1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 30 #include "xhci.h" 31 32 #define DRIVER_AUTHOR "Sarah Sharp" 33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 34 35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 36 static int link_quirk; 37 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr, 55 u32 mask, u32 done, int usec) 56 { 57 u32 result; 58 59 do { 60 result = xhci_readl(xhci, ptr); 61 if (result == ~(u32)0) /* card removed */ 62 return -ENODEV; 63 result &= mask; 64 if (result == done) 65 return 0; 66 udelay(1); 67 usec--; 68 } while (usec > 0); 69 return -ETIMEDOUT; 70 } 71 72 /* 73 * Disable interrupts and begin the xHCI halting process. 74 */ 75 void xhci_quiesce(struct xhci_hcd *xhci) 76 { 77 u32 halted; 78 u32 cmd; 79 u32 mask; 80 81 mask = ~(XHCI_IRQS); 82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 83 if (!halted) 84 mask &= ~CMD_RUN; 85 86 cmd = xhci_readl(xhci, &xhci->op_regs->command); 87 cmd &= mask; 88 xhci_writel(xhci, cmd, &xhci->op_regs->command); 89 } 90 91 /* 92 * Force HC into halt state. 93 * 94 * Disable any IRQs and clear the run/stop bit. 95 * HC will complete any current and actively pipelined transactions, and 96 * should halt within 16 ms of the run/stop bit being cleared. 97 * Read HC Halted bit in the status register to see when the HC is finished. 98 */ 99 int xhci_halt(struct xhci_hcd *xhci) 100 { 101 int ret; 102 xhci_dbg(xhci, "// Halt the HC\n"); 103 xhci_quiesce(xhci); 104 105 ret = handshake(xhci, &xhci->op_regs->status, 106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 107 if (!ret) 108 xhci->xhc_state |= XHCI_STATE_HALTED; 109 else 110 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 111 XHCI_MAX_HALT_USEC); 112 return ret; 113 } 114 115 /* 116 * Set the run bit and wait for the host to be running. 117 */ 118 static int xhci_start(struct xhci_hcd *xhci) 119 { 120 u32 temp; 121 int ret; 122 123 temp = xhci_readl(xhci, &xhci->op_regs->command); 124 temp |= (CMD_RUN); 125 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 126 temp); 127 xhci_writel(xhci, temp, &xhci->op_regs->command); 128 129 /* 130 * Wait for the HCHalted Status bit to be 0 to indicate the host is 131 * running. 132 */ 133 ret = handshake(xhci, &xhci->op_regs->status, 134 STS_HALT, 0, XHCI_MAX_HALT_USEC); 135 if (ret == -ETIMEDOUT) 136 xhci_err(xhci, "Host took too long to start, " 137 "waited %u microseconds.\n", 138 XHCI_MAX_HALT_USEC); 139 if (!ret) 140 xhci->xhc_state &= ~XHCI_STATE_HALTED; 141 return ret; 142 } 143 144 /* 145 * Reset a halted HC. 146 * 147 * This resets pipelines, timers, counters, state machines, etc. 148 * Transactions will be terminated immediately, and operational registers 149 * will be set to their defaults. 150 */ 151 int xhci_reset(struct xhci_hcd *xhci) 152 { 153 u32 command; 154 u32 state; 155 int ret, i; 156 157 state = xhci_readl(xhci, &xhci->op_regs->status); 158 if ((state & STS_HALT) == 0) { 159 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 160 return 0; 161 } 162 163 xhci_dbg(xhci, "// Reset the HC\n"); 164 command = xhci_readl(xhci, &xhci->op_regs->command); 165 command |= CMD_RESET; 166 xhci_writel(xhci, command, &xhci->op_regs->command); 167 168 ret = handshake(xhci, &xhci->op_regs->command, 169 CMD_RESET, 0, 250 * 1000); 170 if (ret) 171 return ret; 172 173 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 174 /* 175 * xHCI cannot write to any doorbells or operational registers other 176 * than status until the "Controller Not Ready" flag is cleared. 177 */ 178 ret = handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000); 179 180 for (i = 0; i < 2; ++i) { 181 xhci->bus_state[i].port_c_suspend = 0; 182 xhci->bus_state[i].suspended_ports = 0; 183 xhci->bus_state[i].resuming_ports = 0; 184 } 185 186 return ret; 187 } 188 189 #ifdef CONFIG_PCI 190 static int xhci_free_msi(struct xhci_hcd *xhci) 191 { 192 int i; 193 194 if (!xhci->msix_entries) 195 return -EINVAL; 196 197 for (i = 0; i < xhci->msix_count; i++) 198 if (xhci->msix_entries[i].vector) 199 free_irq(xhci->msix_entries[i].vector, 200 xhci_to_hcd(xhci)); 201 return 0; 202 } 203 204 /* 205 * Set up MSI 206 */ 207 static int xhci_setup_msi(struct xhci_hcd *xhci) 208 { 209 int ret; 210 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 211 212 ret = pci_enable_msi(pdev); 213 if (ret) { 214 xhci_dbg(xhci, "failed to allocate MSI entry\n"); 215 return ret; 216 } 217 218 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 219 0, "xhci_hcd", xhci_to_hcd(xhci)); 220 if (ret) { 221 xhci_dbg(xhci, "disable MSI interrupt\n"); 222 pci_disable_msi(pdev); 223 } 224 225 return ret; 226 } 227 228 /* 229 * Free IRQs 230 * free all IRQs request 231 */ 232 static void xhci_free_irq(struct xhci_hcd *xhci) 233 { 234 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 235 int ret; 236 237 /* return if using legacy interrupt */ 238 if (xhci_to_hcd(xhci)->irq > 0) 239 return; 240 241 ret = xhci_free_msi(xhci); 242 if (!ret) 243 return; 244 if (pdev->irq > 0) 245 free_irq(pdev->irq, xhci_to_hcd(xhci)); 246 247 return; 248 } 249 250 /* 251 * Set up MSI-X 252 */ 253 static int xhci_setup_msix(struct xhci_hcd *xhci) 254 { 255 int i, ret = 0; 256 struct usb_hcd *hcd = xhci_to_hcd(xhci); 257 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 258 259 /* 260 * calculate number of msi-x vectors supported. 261 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 262 * with max number of interrupters based on the xhci HCSPARAMS1. 263 * - num_online_cpus: maximum msi-x vectors per CPUs core. 264 * Add additional 1 vector to ensure always available interrupt. 265 */ 266 xhci->msix_count = min(num_online_cpus() + 1, 267 HCS_MAX_INTRS(xhci->hcs_params1)); 268 269 xhci->msix_entries = 270 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 271 GFP_KERNEL); 272 if (!xhci->msix_entries) { 273 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 274 return -ENOMEM; 275 } 276 277 for (i = 0; i < xhci->msix_count; i++) { 278 xhci->msix_entries[i].entry = i; 279 xhci->msix_entries[i].vector = 0; 280 } 281 282 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 283 if (ret) { 284 xhci_dbg(xhci, "Failed to enable MSI-X\n"); 285 goto free_entries; 286 } 287 288 for (i = 0; i < xhci->msix_count; i++) { 289 ret = request_irq(xhci->msix_entries[i].vector, 290 (irq_handler_t)xhci_msi_irq, 291 0, "xhci_hcd", xhci_to_hcd(xhci)); 292 if (ret) 293 goto disable_msix; 294 } 295 296 hcd->msix_enabled = 1; 297 return ret; 298 299 disable_msix: 300 xhci_dbg(xhci, "disable MSI-X interrupt\n"); 301 xhci_free_irq(xhci); 302 pci_disable_msix(pdev); 303 free_entries: 304 kfree(xhci->msix_entries); 305 xhci->msix_entries = NULL; 306 return ret; 307 } 308 309 /* Free any IRQs and disable MSI-X */ 310 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 311 { 312 struct usb_hcd *hcd = xhci_to_hcd(xhci); 313 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 314 315 xhci_free_irq(xhci); 316 317 if (xhci->msix_entries) { 318 pci_disable_msix(pdev); 319 kfree(xhci->msix_entries); 320 xhci->msix_entries = NULL; 321 } else { 322 pci_disable_msi(pdev); 323 } 324 325 hcd->msix_enabled = 0; 326 return; 327 } 328 329 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 330 { 331 int i; 332 333 if (xhci->msix_entries) { 334 for (i = 0; i < xhci->msix_count; i++) 335 synchronize_irq(xhci->msix_entries[i].vector); 336 } 337 } 338 339 static int xhci_try_enable_msi(struct usb_hcd *hcd) 340 { 341 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 342 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 343 int ret; 344 345 /* 346 * Some Fresco Logic host controllers advertise MSI, but fail to 347 * generate interrupts. Don't even try to enable MSI. 348 */ 349 if (xhci->quirks & XHCI_BROKEN_MSI) 350 return 0; 351 352 /* unregister the legacy interrupt */ 353 if (hcd->irq) 354 free_irq(hcd->irq, hcd); 355 hcd->irq = 0; 356 357 ret = xhci_setup_msix(xhci); 358 if (ret) 359 /* fall back to msi*/ 360 ret = xhci_setup_msi(xhci); 361 362 if (!ret) 363 /* hcd->irq is 0, we have MSI */ 364 return 0; 365 366 if (!pdev->irq) { 367 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 368 return -EINVAL; 369 } 370 371 /* fall back to legacy interrupt*/ 372 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 373 hcd->irq_descr, hcd); 374 if (ret) { 375 xhci_err(xhci, "request interrupt %d failed\n", 376 pdev->irq); 377 return ret; 378 } 379 hcd->irq = pdev->irq; 380 return 0; 381 } 382 383 #else 384 385 static int xhci_try_enable_msi(struct usb_hcd *hcd) 386 { 387 return 0; 388 } 389 390 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 391 { 392 } 393 394 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 395 { 396 } 397 398 #endif 399 400 /* 401 * Initialize memory for HCD and xHC (one-time init). 402 * 403 * Program the PAGESIZE register, initialize the device context array, create 404 * device contexts (?), set up a command ring segment (or two?), create event 405 * ring (one for now). 406 */ 407 int xhci_init(struct usb_hcd *hcd) 408 { 409 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 410 int retval = 0; 411 412 xhci_dbg(xhci, "xhci_init\n"); 413 spin_lock_init(&xhci->lock); 414 if (xhci->hci_version == 0x95 && link_quirk) { 415 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 416 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 417 } else { 418 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 419 } 420 retval = xhci_mem_init(xhci, GFP_KERNEL); 421 xhci_dbg(xhci, "Finished xhci_init\n"); 422 423 return retval; 424 } 425 426 /*-------------------------------------------------------------------------*/ 427 428 429 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 430 static void xhci_event_ring_work(unsigned long arg) 431 { 432 unsigned long flags; 433 int temp; 434 u64 temp_64; 435 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 436 int i, j; 437 438 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 439 440 spin_lock_irqsave(&xhci->lock, flags); 441 temp = xhci_readl(xhci, &xhci->op_regs->status); 442 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 443 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 444 (xhci->xhc_state & XHCI_STATE_HALTED)) { 445 xhci_dbg(xhci, "HW died, polling stopped.\n"); 446 spin_unlock_irqrestore(&xhci->lock, flags); 447 return; 448 } 449 450 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 451 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 452 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 453 xhci->error_bitmask = 0; 454 xhci_dbg(xhci, "Event ring:\n"); 455 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 456 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 457 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 458 temp_64 &= ~ERST_PTR_MASK; 459 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 460 xhci_dbg(xhci, "Command ring:\n"); 461 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 462 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 463 xhci_dbg_cmd_ptrs(xhci); 464 for (i = 0; i < MAX_HC_SLOTS; ++i) { 465 if (!xhci->devs[i]) 466 continue; 467 for (j = 0; j < 31; ++j) { 468 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 469 } 470 } 471 spin_unlock_irqrestore(&xhci->lock, flags); 472 473 if (!xhci->zombie) 474 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 475 else 476 xhci_dbg(xhci, "Quit polling the event ring.\n"); 477 } 478 #endif 479 480 static int xhci_run_finished(struct xhci_hcd *xhci) 481 { 482 if (xhci_start(xhci)) { 483 xhci_halt(xhci); 484 return -ENODEV; 485 } 486 xhci->shared_hcd->state = HC_STATE_RUNNING; 487 488 if (xhci->quirks & XHCI_NEC_HOST) 489 xhci_ring_cmd_db(xhci); 490 491 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); 492 return 0; 493 } 494 495 /* 496 * Start the HC after it was halted. 497 * 498 * This function is called by the USB core when the HC driver is added. 499 * Its opposite is xhci_stop(). 500 * 501 * xhci_init() must be called once before this function can be called. 502 * Reset the HC, enable device slot contexts, program DCBAAP, and 503 * set command ring pointer and event ring pointer. 504 * 505 * Setup MSI-X vectors and enable interrupts. 506 */ 507 int xhci_run(struct usb_hcd *hcd) 508 { 509 u32 temp; 510 u64 temp_64; 511 int ret; 512 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 513 514 /* Start the xHCI host controller running only after the USB 2.0 roothub 515 * is setup. 516 */ 517 518 hcd->uses_new_polling = 1; 519 if (!usb_hcd_is_primary_hcd(hcd)) 520 return xhci_run_finished(xhci); 521 522 xhci_dbg(xhci, "xhci_run\n"); 523 524 ret = xhci_try_enable_msi(hcd); 525 if (ret) 526 return ret; 527 528 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 529 init_timer(&xhci->event_ring_timer); 530 xhci->event_ring_timer.data = (unsigned long) xhci; 531 xhci->event_ring_timer.function = xhci_event_ring_work; 532 /* Poll the event ring */ 533 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 534 xhci->zombie = 0; 535 xhci_dbg(xhci, "Setting event ring polling timer\n"); 536 add_timer(&xhci->event_ring_timer); 537 #endif 538 539 xhci_dbg(xhci, "Command ring memory map follows:\n"); 540 xhci_debug_ring(xhci, xhci->cmd_ring); 541 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 542 xhci_dbg_cmd_ptrs(xhci); 543 544 xhci_dbg(xhci, "ERST memory map follows:\n"); 545 xhci_dbg_erst(xhci, &xhci->erst); 546 xhci_dbg(xhci, "Event ring:\n"); 547 xhci_debug_ring(xhci, xhci->event_ring); 548 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 549 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 550 temp_64 &= ~ERST_PTR_MASK; 551 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 552 553 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 554 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 555 temp &= ~ER_IRQ_INTERVAL_MASK; 556 temp |= (u32) 160; 557 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 558 559 /* Set the HCD state before we enable the irqs */ 560 temp = xhci_readl(xhci, &xhci->op_regs->command); 561 temp |= (CMD_EIE); 562 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 563 temp); 564 xhci_writel(xhci, temp, &xhci->op_regs->command); 565 566 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 567 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 568 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 569 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 570 &xhci->ir_set->irq_pending); 571 xhci_print_ir_set(xhci, 0); 572 573 if (xhci->quirks & XHCI_NEC_HOST) 574 xhci_queue_vendor_command(xhci, 0, 0, 0, 575 TRB_TYPE(TRB_NEC_GET_FW)); 576 577 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); 578 return 0; 579 } 580 581 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 582 { 583 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 584 585 spin_lock_irq(&xhci->lock); 586 xhci_halt(xhci); 587 588 /* The shared_hcd is going to be deallocated shortly (the USB core only 589 * calls this function when allocation fails in usb_add_hcd(), or 590 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 591 */ 592 xhci->shared_hcd = NULL; 593 spin_unlock_irq(&xhci->lock); 594 } 595 596 /* 597 * Stop xHCI driver. 598 * 599 * This function is called by the USB core when the HC driver is removed. 600 * Its opposite is xhci_run(). 601 * 602 * Disable device contexts, disable IRQs, and quiesce the HC. 603 * Reset the HC, finish any completed transactions, and cleanup memory. 604 */ 605 void xhci_stop(struct usb_hcd *hcd) 606 { 607 u32 temp; 608 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 609 610 if (!usb_hcd_is_primary_hcd(hcd)) { 611 xhci_only_stop_hcd(xhci->shared_hcd); 612 return; 613 } 614 615 spin_lock_irq(&xhci->lock); 616 /* Make sure the xHC is halted for a USB3 roothub 617 * (xhci_stop() could be called as part of failed init). 618 */ 619 xhci_halt(xhci); 620 xhci_reset(xhci); 621 spin_unlock_irq(&xhci->lock); 622 623 xhci_cleanup_msix(xhci); 624 625 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 626 /* Tell the event ring poll function not to reschedule */ 627 xhci->zombie = 1; 628 del_timer_sync(&xhci->event_ring_timer); 629 #endif 630 631 if (xhci->quirks & XHCI_AMD_PLL_FIX) 632 usb_amd_dev_put(); 633 634 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 635 temp = xhci_readl(xhci, &xhci->op_regs->status); 636 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 637 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 638 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 639 &xhci->ir_set->irq_pending); 640 xhci_print_ir_set(xhci, 0); 641 642 xhci_dbg(xhci, "cleaning up memory\n"); 643 xhci_mem_cleanup(xhci); 644 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 645 xhci_readl(xhci, &xhci->op_regs->status)); 646 } 647 648 /* 649 * Shutdown HC (not bus-specific) 650 * 651 * This is called when the machine is rebooting or halting. We assume that the 652 * machine will be powered off, and the HC's internal state will be reset. 653 * Don't bother to free memory. 654 * 655 * This will only ever be called with the main usb_hcd (the USB3 roothub). 656 */ 657 void xhci_shutdown(struct usb_hcd *hcd) 658 { 659 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 660 661 spin_lock_irq(&xhci->lock); 662 xhci_halt(xhci); 663 spin_unlock_irq(&xhci->lock); 664 665 xhci_cleanup_msix(xhci); 666 667 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 668 xhci_readl(xhci, &xhci->op_regs->status)); 669 } 670 671 #ifdef CONFIG_PM 672 static void xhci_save_registers(struct xhci_hcd *xhci) 673 { 674 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 675 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 676 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 677 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 678 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 679 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 680 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 681 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 682 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 683 } 684 685 static void xhci_restore_registers(struct xhci_hcd *xhci) 686 { 687 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 688 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 689 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 690 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 691 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 692 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 693 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 694 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 695 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 696 } 697 698 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 699 { 700 u64 val_64; 701 702 /* step 2: initialize command ring buffer */ 703 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 704 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 705 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 706 xhci->cmd_ring->dequeue) & 707 (u64) ~CMD_RING_RSVD_BITS) | 708 xhci->cmd_ring->cycle_state; 709 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", 710 (long unsigned long) val_64); 711 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 712 } 713 714 /* 715 * The whole command ring must be cleared to zero when we suspend the host. 716 * 717 * The host doesn't save the command ring pointer in the suspend well, so we 718 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 719 * aligned, because of the reserved bits in the command ring dequeue pointer 720 * register. Therefore, we can't just set the dequeue pointer back in the 721 * middle of the ring (TRBs are 16-byte aligned). 722 */ 723 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 724 { 725 struct xhci_ring *ring; 726 struct xhci_segment *seg; 727 728 ring = xhci->cmd_ring; 729 seg = ring->deq_seg; 730 do { 731 memset(seg->trbs, 0, 732 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 733 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 734 cpu_to_le32(~TRB_CYCLE); 735 seg = seg->next; 736 } while (seg != ring->deq_seg); 737 738 /* Reset the software enqueue and dequeue pointers */ 739 ring->deq_seg = ring->first_seg; 740 ring->dequeue = ring->first_seg->trbs; 741 ring->enq_seg = ring->deq_seg; 742 ring->enqueue = ring->dequeue; 743 744 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 745 /* 746 * Ring is now zeroed, so the HW should look for change of ownership 747 * when the cycle bit is set to 1. 748 */ 749 ring->cycle_state = 1; 750 751 /* 752 * Reset the hardware dequeue pointer. 753 * Yes, this will need to be re-written after resume, but we're paranoid 754 * and want to make sure the hardware doesn't access bogus memory 755 * because, say, the BIOS or an SMI started the host without changing 756 * the command ring pointers. 757 */ 758 xhci_set_cmd_ring_deq(xhci); 759 } 760 761 /* 762 * Stop HC (not bus-specific) 763 * 764 * This is called when the machine transition into S3/S4 mode. 765 * 766 */ 767 int xhci_suspend(struct xhci_hcd *xhci) 768 { 769 int rc = 0; 770 struct usb_hcd *hcd = xhci_to_hcd(xhci); 771 u32 command; 772 773 spin_lock_irq(&xhci->lock); 774 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 775 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 776 /* step 1: stop endpoint */ 777 /* skipped assuming that port suspend has done */ 778 779 /* step 2: clear Run/Stop bit */ 780 command = xhci_readl(xhci, &xhci->op_regs->command); 781 command &= ~CMD_RUN; 782 xhci_writel(xhci, command, &xhci->op_regs->command); 783 if (handshake(xhci, &xhci->op_regs->status, 784 STS_HALT, STS_HALT, 100*100)) { 785 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 786 spin_unlock_irq(&xhci->lock); 787 return -ETIMEDOUT; 788 } 789 xhci_clear_command_ring(xhci); 790 791 /* step 3: save registers */ 792 xhci_save_registers(xhci); 793 794 /* step 4: set CSS flag */ 795 command = xhci_readl(xhci, &xhci->op_regs->command); 796 command |= CMD_CSS; 797 xhci_writel(xhci, command, &xhci->op_regs->command); 798 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) { 799 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 800 spin_unlock_irq(&xhci->lock); 801 return -ETIMEDOUT; 802 } 803 spin_unlock_irq(&xhci->lock); 804 805 /* step 5: remove core well power */ 806 /* synchronize irq when using MSI-X */ 807 xhci_msix_sync_irqs(xhci); 808 809 return rc; 810 } 811 812 /* 813 * start xHC (not bus-specific) 814 * 815 * This is called when the machine transition from S3/S4 mode. 816 * 817 */ 818 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 819 { 820 u32 command, temp = 0; 821 struct usb_hcd *hcd = xhci_to_hcd(xhci); 822 struct usb_hcd *secondary_hcd; 823 int retval = 0; 824 825 /* Wait a bit if either of the roothubs need to settle from the 826 * transition into bus suspend. 827 */ 828 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 829 time_before(jiffies, 830 xhci->bus_state[1].next_statechange)) 831 msleep(100); 832 833 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 834 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 835 836 spin_lock_irq(&xhci->lock); 837 if (xhci->quirks & XHCI_RESET_ON_RESUME) 838 hibernated = true; 839 840 if (!hibernated) { 841 /* step 1: restore register */ 842 xhci_restore_registers(xhci); 843 /* step 2: initialize command ring buffer */ 844 xhci_set_cmd_ring_deq(xhci); 845 /* step 3: restore state and start state*/ 846 /* step 3: set CRS flag */ 847 command = xhci_readl(xhci, &xhci->op_regs->command); 848 command |= CMD_CRS; 849 xhci_writel(xhci, command, &xhci->op_regs->command); 850 if (handshake(xhci, &xhci->op_regs->status, 851 STS_RESTORE, 0, 10 * 1000)) { 852 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 853 spin_unlock_irq(&xhci->lock); 854 return -ETIMEDOUT; 855 } 856 temp = xhci_readl(xhci, &xhci->op_regs->status); 857 } 858 859 /* If restore operation fails, re-initialize the HC during resume */ 860 if ((temp & STS_SRE) || hibernated) { 861 /* Let the USB core know _both_ roothubs lost power. */ 862 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 863 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 864 865 xhci_dbg(xhci, "Stop HCD\n"); 866 xhci_halt(xhci); 867 xhci_reset(xhci); 868 spin_unlock_irq(&xhci->lock); 869 xhci_cleanup_msix(xhci); 870 871 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 872 /* Tell the event ring poll function not to reschedule */ 873 xhci->zombie = 1; 874 del_timer_sync(&xhci->event_ring_timer); 875 #endif 876 877 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 878 temp = xhci_readl(xhci, &xhci->op_regs->status); 879 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 880 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 881 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 882 &xhci->ir_set->irq_pending); 883 xhci_print_ir_set(xhci, 0); 884 885 xhci_dbg(xhci, "cleaning up memory\n"); 886 xhci_mem_cleanup(xhci); 887 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 888 xhci_readl(xhci, &xhci->op_regs->status)); 889 890 /* USB core calls the PCI reinit and start functions twice: 891 * first with the primary HCD, and then with the secondary HCD. 892 * If we don't do the same, the host will never be started. 893 */ 894 if (!usb_hcd_is_primary_hcd(hcd)) 895 secondary_hcd = hcd; 896 else 897 secondary_hcd = xhci->shared_hcd; 898 899 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 900 retval = xhci_init(hcd->primary_hcd); 901 if (retval) 902 return retval; 903 xhci_dbg(xhci, "Start the primary HCD\n"); 904 retval = xhci_run(hcd->primary_hcd); 905 if (!retval) { 906 xhci_dbg(xhci, "Start the secondary HCD\n"); 907 retval = xhci_run(secondary_hcd); 908 } 909 hcd->state = HC_STATE_SUSPENDED; 910 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 911 goto done; 912 } 913 914 /* step 4: set Run/Stop bit */ 915 command = xhci_readl(xhci, &xhci->op_regs->command); 916 command |= CMD_RUN; 917 xhci_writel(xhci, command, &xhci->op_regs->command); 918 handshake(xhci, &xhci->op_regs->status, STS_HALT, 919 0, 250 * 1000); 920 921 /* step 5: walk topology and initialize portsc, 922 * portpmsc and portli 923 */ 924 /* this is done in bus_resume */ 925 926 /* step 6: restart each of the previously 927 * Running endpoints by ringing their doorbells 928 */ 929 930 spin_unlock_irq(&xhci->lock); 931 932 done: 933 if (retval == 0) { 934 usb_hcd_resume_root_hub(hcd); 935 usb_hcd_resume_root_hub(xhci->shared_hcd); 936 } 937 return retval; 938 } 939 #endif /* CONFIG_PM */ 940 941 /*-------------------------------------------------------------------------*/ 942 943 /** 944 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 945 * HCDs. Find the index for an endpoint given its descriptor. Use the return 946 * value to right shift 1 for the bitmask. 947 * 948 * Index = (epnum * 2) + direction - 1, 949 * where direction = 0 for OUT, 1 for IN. 950 * For control endpoints, the IN index is used (OUT index is unused), so 951 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 952 */ 953 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 954 { 955 unsigned int index; 956 if (usb_endpoint_xfer_control(desc)) 957 index = (unsigned int) (usb_endpoint_num(desc)*2); 958 else 959 index = (unsigned int) (usb_endpoint_num(desc)*2) + 960 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 961 return index; 962 } 963 964 /* Find the flag for this endpoint (for use in the control context). Use the 965 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 966 * bit 1, etc. 967 */ 968 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 969 { 970 return 1 << (xhci_get_endpoint_index(desc) + 1); 971 } 972 973 /* Find the flag for this endpoint (for use in the control context). Use the 974 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 975 * bit 1, etc. 976 */ 977 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 978 { 979 return 1 << (ep_index + 1); 980 } 981 982 /* Compute the last valid endpoint context index. Basically, this is the 983 * endpoint index plus one. For slot contexts with more than valid endpoint, 984 * we find the most significant bit set in the added contexts flags. 985 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 986 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 987 */ 988 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 989 { 990 return fls(added_ctxs) - 1; 991 } 992 993 /* Returns 1 if the arguments are OK; 994 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 995 */ 996 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 997 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 998 const char *func) { 999 struct xhci_hcd *xhci; 1000 struct xhci_virt_device *virt_dev; 1001 1002 if (!hcd || (check_ep && !ep) || !udev) { 1003 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 1004 func); 1005 return -EINVAL; 1006 } 1007 if (!udev->parent) { 1008 printk(KERN_DEBUG "xHCI %s called for root hub\n", 1009 func); 1010 return 0; 1011 } 1012 1013 xhci = hcd_to_xhci(hcd); 1014 if (xhci->xhc_state & XHCI_STATE_HALTED) 1015 return -ENODEV; 1016 1017 if (check_virt_dev) { 1018 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1019 printk(KERN_DEBUG "xHCI %s called with unaddressed " 1020 "device\n", func); 1021 return -EINVAL; 1022 } 1023 1024 virt_dev = xhci->devs[udev->slot_id]; 1025 if (virt_dev->udev != udev) { 1026 printk(KERN_DEBUG "xHCI %s called with udev and " 1027 "virt_dev does not match\n", func); 1028 return -EINVAL; 1029 } 1030 } 1031 1032 return 1; 1033 } 1034 1035 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1036 struct usb_device *udev, struct xhci_command *command, 1037 bool ctx_change, bool must_succeed); 1038 1039 /* 1040 * Full speed devices may have a max packet size greater than 8 bytes, but the 1041 * USB core doesn't know that until it reads the first 8 bytes of the 1042 * descriptor. If the usb_device's max packet size changes after that point, 1043 * we need to issue an evaluate context command and wait on it. 1044 */ 1045 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1046 unsigned int ep_index, struct urb *urb) 1047 { 1048 struct xhci_container_ctx *in_ctx; 1049 struct xhci_container_ctx *out_ctx; 1050 struct xhci_input_control_ctx *ctrl_ctx; 1051 struct xhci_ep_ctx *ep_ctx; 1052 int max_packet_size; 1053 int hw_max_packet_size; 1054 int ret = 0; 1055 1056 out_ctx = xhci->devs[slot_id]->out_ctx; 1057 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1058 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1059 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1060 if (hw_max_packet_size != max_packet_size) { 1061 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 1062 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 1063 max_packet_size); 1064 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 1065 hw_max_packet_size); 1066 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 1067 1068 /* Set up the modified control endpoint 0 */ 1069 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1070 xhci->devs[slot_id]->out_ctx, ep_index); 1071 in_ctx = xhci->devs[slot_id]->in_ctx; 1072 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1073 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1074 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1075 1076 /* Set up the input context flags for the command */ 1077 /* FIXME: This won't work if a non-default control endpoint 1078 * changes max packet sizes. 1079 */ 1080 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1081 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1082 ctrl_ctx->drop_flags = 0; 1083 1084 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1085 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1086 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1087 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1088 1089 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1090 true, false); 1091 1092 /* Clean up the input context for later use by bandwidth 1093 * functions. 1094 */ 1095 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1096 } 1097 return ret; 1098 } 1099 1100 /* 1101 * non-error returns are a promise to giveback() the urb later 1102 * we drop ownership so next owner (or urb unlink) can get it 1103 */ 1104 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1105 { 1106 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1107 struct xhci_td *buffer; 1108 unsigned long flags; 1109 int ret = 0; 1110 unsigned int slot_id, ep_index; 1111 struct urb_priv *urb_priv; 1112 int size, i; 1113 1114 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1115 true, true, __func__) <= 0) 1116 return -EINVAL; 1117 1118 slot_id = urb->dev->slot_id; 1119 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1120 1121 if (!HCD_HW_ACCESSIBLE(hcd)) { 1122 if (!in_interrupt()) 1123 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1124 ret = -ESHUTDOWN; 1125 goto exit; 1126 } 1127 1128 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1129 size = urb->number_of_packets; 1130 else 1131 size = 1; 1132 1133 urb_priv = kzalloc(sizeof(struct urb_priv) + 1134 size * sizeof(struct xhci_td *), mem_flags); 1135 if (!urb_priv) 1136 return -ENOMEM; 1137 1138 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1139 if (!buffer) { 1140 kfree(urb_priv); 1141 return -ENOMEM; 1142 } 1143 1144 for (i = 0; i < size; i++) { 1145 urb_priv->td[i] = buffer; 1146 buffer++; 1147 } 1148 1149 urb_priv->length = size; 1150 urb_priv->td_cnt = 0; 1151 urb->hcpriv = urb_priv; 1152 1153 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1154 /* Check to see if the max packet size for the default control 1155 * endpoint changed during FS device enumeration 1156 */ 1157 if (urb->dev->speed == USB_SPEED_FULL) { 1158 ret = xhci_check_maxpacket(xhci, slot_id, 1159 ep_index, urb); 1160 if (ret < 0) { 1161 xhci_urb_free_priv(xhci, urb_priv); 1162 urb->hcpriv = NULL; 1163 return ret; 1164 } 1165 } 1166 1167 /* We have a spinlock and interrupts disabled, so we must pass 1168 * atomic context to this function, which may allocate memory. 1169 */ 1170 spin_lock_irqsave(&xhci->lock, flags); 1171 if (xhci->xhc_state & XHCI_STATE_DYING) 1172 goto dying; 1173 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1174 slot_id, ep_index); 1175 if (ret) 1176 goto free_priv; 1177 spin_unlock_irqrestore(&xhci->lock, flags); 1178 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1179 spin_lock_irqsave(&xhci->lock, flags); 1180 if (xhci->xhc_state & XHCI_STATE_DYING) 1181 goto dying; 1182 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1183 EP_GETTING_STREAMS) { 1184 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1185 "is transitioning to using streams.\n"); 1186 ret = -EINVAL; 1187 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1188 EP_GETTING_NO_STREAMS) { 1189 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1190 "is transitioning to " 1191 "not having streams.\n"); 1192 ret = -EINVAL; 1193 } else { 1194 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1195 slot_id, ep_index); 1196 } 1197 if (ret) 1198 goto free_priv; 1199 spin_unlock_irqrestore(&xhci->lock, flags); 1200 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1201 spin_lock_irqsave(&xhci->lock, flags); 1202 if (xhci->xhc_state & XHCI_STATE_DYING) 1203 goto dying; 1204 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1205 slot_id, ep_index); 1206 if (ret) 1207 goto free_priv; 1208 spin_unlock_irqrestore(&xhci->lock, flags); 1209 } else { 1210 spin_lock_irqsave(&xhci->lock, flags); 1211 if (xhci->xhc_state & XHCI_STATE_DYING) 1212 goto dying; 1213 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1214 slot_id, ep_index); 1215 if (ret) 1216 goto free_priv; 1217 spin_unlock_irqrestore(&xhci->lock, flags); 1218 } 1219 exit: 1220 return ret; 1221 dying: 1222 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1223 "non-responsive xHCI host.\n", 1224 urb->ep->desc.bEndpointAddress, urb); 1225 ret = -ESHUTDOWN; 1226 free_priv: 1227 xhci_urb_free_priv(xhci, urb_priv); 1228 urb->hcpriv = NULL; 1229 spin_unlock_irqrestore(&xhci->lock, flags); 1230 return ret; 1231 } 1232 1233 /* Get the right ring for the given URB. 1234 * If the endpoint supports streams, boundary check the URB's stream ID. 1235 * If the endpoint doesn't support streams, return the singular endpoint ring. 1236 */ 1237 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1238 struct urb *urb) 1239 { 1240 unsigned int slot_id; 1241 unsigned int ep_index; 1242 unsigned int stream_id; 1243 struct xhci_virt_ep *ep; 1244 1245 slot_id = urb->dev->slot_id; 1246 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1247 stream_id = urb->stream_id; 1248 ep = &xhci->devs[slot_id]->eps[ep_index]; 1249 /* Common case: no streams */ 1250 if (!(ep->ep_state & EP_HAS_STREAMS)) 1251 return ep->ring; 1252 1253 if (stream_id == 0) { 1254 xhci_warn(xhci, 1255 "WARN: Slot ID %u, ep index %u has streams, " 1256 "but URB has no stream ID.\n", 1257 slot_id, ep_index); 1258 return NULL; 1259 } 1260 1261 if (stream_id < ep->stream_info->num_streams) 1262 return ep->stream_info->stream_rings[stream_id]; 1263 1264 xhci_warn(xhci, 1265 "WARN: Slot ID %u, ep index %u has " 1266 "stream IDs 1 to %u allocated, " 1267 "but stream ID %u is requested.\n", 1268 slot_id, ep_index, 1269 ep->stream_info->num_streams - 1, 1270 stream_id); 1271 return NULL; 1272 } 1273 1274 /* 1275 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1276 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1277 * should pick up where it left off in the TD, unless a Set Transfer Ring 1278 * Dequeue Pointer is issued. 1279 * 1280 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1281 * the ring. Since the ring is a contiguous structure, they can't be physically 1282 * removed. Instead, there are two options: 1283 * 1284 * 1) If the HC is in the middle of processing the URB to be canceled, we 1285 * simply move the ring's dequeue pointer past those TRBs using the Set 1286 * Transfer Ring Dequeue Pointer command. This will be the common case, 1287 * when drivers timeout on the last submitted URB and attempt to cancel. 1288 * 1289 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1290 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1291 * HC will need to invalidate the any TRBs it has cached after the stop 1292 * endpoint command, as noted in the xHCI 0.95 errata. 1293 * 1294 * 3) The TD may have completed by the time the Stop Endpoint Command 1295 * completes, so software needs to handle that case too. 1296 * 1297 * This function should protect against the TD enqueueing code ringing the 1298 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1299 * It also needs to account for multiple cancellations on happening at the same 1300 * time for the same endpoint. 1301 * 1302 * Note that this function can be called in any context, or so says 1303 * usb_hcd_unlink_urb() 1304 */ 1305 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1306 { 1307 unsigned long flags; 1308 int ret, i; 1309 u32 temp; 1310 struct xhci_hcd *xhci; 1311 struct urb_priv *urb_priv; 1312 struct xhci_td *td; 1313 unsigned int ep_index; 1314 struct xhci_ring *ep_ring; 1315 struct xhci_virt_ep *ep; 1316 1317 xhci = hcd_to_xhci(hcd); 1318 spin_lock_irqsave(&xhci->lock, flags); 1319 /* Make sure the URB hasn't completed or been unlinked already */ 1320 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1321 if (ret || !urb->hcpriv) 1322 goto done; 1323 temp = xhci_readl(xhci, &xhci->op_regs->status); 1324 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1325 xhci_dbg(xhci, "HW died, freeing TD.\n"); 1326 urb_priv = urb->hcpriv; 1327 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1328 td = urb_priv->td[i]; 1329 if (!list_empty(&td->td_list)) 1330 list_del_init(&td->td_list); 1331 if (!list_empty(&td->cancelled_td_list)) 1332 list_del_init(&td->cancelled_td_list); 1333 } 1334 1335 usb_hcd_unlink_urb_from_ep(hcd, urb); 1336 spin_unlock_irqrestore(&xhci->lock, flags); 1337 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1338 xhci_urb_free_priv(xhci, urb_priv); 1339 return ret; 1340 } 1341 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1342 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1343 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 1344 "non-responsive xHCI host.\n", 1345 urb->ep->desc.bEndpointAddress, urb); 1346 /* Let the stop endpoint command watchdog timer (which set this 1347 * state) finish cleaning up the endpoint TD lists. We must 1348 * have caught it in the middle of dropping a lock and giving 1349 * back an URB. 1350 */ 1351 goto done; 1352 } 1353 1354 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1355 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1356 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1357 if (!ep_ring) { 1358 ret = -EINVAL; 1359 goto done; 1360 } 1361 1362 urb_priv = urb->hcpriv; 1363 i = urb_priv->td_cnt; 1364 if (i < urb_priv->length) 1365 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, " 1366 "starting at offset 0x%llx\n", 1367 urb, urb->dev->devpath, 1368 urb->ep->desc.bEndpointAddress, 1369 (unsigned long long) xhci_trb_virt_to_dma( 1370 urb_priv->td[i]->start_seg, 1371 urb_priv->td[i]->first_trb)); 1372 1373 for (; i < urb_priv->length; i++) { 1374 td = urb_priv->td[i]; 1375 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1376 } 1377 1378 /* Queue a stop endpoint command, but only if this is 1379 * the first cancellation to be handled. 1380 */ 1381 if (!(ep->ep_state & EP_HALT_PENDING)) { 1382 ep->ep_state |= EP_HALT_PENDING; 1383 ep->stop_cmds_pending++; 1384 ep->stop_cmd_timer.expires = jiffies + 1385 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1386 add_timer(&ep->stop_cmd_timer); 1387 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1388 xhci_ring_cmd_db(xhci); 1389 } 1390 done: 1391 spin_unlock_irqrestore(&xhci->lock, flags); 1392 return ret; 1393 } 1394 1395 /* Drop an endpoint from a new bandwidth configuration for this device. 1396 * Only one call to this function is allowed per endpoint before 1397 * check_bandwidth() or reset_bandwidth() must be called. 1398 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1399 * add the endpoint to the schedule with possibly new parameters denoted by a 1400 * different endpoint descriptor in usb_host_endpoint. 1401 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1402 * not allowed. 1403 * 1404 * The USB core will not allow URBs to be queued to an endpoint that is being 1405 * disabled, so there's no need for mutual exclusion to protect 1406 * the xhci->devs[slot_id] structure. 1407 */ 1408 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1409 struct usb_host_endpoint *ep) 1410 { 1411 struct xhci_hcd *xhci; 1412 struct xhci_container_ctx *in_ctx, *out_ctx; 1413 struct xhci_input_control_ctx *ctrl_ctx; 1414 struct xhci_slot_ctx *slot_ctx; 1415 unsigned int last_ctx; 1416 unsigned int ep_index; 1417 struct xhci_ep_ctx *ep_ctx; 1418 u32 drop_flag; 1419 u32 new_add_flags, new_drop_flags, new_slot_info; 1420 int ret; 1421 1422 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1423 if (ret <= 0) 1424 return ret; 1425 xhci = hcd_to_xhci(hcd); 1426 if (xhci->xhc_state & XHCI_STATE_DYING) 1427 return -ENODEV; 1428 1429 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1430 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1431 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1432 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1433 __func__, drop_flag); 1434 return 0; 1435 } 1436 1437 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1438 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1439 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1440 ep_index = xhci_get_endpoint_index(&ep->desc); 1441 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1442 /* If the HC already knows the endpoint is disabled, 1443 * or the HCD has noted it is disabled, ignore this request 1444 */ 1445 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1446 cpu_to_le32(EP_STATE_DISABLED)) || 1447 le32_to_cpu(ctrl_ctx->drop_flags) & 1448 xhci_get_endpoint_flag(&ep->desc)) { 1449 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1450 __func__, ep); 1451 return 0; 1452 } 1453 1454 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1455 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1456 1457 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1458 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1459 1460 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1461 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1462 /* Update the last valid endpoint context, if we deleted the last one */ 1463 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1464 LAST_CTX(last_ctx)) { 1465 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1466 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1467 } 1468 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1469 1470 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1471 1472 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1473 (unsigned int) ep->desc.bEndpointAddress, 1474 udev->slot_id, 1475 (unsigned int) new_drop_flags, 1476 (unsigned int) new_add_flags, 1477 (unsigned int) new_slot_info); 1478 return 0; 1479 } 1480 1481 /* Add an endpoint to a new possible bandwidth configuration for this device. 1482 * Only one call to this function is allowed per endpoint before 1483 * check_bandwidth() or reset_bandwidth() must be called. 1484 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1485 * add the endpoint to the schedule with possibly new parameters denoted by a 1486 * different endpoint descriptor in usb_host_endpoint. 1487 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1488 * not allowed. 1489 * 1490 * The USB core will not allow URBs to be queued to an endpoint until the 1491 * configuration or alt setting is installed in the device, so there's no need 1492 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1493 */ 1494 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1495 struct usb_host_endpoint *ep) 1496 { 1497 struct xhci_hcd *xhci; 1498 struct xhci_container_ctx *in_ctx, *out_ctx; 1499 unsigned int ep_index; 1500 struct xhci_ep_ctx *ep_ctx; 1501 struct xhci_slot_ctx *slot_ctx; 1502 struct xhci_input_control_ctx *ctrl_ctx; 1503 u32 added_ctxs; 1504 unsigned int last_ctx; 1505 u32 new_add_flags, new_drop_flags, new_slot_info; 1506 struct xhci_virt_device *virt_dev; 1507 int ret = 0; 1508 1509 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1510 if (ret <= 0) { 1511 /* So we won't queue a reset ep command for a root hub */ 1512 ep->hcpriv = NULL; 1513 return ret; 1514 } 1515 xhci = hcd_to_xhci(hcd); 1516 if (xhci->xhc_state & XHCI_STATE_DYING) 1517 return -ENODEV; 1518 1519 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1520 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1521 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1522 /* FIXME when we have to issue an evaluate endpoint command to 1523 * deal with ep0 max packet size changing once we get the 1524 * descriptors 1525 */ 1526 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1527 __func__, added_ctxs); 1528 return 0; 1529 } 1530 1531 virt_dev = xhci->devs[udev->slot_id]; 1532 in_ctx = virt_dev->in_ctx; 1533 out_ctx = virt_dev->out_ctx; 1534 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1535 ep_index = xhci_get_endpoint_index(&ep->desc); 1536 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1537 1538 /* If this endpoint is already in use, and the upper layers are trying 1539 * to add it again without dropping it, reject the addition. 1540 */ 1541 if (virt_dev->eps[ep_index].ring && 1542 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1543 xhci_get_endpoint_flag(&ep->desc))) { 1544 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1545 "without dropping it.\n", 1546 (unsigned int) ep->desc.bEndpointAddress); 1547 return -EINVAL; 1548 } 1549 1550 /* If the HCD has already noted the endpoint is enabled, 1551 * ignore this request. 1552 */ 1553 if (le32_to_cpu(ctrl_ctx->add_flags) & 1554 xhci_get_endpoint_flag(&ep->desc)) { 1555 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1556 __func__, ep); 1557 return 0; 1558 } 1559 1560 /* 1561 * Configuration and alternate setting changes must be done in 1562 * process context, not interrupt context (or so documenation 1563 * for usb_set_interface() and usb_set_configuration() claim). 1564 */ 1565 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1566 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1567 __func__, ep->desc.bEndpointAddress); 1568 return -ENOMEM; 1569 } 1570 1571 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1572 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1573 1574 /* If xhci_endpoint_disable() was called for this endpoint, but the 1575 * xHC hasn't been notified yet through the check_bandwidth() call, 1576 * this re-adds a new state for the endpoint from the new endpoint 1577 * descriptors. We must drop and re-add this endpoint, so we leave the 1578 * drop flags alone. 1579 */ 1580 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1581 1582 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1583 /* Update the last valid endpoint context, if we just added one past */ 1584 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1585 LAST_CTX(last_ctx)) { 1586 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1587 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1588 } 1589 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1590 1591 /* Store the usb_device pointer for later use */ 1592 ep->hcpriv = udev; 1593 1594 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1595 (unsigned int) ep->desc.bEndpointAddress, 1596 udev->slot_id, 1597 (unsigned int) new_drop_flags, 1598 (unsigned int) new_add_flags, 1599 (unsigned int) new_slot_info); 1600 return 0; 1601 } 1602 1603 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1604 { 1605 struct xhci_input_control_ctx *ctrl_ctx; 1606 struct xhci_ep_ctx *ep_ctx; 1607 struct xhci_slot_ctx *slot_ctx; 1608 int i; 1609 1610 /* When a device's add flag and drop flag are zero, any subsequent 1611 * configure endpoint command will leave that endpoint's state 1612 * untouched. Make sure we don't leave any old state in the input 1613 * endpoint contexts. 1614 */ 1615 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1616 ctrl_ctx->drop_flags = 0; 1617 ctrl_ctx->add_flags = 0; 1618 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1619 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1620 /* Endpoint 0 is always valid */ 1621 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1622 for (i = 1; i < 31; ++i) { 1623 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1624 ep_ctx->ep_info = 0; 1625 ep_ctx->ep_info2 = 0; 1626 ep_ctx->deq = 0; 1627 ep_ctx->tx_info = 0; 1628 } 1629 } 1630 1631 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1632 struct usb_device *udev, u32 *cmd_status) 1633 { 1634 int ret; 1635 1636 switch (*cmd_status) { 1637 case COMP_ENOMEM: 1638 dev_warn(&udev->dev, "Not enough host controller resources " 1639 "for new device state.\n"); 1640 ret = -ENOMEM; 1641 /* FIXME: can we allocate more resources for the HC? */ 1642 break; 1643 case COMP_BW_ERR: 1644 case COMP_2ND_BW_ERR: 1645 dev_warn(&udev->dev, "Not enough bandwidth " 1646 "for new device state.\n"); 1647 ret = -ENOSPC; 1648 /* FIXME: can we go back to the old state? */ 1649 break; 1650 case COMP_TRB_ERR: 1651 /* the HCD set up something wrong */ 1652 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1653 "add flag = 1, " 1654 "and endpoint is not disabled.\n"); 1655 ret = -EINVAL; 1656 break; 1657 case COMP_DEV_ERR: 1658 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1659 "configure command.\n"); 1660 ret = -ENODEV; 1661 break; 1662 case COMP_SUCCESS: 1663 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1664 ret = 0; 1665 break; 1666 default: 1667 xhci_err(xhci, "ERROR: unexpected command completion " 1668 "code 0x%x.\n", *cmd_status); 1669 ret = -EINVAL; 1670 break; 1671 } 1672 return ret; 1673 } 1674 1675 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1676 struct usb_device *udev, u32 *cmd_status) 1677 { 1678 int ret; 1679 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1680 1681 switch (*cmd_status) { 1682 case COMP_EINVAL: 1683 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1684 "context command.\n"); 1685 ret = -EINVAL; 1686 break; 1687 case COMP_EBADSLT: 1688 dev_warn(&udev->dev, "WARN: slot not enabled for" 1689 "evaluate context command.\n"); 1690 case COMP_CTX_STATE: 1691 dev_warn(&udev->dev, "WARN: invalid context state for " 1692 "evaluate context command.\n"); 1693 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1694 ret = -EINVAL; 1695 break; 1696 case COMP_DEV_ERR: 1697 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1698 "context command.\n"); 1699 ret = -ENODEV; 1700 break; 1701 case COMP_MEL_ERR: 1702 /* Max Exit Latency too large error */ 1703 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1704 ret = -EINVAL; 1705 break; 1706 case COMP_SUCCESS: 1707 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1708 ret = 0; 1709 break; 1710 default: 1711 xhci_err(xhci, "ERROR: unexpected command completion " 1712 "code 0x%x.\n", *cmd_status); 1713 ret = -EINVAL; 1714 break; 1715 } 1716 return ret; 1717 } 1718 1719 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1720 struct xhci_container_ctx *in_ctx) 1721 { 1722 struct xhci_input_control_ctx *ctrl_ctx; 1723 u32 valid_add_flags; 1724 u32 valid_drop_flags; 1725 1726 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1727 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1728 * (bit 1). The default control endpoint is added during the Address 1729 * Device command and is never removed until the slot is disabled. 1730 */ 1731 valid_add_flags = ctrl_ctx->add_flags >> 2; 1732 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1733 1734 /* Use hweight32 to count the number of ones in the add flags, or 1735 * number of endpoints added. Don't count endpoints that are changed 1736 * (both added and dropped). 1737 */ 1738 return hweight32(valid_add_flags) - 1739 hweight32(valid_add_flags & valid_drop_flags); 1740 } 1741 1742 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1743 struct xhci_container_ctx *in_ctx) 1744 { 1745 struct xhci_input_control_ctx *ctrl_ctx; 1746 u32 valid_add_flags; 1747 u32 valid_drop_flags; 1748 1749 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1750 valid_add_flags = ctrl_ctx->add_flags >> 2; 1751 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1752 1753 return hweight32(valid_drop_flags) - 1754 hweight32(valid_add_flags & valid_drop_flags); 1755 } 1756 1757 /* 1758 * We need to reserve the new number of endpoints before the configure endpoint 1759 * command completes. We can't subtract the dropped endpoints from the number 1760 * of active endpoints until the command completes because we can oversubscribe 1761 * the host in this case: 1762 * 1763 * - the first configure endpoint command drops more endpoints than it adds 1764 * - a second configure endpoint command that adds more endpoints is queued 1765 * - the first configure endpoint command fails, so the config is unchanged 1766 * - the second command may succeed, even though there isn't enough resources 1767 * 1768 * Must be called with xhci->lock held. 1769 */ 1770 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1771 struct xhci_container_ctx *in_ctx) 1772 { 1773 u32 added_eps; 1774 1775 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1776 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1777 xhci_dbg(xhci, "Not enough ep ctxs: " 1778 "%u active, need to add %u, limit is %u.\n", 1779 xhci->num_active_eps, added_eps, 1780 xhci->limit_active_eps); 1781 return -ENOMEM; 1782 } 1783 xhci->num_active_eps += added_eps; 1784 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, 1785 xhci->num_active_eps); 1786 return 0; 1787 } 1788 1789 /* 1790 * The configure endpoint was failed by the xHC for some other reason, so we 1791 * need to revert the resources that failed configuration would have used. 1792 * 1793 * Must be called with xhci->lock held. 1794 */ 1795 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1796 struct xhci_container_ctx *in_ctx) 1797 { 1798 u32 num_failed_eps; 1799 1800 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1801 xhci->num_active_eps -= num_failed_eps; 1802 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", 1803 num_failed_eps, 1804 xhci->num_active_eps); 1805 } 1806 1807 /* 1808 * Now that the command has completed, clean up the active endpoint count by 1809 * subtracting out the endpoints that were dropped (but not changed). 1810 * 1811 * Must be called with xhci->lock held. 1812 */ 1813 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1814 struct xhci_container_ctx *in_ctx) 1815 { 1816 u32 num_dropped_eps; 1817 1818 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx); 1819 xhci->num_active_eps -= num_dropped_eps; 1820 if (num_dropped_eps) 1821 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", 1822 num_dropped_eps, 1823 xhci->num_active_eps); 1824 } 1825 1826 unsigned int xhci_get_block_size(struct usb_device *udev) 1827 { 1828 switch (udev->speed) { 1829 case USB_SPEED_LOW: 1830 case USB_SPEED_FULL: 1831 return FS_BLOCK; 1832 case USB_SPEED_HIGH: 1833 return HS_BLOCK; 1834 case USB_SPEED_SUPER: 1835 return SS_BLOCK; 1836 case USB_SPEED_UNKNOWN: 1837 case USB_SPEED_WIRELESS: 1838 default: 1839 /* Should never happen */ 1840 return 1; 1841 } 1842 } 1843 1844 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1845 { 1846 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1847 return LS_OVERHEAD; 1848 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1849 return FS_OVERHEAD; 1850 return HS_OVERHEAD; 1851 } 1852 1853 /* If we are changing a LS/FS device under a HS hub, 1854 * make sure (if we are activating a new TT) that the HS bus has enough 1855 * bandwidth for this new TT. 1856 */ 1857 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 1858 struct xhci_virt_device *virt_dev, 1859 int old_active_eps) 1860 { 1861 struct xhci_interval_bw_table *bw_table; 1862 struct xhci_tt_bw_info *tt_info; 1863 1864 /* Find the bandwidth table for the root port this TT is attached to. */ 1865 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 1866 tt_info = virt_dev->tt_info; 1867 /* If this TT already had active endpoints, the bandwidth for this TT 1868 * has already been added. Removing all periodic endpoints (and thus 1869 * making the TT enactive) will only decrease the bandwidth used. 1870 */ 1871 if (old_active_eps) 1872 return 0; 1873 if (old_active_eps == 0 && tt_info->active_eps != 0) { 1874 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 1875 return -ENOMEM; 1876 return 0; 1877 } 1878 /* Not sure why we would have no new active endpoints... 1879 * 1880 * Maybe because of an Evaluate Context change for a hub update or a 1881 * control endpoint 0 max packet size change? 1882 * FIXME: skip the bandwidth calculation in that case. 1883 */ 1884 return 0; 1885 } 1886 1887 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 1888 struct xhci_virt_device *virt_dev) 1889 { 1890 unsigned int bw_reserved; 1891 1892 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 1893 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 1894 return -ENOMEM; 1895 1896 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 1897 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 1898 return -ENOMEM; 1899 1900 return 0; 1901 } 1902 1903 /* 1904 * This algorithm is a very conservative estimate of the worst-case scheduling 1905 * scenario for any one interval. The hardware dynamically schedules the 1906 * packets, so we can't tell which microframe could be the limiting factor in 1907 * the bandwidth scheduling. This only takes into account periodic endpoints. 1908 * 1909 * Obviously, we can't solve an NP complete problem to find the minimum worst 1910 * case scenario. Instead, we come up with an estimate that is no less than 1911 * the worst case bandwidth used for any one microframe, but may be an 1912 * over-estimate. 1913 * 1914 * We walk the requirements for each endpoint by interval, starting with the 1915 * smallest interval, and place packets in the schedule where there is only one 1916 * possible way to schedule packets for that interval. In order to simplify 1917 * this algorithm, we record the largest max packet size for each interval, and 1918 * assume all packets will be that size. 1919 * 1920 * For interval 0, we obviously must schedule all packets for each interval. 1921 * The bandwidth for interval 0 is just the amount of data to be transmitted 1922 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 1923 * the number of packets). 1924 * 1925 * For interval 1, we have two possible microframes to schedule those packets 1926 * in. For this algorithm, if we can schedule the same number of packets for 1927 * each possible scheduling opportunity (each microframe), we will do so. The 1928 * remaining number of packets will be saved to be transmitted in the gaps in 1929 * the next interval's scheduling sequence. 1930 * 1931 * As we move those remaining packets to be scheduled with interval 2 packets, 1932 * we have to double the number of remaining packets to transmit. This is 1933 * because the intervals are actually powers of 2, and we would be transmitting 1934 * the previous interval's packets twice in this interval. We also have to be 1935 * sure that when we look at the largest max packet size for this interval, we 1936 * also look at the largest max packet size for the remaining packets and take 1937 * the greater of the two. 1938 * 1939 * The algorithm continues to evenly distribute packets in each scheduling 1940 * opportunity, and push the remaining packets out, until we get to the last 1941 * interval. Then those packets and their associated overhead are just added 1942 * to the bandwidth used. 1943 */ 1944 static int xhci_check_bw_table(struct xhci_hcd *xhci, 1945 struct xhci_virt_device *virt_dev, 1946 int old_active_eps) 1947 { 1948 unsigned int bw_reserved; 1949 unsigned int max_bandwidth; 1950 unsigned int bw_used; 1951 unsigned int block_size; 1952 struct xhci_interval_bw_table *bw_table; 1953 unsigned int packet_size = 0; 1954 unsigned int overhead = 0; 1955 unsigned int packets_transmitted = 0; 1956 unsigned int packets_remaining = 0; 1957 unsigned int i; 1958 1959 if (virt_dev->udev->speed == USB_SPEED_SUPER) 1960 return xhci_check_ss_bw(xhci, virt_dev); 1961 1962 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 1963 max_bandwidth = HS_BW_LIMIT; 1964 /* Convert percent of bus BW reserved to blocks reserved */ 1965 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 1966 } else { 1967 max_bandwidth = FS_BW_LIMIT; 1968 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 1969 } 1970 1971 bw_table = virt_dev->bw_table; 1972 /* We need to translate the max packet size and max ESIT payloads into 1973 * the units the hardware uses. 1974 */ 1975 block_size = xhci_get_block_size(virt_dev->udev); 1976 1977 /* If we are manipulating a LS/FS device under a HS hub, double check 1978 * that the HS bus has enough bandwidth if we are activing a new TT. 1979 */ 1980 if (virt_dev->tt_info) { 1981 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 1982 virt_dev->real_port); 1983 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 1984 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 1985 "newly activated TT.\n"); 1986 return -ENOMEM; 1987 } 1988 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", 1989 virt_dev->tt_info->slot_id, 1990 virt_dev->tt_info->ttport); 1991 } else { 1992 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 1993 virt_dev->real_port); 1994 } 1995 1996 /* Add in how much bandwidth will be used for interval zero, or the 1997 * rounded max ESIT payload + number of packets * largest overhead. 1998 */ 1999 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2000 bw_table->interval_bw[0].num_packets * 2001 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2002 2003 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2004 unsigned int bw_added; 2005 unsigned int largest_mps; 2006 unsigned int interval_overhead; 2007 2008 /* 2009 * How many packets could we transmit in this interval? 2010 * If packets didn't fit in the previous interval, we will need 2011 * to transmit that many packets twice within this interval. 2012 */ 2013 packets_remaining = 2 * packets_remaining + 2014 bw_table->interval_bw[i].num_packets; 2015 2016 /* Find the largest max packet size of this or the previous 2017 * interval. 2018 */ 2019 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2020 largest_mps = 0; 2021 else { 2022 struct xhci_virt_ep *virt_ep; 2023 struct list_head *ep_entry; 2024 2025 ep_entry = bw_table->interval_bw[i].endpoints.next; 2026 virt_ep = list_entry(ep_entry, 2027 struct xhci_virt_ep, bw_endpoint_list); 2028 /* Convert to blocks, rounding up */ 2029 largest_mps = DIV_ROUND_UP( 2030 virt_ep->bw_info.max_packet_size, 2031 block_size); 2032 } 2033 if (largest_mps > packet_size) 2034 packet_size = largest_mps; 2035 2036 /* Use the larger overhead of this or the previous interval. */ 2037 interval_overhead = xhci_get_largest_overhead( 2038 &bw_table->interval_bw[i]); 2039 if (interval_overhead > overhead) 2040 overhead = interval_overhead; 2041 2042 /* How many packets can we evenly distribute across 2043 * (1 << (i + 1)) possible scheduling opportunities? 2044 */ 2045 packets_transmitted = packets_remaining >> (i + 1); 2046 2047 /* Add in the bandwidth used for those scheduled packets */ 2048 bw_added = packets_transmitted * (overhead + packet_size); 2049 2050 /* How many packets do we have remaining to transmit? */ 2051 packets_remaining = packets_remaining % (1 << (i + 1)); 2052 2053 /* What largest max packet size should those packets have? */ 2054 /* If we've transmitted all packets, don't carry over the 2055 * largest packet size. 2056 */ 2057 if (packets_remaining == 0) { 2058 packet_size = 0; 2059 overhead = 0; 2060 } else if (packets_transmitted > 0) { 2061 /* Otherwise if we do have remaining packets, and we've 2062 * scheduled some packets in this interval, take the 2063 * largest max packet size from endpoints with this 2064 * interval. 2065 */ 2066 packet_size = largest_mps; 2067 overhead = interval_overhead; 2068 } 2069 /* Otherwise carry over packet_size and overhead from the last 2070 * time we had a remainder. 2071 */ 2072 bw_used += bw_added; 2073 if (bw_used > max_bandwidth) { 2074 xhci_warn(xhci, "Not enough bandwidth. " 2075 "Proposed: %u, Max: %u\n", 2076 bw_used, max_bandwidth); 2077 return -ENOMEM; 2078 } 2079 } 2080 /* 2081 * Ok, we know we have some packets left over after even-handedly 2082 * scheduling interval 15. We don't know which microframes they will 2083 * fit into, so we over-schedule and say they will be scheduled every 2084 * microframe. 2085 */ 2086 if (packets_remaining > 0) 2087 bw_used += overhead + packet_size; 2088 2089 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2090 unsigned int port_index = virt_dev->real_port - 1; 2091 2092 /* OK, we're manipulating a HS device attached to a 2093 * root port bandwidth domain. Include the number of active TTs 2094 * in the bandwidth used. 2095 */ 2096 bw_used += TT_HS_OVERHEAD * 2097 xhci->rh_bw[port_index].num_active_tts; 2098 } 2099 2100 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2101 "Available: %u " "percent\n", 2102 bw_used, max_bandwidth, bw_reserved, 2103 (max_bandwidth - bw_used - bw_reserved) * 100 / 2104 max_bandwidth); 2105 2106 bw_used += bw_reserved; 2107 if (bw_used > max_bandwidth) { 2108 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2109 bw_used, max_bandwidth); 2110 return -ENOMEM; 2111 } 2112 2113 bw_table->bw_used = bw_used; 2114 return 0; 2115 } 2116 2117 static bool xhci_is_async_ep(unsigned int ep_type) 2118 { 2119 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2120 ep_type != ISOC_IN_EP && 2121 ep_type != INT_IN_EP); 2122 } 2123 2124 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2125 { 2126 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP); 2127 } 2128 2129 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2130 { 2131 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2132 2133 if (ep_bw->ep_interval == 0) 2134 return SS_OVERHEAD_BURST + 2135 (ep_bw->mult * ep_bw->num_packets * 2136 (SS_OVERHEAD + mps)); 2137 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2138 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2139 1 << ep_bw->ep_interval); 2140 2141 } 2142 2143 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2144 struct xhci_bw_info *ep_bw, 2145 struct xhci_interval_bw_table *bw_table, 2146 struct usb_device *udev, 2147 struct xhci_virt_ep *virt_ep, 2148 struct xhci_tt_bw_info *tt_info) 2149 { 2150 struct xhci_interval_bw *interval_bw; 2151 int normalized_interval; 2152 2153 if (xhci_is_async_ep(ep_bw->type)) 2154 return; 2155 2156 if (udev->speed == USB_SPEED_SUPER) { 2157 if (xhci_is_sync_in_ep(ep_bw->type)) 2158 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2159 xhci_get_ss_bw_consumed(ep_bw); 2160 else 2161 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2162 xhci_get_ss_bw_consumed(ep_bw); 2163 return; 2164 } 2165 2166 /* SuperSpeed endpoints never get added to intervals in the table, so 2167 * this check is only valid for HS/FS/LS devices. 2168 */ 2169 if (list_empty(&virt_ep->bw_endpoint_list)) 2170 return; 2171 /* For LS/FS devices, we need to translate the interval expressed in 2172 * microframes to frames. 2173 */ 2174 if (udev->speed == USB_SPEED_HIGH) 2175 normalized_interval = ep_bw->ep_interval; 2176 else 2177 normalized_interval = ep_bw->ep_interval - 3; 2178 2179 if (normalized_interval == 0) 2180 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2181 interval_bw = &bw_table->interval_bw[normalized_interval]; 2182 interval_bw->num_packets -= ep_bw->num_packets; 2183 switch (udev->speed) { 2184 case USB_SPEED_LOW: 2185 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2186 break; 2187 case USB_SPEED_FULL: 2188 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2189 break; 2190 case USB_SPEED_HIGH: 2191 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2192 break; 2193 case USB_SPEED_SUPER: 2194 case USB_SPEED_UNKNOWN: 2195 case USB_SPEED_WIRELESS: 2196 /* Should never happen because only LS/FS/HS endpoints will get 2197 * added to the endpoint list. 2198 */ 2199 return; 2200 } 2201 if (tt_info) 2202 tt_info->active_eps -= 1; 2203 list_del_init(&virt_ep->bw_endpoint_list); 2204 } 2205 2206 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2207 struct xhci_bw_info *ep_bw, 2208 struct xhci_interval_bw_table *bw_table, 2209 struct usb_device *udev, 2210 struct xhci_virt_ep *virt_ep, 2211 struct xhci_tt_bw_info *tt_info) 2212 { 2213 struct xhci_interval_bw *interval_bw; 2214 struct xhci_virt_ep *smaller_ep; 2215 int normalized_interval; 2216 2217 if (xhci_is_async_ep(ep_bw->type)) 2218 return; 2219 2220 if (udev->speed == USB_SPEED_SUPER) { 2221 if (xhci_is_sync_in_ep(ep_bw->type)) 2222 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2223 xhci_get_ss_bw_consumed(ep_bw); 2224 else 2225 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2226 xhci_get_ss_bw_consumed(ep_bw); 2227 return; 2228 } 2229 2230 /* For LS/FS devices, we need to translate the interval expressed in 2231 * microframes to frames. 2232 */ 2233 if (udev->speed == USB_SPEED_HIGH) 2234 normalized_interval = ep_bw->ep_interval; 2235 else 2236 normalized_interval = ep_bw->ep_interval - 3; 2237 2238 if (normalized_interval == 0) 2239 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2240 interval_bw = &bw_table->interval_bw[normalized_interval]; 2241 interval_bw->num_packets += ep_bw->num_packets; 2242 switch (udev->speed) { 2243 case USB_SPEED_LOW: 2244 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2245 break; 2246 case USB_SPEED_FULL: 2247 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2248 break; 2249 case USB_SPEED_HIGH: 2250 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2251 break; 2252 case USB_SPEED_SUPER: 2253 case USB_SPEED_UNKNOWN: 2254 case USB_SPEED_WIRELESS: 2255 /* Should never happen because only LS/FS/HS endpoints will get 2256 * added to the endpoint list. 2257 */ 2258 return; 2259 } 2260 2261 if (tt_info) 2262 tt_info->active_eps += 1; 2263 /* Insert the endpoint into the list, largest max packet size first. */ 2264 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2265 bw_endpoint_list) { 2266 if (ep_bw->max_packet_size >= 2267 smaller_ep->bw_info.max_packet_size) { 2268 /* Add the new ep before the smaller endpoint */ 2269 list_add_tail(&virt_ep->bw_endpoint_list, 2270 &smaller_ep->bw_endpoint_list); 2271 return; 2272 } 2273 } 2274 /* Add the new endpoint at the end of the list. */ 2275 list_add_tail(&virt_ep->bw_endpoint_list, 2276 &interval_bw->endpoints); 2277 } 2278 2279 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2280 struct xhci_virt_device *virt_dev, 2281 int old_active_eps) 2282 { 2283 struct xhci_root_port_bw_info *rh_bw_info; 2284 if (!virt_dev->tt_info) 2285 return; 2286 2287 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2288 if (old_active_eps == 0 && 2289 virt_dev->tt_info->active_eps != 0) { 2290 rh_bw_info->num_active_tts += 1; 2291 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2292 } else if (old_active_eps != 0 && 2293 virt_dev->tt_info->active_eps == 0) { 2294 rh_bw_info->num_active_tts -= 1; 2295 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2296 } 2297 } 2298 2299 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2300 struct xhci_virt_device *virt_dev, 2301 struct xhci_container_ctx *in_ctx) 2302 { 2303 struct xhci_bw_info ep_bw_info[31]; 2304 int i; 2305 struct xhci_input_control_ctx *ctrl_ctx; 2306 int old_active_eps = 0; 2307 2308 if (virt_dev->tt_info) 2309 old_active_eps = virt_dev->tt_info->active_eps; 2310 2311 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2312 2313 for (i = 0; i < 31; i++) { 2314 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2315 continue; 2316 2317 /* Make a copy of the BW info in case we need to revert this */ 2318 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2319 sizeof(ep_bw_info[i])); 2320 /* Drop the endpoint from the interval table if the endpoint is 2321 * being dropped or changed. 2322 */ 2323 if (EP_IS_DROPPED(ctrl_ctx, i)) 2324 xhci_drop_ep_from_interval_table(xhci, 2325 &virt_dev->eps[i].bw_info, 2326 virt_dev->bw_table, 2327 virt_dev->udev, 2328 &virt_dev->eps[i], 2329 virt_dev->tt_info); 2330 } 2331 /* Overwrite the information stored in the endpoints' bw_info */ 2332 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2333 for (i = 0; i < 31; i++) { 2334 /* Add any changed or added endpoints to the interval table */ 2335 if (EP_IS_ADDED(ctrl_ctx, i)) 2336 xhci_add_ep_to_interval_table(xhci, 2337 &virt_dev->eps[i].bw_info, 2338 virt_dev->bw_table, 2339 virt_dev->udev, 2340 &virt_dev->eps[i], 2341 virt_dev->tt_info); 2342 } 2343 2344 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2345 /* Ok, this fits in the bandwidth we have. 2346 * Update the number of active TTs. 2347 */ 2348 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2349 return 0; 2350 } 2351 2352 /* We don't have enough bandwidth for this, revert the stored info. */ 2353 for (i = 0; i < 31; i++) { 2354 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2355 continue; 2356 2357 /* Drop the new copies of any added or changed endpoints from 2358 * the interval table. 2359 */ 2360 if (EP_IS_ADDED(ctrl_ctx, i)) { 2361 xhci_drop_ep_from_interval_table(xhci, 2362 &virt_dev->eps[i].bw_info, 2363 virt_dev->bw_table, 2364 virt_dev->udev, 2365 &virt_dev->eps[i], 2366 virt_dev->tt_info); 2367 } 2368 /* Revert the endpoint back to its old information */ 2369 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2370 sizeof(ep_bw_info[i])); 2371 /* Add any changed or dropped endpoints back into the table */ 2372 if (EP_IS_DROPPED(ctrl_ctx, i)) 2373 xhci_add_ep_to_interval_table(xhci, 2374 &virt_dev->eps[i].bw_info, 2375 virt_dev->bw_table, 2376 virt_dev->udev, 2377 &virt_dev->eps[i], 2378 virt_dev->tt_info); 2379 } 2380 return -ENOMEM; 2381 } 2382 2383 2384 /* Issue a configure endpoint command or evaluate context command 2385 * and wait for it to finish. 2386 */ 2387 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2388 struct usb_device *udev, 2389 struct xhci_command *command, 2390 bool ctx_change, bool must_succeed) 2391 { 2392 int ret; 2393 int timeleft; 2394 unsigned long flags; 2395 struct xhci_container_ctx *in_ctx; 2396 struct completion *cmd_completion; 2397 u32 *cmd_status; 2398 struct xhci_virt_device *virt_dev; 2399 2400 spin_lock_irqsave(&xhci->lock, flags); 2401 virt_dev = xhci->devs[udev->slot_id]; 2402 2403 if (command) 2404 in_ctx = command->in_ctx; 2405 else 2406 in_ctx = virt_dev->in_ctx; 2407 2408 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2409 xhci_reserve_host_resources(xhci, in_ctx)) { 2410 spin_unlock_irqrestore(&xhci->lock, flags); 2411 xhci_warn(xhci, "Not enough host resources, " 2412 "active endpoint contexts = %u\n", 2413 xhci->num_active_eps); 2414 return -ENOMEM; 2415 } 2416 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2417 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2418 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2419 xhci_free_host_resources(xhci, in_ctx); 2420 spin_unlock_irqrestore(&xhci->lock, flags); 2421 xhci_warn(xhci, "Not enough bandwidth\n"); 2422 return -ENOMEM; 2423 } 2424 2425 if (command) { 2426 cmd_completion = command->completion; 2427 cmd_status = &command->status; 2428 command->command_trb = xhci->cmd_ring->enqueue; 2429 2430 /* Enqueue pointer can be left pointing to the link TRB, 2431 * we must handle that 2432 */ 2433 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) 2434 command->command_trb = 2435 xhci->cmd_ring->enq_seg->next->trbs; 2436 2437 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2438 } else { 2439 cmd_completion = &virt_dev->cmd_completion; 2440 cmd_status = &virt_dev->cmd_status; 2441 } 2442 init_completion(cmd_completion); 2443 2444 if (!ctx_change) 2445 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2446 udev->slot_id, must_succeed); 2447 else 2448 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2449 udev->slot_id, must_succeed); 2450 if (ret < 0) { 2451 if (command) 2452 list_del(&command->cmd_list); 2453 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2454 xhci_free_host_resources(xhci, in_ctx); 2455 spin_unlock_irqrestore(&xhci->lock, flags); 2456 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 2457 return -ENOMEM; 2458 } 2459 xhci_ring_cmd_db(xhci); 2460 spin_unlock_irqrestore(&xhci->lock, flags); 2461 2462 /* Wait for the configure endpoint command to complete */ 2463 timeleft = wait_for_completion_interruptible_timeout( 2464 cmd_completion, 2465 USB_CTRL_SET_TIMEOUT); 2466 if (timeleft <= 0) { 2467 xhci_warn(xhci, "%s while waiting for %s command\n", 2468 timeleft == 0 ? "Timeout" : "Signal", 2469 ctx_change == 0 ? 2470 "configure endpoint" : 2471 "evaluate context"); 2472 /* FIXME cancel the configure endpoint command */ 2473 return -ETIME; 2474 } 2475 2476 if (!ctx_change) 2477 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2478 else 2479 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2480 2481 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2482 spin_lock_irqsave(&xhci->lock, flags); 2483 /* If the command failed, remove the reserved resources. 2484 * Otherwise, clean up the estimate to include dropped eps. 2485 */ 2486 if (ret) 2487 xhci_free_host_resources(xhci, in_ctx); 2488 else 2489 xhci_finish_resource_reservation(xhci, in_ctx); 2490 spin_unlock_irqrestore(&xhci->lock, flags); 2491 } 2492 return ret; 2493 } 2494 2495 /* Called after one or more calls to xhci_add_endpoint() or 2496 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2497 * to call xhci_reset_bandwidth(). 2498 * 2499 * Since we are in the middle of changing either configuration or 2500 * installing a new alt setting, the USB core won't allow URBs to be 2501 * enqueued for any endpoint on the old config or interface. Nothing 2502 * else should be touching the xhci->devs[slot_id] structure, so we 2503 * don't need to take the xhci->lock for manipulating that. 2504 */ 2505 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2506 { 2507 int i; 2508 int ret = 0; 2509 struct xhci_hcd *xhci; 2510 struct xhci_virt_device *virt_dev; 2511 struct xhci_input_control_ctx *ctrl_ctx; 2512 struct xhci_slot_ctx *slot_ctx; 2513 2514 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2515 if (ret <= 0) 2516 return ret; 2517 xhci = hcd_to_xhci(hcd); 2518 if (xhci->xhc_state & XHCI_STATE_DYING) 2519 return -ENODEV; 2520 2521 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2522 virt_dev = xhci->devs[udev->slot_id]; 2523 2524 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2525 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2526 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2527 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2528 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2529 2530 /* Don't issue the command if there's no endpoints to update. */ 2531 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2532 ctrl_ctx->drop_flags == 0) 2533 return 0; 2534 2535 xhci_dbg(xhci, "New Input Control Context:\n"); 2536 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2537 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2538 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2539 2540 ret = xhci_configure_endpoint(xhci, udev, NULL, 2541 false, false); 2542 if (ret) { 2543 /* Callee should call reset_bandwidth() */ 2544 return ret; 2545 } 2546 2547 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2548 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2549 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2550 2551 /* Free any rings that were dropped, but not changed. */ 2552 for (i = 1; i < 31; ++i) { 2553 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2554 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2555 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2556 } 2557 xhci_zero_in_ctx(xhci, virt_dev); 2558 /* 2559 * Install any rings for completely new endpoints or changed endpoints, 2560 * and free or cache any old rings from changed endpoints. 2561 */ 2562 for (i = 1; i < 31; ++i) { 2563 if (!virt_dev->eps[i].new_ring) 2564 continue; 2565 /* Only cache or free the old ring if it exists. 2566 * It may not if this is the first add of an endpoint. 2567 */ 2568 if (virt_dev->eps[i].ring) { 2569 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2570 } 2571 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2572 virt_dev->eps[i].new_ring = NULL; 2573 } 2574 2575 return ret; 2576 } 2577 2578 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2579 { 2580 struct xhci_hcd *xhci; 2581 struct xhci_virt_device *virt_dev; 2582 int i, ret; 2583 2584 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2585 if (ret <= 0) 2586 return; 2587 xhci = hcd_to_xhci(hcd); 2588 2589 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2590 virt_dev = xhci->devs[udev->slot_id]; 2591 /* Free any rings allocated for added endpoints */ 2592 for (i = 0; i < 31; ++i) { 2593 if (virt_dev->eps[i].new_ring) { 2594 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2595 virt_dev->eps[i].new_ring = NULL; 2596 } 2597 } 2598 xhci_zero_in_ctx(xhci, virt_dev); 2599 } 2600 2601 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2602 struct xhci_container_ctx *in_ctx, 2603 struct xhci_container_ctx *out_ctx, 2604 u32 add_flags, u32 drop_flags) 2605 { 2606 struct xhci_input_control_ctx *ctrl_ctx; 2607 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2608 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2609 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2610 xhci_slot_copy(xhci, in_ctx, out_ctx); 2611 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2612 2613 xhci_dbg(xhci, "Input Context:\n"); 2614 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2615 } 2616 2617 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2618 unsigned int slot_id, unsigned int ep_index, 2619 struct xhci_dequeue_state *deq_state) 2620 { 2621 struct xhci_container_ctx *in_ctx; 2622 struct xhci_ep_ctx *ep_ctx; 2623 u32 added_ctxs; 2624 dma_addr_t addr; 2625 2626 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2627 xhci->devs[slot_id]->out_ctx, ep_index); 2628 in_ctx = xhci->devs[slot_id]->in_ctx; 2629 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2630 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2631 deq_state->new_deq_ptr); 2632 if (addr == 0) { 2633 xhci_warn(xhci, "WARN Cannot submit config ep after " 2634 "reset ep command\n"); 2635 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2636 deq_state->new_deq_seg, 2637 deq_state->new_deq_ptr); 2638 return; 2639 } 2640 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2641 2642 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2643 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2644 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); 2645 } 2646 2647 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2648 struct usb_device *udev, unsigned int ep_index) 2649 { 2650 struct xhci_dequeue_state deq_state; 2651 struct xhci_virt_ep *ep; 2652 2653 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 2654 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2655 /* We need to move the HW's dequeue pointer past this TD, 2656 * or it will attempt to resend it on the next doorbell ring. 2657 */ 2658 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2659 ep_index, ep->stopped_stream, ep->stopped_td, 2660 &deq_state); 2661 2662 /* HW with the reset endpoint quirk will use the saved dequeue state to 2663 * issue a configure endpoint command later. 2664 */ 2665 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2666 xhci_dbg(xhci, "Queueing new dequeue state\n"); 2667 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2668 ep_index, ep->stopped_stream, &deq_state); 2669 } else { 2670 /* Better hope no one uses the input context between now and the 2671 * reset endpoint completion! 2672 * XXX: No idea how this hardware will react when stream rings 2673 * are enabled. 2674 */ 2675 xhci_dbg(xhci, "Setting up input context for " 2676 "configure endpoint command\n"); 2677 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2678 ep_index, &deq_state); 2679 } 2680 } 2681 2682 /* Deal with stalled endpoints. The core should have sent the control message 2683 * to clear the halt condition. However, we need to make the xHCI hardware 2684 * reset its sequence number, since a device will expect a sequence number of 2685 * zero after the halt condition is cleared. 2686 * Context: in_interrupt 2687 */ 2688 void xhci_endpoint_reset(struct usb_hcd *hcd, 2689 struct usb_host_endpoint *ep) 2690 { 2691 struct xhci_hcd *xhci; 2692 struct usb_device *udev; 2693 unsigned int ep_index; 2694 unsigned long flags; 2695 int ret; 2696 struct xhci_virt_ep *virt_ep; 2697 2698 xhci = hcd_to_xhci(hcd); 2699 udev = (struct usb_device *) ep->hcpriv; 2700 /* Called with a root hub endpoint (or an endpoint that wasn't added 2701 * with xhci_add_endpoint() 2702 */ 2703 if (!ep->hcpriv) 2704 return; 2705 ep_index = xhci_get_endpoint_index(&ep->desc); 2706 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2707 if (!virt_ep->stopped_td) { 2708 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 2709 ep->desc.bEndpointAddress); 2710 return; 2711 } 2712 if (usb_endpoint_xfer_control(&ep->desc)) { 2713 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 2714 return; 2715 } 2716 2717 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 2718 spin_lock_irqsave(&xhci->lock, flags); 2719 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2720 /* 2721 * Can't change the ring dequeue pointer until it's transitioned to the 2722 * stopped state, which is only upon a successful reset endpoint 2723 * command. Better hope that last command worked! 2724 */ 2725 if (!ret) { 2726 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2727 kfree(virt_ep->stopped_td); 2728 xhci_ring_cmd_db(xhci); 2729 } 2730 virt_ep->stopped_td = NULL; 2731 virt_ep->stopped_trb = NULL; 2732 virt_ep->stopped_stream = 0; 2733 spin_unlock_irqrestore(&xhci->lock, flags); 2734 2735 if (ret) 2736 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2737 } 2738 2739 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2740 struct usb_device *udev, struct usb_host_endpoint *ep, 2741 unsigned int slot_id) 2742 { 2743 int ret; 2744 unsigned int ep_index; 2745 unsigned int ep_state; 2746 2747 if (!ep) 2748 return -EINVAL; 2749 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2750 if (ret <= 0) 2751 return -EINVAL; 2752 if (ep->ss_ep_comp.bmAttributes == 0) { 2753 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2754 " descriptor for ep 0x%x does not support streams\n", 2755 ep->desc.bEndpointAddress); 2756 return -EINVAL; 2757 } 2758 2759 ep_index = xhci_get_endpoint_index(&ep->desc); 2760 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2761 if (ep_state & EP_HAS_STREAMS || 2762 ep_state & EP_GETTING_STREAMS) { 2763 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2764 "already has streams set up.\n", 2765 ep->desc.bEndpointAddress); 2766 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2767 "dynamic stream context array reallocation.\n"); 2768 return -EINVAL; 2769 } 2770 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2771 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2772 "endpoint 0x%x; URBs are pending.\n", 2773 ep->desc.bEndpointAddress); 2774 return -EINVAL; 2775 } 2776 return 0; 2777 } 2778 2779 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2780 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2781 { 2782 unsigned int max_streams; 2783 2784 /* The stream context array size must be a power of two */ 2785 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2786 /* 2787 * Find out how many primary stream array entries the host controller 2788 * supports. Later we may use secondary stream arrays (similar to 2nd 2789 * level page entries), but that's an optional feature for xHCI host 2790 * controllers. xHCs must support at least 4 stream IDs. 2791 */ 2792 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2793 if (*num_stream_ctxs > max_streams) { 2794 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2795 max_streams); 2796 *num_stream_ctxs = max_streams; 2797 *num_streams = max_streams; 2798 } 2799 } 2800 2801 /* Returns an error code if one of the endpoint already has streams. 2802 * This does not change any data structures, it only checks and gathers 2803 * information. 2804 */ 2805 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2806 struct usb_device *udev, 2807 struct usb_host_endpoint **eps, unsigned int num_eps, 2808 unsigned int *num_streams, u32 *changed_ep_bitmask) 2809 { 2810 unsigned int max_streams; 2811 unsigned int endpoint_flag; 2812 int i; 2813 int ret; 2814 2815 for (i = 0; i < num_eps; i++) { 2816 ret = xhci_check_streams_endpoint(xhci, udev, 2817 eps[i], udev->slot_id); 2818 if (ret < 0) 2819 return ret; 2820 2821 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2822 if (max_streams < (*num_streams - 1)) { 2823 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2824 eps[i]->desc.bEndpointAddress, 2825 max_streams); 2826 *num_streams = max_streams+1; 2827 } 2828 2829 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2830 if (*changed_ep_bitmask & endpoint_flag) 2831 return -EINVAL; 2832 *changed_ep_bitmask |= endpoint_flag; 2833 } 2834 return 0; 2835 } 2836 2837 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 2838 struct usb_device *udev, 2839 struct usb_host_endpoint **eps, unsigned int num_eps) 2840 { 2841 u32 changed_ep_bitmask = 0; 2842 unsigned int slot_id; 2843 unsigned int ep_index; 2844 unsigned int ep_state; 2845 int i; 2846 2847 slot_id = udev->slot_id; 2848 if (!xhci->devs[slot_id]) 2849 return 0; 2850 2851 for (i = 0; i < num_eps; i++) { 2852 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2853 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2854 /* Are streams already being freed for the endpoint? */ 2855 if (ep_state & EP_GETTING_NO_STREAMS) { 2856 xhci_warn(xhci, "WARN Can't disable streams for " 2857 "endpoint 0x%x\n, " 2858 "streams are being disabled already.", 2859 eps[i]->desc.bEndpointAddress); 2860 return 0; 2861 } 2862 /* Are there actually any streams to free? */ 2863 if (!(ep_state & EP_HAS_STREAMS) && 2864 !(ep_state & EP_GETTING_STREAMS)) { 2865 xhci_warn(xhci, "WARN Can't disable streams for " 2866 "endpoint 0x%x\n, " 2867 "streams are already disabled!", 2868 eps[i]->desc.bEndpointAddress); 2869 xhci_warn(xhci, "WARN xhci_free_streams() called " 2870 "with non-streams endpoint\n"); 2871 return 0; 2872 } 2873 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 2874 } 2875 return changed_ep_bitmask; 2876 } 2877 2878 /* 2879 * The USB device drivers use this function (though the HCD interface in USB 2880 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 2881 * coordinate mass storage command queueing across multiple endpoints (basically 2882 * a stream ID == a task ID). 2883 * 2884 * Setting up streams involves allocating the same size stream context array 2885 * for each endpoint and issuing a configure endpoint command for all endpoints. 2886 * 2887 * Don't allow the call to succeed if one endpoint only supports one stream 2888 * (which means it doesn't support streams at all). 2889 * 2890 * Drivers may get less stream IDs than they asked for, if the host controller 2891 * hardware or endpoints claim they can't support the number of requested 2892 * stream IDs. 2893 */ 2894 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 2895 struct usb_host_endpoint **eps, unsigned int num_eps, 2896 unsigned int num_streams, gfp_t mem_flags) 2897 { 2898 int i, ret; 2899 struct xhci_hcd *xhci; 2900 struct xhci_virt_device *vdev; 2901 struct xhci_command *config_cmd; 2902 unsigned int ep_index; 2903 unsigned int num_stream_ctxs; 2904 unsigned long flags; 2905 u32 changed_ep_bitmask = 0; 2906 2907 if (!eps) 2908 return -EINVAL; 2909 2910 /* Add one to the number of streams requested to account for 2911 * stream 0 that is reserved for xHCI usage. 2912 */ 2913 num_streams += 1; 2914 xhci = hcd_to_xhci(hcd); 2915 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 2916 num_streams); 2917 2918 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 2919 if (!config_cmd) { 2920 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 2921 return -ENOMEM; 2922 } 2923 2924 /* Check to make sure all endpoints are not already configured for 2925 * streams. While we're at it, find the maximum number of streams that 2926 * all the endpoints will support and check for duplicate endpoints. 2927 */ 2928 spin_lock_irqsave(&xhci->lock, flags); 2929 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 2930 num_eps, &num_streams, &changed_ep_bitmask); 2931 if (ret < 0) { 2932 xhci_free_command(xhci, config_cmd); 2933 spin_unlock_irqrestore(&xhci->lock, flags); 2934 return ret; 2935 } 2936 if (num_streams <= 1) { 2937 xhci_warn(xhci, "WARN: endpoints can't handle " 2938 "more than one stream.\n"); 2939 xhci_free_command(xhci, config_cmd); 2940 spin_unlock_irqrestore(&xhci->lock, flags); 2941 return -EINVAL; 2942 } 2943 vdev = xhci->devs[udev->slot_id]; 2944 /* Mark each endpoint as being in transition, so 2945 * xhci_urb_enqueue() will reject all URBs. 2946 */ 2947 for (i = 0; i < num_eps; i++) { 2948 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2949 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 2950 } 2951 spin_unlock_irqrestore(&xhci->lock, flags); 2952 2953 /* Setup internal data structures and allocate HW data structures for 2954 * streams (but don't install the HW structures in the input context 2955 * until we're sure all memory allocation succeeded). 2956 */ 2957 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 2958 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 2959 num_stream_ctxs, num_streams); 2960 2961 for (i = 0; i < num_eps; i++) { 2962 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2963 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 2964 num_stream_ctxs, 2965 num_streams, mem_flags); 2966 if (!vdev->eps[ep_index].stream_info) 2967 goto cleanup; 2968 /* Set maxPstreams in endpoint context and update deq ptr to 2969 * point to stream context array. FIXME 2970 */ 2971 } 2972 2973 /* Set up the input context for a configure endpoint command. */ 2974 for (i = 0; i < num_eps; i++) { 2975 struct xhci_ep_ctx *ep_ctx; 2976 2977 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2978 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 2979 2980 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 2981 vdev->out_ctx, ep_index); 2982 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 2983 vdev->eps[ep_index].stream_info); 2984 } 2985 /* Tell the HW to drop its old copy of the endpoint context info 2986 * and add the updated copy from the input context. 2987 */ 2988 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 2989 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 2990 2991 /* Issue and wait for the configure endpoint command */ 2992 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 2993 false, false); 2994 2995 /* xHC rejected the configure endpoint command for some reason, so we 2996 * leave the old ring intact and free our internal streams data 2997 * structure. 2998 */ 2999 if (ret < 0) 3000 goto cleanup; 3001 3002 spin_lock_irqsave(&xhci->lock, flags); 3003 for (i = 0; i < num_eps; i++) { 3004 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3005 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3006 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3007 udev->slot_id, ep_index); 3008 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3009 } 3010 xhci_free_command(xhci, config_cmd); 3011 spin_unlock_irqrestore(&xhci->lock, flags); 3012 3013 /* Subtract 1 for stream 0, which drivers can't use */ 3014 return num_streams - 1; 3015 3016 cleanup: 3017 /* If it didn't work, free the streams! */ 3018 for (i = 0; i < num_eps; i++) { 3019 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3020 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3021 vdev->eps[ep_index].stream_info = NULL; 3022 /* FIXME Unset maxPstreams in endpoint context and 3023 * update deq ptr to point to normal string ring. 3024 */ 3025 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3026 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3027 xhci_endpoint_zero(xhci, vdev, eps[i]); 3028 } 3029 xhci_free_command(xhci, config_cmd); 3030 return -ENOMEM; 3031 } 3032 3033 /* Transition the endpoint from using streams to being a "normal" endpoint 3034 * without streams. 3035 * 3036 * Modify the endpoint context state, submit a configure endpoint command, 3037 * and free all endpoint rings for streams if that completes successfully. 3038 */ 3039 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3040 struct usb_host_endpoint **eps, unsigned int num_eps, 3041 gfp_t mem_flags) 3042 { 3043 int i, ret; 3044 struct xhci_hcd *xhci; 3045 struct xhci_virt_device *vdev; 3046 struct xhci_command *command; 3047 unsigned int ep_index; 3048 unsigned long flags; 3049 u32 changed_ep_bitmask; 3050 3051 xhci = hcd_to_xhci(hcd); 3052 vdev = xhci->devs[udev->slot_id]; 3053 3054 /* Set up a configure endpoint command to remove the streams rings */ 3055 spin_lock_irqsave(&xhci->lock, flags); 3056 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3057 udev, eps, num_eps); 3058 if (changed_ep_bitmask == 0) { 3059 spin_unlock_irqrestore(&xhci->lock, flags); 3060 return -EINVAL; 3061 } 3062 3063 /* Use the xhci_command structure from the first endpoint. We may have 3064 * allocated too many, but the driver may call xhci_free_streams() for 3065 * each endpoint it grouped into one call to xhci_alloc_streams(). 3066 */ 3067 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3068 command = vdev->eps[ep_index].stream_info->free_streams_command; 3069 for (i = 0; i < num_eps; i++) { 3070 struct xhci_ep_ctx *ep_ctx; 3071 3072 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3073 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3074 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3075 EP_GETTING_NO_STREAMS; 3076 3077 xhci_endpoint_copy(xhci, command->in_ctx, 3078 vdev->out_ctx, ep_index); 3079 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3080 &vdev->eps[ep_index]); 3081 } 3082 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3083 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3084 spin_unlock_irqrestore(&xhci->lock, flags); 3085 3086 /* Issue and wait for the configure endpoint command, 3087 * which must succeed. 3088 */ 3089 ret = xhci_configure_endpoint(xhci, udev, command, 3090 false, true); 3091 3092 /* xHC rejected the configure endpoint command for some reason, so we 3093 * leave the streams rings intact. 3094 */ 3095 if (ret < 0) 3096 return ret; 3097 3098 spin_lock_irqsave(&xhci->lock, flags); 3099 for (i = 0; i < num_eps; i++) { 3100 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3101 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3102 vdev->eps[ep_index].stream_info = NULL; 3103 /* FIXME Unset maxPstreams in endpoint context and 3104 * update deq ptr to point to normal string ring. 3105 */ 3106 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3107 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3108 } 3109 spin_unlock_irqrestore(&xhci->lock, flags); 3110 3111 return 0; 3112 } 3113 3114 /* 3115 * Deletes endpoint resources for endpoints that were active before a Reset 3116 * Device command, or a Disable Slot command. The Reset Device command leaves 3117 * the control endpoint intact, whereas the Disable Slot command deletes it. 3118 * 3119 * Must be called with xhci->lock held. 3120 */ 3121 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3122 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3123 { 3124 int i; 3125 unsigned int num_dropped_eps = 0; 3126 unsigned int drop_flags = 0; 3127 3128 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3129 if (virt_dev->eps[i].ring) { 3130 drop_flags |= 1 << i; 3131 num_dropped_eps++; 3132 } 3133 } 3134 xhci->num_active_eps -= num_dropped_eps; 3135 if (num_dropped_eps) 3136 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " 3137 "%u now active.\n", 3138 num_dropped_eps, drop_flags, 3139 xhci->num_active_eps); 3140 } 3141 3142 /* 3143 * This submits a Reset Device Command, which will set the device state to 0, 3144 * set the device address to 0, and disable all the endpoints except the default 3145 * control endpoint. The USB core should come back and call 3146 * xhci_address_device(), and then re-set up the configuration. If this is 3147 * called because of a usb_reset_and_verify_device(), then the old alternate 3148 * settings will be re-installed through the normal bandwidth allocation 3149 * functions. 3150 * 3151 * Wait for the Reset Device command to finish. Remove all structures 3152 * associated with the endpoints that were disabled. Clear the input device 3153 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3154 * 3155 * If the virt_dev to be reset does not exist or does not match the udev, 3156 * it means the device is lost, possibly due to the xHC restore error and 3157 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3158 * re-allocate the device. 3159 */ 3160 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3161 { 3162 int ret, i; 3163 unsigned long flags; 3164 struct xhci_hcd *xhci; 3165 unsigned int slot_id; 3166 struct xhci_virt_device *virt_dev; 3167 struct xhci_command *reset_device_cmd; 3168 int timeleft; 3169 int last_freed_endpoint; 3170 struct xhci_slot_ctx *slot_ctx; 3171 int old_active_eps = 0; 3172 3173 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3174 if (ret <= 0) 3175 return ret; 3176 xhci = hcd_to_xhci(hcd); 3177 slot_id = udev->slot_id; 3178 virt_dev = xhci->devs[slot_id]; 3179 if (!virt_dev) { 3180 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3181 "not exist. Re-allocate the device\n", slot_id); 3182 ret = xhci_alloc_dev(hcd, udev); 3183 if (ret == 1) 3184 return 0; 3185 else 3186 return -EINVAL; 3187 } 3188 3189 if (virt_dev->udev != udev) { 3190 /* If the virt_dev and the udev does not match, this virt_dev 3191 * may belong to another udev. 3192 * Re-allocate the device. 3193 */ 3194 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3195 "not match the udev. Re-allocate the device\n", 3196 slot_id); 3197 ret = xhci_alloc_dev(hcd, udev); 3198 if (ret == 1) 3199 return 0; 3200 else 3201 return -EINVAL; 3202 } 3203 3204 /* If device is not setup, there is no point in resetting it */ 3205 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3206 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3207 SLOT_STATE_DISABLED) 3208 return 0; 3209 3210 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3211 /* Allocate the command structure that holds the struct completion. 3212 * Assume we're in process context, since the normal device reset 3213 * process has to wait for the device anyway. Storage devices are 3214 * reset as part of error handling, so use GFP_NOIO instead of 3215 * GFP_KERNEL. 3216 */ 3217 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3218 if (!reset_device_cmd) { 3219 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3220 return -ENOMEM; 3221 } 3222 3223 /* Attempt to submit the Reset Device command to the command ring */ 3224 spin_lock_irqsave(&xhci->lock, flags); 3225 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 3226 3227 /* Enqueue pointer can be left pointing to the link TRB, 3228 * we must handle that 3229 */ 3230 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) 3231 reset_device_cmd->command_trb = 3232 xhci->cmd_ring->enq_seg->next->trbs; 3233 3234 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3235 ret = xhci_queue_reset_device(xhci, slot_id); 3236 if (ret) { 3237 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3238 list_del(&reset_device_cmd->cmd_list); 3239 spin_unlock_irqrestore(&xhci->lock, flags); 3240 goto command_cleanup; 3241 } 3242 xhci_ring_cmd_db(xhci); 3243 spin_unlock_irqrestore(&xhci->lock, flags); 3244 3245 /* Wait for the Reset Device command to finish */ 3246 timeleft = wait_for_completion_interruptible_timeout( 3247 reset_device_cmd->completion, 3248 USB_CTRL_SET_TIMEOUT); 3249 if (timeleft <= 0) { 3250 xhci_warn(xhci, "%s while waiting for reset device command\n", 3251 timeleft == 0 ? "Timeout" : "Signal"); 3252 spin_lock_irqsave(&xhci->lock, flags); 3253 /* The timeout might have raced with the event ring handler, so 3254 * only delete from the list if the item isn't poisoned. 3255 */ 3256 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3257 list_del(&reset_device_cmd->cmd_list); 3258 spin_unlock_irqrestore(&xhci->lock, flags); 3259 ret = -ETIME; 3260 goto command_cleanup; 3261 } 3262 3263 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3264 * unless we tried to reset a slot ID that wasn't enabled, 3265 * or the device wasn't in the addressed or configured state. 3266 */ 3267 ret = reset_device_cmd->status; 3268 switch (ret) { 3269 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3270 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3271 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 3272 slot_id, 3273 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3274 xhci_info(xhci, "Not freeing device rings.\n"); 3275 /* Don't treat this as an error. May change my mind later. */ 3276 ret = 0; 3277 goto command_cleanup; 3278 case COMP_SUCCESS: 3279 xhci_dbg(xhci, "Successful reset device command.\n"); 3280 break; 3281 default: 3282 if (xhci_is_vendor_info_code(xhci, ret)) 3283 break; 3284 xhci_warn(xhci, "Unknown completion code %u for " 3285 "reset device command.\n", ret); 3286 ret = -EINVAL; 3287 goto command_cleanup; 3288 } 3289 3290 /* Free up host controller endpoint resources */ 3291 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3292 spin_lock_irqsave(&xhci->lock, flags); 3293 /* Don't delete the default control endpoint resources */ 3294 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3295 spin_unlock_irqrestore(&xhci->lock, flags); 3296 } 3297 3298 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3299 last_freed_endpoint = 1; 3300 for (i = 1; i < 31; ++i) { 3301 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3302 3303 if (ep->ep_state & EP_HAS_STREAMS) { 3304 xhci_free_stream_info(xhci, ep->stream_info); 3305 ep->stream_info = NULL; 3306 ep->ep_state &= ~EP_HAS_STREAMS; 3307 } 3308 3309 if (ep->ring) { 3310 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3311 last_freed_endpoint = i; 3312 } 3313 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3314 xhci_drop_ep_from_interval_table(xhci, 3315 &virt_dev->eps[i].bw_info, 3316 virt_dev->bw_table, 3317 udev, 3318 &virt_dev->eps[i], 3319 virt_dev->tt_info); 3320 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3321 } 3322 /* If necessary, update the number of active TTs on this root port */ 3323 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3324 3325 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3326 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3327 ret = 0; 3328 3329 command_cleanup: 3330 xhci_free_command(xhci, reset_device_cmd); 3331 return ret; 3332 } 3333 3334 /* 3335 * At this point, the struct usb_device is about to go away, the device has 3336 * disconnected, and all traffic has been stopped and the endpoints have been 3337 * disabled. Free any HC data structures associated with that device. 3338 */ 3339 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3340 { 3341 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3342 struct xhci_virt_device *virt_dev; 3343 unsigned long flags; 3344 u32 state; 3345 int i, ret; 3346 3347 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3348 /* If the host is halted due to driver unload, we still need to free the 3349 * device. 3350 */ 3351 if (ret <= 0 && ret != -ENODEV) 3352 return; 3353 3354 virt_dev = xhci->devs[udev->slot_id]; 3355 3356 /* Stop any wayward timer functions (which may grab the lock) */ 3357 for (i = 0; i < 31; ++i) { 3358 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3359 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3360 } 3361 3362 if (udev->usb2_hw_lpm_enabled) { 3363 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3364 udev->usb2_hw_lpm_enabled = 0; 3365 } 3366 3367 spin_lock_irqsave(&xhci->lock, flags); 3368 /* Don't disable the slot if the host controller is dead. */ 3369 state = xhci_readl(xhci, &xhci->op_regs->status); 3370 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3371 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3372 xhci_free_virt_device(xhci, udev->slot_id); 3373 spin_unlock_irqrestore(&xhci->lock, flags); 3374 return; 3375 } 3376 3377 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3378 spin_unlock_irqrestore(&xhci->lock, flags); 3379 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3380 return; 3381 } 3382 xhci_ring_cmd_db(xhci); 3383 spin_unlock_irqrestore(&xhci->lock, flags); 3384 /* 3385 * Event command completion handler will free any data structures 3386 * associated with the slot. XXX Can free sleep? 3387 */ 3388 } 3389 3390 /* 3391 * Checks if we have enough host controller resources for the default control 3392 * endpoint. 3393 * 3394 * Must be called with xhci->lock held. 3395 */ 3396 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3397 { 3398 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3399 xhci_dbg(xhci, "Not enough ep ctxs: " 3400 "%u active, need to add 1, limit is %u.\n", 3401 xhci->num_active_eps, xhci->limit_active_eps); 3402 return -ENOMEM; 3403 } 3404 xhci->num_active_eps += 1; 3405 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", 3406 xhci->num_active_eps); 3407 return 0; 3408 } 3409 3410 3411 /* 3412 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3413 * timed out, or allocating memory failed. Returns 1 on success. 3414 */ 3415 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3416 { 3417 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3418 unsigned long flags; 3419 int timeleft; 3420 int ret; 3421 3422 spin_lock_irqsave(&xhci->lock, flags); 3423 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3424 if (ret) { 3425 spin_unlock_irqrestore(&xhci->lock, flags); 3426 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3427 return 0; 3428 } 3429 xhci_ring_cmd_db(xhci); 3430 spin_unlock_irqrestore(&xhci->lock, flags); 3431 3432 /* XXX: how much time for xHC slot assignment? */ 3433 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3434 USB_CTRL_SET_TIMEOUT); 3435 if (timeleft <= 0) { 3436 xhci_warn(xhci, "%s while waiting for a slot\n", 3437 timeleft == 0 ? "Timeout" : "Signal"); 3438 /* FIXME cancel the enable slot request */ 3439 return 0; 3440 } 3441 3442 if (!xhci->slot_id) { 3443 xhci_err(xhci, "Error while assigning device slot ID\n"); 3444 return 0; 3445 } 3446 3447 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3448 spin_lock_irqsave(&xhci->lock, flags); 3449 ret = xhci_reserve_host_control_ep_resources(xhci); 3450 if (ret) { 3451 spin_unlock_irqrestore(&xhci->lock, flags); 3452 xhci_warn(xhci, "Not enough host resources, " 3453 "active endpoint contexts = %u\n", 3454 xhci->num_active_eps); 3455 goto disable_slot; 3456 } 3457 spin_unlock_irqrestore(&xhci->lock, flags); 3458 } 3459 /* Use GFP_NOIO, since this function can be called from 3460 * xhci_discover_or_reset_device(), which may be called as part of 3461 * mass storage driver error handling. 3462 */ 3463 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3464 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3465 goto disable_slot; 3466 } 3467 udev->slot_id = xhci->slot_id; 3468 /* Is this a LS or FS device under a HS hub? */ 3469 /* Hub or peripherial? */ 3470 return 1; 3471 3472 disable_slot: 3473 /* Disable slot, if we can do it without mem alloc */ 3474 spin_lock_irqsave(&xhci->lock, flags); 3475 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3476 xhci_ring_cmd_db(xhci); 3477 spin_unlock_irqrestore(&xhci->lock, flags); 3478 return 0; 3479 } 3480 3481 /* 3482 * Issue an Address Device command (which will issue a SetAddress request to 3483 * the device). 3484 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3485 * we should only issue and wait on one address command at the same time. 3486 * 3487 * We add one to the device address issued by the hardware because the USB core 3488 * uses address 1 for the root hubs (even though they're not really devices). 3489 */ 3490 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3491 { 3492 unsigned long flags; 3493 int timeleft; 3494 struct xhci_virt_device *virt_dev; 3495 int ret = 0; 3496 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3497 struct xhci_slot_ctx *slot_ctx; 3498 struct xhci_input_control_ctx *ctrl_ctx; 3499 u64 temp_64; 3500 3501 if (!udev->slot_id) { 3502 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 3503 return -EINVAL; 3504 } 3505 3506 virt_dev = xhci->devs[udev->slot_id]; 3507 3508 if (WARN_ON(!virt_dev)) { 3509 /* 3510 * In plug/unplug torture test with an NEC controller, 3511 * a zero-dereference was observed once due to virt_dev = 0. 3512 * Print useful debug rather than crash if it is observed again! 3513 */ 3514 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3515 udev->slot_id); 3516 return -EINVAL; 3517 } 3518 3519 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3520 /* 3521 * If this is the first Set Address since device plug-in or 3522 * virt_device realloaction after a resume with an xHCI power loss, 3523 * then set up the slot context. 3524 */ 3525 if (!slot_ctx->dev_info) 3526 xhci_setup_addressable_virt_dev(xhci, udev); 3527 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3528 else 3529 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3530 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3531 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3532 ctrl_ctx->drop_flags = 0; 3533 3534 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3535 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3536 3537 spin_lock_irqsave(&xhci->lock, flags); 3538 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3539 udev->slot_id); 3540 if (ret) { 3541 spin_unlock_irqrestore(&xhci->lock, flags); 3542 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3543 return ret; 3544 } 3545 xhci_ring_cmd_db(xhci); 3546 spin_unlock_irqrestore(&xhci->lock, flags); 3547 3548 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3549 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3550 USB_CTRL_SET_TIMEOUT); 3551 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3552 * the SetAddress() "recovery interval" required by USB and aborting the 3553 * command on a timeout. 3554 */ 3555 if (timeleft <= 0) { 3556 xhci_warn(xhci, "%s while waiting for address device command\n", 3557 timeleft == 0 ? "Timeout" : "Signal"); 3558 /* FIXME cancel the address device command */ 3559 return -ETIME; 3560 } 3561 3562 switch (virt_dev->cmd_status) { 3563 case COMP_CTX_STATE: 3564 case COMP_EBADSLT: 3565 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3566 udev->slot_id); 3567 ret = -EINVAL; 3568 break; 3569 case COMP_TX_ERR: 3570 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3571 ret = -EPROTO; 3572 break; 3573 case COMP_DEV_ERR: 3574 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3575 "device command.\n"); 3576 ret = -ENODEV; 3577 break; 3578 case COMP_SUCCESS: 3579 xhci_dbg(xhci, "Successful Address Device command\n"); 3580 break; 3581 default: 3582 xhci_err(xhci, "ERROR: unexpected command completion " 3583 "code 0x%x.\n", virt_dev->cmd_status); 3584 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3585 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3586 ret = -EINVAL; 3587 break; 3588 } 3589 if (ret) { 3590 return ret; 3591 } 3592 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3593 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 3594 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 3595 udev->slot_id, 3596 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3597 (unsigned long long) 3598 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3599 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 3600 (unsigned long long)virt_dev->out_ctx->dma); 3601 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3602 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3603 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3604 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3605 /* 3606 * USB core uses address 1 for the roothubs, so we add one to the 3607 * address given back to us by the HC. 3608 */ 3609 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3610 /* Use kernel assigned address for devices; store xHC assigned 3611 * address locally. */ 3612 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3613 + 1; 3614 /* Zero the input context control for later use */ 3615 ctrl_ctx->add_flags = 0; 3616 ctrl_ctx->drop_flags = 0; 3617 3618 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); 3619 3620 return 0; 3621 } 3622 3623 #ifdef CONFIG_USB_SUSPEND 3624 3625 /* BESL to HIRD Encoding array for USB2 LPM */ 3626 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3627 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3628 3629 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3630 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 3631 struct usb_device *udev) 3632 { 3633 int u2del, besl, besl_host; 3634 int besl_device = 0; 3635 u32 field; 3636 3637 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3638 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 3639 3640 if (field & USB_BESL_SUPPORT) { 3641 for (besl_host = 0; besl_host < 16; besl_host++) { 3642 if (xhci_besl_encoding[besl_host] >= u2del) 3643 break; 3644 } 3645 /* Use baseline BESL value as default */ 3646 if (field & USB_BESL_BASELINE_VALID) 3647 besl_device = USB_GET_BESL_BASELINE(field); 3648 else if (field & USB_BESL_DEEP_VALID) 3649 besl_device = USB_GET_BESL_DEEP(field); 3650 } else { 3651 if (u2del <= 50) 3652 besl_host = 0; 3653 else 3654 besl_host = (u2del - 51) / 75 + 1; 3655 } 3656 3657 besl = besl_host + besl_device; 3658 if (besl > 15) 3659 besl = 15; 3660 3661 return besl; 3662 } 3663 3664 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 3665 struct usb_device *udev) 3666 { 3667 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3668 struct dev_info *dev_info; 3669 __le32 __iomem **port_array; 3670 __le32 __iomem *addr, *pm_addr; 3671 u32 temp, dev_id; 3672 unsigned int port_num; 3673 unsigned long flags; 3674 int hird; 3675 int ret; 3676 3677 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 3678 !udev->lpm_capable) 3679 return -EINVAL; 3680 3681 /* we only support lpm for non-hub device connected to root hub yet */ 3682 if (!udev->parent || udev->parent->parent || 3683 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3684 return -EINVAL; 3685 3686 spin_lock_irqsave(&xhci->lock, flags); 3687 3688 /* Look for devices in lpm_failed_devs list */ 3689 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 3690 le16_to_cpu(udev->descriptor.idProduct); 3691 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 3692 if (dev_info->dev_id == dev_id) { 3693 ret = -EINVAL; 3694 goto finish; 3695 } 3696 } 3697 3698 port_array = xhci->usb2_ports; 3699 port_num = udev->portnum - 1; 3700 3701 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 3702 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 3703 ret = -EINVAL; 3704 goto finish; 3705 } 3706 3707 /* 3708 * Test USB 2.0 software LPM. 3709 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 3710 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 3711 * in the June 2011 errata release. 3712 */ 3713 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 3714 /* 3715 * Set L1 Device Slot and HIRD/BESL. 3716 * Check device's USB 2.0 extension descriptor to determine whether 3717 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 3718 */ 3719 pm_addr = port_array[port_num] + 1; 3720 hird = xhci_calculate_hird_besl(xhci, udev); 3721 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 3722 xhci_writel(xhci, temp, pm_addr); 3723 3724 /* Set port link state to U2(L1) */ 3725 addr = port_array[port_num]; 3726 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 3727 3728 /* wait for ACK */ 3729 spin_unlock_irqrestore(&xhci->lock, flags); 3730 msleep(10); 3731 spin_lock_irqsave(&xhci->lock, flags); 3732 3733 /* Check L1 Status */ 3734 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 3735 if (ret != -ETIMEDOUT) { 3736 /* enter L1 successfully */ 3737 temp = xhci_readl(xhci, addr); 3738 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 3739 port_num, temp); 3740 ret = 0; 3741 } else { 3742 temp = xhci_readl(xhci, pm_addr); 3743 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 3744 port_num, temp & PORT_L1S_MASK); 3745 ret = -EINVAL; 3746 } 3747 3748 /* Resume the port */ 3749 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 3750 3751 spin_unlock_irqrestore(&xhci->lock, flags); 3752 msleep(10); 3753 spin_lock_irqsave(&xhci->lock, flags); 3754 3755 /* Clear PLC */ 3756 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 3757 3758 /* Check PORTSC to make sure the device is in the right state */ 3759 if (!ret) { 3760 temp = xhci_readl(xhci, addr); 3761 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 3762 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 3763 (temp & PORT_PLS_MASK) != XDEV_U0) { 3764 xhci_dbg(xhci, "port L1 resume fail\n"); 3765 ret = -EINVAL; 3766 } 3767 } 3768 3769 if (ret) { 3770 /* Insert dev to lpm_failed_devs list */ 3771 xhci_warn(xhci, "device LPM test failed, may disconnect and " 3772 "re-enumerate\n"); 3773 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 3774 if (!dev_info) { 3775 ret = -ENOMEM; 3776 goto finish; 3777 } 3778 dev_info->dev_id = dev_id; 3779 INIT_LIST_HEAD(&dev_info->list); 3780 list_add(&dev_info->list, &xhci->lpm_failed_devs); 3781 } else { 3782 xhci_ring_device(xhci, udev->slot_id); 3783 } 3784 3785 finish: 3786 spin_unlock_irqrestore(&xhci->lock, flags); 3787 return ret; 3788 } 3789 3790 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3791 struct usb_device *udev, int enable) 3792 { 3793 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3794 __le32 __iomem **port_array; 3795 __le32 __iomem *pm_addr; 3796 u32 temp; 3797 unsigned int port_num; 3798 unsigned long flags; 3799 int hird; 3800 3801 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 3802 !udev->lpm_capable) 3803 return -EPERM; 3804 3805 if (!udev->parent || udev->parent->parent || 3806 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3807 return -EPERM; 3808 3809 if (udev->usb2_hw_lpm_capable != 1) 3810 return -EPERM; 3811 3812 spin_lock_irqsave(&xhci->lock, flags); 3813 3814 port_array = xhci->usb2_ports; 3815 port_num = udev->portnum - 1; 3816 pm_addr = port_array[port_num] + 1; 3817 temp = xhci_readl(xhci, pm_addr); 3818 3819 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 3820 enable ? "enable" : "disable", port_num); 3821 3822 hird = xhci_calculate_hird_besl(xhci, udev); 3823 3824 if (enable) { 3825 temp &= ~PORT_HIRD_MASK; 3826 temp |= PORT_HIRD(hird) | PORT_RWE; 3827 xhci_writel(xhci, temp, pm_addr); 3828 temp = xhci_readl(xhci, pm_addr); 3829 temp |= PORT_HLE; 3830 xhci_writel(xhci, temp, pm_addr); 3831 } else { 3832 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 3833 xhci_writel(xhci, temp, pm_addr); 3834 } 3835 3836 spin_unlock_irqrestore(&xhci->lock, flags); 3837 return 0; 3838 } 3839 3840 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3841 { 3842 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3843 int ret; 3844 3845 ret = xhci_usb2_software_lpm_test(hcd, udev); 3846 if (!ret) { 3847 xhci_dbg(xhci, "software LPM test succeed\n"); 3848 if (xhci->hw_lpm_support == 1) { 3849 udev->usb2_hw_lpm_capable = 1; 3850 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 3851 if (!ret) 3852 udev->usb2_hw_lpm_enabled = 1; 3853 } 3854 } 3855 3856 return 0; 3857 } 3858 3859 #else 3860 3861 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3862 struct usb_device *udev, int enable) 3863 { 3864 return 0; 3865 } 3866 3867 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3868 { 3869 return 0; 3870 } 3871 3872 #endif /* CONFIG_USB_SUSPEND */ 3873 3874 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 3875 3876 #ifdef CONFIG_PM 3877 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 3878 static unsigned long long xhci_service_interval_to_ns( 3879 struct usb_endpoint_descriptor *desc) 3880 { 3881 return (1 << (desc->bInterval - 1)) * 125 * 1000; 3882 } 3883 3884 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 3885 enum usb3_link_state state) 3886 { 3887 unsigned long long sel; 3888 unsigned long long pel; 3889 unsigned int max_sel_pel; 3890 char *state_name; 3891 3892 switch (state) { 3893 case USB3_LPM_U1: 3894 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 3895 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 3896 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 3897 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 3898 state_name = "U1"; 3899 break; 3900 case USB3_LPM_U2: 3901 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 3902 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 3903 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 3904 state_name = "U2"; 3905 break; 3906 default: 3907 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 3908 __func__); 3909 return USB3_LPM_DISABLED; 3910 } 3911 3912 if (sel <= max_sel_pel && pel <= max_sel_pel) 3913 return USB3_LPM_DEVICE_INITIATED; 3914 3915 if (sel > max_sel_pel) 3916 dev_dbg(&udev->dev, "Device-initiated %s disabled " 3917 "due to long SEL %llu ms\n", 3918 state_name, sel); 3919 else 3920 dev_dbg(&udev->dev, "Device-initiated %s disabled " 3921 "due to long PEL %llu\n ms", 3922 state_name, pel); 3923 return USB3_LPM_DISABLED; 3924 } 3925 3926 /* Returns the hub-encoded U1 timeout value. 3927 * The U1 timeout should be the maximum of the following values: 3928 * - For control endpoints, U1 system exit latency (SEL) * 3 3929 * - For bulk endpoints, U1 SEL * 5 3930 * - For interrupt endpoints: 3931 * - Notification EPs, U1 SEL * 3 3932 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 3933 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 3934 */ 3935 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev, 3936 struct usb_endpoint_descriptor *desc) 3937 { 3938 unsigned long long timeout_ns; 3939 int ep_type; 3940 int intr_type; 3941 3942 ep_type = usb_endpoint_type(desc); 3943 switch (ep_type) { 3944 case USB_ENDPOINT_XFER_CONTROL: 3945 timeout_ns = udev->u1_params.sel * 3; 3946 break; 3947 case USB_ENDPOINT_XFER_BULK: 3948 timeout_ns = udev->u1_params.sel * 5; 3949 break; 3950 case USB_ENDPOINT_XFER_INT: 3951 intr_type = usb_endpoint_interrupt_type(desc); 3952 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 3953 timeout_ns = udev->u1_params.sel * 3; 3954 break; 3955 } 3956 /* Otherwise the calculation is the same as isoc eps */ 3957 case USB_ENDPOINT_XFER_ISOC: 3958 timeout_ns = xhci_service_interval_to_ns(desc); 3959 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 3960 if (timeout_ns < udev->u1_params.sel * 2) 3961 timeout_ns = udev->u1_params.sel * 2; 3962 break; 3963 default: 3964 return 0; 3965 } 3966 3967 /* The U1 timeout is encoded in 1us intervals. */ 3968 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 3969 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */ 3970 if (timeout_ns == USB3_LPM_DISABLED) 3971 timeout_ns++; 3972 3973 /* If the necessary timeout value is bigger than what we can set in the 3974 * USB 3.0 hub, we have to disable hub-initiated U1. 3975 */ 3976 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 3977 return timeout_ns; 3978 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 3979 "due to long timeout %llu ms\n", timeout_ns); 3980 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 3981 } 3982 3983 /* Returns the hub-encoded U2 timeout value. 3984 * The U2 timeout should be the maximum of: 3985 * - 10 ms (to avoid the bandwidth impact on the scheduler) 3986 * - largest bInterval of any active periodic endpoint (to avoid going 3987 * into lower power link states between intervals). 3988 * - the U2 Exit Latency of the device 3989 */ 3990 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev, 3991 struct usb_endpoint_descriptor *desc) 3992 { 3993 unsigned long long timeout_ns; 3994 unsigned long long u2_del_ns; 3995 3996 timeout_ns = 10 * 1000 * 1000; 3997 3998 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 3999 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4000 timeout_ns = xhci_service_interval_to_ns(desc); 4001 4002 u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000; 4003 if (u2_del_ns > timeout_ns) 4004 timeout_ns = u2_del_ns; 4005 4006 /* The U2 timeout is encoded in 256us intervals */ 4007 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4008 /* If the necessary timeout value is bigger than what we can set in the 4009 * USB 3.0 hub, we have to disable hub-initiated U2. 4010 */ 4011 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4012 return timeout_ns; 4013 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4014 "due to long timeout %llu ms\n", timeout_ns); 4015 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4016 } 4017 4018 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4019 struct usb_device *udev, 4020 struct usb_endpoint_descriptor *desc, 4021 enum usb3_link_state state, 4022 u16 *timeout) 4023 { 4024 if (state == USB3_LPM_U1) { 4025 if (xhci->quirks & XHCI_INTEL_HOST) 4026 return xhci_calculate_intel_u1_timeout(udev, desc); 4027 } else { 4028 if (xhci->quirks & XHCI_INTEL_HOST) 4029 return xhci_calculate_intel_u2_timeout(udev, desc); 4030 } 4031 4032 return USB3_LPM_DISABLED; 4033 } 4034 4035 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4036 struct usb_device *udev, 4037 struct usb_endpoint_descriptor *desc, 4038 enum usb3_link_state state, 4039 u16 *timeout) 4040 { 4041 u16 alt_timeout; 4042 4043 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4044 desc, state, timeout); 4045 4046 /* If we found we can't enable hub-initiated LPM, or 4047 * the U1 or U2 exit latency was too high to allow 4048 * device-initiated LPM as well, just stop searching. 4049 */ 4050 if (alt_timeout == USB3_LPM_DISABLED || 4051 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4052 *timeout = alt_timeout; 4053 return -E2BIG; 4054 } 4055 if (alt_timeout > *timeout) 4056 *timeout = alt_timeout; 4057 return 0; 4058 } 4059 4060 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4061 struct usb_device *udev, 4062 struct usb_host_interface *alt, 4063 enum usb3_link_state state, 4064 u16 *timeout) 4065 { 4066 int j; 4067 4068 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4069 if (xhci_update_timeout_for_endpoint(xhci, udev, 4070 &alt->endpoint[j].desc, state, timeout)) 4071 return -E2BIG; 4072 continue; 4073 } 4074 return 0; 4075 } 4076 4077 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4078 enum usb3_link_state state) 4079 { 4080 struct usb_device *parent; 4081 unsigned int num_hubs; 4082 4083 if (state == USB3_LPM_U2) 4084 return 0; 4085 4086 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4087 for (parent = udev->parent, num_hubs = 0; parent->parent; 4088 parent = parent->parent) 4089 num_hubs++; 4090 4091 if (num_hubs < 2) 4092 return 0; 4093 4094 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4095 " below second-tier hub.\n"); 4096 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4097 "to decrease power consumption.\n"); 4098 return -E2BIG; 4099 } 4100 4101 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4102 struct usb_device *udev, 4103 enum usb3_link_state state) 4104 { 4105 if (xhci->quirks & XHCI_INTEL_HOST) 4106 return xhci_check_intel_tier_policy(udev, state); 4107 return -EINVAL; 4108 } 4109 4110 /* Returns the U1 or U2 timeout that should be enabled. 4111 * If the tier check or timeout setting functions return with a non-zero exit 4112 * code, that means the timeout value has been finalized and we shouldn't look 4113 * at any more endpoints. 4114 */ 4115 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4116 struct usb_device *udev, enum usb3_link_state state) 4117 { 4118 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4119 struct usb_host_config *config; 4120 char *state_name; 4121 int i; 4122 u16 timeout = USB3_LPM_DISABLED; 4123 4124 if (state == USB3_LPM_U1) 4125 state_name = "U1"; 4126 else if (state == USB3_LPM_U2) 4127 state_name = "U2"; 4128 else { 4129 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4130 state); 4131 return timeout; 4132 } 4133 4134 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4135 return timeout; 4136 4137 /* Gather some information about the currently installed configuration 4138 * and alternate interface settings. 4139 */ 4140 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4141 state, &timeout)) 4142 return timeout; 4143 4144 config = udev->actconfig; 4145 if (!config) 4146 return timeout; 4147 4148 for (i = 0; i < USB_MAXINTERFACES; i++) { 4149 struct usb_driver *driver; 4150 struct usb_interface *intf = config->interface[i]; 4151 4152 if (!intf) 4153 continue; 4154 4155 /* Check if any currently bound drivers want hub-initiated LPM 4156 * disabled. 4157 */ 4158 if (intf->dev.driver) { 4159 driver = to_usb_driver(intf->dev.driver); 4160 if (driver && driver->disable_hub_initiated_lpm) { 4161 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4162 "at request of driver %s\n", 4163 state_name, driver->name); 4164 return xhci_get_timeout_no_hub_lpm(udev, state); 4165 } 4166 } 4167 4168 /* Not sure how this could happen... */ 4169 if (!intf->cur_altsetting) 4170 continue; 4171 4172 if (xhci_update_timeout_for_interface(xhci, udev, 4173 intf->cur_altsetting, 4174 state, &timeout)) 4175 return timeout; 4176 } 4177 return timeout; 4178 } 4179 4180 /* 4181 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4182 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4183 */ 4184 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4185 struct usb_device *udev, u16 max_exit_latency) 4186 { 4187 struct xhci_virt_device *virt_dev; 4188 struct xhci_command *command; 4189 struct xhci_input_control_ctx *ctrl_ctx; 4190 struct xhci_slot_ctx *slot_ctx; 4191 unsigned long flags; 4192 int ret; 4193 4194 spin_lock_irqsave(&xhci->lock, flags); 4195 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) { 4196 spin_unlock_irqrestore(&xhci->lock, flags); 4197 return 0; 4198 } 4199 4200 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4201 virt_dev = xhci->devs[udev->slot_id]; 4202 command = xhci->lpm_command; 4203 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4204 spin_unlock_irqrestore(&xhci->lock, flags); 4205 4206 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx); 4207 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4208 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4209 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4210 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4211 4212 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n"); 4213 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4214 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4215 4216 /* Issue and wait for the evaluate context command. */ 4217 ret = xhci_configure_endpoint(xhci, udev, command, 4218 true, true); 4219 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4220 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4221 4222 if (!ret) { 4223 spin_lock_irqsave(&xhci->lock, flags); 4224 virt_dev->current_mel = max_exit_latency; 4225 spin_unlock_irqrestore(&xhci->lock, flags); 4226 } 4227 return ret; 4228 } 4229 4230 static int calculate_max_exit_latency(struct usb_device *udev, 4231 enum usb3_link_state state_changed, 4232 u16 hub_encoded_timeout) 4233 { 4234 unsigned long long u1_mel_us = 0; 4235 unsigned long long u2_mel_us = 0; 4236 unsigned long long mel_us = 0; 4237 bool disabling_u1; 4238 bool disabling_u2; 4239 bool enabling_u1; 4240 bool enabling_u2; 4241 4242 disabling_u1 = (state_changed == USB3_LPM_U1 && 4243 hub_encoded_timeout == USB3_LPM_DISABLED); 4244 disabling_u2 = (state_changed == USB3_LPM_U2 && 4245 hub_encoded_timeout == USB3_LPM_DISABLED); 4246 4247 enabling_u1 = (state_changed == USB3_LPM_U1 && 4248 hub_encoded_timeout != USB3_LPM_DISABLED); 4249 enabling_u2 = (state_changed == USB3_LPM_U2 && 4250 hub_encoded_timeout != USB3_LPM_DISABLED); 4251 4252 /* If U1 was already enabled and we're not disabling it, 4253 * or we're going to enable U1, account for the U1 max exit latency. 4254 */ 4255 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4256 enabling_u1) 4257 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4258 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4259 enabling_u2) 4260 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4261 4262 if (u1_mel_us > u2_mel_us) 4263 mel_us = u1_mel_us; 4264 else 4265 mel_us = u2_mel_us; 4266 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4267 if (mel_us > MAX_EXIT) { 4268 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4269 "is too big.\n", mel_us); 4270 return -E2BIG; 4271 } 4272 return mel_us; 4273 } 4274 4275 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4276 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4277 struct usb_device *udev, enum usb3_link_state state) 4278 { 4279 struct xhci_hcd *xhci; 4280 u16 hub_encoded_timeout; 4281 int mel; 4282 int ret; 4283 4284 xhci = hcd_to_xhci(hcd); 4285 /* The LPM timeout values are pretty host-controller specific, so don't 4286 * enable hub-initiated timeouts unless the vendor has provided 4287 * information about their timeout algorithm. 4288 */ 4289 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4290 !xhci->devs[udev->slot_id]) 4291 return USB3_LPM_DISABLED; 4292 4293 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4294 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4295 if (mel < 0) { 4296 /* Max Exit Latency is too big, disable LPM. */ 4297 hub_encoded_timeout = USB3_LPM_DISABLED; 4298 mel = 0; 4299 } 4300 4301 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4302 if (ret) 4303 return ret; 4304 return hub_encoded_timeout; 4305 } 4306 4307 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4308 struct usb_device *udev, enum usb3_link_state state) 4309 { 4310 struct xhci_hcd *xhci; 4311 u16 mel; 4312 int ret; 4313 4314 xhci = hcd_to_xhci(hcd); 4315 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4316 !xhci->devs[udev->slot_id]) 4317 return 0; 4318 4319 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4320 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4321 if (ret) 4322 return ret; 4323 return 0; 4324 } 4325 #else /* CONFIG_PM */ 4326 4327 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4328 struct usb_device *udev, enum usb3_link_state state) 4329 { 4330 return USB3_LPM_DISABLED; 4331 } 4332 4333 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4334 struct usb_device *udev, enum usb3_link_state state) 4335 { 4336 return 0; 4337 } 4338 #endif /* CONFIG_PM */ 4339 4340 /*-------------------------------------------------------------------------*/ 4341 4342 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4343 * internal data structures for the device. 4344 */ 4345 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4346 struct usb_tt *tt, gfp_t mem_flags) 4347 { 4348 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4349 struct xhci_virt_device *vdev; 4350 struct xhci_command *config_cmd; 4351 struct xhci_input_control_ctx *ctrl_ctx; 4352 struct xhci_slot_ctx *slot_ctx; 4353 unsigned long flags; 4354 unsigned think_time; 4355 int ret; 4356 4357 /* Ignore root hubs */ 4358 if (!hdev->parent) 4359 return 0; 4360 4361 vdev = xhci->devs[hdev->slot_id]; 4362 if (!vdev) { 4363 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4364 return -EINVAL; 4365 } 4366 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4367 if (!config_cmd) { 4368 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4369 return -ENOMEM; 4370 } 4371 4372 spin_lock_irqsave(&xhci->lock, flags); 4373 if (hdev->speed == USB_SPEED_HIGH && 4374 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4375 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4376 xhci_free_command(xhci, config_cmd); 4377 spin_unlock_irqrestore(&xhci->lock, flags); 4378 return -ENOMEM; 4379 } 4380 4381 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4382 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 4383 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4384 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4385 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4386 if (tt->multi) 4387 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4388 if (xhci->hci_version > 0x95) { 4389 xhci_dbg(xhci, "xHCI version %x needs hub " 4390 "TT think time and number of ports\n", 4391 (unsigned int) xhci->hci_version); 4392 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4393 /* Set TT think time - convert from ns to FS bit times. 4394 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4395 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4396 * 4397 * xHCI 1.0: this field shall be 0 if the device is not a 4398 * High-spped hub. 4399 */ 4400 think_time = tt->think_time; 4401 if (think_time != 0) 4402 think_time = (think_time / 666) - 1; 4403 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4404 slot_ctx->tt_info |= 4405 cpu_to_le32(TT_THINK_TIME(think_time)); 4406 } else { 4407 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4408 "TT think time or number of ports\n", 4409 (unsigned int) xhci->hci_version); 4410 } 4411 slot_ctx->dev_state = 0; 4412 spin_unlock_irqrestore(&xhci->lock, flags); 4413 4414 xhci_dbg(xhci, "Set up %s for hub device.\n", 4415 (xhci->hci_version > 0x95) ? 4416 "configure endpoint" : "evaluate context"); 4417 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4418 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4419 4420 /* Issue and wait for the configure endpoint or 4421 * evaluate context command. 4422 */ 4423 if (xhci->hci_version > 0x95) 4424 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4425 false, false); 4426 else 4427 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4428 true, false); 4429 4430 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4431 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4432 4433 xhci_free_command(xhci, config_cmd); 4434 return ret; 4435 } 4436 4437 int xhci_get_frame(struct usb_hcd *hcd) 4438 { 4439 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4440 /* EHCI mods by the periodic size. Why? */ 4441 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 4442 } 4443 4444 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4445 { 4446 struct xhci_hcd *xhci; 4447 struct device *dev = hcd->self.controller; 4448 int retval; 4449 u32 temp; 4450 4451 /* Accept arbitrarily long scatter-gather lists */ 4452 hcd->self.sg_tablesize = ~0; 4453 4454 if (usb_hcd_is_primary_hcd(hcd)) { 4455 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 4456 if (!xhci) 4457 return -ENOMEM; 4458 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 4459 xhci->main_hcd = hcd; 4460 /* Mark the first roothub as being USB 2.0. 4461 * The xHCI driver will register the USB 3.0 roothub. 4462 */ 4463 hcd->speed = HCD_USB2; 4464 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4465 /* 4466 * USB 2.0 roothub under xHCI has an integrated TT, 4467 * (rate matching hub) as opposed to having an OHCI/UHCI 4468 * companion controller. 4469 */ 4470 hcd->has_tt = 1; 4471 } else { 4472 /* xHCI private pointer was set in xhci_pci_probe for the second 4473 * registered roothub. 4474 */ 4475 xhci = hcd_to_xhci(hcd); 4476 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4477 if (HCC_64BIT_ADDR(temp)) { 4478 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4479 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4480 } else { 4481 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4482 } 4483 return 0; 4484 } 4485 4486 xhci->cap_regs = hcd->regs; 4487 xhci->op_regs = hcd->regs + 4488 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 4489 xhci->run_regs = hcd->regs + 4490 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4491 /* Cache read-only capability registers */ 4492 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 4493 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 4494 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 4495 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 4496 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4497 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4498 xhci_print_registers(xhci); 4499 4500 get_quirks(dev, xhci); 4501 4502 /* Make sure the HC is halted. */ 4503 retval = xhci_halt(xhci); 4504 if (retval) 4505 goto error; 4506 4507 xhci_dbg(xhci, "Resetting HCD\n"); 4508 /* Reset the internal HC memory state and registers. */ 4509 retval = xhci_reset(xhci); 4510 if (retval) 4511 goto error; 4512 xhci_dbg(xhci, "Reset complete\n"); 4513 4514 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4515 if (HCC_64BIT_ADDR(temp)) { 4516 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4517 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4518 } else { 4519 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4520 } 4521 4522 xhci_dbg(xhci, "Calling HCD init\n"); 4523 /* Initialize HCD and host controller data structures. */ 4524 retval = xhci_init(hcd); 4525 if (retval) 4526 goto error; 4527 xhci_dbg(xhci, "Called HCD init\n"); 4528 return 0; 4529 error: 4530 kfree(xhci); 4531 return retval; 4532 } 4533 4534 MODULE_DESCRIPTION(DRIVER_DESC); 4535 MODULE_AUTHOR(DRIVER_AUTHOR); 4536 MODULE_LICENSE("GPL"); 4537 4538 static int __init xhci_hcd_init(void) 4539 { 4540 int retval; 4541 4542 retval = xhci_register_pci(); 4543 if (retval < 0) { 4544 printk(KERN_DEBUG "Problem registering PCI driver."); 4545 return retval; 4546 } 4547 retval = xhci_register_plat(); 4548 if (retval < 0) { 4549 printk(KERN_DEBUG "Problem registering platform driver."); 4550 goto unreg_pci; 4551 } 4552 /* 4553 * Check the compiler generated sizes of structures that must be laid 4554 * out in specific ways for hardware access. 4555 */ 4556 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4557 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4558 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4559 /* xhci_device_control has eight fields, and also 4560 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4561 */ 4562 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4563 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4564 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4565 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4566 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4567 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4568 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4569 return 0; 4570 unreg_pci: 4571 xhci_unregister_pci(); 4572 return retval; 4573 } 4574 module_init(xhci_hcd_init); 4575 4576 static void __exit xhci_hcd_cleanup(void) 4577 { 4578 xhci_unregister_pci(); 4579 xhci_unregister_plat(); 4580 } 4581 module_exit(xhci_hcd_cleanup); 4582