 0;
1826 	spin_unlock_irqrestore(&xhci->lock, flags);
1827 
1828 	if (ret)
1829 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1830 }
1831 
1832 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
1833 		struct usb_device *udev, struct usb_host_endpoint *ep,
1834 		unsigned int slot_id)
1835 {
1836 	int ret;
1837 	unsigned int ep_index;
1838 	unsigned int ep_state;
1839 
1840 	if (!ep)
1841 		return -EINVAL;
1842 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
1843 	if (ret <= 0)
1844 		return -EINVAL;
1845 	if (ep->ss_ep_comp.bmAttributes == 0) {
1846 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
1847 				" descriptor for ep 0x%x does not support streams\n",
1848 				ep->desc.bEndpointAddress);
1849 		return -EINVAL;
1850 	}
1851 
1852 	ep_index = xhci_get_endpoint_index(&ep->desc);
1853 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1854 	if (ep_state & EP_HAS_STREAMS ||
1855 			ep_state & EP_GETTING_STREAMS) {
1856 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
1857 				"already has streams set up.\n",
1858 				ep->desc.bEndpointAddress);
1859 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
1860 				"dynamic stream context array reallocation.\n");
1861 		return -EINVAL;
1862 	}
1863 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
1864 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
1865 				"endpoint 0x%x; URBs are pending.\n",
1866 				ep->desc.bEndpointAddress);
1867 		return -EINVAL;
1868 	}
1869 	return 0;
1870 }
1871 
1872 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
1873 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
1874 {
1875 	unsigned int max_streams;
1876 
1877 	/* The stream context array size must be a power of two */
1878 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
1879 	/*
1880 	 * Find out how many primary stream array entries the host controller
1881 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
1882 	 * level page entries), but that's an optional feature for xHCI host
1883 	 * controllers. xHCs must support at least 4 stream IDs.
1884 	 */
1885 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
1886 	if (*num_stream_ctxs > max_streams) {
1887 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
1888 				max_streams);
1889 		*num_stream_ctxs = max_streams;
1890 		*num_streams = max_streams;
1891 	}
1892 }
1893 
1894 /* Returns an error code if one of the endpoint already has streams.
1895  * This does not change any data structures, it only checks and gathers
1896  * information.
1897  */
1898 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
1899 		struct usb_device *udev,
1900 		struct usb_host_endpoint **eps, unsigned int num_eps,
1901 		unsigned int *num_streams, u32 *changed_ep_bitmask)
1902 {
1903 	unsigned int max_streams;
1904 	unsigned int endpoint_flag;
1905 	int i;
1906 	int ret;
1907 
1908 	for (i = 0; i < num_eps; i++) {
1909 		ret = xhci_check_streams_endpoint(xhci, udev,
1910 				eps[i], udev->slot_id);
1911 		if (ret < 0)
1912 			return ret;
1913 
1914 		max_streams = USB_SS_MAX_STREAMS(
1915 				eps[i]->ss_ep_comp.bmAttributes);
1916 		if (max_streams < (*num_streams - 1)) {
1917 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
1918 					eps[i]->desc.bEndpointAddress,
1919 					max_streams);
1920 			*num_streams = max_streams+1;
1921 		}
1922 
1923 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
1924 		if (*changed_ep_bitmask & endpoint_flag)
1925 			return -EINVAL;
1926 		*changed_ep_bitmask |= endpoint_flag;
1927 	}
1928 	return 0;
1929 }
1930 
1931 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
1932 		struct usb_device *udev,
1933 		struct usb_host_endpoint **eps, unsigned int num_eps)
1934 {
1935 	u32 changed_ep_bitmask = 0;
1936 	unsigned int slot_id;
1937 	unsigned int ep_index;
1938 	unsigned int ep_state;
1939 	int i;
1940 
1941 	slot_id = udev->slot_id;
1942 	if (!xhci->devs[slot_id])
1943 		return 0;
1944 
1945 	for (i = 0; i < num_eps; i++) {
1946 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1947 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1948 		/* Are streams already being freed for the endpoint? */
1949 		if (ep_state & EP_GETTING_NO_STREAMS) {
1950 			xhci_warn(xhci, "WARN Can't disable streams for "
1951 					"endpoint 0x%x\n, "
1952 					"streams are being disabled already.",
1953 					eps[i]->desc.bEndpointAddress);
1954 			return 0;
1955 		}
1956 		/* Are there actually any streams to free? */
1957 		if (!(ep_state & EP_HAS_STREAMS) &&
1958 				!(ep_state & EP_GETTING_STREAMS)) {
1959 			xhci_warn(xhci, "WARN Can't disable streams for "
1960 					"endpoint 0x%x\n, "
1961 					"streams are already disabled!",
1962 					eps[i]->desc.bEndpointAddress);
1963 			xhci_warn(xhci, "WARN xhci_free_streams() called "
1964 					"with non-streams endpoint\n");
1965 			return 0;
1966 		}
1967 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
1968 	}
1969 	return changed_ep_bitmask;
1970 }
1971 
1972 /*
1973  * The USB device drivers use this function (though the HCD interface in USB
1974  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
1975  * coordinate mass storage command queueing across multiple endpoints (basically
1976  * a stream ID == a task ID).
1977  *
1978  * Setting up streams involves allocating the same size stream context array
1979  * for each endpoint and issuing a configure endpoint command for all endpoints.
1980  *
1981  * Don't allow the call to succeed if one endpoint only supports one stream
1982  * (which means it doesn't support streams at all).
1983  *
1984  * Drivers may get less stream IDs than they asked for, if the host controller
1985  * hardware or endpoints claim they can't support the number of requested
1986  * stream IDs.
1987  */
1988 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
1989 		struct usb_host_endpoint **eps, unsigned int num_eps,
1990 		unsigned int num_streams, gfp_t mem_flags)
1991 {
1992 	int i, ret;
1993 	struct xhci_hcd *xhci;
1994 	struct xhci_virt_device *vdev;
1995 	struct xhci_command *config_cmd;
1996 	unsigned int ep_index;
1997 	unsigned int num_stream_ctxs;
1998 	unsigned long flags;
1999 	u32 changed_ep_bitmask = 0;
2000 
2001 	if (!eps)
2002 		return -EINVAL;
2003 
2004 	/* Add one to the number of streams requested to account for
2005 	 * stream 0 that is reserved for xHCI usage.
2006 	 */
2007 	num_streams += 1;
2008 	xhci = hcd_to_xhci(hcd);
2009 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2010 			num_streams);
2011 
2012 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2013 	if (!config_cmd) {
2014 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2015 		return -ENOMEM;
2016 	}
2017 
2018 	/* Check to make sure all endpoints are not already configured for
2019 	 * streams.  While we're at it, find the maximum number of streams that
2020 	 * all the endpoints will support and check for duplicate endpoints.
2021 	 */
2022 	spin_lock_irqsave(&xhci->lock, flags);
2023 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2024 			num_eps, &num_streams, &changed_ep_bitmask);
2025 	if (ret < 0) {
2026 		xhci_free_command(xhci, config_cmd);
2027 		spin_unlock_irqrestore(&xhci->lock, flags);
2028 		return ret;
2029 	}
2030 	if (num_streams <= 1) {
2031 		xhci_warn(xhci, "WARN: endpoints can't handle "
2032 				"more than one stream.\n");
2033 		xhci_free_command(xhci, config_cmd);
2034 		spin_unlock_irqrestore(&xhci->lock, flags);
2035 		return -EINVAL;
2036 	}
2037 	vdev = xhci->devs[udev->slot_id];
2038 	/* Mark each endpoint as being in transistion, so
2039 	 * xhci_urb_enqueue() will reject all URBs.
2040 	 */
2041 	for (i = 0; i < num_eps; i++) {
2042 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2043 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2044 	}
2045 	spin_unlock_irqrestore(&xhci->lock, flags);
2046 
2047 	/* Setup internal data structures and allocate HW data structures for
2048 	 * streams (but don't install the HW structures in the input context
2049 	 * until we're sure all memory allocation succeeded).
2050 	 */
2051 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2052 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2053 			num_stream_ctxs, num_streams);
2054 
2055 	for (i = 0; i < num_eps; i++) {
2056 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2057 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2058 				num_stream_ctxs,
2059 				num_streams, mem_flags);
2060 		if (!vdev->eps[ep_index].stream_info)
2061 			goto cleanup;
2062 		/* Set maxPstreams in endpoint context and update deq ptr to
2063 		 * point to stream context array. FIXME
2064 		 */
2065 	}
2066 
2067 	/* Set up the input context for a configure endpoint command. */
2068 	for (i = 0; i < num_eps; i++) {
2069 		struct xhci_ep_ctx *ep_ctx;
2070 
2071 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2072 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2073 
2074 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2075 				vdev->out_ctx, ep_index);
2076 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2077 				vdev->eps[ep_index].stream_info);
2078 	}
2079 	/* Tell the HW to drop its old copy of the endpoint context info
2080 	 * and add the updated copy from the input context.
2081 	 */
2082 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2083 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2084 
2085 	/* Issue and wait for the configure endpoint command */
2086 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2087 			false, false);
2088 
2089 	/* xHC rejected the configure endpoint command for some reason, so we
2090 	 * leave the old ring intact and free our internal streams data
2091 	 * structure.
2092 	 */
2093 	if (ret < 0)
2094 		goto cleanup;
2095 
2096 	spin_lock_irqsave(&xhci->lock, flags);
2097 	for (i = 0; i < num_eps; i++) {
2098 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2099 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2100 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2101 			 udev->slot_id, ep_index);
2102 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2103 	}
2104 	xhci_free_command(xhci, config_cmd);
2105 	spin_unlock_irqrestore(&xhci->lock, flags);
2106 
2107 	/* Subtract 1 for stream 0, which drivers can't use */
2108 	return num_streams - 1;
2109 
2110 cleanup:
2111 	/* If it didn't work, free the streams! */
2112 	for (i = 0; i < num_eps; i++) {
2113 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2114 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2115 		vdev->eps[ep_index].stream_info = NULL;
2116 		/* FIXME Unset maxPstreams in endpoint context and
2117 		 * update deq ptr to point to normal string ring.
2118 		 */
2119 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2120 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2121 		xhci_endpoint_zero(xhci, vdev, eps[i]);
2122 	}
2123 	xhci_free_command(xhci, config_cmd);
2124 	return -ENOMEM;
2125 }
2126 
2127 /* Transition the endpoint from using streams to being a "normal" endpoint
2128  * without streams.
2129  *
2130  * Modify the endpoint context state, submit a configure endpoint command,
2131  * and free all endpoint rings for streams if that completes successfully.
2132  */
2133 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2134 		struct usb_host_endpoint **eps, unsigned int num_eps,
2135 		gfp_t mem_flags)
2136 {
2137 	int i, ret;
2138 	struct xhci_hcd *xhci;
2139 	struct xhci_virt_device *vdev;
2140 	struct xhci_command *command;
2141 	unsigned int ep_index;
2142 	unsigned long flags;
2143 	u32 changed_ep_bitmask;
2144 
2145 	xhci = hcd_to_xhci(hcd);
2146 	vdev = xhci->devs[udev->slot_id];
2147 
2148 	/* Set up a configure endpoint command to remove the streams rings */
2149 	spin_lock_irqsave(&xhci->lock, flags);
2150 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2151 			udev, eps, num_eps);
2152 	if (changed_ep_bitmask == 0) {
2153 		spin_unlock_irqrestore(&xhci->lock, flags);
2154 		return -EINVAL;
2155 	}
2156 
2157 	/* Use the xhci_command structure from the first endpoint.  We may have
2158 	 * allocated too many, but the driver may call xhci_free_streams() for
2159 	 * each endpoint it grouped into one call to xhci_alloc_streams().
2160 	 */
2161 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2162 	command = vdev->eps[ep_index].stream_info->free_streams_command;
2163 	for (i = 0; i < num_eps; i++) {
2164 		struct xhci_ep_ctx *ep_ctx;
2165 
2166 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2167 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2168 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2169 			EP_GETTING_NO_STREAMS;
2170 
2171 		xhci_endpoint_copy(xhci, command->in_ctx,
2172 				vdev->out_ctx, ep_index);
2173 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2174 				&vdev->eps[ep_index]);
2175 	}
2176 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2177 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2178 	spin_unlock_irqrestore(&xhci->lock, flags);
2179 
2180 	/* Issue and wait for the configure endpoint command,
2181 	 * which must succeed.
2182 	 */
2183 	ret = xhci_configure_endpoint(xhci, udev, command,
2184 			false, true);
2185 
2186 	/* xHC rejected the configure endpoint command for some reason, so we
2187 	 * leave the streams rings intact.
2188 	 */
2189 	if (ret < 0)
2190 		return ret;
2191 
2192 	spin_lock_irqsave(&xhci->lock, flags);
2193 	for (i = 0; i < num_eps; i++) {
2194 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2195 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2196 		vdev->eps[ep_index].stream_info = NULL;
2197 		/* FIXME Unset maxPstreams in endpoint context and
2198 		 * update deq ptr to point to normal string ring.
2199 		 */
2200 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2201 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2202 	}
2203 	spin_unlock_irqrestore(&xhci->lock, flags);
2204 
2205 	return 0;
2206 }
2207 
2208 /*
2209  * This submits a Reset Device Command, which will set the device state to 0,
2210  * set the device address to 0, and disable all the endpoints except the default
2211  * control endpoint.  The USB core should come back and call
2212  * xhci_address_device(), and then re-set up the configuration.  If this is
2213  * called because of a usb_reset_and_verify_device(), then the old alternate
2214  * settings will be re-installed through the normal bandwidth allocation
2215  * functions.
2216  *
2217  * Wait for the Reset Device command to finish.  Remove all structures
2218  * associated with the endpoints that were disabled.  Clear the input device
2219  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
2220  *
2221  * If the virt_dev to be reset does not exist or does not match the udev,
2222  * it means the device is lost, possibly due to the xHC restore error and
2223  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2224  * re-allocate the device.
2225  */
2226 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2227 {
2228 	int ret, i;
2229 	unsigned long flags;
2230 	struct xhci_hcd *xhci;
2231 	unsigned int slot_id;
2232 	struct xhci_virt_device *virt_dev;
2233 	struct xhci_command *reset_device_cmd;
2234 	int timeleft;
2235 	int last_freed_endpoint;
2236 
2237 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2238 	if (ret <= 0)
2239 		return ret;
2240 	xhci = hcd_to_xhci(hcd);
2241 	slot_id = udev->slot_id;
2242 	virt_dev = xhci->devs[slot_id];
2243 	if (!virt_dev) {
2244 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2245 				"not exist. Re-allocate the device\n", slot_id);
2246 		ret = xhci_alloc_dev(hcd, udev);
2247 		if (ret == 1)
2248 			return 0;
2249 		else
2250 			return -EINVAL;
2251 	}
2252 
2253 	if (virt_dev->udev != udev) {
2254 		/* If the virt_dev and the udev does not match, this virt_dev
2255 		 * may belong to another udev.
2256 		 * Re-allocate the device.
2257 		 */
2258 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2259 				"not match the udev. Re-allocate the device\n",
2260 				slot_id);
2261 		ret = xhci_alloc_dev(hcd, udev);
2262 		if (ret == 1)
2263 			return 0;
2264 		else
2265 			return -EINVAL;
2266 	}
2267 
2268 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2269 	/* Allocate the command structure that holds the struct completion.
2270 	 * Assume we're in process context, since the normal device reset
2271 	 * process has to wait for the device anyway.  Storage devices are
2272 	 * reset as part of error handling, so use GFP_NOIO instead of
2273 	 * GFP_KERNEL.
2274 	 */
2275 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2276 	if (!reset_device_cmd) {
2277 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2278 		return -ENOMEM;
2279 	}
2280 
2281 	/* Attempt to submit the Reset Device command to the command ring */
2282 	spin_lock_irqsave(&xhci->lock, flags);
2283 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2284 
2285 	/* Enqueue pointer can be left pointing to the link TRB,
2286 	 * we must handle that
2287 	 */
2288 	if ((reset_device_cmd->command_trb->link.control & TRB_TYPE_BITMASK)
2289 			== TRB_TYPE(TRB_LINK))
2290 		reset_device_cmd->command_trb =
2291 			xhci->cmd_ring->enq_seg->next->trbs;
2292 
2293 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2294 	ret = xhci_queue_reset_device(xhci, slot_id);
2295 	if (ret) {
2296 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2297 		list_del(&reset_device_cmd->cmd_list);
2298 		spin_unlock_irqrestore(&xhci->lock, flags);
2299 		goto command_cleanup;
2300 	}
2301 	xhci_ring_cmd_db(xhci);
2302 	spin_unlock_irqrestore(&xhci->lock, flags);
2303 
2304 	/* Wait for the Reset Device command to finish */
2305 	timeleft = wait_for_completion_interruptible_timeout(
2306 			reset_device_cmd->completion,
2307 			USB_CTRL_SET_TIMEOUT);
2308 	if (timeleft <= 0) {
2309 		xhci_warn(xhci, "%s while waiting for reset device command\n",
2310 				timeleft == 0 ? "Timeout" : "Signal");
2311 		spin_lock_irqsave(&xhci->lock, flags);
2312 		/* The timeout might have raced with the event ring handler, so
2313 		 * only delete from the list if the item isn't poisoned.
2314 		 */
2315 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2316 			list_del(&reset_device_cmd->cmd_list);
2317 		spin_unlock_irqrestore(&xhci->lock, flags);
2318 		ret = -ETIME;
2319 		goto command_cleanup;
2320 	}
2321 
2322 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2323 	 * unless we tried to reset a slot ID that wasn't enabled,
2324 	 * or the device wasn't in the addressed or configured state.
2325 	 */
2326 	ret = reset_device_cmd->status;
2327 	switch (ret) {
2328 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2329 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2330 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2331 				slot_id,
2332 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
2333 		xhci_info(xhci, "Not freeing device rings.\n");
2334 		/* Don't treat this as an error.  May change my mind later. */
2335 		ret = 0;
2336 		goto command_cleanup;
2337 	case COMP_SUCCESS:
2338 		xhci_dbg(xhci, "Successful reset device command.\n");
2339 		break;
2340 	default:
2341 		if (xhci_is_vendor_info_code(xhci, ret))
2342 			break;
2343 		xhci_warn(xhci, "Unknown completion code %u for "
2344 				"reset device command.\n", ret);
2345 		ret = -EINVAL;
2346 		goto command_cleanup;
2347 	}
2348 
2349 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
2350 	last_freed_endpoint = 1;
2351 	for (i = 1; i < 31; ++i) {
2352 		if (!virt_dev->eps[i].ring)
2353 			continue;
2354 		xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2355 		last_freed_endpoint = i;
2356 	}
2357 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2358 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2359 	ret = 0;
2360 
2361 command_cleanup:
2362 	xhci_free_command(xhci, reset_device_cmd);
2363 	return ret;
2364 }
2365 
2366 /*
2367  * At this point, the struct usb_device is about to go away, the device has
2368  * disconnected, and all traffic has been stopped and the endpoints have been
2369  * disabled.  Free any HC data structures associated with that device.
2370  */
2371 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2372 {
2373 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2374 	struct xhci_virt_device *virt_dev;
2375 	unsigned long flags;
2376 	u32 state;
2377 	int i, ret;
2378 
2379 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2380 	if (ret <= 0)
2381 		return;
2382 
2383 	virt_dev = xhci->devs[udev->slot_id];
2384 
2385 	/* Stop any wayward timer functions (which may grab the lock) */
2386 	for (i = 0; i < 31; ++i) {
2387 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2388 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2389 	}
2390 
2391 	spin_lock_irqsave(&xhci->lock, flags);
2392 	/* Don't disable the slot if the host controller is dead. */
2393 	state = xhci_readl(xhci, &xhci->op_regs->status);
2394 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
2395 		xhci_free_virt_device(xhci, udev->slot_id);
2396 		spin_unlock_irqrestore(&xhci->lock, flags);
2397 		return;
2398 	}
2399 
2400 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2401 		spin_unlock_irqrestore(&xhci->lock, flags);
2402 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2403 		return;
2404 	}
2405 	xhci_ring_cmd_db(xhci);
2406 	spin_unlock_irqrestore(&xhci->lock, flags);
2407 	/*
2408 	 * Event command completion handler will free any data structures
2409 	 * associated with the slot.  XXX Can free sleep?
2410 	 */
2411 }
2412 
2413 /*
2414  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2415  * timed out, or allocating memory failed.  Returns 1 on success.
2416  */
2417 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2418 {
2419 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2420 	unsigned long flags;
2421 	int timeleft;
2422 	int ret;
2423 
2424 	spin_lock_irqsave(&xhci->lock, flags);
2425 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2426 	if (ret) {
2427 		spin_unlock_irqrestore(&xhci->lock, flags);
2428 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2429 		return 0;
2430 	}
2431 	xhci_ring_cmd_db(xhci);
2432 	spin_unlock_irqrestore(&xhci->lock, flags);
2433 
2434 	/* XXX: how much time for xHC slot assignment? */
2435 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2436 			USB_CTRL_SET_TIMEOUT);
2437 	if (timeleft <= 0) {
2438 		xhci_warn(xhci, "%s while waiting for a slot\n",
2439 				timeleft == 0 ? "Timeout" : "Signal");
2440 		/* FIXME cancel the enable slot request */
2441 		return 0;
2442 	}
2443 
2444 	if (!xhci->slot_id) {
2445 		xhci_err(xhci, "Error while assigning device slot ID\n");
2446 		return 0;
2447 	}
2448 	/* xhci_alloc_virt_device() does not touch rings; no need to lock */
2449 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) {
2450 		/* Disable slot, if we can do it without mem alloc */
2451 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2452 		spin_lock_irqsave(&xhci->lock, flags);
2453 		if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2454 			xhci_ring_cmd_db(xhci);
2455 		spin_unlock_irqrestore(&xhci->lock, flags);
2456 		return 0;
2457 	}
2458 	udev->slot_id = xhci->slot_id;
2459 	/* Is this a LS or FS device under a HS hub? */
2460 	/* Hub or peripherial? */
2461 	return 1;
2462 }
2463 
2464 /*
2465  * Issue an Address Device command (which will issue a SetAddress request to
2466  * the device).
2467  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2468  * we should only issue and wait on one address command at the same time.
2469  *
2470  * We add one to the device address issued by the hardware because the USB core
2471  * uses address 1 for the root hubs (even though they're not really devices).
2472  */
2473 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2474 {
2475 	unsigned long flags;
2476 	int timeleft;
2477 	struct xhci_virt_device *virt_dev;
2478 	int ret = 0;
2479 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2480 	struct xhci_slot_ctx *slot_ctx;
2481 	struct xhci_input_control_ctx *ctrl_ctx;
2482 	u64 temp_64;
2483 
2484 	if (!udev->slot_id) {
2485 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2486 		return -EINVAL;
2487 	}
2488 
2489 	virt_dev = xhci->devs[udev->slot_id];
2490 
2491 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2492 	/*
2493 	 * If this is the first Set Address since device plug-in or
2494 	 * virt_device realloaction after a resume with an xHCI power loss,
2495 	 * then set up the slot context.
2496 	 */
2497 	if (!slot_ctx->dev_info)
2498 		xhci_setup_addressable_virt_dev(xhci, udev);
2499 	/* Otherwise, update the control endpoint ring enqueue pointer. */
2500 	else
2501 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2502 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2503 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2504 
2505 	spin_lock_irqsave(&xhci->lock, flags);
2506 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2507 					udev->slot_id);
2508 	if (ret) {
2509 		spin_unlock_irqrestore(&xhci->lock, flags);
2510 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2511 		return ret;
2512 	}
2513 	xhci_ring_cmd_db(xhci);
2514 	spin_unlock_irqrestore(&xhci->lock, flags);
2515 
2516 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2517 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2518 			USB_CTRL_SET_TIMEOUT);
2519 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
2520 	 * the SetAddress() "recovery interval" required by USB and aborting the
2521 	 * command on a timeout.
2522 	 */
2523 	if (timeleft <= 0) {
2524 		xhci_warn(xhci, "%s while waiting for a slot\n",
2525 				timeleft == 0 ? "Timeout" : "Signal");
2526 		/* FIXME cancel the address device command */
2527 		return -ETIME;
2528 	}
2529 
2530 	switch (virt_dev->cmd_status) {
2531 	case COMP_CTX_STATE:
2532 	case COMP_EBADSLT:
2533 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2534 				udev->slot_id);
2535 		ret = -EINVAL;
2536 		break;
2537 	case COMP_TX_ERR:
2538 		dev_warn(&udev->dev, "Device not responding to set address.\n");
2539 		ret = -EPROTO;
2540 		break;
2541 	case COMP_SUCCESS:
2542 		xhci_dbg(xhci, "Successful Address Device command\n");
2543 		break;
2544 	default:
2545 		xhci_err(xhci, "ERROR: unexpected command completion "
2546 				"code 0x%x.\n", virt_dev->cmd_status);
2547 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2548 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2549 		ret = -EINVAL;
2550 		break;
2551 	}
2552 	if (ret) {
2553 		return ret;
2554 	}
2555 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2556 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2557 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2558 			udev->slot_id,
2559 			&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2560 			(unsigned long long)
2561 				xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
2562 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2563 			(unsigned long long)virt_dev->out_ctx->dma);
2564 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2565 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2566 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2567 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2568 	/*
2569 	 * USB core uses address 1 for the roothubs, so we add one to the
2570 	 * address given back to us by the HC.
2571 	 */
2572 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2573 	/* Use kernel assigned address for devices; store xHC assigned
2574 	 * address locally. */
2575 	virt_dev->address = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
2576 	/* Zero the input context control for later use */
2577 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2578 	ctrl_ctx->add_flags = 0;
2579 	ctrl_ctx->drop_flags = 0;
2580 
2581 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2582 
2583 	return 0;
2584 }
2585 
2586 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2587  * internal data structures for the device.
2588  */
2589 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2590 			struct usb_tt *tt, gfp_t mem_flags)
2591 {
2592 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2593 	struct xhci_virt_device *vdev;
2594 	struct xhci_command *config_cmd;
2595 	struct xhci_input_control_ctx *ctrl_ctx;
2596 	struct xhci_slot_ctx *slot_ctx;
2597 	unsigned long flags;
2598 	unsigned think_time;
2599 	int ret;
2600 
2601 	/* Ignore root hubs */
2602 	if (!hdev->parent)
2603 		return 0;
2604 
2605 	vdev = xhci->devs[hdev->slot_id];
2606 	if (!vdev) {
2607 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2608 		return -EINVAL;
2609 	}
2610 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2611 	if (!config_cmd) {
2612 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2613 		return -ENOMEM;
2614 	}
2615 
2616 	spin_lock_irqsave(&xhci->lock, flags);
2617 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2618 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2619 	ctrl_ctx->add_flags |= SLOT_FLAG;
2620 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2621 	slot_ctx->dev_info |= DEV_HUB;
2622 	if (tt->multi)
2623 		slot_ctx->dev_info |= DEV_MTT;
2624 	if (xhci->hci_version > 0x95) {
2625 		xhci_dbg(xhci, "xHCI version %x needs hub "
2626 				"TT think time and number of ports\n",
2627 				(unsigned int) xhci->hci_version);
2628 		slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild);
2629 		/* Set TT think time - convert from ns to FS bit times.
2630 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
2631 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
2632 		 */
2633 		think_time = tt->think_time;
2634 		if (think_time != 0)
2635 			think_time = (think_time / 666) - 1;
2636 		slot_ctx->tt_info |= TT_THINK_TIME(think_time);
2637 	} else {
2638 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
2639 				"TT think time or number of ports\n",
2640 				(unsigned int) xhci->hci_version);
2641 	}
2642 	slot_ctx->dev_state = 0;
2643 	spin_unlock_irqrestore(&xhci->lock, flags);
2644 
2645 	xhci_dbg(xhci, "Set up %s for hub device.\n",
2646 			(xhci->hci_version > 0x95) ?
2647 			"configure endpoint" : "evaluate context");
2648 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
2649 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
2650 
2651 	/* Issue and wait for the configure endpoint or
2652 	 * evaluate context command.
2653 	 */
2654 	if (xhci->hci_version > 0x95)
2655 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2656 				false, false);
2657 	else
2658 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2659 				true, false);
2660 
2661 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
2662 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
2663 
2664 	xhci_free_command(xhci, config_cmd);
2665 	return ret;
2666 }
2667 
2668 int xhci_get_frame(struct usb_hcd *hcd)
2669 {
2670 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2671 	/* EHCI mods by the periodic size.  Why? */
2672 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
2673 }
2674 
2675 MODULE_DESCRIPTION(DRIVER_DESC);
2676 MODULE_AUTHOR(DRIVER_AUTHOR);
2677 MODULE_LICENSE("GPL");
2678 
2679 static int __init xhci_hcd_init(void)
2680 {
2681 #ifdef CONFIG_PCI
2682 	int retval = 0;
2683 
2684 	retval = xhci_register_pci();
2685 
2686 	if (retval < 0) {
2687 		printk(KERN_DEBUG "Problem registering PCI driver.");
2688 		return retval;
2689 	}
2690 #endif
2691 	/*
2692 	 * Check the compiler generated sizes of structures that must be laid
2693 	 * out in specific ways for hardware access.
2694 	 */
2695 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2696 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
2697 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
2698 	/* xhci_device_control has eight fields, and also
2699 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
2700 	 */
2701 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
2702 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
2703 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
2704 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
2705 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
2706 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
2707 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
2708 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2709 	return 0;
2710 }
2711 module_init(xhci_hcd_init);
2712 
2713 static void __exit xhci_hcd_cleanup(void)
2714 {
2715 #ifdef CONFIG_PCI
2716 	xhci_unregister_pci();
2717 #endif
2718 }
2719 module_exit(xhci_hcd_cleanup);
2720