1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 30 #include "xhci.h" 31 32 #define DRIVER_AUTHOR "Sarah Sharp" 33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 34 35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 36 static int link_quirk; 37 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr, 55 u32 mask, u32 done, int usec) 56 { 57 u32 result; 58 59 do { 60 result = xhci_readl(xhci, ptr); 61 if (result == ~(u32)0) /* card removed */ 62 return -ENODEV; 63 result &= mask; 64 if (result == done) 65 return 0; 66 udelay(1); 67 usec--; 68 } while (usec > 0); 69 return -ETIMEDOUT; 70 } 71 72 /* 73 * Disable interrupts and begin the xHCI halting process. 74 */ 75 void xhci_quiesce(struct xhci_hcd *xhci) 76 { 77 u32 halted; 78 u32 cmd; 79 u32 mask; 80 81 mask = ~(XHCI_IRQS); 82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 83 if (!halted) 84 mask &= ~CMD_RUN; 85 86 cmd = xhci_readl(xhci, &xhci->op_regs->command); 87 cmd &= mask; 88 xhci_writel(xhci, cmd, &xhci->op_regs->command); 89 } 90 91 /* 92 * Force HC into halt state. 93 * 94 * Disable any IRQs and clear the run/stop bit. 95 * HC will complete any current and actively pipelined transactions, and 96 * should halt within 16 microframes of the run/stop bit being cleared. 97 * Read HC Halted bit in the status register to see when the HC is finished. 98 * XXX: shouldn't we set HC_STATE_HALT here somewhere? 99 */ 100 int xhci_halt(struct xhci_hcd *xhci) 101 { 102 xhci_dbg(xhci, "// Halt the HC\n"); 103 xhci_quiesce(xhci); 104 105 return handshake(xhci, &xhci->op_regs->status, 106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 107 } 108 109 /* 110 * Set the run bit and wait for the host to be running. 111 */ 112 int xhci_start(struct xhci_hcd *xhci) 113 { 114 u32 temp; 115 int ret; 116 117 temp = xhci_readl(xhci, &xhci->op_regs->command); 118 temp |= (CMD_RUN); 119 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 120 temp); 121 xhci_writel(xhci, temp, &xhci->op_regs->command); 122 123 /* 124 * Wait for the HCHalted Status bit to be 0 to indicate the host is 125 * running. 126 */ 127 ret = handshake(xhci, &xhci->op_regs->status, 128 STS_HALT, 0, XHCI_MAX_HALT_USEC); 129 if (ret == -ETIMEDOUT) 130 xhci_err(xhci, "Host took too long to start, " 131 "waited %u microseconds.\n", 132 XHCI_MAX_HALT_USEC); 133 return ret; 134 } 135 136 /* 137 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT. 138 * 139 * This resets pipelines, timers, counters, state machines, etc. 140 * Transactions will be terminated immediately, and operational registers 141 * will be set to their defaults. 142 */ 143 int xhci_reset(struct xhci_hcd *xhci) 144 { 145 u32 command; 146 u32 state; 147 int ret; 148 149 state = xhci_readl(xhci, &xhci->op_regs->status); 150 if ((state & STS_HALT) == 0) { 151 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 152 return 0; 153 } 154 155 xhci_dbg(xhci, "// Reset the HC\n"); 156 command = xhci_readl(xhci, &xhci->op_regs->command); 157 command |= CMD_RESET; 158 xhci_writel(xhci, command, &xhci->op_regs->command); 159 /* XXX: Why does EHCI set this here? Shouldn't other code do this? */ 160 xhci_to_hcd(xhci)->state = HC_STATE_HALT; 161 162 ret = handshake(xhci, &xhci->op_regs->command, 163 CMD_RESET, 0, 250 * 1000); 164 if (ret) 165 return ret; 166 167 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 168 /* 169 * xHCI cannot write to any doorbells or operational registers other 170 * than status until the "Controller Not Ready" flag is cleared. 171 */ 172 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000); 173 } 174 175 /* 176 * Free IRQs 177 * free all IRQs request 178 */ 179 static void xhci_free_irq(struct xhci_hcd *xhci) 180 { 181 int i; 182 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 183 184 /* return if using legacy interrupt */ 185 if (xhci_to_hcd(xhci)->irq >= 0) 186 return; 187 188 if (xhci->msix_entries) { 189 for (i = 0; i < xhci->msix_count; i++) 190 if (xhci->msix_entries[i].vector) 191 free_irq(xhci->msix_entries[i].vector, 192 xhci_to_hcd(xhci)); 193 } else if (pdev->irq >= 0) 194 free_irq(pdev->irq, xhci_to_hcd(xhci)); 195 196 return; 197 } 198 199 /* 200 * Set up MSI 201 */ 202 static int xhci_setup_msi(struct xhci_hcd *xhci) 203 { 204 int ret; 205 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 206 207 ret = pci_enable_msi(pdev); 208 if (ret) { 209 xhci_err(xhci, "failed to allocate MSI entry\n"); 210 return ret; 211 } 212 213 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 214 0, "xhci_hcd", xhci_to_hcd(xhci)); 215 if (ret) { 216 xhci_err(xhci, "disable MSI interrupt\n"); 217 pci_disable_msi(pdev); 218 } 219 220 return ret; 221 } 222 223 /* 224 * Set up MSI-X 225 */ 226 static int xhci_setup_msix(struct xhci_hcd *xhci) 227 { 228 int i, ret = 0; 229 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 230 231 /* 232 * calculate number of msi-x vectors supported. 233 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 234 * with max number of interrupters based on the xhci HCSPARAMS1. 235 * - num_online_cpus: maximum msi-x vectors per CPUs core. 236 * Add additional 1 vector to ensure always available interrupt. 237 */ 238 xhci->msix_count = min(num_online_cpus() + 1, 239 HCS_MAX_INTRS(xhci->hcs_params1)); 240 241 xhci->msix_entries = 242 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 243 GFP_KERNEL); 244 if (!xhci->msix_entries) { 245 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 246 return -ENOMEM; 247 } 248 249 for (i = 0; i < xhci->msix_count; i++) { 250 xhci->msix_entries[i].entry = i; 251 xhci->msix_entries[i].vector = 0; 252 } 253 254 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 255 if (ret) { 256 xhci_err(xhci, "Failed to enable MSI-X\n"); 257 goto free_entries; 258 } 259 260 for (i = 0; i < xhci->msix_count; i++) { 261 ret = request_irq(xhci->msix_entries[i].vector, 262 (irq_handler_t)xhci_msi_irq, 263 0, "xhci_hcd", xhci_to_hcd(xhci)); 264 if (ret) 265 goto disable_msix; 266 } 267 268 return ret; 269 270 disable_msix: 271 xhci_err(xhci, "disable MSI-X interrupt\n"); 272 xhci_free_irq(xhci); 273 pci_disable_msix(pdev); 274 free_entries: 275 kfree(xhci->msix_entries); 276 xhci->msix_entries = NULL; 277 return ret; 278 } 279 280 /* Free any IRQs and disable MSI-X */ 281 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 282 { 283 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 284 285 xhci_free_irq(xhci); 286 287 if (xhci->msix_entries) { 288 pci_disable_msix(pdev); 289 kfree(xhci->msix_entries); 290 xhci->msix_entries = NULL; 291 } else { 292 pci_disable_msi(pdev); 293 } 294 295 return; 296 } 297 298 /* 299 * Initialize memory for HCD and xHC (one-time init). 300 * 301 * Program the PAGESIZE register, initialize the device context array, create 302 * device contexts (?), set up a command ring segment (or two?), create event 303 * ring (one for now). 304 */ 305 int xhci_init(struct usb_hcd *hcd) 306 { 307 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 308 int retval = 0; 309 310 xhci_dbg(xhci, "xhci_init\n"); 311 spin_lock_init(&xhci->lock); 312 if (link_quirk) { 313 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 314 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 315 } else { 316 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 317 } 318 retval = xhci_mem_init(xhci, GFP_KERNEL); 319 xhci_dbg(xhci, "Finished xhci_init\n"); 320 321 return retval; 322 } 323 324 /*-------------------------------------------------------------------------*/ 325 326 327 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 328 void xhci_event_ring_work(unsigned long arg) 329 { 330 unsigned long flags; 331 int temp; 332 u64 temp_64; 333 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 334 int i, j; 335 336 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 337 338 spin_lock_irqsave(&xhci->lock, flags); 339 temp = xhci_readl(xhci, &xhci->op_regs->status); 340 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 341 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) { 342 xhci_dbg(xhci, "HW died, polling stopped.\n"); 343 spin_unlock_irqrestore(&xhci->lock, flags); 344 return; 345 } 346 347 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 348 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 349 xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled); 350 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 351 xhci->error_bitmask = 0; 352 xhci_dbg(xhci, "Event ring:\n"); 353 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 354 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 355 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 356 temp_64 &= ~ERST_PTR_MASK; 357 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 358 xhci_dbg(xhci, "Command ring:\n"); 359 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 360 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 361 xhci_dbg_cmd_ptrs(xhci); 362 for (i = 0; i < MAX_HC_SLOTS; ++i) { 363 if (!xhci->devs[i]) 364 continue; 365 for (j = 0; j < 31; ++j) { 366 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 367 } 368 } 369 370 if (xhci->noops_submitted != NUM_TEST_NOOPS) 371 if (xhci_setup_one_noop(xhci)) 372 xhci_ring_cmd_db(xhci); 373 spin_unlock_irqrestore(&xhci->lock, flags); 374 375 if (!xhci->zombie) 376 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 377 else 378 xhci_dbg(xhci, "Quit polling the event ring.\n"); 379 } 380 #endif 381 382 /* 383 * Start the HC after it was halted. 384 * 385 * This function is called by the USB core when the HC driver is added. 386 * Its opposite is xhci_stop(). 387 * 388 * xhci_init() must be called once before this function can be called. 389 * Reset the HC, enable device slot contexts, program DCBAAP, and 390 * set command ring pointer and event ring pointer. 391 * 392 * Setup MSI-X vectors and enable interrupts. 393 */ 394 int xhci_run(struct usb_hcd *hcd) 395 { 396 u32 temp; 397 u64 temp_64; 398 u32 ret; 399 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 400 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 401 void (*doorbell)(struct xhci_hcd *) = NULL; 402 403 hcd->uses_new_polling = 1; 404 405 xhci_dbg(xhci, "xhci_run\n"); 406 /* unregister the legacy interrupt */ 407 if (hcd->irq) 408 free_irq(hcd->irq, hcd); 409 hcd->irq = -1; 410 411 ret = xhci_setup_msix(xhci); 412 if (ret) 413 /* fall back to msi*/ 414 ret = xhci_setup_msi(xhci); 415 416 if (ret) { 417 /* fall back to legacy interrupt*/ 418 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 419 hcd->irq_descr, hcd); 420 if (ret) { 421 xhci_err(xhci, "request interrupt %d failed\n", 422 pdev->irq); 423 return ret; 424 } 425 hcd->irq = pdev->irq; 426 } 427 428 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 429 init_timer(&xhci->event_ring_timer); 430 xhci->event_ring_timer.data = (unsigned long) xhci; 431 xhci->event_ring_timer.function = xhci_event_ring_work; 432 /* Poll the event ring */ 433 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 434 xhci->zombie = 0; 435 xhci_dbg(xhci, "Setting event ring polling timer\n"); 436 add_timer(&xhci->event_ring_timer); 437 #endif 438 439 xhci_dbg(xhci, "Command ring memory map follows:\n"); 440 xhci_debug_ring(xhci, xhci->cmd_ring); 441 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 442 xhci_dbg_cmd_ptrs(xhci); 443 444 xhci_dbg(xhci, "ERST memory map follows:\n"); 445 xhci_dbg_erst(xhci, &xhci->erst); 446 xhci_dbg(xhci, "Event ring:\n"); 447 xhci_debug_ring(xhci, xhci->event_ring); 448 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 449 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 450 temp_64 &= ~ERST_PTR_MASK; 451 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 452 453 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 454 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 455 temp &= ~ER_IRQ_INTERVAL_MASK; 456 temp |= (u32) 160; 457 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 458 459 /* Set the HCD state before we enable the irqs */ 460 hcd->state = HC_STATE_RUNNING; 461 temp = xhci_readl(xhci, &xhci->op_regs->command); 462 temp |= (CMD_EIE); 463 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 464 temp); 465 xhci_writel(xhci, temp, &xhci->op_regs->command); 466 467 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 468 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 469 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 470 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 471 &xhci->ir_set->irq_pending); 472 xhci_print_ir_set(xhci, xhci->ir_set, 0); 473 474 if (NUM_TEST_NOOPS > 0) 475 doorbell = xhci_setup_one_noop(xhci); 476 if (xhci->quirks & XHCI_NEC_HOST) 477 xhci_queue_vendor_command(xhci, 0, 0, 0, 478 TRB_TYPE(TRB_NEC_GET_FW)); 479 480 if (xhci_start(xhci)) { 481 xhci_halt(xhci); 482 return -ENODEV; 483 } 484 485 if (doorbell) 486 (*doorbell)(xhci); 487 if (xhci->quirks & XHCI_NEC_HOST) 488 xhci_ring_cmd_db(xhci); 489 490 xhci_dbg(xhci, "Finished xhci_run\n"); 491 return 0; 492 } 493 494 /* 495 * Stop xHCI driver. 496 * 497 * This function is called by the USB core when the HC driver is removed. 498 * Its opposite is xhci_run(). 499 * 500 * Disable device contexts, disable IRQs, and quiesce the HC. 501 * Reset the HC, finish any completed transactions, and cleanup memory. 502 */ 503 void xhci_stop(struct usb_hcd *hcd) 504 { 505 u32 temp; 506 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 507 508 spin_lock_irq(&xhci->lock); 509 xhci_halt(xhci); 510 xhci_reset(xhci); 511 xhci_cleanup_msix(xhci); 512 spin_unlock_irq(&xhci->lock); 513 514 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 515 /* Tell the event ring poll function not to reschedule */ 516 xhci->zombie = 1; 517 del_timer_sync(&xhci->event_ring_timer); 518 #endif 519 520 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 521 temp = xhci_readl(xhci, &xhci->op_regs->status); 522 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 523 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 524 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 525 &xhci->ir_set->irq_pending); 526 xhci_print_ir_set(xhci, xhci->ir_set, 0); 527 528 xhci_dbg(xhci, "cleaning up memory\n"); 529 xhci_mem_cleanup(xhci); 530 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 531 xhci_readl(xhci, &xhci->op_regs->status)); 532 } 533 534 /* 535 * Shutdown HC (not bus-specific) 536 * 537 * This is called when the machine is rebooting or halting. We assume that the 538 * machine will be powered off, and the HC's internal state will be reset. 539 * Don't bother to free memory. 540 */ 541 void xhci_shutdown(struct usb_hcd *hcd) 542 { 543 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 544 545 spin_lock_irq(&xhci->lock); 546 xhci_halt(xhci); 547 xhci_cleanup_msix(xhci); 548 spin_unlock_irq(&xhci->lock); 549 550 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 551 xhci_readl(xhci, &xhci->op_regs->status)); 552 } 553 554 #ifdef CONFIG_PM 555 static void xhci_save_registers(struct xhci_hcd *xhci) 556 { 557 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 558 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 559 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 560 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 561 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 562 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 563 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 564 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 565 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 566 } 567 568 static void xhci_restore_registers(struct xhci_hcd *xhci) 569 { 570 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 571 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 572 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 573 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 574 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 575 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 576 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 577 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 578 } 579 580 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 581 { 582 u64 val_64; 583 584 /* step 2: initialize command ring buffer */ 585 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 586 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 587 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 588 xhci->cmd_ring->dequeue) & 589 (u64) ~CMD_RING_RSVD_BITS) | 590 xhci->cmd_ring->cycle_state; 591 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", 592 (long unsigned long) val_64); 593 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 594 } 595 596 /* 597 * The whole command ring must be cleared to zero when we suspend the host. 598 * 599 * The host doesn't save the command ring pointer in the suspend well, so we 600 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 601 * aligned, because of the reserved bits in the command ring dequeue pointer 602 * register. Therefore, we can't just set the dequeue pointer back in the 603 * middle of the ring (TRBs are 16-byte aligned). 604 */ 605 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 606 { 607 struct xhci_ring *ring; 608 struct xhci_segment *seg; 609 610 ring = xhci->cmd_ring; 611 seg = ring->deq_seg; 612 do { 613 memset(seg->trbs, 0, SEGMENT_SIZE); 614 seg = seg->next; 615 } while (seg != ring->deq_seg); 616 617 /* Reset the software enqueue and dequeue pointers */ 618 ring->deq_seg = ring->first_seg; 619 ring->dequeue = ring->first_seg->trbs; 620 ring->enq_seg = ring->deq_seg; 621 ring->enqueue = ring->dequeue; 622 623 /* 624 * Ring is now zeroed, so the HW should look for change of ownership 625 * when the cycle bit is set to 1. 626 */ 627 ring->cycle_state = 1; 628 629 /* 630 * Reset the hardware dequeue pointer. 631 * Yes, this will need to be re-written after resume, but we're paranoid 632 * and want to make sure the hardware doesn't access bogus memory 633 * because, say, the BIOS or an SMI started the host without changing 634 * the command ring pointers. 635 */ 636 xhci_set_cmd_ring_deq(xhci); 637 } 638 639 /* 640 * Stop HC (not bus-specific) 641 * 642 * This is called when the machine transition into S3/S4 mode. 643 * 644 */ 645 int xhci_suspend(struct xhci_hcd *xhci) 646 { 647 int rc = 0; 648 struct usb_hcd *hcd = xhci_to_hcd(xhci); 649 u32 command; 650 651 spin_lock_irq(&xhci->lock); 652 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 653 /* step 1: stop endpoint */ 654 /* skipped assuming that port suspend has done */ 655 656 /* step 2: clear Run/Stop bit */ 657 command = xhci_readl(xhci, &xhci->op_regs->command); 658 command &= ~CMD_RUN; 659 xhci_writel(xhci, command, &xhci->op_regs->command); 660 if (handshake(xhci, &xhci->op_regs->status, 661 STS_HALT, STS_HALT, 100*100)) { 662 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 663 spin_unlock_irq(&xhci->lock); 664 return -ETIMEDOUT; 665 } 666 xhci_clear_command_ring(xhci); 667 668 /* step 3: save registers */ 669 xhci_save_registers(xhci); 670 671 /* step 4: set CSS flag */ 672 command = xhci_readl(xhci, &xhci->op_regs->command); 673 command |= CMD_CSS; 674 xhci_writel(xhci, command, &xhci->op_regs->command); 675 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) { 676 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n"); 677 spin_unlock_irq(&xhci->lock); 678 return -ETIMEDOUT; 679 } 680 /* step 5: remove core well power */ 681 xhci_cleanup_msix(xhci); 682 spin_unlock_irq(&xhci->lock); 683 684 return rc; 685 } 686 687 /* 688 * start xHC (not bus-specific) 689 * 690 * This is called when the machine transition from S3/S4 mode. 691 * 692 */ 693 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 694 { 695 u32 command, temp = 0; 696 struct usb_hcd *hcd = xhci_to_hcd(xhci); 697 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 698 int old_state, retval; 699 700 old_state = hcd->state; 701 if (time_before(jiffies, xhci->next_statechange)) 702 msleep(100); 703 704 spin_lock_irq(&xhci->lock); 705 706 if (!hibernated) { 707 /* step 1: restore register */ 708 xhci_restore_registers(xhci); 709 /* step 2: initialize command ring buffer */ 710 xhci_set_cmd_ring_deq(xhci); 711 /* step 3: restore state and start state*/ 712 /* step 3: set CRS flag */ 713 command = xhci_readl(xhci, &xhci->op_regs->command); 714 command |= CMD_CRS; 715 xhci_writel(xhci, command, &xhci->op_regs->command); 716 if (handshake(xhci, &xhci->op_regs->status, 717 STS_RESTORE, 0, 10*100)) { 718 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n"); 719 spin_unlock_irq(&xhci->lock); 720 return -ETIMEDOUT; 721 } 722 temp = xhci_readl(xhci, &xhci->op_regs->status); 723 } 724 725 /* If restore operation fails, re-initialize the HC during resume */ 726 if ((temp & STS_SRE) || hibernated) { 727 usb_root_hub_lost_power(hcd->self.root_hub); 728 729 xhci_dbg(xhci, "Stop HCD\n"); 730 xhci_halt(xhci); 731 xhci_reset(xhci); 732 if (hibernated) 733 xhci_cleanup_msix(xhci); 734 spin_unlock_irq(&xhci->lock); 735 736 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 737 /* Tell the event ring poll function not to reschedule */ 738 xhci->zombie = 1; 739 del_timer_sync(&xhci->event_ring_timer); 740 #endif 741 742 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 743 temp = xhci_readl(xhci, &xhci->op_regs->status); 744 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 745 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 746 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 747 &xhci->ir_set->irq_pending); 748 xhci_print_ir_set(xhci, xhci->ir_set, 0); 749 750 xhci_dbg(xhci, "cleaning up memory\n"); 751 xhci_mem_cleanup(xhci); 752 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 753 xhci_readl(xhci, &xhci->op_regs->status)); 754 755 xhci_dbg(xhci, "Initialize the HCD\n"); 756 retval = xhci_init(hcd); 757 if (retval) 758 return retval; 759 760 xhci_dbg(xhci, "Start the HCD\n"); 761 retval = xhci_run(hcd); 762 if (!retval) 763 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 764 hcd->state = HC_STATE_SUSPENDED; 765 return retval; 766 } 767 768 spin_unlock_irq(&xhci->lock); 769 /* Re-setup MSI-X */ 770 if (hcd->irq) 771 free_irq(hcd->irq, hcd); 772 hcd->irq = -1; 773 774 retval = xhci_setup_msix(xhci); 775 if (retval) 776 /* fall back to msi*/ 777 retval = xhci_setup_msi(xhci); 778 779 if (retval) { 780 /* fall back to legacy interrupt*/ 781 retval = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 782 hcd->irq_descr, hcd); 783 if (retval) { 784 xhci_err(xhci, "request interrupt %d failed\n", 785 pdev->irq); 786 return retval; 787 } 788 hcd->irq = pdev->irq; 789 } 790 791 spin_lock_irq(&xhci->lock); 792 /* step 4: set Run/Stop bit */ 793 command = xhci_readl(xhci, &xhci->op_regs->command); 794 command |= CMD_RUN; 795 xhci_writel(xhci, command, &xhci->op_regs->command); 796 handshake(xhci, &xhci->op_regs->status, STS_HALT, 797 0, 250 * 1000); 798 799 /* step 5: walk topology and initialize portsc, 800 * portpmsc and portli 801 */ 802 /* this is done in bus_resume */ 803 804 /* step 6: restart each of the previously 805 * Running endpoints by ringing their doorbells 806 */ 807 808 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 809 if (!hibernated) 810 hcd->state = old_state; 811 else 812 hcd->state = HC_STATE_SUSPENDED; 813 814 spin_unlock_irq(&xhci->lock); 815 return 0; 816 } 817 #endif /* CONFIG_PM */ 818 819 /*-------------------------------------------------------------------------*/ 820 821 /** 822 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 823 * HCDs. Find the index for an endpoint given its descriptor. Use the return 824 * value to right shift 1 for the bitmask. 825 * 826 * Index = (epnum * 2) + direction - 1, 827 * where direction = 0 for OUT, 1 for IN. 828 * For control endpoints, the IN index is used (OUT index is unused), so 829 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 830 */ 831 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 832 { 833 unsigned int index; 834 if (usb_endpoint_xfer_control(desc)) 835 index = (unsigned int) (usb_endpoint_num(desc)*2); 836 else 837 index = (unsigned int) (usb_endpoint_num(desc)*2) + 838 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 839 return index; 840 } 841 842 /* Find the flag for this endpoint (for use in the control context). Use the 843 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 844 * bit 1, etc. 845 */ 846 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 847 { 848 return 1 << (xhci_get_endpoint_index(desc) + 1); 849 } 850 851 /* Find the flag for this endpoint (for use in the control context). Use the 852 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 853 * bit 1, etc. 854 */ 855 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 856 { 857 return 1 << (ep_index + 1); 858 } 859 860 /* Compute the last valid endpoint context index. Basically, this is the 861 * endpoint index plus one. For slot contexts with more than valid endpoint, 862 * we find the most significant bit set in the added contexts flags. 863 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 864 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 865 */ 866 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 867 { 868 return fls(added_ctxs) - 1; 869 } 870 871 /* Returns 1 if the arguments are OK; 872 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 873 */ 874 int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 875 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 876 const char *func) { 877 struct xhci_hcd *xhci; 878 struct xhci_virt_device *virt_dev; 879 880 if (!hcd || (check_ep && !ep) || !udev) { 881 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 882 func); 883 return -EINVAL; 884 } 885 if (!udev->parent) { 886 printk(KERN_DEBUG "xHCI %s called for root hub\n", 887 func); 888 return 0; 889 } 890 891 if (check_virt_dev) { 892 xhci = hcd_to_xhci(hcd); 893 if (!udev->slot_id || !xhci->devs 894 || !xhci->devs[udev->slot_id]) { 895 printk(KERN_DEBUG "xHCI %s called with unaddressed " 896 "device\n", func); 897 return -EINVAL; 898 } 899 900 virt_dev = xhci->devs[udev->slot_id]; 901 if (virt_dev->udev != udev) { 902 printk(KERN_DEBUG "xHCI %s called with udev and " 903 "virt_dev does not match\n", func); 904 return -EINVAL; 905 } 906 } 907 908 return 1; 909 } 910 911 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 912 struct usb_device *udev, struct xhci_command *command, 913 bool ctx_change, bool must_succeed); 914 915 /* 916 * Full speed devices may have a max packet size greater than 8 bytes, but the 917 * USB core doesn't know that until it reads the first 8 bytes of the 918 * descriptor. If the usb_device's max packet size changes after that point, 919 * we need to issue an evaluate context command and wait on it. 920 */ 921 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 922 unsigned int ep_index, struct urb *urb) 923 { 924 struct xhci_container_ctx *in_ctx; 925 struct xhci_container_ctx *out_ctx; 926 struct xhci_input_control_ctx *ctrl_ctx; 927 struct xhci_ep_ctx *ep_ctx; 928 int max_packet_size; 929 int hw_max_packet_size; 930 int ret = 0; 931 932 out_ctx = xhci->devs[slot_id]->out_ctx; 933 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 934 hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2); 935 max_packet_size = urb->dev->ep0.desc.wMaxPacketSize; 936 if (hw_max_packet_size != max_packet_size) { 937 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 938 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 939 max_packet_size); 940 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 941 hw_max_packet_size); 942 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 943 944 /* Set up the modified control endpoint 0 */ 945 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 946 xhci->devs[slot_id]->out_ctx, ep_index); 947 in_ctx = xhci->devs[slot_id]->in_ctx; 948 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 949 ep_ctx->ep_info2 &= ~MAX_PACKET_MASK; 950 ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size); 951 952 /* Set up the input context flags for the command */ 953 /* FIXME: This won't work if a non-default control endpoint 954 * changes max packet sizes. 955 */ 956 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 957 ctrl_ctx->add_flags = EP0_FLAG; 958 ctrl_ctx->drop_flags = 0; 959 960 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 961 xhci_dbg_ctx(xhci, in_ctx, ep_index); 962 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 963 xhci_dbg_ctx(xhci, out_ctx, ep_index); 964 965 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 966 true, false); 967 968 /* Clean up the input context for later use by bandwidth 969 * functions. 970 */ 971 ctrl_ctx->add_flags = SLOT_FLAG; 972 } 973 return ret; 974 } 975 976 /* 977 * non-error returns are a promise to giveback() the urb later 978 * we drop ownership so next owner (or urb unlink) can get it 979 */ 980 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 981 { 982 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 983 unsigned long flags; 984 int ret = 0; 985 unsigned int slot_id, ep_index; 986 struct urb_priv *urb_priv; 987 int size, i; 988 989 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 990 true, true, __func__) <= 0) 991 return -EINVAL; 992 993 slot_id = urb->dev->slot_id; 994 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 995 996 if (!HCD_HW_ACCESSIBLE(hcd)) { 997 if (!in_interrupt()) 998 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 999 ret = -ESHUTDOWN; 1000 goto exit; 1001 } 1002 1003 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1004 size = urb->number_of_packets; 1005 else 1006 size = 1; 1007 1008 urb_priv = kzalloc(sizeof(struct urb_priv) + 1009 size * sizeof(struct xhci_td *), mem_flags); 1010 if (!urb_priv) 1011 return -ENOMEM; 1012 1013 for (i = 0; i < size; i++) { 1014 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags); 1015 if (!urb_priv->td[i]) { 1016 urb_priv->length = i; 1017 xhci_urb_free_priv(xhci, urb_priv); 1018 return -ENOMEM; 1019 } 1020 } 1021 1022 urb_priv->length = size; 1023 urb_priv->td_cnt = 0; 1024 urb->hcpriv = urb_priv; 1025 1026 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1027 /* Check to see if the max packet size for the default control 1028 * endpoint changed during FS device enumeration 1029 */ 1030 if (urb->dev->speed == USB_SPEED_FULL) { 1031 ret = xhci_check_maxpacket(xhci, slot_id, 1032 ep_index, urb); 1033 if (ret < 0) 1034 return ret; 1035 } 1036 1037 /* We have a spinlock and interrupts disabled, so we must pass 1038 * atomic context to this function, which may allocate memory. 1039 */ 1040 spin_lock_irqsave(&xhci->lock, flags); 1041 if (xhci->xhc_state & XHCI_STATE_DYING) 1042 goto dying; 1043 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1044 slot_id, ep_index); 1045 spin_unlock_irqrestore(&xhci->lock, flags); 1046 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1047 spin_lock_irqsave(&xhci->lock, flags); 1048 if (xhci->xhc_state & XHCI_STATE_DYING) 1049 goto dying; 1050 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1051 EP_GETTING_STREAMS) { 1052 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1053 "is transitioning to using streams.\n"); 1054 ret = -EINVAL; 1055 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1056 EP_GETTING_NO_STREAMS) { 1057 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1058 "is transitioning to " 1059 "not having streams.\n"); 1060 ret = -EINVAL; 1061 } else { 1062 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1063 slot_id, ep_index); 1064 } 1065 spin_unlock_irqrestore(&xhci->lock, flags); 1066 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1067 spin_lock_irqsave(&xhci->lock, flags); 1068 if (xhci->xhc_state & XHCI_STATE_DYING) 1069 goto dying; 1070 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1071 slot_id, ep_index); 1072 spin_unlock_irqrestore(&xhci->lock, flags); 1073 } else { 1074 spin_lock_irqsave(&xhci->lock, flags); 1075 if (xhci->xhc_state & XHCI_STATE_DYING) 1076 goto dying; 1077 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1078 slot_id, ep_index); 1079 spin_unlock_irqrestore(&xhci->lock, flags); 1080 } 1081 exit: 1082 return ret; 1083 dying: 1084 xhci_urb_free_priv(xhci, urb_priv); 1085 urb->hcpriv = NULL; 1086 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1087 "non-responsive xHCI host.\n", 1088 urb->ep->desc.bEndpointAddress, urb); 1089 spin_unlock_irqrestore(&xhci->lock, flags); 1090 return -ESHUTDOWN; 1091 } 1092 1093 /* Get the right ring for the given URB. 1094 * If the endpoint supports streams, boundary check the URB's stream ID. 1095 * If the endpoint doesn't support streams, return the singular endpoint ring. 1096 */ 1097 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1098 struct urb *urb) 1099 { 1100 unsigned int slot_id; 1101 unsigned int ep_index; 1102 unsigned int stream_id; 1103 struct xhci_virt_ep *ep; 1104 1105 slot_id = urb->dev->slot_id; 1106 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1107 stream_id = urb->stream_id; 1108 ep = &xhci->devs[slot_id]->eps[ep_index]; 1109 /* Common case: no streams */ 1110 if (!(ep->ep_state & EP_HAS_STREAMS)) 1111 return ep->ring; 1112 1113 if (stream_id == 0) { 1114 xhci_warn(xhci, 1115 "WARN: Slot ID %u, ep index %u has streams, " 1116 "but URB has no stream ID.\n", 1117 slot_id, ep_index); 1118 return NULL; 1119 } 1120 1121 if (stream_id < ep->stream_info->num_streams) 1122 return ep->stream_info->stream_rings[stream_id]; 1123 1124 xhci_warn(xhci, 1125 "WARN: Slot ID %u, ep index %u has " 1126 "stream IDs 1 to %u allocated, " 1127 "but stream ID %u is requested.\n", 1128 slot_id, ep_index, 1129 ep->stream_info->num_streams - 1, 1130 stream_id); 1131 return NULL; 1132 } 1133 1134 /* 1135 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1136 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1137 * should pick up where it left off in the TD, unless a Set Transfer Ring 1138 * Dequeue Pointer is issued. 1139 * 1140 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1141 * the ring. Since the ring is a contiguous structure, they can't be physically 1142 * removed. Instead, there are two options: 1143 * 1144 * 1) If the HC is in the middle of processing the URB to be canceled, we 1145 * simply move the ring's dequeue pointer past those TRBs using the Set 1146 * Transfer Ring Dequeue Pointer command. This will be the common case, 1147 * when drivers timeout on the last submitted URB and attempt to cancel. 1148 * 1149 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1150 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1151 * HC will need to invalidate the any TRBs it has cached after the stop 1152 * endpoint command, as noted in the xHCI 0.95 errata. 1153 * 1154 * 3) The TD may have completed by the time the Stop Endpoint Command 1155 * completes, so software needs to handle that case too. 1156 * 1157 * This function should protect against the TD enqueueing code ringing the 1158 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1159 * It also needs to account for multiple cancellations on happening at the same 1160 * time for the same endpoint. 1161 * 1162 * Note that this function can be called in any context, or so says 1163 * usb_hcd_unlink_urb() 1164 */ 1165 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1166 { 1167 unsigned long flags; 1168 int ret, i; 1169 u32 temp; 1170 struct xhci_hcd *xhci; 1171 struct urb_priv *urb_priv; 1172 struct xhci_td *td; 1173 unsigned int ep_index; 1174 struct xhci_ring *ep_ring; 1175 struct xhci_virt_ep *ep; 1176 1177 xhci = hcd_to_xhci(hcd); 1178 spin_lock_irqsave(&xhci->lock, flags); 1179 /* Make sure the URB hasn't completed or been unlinked already */ 1180 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1181 if (ret || !urb->hcpriv) 1182 goto done; 1183 temp = xhci_readl(xhci, &xhci->op_regs->status); 1184 if (temp == 0xffffffff) { 1185 xhci_dbg(xhci, "HW died, freeing TD.\n"); 1186 urb_priv = urb->hcpriv; 1187 1188 usb_hcd_unlink_urb_from_ep(hcd, urb); 1189 spin_unlock_irqrestore(&xhci->lock, flags); 1190 usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, -ESHUTDOWN); 1191 xhci_urb_free_priv(xhci, urb_priv); 1192 return ret; 1193 } 1194 if (xhci->xhc_state & XHCI_STATE_DYING) { 1195 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 1196 "non-responsive xHCI host.\n", 1197 urb->ep->desc.bEndpointAddress, urb); 1198 /* Let the stop endpoint command watchdog timer (which set this 1199 * state) finish cleaning up the endpoint TD lists. We must 1200 * have caught it in the middle of dropping a lock and giving 1201 * back an URB. 1202 */ 1203 goto done; 1204 } 1205 1206 xhci_dbg(xhci, "Cancel URB %p\n", urb); 1207 xhci_dbg(xhci, "Event ring:\n"); 1208 xhci_debug_ring(xhci, xhci->event_ring); 1209 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1210 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1211 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1212 if (!ep_ring) { 1213 ret = -EINVAL; 1214 goto done; 1215 } 1216 1217 xhci_dbg(xhci, "Endpoint ring:\n"); 1218 xhci_debug_ring(xhci, ep_ring); 1219 1220 urb_priv = urb->hcpriv; 1221 1222 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1223 td = urb_priv->td[i]; 1224 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1225 } 1226 1227 /* Queue a stop endpoint command, but only if this is 1228 * the first cancellation to be handled. 1229 */ 1230 if (!(ep->ep_state & EP_HALT_PENDING)) { 1231 ep->ep_state |= EP_HALT_PENDING; 1232 ep->stop_cmds_pending++; 1233 ep->stop_cmd_timer.expires = jiffies + 1234 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1235 add_timer(&ep->stop_cmd_timer); 1236 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1237 xhci_ring_cmd_db(xhci); 1238 } 1239 done: 1240 spin_unlock_irqrestore(&xhci->lock, flags); 1241 return ret; 1242 } 1243 1244 /* Drop an endpoint from a new bandwidth configuration for this device. 1245 * Only one call to this function is allowed per endpoint before 1246 * check_bandwidth() or reset_bandwidth() must be called. 1247 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1248 * add the endpoint to the schedule with possibly new parameters denoted by a 1249 * different endpoint descriptor in usb_host_endpoint. 1250 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1251 * not allowed. 1252 * 1253 * The USB core will not allow URBs to be queued to an endpoint that is being 1254 * disabled, so there's no need for mutual exclusion to protect 1255 * the xhci->devs[slot_id] structure. 1256 */ 1257 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1258 struct usb_host_endpoint *ep) 1259 { 1260 struct xhci_hcd *xhci; 1261 struct xhci_container_ctx *in_ctx, *out_ctx; 1262 struct xhci_input_control_ctx *ctrl_ctx; 1263 struct xhci_slot_ctx *slot_ctx; 1264 unsigned int last_ctx; 1265 unsigned int ep_index; 1266 struct xhci_ep_ctx *ep_ctx; 1267 u32 drop_flag; 1268 u32 new_add_flags, new_drop_flags, new_slot_info; 1269 int ret; 1270 1271 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1272 if (ret <= 0) 1273 return ret; 1274 xhci = hcd_to_xhci(hcd); 1275 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1276 1277 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1278 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1279 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1280 __func__, drop_flag); 1281 return 0; 1282 } 1283 1284 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1285 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1286 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1287 ep_index = xhci_get_endpoint_index(&ep->desc); 1288 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1289 /* If the HC already knows the endpoint is disabled, 1290 * or the HCD has noted it is disabled, ignore this request 1291 */ 1292 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED || 1293 ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) { 1294 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1295 __func__, ep); 1296 return 0; 1297 } 1298 1299 ctrl_ctx->drop_flags |= drop_flag; 1300 new_drop_flags = ctrl_ctx->drop_flags; 1301 1302 ctrl_ctx->add_flags &= ~drop_flag; 1303 new_add_flags = ctrl_ctx->add_flags; 1304 1305 last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags); 1306 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1307 /* Update the last valid endpoint context, if we deleted the last one */ 1308 if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) { 1309 slot_ctx->dev_info &= ~LAST_CTX_MASK; 1310 slot_ctx->dev_info |= LAST_CTX(last_ctx); 1311 } 1312 new_slot_info = slot_ctx->dev_info; 1313 1314 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1315 1316 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1317 (unsigned int) ep->desc.bEndpointAddress, 1318 udev->slot_id, 1319 (unsigned int) new_drop_flags, 1320 (unsigned int) new_add_flags, 1321 (unsigned int) new_slot_info); 1322 return 0; 1323 } 1324 1325 /* Add an endpoint to a new possible bandwidth configuration for this device. 1326 * Only one call to this function is allowed per endpoint before 1327 * check_bandwidth() or reset_bandwidth() must be called. 1328 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1329 * add the endpoint to the schedule with possibly new parameters denoted by a 1330 * different endpoint descriptor in usb_host_endpoint. 1331 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1332 * not allowed. 1333 * 1334 * The USB core will not allow URBs to be queued to an endpoint until the 1335 * configuration or alt setting is installed in the device, so there's no need 1336 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1337 */ 1338 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1339 struct usb_host_endpoint *ep) 1340 { 1341 struct xhci_hcd *xhci; 1342 struct xhci_container_ctx *in_ctx, *out_ctx; 1343 unsigned int ep_index; 1344 struct xhci_ep_ctx *ep_ctx; 1345 struct xhci_slot_ctx *slot_ctx; 1346 struct xhci_input_control_ctx *ctrl_ctx; 1347 u32 added_ctxs; 1348 unsigned int last_ctx; 1349 u32 new_add_flags, new_drop_flags, new_slot_info; 1350 int ret = 0; 1351 1352 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1353 if (ret <= 0) { 1354 /* So we won't queue a reset ep command for a root hub */ 1355 ep->hcpriv = NULL; 1356 return ret; 1357 } 1358 xhci = hcd_to_xhci(hcd); 1359 1360 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1361 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1362 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1363 /* FIXME when we have to issue an evaluate endpoint command to 1364 * deal with ep0 max packet size changing once we get the 1365 * descriptors 1366 */ 1367 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1368 __func__, added_ctxs); 1369 return 0; 1370 } 1371 1372 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1373 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1374 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1375 ep_index = xhci_get_endpoint_index(&ep->desc); 1376 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1377 /* If the HCD has already noted the endpoint is enabled, 1378 * ignore this request. 1379 */ 1380 if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) { 1381 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1382 __func__, ep); 1383 return 0; 1384 } 1385 1386 /* 1387 * Configuration and alternate setting changes must be done in 1388 * process context, not interrupt context (or so documenation 1389 * for usb_set_interface() and usb_set_configuration() claim). 1390 */ 1391 if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id], 1392 udev, ep, GFP_NOIO) < 0) { 1393 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1394 __func__, ep->desc.bEndpointAddress); 1395 return -ENOMEM; 1396 } 1397 1398 ctrl_ctx->add_flags |= added_ctxs; 1399 new_add_flags = ctrl_ctx->add_flags; 1400 1401 /* If xhci_endpoint_disable() was called for this endpoint, but the 1402 * xHC hasn't been notified yet through the check_bandwidth() call, 1403 * this re-adds a new state for the endpoint from the new endpoint 1404 * descriptors. We must drop and re-add this endpoint, so we leave the 1405 * drop flags alone. 1406 */ 1407 new_drop_flags = ctrl_ctx->drop_flags; 1408 1409 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1410 /* Update the last valid endpoint context, if we just added one past */ 1411 if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) { 1412 slot_ctx->dev_info &= ~LAST_CTX_MASK; 1413 slot_ctx->dev_info |= LAST_CTX(last_ctx); 1414 } 1415 new_slot_info = slot_ctx->dev_info; 1416 1417 /* Store the usb_device pointer for later use */ 1418 ep->hcpriv = udev; 1419 1420 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1421 (unsigned int) ep->desc.bEndpointAddress, 1422 udev->slot_id, 1423 (unsigned int) new_drop_flags, 1424 (unsigned int) new_add_flags, 1425 (unsigned int) new_slot_info); 1426 return 0; 1427 } 1428 1429 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1430 { 1431 struct xhci_input_control_ctx *ctrl_ctx; 1432 struct xhci_ep_ctx *ep_ctx; 1433 struct xhci_slot_ctx *slot_ctx; 1434 int i; 1435 1436 /* When a device's add flag and drop flag are zero, any subsequent 1437 * configure endpoint command will leave that endpoint's state 1438 * untouched. Make sure we don't leave any old state in the input 1439 * endpoint contexts. 1440 */ 1441 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1442 ctrl_ctx->drop_flags = 0; 1443 ctrl_ctx->add_flags = 0; 1444 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1445 slot_ctx->dev_info &= ~LAST_CTX_MASK; 1446 /* Endpoint 0 is always valid */ 1447 slot_ctx->dev_info |= LAST_CTX(1); 1448 for (i = 1; i < 31; ++i) { 1449 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1450 ep_ctx->ep_info = 0; 1451 ep_ctx->ep_info2 = 0; 1452 ep_ctx->deq = 0; 1453 ep_ctx->tx_info = 0; 1454 } 1455 } 1456 1457 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1458 struct usb_device *udev, int *cmd_status) 1459 { 1460 int ret; 1461 1462 switch (*cmd_status) { 1463 case COMP_ENOMEM: 1464 dev_warn(&udev->dev, "Not enough host controller resources " 1465 "for new device state.\n"); 1466 ret = -ENOMEM; 1467 /* FIXME: can we allocate more resources for the HC? */ 1468 break; 1469 case COMP_BW_ERR: 1470 dev_warn(&udev->dev, "Not enough bandwidth " 1471 "for new device state.\n"); 1472 ret = -ENOSPC; 1473 /* FIXME: can we go back to the old state? */ 1474 break; 1475 case COMP_TRB_ERR: 1476 /* the HCD set up something wrong */ 1477 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1478 "add flag = 1, " 1479 "and endpoint is not disabled.\n"); 1480 ret = -EINVAL; 1481 break; 1482 case COMP_SUCCESS: 1483 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1484 ret = 0; 1485 break; 1486 default: 1487 xhci_err(xhci, "ERROR: unexpected command completion " 1488 "code 0x%x.\n", *cmd_status); 1489 ret = -EINVAL; 1490 break; 1491 } 1492 return ret; 1493 } 1494 1495 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1496 struct usb_device *udev, int *cmd_status) 1497 { 1498 int ret; 1499 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1500 1501 switch (*cmd_status) { 1502 case COMP_EINVAL: 1503 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1504 "context command.\n"); 1505 ret = -EINVAL; 1506 break; 1507 case COMP_EBADSLT: 1508 dev_warn(&udev->dev, "WARN: slot not enabled for" 1509 "evaluate context command.\n"); 1510 case COMP_CTX_STATE: 1511 dev_warn(&udev->dev, "WARN: invalid context state for " 1512 "evaluate context command.\n"); 1513 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1514 ret = -EINVAL; 1515 break; 1516 case COMP_SUCCESS: 1517 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1518 ret = 0; 1519 break; 1520 default: 1521 xhci_err(xhci, "ERROR: unexpected command completion " 1522 "code 0x%x.\n", *cmd_status); 1523 ret = -EINVAL; 1524 break; 1525 } 1526 return ret; 1527 } 1528 1529 /* Issue a configure endpoint command or evaluate context command 1530 * and wait for it to finish. 1531 */ 1532 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1533 struct usb_device *udev, 1534 struct xhci_command *command, 1535 bool ctx_change, bool must_succeed) 1536 { 1537 int ret; 1538 int timeleft; 1539 unsigned long flags; 1540 struct xhci_container_ctx *in_ctx; 1541 struct completion *cmd_completion; 1542 int *cmd_status; 1543 struct xhci_virt_device *virt_dev; 1544 1545 spin_lock_irqsave(&xhci->lock, flags); 1546 virt_dev = xhci->devs[udev->slot_id]; 1547 if (command) { 1548 in_ctx = command->in_ctx; 1549 cmd_completion = command->completion; 1550 cmd_status = &command->status; 1551 command->command_trb = xhci->cmd_ring->enqueue; 1552 1553 /* Enqueue pointer can be left pointing to the link TRB, 1554 * we must handle that 1555 */ 1556 if ((command->command_trb->link.control & TRB_TYPE_BITMASK) 1557 == TRB_TYPE(TRB_LINK)) 1558 command->command_trb = 1559 xhci->cmd_ring->enq_seg->next->trbs; 1560 1561 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 1562 } else { 1563 in_ctx = virt_dev->in_ctx; 1564 cmd_completion = &virt_dev->cmd_completion; 1565 cmd_status = &virt_dev->cmd_status; 1566 } 1567 init_completion(cmd_completion); 1568 1569 if (!ctx_change) 1570 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 1571 udev->slot_id, must_succeed); 1572 else 1573 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 1574 udev->slot_id); 1575 if (ret < 0) { 1576 if (command) 1577 list_del(&command->cmd_list); 1578 spin_unlock_irqrestore(&xhci->lock, flags); 1579 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 1580 return -ENOMEM; 1581 } 1582 xhci_ring_cmd_db(xhci); 1583 spin_unlock_irqrestore(&xhci->lock, flags); 1584 1585 /* Wait for the configure endpoint command to complete */ 1586 timeleft = wait_for_completion_interruptible_timeout( 1587 cmd_completion, 1588 USB_CTRL_SET_TIMEOUT); 1589 if (timeleft <= 0) { 1590 xhci_warn(xhci, "%s while waiting for %s command\n", 1591 timeleft == 0 ? "Timeout" : "Signal", 1592 ctx_change == 0 ? 1593 "configure endpoint" : 1594 "evaluate context"); 1595 /* FIXME cancel the configure endpoint command */ 1596 return -ETIME; 1597 } 1598 1599 if (!ctx_change) 1600 return xhci_configure_endpoint_result(xhci, udev, cmd_status); 1601 return xhci_evaluate_context_result(xhci, udev, cmd_status); 1602 } 1603 1604 /* Called after one or more calls to xhci_add_endpoint() or 1605 * xhci_drop_endpoint(). If this call fails, the USB core is expected 1606 * to call xhci_reset_bandwidth(). 1607 * 1608 * Since we are in the middle of changing either configuration or 1609 * installing a new alt setting, the USB core won't allow URBs to be 1610 * enqueued for any endpoint on the old config or interface. Nothing 1611 * else should be touching the xhci->devs[slot_id] structure, so we 1612 * don't need to take the xhci->lock for manipulating that. 1613 */ 1614 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 1615 { 1616 int i; 1617 int ret = 0; 1618 struct xhci_hcd *xhci; 1619 struct xhci_virt_device *virt_dev; 1620 struct xhci_input_control_ctx *ctrl_ctx; 1621 struct xhci_slot_ctx *slot_ctx; 1622 1623 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 1624 if (ret <= 0) 1625 return ret; 1626 xhci = hcd_to_xhci(hcd); 1627 1628 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1629 virt_dev = xhci->devs[udev->slot_id]; 1630 1631 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 1632 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1633 ctrl_ctx->add_flags |= SLOT_FLAG; 1634 ctrl_ctx->add_flags &= ~EP0_FLAG; 1635 ctrl_ctx->drop_flags &= ~SLOT_FLAG; 1636 ctrl_ctx->drop_flags &= ~EP0_FLAG; 1637 xhci_dbg(xhci, "New Input Control Context:\n"); 1638 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1639 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 1640 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info)); 1641 1642 ret = xhci_configure_endpoint(xhci, udev, NULL, 1643 false, false); 1644 if (ret) { 1645 /* Callee should call reset_bandwidth() */ 1646 return ret; 1647 } 1648 1649 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 1650 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1651 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info)); 1652 1653 xhci_zero_in_ctx(xhci, virt_dev); 1654 /* Install new rings and free or cache any old rings */ 1655 for (i = 1; i < 31; ++i) { 1656 if (!virt_dev->eps[i].new_ring) 1657 continue; 1658 /* Only cache or free the old ring if it exists. 1659 * It may not if this is the first add of an endpoint. 1660 */ 1661 if (virt_dev->eps[i].ring) { 1662 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 1663 } 1664 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 1665 virt_dev->eps[i].new_ring = NULL; 1666 } 1667 1668 return ret; 1669 } 1670 1671 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 1672 { 1673 struct xhci_hcd *xhci; 1674 struct xhci_virt_device *virt_dev; 1675 int i, ret; 1676 1677 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 1678 if (ret <= 0) 1679 return; 1680 xhci = hcd_to_xhci(hcd); 1681 1682 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1683 virt_dev = xhci->devs[udev->slot_id]; 1684 /* Free any rings allocated for added endpoints */ 1685 for (i = 0; i < 31; ++i) { 1686 if (virt_dev->eps[i].new_ring) { 1687 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 1688 virt_dev->eps[i].new_ring = NULL; 1689 } 1690 } 1691 xhci_zero_in_ctx(xhci, virt_dev); 1692 } 1693 1694 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 1695 struct xhci_container_ctx *in_ctx, 1696 struct xhci_container_ctx *out_ctx, 1697 u32 add_flags, u32 drop_flags) 1698 { 1699 struct xhci_input_control_ctx *ctrl_ctx; 1700 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1701 ctrl_ctx->add_flags = add_flags; 1702 ctrl_ctx->drop_flags = drop_flags; 1703 xhci_slot_copy(xhci, in_ctx, out_ctx); 1704 ctrl_ctx->add_flags |= SLOT_FLAG; 1705 1706 xhci_dbg(xhci, "Input Context:\n"); 1707 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 1708 } 1709 1710 void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 1711 unsigned int slot_id, unsigned int ep_index, 1712 struct xhci_dequeue_state *deq_state) 1713 { 1714 struct xhci_container_ctx *in_ctx; 1715 struct xhci_ep_ctx *ep_ctx; 1716 u32 added_ctxs; 1717 dma_addr_t addr; 1718 1719 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1720 xhci->devs[slot_id]->out_ctx, ep_index); 1721 in_ctx = xhci->devs[slot_id]->in_ctx; 1722 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1723 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 1724 deq_state->new_deq_ptr); 1725 if (addr == 0) { 1726 xhci_warn(xhci, "WARN Cannot submit config ep after " 1727 "reset ep command\n"); 1728 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 1729 deq_state->new_deq_seg, 1730 deq_state->new_deq_ptr); 1731 return; 1732 } 1733 ep_ctx->deq = addr | deq_state->new_cycle_state; 1734 1735 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 1736 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 1737 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); 1738 } 1739 1740 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 1741 struct usb_device *udev, unsigned int ep_index) 1742 { 1743 struct xhci_dequeue_state deq_state; 1744 struct xhci_virt_ep *ep; 1745 1746 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 1747 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 1748 /* We need to move the HW's dequeue pointer past this TD, 1749 * or it will attempt to resend it on the next doorbell ring. 1750 */ 1751 xhci_find_new_dequeue_state(xhci, udev->slot_id, 1752 ep_index, ep->stopped_stream, ep->stopped_td, 1753 &deq_state); 1754 1755 /* HW with the reset endpoint quirk will use the saved dequeue state to 1756 * issue a configure endpoint command later. 1757 */ 1758 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 1759 xhci_dbg(xhci, "Queueing new dequeue state\n"); 1760 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 1761 ep_index, ep->stopped_stream, &deq_state); 1762 } else { 1763 /* Better hope no one uses the input context between now and the 1764 * reset endpoint completion! 1765 * XXX: No idea how this hardware will react when stream rings 1766 * are enabled. 1767 */ 1768 xhci_dbg(xhci, "Setting up input context for " 1769 "configure endpoint command\n"); 1770 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 1771 ep_index, &deq_state); 1772 } 1773 } 1774 1775 /* Deal with stalled endpoints. The core should have sent the control message 1776 * to clear the halt condition. However, we need to make the xHCI hardware 1777 * reset its sequence number, since a device will expect a sequence number of 1778 * zero after the halt condition is cleared. 1779 * Context: in_interrupt 1780 */ 1781 void xhci_endpoint_reset(struct usb_hcd *hcd, 1782 struct usb_host_endpoint *ep) 1783 { 1784 struct xhci_hcd *xhci; 1785 struct usb_device *udev; 1786 unsigned int ep_index; 1787 unsigned long flags; 1788 int ret; 1789 struct xhci_virt_ep *virt_ep; 1790 1791 xhci = hcd_to_xhci(hcd); 1792 udev = (struct usb_device *) ep->hcpriv; 1793 /* Called with a root hub endpoint (or an endpoint that wasn't added 1794 * with xhci_add_endpoint() 1795 */ 1796 if (!ep->hcpriv) 1797 return; 1798 ep_index = xhci_get_endpoint_index(&ep->desc); 1799 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 1800 if (!virt_ep->stopped_td) { 1801 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 1802 ep->desc.bEndpointAddress); 1803 return; 1804 } 1805 if (usb_endpoint_xfer_control(&ep->desc)) { 1806 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 1807 return; 1808 } 1809 1810 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 1811 spin_lock_irqsave(&xhci->lock, flags); 1812 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 1813 /* 1814 * Can't change the ring dequeue pointer until it's transitioned to the 1815 * stopped state, which is only upon a successful reset endpoint 1816 * command. Better hope that last command worked! 1817 */ 1818 if (!ret) { 1819 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 1820 kfree(virt_ep->stopped_td); 1821 xhci_ring_cmd_db(xhci); 1822 } 1823 virt_ep->stopped_td = NULL; 1824 virt_ep->stopped_trb = NULL; 1825 virt_ep->stopped_stream = 0; 1826 spin_unlock_irqrestore(&xhci->lock, flags); 1827 1828 if (ret) 1829 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 1830 } 1831 1832 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 1833 struct usb_device *udev, struct usb_host_endpoint *ep, 1834 unsigned int slot_id) 1835 { 1836 int ret; 1837 unsigned int ep_index; 1838 unsigned int ep_state; 1839 1840 if (!ep) 1841 return -EINVAL; 1842 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 1843 if (ret <= 0) 1844 return -EINVAL; 1845 if (ep->ss_ep_comp.bmAttributes == 0) { 1846 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 1847 " descriptor for ep 0x%x does not support streams\n", 1848 ep->desc.bEndpointAddress); 1849 return -EINVAL; 1850 } 1851 1852 ep_index = xhci_get_endpoint_index(&ep->desc); 1853 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1854 if (ep_state & EP_HAS_STREAMS || 1855 ep_state & EP_GETTING_STREAMS) { 1856 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 1857 "already has streams set up.\n", 1858 ep->desc.bEndpointAddress); 1859 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 1860 "dynamic stream context array reallocation.\n"); 1861 return -EINVAL; 1862 } 1863 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 1864 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 1865 "endpoint 0x%x; URBs are pending.\n", 1866 ep->desc.bEndpointAddress); 1867 return -EINVAL; 1868 } 1869 return 0; 1870 } 1871 1872 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 1873 unsigned int *num_streams, unsigned int *num_stream_ctxs) 1874 { 1875 unsigned int max_streams; 1876 1877 /* The stream context array size must be a power of two */ 1878 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 1879 /* 1880 * Find out how many primary stream array entries the host controller 1881 * supports. Later we may use secondary stream arrays (similar to 2nd 1882 * level page entries), but that's an optional feature for xHCI host 1883 * controllers. xHCs must support at least 4 stream IDs. 1884 */ 1885 max_streams = HCC_MAX_PSA(xhci->hcc_params); 1886 if (*num_stream_ctxs > max_streams) { 1887 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 1888 max_streams); 1889 *num_stream_ctxs = max_streams; 1890 *num_streams = max_streams; 1891 } 1892 } 1893 1894 /* Returns an error code if one of the endpoint already has streams. 1895 * This does not change any data structures, it only checks and gathers 1896 * information. 1897 */ 1898 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 1899 struct usb_device *udev, 1900 struct usb_host_endpoint **eps, unsigned int num_eps, 1901 unsigned int *num_streams, u32 *changed_ep_bitmask) 1902 { 1903 unsigned int max_streams; 1904 unsigned int endpoint_flag; 1905 int i; 1906 int ret; 1907 1908 for (i = 0; i < num_eps; i++) { 1909 ret = xhci_check_streams_endpoint(xhci, udev, 1910 eps[i], udev->slot_id); 1911 if (ret < 0) 1912 return ret; 1913 1914 max_streams = USB_SS_MAX_STREAMS( 1915 eps[i]->ss_ep_comp.bmAttributes); 1916 if (max_streams < (*num_streams - 1)) { 1917 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 1918 eps[i]->desc.bEndpointAddress, 1919 max_streams); 1920 *num_streams = max_streams+1; 1921 } 1922 1923 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 1924 if (*changed_ep_bitmask & endpoint_flag) 1925 return -EINVAL; 1926 *changed_ep_bitmask |= endpoint_flag; 1927 } 1928 return 0; 1929 } 1930 1931 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 1932 struct usb_device *udev, 1933 struct usb_host_endpoint **eps, unsigned int num_eps) 1934 { 1935 u32 changed_ep_bitmask = 0; 1936 unsigned int slot_id; 1937 unsigned int ep_index; 1938 unsigned int ep_state; 1939 int i; 1940 1941 slot_id = udev->slot_id; 1942 if (!xhci->devs[slot_id]) 1943 return 0; 1944 1945 for (i = 0; i < num_eps; i++) { 1946 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 1947 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1948 /* Are streams already being freed for the endpoint? */ 1949 if (ep_state & EP_GETTING_NO_STREAMS) { 1950 xhci_warn(xhci, "WARN Can't disable streams for " 1951 "endpoint 0x%x\n, " 1952 "streams are being disabled already.", 1953 eps[i]->desc.bEndpointAddress); 1954 return 0; 1955 } 1956 /* Are there actually any streams to free? */ 1957 if (!(ep_state & EP_HAS_STREAMS) && 1958 !(ep_state & EP_GETTING_STREAMS)) { 1959 xhci_warn(xhci, "WARN Can't disable streams for " 1960 "endpoint 0x%x\n, " 1961 "streams are already disabled!", 1962 eps[i]->desc.bEndpointAddress); 1963 xhci_warn(xhci, "WARN xhci_free_streams() called " 1964 "with non-streams endpoint\n"); 1965 return 0; 1966 } 1967 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 1968 } 1969 return changed_ep_bitmask; 1970 } 1971 1972 /* 1973 * The USB device drivers use this function (though the HCD interface in USB 1974 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 1975 * coordinate mass storage command queueing across multiple endpoints (basically 1976 * a stream ID == a task ID). 1977 * 1978 * Setting up streams involves allocating the same size stream context array 1979 * for each endpoint and issuing a configure endpoint command for all endpoints. 1980 * 1981 * Don't allow the call to succeed if one endpoint only supports one stream 1982 * (which means it doesn't support streams at all). 1983 * 1984 * Drivers may get less stream IDs than they asked for, if the host controller 1985 * hardware or endpoints claim they can't support the number of requested 1986 * stream IDs. 1987 */ 1988 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 1989 struct usb_host_endpoint **eps, unsigned int num_eps, 1990 unsigned int num_streams, gfp_t mem_flags) 1991 { 1992 int i, ret; 1993 struct xhci_hcd *xhci; 1994 struct xhci_virt_device *vdev; 1995 struct xhci_command *config_cmd; 1996 unsigned int ep_index; 1997 unsigned int num_stream_ctxs; 1998 unsigned long flags; 1999 u32 changed_ep_bitmask = 0; 2000 2001 if (!eps) 2002 return -EINVAL; 2003 2004 /* Add one to the number of streams requested to account for 2005 * stream 0 that is reserved for xHCI usage. 2006 */ 2007 num_streams += 1; 2008 xhci = hcd_to_xhci(hcd); 2009 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 2010 num_streams); 2011 2012 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 2013 if (!config_cmd) { 2014 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 2015 return -ENOMEM; 2016 } 2017 2018 /* Check to make sure all endpoints are not already configured for 2019 * streams. While we're at it, find the maximum number of streams that 2020 * all the endpoints will support and check for duplicate endpoints. 2021 */ 2022 spin_lock_irqsave(&xhci->lock, flags); 2023 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 2024 num_eps, &num_streams, &changed_ep_bitmask); 2025 if (ret < 0) { 2026 xhci_free_command(xhci, config_cmd); 2027 spin_unlock_irqrestore(&xhci->lock, flags); 2028 return ret; 2029 } 2030 if (num_streams <= 1) { 2031 xhci_warn(xhci, "WARN: endpoints can't handle " 2032 "more than one stream.\n"); 2033 xhci_free_command(xhci, config_cmd); 2034 spin_unlock_irqrestore(&xhci->lock, flags); 2035 return -EINVAL; 2036 } 2037 vdev = xhci->devs[udev->slot_id]; 2038 /* Mark each endpoint as being in transistion, so 2039 * xhci_urb_enqueue() will reject all URBs. 2040 */ 2041 for (i = 0; i < num_eps; i++) { 2042 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2043 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 2044 } 2045 spin_unlock_irqrestore(&xhci->lock, flags); 2046 2047 /* Setup internal data structures and allocate HW data structures for 2048 * streams (but don't install the HW structures in the input context 2049 * until we're sure all memory allocation succeeded). 2050 */ 2051 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 2052 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 2053 num_stream_ctxs, num_streams); 2054 2055 for (i = 0; i < num_eps; i++) { 2056 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2057 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 2058 num_stream_ctxs, 2059 num_streams, mem_flags); 2060 if (!vdev->eps[ep_index].stream_info) 2061 goto cleanup; 2062 /* Set maxPstreams in endpoint context and update deq ptr to 2063 * point to stream context array. FIXME 2064 */ 2065 } 2066 2067 /* Set up the input context for a configure endpoint command. */ 2068 for (i = 0; i < num_eps; i++) { 2069 struct xhci_ep_ctx *ep_ctx; 2070 2071 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2072 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 2073 2074 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 2075 vdev->out_ctx, ep_index); 2076 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 2077 vdev->eps[ep_index].stream_info); 2078 } 2079 /* Tell the HW to drop its old copy of the endpoint context info 2080 * and add the updated copy from the input context. 2081 */ 2082 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 2083 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 2084 2085 /* Issue and wait for the configure endpoint command */ 2086 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 2087 false, false); 2088 2089 /* xHC rejected the configure endpoint command for some reason, so we 2090 * leave the old ring intact and free our internal streams data 2091 * structure. 2092 */ 2093 if (ret < 0) 2094 goto cleanup; 2095 2096 spin_lock_irqsave(&xhci->lock, flags); 2097 for (i = 0; i < num_eps; i++) { 2098 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2099 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 2100 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 2101 udev->slot_id, ep_index); 2102 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 2103 } 2104 xhci_free_command(xhci, config_cmd); 2105 spin_unlock_irqrestore(&xhci->lock, flags); 2106 2107 /* Subtract 1 for stream 0, which drivers can't use */ 2108 return num_streams - 1; 2109 2110 cleanup: 2111 /* If it didn't work, free the streams! */ 2112 for (i = 0; i < num_eps; i++) { 2113 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2114 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 2115 vdev->eps[ep_index].stream_info = NULL; 2116 /* FIXME Unset maxPstreams in endpoint context and 2117 * update deq ptr to point to normal string ring. 2118 */ 2119 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 2120 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 2121 xhci_endpoint_zero(xhci, vdev, eps[i]); 2122 } 2123 xhci_free_command(xhci, config_cmd); 2124 return -ENOMEM; 2125 } 2126 2127 /* Transition the endpoint from using streams to being a "normal" endpoint 2128 * without streams. 2129 * 2130 * Modify the endpoint context state, submit a configure endpoint command, 2131 * and free all endpoint rings for streams if that completes successfully. 2132 */ 2133 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 2134 struct usb_host_endpoint **eps, unsigned int num_eps, 2135 gfp_t mem_flags) 2136 { 2137 int i, ret; 2138 struct xhci_hcd *xhci; 2139 struct xhci_virt_device *vdev; 2140 struct xhci_command *command; 2141 unsigned int ep_index; 2142 unsigned long flags; 2143 u32 changed_ep_bitmask; 2144 2145 xhci = hcd_to_xhci(hcd); 2146 vdev = xhci->devs[udev->slot_id]; 2147 2148 /* Set up a configure endpoint command to remove the streams rings */ 2149 spin_lock_irqsave(&xhci->lock, flags); 2150 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 2151 udev, eps, num_eps); 2152 if (changed_ep_bitmask == 0) { 2153 spin_unlock_irqrestore(&xhci->lock, flags); 2154 return -EINVAL; 2155 } 2156 2157 /* Use the xhci_command structure from the first endpoint. We may have 2158 * allocated too many, but the driver may call xhci_free_streams() for 2159 * each endpoint it grouped into one call to xhci_alloc_streams(). 2160 */ 2161 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 2162 command = vdev->eps[ep_index].stream_info->free_streams_command; 2163 for (i = 0; i < num_eps; i++) { 2164 struct xhci_ep_ctx *ep_ctx; 2165 2166 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2167 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 2168 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 2169 EP_GETTING_NO_STREAMS; 2170 2171 xhci_endpoint_copy(xhci, command->in_ctx, 2172 vdev->out_ctx, ep_index); 2173 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 2174 &vdev->eps[ep_index]); 2175 } 2176 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 2177 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 2178 spin_unlock_irqrestore(&xhci->lock, flags); 2179 2180 /* Issue and wait for the configure endpoint command, 2181 * which must succeed. 2182 */ 2183 ret = xhci_configure_endpoint(xhci, udev, command, 2184 false, true); 2185 2186 /* xHC rejected the configure endpoint command for some reason, so we 2187 * leave the streams rings intact. 2188 */ 2189 if (ret < 0) 2190 return ret; 2191 2192 spin_lock_irqsave(&xhci->lock, flags); 2193 for (i = 0; i < num_eps; i++) { 2194 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2195 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 2196 vdev->eps[ep_index].stream_info = NULL; 2197 /* FIXME Unset maxPstreams in endpoint context and 2198 * update deq ptr to point to normal string ring. 2199 */ 2200 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 2201 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 2202 } 2203 spin_unlock_irqrestore(&xhci->lock, flags); 2204 2205 return 0; 2206 } 2207 2208 /* 2209 * This submits a Reset Device Command, which will set the device state to 0, 2210 * set the device address to 0, and disable all the endpoints except the default 2211 * control endpoint. The USB core should come back and call 2212 * xhci_address_device(), and then re-set up the configuration. If this is 2213 * called because of a usb_reset_and_verify_device(), then the old alternate 2214 * settings will be re-installed through the normal bandwidth allocation 2215 * functions. 2216 * 2217 * Wait for the Reset Device command to finish. Remove all structures 2218 * associated with the endpoints that were disabled. Clear the input device 2219 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 2220 * 2221 * If the virt_dev to be reset does not exist or does not match the udev, 2222 * it means the device is lost, possibly due to the xHC restore error and 2223 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 2224 * re-allocate the device. 2225 */ 2226 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 2227 { 2228 int ret, i; 2229 unsigned long flags; 2230 struct xhci_hcd *xhci; 2231 unsigned int slot_id; 2232 struct xhci_virt_device *virt_dev; 2233 struct xhci_command *reset_device_cmd; 2234 int timeleft; 2235 int last_freed_endpoint; 2236 2237 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 2238 if (ret <= 0) 2239 return ret; 2240 xhci = hcd_to_xhci(hcd); 2241 slot_id = udev->slot_id; 2242 virt_dev = xhci->devs[slot_id]; 2243 if (!virt_dev) { 2244 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 2245 "not exist. Re-allocate the device\n", slot_id); 2246 ret = xhci_alloc_dev(hcd, udev); 2247 if (ret == 1) 2248 return 0; 2249 else 2250 return -EINVAL; 2251 } 2252 2253 if (virt_dev->udev != udev) { 2254 /* If the virt_dev and the udev does not match, this virt_dev 2255 * may belong to another udev. 2256 * Re-allocate the device. 2257 */ 2258 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 2259 "not match the udev. Re-allocate the device\n", 2260 slot_id); 2261 ret = xhci_alloc_dev(hcd, udev); 2262 if (ret == 1) 2263 return 0; 2264 else 2265 return -EINVAL; 2266 } 2267 2268 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 2269 /* Allocate the command structure that holds the struct completion. 2270 * Assume we're in process context, since the normal device reset 2271 * process has to wait for the device anyway. Storage devices are 2272 * reset as part of error handling, so use GFP_NOIO instead of 2273 * GFP_KERNEL. 2274 */ 2275 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 2276 if (!reset_device_cmd) { 2277 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 2278 return -ENOMEM; 2279 } 2280 2281 /* Attempt to submit the Reset Device command to the command ring */ 2282 spin_lock_irqsave(&xhci->lock, flags); 2283 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 2284 2285 /* Enqueue pointer can be left pointing to the link TRB, 2286 * we must handle that 2287 */ 2288 if ((reset_device_cmd->command_trb->link.control & TRB_TYPE_BITMASK) 2289 == TRB_TYPE(TRB_LINK)) 2290 reset_device_cmd->command_trb = 2291 xhci->cmd_ring->enq_seg->next->trbs; 2292 2293 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 2294 ret = xhci_queue_reset_device(xhci, slot_id); 2295 if (ret) { 2296 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 2297 list_del(&reset_device_cmd->cmd_list); 2298 spin_unlock_irqrestore(&xhci->lock, flags); 2299 goto command_cleanup; 2300 } 2301 xhci_ring_cmd_db(xhci); 2302 spin_unlock_irqrestore(&xhci->lock, flags); 2303 2304 /* Wait for the Reset Device command to finish */ 2305 timeleft = wait_for_completion_interruptible_timeout( 2306 reset_device_cmd->completion, 2307 USB_CTRL_SET_TIMEOUT); 2308 if (timeleft <= 0) { 2309 xhci_warn(xhci, "%s while waiting for reset device command\n", 2310 timeleft == 0 ? "Timeout" : "Signal"); 2311 spin_lock_irqsave(&xhci->lock, flags); 2312 /* The timeout might have raced with the event ring handler, so 2313 * only delete from the list if the item isn't poisoned. 2314 */ 2315 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 2316 list_del(&reset_device_cmd->cmd_list); 2317 spin_unlock_irqrestore(&xhci->lock, flags); 2318 ret = -ETIME; 2319 goto command_cleanup; 2320 } 2321 2322 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 2323 * unless we tried to reset a slot ID that wasn't enabled, 2324 * or the device wasn't in the addressed or configured state. 2325 */ 2326 ret = reset_device_cmd->status; 2327 switch (ret) { 2328 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 2329 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 2330 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 2331 slot_id, 2332 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 2333 xhci_info(xhci, "Not freeing device rings.\n"); 2334 /* Don't treat this as an error. May change my mind later. */ 2335 ret = 0; 2336 goto command_cleanup; 2337 case COMP_SUCCESS: 2338 xhci_dbg(xhci, "Successful reset device command.\n"); 2339 break; 2340 default: 2341 if (xhci_is_vendor_info_code(xhci, ret)) 2342 break; 2343 xhci_warn(xhci, "Unknown completion code %u for " 2344 "reset device command.\n", ret); 2345 ret = -EINVAL; 2346 goto command_cleanup; 2347 } 2348 2349 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 2350 last_freed_endpoint = 1; 2351 for (i = 1; i < 31; ++i) { 2352 if (!virt_dev->eps[i].ring) 2353 continue; 2354 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2355 last_freed_endpoint = i; 2356 } 2357 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 2358 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 2359 ret = 0; 2360 2361 command_cleanup: 2362 xhci_free_command(xhci, reset_device_cmd); 2363 return ret; 2364 } 2365 2366 /* 2367 * At this point, the struct usb_device is about to go away, the device has 2368 * disconnected, and all traffic has been stopped and the endpoints have been 2369 * disabled. Free any HC data structures associated with that device. 2370 */ 2371 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 2372 { 2373 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2374 struct xhci_virt_device *virt_dev; 2375 unsigned long flags; 2376 u32 state; 2377 int i, ret; 2378 2379 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2380 if (ret <= 0) 2381 return; 2382 2383 virt_dev = xhci->devs[udev->slot_id]; 2384 2385 /* Stop any wayward timer functions (which may grab the lock) */ 2386 for (i = 0; i < 31; ++i) { 2387 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 2388 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 2389 } 2390 2391 spin_lock_irqsave(&xhci->lock, flags); 2392 /* Don't disable the slot if the host controller is dead. */ 2393 state = xhci_readl(xhci, &xhci->op_regs->status); 2394 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) { 2395 xhci_free_virt_device(xhci, udev->slot_id); 2396 spin_unlock_irqrestore(&xhci->lock, flags); 2397 return; 2398 } 2399 2400 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 2401 spin_unlock_irqrestore(&xhci->lock, flags); 2402 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 2403 return; 2404 } 2405 xhci_ring_cmd_db(xhci); 2406 spin_unlock_irqrestore(&xhci->lock, flags); 2407 /* 2408 * Event command completion handler will free any data structures 2409 * associated with the slot. XXX Can free sleep? 2410 */ 2411 } 2412 2413 /* 2414 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 2415 * timed out, or allocating memory failed. Returns 1 on success. 2416 */ 2417 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 2418 { 2419 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2420 unsigned long flags; 2421 int timeleft; 2422 int ret; 2423 2424 spin_lock_irqsave(&xhci->lock, flags); 2425 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 2426 if (ret) { 2427 spin_unlock_irqrestore(&xhci->lock, flags); 2428 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 2429 return 0; 2430 } 2431 xhci_ring_cmd_db(xhci); 2432 spin_unlock_irqrestore(&xhci->lock, flags); 2433 2434 /* XXX: how much time for xHC slot assignment? */ 2435 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 2436 USB_CTRL_SET_TIMEOUT); 2437 if (timeleft <= 0) { 2438 xhci_warn(xhci, "%s while waiting for a slot\n", 2439 timeleft == 0 ? "Timeout" : "Signal"); 2440 /* FIXME cancel the enable slot request */ 2441 return 0; 2442 } 2443 2444 if (!xhci->slot_id) { 2445 xhci_err(xhci, "Error while assigning device slot ID\n"); 2446 return 0; 2447 } 2448 /* xhci_alloc_virt_device() does not touch rings; no need to lock */ 2449 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) { 2450 /* Disable slot, if we can do it without mem alloc */ 2451 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 2452 spin_lock_irqsave(&xhci->lock, flags); 2453 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 2454 xhci_ring_cmd_db(xhci); 2455 spin_unlock_irqrestore(&xhci->lock, flags); 2456 return 0; 2457 } 2458 udev->slot_id = xhci->slot_id; 2459 /* Is this a LS or FS device under a HS hub? */ 2460 /* Hub or peripherial? */ 2461 return 1; 2462 } 2463 2464 /* 2465 * Issue an Address Device command (which will issue a SetAddress request to 2466 * the device). 2467 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 2468 * we should only issue and wait on one address command at the same time. 2469 * 2470 * We add one to the device address issued by the hardware because the USB core 2471 * uses address 1 for the root hubs (even though they're not really devices). 2472 */ 2473 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 2474 { 2475 unsigned long flags; 2476 int timeleft; 2477 struct xhci_virt_device *virt_dev; 2478 int ret = 0; 2479 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2480 struct xhci_slot_ctx *slot_ctx; 2481 struct xhci_input_control_ctx *ctrl_ctx; 2482 u64 temp_64; 2483 2484 if (!udev->slot_id) { 2485 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 2486 return -EINVAL; 2487 } 2488 2489 virt_dev = xhci->devs[udev->slot_id]; 2490 2491 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2492 /* 2493 * If this is the first Set Address since device plug-in or 2494 * virt_device realloaction after a resume with an xHCI power loss, 2495 * then set up the slot context. 2496 */ 2497 if (!slot_ctx->dev_info) 2498 xhci_setup_addressable_virt_dev(xhci, udev); 2499 /* Otherwise, update the control endpoint ring enqueue pointer. */ 2500 else 2501 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 2502 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 2503 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 2504 2505 spin_lock_irqsave(&xhci->lock, flags); 2506 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 2507 udev->slot_id); 2508 if (ret) { 2509 spin_unlock_irqrestore(&xhci->lock, flags); 2510 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 2511 return ret; 2512 } 2513 xhci_ring_cmd_db(xhci); 2514 spin_unlock_irqrestore(&xhci->lock, flags); 2515 2516 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 2517 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 2518 USB_CTRL_SET_TIMEOUT); 2519 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 2520 * the SetAddress() "recovery interval" required by USB and aborting the 2521 * command on a timeout. 2522 */ 2523 if (timeleft <= 0) { 2524 xhci_warn(xhci, "%s while waiting for a slot\n", 2525 timeleft == 0 ? "Timeout" : "Signal"); 2526 /* FIXME cancel the address device command */ 2527 return -ETIME; 2528 } 2529 2530 switch (virt_dev->cmd_status) { 2531 case COMP_CTX_STATE: 2532 case COMP_EBADSLT: 2533 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 2534 udev->slot_id); 2535 ret = -EINVAL; 2536 break; 2537 case COMP_TX_ERR: 2538 dev_warn(&udev->dev, "Device not responding to set address.\n"); 2539 ret = -EPROTO; 2540 break; 2541 case COMP_SUCCESS: 2542 xhci_dbg(xhci, "Successful Address Device command\n"); 2543 break; 2544 default: 2545 xhci_err(xhci, "ERROR: unexpected command completion " 2546 "code 0x%x.\n", virt_dev->cmd_status); 2547 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 2548 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 2549 ret = -EINVAL; 2550 break; 2551 } 2552 if (ret) { 2553 return ret; 2554 } 2555 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 2556 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 2557 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 2558 udev->slot_id, 2559 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 2560 (unsigned long long) 2561 xhci->dcbaa->dev_context_ptrs[udev->slot_id]); 2562 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 2563 (unsigned long long)virt_dev->out_ctx->dma); 2564 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 2565 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 2566 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 2567 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 2568 /* 2569 * USB core uses address 1 for the roothubs, so we add one to the 2570 * address given back to us by the HC. 2571 */ 2572 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 2573 /* Use kernel assigned address for devices; store xHC assigned 2574 * address locally. */ 2575 virt_dev->address = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1; 2576 /* Zero the input context control for later use */ 2577 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2578 ctrl_ctx->add_flags = 0; 2579 ctrl_ctx->drop_flags = 0; 2580 2581 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); 2582 2583 return 0; 2584 } 2585 2586 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 2587 * internal data structures for the device. 2588 */ 2589 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 2590 struct usb_tt *tt, gfp_t mem_flags) 2591 { 2592 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2593 struct xhci_virt_device *vdev; 2594 struct xhci_command *config_cmd; 2595 struct xhci_input_control_ctx *ctrl_ctx; 2596 struct xhci_slot_ctx *slot_ctx; 2597 unsigned long flags; 2598 unsigned think_time; 2599 int ret; 2600 2601 /* Ignore root hubs */ 2602 if (!hdev->parent) 2603 return 0; 2604 2605 vdev = xhci->devs[hdev->slot_id]; 2606 if (!vdev) { 2607 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 2608 return -EINVAL; 2609 } 2610 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 2611 if (!config_cmd) { 2612 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 2613 return -ENOMEM; 2614 } 2615 2616 spin_lock_irqsave(&xhci->lock, flags); 2617 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 2618 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 2619 ctrl_ctx->add_flags |= SLOT_FLAG; 2620 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 2621 slot_ctx->dev_info |= DEV_HUB; 2622 if (tt->multi) 2623 slot_ctx->dev_info |= DEV_MTT; 2624 if (xhci->hci_version > 0x95) { 2625 xhci_dbg(xhci, "xHCI version %x needs hub " 2626 "TT think time and number of ports\n", 2627 (unsigned int) xhci->hci_version); 2628 slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild); 2629 /* Set TT think time - convert from ns to FS bit times. 2630 * 0 = 8 FS bit times, 1 = 16 FS bit times, 2631 * 2 = 24 FS bit times, 3 = 32 FS bit times. 2632 */ 2633 think_time = tt->think_time; 2634 if (think_time != 0) 2635 think_time = (think_time / 666) - 1; 2636 slot_ctx->tt_info |= TT_THINK_TIME(think_time); 2637 } else { 2638 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 2639 "TT think time or number of ports\n", 2640 (unsigned int) xhci->hci_version); 2641 } 2642 slot_ctx->dev_state = 0; 2643 spin_unlock_irqrestore(&xhci->lock, flags); 2644 2645 xhci_dbg(xhci, "Set up %s for hub device.\n", 2646 (xhci->hci_version > 0x95) ? 2647 "configure endpoint" : "evaluate context"); 2648 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 2649 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 2650 2651 /* Issue and wait for the configure endpoint or 2652 * evaluate context command. 2653 */ 2654 if (xhci->hci_version > 0x95) 2655 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 2656 false, false); 2657 else 2658 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 2659 true, false); 2660 2661 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 2662 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 2663 2664 xhci_free_command(xhci, config_cmd); 2665 return ret; 2666 } 2667 2668 int xhci_get_frame(struct usb_hcd *hcd) 2669 { 2670 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2671 /* EHCI mods by the periodic size. Why? */ 2672 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 2673 } 2674 2675 MODULE_DESCRIPTION(DRIVER_DESC); 2676 MODULE_AUTHOR(DRIVER_AUTHOR); 2677 MODULE_LICENSE("GPL"); 2678 2679 static int __init xhci_hcd_init(void) 2680 { 2681 #ifdef CONFIG_PCI 2682 int retval = 0; 2683 2684 retval = xhci_register_pci(); 2685 2686 if (retval < 0) { 2687 printk(KERN_DEBUG "Problem registering PCI driver."); 2688 return retval; 2689 } 2690 #endif 2691 /* 2692 * Check the compiler generated sizes of structures that must be laid 2693 * out in specific ways for hardware access. 2694 */ 2695 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 2696 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 2697 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 2698 /* xhci_device_control has eight fields, and also 2699 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 2700 */ 2701 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 2702 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 2703 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 2704 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 2705 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 2706 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 2707 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 2708 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 2709 return 0; 2710 } 2711 module_init(xhci_hcd_init); 2712 2713 static void __exit xhci_hcd_cleanup(void) 2714 { 2715 #ifdef CONFIG_PCI 2716 xhci_unregister_pci(); 2717 #endif 2718 } 2719 module_exit(xhci_hcd_cleanup); 2720