xref: /openbmc/linux/drivers/usb/host/xhci.c (revision b9ccfda2)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 
30 #include "xhci.h"
31 
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 		      u32 mask, u32 done, int usec)
56 {
57 	u32	result;
58 
59 	do {
60 		result = xhci_readl(xhci, ptr);
61 		if (result == ~(u32)0)		/* card removed */
62 			return -ENODEV;
63 		result &= mask;
64 		if (result == done)
65 			return 0;
66 		udelay(1);
67 		usec--;
68 	} while (usec > 0);
69 	return -ETIMEDOUT;
70 }
71 
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 	u32 halted;
78 	u32 cmd;
79 	u32 mask;
80 
81 	mask = ~(XHCI_IRQS);
82 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 	if (!halted)
84 		mask &= ~CMD_RUN;
85 
86 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 	cmd &= mask;
88 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90 
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101 	int ret;
102 	xhci_dbg(xhci, "// Halt the HC\n");
103 	xhci_quiesce(xhci);
104 
105 	ret = handshake(xhci, &xhci->op_regs->status,
106 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 	if (!ret)
108 		xhci->xhc_state |= XHCI_STATE_HALTED;
109 	else
110 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
111 				XHCI_MAX_HALT_USEC);
112 	return ret;
113 }
114 
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 static int xhci_start(struct xhci_hcd *xhci)
119 {
120 	u32 temp;
121 	int ret;
122 
123 	temp = xhci_readl(xhci, &xhci->op_regs->command);
124 	temp |= (CMD_RUN);
125 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
126 			temp);
127 	xhci_writel(xhci, temp, &xhci->op_regs->command);
128 
129 	/*
130 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 	 * running.
132 	 */
133 	ret = handshake(xhci, &xhci->op_regs->status,
134 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 	if (ret == -ETIMEDOUT)
136 		xhci_err(xhci, "Host took too long to start, "
137 				"waited %u microseconds.\n",
138 				XHCI_MAX_HALT_USEC);
139 	if (!ret)
140 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
141 	return ret;
142 }
143 
144 /*
145  * Reset a halted HC.
146  *
147  * This resets pipelines, timers, counters, state machines, etc.
148  * Transactions will be terminated immediately, and operational registers
149  * will be set to their defaults.
150  */
151 int xhci_reset(struct xhci_hcd *xhci)
152 {
153 	u32 command;
154 	u32 state;
155 	int ret, i;
156 
157 	state = xhci_readl(xhci, &xhci->op_regs->status);
158 	if ((state & STS_HALT) == 0) {
159 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
160 		return 0;
161 	}
162 
163 	xhci_dbg(xhci, "// Reset the HC\n");
164 	command = xhci_readl(xhci, &xhci->op_regs->command);
165 	command |= CMD_RESET;
166 	xhci_writel(xhci, command, &xhci->op_regs->command);
167 
168 	ret = handshake(xhci, &xhci->op_regs->command,
169 			CMD_RESET, 0, 250 * 1000);
170 	if (ret)
171 		return ret;
172 
173 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
174 	/*
175 	 * xHCI cannot write to any doorbells or operational registers other
176 	 * than status until the "Controller Not Ready" flag is cleared.
177 	 */
178 	ret = handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
179 
180 	for (i = 0; i < 2; ++i) {
181 		xhci->bus_state[i].port_c_suspend = 0;
182 		xhci->bus_state[i].suspended_ports = 0;
183 		xhci->bus_state[i].resuming_ports = 0;
184 	}
185 
186 	return ret;
187 }
188 
189 #ifdef CONFIG_PCI
190 static int xhci_free_msi(struct xhci_hcd *xhci)
191 {
192 	int i;
193 
194 	if (!xhci->msix_entries)
195 		return -EINVAL;
196 
197 	for (i = 0; i < xhci->msix_count; i++)
198 		if (xhci->msix_entries[i].vector)
199 			free_irq(xhci->msix_entries[i].vector,
200 					xhci_to_hcd(xhci));
201 	return 0;
202 }
203 
204 /*
205  * Set up MSI
206  */
207 static int xhci_setup_msi(struct xhci_hcd *xhci)
208 {
209 	int ret;
210 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
211 
212 	ret = pci_enable_msi(pdev);
213 	if (ret) {
214 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
215 		return ret;
216 	}
217 
218 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
219 				0, "xhci_hcd", xhci_to_hcd(xhci));
220 	if (ret) {
221 		xhci_dbg(xhci, "disable MSI interrupt\n");
222 		pci_disable_msi(pdev);
223 	}
224 
225 	return ret;
226 }
227 
228 /*
229  * Free IRQs
230  * free all IRQs request
231  */
232 static void xhci_free_irq(struct xhci_hcd *xhci)
233 {
234 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235 	int ret;
236 
237 	/* return if using legacy interrupt */
238 	if (xhci_to_hcd(xhci)->irq > 0)
239 		return;
240 
241 	ret = xhci_free_msi(xhci);
242 	if (!ret)
243 		return;
244 	if (pdev->irq > 0)
245 		free_irq(pdev->irq, xhci_to_hcd(xhci));
246 
247 	return;
248 }
249 
250 /*
251  * Set up MSI-X
252  */
253 static int xhci_setup_msix(struct xhci_hcd *xhci)
254 {
255 	int i, ret = 0;
256 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
257 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
258 
259 	/*
260 	 * calculate number of msi-x vectors supported.
261 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
262 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
263 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
264 	 *   Add additional 1 vector to ensure always available interrupt.
265 	 */
266 	xhci->msix_count = min(num_online_cpus() + 1,
267 				HCS_MAX_INTRS(xhci->hcs_params1));
268 
269 	xhci->msix_entries =
270 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
271 				GFP_KERNEL);
272 	if (!xhci->msix_entries) {
273 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
274 		return -ENOMEM;
275 	}
276 
277 	for (i = 0; i < xhci->msix_count; i++) {
278 		xhci->msix_entries[i].entry = i;
279 		xhci->msix_entries[i].vector = 0;
280 	}
281 
282 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
283 	if (ret) {
284 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
285 		goto free_entries;
286 	}
287 
288 	for (i = 0; i < xhci->msix_count; i++) {
289 		ret = request_irq(xhci->msix_entries[i].vector,
290 				(irq_handler_t)xhci_msi_irq,
291 				0, "xhci_hcd", xhci_to_hcd(xhci));
292 		if (ret)
293 			goto disable_msix;
294 	}
295 
296 	hcd->msix_enabled = 1;
297 	return ret;
298 
299 disable_msix:
300 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
301 	xhci_free_irq(xhci);
302 	pci_disable_msix(pdev);
303 free_entries:
304 	kfree(xhci->msix_entries);
305 	xhci->msix_entries = NULL;
306 	return ret;
307 }
308 
309 /* Free any IRQs and disable MSI-X */
310 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
311 {
312 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
313 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
314 
315 	xhci_free_irq(xhci);
316 
317 	if (xhci->msix_entries) {
318 		pci_disable_msix(pdev);
319 		kfree(xhci->msix_entries);
320 		xhci->msix_entries = NULL;
321 	} else {
322 		pci_disable_msi(pdev);
323 	}
324 
325 	hcd->msix_enabled = 0;
326 	return;
327 }
328 
329 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
330 {
331 	int i;
332 
333 	if (xhci->msix_entries) {
334 		for (i = 0; i < xhci->msix_count; i++)
335 			synchronize_irq(xhci->msix_entries[i].vector);
336 	}
337 }
338 
339 static int xhci_try_enable_msi(struct usb_hcd *hcd)
340 {
341 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
342 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
343 	int ret;
344 
345 	/*
346 	 * Some Fresco Logic host controllers advertise MSI, but fail to
347 	 * generate interrupts.  Don't even try to enable MSI.
348 	 */
349 	if (xhci->quirks & XHCI_BROKEN_MSI)
350 		return 0;
351 
352 	/* unregister the legacy interrupt */
353 	if (hcd->irq)
354 		free_irq(hcd->irq, hcd);
355 	hcd->irq = 0;
356 
357 	ret = xhci_setup_msix(xhci);
358 	if (ret)
359 		/* fall back to msi*/
360 		ret = xhci_setup_msi(xhci);
361 
362 	if (!ret)
363 		/* hcd->irq is 0, we have MSI */
364 		return 0;
365 
366 	if (!pdev->irq) {
367 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
368 		return -EINVAL;
369 	}
370 
371 	/* fall back to legacy interrupt*/
372 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
373 			hcd->irq_descr, hcd);
374 	if (ret) {
375 		xhci_err(xhci, "request interrupt %d failed\n",
376 				pdev->irq);
377 		return ret;
378 	}
379 	hcd->irq = pdev->irq;
380 	return 0;
381 }
382 
383 #else
384 
385 static int xhci_try_enable_msi(struct usb_hcd *hcd)
386 {
387 	return 0;
388 }
389 
390 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
391 {
392 }
393 
394 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
395 {
396 }
397 
398 #endif
399 
400 /*
401  * Initialize memory for HCD and xHC (one-time init).
402  *
403  * Program the PAGESIZE register, initialize the device context array, create
404  * device contexts (?), set up a command ring segment (or two?), create event
405  * ring (one for now).
406  */
407 int xhci_init(struct usb_hcd *hcd)
408 {
409 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
410 	int retval = 0;
411 
412 	xhci_dbg(xhci, "xhci_init\n");
413 	spin_lock_init(&xhci->lock);
414 	if (xhci->hci_version == 0x95 && link_quirk) {
415 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
416 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
417 	} else {
418 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
419 	}
420 	retval = xhci_mem_init(xhci, GFP_KERNEL);
421 	xhci_dbg(xhci, "Finished xhci_init\n");
422 
423 	return retval;
424 }
425 
426 /*-------------------------------------------------------------------------*/
427 
428 
429 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
430 static void xhci_event_ring_work(unsigned long arg)
431 {
432 	unsigned long flags;
433 	int temp;
434 	u64 temp_64;
435 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
436 	int i, j;
437 
438 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
439 
440 	spin_lock_irqsave(&xhci->lock, flags);
441 	temp = xhci_readl(xhci, &xhci->op_regs->status);
442 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
443 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
444 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
445 		xhci_dbg(xhci, "HW died, polling stopped.\n");
446 		spin_unlock_irqrestore(&xhci->lock, flags);
447 		return;
448 	}
449 
450 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
451 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
452 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
453 	xhci->error_bitmask = 0;
454 	xhci_dbg(xhci, "Event ring:\n");
455 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
456 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
457 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
458 	temp_64 &= ~ERST_PTR_MASK;
459 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
460 	xhci_dbg(xhci, "Command ring:\n");
461 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
462 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
463 	xhci_dbg_cmd_ptrs(xhci);
464 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
465 		if (!xhci->devs[i])
466 			continue;
467 		for (j = 0; j < 31; ++j) {
468 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
469 		}
470 	}
471 	spin_unlock_irqrestore(&xhci->lock, flags);
472 
473 	if (!xhci->zombie)
474 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
475 	else
476 		xhci_dbg(xhci, "Quit polling the event ring.\n");
477 }
478 #endif
479 
480 static int xhci_run_finished(struct xhci_hcd *xhci)
481 {
482 	if (xhci_start(xhci)) {
483 		xhci_halt(xhci);
484 		return -ENODEV;
485 	}
486 	xhci->shared_hcd->state = HC_STATE_RUNNING;
487 
488 	if (xhci->quirks & XHCI_NEC_HOST)
489 		xhci_ring_cmd_db(xhci);
490 
491 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
492 	return 0;
493 }
494 
495 /*
496  * Start the HC after it was halted.
497  *
498  * This function is called by the USB core when the HC driver is added.
499  * Its opposite is xhci_stop().
500  *
501  * xhci_init() must be called once before this function can be called.
502  * Reset the HC, enable device slot contexts, program DCBAAP, and
503  * set command ring pointer and event ring pointer.
504  *
505  * Setup MSI-X vectors and enable interrupts.
506  */
507 int xhci_run(struct usb_hcd *hcd)
508 {
509 	u32 temp;
510 	u64 temp_64;
511 	int ret;
512 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
513 
514 	/* Start the xHCI host controller running only after the USB 2.0 roothub
515 	 * is setup.
516 	 */
517 
518 	hcd->uses_new_polling = 1;
519 	if (!usb_hcd_is_primary_hcd(hcd))
520 		return xhci_run_finished(xhci);
521 
522 	xhci_dbg(xhci, "xhci_run\n");
523 
524 	ret = xhci_try_enable_msi(hcd);
525 	if (ret)
526 		return ret;
527 
528 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
529 	init_timer(&xhci->event_ring_timer);
530 	xhci->event_ring_timer.data = (unsigned long) xhci;
531 	xhci->event_ring_timer.function = xhci_event_ring_work;
532 	/* Poll the event ring */
533 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
534 	xhci->zombie = 0;
535 	xhci_dbg(xhci, "Setting event ring polling timer\n");
536 	add_timer(&xhci->event_ring_timer);
537 #endif
538 
539 	xhci_dbg(xhci, "Command ring memory map follows:\n");
540 	xhci_debug_ring(xhci, xhci->cmd_ring);
541 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
542 	xhci_dbg_cmd_ptrs(xhci);
543 
544 	xhci_dbg(xhci, "ERST memory map follows:\n");
545 	xhci_dbg_erst(xhci, &xhci->erst);
546 	xhci_dbg(xhci, "Event ring:\n");
547 	xhci_debug_ring(xhci, xhci->event_ring);
548 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
549 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
550 	temp_64 &= ~ERST_PTR_MASK;
551 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
552 
553 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
554 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
555 	temp &= ~ER_IRQ_INTERVAL_MASK;
556 	temp |= (u32) 160;
557 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
558 
559 	/* Set the HCD state before we enable the irqs */
560 	temp = xhci_readl(xhci, &xhci->op_regs->command);
561 	temp |= (CMD_EIE);
562 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
563 			temp);
564 	xhci_writel(xhci, temp, &xhci->op_regs->command);
565 
566 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
567 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
568 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
569 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
570 			&xhci->ir_set->irq_pending);
571 	xhci_print_ir_set(xhci, 0);
572 
573 	if (xhci->quirks & XHCI_NEC_HOST)
574 		xhci_queue_vendor_command(xhci, 0, 0, 0,
575 				TRB_TYPE(TRB_NEC_GET_FW));
576 
577 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
578 	return 0;
579 }
580 
581 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
582 {
583 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
584 
585 	spin_lock_irq(&xhci->lock);
586 	xhci_halt(xhci);
587 
588 	/* The shared_hcd is going to be deallocated shortly (the USB core only
589 	 * calls this function when allocation fails in usb_add_hcd(), or
590 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
591 	 */
592 	xhci->shared_hcd = NULL;
593 	spin_unlock_irq(&xhci->lock);
594 }
595 
596 /*
597  * Stop xHCI driver.
598  *
599  * This function is called by the USB core when the HC driver is removed.
600  * Its opposite is xhci_run().
601  *
602  * Disable device contexts, disable IRQs, and quiesce the HC.
603  * Reset the HC, finish any completed transactions, and cleanup memory.
604  */
605 void xhci_stop(struct usb_hcd *hcd)
606 {
607 	u32 temp;
608 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
609 
610 	if (!usb_hcd_is_primary_hcd(hcd)) {
611 		xhci_only_stop_hcd(xhci->shared_hcd);
612 		return;
613 	}
614 
615 	spin_lock_irq(&xhci->lock);
616 	/* Make sure the xHC is halted for a USB3 roothub
617 	 * (xhci_stop() could be called as part of failed init).
618 	 */
619 	xhci_halt(xhci);
620 	xhci_reset(xhci);
621 	spin_unlock_irq(&xhci->lock);
622 
623 	xhci_cleanup_msix(xhci);
624 
625 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
626 	/* Tell the event ring poll function not to reschedule */
627 	xhci->zombie = 1;
628 	del_timer_sync(&xhci->event_ring_timer);
629 #endif
630 
631 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
632 		usb_amd_dev_put();
633 
634 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
635 	temp = xhci_readl(xhci, &xhci->op_regs->status);
636 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
637 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
638 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
639 			&xhci->ir_set->irq_pending);
640 	xhci_print_ir_set(xhci, 0);
641 
642 	xhci_dbg(xhci, "cleaning up memory\n");
643 	xhci_mem_cleanup(xhci);
644 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
645 		    xhci_readl(xhci, &xhci->op_regs->status));
646 }
647 
648 /*
649  * Shutdown HC (not bus-specific)
650  *
651  * This is called when the machine is rebooting or halting.  We assume that the
652  * machine will be powered off, and the HC's internal state will be reset.
653  * Don't bother to free memory.
654  *
655  * This will only ever be called with the main usb_hcd (the USB3 roothub).
656  */
657 void xhci_shutdown(struct usb_hcd *hcd)
658 {
659 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
660 
661 	spin_lock_irq(&xhci->lock);
662 	xhci_halt(xhci);
663 	spin_unlock_irq(&xhci->lock);
664 
665 	xhci_cleanup_msix(xhci);
666 
667 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
668 		    xhci_readl(xhci, &xhci->op_regs->status));
669 }
670 
671 #ifdef CONFIG_PM
672 static void xhci_save_registers(struct xhci_hcd *xhci)
673 {
674 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
675 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
676 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
677 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
678 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
679 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
680 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
681 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
682 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
683 }
684 
685 static void xhci_restore_registers(struct xhci_hcd *xhci)
686 {
687 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
688 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
689 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
690 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
691 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
692 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
693 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
694 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
695 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
696 }
697 
698 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
699 {
700 	u64	val_64;
701 
702 	/* step 2: initialize command ring buffer */
703 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
704 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
705 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
706 				      xhci->cmd_ring->dequeue) &
707 		 (u64) ~CMD_RING_RSVD_BITS) |
708 		xhci->cmd_ring->cycle_state;
709 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
710 			(long unsigned long) val_64);
711 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
712 }
713 
714 /*
715  * The whole command ring must be cleared to zero when we suspend the host.
716  *
717  * The host doesn't save the command ring pointer in the suspend well, so we
718  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
719  * aligned, because of the reserved bits in the command ring dequeue pointer
720  * register.  Therefore, we can't just set the dequeue pointer back in the
721  * middle of the ring (TRBs are 16-byte aligned).
722  */
723 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
724 {
725 	struct xhci_ring *ring;
726 	struct xhci_segment *seg;
727 
728 	ring = xhci->cmd_ring;
729 	seg = ring->deq_seg;
730 	do {
731 		memset(seg->trbs, 0,
732 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
733 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
734 			cpu_to_le32(~TRB_CYCLE);
735 		seg = seg->next;
736 	} while (seg != ring->deq_seg);
737 
738 	/* Reset the software enqueue and dequeue pointers */
739 	ring->deq_seg = ring->first_seg;
740 	ring->dequeue = ring->first_seg->trbs;
741 	ring->enq_seg = ring->deq_seg;
742 	ring->enqueue = ring->dequeue;
743 
744 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
745 	/*
746 	 * Ring is now zeroed, so the HW should look for change of ownership
747 	 * when the cycle bit is set to 1.
748 	 */
749 	ring->cycle_state = 1;
750 
751 	/*
752 	 * Reset the hardware dequeue pointer.
753 	 * Yes, this will need to be re-written after resume, but we're paranoid
754 	 * and want to make sure the hardware doesn't access bogus memory
755 	 * because, say, the BIOS or an SMI started the host without changing
756 	 * the command ring pointers.
757 	 */
758 	xhci_set_cmd_ring_deq(xhci);
759 }
760 
761 /*
762  * Stop HC (not bus-specific)
763  *
764  * This is called when the machine transition into S3/S4 mode.
765  *
766  */
767 int xhci_suspend(struct xhci_hcd *xhci)
768 {
769 	int			rc = 0;
770 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
771 	u32			command;
772 
773 	spin_lock_irq(&xhci->lock);
774 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
775 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
776 	/* step 1: stop endpoint */
777 	/* skipped assuming that port suspend has done */
778 
779 	/* step 2: clear Run/Stop bit */
780 	command = xhci_readl(xhci, &xhci->op_regs->command);
781 	command &= ~CMD_RUN;
782 	xhci_writel(xhci, command, &xhci->op_regs->command);
783 	if (handshake(xhci, &xhci->op_regs->status,
784 		      STS_HALT, STS_HALT, 100*100)) {
785 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
786 		spin_unlock_irq(&xhci->lock);
787 		return -ETIMEDOUT;
788 	}
789 	xhci_clear_command_ring(xhci);
790 
791 	/* step 3: save registers */
792 	xhci_save_registers(xhci);
793 
794 	/* step 4: set CSS flag */
795 	command = xhci_readl(xhci, &xhci->op_regs->command);
796 	command |= CMD_CSS;
797 	xhci_writel(xhci, command, &xhci->op_regs->command);
798 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
799 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
800 		spin_unlock_irq(&xhci->lock);
801 		return -ETIMEDOUT;
802 	}
803 	spin_unlock_irq(&xhci->lock);
804 
805 	/* step 5: remove core well power */
806 	/* synchronize irq when using MSI-X */
807 	xhci_msix_sync_irqs(xhci);
808 
809 	return rc;
810 }
811 
812 /*
813  * start xHC (not bus-specific)
814  *
815  * This is called when the machine transition from S3/S4 mode.
816  *
817  */
818 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
819 {
820 	u32			command, temp = 0;
821 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
822 	struct usb_hcd		*secondary_hcd;
823 	int			retval = 0;
824 
825 	/* Wait a bit if either of the roothubs need to settle from the
826 	 * transition into bus suspend.
827 	 */
828 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
829 			time_before(jiffies,
830 				xhci->bus_state[1].next_statechange))
831 		msleep(100);
832 
833 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
834 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
835 
836 	spin_lock_irq(&xhci->lock);
837 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
838 		hibernated = true;
839 
840 	if (!hibernated) {
841 		/* step 1: restore register */
842 		xhci_restore_registers(xhci);
843 		/* step 2: initialize command ring buffer */
844 		xhci_set_cmd_ring_deq(xhci);
845 		/* step 3: restore state and start state*/
846 		/* step 3: set CRS flag */
847 		command = xhci_readl(xhci, &xhci->op_regs->command);
848 		command |= CMD_CRS;
849 		xhci_writel(xhci, command, &xhci->op_regs->command);
850 		if (handshake(xhci, &xhci->op_regs->status,
851 			      STS_RESTORE, 0, 10 * 1000)) {
852 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
853 			spin_unlock_irq(&xhci->lock);
854 			return -ETIMEDOUT;
855 		}
856 		temp = xhci_readl(xhci, &xhci->op_regs->status);
857 	}
858 
859 	/* If restore operation fails, re-initialize the HC during resume */
860 	if ((temp & STS_SRE) || hibernated) {
861 		/* Let the USB core know _both_ roothubs lost power. */
862 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
863 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
864 
865 		xhci_dbg(xhci, "Stop HCD\n");
866 		xhci_halt(xhci);
867 		xhci_reset(xhci);
868 		spin_unlock_irq(&xhci->lock);
869 		xhci_cleanup_msix(xhci);
870 
871 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
872 		/* Tell the event ring poll function not to reschedule */
873 		xhci->zombie = 1;
874 		del_timer_sync(&xhci->event_ring_timer);
875 #endif
876 
877 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
878 		temp = xhci_readl(xhci, &xhci->op_regs->status);
879 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
880 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
881 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
882 				&xhci->ir_set->irq_pending);
883 		xhci_print_ir_set(xhci, 0);
884 
885 		xhci_dbg(xhci, "cleaning up memory\n");
886 		xhci_mem_cleanup(xhci);
887 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
888 			    xhci_readl(xhci, &xhci->op_regs->status));
889 
890 		/* USB core calls the PCI reinit and start functions twice:
891 		 * first with the primary HCD, and then with the secondary HCD.
892 		 * If we don't do the same, the host will never be started.
893 		 */
894 		if (!usb_hcd_is_primary_hcd(hcd))
895 			secondary_hcd = hcd;
896 		else
897 			secondary_hcd = xhci->shared_hcd;
898 
899 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
900 		retval = xhci_init(hcd->primary_hcd);
901 		if (retval)
902 			return retval;
903 		xhci_dbg(xhci, "Start the primary HCD\n");
904 		retval = xhci_run(hcd->primary_hcd);
905 		if (!retval) {
906 			xhci_dbg(xhci, "Start the secondary HCD\n");
907 			retval = xhci_run(secondary_hcd);
908 		}
909 		hcd->state = HC_STATE_SUSPENDED;
910 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
911 		goto done;
912 	}
913 
914 	/* step 4: set Run/Stop bit */
915 	command = xhci_readl(xhci, &xhci->op_regs->command);
916 	command |= CMD_RUN;
917 	xhci_writel(xhci, command, &xhci->op_regs->command);
918 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
919 		  0, 250 * 1000);
920 
921 	/* step 5: walk topology and initialize portsc,
922 	 * portpmsc and portli
923 	 */
924 	/* this is done in bus_resume */
925 
926 	/* step 6: restart each of the previously
927 	 * Running endpoints by ringing their doorbells
928 	 */
929 
930 	spin_unlock_irq(&xhci->lock);
931 
932  done:
933 	if (retval == 0) {
934 		usb_hcd_resume_root_hub(hcd);
935 		usb_hcd_resume_root_hub(xhci->shared_hcd);
936 	}
937 	return retval;
938 }
939 #endif	/* CONFIG_PM */
940 
941 /*-------------------------------------------------------------------------*/
942 
943 /**
944  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
945  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
946  * value to right shift 1 for the bitmask.
947  *
948  * Index  = (epnum * 2) + direction - 1,
949  * where direction = 0 for OUT, 1 for IN.
950  * For control endpoints, the IN index is used (OUT index is unused), so
951  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
952  */
953 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
954 {
955 	unsigned int index;
956 	if (usb_endpoint_xfer_control(desc))
957 		index = (unsigned int) (usb_endpoint_num(desc)*2);
958 	else
959 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
960 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
961 	return index;
962 }
963 
964 /* Find the flag for this endpoint (for use in the control context).  Use the
965  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
966  * bit 1, etc.
967  */
968 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
969 {
970 	return 1 << (xhci_get_endpoint_index(desc) + 1);
971 }
972 
973 /* Find the flag for this endpoint (for use in the control context).  Use the
974  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
975  * bit 1, etc.
976  */
977 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
978 {
979 	return 1 << (ep_index + 1);
980 }
981 
982 /* Compute the last valid endpoint context index.  Basically, this is the
983  * endpoint index plus one.  For slot contexts with more than valid endpoint,
984  * we find the most significant bit set in the added contexts flags.
985  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
986  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
987  */
988 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
989 {
990 	return fls(added_ctxs) - 1;
991 }
992 
993 /* Returns 1 if the arguments are OK;
994  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
995  */
996 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
997 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
998 		const char *func) {
999 	struct xhci_hcd	*xhci;
1000 	struct xhci_virt_device	*virt_dev;
1001 
1002 	if (!hcd || (check_ep && !ep) || !udev) {
1003 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1004 				func);
1005 		return -EINVAL;
1006 	}
1007 	if (!udev->parent) {
1008 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1009 				func);
1010 		return 0;
1011 	}
1012 
1013 	xhci = hcd_to_xhci(hcd);
1014 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1015 		return -ENODEV;
1016 
1017 	if (check_virt_dev) {
1018 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1019 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1020 						"device\n", func);
1021 			return -EINVAL;
1022 		}
1023 
1024 		virt_dev = xhci->devs[udev->slot_id];
1025 		if (virt_dev->udev != udev) {
1026 			printk(KERN_DEBUG "xHCI %s called with udev and "
1027 					  "virt_dev does not match\n", func);
1028 			return -EINVAL;
1029 		}
1030 	}
1031 
1032 	return 1;
1033 }
1034 
1035 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1036 		struct usb_device *udev, struct xhci_command *command,
1037 		bool ctx_change, bool must_succeed);
1038 
1039 /*
1040  * Full speed devices may have a max packet size greater than 8 bytes, but the
1041  * USB core doesn't know that until it reads the first 8 bytes of the
1042  * descriptor.  If the usb_device's max packet size changes after that point,
1043  * we need to issue an evaluate context command and wait on it.
1044  */
1045 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1046 		unsigned int ep_index, struct urb *urb)
1047 {
1048 	struct xhci_container_ctx *in_ctx;
1049 	struct xhci_container_ctx *out_ctx;
1050 	struct xhci_input_control_ctx *ctrl_ctx;
1051 	struct xhci_ep_ctx *ep_ctx;
1052 	int max_packet_size;
1053 	int hw_max_packet_size;
1054 	int ret = 0;
1055 
1056 	out_ctx = xhci->devs[slot_id]->out_ctx;
1057 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1058 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1059 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1060 	if (hw_max_packet_size != max_packet_size) {
1061 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1062 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1063 				max_packet_size);
1064 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1065 				hw_max_packet_size);
1066 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1067 
1068 		/* Set up the modified control endpoint 0 */
1069 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1070 				xhci->devs[slot_id]->out_ctx, ep_index);
1071 		in_ctx = xhci->devs[slot_id]->in_ctx;
1072 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1073 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1074 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1075 
1076 		/* Set up the input context flags for the command */
1077 		/* FIXME: This won't work if a non-default control endpoint
1078 		 * changes max packet sizes.
1079 		 */
1080 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1081 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1082 		ctrl_ctx->drop_flags = 0;
1083 
1084 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1085 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1086 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1087 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1088 
1089 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1090 				true, false);
1091 
1092 		/* Clean up the input context for later use by bandwidth
1093 		 * functions.
1094 		 */
1095 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1096 	}
1097 	return ret;
1098 }
1099 
1100 /*
1101  * non-error returns are a promise to giveback() the urb later
1102  * we drop ownership so next owner (or urb unlink) can get it
1103  */
1104 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1105 {
1106 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1107 	struct xhci_td *buffer;
1108 	unsigned long flags;
1109 	int ret = 0;
1110 	unsigned int slot_id, ep_index;
1111 	struct urb_priv	*urb_priv;
1112 	int size, i;
1113 
1114 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1115 					true, true, __func__) <= 0)
1116 		return -EINVAL;
1117 
1118 	slot_id = urb->dev->slot_id;
1119 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1120 
1121 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1122 		if (!in_interrupt())
1123 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1124 		ret = -ESHUTDOWN;
1125 		goto exit;
1126 	}
1127 
1128 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1129 		size = urb->number_of_packets;
1130 	else
1131 		size = 1;
1132 
1133 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1134 				  size * sizeof(struct xhci_td *), mem_flags);
1135 	if (!urb_priv)
1136 		return -ENOMEM;
1137 
1138 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1139 	if (!buffer) {
1140 		kfree(urb_priv);
1141 		return -ENOMEM;
1142 	}
1143 
1144 	for (i = 0; i < size; i++) {
1145 		urb_priv->td[i] = buffer;
1146 		buffer++;
1147 	}
1148 
1149 	urb_priv->length = size;
1150 	urb_priv->td_cnt = 0;
1151 	urb->hcpriv = urb_priv;
1152 
1153 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1154 		/* Check to see if the max packet size for the default control
1155 		 * endpoint changed during FS device enumeration
1156 		 */
1157 		if (urb->dev->speed == USB_SPEED_FULL) {
1158 			ret = xhci_check_maxpacket(xhci, slot_id,
1159 					ep_index, urb);
1160 			if (ret < 0) {
1161 				xhci_urb_free_priv(xhci, urb_priv);
1162 				urb->hcpriv = NULL;
1163 				return ret;
1164 			}
1165 		}
1166 
1167 		/* We have a spinlock and interrupts disabled, so we must pass
1168 		 * atomic context to this function, which may allocate memory.
1169 		 */
1170 		spin_lock_irqsave(&xhci->lock, flags);
1171 		if (xhci->xhc_state & XHCI_STATE_DYING)
1172 			goto dying;
1173 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1174 				slot_id, ep_index);
1175 		if (ret)
1176 			goto free_priv;
1177 		spin_unlock_irqrestore(&xhci->lock, flags);
1178 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1179 		spin_lock_irqsave(&xhci->lock, flags);
1180 		if (xhci->xhc_state & XHCI_STATE_DYING)
1181 			goto dying;
1182 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1183 				EP_GETTING_STREAMS) {
1184 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1185 					"is transitioning to using streams.\n");
1186 			ret = -EINVAL;
1187 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1188 				EP_GETTING_NO_STREAMS) {
1189 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1190 					"is transitioning to "
1191 					"not having streams.\n");
1192 			ret = -EINVAL;
1193 		} else {
1194 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1195 					slot_id, ep_index);
1196 		}
1197 		if (ret)
1198 			goto free_priv;
1199 		spin_unlock_irqrestore(&xhci->lock, flags);
1200 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1201 		spin_lock_irqsave(&xhci->lock, flags);
1202 		if (xhci->xhc_state & XHCI_STATE_DYING)
1203 			goto dying;
1204 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1205 				slot_id, ep_index);
1206 		if (ret)
1207 			goto free_priv;
1208 		spin_unlock_irqrestore(&xhci->lock, flags);
1209 	} else {
1210 		spin_lock_irqsave(&xhci->lock, flags);
1211 		if (xhci->xhc_state & XHCI_STATE_DYING)
1212 			goto dying;
1213 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1214 				slot_id, ep_index);
1215 		if (ret)
1216 			goto free_priv;
1217 		spin_unlock_irqrestore(&xhci->lock, flags);
1218 	}
1219 exit:
1220 	return ret;
1221 dying:
1222 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1223 			"non-responsive xHCI host.\n",
1224 			urb->ep->desc.bEndpointAddress, urb);
1225 	ret = -ESHUTDOWN;
1226 free_priv:
1227 	xhci_urb_free_priv(xhci, urb_priv);
1228 	urb->hcpriv = NULL;
1229 	spin_unlock_irqrestore(&xhci->lock, flags);
1230 	return ret;
1231 }
1232 
1233 /* Get the right ring for the given URB.
1234  * If the endpoint supports streams, boundary check the URB's stream ID.
1235  * If the endpoint doesn't support streams, return the singular endpoint ring.
1236  */
1237 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1238 		struct urb *urb)
1239 {
1240 	unsigned int slot_id;
1241 	unsigned int ep_index;
1242 	unsigned int stream_id;
1243 	struct xhci_virt_ep *ep;
1244 
1245 	slot_id = urb->dev->slot_id;
1246 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1247 	stream_id = urb->stream_id;
1248 	ep = &xhci->devs[slot_id]->eps[ep_index];
1249 	/* Common case: no streams */
1250 	if (!(ep->ep_state & EP_HAS_STREAMS))
1251 		return ep->ring;
1252 
1253 	if (stream_id == 0) {
1254 		xhci_warn(xhci,
1255 				"WARN: Slot ID %u, ep index %u has streams, "
1256 				"but URB has no stream ID.\n",
1257 				slot_id, ep_index);
1258 		return NULL;
1259 	}
1260 
1261 	if (stream_id < ep->stream_info->num_streams)
1262 		return ep->stream_info->stream_rings[stream_id];
1263 
1264 	xhci_warn(xhci,
1265 			"WARN: Slot ID %u, ep index %u has "
1266 			"stream IDs 1 to %u allocated, "
1267 			"but stream ID %u is requested.\n",
1268 			slot_id, ep_index,
1269 			ep->stream_info->num_streams - 1,
1270 			stream_id);
1271 	return NULL;
1272 }
1273 
1274 /*
1275  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1276  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1277  * should pick up where it left off in the TD, unless a Set Transfer Ring
1278  * Dequeue Pointer is issued.
1279  *
1280  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1281  * the ring.  Since the ring is a contiguous structure, they can't be physically
1282  * removed.  Instead, there are two options:
1283  *
1284  *  1) If the HC is in the middle of processing the URB to be canceled, we
1285  *     simply move the ring's dequeue pointer past those TRBs using the Set
1286  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1287  *     when drivers timeout on the last submitted URB and attempt to cancel.
1288  *
1289  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1290  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1291  *     HC will need to invalidate the any TRBs it has cached after the stop
1292  *     endpoint command, as noted in the xHCI 0.95 errata.
1293  *
1294  *  3) The TD may have completed by the time the Stop Endpoint Command
1295  *     completes, so software needs to handle that case too.
1296  *
1297  * This function should protect against the TD enqueueing code ringing the
1298  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1299  * It also needs to account for multiple cancellations on happening at the same
1300  * time for the same endpoint.
1301  *
1302  * Note that this function can be called in any context, or so says
1303  * usb_hcd_unlink_urb()
1304  */
1305 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1306 {
1307 	unsigned long flags;
1308 	int ret, i;
1309 	u32 temp;
1310 	struct xhci_hcd *xhci;
1311 	struct urb_priv	*urb_priv;
1312 	struct xhci_td *td;
1313 	unsigned int ep_index;
1314 	struct xhci_ring *ep_ring;
1315 	struct xhci_virt_ep *ep;
1316 
1317 	xhci = hcd_to_xhci(hcd);
1318 	spin_lock_irqsave(&xhci->lock, flags);
1319 	/* Make sure the URB hasn't completed or been unlinked already */
1320 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1321 	if (ret || !urb->hcpriv)
1322 		goto done;
1323 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1324 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1325 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1326 		urb_priv = urb->hcpriv;
1327 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1328 			td = urb_priv->td[i];
1329 			if (!list_empty(&td->td_list))
1330 				list_del_init(&td->td_list);
1331 			if (!list_empty(&td->cancelled_td_list))
1332 				list_del_init(&td->cancelled_td_list);
1333 		}
1334 
1335 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1336 		spin_unlock_irqrestore(&xhci->lock, flags);
1337 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1338 		xhci_urb_free_priv(xhci, urb_priv);
1339 		return ret;
1340 	}
1341 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1342 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1343 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1344 				"non-responsive xHCI host.\n",
1345 				urb->ep->desc.bEndpointAddress, urb);
1346 		/* Let the stop endpoint command watchdog timer (which set this
1347 		 * state) finish cleaning up the endpoint TD lists.  We must
1348 		 * have caught it in the middle of dropping a lock and giving
1349 		 * back an URB.
1350 		 */
1351 		goto done;
1352 	}
1353 
1354 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1355 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1356 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1357 	if (!ep_ring) {
1358 		ret = -EINVAL;
1359 		goto done;
1360 	}
1361 
1362 	urb_priv = urb->hcpriv;
1363 	i = urb_priv->td_cnt;
1364 	if (i < urb_priv->length)
1365 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1366 				"starting at offset 0x%llx\n",
1367 				urb, urb->dev->devpath,
1368 				urb->ep->desc.bEndpointAddress,
1369 				(unsigned long long) xhci_trb_virt_to_dma(
1370 					urb_priv->td[i]->start_seg,
1371 					urb_priv->td[i]->first_trb));
1372 
1373 	for (; i < urb_priv->length; i++) {
1374 		td = urb_priv->td[i];
1375 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1376 	}
1377 
1378 	/* Queue a stop endpoint command, but only if this is
1379 	 * the first cancellation to be handled.
1380 	 */
1381 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1382 		ep->ep_state |= EP_HALT_PENDING;
1383 		ep->stop_cmds_pending++;
1384 		ep->stop_cmd_timer.expires = jiffies +
1385 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1386 		add_timer(&ep->stop_cmd_timer);
1387 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1388 		xhci_ring_cmd_db(xhci);
1389 	}
1390 done:
1391 	spin_unlock_irqrestore(&xhci->lock, flags);
1392 	return ret;
1393 }
1394 
1395 /* Drop an endpoint from a new bandwidth configuration for this device.
1396  * Only one call to this function is allowed per endpoint before
1397  * check_bandwidth() or reset_bandwidth() must be called.
1398  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1399  * add the endpoint to the schedule with possibly new parameters denoted by a
1400  * different endpoint descriptor in usb_host_endpoint.
1401  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1402  * not allowed.
1403  *
1404  * The USB core will not allow URBs to be queued to an endpoint that is being
1405  * disabled, so there's no need for mutual exclusion to protect
1406  * the xhci->devs[slot_id] structure.
1407  */
1408 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1409 		struct usb_host_endpoint *ep)
1410 {
1411 	struct xhci_hcd *xhci;
1412 	struct xhci_container_ctx *in_ctx, *out_ctx;
1413 	struct xhci_input_control_ctx *ctrl_ctx;
1414 	struct xhci_slot_ctx *slot_ctx;
1415 	unsigned int last_ctx;
1416 	unsigned int ep_index;
1417 	struct xhci_ep_ctx *ep_ctx;
1418 	u32 drop_flag;
1419 	u32 new_add_flags, new_drop_flags, new_slot_info;
1420 	int ret;
1421 
1422 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1423 	if (ret <= 0)
1424 		return ret;
1425 	xhci = hcd_to_xhci(hcd);
1426 	if (xhci->xhc_state & XHCI_STATE_DYING)
1427 		return -ENODEV;
1428 
1429 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1430 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1431 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1432 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1433 				__func__, drop_flag);
1434 		return 0;
1435 	}
1436 
1437 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1438 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1439 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1440 	ep_index = xhci_get_endpoint_index(&ep->desc);
1441 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1442 	/* If the HC already knows the endpoint is disabled,
1443 	 * or the HCD has noted it is disabled, ignore this request
1444 	 */
1445 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1446 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1447 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1448 	    xhci_get_endpoint_flag(&ep->desc)) {
1449 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1450 				__func__, ep);
1451 		return 0;
1452 	}
1453 
1454 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1455 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1456 
1457 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1458 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1459 
1460 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1461 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1462 	/* Update the last valid endpoint context, if we deleted the last one */
1463 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1464 	    LAST_CTX(last_ctx)) {
1465 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1466 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1467 	}
1468 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1469 
1470 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1471 
1472 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1473 			(unsigned int) ep->desc.bEndpointAddress,
1474 			udev->slot_id,
1475 			(unsigned int) new_drop_flags,
1476 			(unsigned int) new_add_flags,
1477 			(unsigned int) new_slot_info);
1478 	return 0;
1479 }
1480 
1481 /* Add an endpoint to a new possible bandwidth configuration for this device.
1482  * Only one call to this function is allowed per endpoint before
1483  * check_bandwidth() or reset_bandwidth() must be called.
1484  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1485  * add the endpoint to the schedule with possibly new parameters denoted by a
1486  * different endpoint descriptor in usb_host_endpoint.
1487  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1488  * not allowed.
1489  *
1490  * The USB core will not allow URBs to be queued to an endpoint until the
1491  * configuration or alt setting is installed in the device, so there's no need
1492  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1493  */
1494 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1495 		struct usb_host_endpoint *ep)
1496 {
1497 	struct xhci_hcd *xhci;
1498 	struct xhci_container_ctx *in_ctx, *out_ctx;
1499 	unsigned int ep_index;
1500 	struct xhci_ep_ctx *ep_ctx;
1501 	struct xhci_slot_ctx *slot_ctx;
1502 	struct xhci_input_control_ctx *ctrl_ctx;
1503 	u32 added_ctxs;
1504 	unsigned int last_ctx;
1505 	u32 new_add_flags, new_drop_flags, new_slot_info;
1506 	struct xhci_virt_device *virt_dev;
1507 	int ret = 0;
1508 
1509 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1510 	if (ret <= 0) {
1511 		/* So we won't queue a reset ep command for a root hub */
1512 		ep->hcpriv = NULL;
1513 		return ret;
1514 	}
1515 	xhci = hcd_to_xhci(hcd);
1516 	if (xhci->xhc_state & XHCI_STATE_DYING)
1517 		return -ENODEV;
1518 
1519 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1520 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1521 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1522 		/* FIXME when we have to issue an evaluate endpoint command to
1523 		 * deal with ep0 max packet size changing once we get the
1524 		 * descriptors
1525 		 */
1526 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1527 				__func__, added_ctxs);
1528 		return 0;
1529 	}
1530 
1531 	virt_dev = xhci->devs[udev->slot_id];
1532 	in_ctx = virt_dev->in_ctx;
1533 	out_ctx = virt_dev->out_ctx;
1534 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1535 	ep_index = xhci_get_endpoint_index(&ep->desc);
1536 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1537 
1538 	/* If this endpoint is already in use, and the upper layers are trying
1539 	 * to add it again without dropping it, reject the addition.
1540 	 */
1541 	if (virt_dev->eps[ep_index].ring &&
1542 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1543 				xhci_get_endpoint_flag(&ep->desc))) {
1544 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1545 				"without dropping it.\n",
1546 				(unsigned int) ep->desc.bEndpointAddress);
1547 		return -EINVAL;
1548 	}
1549 
1550 	/* If the HCD has already noted the endpoint is enabled,
1551 	 * ignore this request.
1552 	 */
1553 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1554 	    xhci_get_endpoint_flag(&ep->desc)) {
1555 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1556 				__func__, ep);
1557 		return 0;
1558 	}
1559 
1560 	/*
1561 	 * Configuration and alternate setting changes must be done in
1562 	 * process context, not interrupt context (or so documenation
1563 	 * for usb_set_interface() and usb_set_configuration() claim).
1564 	 */
1565 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1566 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1567 				__func__, ep->desc.bEndpointAddress);
1568 		return -ENOMEM;
1569 	}
1570 
1571 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1572 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1573 
1574 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1575 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1576 	 * this re-adds a new state for the endpoint from the new endpoint
1577 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1578 	 * drop flags alone.
1579 	 */
1580 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1581 
1582 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1583 	/* Update the last valid endpoint context, if we just added one past */
1584 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1585 	    LAST_CTX(last_ctx)) {
1586 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1587 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1588 	}
1589 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1590 
1591 	/* Store the usb_device pointer for later use */
1592 	ep->hcpriv = udev;
1593 
1594 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1595 			(unsigned int) ep->desc.bEndpointAddress,
1596 			udev->slot_id,
1597 			(unsigned int) new_drop_flags,
1598 			(unsigned int) new_add_flags,
1599 			(unsigned int) new_slot_info);
1600 	return 0;
1601 }
1602 
1603 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1604 {
1605 	struct xhci_input_control_ctx *ctrl_ctx;
1606 	struct xhci_ep_ctx *ep_ctx;
1607 	struct xhci_slot_ctx *slot_ctx;
1608 	int i;
1609 
1610 	/* When a device's add flag and drop flag are zero, any subsequent
1611 	 * configure endpoint command will leave that endpoint's state
1612 	 * untouched.  Make sure we don't leave any old state in the input
1613 	 * endpoint contexts.
1614 	 */
1615 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1616 	ctrl_ctx->drop_flags = 0;
1617 	ctrl_ctx->add_flags = 0;
1618 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1619 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1620 	/* Endpoint 0 is always valid */
1621 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1622 	for (i = 1; i < 31; ++i) {
1623 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1624 		ep_ctx->ep_info = 0;
1625 		ep_ctx->ep_info2 = 0;
1626 		ep_ctx->deq = 0;
1627 		ep_ctx->tx_info = 0;
1628 	}
1629 }
1630 
1631 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1632 		struct usb_device *udev, u32 *cmd_status)
1633 {
1634 	int ret;
1635 
1636 	switch (*cmd_status) {
1637 	case COMP_ENOMEM:
1638 		dev_warn(&udev->dev, "Not enough host controller resources "
1639 				"for new device state.\n");
1640 		ret = -ENOMEM;
1641 		/* FIXME: can we allocate more resources for the HC? */
1642 		break;
1643 	case COMP_BW_ERR:
1644 	case COMP_2ND_BW_ERR:
1645 		dev_warn(&udev->dev, "Not enough bandwidth "
1646 				"for new device state.\n");
1647 		ret = -ENOSPC;
1648 		/* FIXME: can we go back to the old state? */
1649 		break;
1650 	case COMP_TRB_ERR:
1651 		/* the HCD set up something wrong */
1652 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1653 				"add flag = 1, "
1654 				"and endpoint is not disabled.\n");
1655 		ret = -EINVAL;
1656 		break;
1657 	case COMP_DEV_ERR:
1658 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1659 				"configure command.\n");
1660 		ret = -ENODEV;
1661 		break;
1662 	case COMP_SUCCESS:
1663 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1664 		ret = 0;
1665 		break;
1666 	default:
1667 		xhci_err(xhci, "ERROR: unexpected command completion "
1668 				"code 0x%x.\n", *cmd_status);
1669 		ret = -EINVAL;
1670 		break;
1671 	}
1672 	return ret;
1673 }
1674 
1675 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1676 		struct usb_device *udev, u32 *cmd_status)
1677 {
1678 	int ret;
1679 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1680 
1681 	switch (*cmd_status) {
1682 	case COMP_EINVAL:
1683 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1684 				"context command.\n");
1685 		ret = -EINVAL;
1686 		break;
1687 	case COMP_EBADSLT:
1688 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1689 				"evaluate context command.\n");
1690 	case COMP_CTX_STATE:
1691 		dev_warn(&udev->dev, "WARN: invalid context state for "
1692 				"evaluate context command.\n");
1693 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1694 		ret = -EINVAL;
1695 		break;
1696 	case COMP_DEV_ERR:
1697 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1698 				"context command.\n");
1699 		ret = -ENODEV;
1700 		break;
1701 	case COMP_MEL_ERR:
1702 		/* Max Exit Latency too large error */
1703 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1704 		ret = -EINVAL;
1705 		break;
1706 	case COMP_SUCCESS:
1707 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1708 		ret = 0;
1709 		break;
1710 	default:
1711 		xhci_err(xhci, "ERROR: unexpected command completion "
1712 				"code 0x%x.\n", *cmd_status);
1713 		ret = -EINVAL;
1714 		break;
1715 	}
1716 	return ret;
1717 }
1718 
1719 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1720 		struct xhci_container_ctx *in_ctx)
1721 {
1722 	struct xhci_input_control_ctx *ctrl_ctx;
1723 	u32 valid_add_flags;
1724 	u32 valid_drop_flags;
1725 
1726 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1727 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1728 	 * (bit 1).  The default control endpoint is added during the Address
1729 	 * Device command and is never removed until the slot is disabled.
1730 	 */
1731 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1732 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1733 
1734 	/* Use hweight32 to count the number of ones in the add flags, or
1735 	 * number of endpoints added.  Don't count endpoints that are changed
1736 	 * (both added and dropped).
1737 	 */
1738 	return hweight32(valid_add_flags) -
1739 		hweight32(valid_add_flags & valid_drop_flags);
1740 }
1741 
1742 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1743 		struct xhci_container_ctx *in_ctx)
1744 {
1745 	struct xhci_input_control_ctx *ctrl_ctx;
1746 	u32 valid_add_flags;
1747 	u32 valid_drop_flags;
1748 
1749 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1750 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1751 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1752 
1753 	return hweight32(valid_drop_flags) -
1754 		hweight32(valid_add_flags & valid_drop_flags);
1755 }
1756 
1757 /*
1758  * We need to reserve the new number of endpoints before the configure endpoint
1759  * command completes.  We can't subtract the dropped endpoints from the number
1760  * of active endpoints until the command completes because we can oversubscribe
1761  * the host in this case:
1762  *
1763  *  - the first configure endpoint command drops more endpoints than it adds
1764  *  - a second configure endpoint command that adds more endpoints is queued
1765  *  - the first configure endpoint command fails, so the config is unchanged
1766  *  - the second command may succeed, even though there isn't enough resources
1767  *
1768  * Must be called with xhci->lock held.
1769  */
1770 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1771 		struct xhci_container_ctx *in_ctx)
1772 {
1773 	u32 added_eps;
1774 
1775 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1776 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1777 		xhci_dbg(xhci, "Not enough ep ctxs: "
1778 				"%u active, need to add %u, limit is %u.\n",
1779 				xhci->num_active_eps, added_eps,
1780 				xhci->limit_active_eps);
1781 		return -ENOMEM;
1782 	}
1783 	xhci->num_active_eps += added_eps;
1784 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1785 			xhci->num_active_eps);
1786 	return 0;
1787 }
1788 
1789 /*
1790  * The configure endpoint was failed by the xHC for some other reason, so we
1791  * need to revert the resources that failed configuration would have used.
1792  *
1793  * Must be called with xhci->lock held.
1794  */
1795 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1796 		struct xhci_container_ctx *in_ctx)
1797 {
1798 	u32 num_failed_eps;
1799 
1800 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1801 	xhci->num_active_eps -= num_failed_eps;
1802 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1803 			num_failed_eps,
1804 			xhci->num_active_eps);
1805 }
1806 
1807 /*
1808  * Now that the command has completed, clean up the active endpoint count by
1809  * subtracting out the endpoints that were dropped (but not changed).
1810  *
1811  * Must be called with xhci->lock held.
1812  */
1813 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1814 		struct xhci_container_ctx *in_ctx)
1815 {
1816 	u32 num_dropped_eps;
1817 
1818 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1819 	xhci->num_active_eps -= num_dropped_eps;
1820 	if (num_dropped_eps)
1821 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1822 				num_dropped_eps,
1823 				xhci->num_active_eps);
1824 }
1825 
1826 unsigned int xhci_get_block_size(struct usb_device *udev)
1827 {
1828 	switch (udev->speed) {
1829 	case USB_SPEED_LOW:
1830 	case USB_SPEED_FULL:
1831 		return FS_BLOCK;
1832 	case USB_SPEED_HIGH:
1833 		return HS_BLOCK;
1834 	case USB_SPEED_SUPER:
1835 		return SS_BLOCK;
1836 	case USB_SPEED_UNKNOWN:
1837 	case USB_SPEED_WIRELESS:
1838 	default:
1839 		/* Should never happen */
1840 		return 1;
1841 	}
1842 }
1843 
1844 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1845 {
1846 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1847 		return LS_OVERHEAD;
1848 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1849 		return FS_OVERHEAD;
1850 	return HS_OVERHEAD;
1851 }
1852 
1853 /* If we are changing a LS/FS device under a HS hub,
1854  * make sure (if we are activating a new TT) that the HS bus has enough
1855  * bandwidth for this new TT.
1856  */
1857 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1858 		struct xhci_virt_device *virt_dev,
1859 		int old_active_eps)
1860 {
1861 	struct xhci_interval_bw_table *bw_table;
1862 	struct xhci_tt_bw_info *tt_info;
1863 
1864 	/* Find the bandwidth table for the root port this TT is attached to. */
1865 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1866 	tt_info = virt_dev->tt_info;
1867 	/* If this TT already had active endpoints, the bandwidth for this TT
1868 	 * has already been added.  Removing all periodic endpoints (and thus
1869 	 * making the TT enactive) will only decrease the bandwidth used.
1870 	 */
1871 	if (old_active_eps)
1872 		return 0;
1873 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
1874 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1875 			return -ENOMEM;
1876 		return 0;
1877 	}
1878 	/* Not sure why we would have no new active endpoints...
1879 	 *
1880 	 * Maybe because of an Evaluate Context change for a hub update or a
1881 	 * control endpoint 0 max packet size change?
1882 	 * FIXME: skip the bandwidth calculation in that case.
1883 	 */
1884 	return 0;
1885 }
1886 
1887 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1888 		struct xhci_virt_device *virt_dev)
1889 {
1890 	unsigned int bw_reserved;
1891 
1892 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1893 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1894 		return -ENOMEM;
1895 
1896 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1897 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1898 		return -ENOMEM;
1899 
1900 	return 0;
1901 }
1902 
1903 /*
1904  * This algorithm is a very conservative estimate of the worst-case scheduling
1905  * scenario for any one interval.  The hardware dynamically schedules the
1906  * packets, so we can't tell which microframe could be the limiting factor in
1907  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1908  *
1909  * Obviously, we can't solve an NP complete problem to find the minimum worst
1910  * case scenario.  Instead, we come up with an estimate that is no less than
1911  * the worst case bandwidth used for any one microframe, but may be an
1912  * over-estimate.
1913  *
1914  * We walk the requirements for each endpoint by interval, starting with the
1915  * smallest interval, and place packets in the schedule where there is only one
1916  * possible way to schedule packets for that interval.  In order to simplify
1917  * this algorithm, we record the largest max packet size for each interval, and
1918  * assume all packets will be that size.
1919  *
1920  * For interval 0, we obviously must schedule all packets for each interval.
1921  * The bandwidth for interval 0 is just the amount of data to be transmitted
1922  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1923  * the number of packets).
1924  *
1925  * For interval 1, we have two possible microframes to schedule those packets
1926  * in.  For this algorithm, if we can schedule the same number of packets for
1927  * each possible scheduling opportunity (each microframe), we will do so.  The
1928  * remaining number of packets will be saved to be transmitted in the gaps in
1929  * the next interval's scheduling sequence.
1930  *
1931  * As we move those remaining packets to be scheduled with interval 2 packets,
1932  * we have to double the number of remaining packets to transmit.  This is
1933  * because the intervals are actually powers of 2, and we would be transmitting
1934  * the previous interval's packets twice in this interval.  We also have to be
1935  * sure that when we look at the largest max packet size for this interval, we
1936  * also look at the largest max packet size for the remaining packets and take
1937  * the greater of the two.
1938  *
1939  * The algorithm continues to evenly distribute packets in each scheduling
1940  * opportunity, and push the remaining packets out, until we get to the last
1941  * interval.  Then those packets and their associated overhead are just added
1942  * to the bandwidth used.
1943  */
1944 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1945 		struct xhci_virt_device *virt_dev,
1946 		int old_active_eps)
1947 {
1948 	unsigned int bw_reserved;
1949 	unsigned int max_bandwidth;
1950 	unsigned int bw_used;
1951 	unsigned int block_size;
1952 	struct xhci_interval_bw_table *bw_table;
1953 	unsigned int packet_size = 0;
1954 	unsigned int overhead = 0;
1955 	unsigned int packets_transmitted = 0;
1956 	unsigned int packets_remaining = 0;
1957 	unsigned int i;
1958 
1959 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
1960 		return xhci_check_ss_bw(xhci, virt_dev);
1961 
1962 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1963 		max_bandwidth = HS_BW_LIMIT;
1964 		/* Convert percent of bus BW reserved to blocks reserved */
1965 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1966 	} else {
1967 		max_bandwidth = FS_BW_LIMIT;
1968 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1969 	}
1970 
1971 	bw_table = virt_dev->bw_table;
1972 	/* We need to translate the max packet size and max ESIT payloads into
1973 	 * the units the hardware uses.
1974 	 */
1975 	block_size = xhci_get_block_size(virt_dev->udev);
1976 
1977 	/* If we are manipulating a LS/FS device under a HS hub, double check
1978 	 * that the HS bus has enough bandwidth if we are activing a new TT.
1979 	 */
1980 	if (virt_dev->tt_info) {
1981 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1982 				virt_dev->real_port);
1983 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1984 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1985 					"newly activated TT.\n");
1986 			return -ENOMEM;
1987 		}
1988 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1989 				virt_dev->tt_info->slot_id,
1990 				virt_dev->tt_info->ttport);
1991 	} else {
1992 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1993 				virt_dev->real_port);
1994 	}
1995 
1996 	/* Add in how much bandwidth will be used for interval zero, or the
1997 	 * rounded max ESIT payload + number of packets * largest overhead.
1998 	 */
1999 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2000 		bw_table->interval_bw[0].num_packets *
2001 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2002 
2003 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2004 		unsigned int bw_added;
2005 		unsigned int largest_mps;
2006 		unsigned int interval_overhead;
2007 
2008 		/*
2009 		 * How many packets could we transmit in this interval?
2010 		 * If packets didn't fit in the previous interval, we will need
2011 		 * to transmit that many packets twice within this interval.
2012 		 */
2013 		packets_remaining = 2 * packets_remaining +
2014 			bw_table->interval_bw[i].num_packets;
2015 
2016 		/* Find the largest max packet size of this or the previous
2017 		 * interval.
2018 		 */
2019 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2020 			largest_mps = 0;
2021 		else {
2022 			struct xhci_virt_ep *virt_ep;
2023 			struct list_head *ep_entry;
2024 
2025 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2026 			virt_ep = list_entry(ep_entry,
2027 					struct xhci_virt_ep, bw_endpoint_list);
2028 			/* Convert to blocks, rounding up */
2029 			largest_mps = DIV_ROUND_UP(
2030 					virt_ep->bw_info.max_packet_size,
2031 					block_size);
2032 		}
2033 		if (largest_mps > packet_size)
2034 			packet_size = largest_mps;
2035 
2036 		/* Use the larger overhead of this or the previous interval. */
2037 		interval_overhead = xhci_get_largest_overhead(
2038 				&bw_table->interval_bw[i]);
2039 		if (interval_overhead > overhead)
2040 			overhead = interval_overhead;
2041 
2042 		/* How many packets can we evenly distribute across
2043 		 * (1 << (i + 1)) possible scheduling opportunities?
2044 		 */
2045 		packets_transmitted = packets_remaining >> (i + 1);
2046 
2047 		/* Add in the bandwidth used for those scheduled packets */
2048 		bw_added = packets_transmitted * (overhead + packet_size);
2049 
2050 		/* How many packets do we have remaining to transmit? */
2051 		packets_remaining = packets_remaining % (1 << (i + 1));
2052 
2053 		/* What largest max packet size should those packets have? */
2054 		/* If we've transmitted all packets, don't carry over the
2055 		 * largest packet size.
2056 		 */
2057 		if (packets_remaining == 0) {
2058 			packet_size = 0;
2059 			overhead = 0;
2060 		} else if (packets_transmitted > 0) {
2061 			/* Otherwise if we do have remaining packets, and we've
2062 			 * scheduled some packets in this interval, take the
2063 			 * largest max packet size from endpoints with this
2064 			 * interval.
2065 			 */
2066 			packet_size = largest_mps;
2067 			overhead = interval_overhead;
2068 		}
2069 		/* Otherwise carry over packet_size and overhead from the last
2070 		 * time we had a remainder.
2071 		 */
2072 		bw_used += bw_added;
2073 		if (bw_used > max_bandwidth) {
2074 			xhci_warn(xhci, "Not enough bandwidth. "
2075 					"Proposed: %u, Max: %u\n",
2076 				bw_used, max_bandwidth);
2077 			return -ENOMEM;
2078 		}
2079 	}
2080 	/*
2081 	 * Ok, we know we have some packets left over after even-handedly
2082 	 * scheduling interval 15.  We don't know which microframes they will
2083 	 * fit into, so we over-schedule and say they will be scheduled every
2084 	 * microframe.
2085 	 */
2086 	if (packets_remaining > 0)
2087 		bw_used += overhead + packet_size;
2088 
2089 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2090 		unsigned int port_index = virt_dev->real_port - 1;
2091 
2092 		/* OK, we're manipulating a HS device attached to a
2093 		 * root port bandwidth domain.  Include the number of active TTs
2094 		 * in the bandwidth used.
2095 		 */
2096 		bw_used += TT_HS_OVERHEAD *
2097 			xhci->rh_bw[port_index].num_active_tts;
2098 	}
2099 
2100 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2101 		"Available: %u " "percent\n",
2102 		bw_used, max_bandwidth, bw_reserved,
2103 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2104 		max_bandwidth);
2105 
2106 	bw_used += bw_reserved;
2107 	if (bw_used > max_bandwidth) {
2108 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2109 				bw_used, max_bandwidth);
2110 		return -ENOMEM;
2111 	}
2112 
2113 	bw_table->bw_used = bw_used;
2114 	return 0;
2115 }
2116 
2117 static bool xhci_is_async_ep(unsigned int ep_type)
2118 {
2119 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2120 					ep_type != ISOC_IN_EP &&
2121 					ep_type != INT_IN_EP);
2122 }
2123 
2124 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2125 {
2126 	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2127 }
2128 
2129 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2130 {
2131 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2132 
2133 	if (ep_bw->ep_interval == 0)
2134 		return SS_OVERHEAD_BURST +
2135 			(ep_bw->mult * ep_bw->num_packets *
2136 					(SS_OVERHEAD + mps));
2137 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2138 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2139 				1 << ep_bw->ep_interval);
2140 
2141 }
2142 
2143 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2144 		struct xhci_bw_info *ep_bw,
2145 		struct xhci_interval_bw_table *bw_table,
2146 		struct usb_device *udev,
2147 		struct xhci_virt_ep *virt_ep,
2148 		struct xhci_tt_bw_info *tt_info)
2149 {
2150 	struct xhci_interval_bw	*interval_bw;
2151 	int normalized_interval;
2152 
2153 	if (xhci_is_async_ep(ep_bw->type))
2154 		return;
2155 
2156 	if (udev->speed == USB_SPEED_SUPER) {
2157 		if (xhci_is_sync_in_ep(ep_bw->type))
2158 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2159 				xhci_get_ss_bw_consumed(ep_bw);
2160 		else
2161 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2162 				xhci_get_ss_bw_consumed(ep_bw);
2163 		return;
2164 	}
2165 
2166 	/* SuperSpeed endpoints never get added to intervals in the table, so
2167 	 * this check is only valid for HS/FS/LS devices.
2168 	 */
2169 	if (list_empty(&virt_ep->bw_endpoint_list))
2170 		return;
2171 	/* For LS/FS devices, we need to translate the interval expressed in
2172 	 * microframes to frames.
2173 	 */
2174 	if (udev->speed == USB_SPEED_HIGH)
2175 		normalized_interval = ep_bw->ep_interval;
2176 	else
2177 		normalized_interval = ep_bw->ep_interval - 3;
2178 
2179 	if (normalized_interval == 0)
2180 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2181 	interval_bw = &bw_table->interval_bw[normalized_interval];
2182 	interval_bw->num_packets -= ep_bw->num_packets;
2183 	switch (udev->speed) {
2184 	case USB_SPEED_LOW:
2185 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2186 		break;
2187 	case USB_SPEED_FULL:
2188 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2189 		break;
2190 	case USB_SPEED_HIGH:
2191 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2192 		break;
2193 	case USB_SPEED_SUPER:
2194 	case USB_SPEED_UNKNOWN:
2195 	case USB_SPEED_WIRELESS:
2196 		/* Should never happen because only LS/FS/HS endpoints will get
2197 		 * added to the endpoint list.
2198 		 */
2199 		return;
2200 	}
2201 	if (tt_info)
2202 		tt_info->active_eps -= 1;
2203 	list_del_init(&virt_ep->bw_endpoint_list);
2204 }
2205 
2206 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2207 		struct xhci_bw_info *ep_bw,
2208 		struct xhci_interval_bw_table *bw_table,
2209 		struct usb_device *udev,
2210 		struct xhci_virt_ep *virt_ep,
2211 		struct xhci_tt_bw_info *tt_info)
2212 {
2213 	struct xhci_interval_bw	*interval_bw;
2214 	struct xhci_virt_ep *smaller_ep;
2215 	int normalized_interval;
2216 
2217 	if (xhci_is_async_ep(ep_bw->type))
2218 		return;
2219 
2220 	if (udev->speed == USB_SPEED_SUPER) {
2221 		if (xhci_is_sync_in_ep(ep_bw->type))
2222 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2223 				xhci_get_ss_bw_consumed(ep_bw);
2224 		else
2225 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2226 				xhci_get_ss_bw_consumed(ep_bw);
2227 		return;
2228 	}
2229 
2230 	/* For LS/FS devices, we need to translate the interval expressed in
2231 	 * microframes to frames.
2232 	 */
2233 	if (udev->speed == USB_SPEED_HIGH)
2234 		normalized_interval = ep_bw->ep_interval;
2235 	else
2236 		normalized_interval = ep_bw->ep_interval - 3;
2237 
2238 	if (normalized_interval == 0)
2239 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2240 	interval_bw = &bw_table->interval_bw[normalized_interval];
2241 	interval_bw->num_packets += ep_bw->num_packets;
2242 	switch (udev->speed) {
2243 	case USB_SPEED_LOW:
2244 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2245 		break;
2246 	case USB_SPEED_FULL:
2247 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2248 		break;
2249 	case USB_SPEED_HIGH:
2250 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2251 		break;
2252 	case USB_SPEED_SUPER:
2253 	case USB_SPEED_UNKNOWN:
2254 	case USB_SPEED_WIRELESS:
2255 		/* Should never happen because only LS/FS/HS endpoints will get
2256 		 * added to the endpoint list.
2257 		 */
2258 		return;
2259 	}
2260 
2261 	if (tt_info)
2262 		tt_info->active_eps += 1;
2263 	/* Insert the endpoint into the list, largest max packet size first. */
2264 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2265 			bw_endpoint_list) {
2266 		if (ep_bw->max_packet_size >=
2267 				smaller_ep->bw_info.max_packet_size) {
2268 			/* Add the new ep before the smaller endpoint */
2269 			list_add_tail(&virt_ep->bw_endpoint_list,
2270 					&smaller_ep->bw_endpoint_list);
2271 			return;
2272 		}
2273 	}
2274 	/* Add the new endpoint at the end of the list. */
2275 	list_add_tail(&virt_ep->bw_endpoint_list,
2276 			&interval_bw->endpoints);
2277 }
2278 
2279 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2280 		struct xhci_virt_device *virt_dev,
2281 		int old_active_eps)
2282 {
2283 	struct xhci_root_port_bw_info *rh_bw_info;
2284 	if (!virt_dev->tt_info)
2285 		return;
2286 
2287 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2288 	if (old_active_eps == 0 &&
2289 				virt_dev->tt_info->active_eps != 0) {
2290 		rh_bw_info->num_active_tts += 1;
2291 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2292 	} else if (old_active_eps != 0 &&
2293 				virt_dev->tt_info->active_eps == 0) {
2294 		rh_bw_info->num_active_tts -= 1;
2295 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2296 	}
2297 }
2298 
2299 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2300 		struct xhci_virt_device *virt_dev,
2301 		struct xhci_container_ctx *in_ctx)
2302 {
2303 	struct xhci_bw_info ep_bw_info[31];
2304 	int i;
2305 	struct xhci_input_control_ctx *ctrl_ctx;
2306 	int old_active_eps = 0;
2307 
2308 	if (virt_dev->tt_info)
2309 		old_active_eps = virt_dev->tt_info->active_eps;
2310 
2311 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2312 
2313 	for (i = 0; i < 31; i++) {
2314 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2315 			continue;
2316 
2317 		/* Make a copy of the BW info in case we need to revert this */
2318 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2319 				sizeof(ep_bw_info[i]));
2320 		/* Drop the endpoint from the interval table if the endpoint is
2321 		 * being dropped or changed.
2322 		 */
2323 		if (EP_IS_DROPPED(ctrl_ctx, i))
2324 			xhci_drop_ep_from_interval_table(xhci,
2325 					&virt_dev->eps[i].bw_info,
2326 					virt_dev->bw_table,
2327 					virt_dev->udev,
2328 					&virt_dev->eps[i],
2329 					virt_dev->tt_info);
2330 	}
2331 	/* Overwrite the information stored in the endpoints' bw_info */
2332 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2333 	for (i = 0; i < 31; i++) {
2334 		/* Add any changed or added endpoints to the interval table */
2335 		if (EP_IS_ADDED(ctrl_ctx, i))
2336 			xhci_add_ep_to_interval_table(xhci,
2337 					&virt_dev->eps[i].bw_info,
2338 					virt_dev->bw_table,
2339 					virt_dev->udev,
2340 					&virt_dev->eps[i],
2341 					virt_dev->tt_info);
2342 	}
2343 
2344 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2345 		/* Ok, this fits in the bandwidth we have.
2346 		 * Update the number of active TTs.
2347 		 */
2348 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2349 		return 0;
2350 	}
2351 
2352 	/* We don't have enough bandwidth for this, revert the stored info. */
2353 	for (i = 0; i < 31; i++) {
2354 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2355 			continue;
2356 
2357 		/* Drop the new copies of any added or changed endpoints from
2358 		 * the interval table.
2359 		 */
2360 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2361 			xhci_drop_ep_from_interval_table(xhci,
2362 					&virt_dev->eps[i].bw_info,
2363 					virt_dev->bw_table,
2364 					virt_dev->udev,
2365 					&virt_dev->eps[i],
2366 					virt_dev->tt_info);
2367 		}
2368 		/* Revert the endpoint back to its old information */
2369 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2370 				sizeof(ep_bw_info[i]));
2371 		/* Add any changed or dropped endpoints back into the table */
2372 		if (EP_IS_DROPPED(ctrl_ctx, i))
2373 			xhci_add_ep_to_interval_table(xhci,
2374 					&virt_dev->eps[i].bw_info,
2375 					virt_dev->bw_table,
2376 					virt_dev->udev,
2377 					&virt_dev->eps[i],
2378 					virt_dev->tt_info);
2379 	}
2380 	return -ENOMEM;
2381 }
2382 
2383 
2384 /* Issue a configure endpoint command or evaluate context command
2385  * and wait for it to finish.
2386  */
2387 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2388 		struct usb_device *udev,
2389 		struct xhci_command *command,
2390 		bool ctx_change, bool must_succeed)
2391 {
2392 	int ret;
2393 	int timeleft;
2394 	unsigned long flags;
2395 	struct xhci_container_ctx *in_ctx;
2396 	struct completion *cmd_completion;
2397 	u32 *cmd_status;
2398 	struct xhci_virt_device *virt_dev;
2399 
2400 	spin_lock_irqsave(&xhci->lock, flags);
2401 	virt_dev = xhci->devs[udev->slot_id];
2402 
2403 	if (command)
2404 		in_ctx = command->in_ctx;
2405 	else
2406 		in_ctx = virt_dev->in_ctx;
2407 
2408 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2409 			xhci_reserve_host_resources(xhci, in_ctx)) {
2410 		spin_unlock_irqrestore(&xhci->lock, flags);
2411 		xhci_warn(xhci, "Not enough host resources, "
2412 				"active endpoint contexts = %u\n",
2413 				xhci->num_active_eps);
2414 		return -ENOMEM;
2415 	}
2416 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2417 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2418 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2419 			xhci_free_host_resources(xhci, in_ctx);
2420 		spin_unlock_irqrestore(&xhci->lock, flags);
2421 		xhci_warn(xhci, "Not enough bandwidth\n");
2422 		return -ENOMEM;
2423 	}
2424 
2425 	if (command) {
2426 		cmd_completion = command->completion;
2427 		cmd_status = &command->status;
2428 		command->command_trb = xhci->cmd_ring->enqueue;
2429 
2430 		/* Enqueue pointer can be left pointing to the link TRB,
2431 		 * we must handle that
2432 		 */
2433 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2434 			command->command_trb =
2435 				xhci->cmd_ring->enq_seg->next->trbs;
2436 
2437 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2438 	} else {
2439 		cmd_completion = &virt_dev->cmd_completion;
2440 		cmd_status = &virt_dev->cmd_status;
2441 	}
2442 	init_completion(cmd_completion);
2443 
2444 	if (!ctx_change)
2445 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2446 				udev->slot_id, must_succeed);
2447 	else
2448 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2449 				udev->slot_id, must_succeed);
2450 	if (ret < 0) {
2451 		if (command)
2452 			list_del(&command->cmd_list);
2453 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2454 			xhci_free_host_resources(xhci, in_ctx);
2455 		spin_unlock_irqrestore(&xhci->lock, flags);
2456 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2457 		return -ENOMEM;
2458 	}
2459 	xhci_ring_cmd_db(xhci);
2460 	spin_unlock_irqrestore(&xhci->lock, flags);
2461 
2462 	/* Wait for the configure endpoint command to complete */
2463 	timeleft = wait_for_completion_interruptible_timeout(
2464 			cmd_completion,
2465 			USB_CTRL_SET_TIMEOUT);
2466 	if (timeleft <= 0) {
2467 		xhci_warn(xhci, "%s while waiting for %s command\n",
2468 				timeleft == 0 ? "Timeout" : "Signal",
2469 				ctx_change == 0 ?
2470 					"configure endpoint" :
2471 					"evaluate context");
2472 		/* FIXME cancel the configure endpoint command */
2473 		return -ETIME;
2474 	}
2475 
2476 	if (!ctx_change)
2477 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2478 	else
2479 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2480 
2481 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2482 		spin_lock_irqsave(&xhci->lock, flags);
2483 		/* If the command failed, remove the reserved resources.
2484 		 * Otherwise, clean up the estimate to include dropped eps.
2485 		 */
2486 		if (ret)
2487 			xhci_free_host_resources(xhci, in_ctx);
2488 		else
2489 			xhci_finish_resource_reservation(xhci, in_ctx);
2490 		spin_unlock_irqrestore(&xhci->lock, flags);
2491 	}
2492 	return ret;
2493 }
2494 
2495 /* Called after one or more calls to xhci_add_endpoint() or
2496  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2497  * to call xhci_reset_bandwidth().
2498  *
2499  * Since we are in the middle of changing either configuration or
2500  * installing a new alt setting, the USB core won't allow URBs to be
2501  * enqueued for any endpoint on the old config or interface.  Nothing
2502  * else should be touching the xhci->devs[slot_id] structure, so we
2503  * don't need to take the xhci->lock for manipulating that.
2504  */
2505 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2506 {
2507 	int i;
2508 	int ret = 0;
2509 	struct xhci_hcd *xhci;
2510 	struct xhci_virt_device	*virt_dev;
2511 	struct xhci_input_control_ctx *ctrl_ctx;
2512 	struct xhci_slot_ctx *slot_ctx;
2513 
2514 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2515 	if (ret <= 0)
2516 		return ret;
2517 	xhci = hcd_to_xhci(hcd);
2518 	if (xhci->xhc_state & XHCI_STATE_DYING)
2519 		return -ENODEV;
2520 
2521 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2522 	virt_dev = xhci->devs[udev->slot_id];
2523 
2524 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2525 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2526 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2527 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2528 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2529 
2530 	/* Don't issue the command if there's no endpoints to update. */
2531 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2532 			ctrl_ctx->drop_flags == 0)
2533 		return 0;
2534 
2535 	xhci_dbg(xhci, "New Input Control Context:\n");
2536 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2537 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2538 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2539 
2540 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2541 			false, false);
2542 	if (ret) {
2543 		/* Callee should call reset_bandwidth() */
2544 		return ret;
2545 	}
2546 
2547 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2548 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2549 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2550 
2551 	/* Free any rings that were dropped, but not changed. */
2552 	for (i = 1; i < 31; ++i) {
2553 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2554 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2555 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2556 	}
2557 	xhci_zero_in_ctx(xhci, virt_dev);
2558 	/*
2559 	 * Install any rings for completely new endpoints or changed endpoints,
2560 	 * and free or cache any old rings from changed endpoints.
2561 	 */
2562 	for (i = 1; i < 31; ++i) {
2563 		if (!virt_dev->eps[i].new_ring)
2564 			continue;
2565 		/* Only cache or free the old ring if it exists.
2566 		 * It may not if this is the first add of an endpoint.
2567 		 */
2568 		if (virt_dev->eps[i].ring) {
2569 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2570 		}
2571 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2572 		virt_dev->eps[i].new_ring = NULL;
2573 	}
2574 
2575 	return ret;
2576 }
2577 
2578 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2579 {
2580 	struct xhci_hcd *xhci;
2581 	struct xhci_virt_device	*virt_dev;
2582 	int i, ret;
2583 
2584 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2585 	if (ret <= 0)
2586 		return;
2587 	xhci = hcd_to_xhci(hcd);
2588 
2589 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2590 	virt_dev = xhci->devs[udev->slot_id];
2591 	/* Free any rings allocated for added endpoints */
2592 	for (i = 0; i < 31; ++i) {
2593 		if (virt_dev->eps[i].new_ring) {
2594 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2595 			virt_dev->eps[i].new_ring = NULL;
2596 		}
2597 	}
2598 	xhci_zero_in_ctx(xhci, virt_dev);
2599 }
2600 
2601 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2602 		struct xhci_container_ctx *in_ctx,
2603 		struct xhci_container_ctx *out_ctx,
2604 		u32 add_flags, u32 drop_flags)
2605 {
2606 	struct xhci_input_control_ctx *ctrl_ctx;
2607 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2608 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2609 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2610 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2611 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2612 
2613 	xhci_dbg(xhci, "Input Context:\n");
2614 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2615 }
2616 
2617 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2618 		unsigned int slot_id, unsigned int ep_index,
2619 		struct xhci_dequeue_state *deq_state)
2620 {
2621 	struct xhci_container_ctx *in_ctx;
2622 	struct xhci_ep_ctx *ep_ctx;
2623 	u32 added_ctxs;
2624 	dma_addr_t addr;
2625 
2626 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2627 			xhci->devs[slot_id]->out_ctx, ep_index);
2628 	in_ctx = xhci->devs[slot_id]->in_ctx;
2629 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2630 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2631 			deq_state->new_deq_ptr);
2632 	if (addr == 0) {
2633 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2634 				"reset ep command\n");
2635 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2636 				deq_state->new_deq_seg,
2637 				deq_state->new_deq_ptr);
2638 		return;
2639 	}
2640 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2641 
2642 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2643 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2644 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2645 }
2646 
2647 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2648 		struct usb_device *udev, unsigned int ep_index)
2649 {
2650 	struct xhci_dequeue_state deq_state;
2651 	struct xhci_virt_ep *ep;
2652 
2653 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2654 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2655 	/* We need to move the HW's dequeue pointer past this TD,
2656 	 * or it will attempt to resend it on the next doorbell ring.
2657 	 */
2658 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2659 			ep_index, ep->stopped_stream, ep->stopped_td,
2660 			&deq_state);
2661 
2662 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2663 	 * issue a configure endpoint command later.
2664 	 */
2665 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2666 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2667 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2668 				ep_index, ep->stopped_stream, &deq_state);
2669 	} else {
2670 		/* Better hope no one uses the input context between now and the
2671 		 * reset endpoint completion!
2672 		 * XXX: No idea how this hardware will react when stream rings
2673 		 * are enabled.
2674 		 */
2675 		xhci_dbg(xhci, "Setting up input context for "
2676 				"configure endpoint command\n");
2677 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2678 				ep_index, &deq_state);
2679 	}
2680 }
2681 
2682 /* Deal with stalled endpoints.  The core should have sent the control message
2683  * to clear the halt condition.  However, we need to make the xHCI hardware
2684  * reset its sequence number, since a device will expect a sequence number of
2685  * zero after the halt condition is cleared.
2686  * Context: in_interrupt
2687  */
2688 void xhci_endpoint_reset(struct usb_hcd *hcd,
2689 		struct usb_host_endpoint *ep)
2690 {
2691 	struct xhci_hcd *xhci;
2692 	struct usb_device *udev;
2693 	unsigned int ep_index;
2694 	unsigned long flags;
2695 	int ret;
2696 	struct xhci_virt_ep *virt_ep;
2697 
2698 	xhci = hcd_to_xhci(hcd);
2699 	udev = (struct usb_device *) ep->hcpriv;
2700 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2701 	 * with xhci_add_endpoint()
2702 	 */
2703 	if (!ep->hcpriv)
2704 		return;
2705 	ep_index = xhci_get_endpoint_index(&ep->desc);
2706 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2707 	if (!virt_ep->stopped_td) {
2708 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2709 				ep->desc.bEndpointAddress);
2710 		return;
2711 	}
2712 	if (usb_endpoint_xfer_control(&ep->desc)) {
2713 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2714 		return;
2715 	}
2716 
2717 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2718 	spin_lock_irqsave(&xhci->lock, flags);
2719 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2720 	/*
2721 	 * Can't change the ring dequeue pointer until it's transitioned to the
2722 	 * stopped state, which is only upon a successful reset endpoint
2723 	 * command.  Better hope that last command worked!
2724 	 */
2725 	if (!ret) {
2726 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2727 		kfree(virt_ep->stopped_td);
2728 		xhci_ring_cmd_db(xhci);
2729 	}
2730 	virt_ep->stopped_td = NULL;
2731 	virt_ep->stopped_trb = NULL;
2732 	virt_ep->stopped_stream = 0;
2733 	spin_unlock_irqrestore(&xhci->lock, flags);
2734 
2735 	if (ret)
2736 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2737 }
2738 
2739 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2740 		struct usb_device *udev, struct usb_host_endpoint *ep,
2741 		unsigned int slot_id)
2742 {
2743 	int ret;
2744 	unsigned int ep_index;
2745 	unsigned int ep_state;
2746 
2747 	if (!ep)
2748 		return -EINVAL;
2749 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2750 	if (ret <= 0)
2751 		return -EINVAL;
2752 	if (ep->ss_ep_comp.bmAttributes == 0) {
2753 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2754 				" descriptor for ep 0x%x does not support streams\n",
2755 				ep->desc.bEndpointAddress);
2756 		return -EINVAL;
2757 	}
2758 
2759 	ep_index = xhci_get_endpoint_index(&ep->desc);
2760 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2761 	if (ep_state & EP_HAS_STREAMS ||
2762 			ep_state & EP_GETTING_STREAMS) {
2763 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2764 				"already has streams set up.\n",
2765 				ep->desc.bEndpointAddress);
2766 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2767 				"dynamic stream context array reallocation.\n");
2768 		return -EINVAL;
2769 	}
2770 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2771 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2772 				"endpoint 0x%x; URBs are pending.\n",
2773 				ep->desc.bEndpointAddress);
2774 		return -EINVAL;
2775 	}
2776 	return 0;
2777 }
2778 
2779 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2780 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2781 {
2782 	unsigned int max_streams;
2783 
2784 	/* The stream context array size must be a power of two */
2785 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2786 	/*
2787 	 * Find out how many primary stream array entries the host controller
2788 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2789 	 * level page entries), but that's an optional feature for xHCI host
2790 	 * controllers. xHCs must support at least 4 stream IDs.
2791 	 */
2792 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2793 	if (*num_stream_ctxs > max_streams) {
2794 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2795 				max_streams);
2796 		*num_stream_ctxs = max_streams;
2797 		*num_streams = max_streams;
2798 	}
2799 }
2800 
2801 /* Returns an error code if one of the endpoint already has streams.
2802  * This does not change any data structures, it only checks and gathers
2803  * information.
2804  */
2805 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2806 		struct usb_device *udev,
2807 		struct usb_host_endpoint **eps, unsigned int num_eps,
2808 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2809 {
2810 	unsigned int max_streams;
2811 	unsigned int endpoint_flag;
2812 	int i;
2813 	int ret;
2814 
2815 	for (i = 0; i < num_eps; i++) {
2816 		ret = xhci_check_streams_endpoint(xhci, udev,
2817 				eps[i], udev->slot_id);
2818 		if (ret < 0)
2819 			return ret;
2820 
2821 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2822 		if (max_streams < (*num_streams - 1)) {
2823 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2824 					eps[i]->desc.bEndpointAddress,
2825 					max_streams);
2826 			*num_streams = max_streams+1;
2827 		}
2828 
2829 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2830 		if (*changed_ep_bitmask & endpoint_flag)
2831 			return -EINVAL;
2832 		*changed_ep_bitmask |= endpoint_flag;
2833 	}
2834 	return 0;
2835 }
2836 
2837 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2838 		struct usb_device *udev,
2839 		struct usb_host_endpoint **eps, unsigned int num_eps)
2840 {
2841 	u32 changed_ep_bitmask = 0;
2842 	unsigned int slot_id;
2843 	unsigned int ep_index;
2844 	unsigned int ep_state;
2845 	int i;
2846 
2847 	slot_id = udev->slot_id;
2848 	if (!xhci->devs[slot_id])
2849 		return 0;
2850 
2851 	for (i = 0; i < num_eps; i++) {
2852 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2853 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2854 		/* Are streams already being freed for the endpoint? */
2855 		if (ep_state & EP_GETTING_NO_STREAMS) {
2856 			xhci_warn(xhci, "WARN Can't disable streams for "
2857 					"endpoint 0x%x\n, "
2858 					"streams are being disabled already.",
2859 					eps[i]->desc.bEndpointAddress);
2860 			return 0;
2861 		}
2862 		/* Are there actually any streams to free? */
2863 		if (!(ep_state & EP_HAS_STREAMS) &&
2864 				!(ep_state & EP_GETTING_STREAMS)) {
2865 			xhci_warn(xhci, "WARN Can't disable streams for "
2866 					"endpoint 0x%x\n, "
2867 					"streams are already disabled!",
2868 					eps[i]->desc.bEndpointAddress);
2869 			xhci_warn(xhci, "WARN xhci_free_streams() called "
2870 					"with non-streams endpoint\n");
2871 			return 0;
2872 		}
2873 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2874 	}
2875 	return changed_ep_bitmask;
2876 }
2877 
2878 /*
2879  * The USB device drivers use this function (though the HCD interface in USB
2880  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2881  * coordinate mass storage command queueing across multiple endpoints (basically
2882  * a stream ID == a task ID).
2883  *
2884  * Setting up streams involves allocating the same size stream context array
2885  * for each endpoint and issuing a configure endpoint command for all endpoints.
2886  *
2887  * Don't allow the call to succeed if one endpoint only supports one stream
2888  * (which means it doesn't support streams at all).
2889  *
2890  * Drivers may get less stream IDs than they asked for, if the host controller
2891  * hardware or endpoints claim they can't support the number of requested
2892  * stream IDs.
2893  */
2894 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2895 		struct usb_host_endpoint **eps, unsigned int num_eps,
2896 		unsigned int num_streams, gfp_t mem_flags)
2897 {
2898 	int i, ret;
2899 	struct xhci_hcd *xhci;
2900 	struct xhci_virt_device *vdev;
2901 	struct xhci_command *config_cmd;
2902 	unsigned int ep_index;
2903 	unsigned int num_stream_ctxs;
2904 	unsigned long flags;
2905 	u32 changed_ep_bitmask = 0;
2906 
2907 	if (!eps)
2908 		return -EINVAL;
2909 
2910 	/* Add one to the number of streams requested to account for
2911 	 * stream 0 that is reserved for xHCI usage.
2912 	 */
2913 	num_streams += 1;
2914 	xhci = hcd_to_xhci(hcd);
2915 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2916 			num_streams);
2917 
2918 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2919 	if (!config_cmd) {
2920 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2921 		return -ENOMEM;
2922 	}
2923 
2924 	/* Check to make sure all endpoints are not already configured for
2925 	 * streams.  While we're at it, find the maximum number of streams that
2926 	 * all the endpoints will support and check for duplicate endpoints.
2927 	 */
2928 	spin_lock_irqsave(&xhci->lock, flags);
2929 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2930 			num_eps, &num_streams, &changed_ep_bitmask);
2931 	if (ret < 0) {
2932 		xhci_free_command(xhci, config_cmd);
2933 		spin_unlock_irqrestore(&xhci->lock, flags);
2934 		return ret;
2935 	}
2936 	if (num_streams <= 1) {
2937 		xhci_warn(xhci, "WARN: endpoints can't handle "
2938 				"more than one stream.\n");
2939 		xhci_free_command(xhci, config_cmd);
2940 		spin_unlock_irqrestore(&xhci->lock, flags);
2941 		return -EINVAL;
2942 	}
2943 	vdev = xhci->devs[udev->slot_id];
2944 	/* Mark each endpoint as being in transition, so
2945 	 * xhci_urb_enqueue() will reject all URBs.
2946 	 */
2947 	for (i = 0; i < num_eps; i++) {
2948 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2949 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2950 	}
2951 	spin_unlock_irqrestore(&xhci->lock, flags);
2952 
2953 	/* Setup internal data structures and allocate HW data structures for
2954 	 * streams (but don't install the HW structures in the input context
2955 	 * until we're sure all memory allocation succeeded).
2956 	 */
2957 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2958 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2959 			num_stream_ctxs, num_streams);
2960 
2961 	for (i = 0; i < num_eps; i++) {
2962 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2963 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2964 				num_stream_ctxs,
2965 				num_streams, mem_flags);
2966 		if (!vdev->eps[ep_index].stream_info)
2967 			goto cleanup;
2968 		/* Set maxPstreams in endpoint context and update deq ptr to
2969 		 * point to stream context array. FIXME
2970 		 */
2971 	}
2972 
2973 	/* Set up the input context for a configure endpoint command. */
2974 	for (i = 0; i < num_eps; i++) {
2975 		struct xhci_ep_ctx *ep_ctx;
2976 
2977 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2978 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2979 
2980 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2981 				vdev->out_ctx, ep_index);
2982 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2983 				vdev->eps[ep_index].stream_info);
2984 	}
2985 	/* Tell the HW to drop its old copy of the endpoint context info
2986 	 * and add the updated copy from the input context.
2987 	 */
2988 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2989 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2990 
2991 	/* Issue and wait for the configure endpoint command */
2992 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2993 			false, false);
2994 
2995 	/* xHC rejected the configure endpoint command for some reason, so we
2996 	 * leave the old ring intact and free our internal streams data
2997 	 * structure.
2998 	 */
2999 	if (ret < 0)
3000 		goto cleanup;
3001 
3002 	spin_lock_irqsave(&xhci->lock, flags);
3003 	for (i = 0; i < num_eps; i++) {
3004 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3005 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3006 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3007 			 udev->slot_id, ep_index);
3008 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3009 	}
3010 	xhci_free_command(xhci, config_cmd);
3011 	spin_unlock_irqrestore(&xhci->lock, flags);
3012 
3013 	/* Subtract 1 for stream 0, which drivers can't use */
3014 	return num_streams - 1;
3015 
3016 cleanup:
3017 	/* If it didn't work, free the streams! */
3018 	for (i = 0; i < num_eps; i++) {
3019 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3020 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3021 		vdev->eps[ep_index].stream_info = NULL;
3022 		/* FIXME Unset maxPstreams in endpoint context and
3023 		 * update deq ptr to point to normal string ring.
3024 		 */
3025 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3026 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3027 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3028 	}
3029 	xhci_free_command(xhci, config_cmd);
3030 	return -ENOMEM;
3031 }
3032 
3033 /* Transition the endpoint from using streams to being a "normal" endpoint
3034  * without streams.
3035  *
3036  * Modify the endpoint context state, submit a configure endpoint command,
3037  * and free all endpoint rings for streams if that completes successfully.
3038  */
3039 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3040 		struct usb_host_endpoint **eps, unsigned int num_eps,
3041 		gfp_t mem_flags)
3042 {
3043 	int i, ret;
3044 	struct xhci_hcd *xhci;
3045 	struct xhci_virt_device *vdev;
3046 	struct xhci_command *command;
3047 	unsigned int ep_index;
3048 	unsigned long flags;
3049 	u32 changed_ep_bitmask;
3050 
3051 	xhci = hcd_to_xhci(hcd);
3052 	vdev = xhci->devs[udev->slot_id];
3053 
3054 	/* Set up a configure endpoint command to remove the streams rings */
3055 	spin_lock_irqsave(&xhci->lock, flags);
3056 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3057 			udev, eps, num_eps);
3058 	if (changed_ep_bitmask == 0) {
3059 		spin_unlock_irqrestore(&xhci->lock, flags);
3060 		return -EINVAL;
3061 	}
3062 
3063 	/* Use the xhci_command structure from the first endpoint.  We may have
3064 	 * allocated too many, but the driver may call xhci_free_streams() for
3065 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3066 	 */
3067 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3068 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3069 	for (i = 0; i < num_eps; i++) {
3070 		struct xhci_ep_ctx *ep_ctx;
3071 
3072 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3073 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3074 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3075 			EP_GETTING_NO_STREAMS;
3076 
3077 		xhci_endpoint_copy(xhci, command->in_ctx,
3078 				vdev->out_ctx, ep_index);
3079 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3080 				&vdev->eps[ep_index]);
3081 	}
3082 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3083 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3084 	spin_unlock_irqrestore(&xhci->lock, flags);
3085 
3086 	/* Issue and wait for the configure endpoint command,
3087 	 * which must succeed.
3088 	 */
3089 	ret = xhci_configure_endpoint(xhci, udev, command,
3090 			false, true);
3091 
3092 	/* xHC rejected the configure endpoint command for some reason, so we
3093 	 * leave the streams rings intact.
3094 	 */
3095 	if (ret < 0)
3096 		return ret;
3097 
3098 	spin_lock_irqsave(&xhci->lock, flags);
3099 	for (i = 0; i < num_eps; i++) {
3100 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3101 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3102 		vdev->eps[ep_index].stream_info = NULL;
3103 		/* FIXME Unset maxPstreams in endpoint context and
3104 		 * update deq ptr to point to normal string ring.
3105 		 */
3106 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3107 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3108 	}
3109 	spin_unlock_irqrestore(&xhci->lock, flags);
3110 
3111 	return 0;
3112 }
3113 
3114 /*
3115  * Deletes endpoint resources for endpoints that were active before a Reset
3116  * Device command, or a Disable Slot command.  The Reset Device command leaves
3117  * the control endpoint intact, whereas the Disable Slot command deletes it.
3118  *
3119  * Must be called with xhci->lock held.
3120  */
3121 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3122 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3123 {
3124 	int i;
3125 	unsigned int num_dropped_eps = 0;
3126 	unsigned int drop_flags = 0;
3127 
3128 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3129 		if (virt_dev->eps[i].ring) {
3130 			drop_flags |= 1 << i;
3131 			num_dropped_eps++;
3132 		}
3133 	}
3134 	xhci->num_active_eps -= num_dropped_eps;
3135 	if (num_dropped_eps)
3136 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3137 				"%u now active.\n",
3138 				num_dropped_eps, drop_flags,
3139 				xhci->num_active_eps);
3140 }
3141 
3142 /*
3143  * This submits a Reset Device Command, which will set the device state to 0,
3144  * set the device address to 0, and disable all the endpoints except the default
3145  * control endpoint.  The USB core should come back and call
3146  * xhci_address_device(), and then re-set up the configuration.  If this is
3147  * called because of a usb_reset_and_verify_device(), then the old alternate
3148  * settings will be re-installed through the normal bandwidth allocation
3149  * functions.
3150  *
3151  * Wait for the Reset Device command to finish.  Remove all structures
3152  * associated with the endpoints that were disabled.  Clear the input device
3153  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3154  *
3155  * If the virt_dev to be reset does not exist or does not match the udev,
3156  * it means the device is lost, possibly due to the xHC restore error and
3157  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3158  * re-allocate the device.
3159  */
3160 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3161 {
3162 	int ret, i;
3163 	unsigned long flags;
3164 	struct xhci_hcd *xhci;
3165 	unsigned int slot_id;
3166 	struct xhci_virt_device *virt_dev;
3167 	struct xhci_command *reset_device_cmd;
3168 	int timeleft;
3169 	int last_freed_endpoint;
3170 	struct xhci_slot_ctx *slot_ctx;
3171 	int old_active_eps = 0;
3172 
3173 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3174 	if (ret <= 0)
3175 		return ret;
3176 	xhci = hcd_to_xhci(hcd);
3177 	slot_id = udev->slot_id;
3178 	virt_dev = xhci->devs[slot_id];
3179 	if (!virt_dev) {
3180 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3181 				"not exist. Re-allocate the device\n", slot_id);
3182 		ret = xhci_alloc_dev(hcd, udev);
3183 		if (ret == 1)
3184 			return 0;
3185 		else
3186 			return -EINVAL;
3187 	}
3188 
3189 	if (virt_dev->udev != udev) {
3190 		/* If the virt_dev and the udev does not match, this virt_dev
3191 		 * may belong to another udev.
3192 		 * Re-allocate the device.
3193 		 */
3194 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3195 				"not match the udev. Re-allocate the device\n",
3196 				slot_id);
3197 		ret = xhci_alloc_dev(hcd, udev);
3198 		if (ret == 1)
3199 			return 0;
3200 		else
3201 			return -EINVAL;
3202 	}
3203 
3204 	/* If device is not setup, there is no point in resetting it */
3205 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3206 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3207 						SLOT_STATE_DISABLED)
3208 		return 0;
3209 
3210 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3211 	/* Allocate the command structure that holds the struct completion.
3212 	 * Assume we're in process context, since the normal device reset
3213 	 * process has to wait for the device anyway.  Storage devices are
3214 	 * reset as part of error handling, so use GFP_NOIO instead of
3215 	 * GFP_KERNEL.
3216 	 */
3217 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3218 	if (!reset_device_cmd) {
3219 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3220 		return -ENOMEM;
3221 	}
3222 
3223 	/* Attempt to submit the Reset Device command to the command ring */
3224 	spin_lock_irqsave(&xhci->lock, flags);
3225 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3226 
3227 	/* Enqueue pointer can be left pointing to the link TRB,
3228 	 * we must handle that
3229 	 */
3230 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3231 		reset_device_cmd->command_trb =
3232 			xhci->cmd_ring->enq_seg->next->trbs;
3233 
3234 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3235 	ret = xhci_queue_reset_device(xhci, slot_id);
3236 	if (ret) {
3237 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3238 		list_del(&reset_device_cmd->cmd_list);
3239 		spin_unlock_irqrestore(&xhci->lock, flags);
3240 		goto command_cleanup;
3241 	}
3242 	xhci_ring_cmd_db(xhci);
3243 	spin_unlock_irqrestore(&xhci->lock, flags);
3244 
3245 	/* Wait for the Reset Device command to finish */
3246 	timeleft = wait_for_completion_interruptible_timeout(
3247 			reset_device_cmd->completion,
3248 			USB_CTRL_SET_TIMEOUT);
3249 	if (timeleft <= 0) {
3250 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3251 				timeleft == 0 ? "Timeout" : "Signal");
3252 		spin_lock_irqsave(&xhci->lock, flags);
3253 		/* The timeout might have raced with the event ring handler, so
3254 		 * only delete from the list if the item isn't poisoned.
3255 		 */
3256 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3257 			list_del(&reset_device_cmd->cmd_list);
3258 		spin_unlock_irqrestore(&xhci->lock, flags);
3259 		ret = -ETIME;
3260 		goto command_cleanup;
3261 	}
3262 
3263 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3264 	 * unless we tried to reset a slot ID that wasn't enabled,
3265 	 * or the device wasn't in the addressed or configured state.
3266 	 */
3267 	ret = reset_device_cmd->status;
3268 	switch (ret) {
3269 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3270 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3271 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3272 				slot_id,
3273 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3274 		xhci_info(xhci, "Not freeing device rings.\n");
3275 		/* Don't treat this as an error.  May change my mind later. */
3276 		ret = 0;
3277 		goto command_cleanup;
3278 	case COMP_SUCCESS:
3279 		xhci_dbg(xhci, "Successful reset device command.\n");
3280 		break;
3281 	default:
3282 		if (xhci_is_vendor_info_code(xhci, ret))
3283 			break;
3284 		xhci_warn(xhci, "Unknown completion code %u for "
3285 				"reset device command.\n", ret);
3286 		ret = -EINVAL;
3287 		goto command_cleanup;
3288 	}
3289 
3290 	/* Free up host controller endpoint resources */
3291 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3292 		spin_lock_irqsave(&xhci->lock, flags);
3293 		/* Don't delete the default control endpoint resources */
3294 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3295 		spin_unlock_irqrestore(&xhci->lock, flags);
3296 	}
3297 
3298 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3299 	last_freed_endpoint = 1;
3300 	for (i = 1; i < 31; ++i) {
3301 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3302 
3303 		if (ep->ep_state & EP_HAS_STREAMS) {
3304 			xhci_free_stream_info(xhci, ep->stream_info);
3305 			ep->stream_info = NULL;
3306 			ep->ep_state &= ~EP_HAS_STREAMS;
3307 		}
3308 
3309 		if (ep->ring) {
3310 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3311 			last_freed_endpoint = i;
3312 		}
3313 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3314 			xhci_drop_ep_from_interval_table(xhci,
3315 					&virt_dev->eps[i].bw_info,
3316 					virt_dev->bw_table,
3317 					udev,
3318 					&virt_dev->eps[i],
3319 					virt_dev->tt_info);
3320 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3321 	}
3322 	/* If necessary, update the number of active TTs on this root port */
3323 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3324 
3325 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3326 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3327 	ret = 0;
3328 
3329 command_cleanup:
3330 	xhci_free_command(xhci, reset_device_cmd);
3331 	return ret;
3332 }
3333 
3334 /*
3335  * At this point, the struct usb_device is about to go away, the device has
3336  * disconnected, and all traffic has been stopped and the endpoints have been
3337  * disabled.  Free any HC data structures associated with that device.
3338  */
3339 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3340 {
3341 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3342 	struct xhci_virt_device *virt_dev;
3343 	unsigned long flags;
3344 	u32 state;
3345 	int i, ret;
3346 
3347 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3348 	/* If the host is halted due to driver unload, we still need to free the
3349 	 * device.
3350 	 */
3351 	if (ret <= 0 && ret != -ENODEV)
3352 		return;
3353 
3354 	virt_dev = xhci->devs[udev->slot_id];
3355 
3356 	/* Stop any wayward timer functions (which may grab the lock) */
3357 	for (i = 0; i < 31; ++i) {
3358 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3359 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3360 	}
3361 
3362 	if (udev->usb2_hw_lpm_enabled) {
3363 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3364 		udev->usb2_hw_lpm_enabled = 0;
3365 	}
3366 
3367 	spin_lock_irqsave(&xhci->lock, flags);
3368 	/* Don't disable the slot if the host controller is dead. */
3369 	state = xhci_readl(xhci, &xhci->op_regs->status);
3370 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3371 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3372 		xhci_free_virt_device(xhci, udev->slot_id);
3373 		spin_unlock_irqrestore(&xhci->lock, flags);
3374 		return;
3375 	}
3376 
3377 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3378 		spin_unlock_irqrestore(&xhci->lock, flags);
3379 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3380 		return;
3381 	}
3382 	xhci_ring_cmd_db(xhci);
3383 	spin_unlock_irqrestore(&xhci->lock, flags);
3384 	/*
3385 	 * Event command completion handler will free any data structures
3386 	 * associated with the slot.  XXX Can free sleep?
3387 	 */
3388 }
3389 
3390 /*
3391  * Checks if we have enough host controller resources for the default control
3392  * endpoint.
3393  *
3394  * Must be called with xhci->lock held.
3395  */
3396 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3397 {
3398 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3399 		xhci_dbg(xhci, "Not enough ep ctxs: "
3400 				"%u active, need to add 1, limit is %u.\n",
3401 				xhci->num_active_eps, xhci->limit_active_eps);
3402 		return -ENOMEM;
3403 	}
3404 	xhci->num_active_eps += 1;
3405 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3406 			xhci->num_active_eps);
3407 	return 0;
3408 }
3409 
3410 
3411 /*
3412  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3413  * timed out, or allocating memory failed.  Returns 1 on success.
3414  */
3415 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3416 {
3417 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3418 	unsigned long flags;
3419 	int timeleft;
3420 	int ret;
3421 
3422 	spin_lock_irqsave(&xhci->lock, flags);
3423 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3424 	if (ret) {
3425 		spin_unlock_irqrestore(&xhci->lock, flags);
3426 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3427 		return 0;
3428 	}
3429 	xhci_ring_cmd_db(xhci);
3430 	spin_unlock_irqrestore(&xhci->lock, flags);
3431 
3432 	/* XXX: how much time for xHC slot assignment? */
3433 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3434 			USB_CTRL_SET_TIMEOUT);
3435 	if (timeleft <= 0) {
3436 		xhci_warn(xhci, "%s while waiting for a slot\n",
3437 				timeleft == 0 ? "Timeout" : "Signal");
3438 		/* FIXME cancel the enable slot request */
3439 		return 0;
3440 	}
3441 
3442 	if (!xhci->slot_id) {
3443 		xhci_err(xhci, "Error while assigning device slot ID\n");
3444 		return 0;
3445 	}
3446 
3447 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3448 		spin_lock_irqsave(&xhci->lock, flags);
3449 		ret = xhci_reserve_host_control_ep_resources(xhci);
3450 		if (ret) {
3451 			spin_unlock_irqrestore(&xhci->lock, flags);
3452 			xhci_warn(xhci, "Not enough host resources, "
3453 					"active endpoint contexts = %u\n",
3454 					xhci->num_active_eps);
3455 			goto disable_slot;
3456 		}
3457 		spin_unlock_irqrestore(&xhci->lock, flags);
3458 	}
3459 	/* Use GFP_NOIO, since this function can be called from
3460 	 * xhci_discover_or_reset_device(), which may be called as part of
3461 	 * mass storage driver error handling.
3462 	 */
3463 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3464 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3465 		goto disable_slot;
3466 	}
3467 	udev->slot_id = xhci->slot_id;
3468 	/* Is this a LS or FS device under a HS hub? */
3469 	/* Hub or peripherial? */
3470 	return 1;
3471 
3472 disable_slot:
3473 	/* Disable slot, if we can do it without mem alloc */
3474 	spin_lock_irqsave(&xhci->lock, flags);
3475 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3476 		xhci_ring_cmd_db(xhci);
3477 	spin_unlock_irqrestore(&xhci->lock, flags);
3478 	return 0;
3479 }
3480 
3481 /*
3482  * Issue an Address Device command (which will issue a SetAddress request to
3483  * the device).
3484  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3485  * we should only issue and wait on one address command at the same time.
3486  *
3487  * We add one to the device address issued by the hardware because the USB core
3488  * uses address 1 for the root hubs (even though they're not really devices).
3489  */
3490 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3491 {
3492 	unsigned long flags;
3493 	int timeleft;
3494 	struct xhci_virt_device *virt_dev;
3495 	int ret = 0;
3496 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3497 	struct xhci_slot_ctx *slot_ctx;
3498 	struct xhci_input_control_ctx *ctrl_ctx;
3499 	u64 temp_64;
3500 
3501 	if (!udev->slot_id) {
3502 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3503 		return -EINVAL;
3504 	}
3505 
3506 	virt_dev = xhci->devs[udev->slot_id];
3507 
3508 	if (WARN_ON(!virt_dev)) {
3509 		/*
3510 		 * In plug/unplug torture test with an NEC controller,
3511 		 * a zero-dereference was observed once due to virt_dev = 0.
3512 		 * Print useful debug rather than crash if it is observed again!
3513 		 */
3514 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3515 			udev->slot_id);
3516 		return -EINVAL;
3517 	}
3518 
3519 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3520 	/*
3521 	 * If this is the first Set Address since device plug-in or
3522 	 * virt_device realloaction after a resume with an xHCI power loss,
3523 	 * then set up the slot context.
3524 	 */
3525 	if (!slot_ctx->dev_info)
3526 		xhci_setup_addressable_virt_dev(xhci, udev);
3527 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3528 	else
3529 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3530 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3531 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3532 	ctrl_ctx->drop_flags = 0;
3533 
3534 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3535 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3536 
3537 	spin_lock_irqsave(&xhci->lock, flags);
3538 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3539 					udev->slot_id);
3540 	if (ret) {
3541 		spin_unlock_irqrestore(&xhci->lock, flags);
3542 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3543 		return ret;
3544 	}
3545 	xhci_ring_cmd_db(xhci);
3546 	spin_unlock_irqrestore(&xhci->lock, flags);
3547 
3548 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3549 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3550 			USB_CTRL_SET_TIMEOUT);
3551 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3552 	 * the SetAddress() "recovery interval" required by USB and aborting the
3553 	 * command on a timeout.
3554 	 */
3555 	if (timeleft <= 0) {
3556 		xhci_warn(xhci, "%s while waiting for address device command\n",
3557 				timeleft == 0 ? "Timeout" : "Signal");
3558 		/* FIXME cancel the address device command */
3559 		return -ETIME;
3560 	}
3561 
3562 	switch (virt_dev->cmd_status) {
3563 	case COMP_CTX_STATE:
3564 	case COMP_EBADSLT:
3565 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3566 				udev->slot_id);
3567 		ret = -EINVAL;
3568 		break;
3569 	case COMP_TX_ERR:
3570 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3571 		ret = -EPROTO;
3572 		break;
3573 	case COMP_DEV_ERR:
3574 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3575 				"device command.\n");
3576 		ret = -ENODEV;
3577 		break;
3578 	case COMP_SUCCESS:
3579 		xhci_dbg(xhci, "Successful Address Device command\n");
3580 		break;
3581 	default:
3582 		xhci_err(xhci, "ERROR: unexpected command completion "
3583 				"code 0x%x.\n", virt_dev->cmd_status);
3584 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3585 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3586 		ret = -EINVAL;
3587 		break;
3588 	}
3589 	if (ret) {
3590 		return ret;
3591 	}
3592 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3593 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3594 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3595 		 udev->slot_id,
3596 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3597 		 (unsigned long long)
3598 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3599 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3600 			(unsigned long long)virt_dev->out_ctx->dma);
3601 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3602 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3603 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3604 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3605 	/*
3606 	 * USB core uses address 1 for the roothubs, so we add one to the
3607 	 * address given back to us by the HC.
3608 	 */
3609 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3610 	/* Use kernel assigned address for devices; store xHC assigned
3611 	 * address locally. */
3612 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3613 		+ 1;
3614 	/* Zero the input context control for later use */
3615 	ctrl_ctx->add_flags = 0;
3616 	ctrl_ctx->drop_flags = 0;
3617 
3618 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3619 
3620 	return 0;
3621 }
3622 
3623 #ifdef CONFIG_USB_SUSPEND
3624 
3625 /* BESL to HIRD Encoding array for USB2 LPM */
3626 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3627 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3628 
3629 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3630 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3631 					struct usb_device *udev)
3632 {
3633 	int u2del, besl, besl_host;
3634 	int besl_device = 0;
3635 	u32 field;
3636 
3637 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3638 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3639 
3640 	if (field & USB_BESL_SUPPORT) {
3641 		for (besl_host = 0; besl_host < 16; besl_host++) {
3642 			if (xhci_besl_encoding[besl_host] >= u2del)
3643 				break;
3644 		}
3645 		/* Use baseline BESL value as default */
3646 		if (field & USB_BESL_BASELINE_VALID)
3647 			besl_device = USB_GET_BESL_BASELINE(field);
3648 		else if (field & USB_BESL_DEEP_VALID)
3649 			besl_device = USB_GET_BESL_DEEP(field);
3650 	} else {
3651 		if (u2del <= 50)
3652 			besl_host = 0;
3653 		else
3654 			besl_host = (u2del - 51) / 75 + 1;
3655 	}
3656 
3657 	besl = besl_host + besl_device;
3658 	if (besl > 15)
3659 		besl = 15;
3660 
3661 	return besl;
3662 }
3663 
3664 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3665 					struct usb_device *udev)
3666 {
3667 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3668 	struct dev_info	*dev_info;
3669 	__le32 __iomem	**port_array;
3670 	__le32 __iomem	*addr, *pm_addr;
3671 	u32		temp, dev_id;
3672 	unsigned int	port_num;
3673 	unsigned long	flags;
3674 	int		hird;
3675 	int		ret;
3676 
3677 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3678 			!udev->lpm_capable)
3679 		return -EINVAL;
3680 
3681 	/* we only support lpm for non-hub device connected to root hub yet */
3682 	if (!udev->parent || udev->parent->parent ||
3683 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3684 		return -EINVAL;
3685 
3686 	spin_lock_irqsave(&xhci->lock, flags);
3687 
3688 	/* Look for devices in lpm_failed_devs list */
3689 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3690 			le16_to_cpu(udev->descriptor.idProduct);
3691 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3692 		if (dev_info->dev_id == dev_id) {
3693 			ret = -EINVAL;
3694 			goto finish;
3695 		}
3696 	}
3697 
3698 	port_array = xhci->usb2_ports;
3699 	port_num = udev->portnum - 1;
3700 
3701 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3702 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3703 		ret = -EINVAL;
3704 		goto finish;
3705 	}
3706 
3707 	/*
3708 	 * Test USB 2.0 software LPM.
3709 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3710 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3711 	 * in the June 2011 errata release.
3712 	 */
3713 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3714 	/*
3715 	 * Set L1 Device Slot and HIRD/BESL.
3716 	 * Check device's USB 2.0 extension descriptor to determine whether
3717 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3718 	 */
3719 	pm_addr = port_array[port_num] + 1;
3720 	hird = xhci_calculate_hird_besl(xhci, udev);
3721 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3722 	xhci_writel(xhci, temp, pm_addr);
3723 
3724 	/* Set port link state to U2(L1) */
3725 	addr = port_array[port_num];
3726 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3727 
3728 	/* wait for ACK */
3729 	spin_unlock_irqrestore(&xhci->lock, flags);
3730 	msleep(10);
3731 	spin_lock_irqsave(&xhci->lock, flags);
3732 
3733 	/* Check L1 Status */
3734 	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3735 	if (ret != -ETIMEDOUT) {
3736 		/* enter L1 successfully */
3737 		temp = xhci_readl(xhci, addr);
3738 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3739 				port_num, temp);
3740 		ret = 0;
3741 	} else {
3742 		temp = xhci_readl(xhci, pm_addr);
3743 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3744 				port_num, temp & PORT_L1S_MASK);
3745 		ret = -EINVAL;
3746 	}
3747 
3748 	/* Resume the port */
3749 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3750 
3751 	spin_unlock_irqrestore(&xhci->lock, flags);
3752 	msleep(10);
3753 	spin_lock_irqsave(&xhci->lock, flags);
3754 
3755 	/* Clear PLC */
3756 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3757 
3758 	/* Check PORTSC to make sure the device is in the right state */
3759 	if (!ret) {
3760 		temp = xhci_readl(xhci, addr);
3761 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3762 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3763 				(temp & PORT_PLS_MASK) != XDEV_U0) {
3764 			xhci_dbg(xhci, "port L1 resume fail\n");
3765 			ret = -EINVAL;
3766 		}
3767 	}
3768 
3769 	if (ret) {
3770 		/* Insert dev to lpm_failed_devs list */
3771 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3772 				"re-enumerate\n");
3773 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3774 		if (!dev_info) {
3775 			ret = -ENOMEM;
3776 			goto finish;
3777 		}
3778 		dev_info->dev_id = dev_id;
3779 		INIT_LIST_HEAD(&dev_info->list);
3780 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3781 	} else {
3782 		xhci_ring_device(xhci, udev->slot_id);
3783 	}
3784 
3785 finish:
3786 	spin_unlock_irqrestore(&xhci->lock, flags);
3787 	return ret;
3788 }
3789 
3790 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3791 			struct usb_device *udev, int enable)
3792 {
3793 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3794 	__le32 __iomem	**port_array;
3795 	__le32 __iomem	*pm_addr;
3796 	u32		temp;
3797 	unsigned int	port_num;
3798 	unsigned long	flags;
3799 	int		hird;
3800 
3801 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3802 			!udev->lpm_capable)
3803 		return -EPERM;
3804 
3805 	if (!udev->parent || udev->parent->parent ||
3806 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3807 		return -EPERM;
3808 
3809 	if (udev->usb2_hw_lpm_capable != 1)
3810 		return -EPERM;
3811 
3812 	spin_lock_irqsave(&xhci->lock, flags);
3813 
3814 	port_array = xhci->usb2_ports;
3815 	port_num = udev->portnum - 1;
3816 	pm_addr = port_array[port_num] + 1;
3817 	temp = xhci_readl(xhci, pm_addr);
3818 
3819 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3820 			enable ? "enable" : "disable", port_num);
3821 
3822 	hird = xhci_calculate_hird_besl(xhci, udev);
3823 
3824 	if (enable) {
3825 		temp &= ~PORT_HIRD_MASK;
3826 		temp |= PORT_HIRD(hird) | PORT_RWE;
3827 		xhci_writel(xhci, temp, pm_addr);
3828 		temp = xhci_readl(xhci, pm_addr);
3829 		temp |= PORT_HLE;
3830 		xhci_writel(xhci, temp, pm_addr);
3831 	} else {
3832 		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3833 		xhci_writel(xhci, temp, pm_addr);
3834 	}
3835 
3836 	spin_unlock_irqrestore(&xhci->lock, flags);
3837 	return 0;
3838 }
3839 
3840 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3841 {
3842 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3843 	int		ret;
3844 
3845 	ret = xhci_usb2_software_lpm_test(hcd, udev);
3846 	if (!ret) {
3847 		xhci_dbg(xhci, "software LPM test succeed\n");
3848 		if (xhci->hw_lpm_support == 1) {
3849 			udev->usb2_hw_lpm_capable = 1;
3850 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3851 			if (!ret)
3852 				udev->usb2_hw_lpm_enabled = 1;
3853 		}
3854 	}
3855 
3856 	return 0;
3857 }
3858 
3859 #else
3860 
3861 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3862 				struct usb_device *udev, int enable)
3863 {
3864 	return 0;
3865 }
3866 
3867 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3868 {
3869 	return 0;
3870 }
3871 
3872 #endif /* CONFIG_USB_SUSPEND */
3873 
3874 /*---------------------- USB 3.0 Link PM functions ------------------------*/
3875 
3876 #ifdef CONFIG_PM
3877 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
3878 static unsigned long long xhci_service_interval_to_ns(
3879 		struct usb_endpoint_descriptor *desc)
3880 {
3881 	return (1 << (desc->bInterval - 1)) * 125 * 1000;
3882 }
3883 
3884 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
3885 		enum usb3_link_state state)
3886 {
3887 	unsigned long long sel;
3888 	unsigned long long pel;
3889 	unsigned int max_sel_pel;
3890 	char *state_name;
3891 
3892 	switch (state) {
3893 	case USB3_LPM_U1:
3894 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
3895 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
3896 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
3897 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
3898 		state_name = "U1";
3899 		break;
3900 	case USB3_LPM_U2:
3901 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
3902 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
3903 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
3904 		state_name = "U2";
3905 		break;
3906 	default:
3907 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
3908 				__func__);
3909 		return USB3_LPM_DISABLED;
3910 	}
3911 
3912 	if (sel <= max_sel_pel && pel <= max_sel_pel)
3913 		return USB3_LPM_DEVICE_INITIATED;
3914 
3915 	if (sel > max_sel_pel)
3916 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
3917 				"due to long SEL %llu ms\n",
3918 				state_name, sel);
3919 	else
3920 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
3921 				"due to long PEL %llu\n ms",
3922 				state_name, pel);
3923 	return USB3_LPM_DISABLED;
3924 }
3925 
3926 /* Returns the hub-encoded U1 timeout value.
3927  * The U1 timeout should be the maximum of the following values:
3928  *  - For control endpoints, U1 system exit latency (SEL) * 3
3929  *  - For bulk endpoints, U1 SEL * 5
3930  *  - For interrupt endpoints:
3931  *    - Notification EPs, U1 SEL * 3
3932  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
3933  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
3934  */
3935 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
3936 		struct usb_endpoint_descriptor *desc)
3937 {
3938 	unsigned long long timeout_ns;
3939 	int ep_type;
3940 	int intr_type;
3941 
3942 	ep_type = usb_endpoint_type(desc);
3943 	switch (ep_type) {
3944 	case USB_ENDPOINT_XFER_CONTROL:
3945 		timeout_ns = udev->u1_params.sel * 3;
3946 		break;
3947 	case USB_ENDPOINT_XFER_BULK:
3948 		timeout_ns = udev->u1_params.sel * 5;
3949 		break;
3950 	case USB_ENDPOINT_XFER_INT:
3951 		intr_type = usb_endpoint_interrupt_type(desc);
3952 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
3953 			timeout_ns = udev->u1_params.sel * 3;
3954 			break;
3955 		}
3956 		/* Otherwise the calculation is the same as isoc eps */
3957 	case USB_ENDPOINT_XFER_ISOC:
3958 		timeout_ns = xhci_service_interval_to_ns(desc);
3959 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
3960 		if (timeout_ns < udev->u1_params.sel * 2)
3961 			timeout_ns = udev->u1_params.sel * 2;
3962 		break;
3963 	default:
3964 		return 0;
3965 	}
3966 
3967 	/* The U1 timeout is encoded in 1us intervals. */
3968 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
3969 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
3970 	if (timeout_ns == USB3_LPM_DISABLED)
3971 		timeout_ns++;
3972 
3973 	/* If the necessary timeout value is bigger than what we can set in the
3974 	 * USB 3.0 hub, we have to disable hub-initiated U1.
3975 	 */
3976 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
3977 		return timeout_ns;
3978 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
3979 			"due to long timeout %llu ms\n", timeout_ns);
3980 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
3981 }
3982 
3983 /* Returns the hub-encoded U2 timeout value.
3984  * The U2 timeout should be the maximum of:
3985  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
3986  *  - largest bInterval of any active periodic endpoint (to avoid going
3987  *    into lower power link states between intervals).
3988  *  - the U2 Exit Latency of the device
3989  */
3990 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
3991 		struct usb_endpoint_descriptor *desc)
3992 {
3993 	unsigned long long timeout_ns;
3994 	unsigned long long u2_del_ns;
3995 
3996 	timeout_ns = 10 * 1000 * 1000;
3997 
3998 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
3999 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4000 		timeout_ns = xhci_service_interval_to_ns(desc);
4001 
4002 	u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4003 	if (u2_del_ns > timeout_ns)
4004 		timeout_ns = u2_del_ns;
4005 
4006 	/* The U2 timeout is encoded in 256us intervals */
4007 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4008 	/* If the necessary timeout value is bigger than what we can set in the
4009 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4010 	 */
4011 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4012 		return timeout_ns;
4013 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4014 			"due to long timeout %llu ms\n", timeout_ns);
4015 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4016 }
4017 
4018 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4019 		struct usb_device *udev,
4020 		struct usb_endpoint_descriptor *desc,
4021 		enum usb3_link_state state,
4022 		u16 *timeout)
4023 {
4024 	if (state == USB3_LPM_U1) {
4025 		if (xhci->quirks & XHCI_INTEL_HOST)
4026 			return xhci_calculate_intel_u1_timeout(udev, desc);
4027 	} else {
4028 		if (xhci->quirks & XHCI_INTEL_HOST)
4029 			return xhci_calculate_intel_u2_timeout(udev, desc);
4030 	}
4031 
4032 	return USB3_LPM_DISABLED;
4033 }
4034 
4035 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4036 		struct usb_device *udev,
4037 		struct usb_endpoint_descriptor *desc,
4038 		enum usb3_link_state state,
4039 		u16 *timeout)
4040 {
4041 	u16 alt_timeout;
4042 
4043 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4044 		desc, state, timeout);
4045 
4046 	/* If we found we can't enable hub-initiated LPM, or
4047 	 * the U1 or U2 exit latency was too high to allow
4048 	 * device-initiated LPM as well, just stop searching.
4049 	 */
4050 	if (alt_timeout == USB3_LPM_DISABLED ||
4051 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4052 		*timeout = alt_timeout;
4053 		return -E2BIG;
4054 	}
4055 	if (alt_timeout > *timeout)
4056 		*timeout = alt_timeout;
4057 	return 0;
4058 }
4059 
4060 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4061 		struct usb_device *udev,
4062 		struct usb_host_interface *alt,
4063 		enum usb3_link_state state,
4064 		u16 *timeout)
4065 {
4066 	int j;
4067 
4068 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4069 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4070 					&alt->endpoint[j].desc, state, timeout))
4071 			return -E2BIG;
4072 		continue;
4073 	}
4074 	return 0;
4075 }
4076 
4077 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4078 		enum usb3_link_state state)
4079 {
4080 	struct usb_device *parent;
4081 	unsigned int num_hubs;
4082 
4083 	if (state == USB3_LPM_U2)
4084 		return 0;
4085 
4086 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4087 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4088 			parent = parent->parent)
4089 		num_hubs++;
4090 
4091 	if (num_hubs < 2)
4092 		return 0;
4093 
4094 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4095 			" below second-tier hub.\n");
4096 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4097 			"to decrease power consumption.\n");
4098 	return -E2BIG;
4099 }
4100 
4101 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4102 		struct usb_device *udev,
4103 		enum usb3_link_state state)
4104 {
4105 	if (xhci->quirks & XHCI_INTEL_HOST)
4106 		return xhci_check_intel_tier_policy(udev, state);
4107 	return -EINVAL;
4108 }
4109 
4110 /* Returns the U1 or U2 timeout that should be enabled.
4111  * If the tier check or timeout setting functions return with a non-zero exit
4112  * code, that means the timeout value has been finalized and we shouldn't look
4113  * at any more endpoints.
4114  */
4115 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4116 			struct usb_device *udev, enum usb3_link_state state)
4117 {
4118 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4119 	struct usb_host_config *config;
4120 	char *state_name;
4121 	int i;
4122 	u16 timeout = USB3_LPM_DISABLED;
4123 
4124 	if (state == USB3_LPM_U1)
4125 		state_name = "U1";
4126 	else if (state == USB3_LPM_U2)
4127 		state_name = "U2";
4128 	else {
4129 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4130 				state);
4131 		return timeout;
4132 	}
4133 
4134 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4135 		return timeout;
4136 
4137 	/* Gather some information about the currently installed configuration
4138 	 * and alternate interface settings.
4139 	 */
4140 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4141 			state, &timeout))
4142 		return timeout;
4143 
4144 	config = udev->actconfig;
4145 	if (!config)
4146 		return timeout;
4147 
4148 	for (i = 0; i < USB_MAXINTERFACES; i++) {
4149 		struct usb_driver *driver;
4150 		struct usb_interface *intf = config->interface[i];
4151 
4152 		if (!intf)
4153 			continue;
4154 
4155 		/* Check if any currently bound drivers want hub-initiated LPM
4156 		 * disabled.
4157 		 */
4158 		if (intf->dev.driver) {
4159 			driver = to_usb_driver(intf->dev.driver);
4160 			if (driver && driver->disable_hub_initiated_lpm) {
4161 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4162 						"at request of driver %s\n",
4163 						state_name, driver->name);
4164 				return xhci_get_timeout_no_hub_lpm(udev, state);
4165 			}
4166 		}
4167 
4168 		/* Not sure how this could happen... */
4169 		if (!intf->cur_altsetting)
4170 			continue;
4171 
4172 		if (xhci_update_timeout_for_interface(xhci, udev,
4173 					intf->cur_altsetting,
4174 					state, &timeout))
4175 			return timeout;
4176 	}
4177 	return timeout;
4178 }
4179 
4180 /*
4181  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4182  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4183  */
4184 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4185 			struct usb_device *udev, u16 max_exit_latency)
4186 {
4187 	struct xhci_virt_device *virt_dev;
4188 	struct xhci_command *command;
4189 	struct xhci_input_control_ctx *ctrl_ctx;
4190 	struct xhci_slot_ctx *slot_ctx;
4191 	unsigned long flags;
4192 	int ret;
4193 
4194 	spin_lock_irqsave(&xhci->lock, flags);
4195 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4196 		spin_unlock_irqrestore(&xhci->lock, flags);
4197 		return 0;
4198 	}
4199 
4200 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4201 	virt_dev = xhci->devs[udev->slot_id];
4202 	command = xhci->lpm_command;
4203 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4204 	spin_unlock_irqrestore(&xhci->lock, flags);
4205 
4206 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4207 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4208 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4209 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4210 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4211 
4212 	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4213 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4214 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4215 
4216 	/* Issue and wait for the evaluate context command. */
4217 	ret = xhci_configure_endpoint(xhci, udev, command,
4218 			true, true);
4219 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4220 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4221 
4222 	if (!ret) {
4223 		spin_lock_irqsave(&xhci->lock, flags);
4224 		virt_dev->current_mel = max_exit_latency;
4225 		spin_unlock_irqrestore(&xhci->lock, flags);
4226 	}
4227 	return ret;
4228 }
4229 
4230 static int calculate_max_exit_latency(struct usb_device *udev,
4231 		enum usb3_link_state state_changed,
4232 		u16 hub_encoded_timeout)
4233 {
4234 	unsigned long long u1_mel_us = 0;
4235 	unsigned long long u2_mel_us = 0;
4236 	unsigned long long mel_us = 0;
4237 	bool disabling_u1;
4238 	bool disabling_u2;
4239 	bool enabling_u1;
4240 	bool enabling_u2;
4241 
4242 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4243 			hub_encoded_timeout == USB3_LPM_DISABLED);
4244 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4245 			hub_encoded_timeout == USB3_LPM_DISABLED);
4246 
4247 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4248 			hub_encoded_timeout != USB3_LPM_DISABLED);
4249 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4250 			hub_encoded_timeout != USB3_LPM_DISABLED);
4251 
4252 	/* If U1 was already enabled and we're not disabling it,
4253 	 * or we're going to enable U1, account for the U1 max exit latency.
4254 	 */
4255 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4256 			enabling_u1)
4257 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4258 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4259 			enabling_u2)
4260 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4261 
4262 	if (u1_mel_us > u2_mel_us)
4263 		mel_us = u1_mel_us;
4264 	else
4265 		mel_us = u2_mel_us;
4266 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4267 	if (mel_us > MAX_EXIT) {
4268 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4269 				"is too big.\n", mel_us);
4270 		return -E2BIG;
4271 	}
4272 	return mel_us;
4273 }
4274 
4275 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4276 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4277 			struct usb_device *udev, enum usb3_link_state state)
4278 {
4279 	struct xhci_hcd	*xhci;
4280 	u16 hub_encoded_timeout;
4281 	int mel;
4282 	int ret;
4283 
4284 	xhci = hcd_to_xhci(hcd);
4285 	/* The LPM timeout values are pretty host-controller specific, so don't
4286 	 * enable hub-initiated timeouts unless the vendor has provided
4287 	 * information about their timeout algorithm.
4288 	 */
4289 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4290 			!xhci->devs[udev->slot_id])
4291 		return USB3_LPM_DISABLED;
4292 
4293 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4294 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4295 	if (mel < 0) {
4296 		/* Max Exit Latency is too big, disable LPM. */
4297 		hub_encoded_timeout = USB3_LPM_DISABLED;
4298 		mel = 0;
4299 	}
4300 
4301 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4302 	if (ret)
4303 		return ret;
4304 	return hub_encoded_timeout;
4305 }
4306 
4307 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4308 			struct usb_device *udev, enum usb3_link_state state)
4309 {
4310 	struct xhci_hcd	*xhci;
4311 	u16 mel;
4312 	int ret;
4313 
4314 	xhci = hcd_to_xhci(hcd);
4315 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4316 			!xhci->devs[udev->slot_id])
4317 		return 0;
4318 
4319 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4320 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4321 	if (ret)
4322 		return ret;
4323 	return 0;
4324 }
4325 #else /* CONFIG_PM */
4326 
4327 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4328 			struct usb_device *udev, enum usb3_link_state state)
4329 {
4330 	return USB3_LPM_DISABLED;
4331 }
4332 
4333 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4334 			struct usb_device *udev, enum usb3_link_state state)
4335 {
4336 	return 0;
4337 }
4338 #endif	/* CONFIG_PM */
4339 
4340 /*-------------------------------------------------------------------------*/
4341 
4342 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4343  * internal data structures for the device.
4344  */
4345 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4346 			struct usb_tt *tt, gfp_t mem_flags)
4347 {
4348 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4349 	struct xhci_virt_device *vdev;
4350 	struct xhci_command *config_cmd;
4351 	struct xhci_input_control_ctx *ctrl_ctx;
4352 	struct xhci_slot_ctx *slot_ctx;
4353 	unsigned long flags;
4354 	unsigned think_time;
4355 	int ret;
4356 
4357 	/* Ignore root hubs */
4358 	if (!hdev->parent)
4359 		return 0;
4360 
4361 	vdev = xhci->devs[hdev->slot_id];
4362 	if (!vdev) {
4363 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4364 		return -EINVAL;
4365 	}
4366 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4367 	if (!config_cmd) {
4368 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4369 		return -ENOMEM;
4370 	}
4371 
4372 	spin_lock_irqsave(&xhci->lock, flags);
4373 	if (hdev->speed == USB_SPEED_HIGH &&
4374 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4375 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4376 		xhci_free_command(xhci, config_cmd);
4377 		spin_unlock_irqrestore(&xhci->lock, flags);
4378 		return -ENOMEM;
4379 	}
4380 
4381 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4382 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4383 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4384 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4385 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4386 	if (tt->multi)
4387 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4388 	if (xhci->hci_version > 0x95) {
4389 		xhci_dbg(xhci, "xHCI version %x needs hub "
4390 				"TT think time and number of ports\n",
4391 				(unsigned int) xhci->hci_version);
4392 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4393 		/* Set TT think time - convert from ns to FS bit times.
4394 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4395 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4396 		 *
4397 		 * xHCI 1.0: this field shall be 0 if the device is not a
4398 		 * High-spped hub.
4399 		 */
4400 		think_time = tt->think_time;
4401 		if (think_time != 0)
4402 			think_time = (think_time / 666) - 1;
4403 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4404 			slot_ctx->tt_info |=
4405 				cpu_to_le32(TT_THINK_TIME(think_time));
4406 	} else {
4407 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4408 				"TT think time or number of ports\n",
4409 				(unsigned int) xhci->hci_version);
4410 	}
4411 	slot_ctx->dev_state = 0;
4412 	spin_unlock_irqrestore(&xhci->lock, flags);
4413 
4414 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4415 			(xhci->hci_version > 0x95) ?
4416 			"configure endpoint" : "evaluate context");
4417 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4418 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4419 
4420 	/* Issue and wait for the configure endpoint or
4421 	 * evaluate context command.
4422 	 */
4423 	if (xhci->hci_version > 0x95)
4424 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4425 				false, false);
4426 	else
4427 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4428 				true, false);
4429 
4430 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4431 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4432 
4433 	xhci_free_command(xhci, config_cmd);
4434 	return ret;
4435 }
4436 
4437 int xhci_get_frame(struct usb_hcd *hcd)
4438 {
4439 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4440 	/* EHCI mods by the periodic size.  Why? */
4441 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4442 }
4443 
4444 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4445 {
4446 	struct xhci_hcd		*xhci;
4447 	struct device		*dev = hcd->self.controller;
4448 	int			retval;
4449 	u32			temp;
4450 
4451 	/* Accept arbitrarily long scatter-gather lists */
4452 	hcd->self.sg_tablesize = ~0;
4453 
4454 	if (usb_hcd_is_primary_hcd(hcd)) {
4455 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4456 		if (!xhci)
4457 			return -ENOMEM;
4458 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4459 		xhci->main_hcd = hcd;
4460 		/* Mark the first roothub as being USB 2.0.
4461 		 * The xHCI driver will register the USB 3.0 roothub.
4462 		 */
4463 		hcd->speed = HCD_USB2;
4464 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4465 		/*
4466 		 * USB 2.0 roothub under xHCI has an integrated TT,
4467 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4468 		 * companion controller.
4469 		 */
4470 		hcd->has_tt = 1;
4471 	} else {
4472 		/* xHCI private pointer was set in xhci_pci_probe for the second
4473 		 * registered roothub.
4474 		 */
4475 		xhci = hcd_to_xhci(hcd);
4476 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4477 		if (HCC_64BIT_ADDR(temp)) {
4478 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4479 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4480 		} else {
4481 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4482 		}
4483 		return 0;
4484 	}
4485 
4486 	xhci->cap_regs = hcd->regs;
4487 	xhci->op_regs = hcd->regs +
4488 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4489 	xhci->run_regs = hcd->regs +
4490 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4491 	/* Cache read-only capability registers */
4492 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4493 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4494 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4495 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4496 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4497 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4498 	xhci_print_registers(xhci);
4499 
4500 	get_quirks(dev, xhci);
4501 
4502 	/* Make sure the HC is halted. */
4503 	retval = xhci_halt(xhci);
4504 	if (retval)
4505 		goto error;
4506 
4507 	xhci_dbg(xhci, "Resetting HCD\n");
4508 	/* Reset the internal HC memory state and registers. */
4509 	retval = xhci_reset(xhci);
4510 	if (retval)
4511 		goto error;
4512 	xhci_dbg(xhci, "Reset complete\n");
4513 
4514 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4515 	if (HCC_64BIT_ADDR(temp)) {
4516 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4517 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4518 	} else {
4519 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4520 	}
4521 
4522 	xhci_dbg(xhci, "Calling HCD init\n");
4523 	/* Initialize HCD and host controller data structures. */
4524 	retval = xhci_init(hcd);
4525 	if (retval)
4526 		goto error;
4527 	xhci_dbg(xhci, "Called HCD init\n");
4528 	return 0;
4529 error:
4530 	kfree(xhci);
4531 	return retval;
4532 }
4533 
4534 MODULE_DESCRIPTION(DRIVER_DESC);
4535 MODULE_AUTHOR(DRIVER_AUTHOR);
4536 MODULE_LICENSE("GPL");
4537 
4538 static int __init xhci_hcd_init(void)
4539 {
4540 	int retval;
4541 
4542 	retval = xhci_register_pci();
4543 	if (retval < 0) {
4544 		printk(KERN_DEBUG "Problem registering PCI driver.");
4545 		return retval;
4546 	}
4547 	retval = xhci_register_plat();
4548 	if (retval < 0) {
4549 		printk(KERN_DEBUG "Problem registering platform driver.");
4550 		goto unreg_pci;
4551 	}
4552 	/*
4553 	 * Check the compiler generated sizes of structures that must be laid
4554 	 * out in specific ways for hardware access.
4555 	 */
4556 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4557 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4558 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4559 	/* xhci_device_control has eight fields, and also
4560 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4561 	 */
4562 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4563 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4564 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4565 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4566 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4567 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4568 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4569 	return 0;
4570 unreg_pci:
4571 	xhci_unregister_pci();
4572 	return retval;
4573 }
4574 module_init(xhci_hcd_init);
4575 
4576 static void __exit xhci_hcd_cleanup(void)
4577 {
4578 	xhci_unregister_pci();
4579 	xhci_unregister_plat();
4580 }
4581 module_exit(xhci_hcd_cleanup);
4582