xref: /openbmc/linux/drivers/usb/host/xhci.c (revision b9221f71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69 {
70 	u32	result;
71 	int	ret;
72 
73 	ret = readl_poll_timeout_atomic(ptr, result,
74 					(result & mask) == done ||
75 					result == U32_MAX,
76 					1, usec);
77 	if (result == U32_MAX)		/* card removed */
78 		return -ENODEV;
79 
80 	return ret;
81 }
82 
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 	u32 halted;
89 	u32 cmd;
90 	u32 mask;
91 
92 	mask = ~(XHCI_IRQS);
93 	halted = readl(&xhci->op_regs->status) & STS_HALT;
94 	if (!halted)
95 		mask &= ~CMD_RUN;
96 
97 	cmd = readl(&xhci->op_regs->command);
98 	cmd &= mask;
99 	writel(cmd, &xhci->op_regs->command);
100 }
101 
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 	int ret;
113 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114 	xhci_quiesce(xhci);
115 
116 	ret = xhci_handshake(&xhci->op_regs->status,
117 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118 	if (ret) {
119 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
120 		return ret;
121 	}
122 	xhci->xhc_state |= XHCI_STATE_HALTED;
123 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124 	return ret;
125 }
126 
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132 	u32 temp;
133 	int ret;
134 
135 	temp = readl(&xhci->op_regs->command);
136 	temp |= (CMD_RUN);
137 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138 			temp);
139 	writel(temp, &xhci->op_regs->command);
140 
141 	/*
142 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
143 	 * running.
144 	 */
145 	ret = xhci_handshake(&xhci->op_regs->status,
146 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
147 	if (ret == -ETIMEDOUT)
148 		xhci_err(xhci, "Host took too long to start, "
149 				"waited %u microseconds.\n",
150 				XHCI_MAX_HALT_USEC);
151 	if (!ret)
152 		/* clear state flags. Including dying, halted or removing */
153 		xhci->xhc_state = 0;
154 
155 	return ret;
156 }
157 
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167 	u32 command;
168 	u32 state;
169 	int ret;
170 
171 	state = readl(&xhci->op_regs->status);
172 
173 	if (state == ~(u32)0) {
174 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
175 		return -ENODEV;
176 	}
177 
178 	if ((state & STS_HALT) == 0) {
179 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180 		return 0;
181 	}
182 
183 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184 	command = readl(&xhci->op_regs->command);
185 	command |= CMD_RESET;
186 	writel(command, &xhci->op_regs->command);
187 
188 	/* Existing Intel xHCI controllers require a delay of 1 mS,
189 	 * after setting the CMD_RESET bit, and before accessing any
190 	 * HC registers. This allows the HC to complete the
191 	 * reset operation and be ready for HC register access.
192 	 * Without this delay, the subsequent HC register access,
193 	 * may result in a system hang very rarely.
194 	 */
195 	if (xhci->quirks & XHCI_INTEL_HOST)
196 		udelay(1000);
197 
198 	ret = xhci_handshake(&xhci->op_regs->command,
199 			CMD_RESET, 0, 10 * 1000 * 1000);
200 	if (ret)
201 		return ret;
202 
203 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205 
206 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207 			 "Wait for controller to be ready for doorbell rings");
208 	/*
209 	 * xHCI cannot write to any doorbells or operational registers other
210 	 * than status until the "Controller Not Ready" flag is cleared.
211 	 */
212 	ret = xhci_handshake(&xhci->op_regs->status,
213 			STS_CNR, 0, 10 * 1000 * 1000);
214 
215 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
217 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
218 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
220 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
221 
222 	return ret;
223 }
224 
225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226 {
227 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228 	int err, i;
229 	u64 val;
230 	u32 intrs;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270 		      ARRAY_SIZE(xhci->run_regs->ir_set));
271 
272 	for (i = 0; i < intrs; i++) {
273 		struct xhci_intr_reg __iomem *ir;
274 
275 		ir = &xhci->run_regs->ir_set[i];
276 		val = xhci_read_64(xhci, &ir->erst_base);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_base);
279 		val= xhci_read_64(xhci, &ir->erst_dequeue);
280 		if (upper_32_bits(val))
281 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
282 	}
283 
284 	/* Wait for the fault to appear. It will be cleared on reset */
285 	err = xhci_handshake(&xhci->op_regs->status,
286 			     STS_FATAL, STS_FATAL,
287 			     XHCI_MAX_HALT_USEC);
288 	if (!err)
289 		xhci_info(xhci, "Fault detected\n");
290 }
291 
292 #ifdef CONFIG_USB_PCI
293 /*
294  * Set up MSI
295  */
296 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 {
298 	int ret;
299 	/*
300 	 * TODO:Check with MSI Soc for sysdev
301 	 */
302 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303 
304 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305 	if (ret < 0) {
306 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307 				"failed to allocate MSI entry");
308 		return ret;
309 	}
310 
311 	ret = request_irq(pdev->irq, xhci_msi_irq,
312 				0, "xhci_hcd", xhci_to_hcd(xhci));
313 	if (ret) {
314 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 				"disable MSI interrupt");
316 		pci_free_irq_vectors(pdev);
317 	}
318 
319 	return ret;
320 }
321 
322 /*
323  * Set up MSI-X
324  */
325 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 {
327 	int i, ret = 0;
328 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
329 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330 
331 	/*
332 	 * calculate number of msi-x vectors supported.
333 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
335 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
336 	 *   Add additional 1 vector to ensure always available interrupt.
337 	 */
338 	xhci->msix_count = min(num_online_cpus() + 1,
339 				HCS_MAX_INTRS(xhci->hcs_params1));
340 
341 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342 			PCI_IRQ_MSIX);
343 	if (ret < 0) {
344 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345 				"Failed to enable MSI-X");
346 		return ret;
347 	}
348 
349 	for (i = 0; i < xhci->msix_count; i++) {
350 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351 				"xhci_hcd", xhci_to_hcd(xhci));
352 		if (ret)
353 			goto disable_msix;
354 	}
355 
356 	hcd->msix_enabled = 1;
357 	return ret;
358 
359 disable_msix:
360 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361 	while (--i >= 0)
362 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363 	pci_free_irq_vectors(pdev);
364 	return ret;
365 }
366 
367 /* Free any IRQs and disable MSI-X */
368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 {
370 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
371 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372 
373 	if (xhci->quirks & XHCI_PLAT)
374 		return;
375 
376 	/* return if using legacy interrupt */
377 	if (hcd->irq > 0)
378 		return;
379 
380 	if (hcd->msix_enabled) {
381 		int i;
382 
383 		for (i = 0; i < xhci->msix_count; i++)
384 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385 	} else {
386 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387 	}
388 
389 	pci_free_irq_vectors(pdev);
390 	hcd->msix_enabled = 0;
391 }
392 
393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
396 
397 	if (hcd->msix_enabled) {
398 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399 		int i;
400 
401 		for (i = 0; i < xhci->msix_count; i++)
402 			synchronize_irq(pci_irq_vector(pdev, i));
403 	}
404 }
405 
406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 {
408 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409 	struct pci_dev  *pdev;
410 	int ret;
411 
412 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
413 	if (xhci->quirks & XHCI_PLAT)
414 		return 0;
415 
416 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417 	/*
418 	 * Some Fresco Logic host controllers advertise MSI, but fail to
419 	 * generate interrupts.  Don't even try to enable MSI.
420 	 */
421 	if (xhci->quirks & XHCI_BROKEN_MSI)
422 		goto legacy_irq;
423 
424 	/* unregister the legacy interrupt */
425 	if (hcd->irq)
426 		free_irq(hcd->irq, hcd);
427 	hcd->irq = 0;
428 
429 	ret = xhci_setup_msix(xhci);
430 	if (ret)
431 		/* fall back to msi*/
432 		ret = xhci_setup_msi(xhci);
433 
434 	if (!ret) {
435 		hcd->msi_enabled = 1;
436 		return 0;
437 	}
438 
439 	if (!pdev->irq) {
440 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441 		return -EINVAL;
442 	}
443 
444  legacy_irq:
445 	if (!strlen(hcd->irq_descr))
446 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447 			 hcd->driver->description, hcd->self.busnum);
448 
449 	/* fall back to legacy interrupt*/
450 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451 			hcd->irq_descr, hcd);
452 	if (ret) {
453 		xhci_err(xhci, "request interrupt %d failed\n",
454 				pdev->irq);
455 		return ret;
456 	}
457 	hcd->irq = pdev->irq;
458 	return 0;
459 }
460 
461 #else
462 
463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 {
465 	return 0;
466 }
467 
468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 {
470 }
471 
472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 {
474 }
475 
476 #endif
477 
478 static void compliance_mode_recovery(struct timer_list *t)
479 {
480 	struct xhci_hcd *xhci;
481 	struct usb_hcd *hcd;
482 	struct xhci_hub *rhub;
483 	u32 temp;
484 	int i;
485 
486 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487 	rhub = &xhci->usb3_rhub;
488 
489 	for (i = 0; i < rhub->num_ports; i++) {
490 		temp = readl(rhub->ports[i]->addr);
491 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492 			/*
493 			 * Compliance Mode Detected. Letting USB Core
494 			 * handle the Warm Reset
495 			 */
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Compliance mode detected->port %d",
498 					i + 1);
499 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500 					"Attempting compliance mode recovery");
501 			hcd = xhci->shared_hcd;
502 
503 			if (hcd->state == HC_STATE_SUSPENDED)
504 				usb_hcd_resume_root_hub(hcd);
505 
506 			usb_hcd_poll_rh_status(hcd);
507 		}
508 	}
509 
510 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511 		mod_timer(&xhci->comp_mode_recovery_timer,
512 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 }
514 
515 /*
516  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517  * that causes ports behind that hardware to enter compliance mode sometimes.
518  * The quirk creates a timer that polls every 2 seconds the link state of
519  * each host controller's port and recovers it by issuing a Warm reset
520  * if Compliance mode is detected, otherwise the port will become "dead" (no
521  * device connections or disconnections will be detected anymore). Becasue no
522  * status event is generated when entering compliance mode (per xhci spec),
523  * this quirk is needed on systems that have the failing hardware installed.
524  */
525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 {
527 	xhci->port_status_u0 = 0;
528 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529 		    0);
530 	xhci->comp_mode_recovery_timer.expires = jiffies +
531 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532 
533 	add_timer(&xhci->comp_mode_recovery_timer);
534 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535 			"Compliance mode recovery timer initialized");
536 }
537 
538 /*
539  * This function identifies the systems that have installed the SN65LVPE502CP
540  * USB3.0 re-driver and that need the Compliance Mode Quirk.
541  * Systems:
542  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543  */
544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 {
546 	const char *dmi_product_name, *dmi_sys_vendor;
547 
548 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550 	if (!dmi_product_name || !dmi_sys_vendor)
551 		return false;
552 
553 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554 		return false;
555 
556 	if (strstr(dmi_product_name, "Z420") ||
557 			strstr(dmi_product_name, "Z620") ||
558 			strstr(dmi_product_name, "Z820") ||
559 			strstr(dmi_product_name, "Z1 Workstation"))
560 		return true;
561 
562 	return false;
563 }
564 
565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 {
567 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568 }
569 
570 
571 /*
572  * Initialize memory for HCD and xHC (one-time init).
573  *
574  * Program the PAGESIZE register, initialize the device context array, create
575  * device contexts (?), set up a command ring segment (or two?), create event
576  * ring (one for now).
577  */
578 static int xhci_init(struct usb_hcd *hcd)
579 {
580 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581 	int retval = 0;
582 
583 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584 	spin_lock_init(&xhci->lock);
585 	if (xhci->hci_version == 0x95 && link_quirk) {
586 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587 				"QUIRK: Not clearing Link TRB chain bits.");
588 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589 	} else {
590 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591 				"xHCI doesn't need link TRB QUIRK");
592 	}
593 	retval = xhci_mem_init(xhci, GFP_KERNEL);
594 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595 
596 	/* Initializing Compliance Mode Recovery Data If Needed */
597 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599 		compliance_mode_recovery_timer_init(xhci);
600 	}
601 
602 	return retval;
603 }
604 
605 /*-------------------------------------------------------------------------*/
606 
607 
608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610 	if (xhci_start(xhci)) {
611 		xhci_halt(xhci);
612 		return -ENODEV;
613 	}
614 	xhci->shared_hcd->state = HC_STATE_RUNNING;
615 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616 
617 	if (xhci->quirks & XHCI_NEC_HOST)
618 		xhci_ring_cmd_db(xhci);
619 
620 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 			"Finished xhci_run for USB3 roothub");
622 	return 0;
623 }
624 
625 /*
626  * Start the HC after it was halted.
627  *
628  * This function is called by the USB core when the HC driver is added.
629  * Its opposite is xhci_stop().
630  *
631  * xhci_init() must be called once before this function can be called.
632  * Reset the HC, enable device slot contexts, program DCBAAP, and
633  * set command ring pointer and event ring pointer.
634  *
635  * Setup MSI-X vectors and enable interrupts.
636  */
637 int xhci_run(struct usb_hcd *hcd)
638 {
639 	u32 temp;
640 	u64 temp_64;
641 	int ret;
642 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643 
644 	/* Start the xHCI host controller running only after the USB 2.0 roothub
645 	 * is setup.
646 	 */
647 
648 	hcd->uses_new_polling = 1;
649 	if (!usb_hcd_is_primary_hcd(hcd))
650 		return xhci_run_finished(xhci);
651 
652 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653 
654 	ret = xhci_try_enable_msi(hcd);
655 	if (ret)
656 		return ret;
657 
658 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659 	temp_64 &= ~ERST_PTR_MASK;
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662 
663 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 			"// Set the interrupt modulation register");
665 	temp = readl(&xhci->ir_set->irq_control);
666 	temp &= ~ER_IRQ_INTERVAL_MASK;
667 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668 	writel(temp, &xhci->ir_set->irq_control);
669 
670 	/* Set the HCD state before we enable the irqs */
671 	temp = readl(&xhci->op_regs->command);
672 	temp |= (CMD_EIE);
673 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674 			"// Enable interrupts, cmd = 0x%x.", temp);
675 	writel(temp, &xhci->op_regs->command);
676 
677 	temp = readl(&xhci->ir_set->irq_pending);
678 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682 
683 	if (xhci->quirks & XHCI_NEC_HOST) {
684 		struct xhci_command *command;
685 
686 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687 		if (!command)
688 			return -ENOMEM;
689 
690 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691 				TRB_TYPE(TRB_NEC_GET_FW));
692 		if (ret)
693 			xhci_free_command(xhci, command);
694 	}
695 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
696 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
697 			"Finished xhci_run for USB2 roothub");
698 
699 	xhci_dbc_init(xhci);
700 
701 	xhci_debugfs_init(xhci);
702 
703 	return 0;
704 }
705 EXPORT_SYMBOL_GPL(xhci_run);
706 
707 /*
708  * Stop xHCI driver.
709  *
710  * This function is called by the USB core when the HC driver is removed.
711  * Its opposite is xhci_run().
712  *
713  * Disable device contexts, disable IRQs, and quiesce the HC.
714  * Reset the HC, finish any completed transactions, and cleanup memory.
715  */
716 static void xhci_stop(struct usb_hcd *hcd)
717 {
718 	u32 temp;
719 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720 
721 	mutex_lock(&xhci->mutex);
722 
723 	/* Only halt host and free memory after both hcds are removed */
724 	if (!usb_hcd_is_primary_hcd(hcd)) {
725 		mutex_unlock(&xhci->mutex);
726 		return;
727 	}
728 
729 	xhci_dbc_exit(xhci);
730 
731 	spin_lock_irq(&xhci->lock);
732 	xhci->xhc_state |= XHCI_STATE_HALTED;
733 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
734 	xhci_halt(xhci);
735 	xhci_reset(xhci);
736 	spin_unlock_irq(&xhci->lock);
737 
738 	xhci_cleanup_msix(xhci);
739 
740 	/* Deleting Compliance Mode Recovery Timer */
741 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
742 			(!(xhci_all_ports_seen_u0(xhci)))) {
743 		del_timer_sync(&xhci->comp_mode_recovery_timer);
744 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
745 				"%s: compliance mode recovery timer deleted",
746 				__func__);
747 	}
748 
749 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
750 		usb_amd_dev_put();
751 
752 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
753 			"// Disabling event ring interrupts");
754 	temp = readl(&xhci->op_regs->status);
755 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
756 	temp = readl(&xhci->ir_set->irq_pending);
757 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
758 
759 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
760 	xhci_mem_cleanup(xhci);
761 	xhci_debugfs_exit(xhci);
762 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 			"xhci_stop completed - status = %x",
764 			readl(&xhci->op_regs->status));
765 	mutex_unlock(&xhci->mutex);
766 }
767 
768 /*
769  * Shutdown HC (not bus-specific)
770  *
771  * This is called when the machine is rebooting or halting.  We assume that the
772  * machine will be powered off, and the HC's internal state will be reset.
773  * Don't bother to free memory.
774  *
775  * This will only ever be called with the main usb_hcd (the USB3 roothub).
776  */
777 void xhci_shutdown(struct usb_hcd *hcd)
778 {
779 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
780 
781 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
782 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
783 
784 	spin_lock_irq(&xhci->lock);
785 	xhci_halt(xhci);
786 	/* Workaround for spurious wakeups at shutdown with HSW */
787 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
788 		xhci_reset(xhci);
789 	spin_unlock_irq(&xhci->lock);
790 
791 	xhci_cleanup_msix(xhci);
792 
793 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
794 			"xhci_shutdown completed - status = %x",
795 			readl(&xhci->op_regs->status));
796 }
797 EXPORT_SYMBOL_GPL(xhci_shutdown);
798 
799 #ifdef CONFIG_PM
800 static void xhci_save_registers(struct xhci_hcd *xhci)
801 {
802 	xhci->s3.command = readl(&xhci->op_regs->command);
803 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
804 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
805 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
806 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
807 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
808 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
809 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
810 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
811 }
812 
813 static void xhci_restore_registers(struct xhci_hcd *xhci)
814 {
815 	writel(xhci->s3.command, &xhci->op_regs->command);
816 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
817 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
818 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
819 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
820 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
821 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
822 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
823 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
824 }
825 
826 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
827 {
828 	u64	val_64;
829 
830 	/* step 2: initialize command ring buffer */
831 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
832 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
833 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
834 				      xhci->cmd_ring->dequeue) &
835 		 (u64) ~CMD_RING_RSVD_BITS) |
836 		xhci->cmd_ring->cycle_state;
837 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
838 			"// Setting command ring address to 0x%llx",
839 			(long unsigned long) val_64);
840 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
841 }
842 
843 /*
844  * The whole command ring must be cleared to zero when we suspend the host.
845  *
846  * The host doesn't save the command ring pointer in the suspend well, so we
847  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
848  * aligned, because of the reserved bits in the command ring dequeue pointer
849  * register.  Therefore, we can't just set the dequeue pointer back in the
850  * middle of the ring (TRBs are 16-byte aligned).
851  */
852 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
853 {
854 	struct xhci_ring *ring;
855 	struct xhci_segment *seg;
856 
857 	ring = xhci->cmd_ring;
858 	seg = ring->deq_seg;
859 	do {
860 		memset(seg->trbs, 0,
861 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
862 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
863 			cpu_to_le32(~TRB_CYCLE);
864 		seg = seg->next;
865 	} while (seg != ring->deq_seg);
866 
867 	/* Reset the software enqueue and dequeue pointers */
868 	ring->deq_seg = ring->first_seg;
869 	ring->dequeue = ring->first_seg->trbs;
870 	ring->enq_seg = ring->deq_seg;
871 	ring->enqueue = ring->dequeue;
872 
873 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
874 	/*
875 	 * Ring is now zeroed, so the HW should look for change of ownership
876 	 * when the cycle bit is set to 1.
877 	 */
878 	ring->cycle_state = 1;
879 
880 	/*
881 	 * Reset the hardware dequeue pointer.
882 	 * Yes, this will need to be re-written after resume, but we're paranoid
883 	 * and want to make sure the hardware doesn't access bogus memory
884 	 * because, say, the BIOS or an SMI started the host without changing
885 	 * the command ring pointers.
886 	 */
887 	xhci_set_cmd_ring_deq(xhci);
888 }
889 
890 /*
891  * Disable port wake bits if do_wakeup is not set.
892  *
893  * Also clear a possible internal port wake state left hanging for ports that
894  * detected termination but never successfully enumerated (trained to 0U).
895  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
896  * at enumeration clears this wake, force one here as well for unconnected ports
897  */
898 
899 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
900 				       struct xhci_hub *rhub,
901 				       bool do_wakeup)
902 {
903 	unsigned long flags;
904 	u32 t1, t2, portsc;
905 	int i;
906 
907 	spin_lock_irqsave(&xhci->lock, flags);
908 
909 	for (i = 0; i < rhub->num_ports; i++) {
910 		portsc = readl(rhub->ports[i]->addr);
911 		t1 = xhci_port_state_to_neutral(portsc);
912 		t2 = t1;
913 
914 		/* clear wake bits if do_wake is not set */
915 		if (!do_wakeup)
916 			t2 &= ~PORT_WAKE_BITS;
917 
918 		/* Don't touch csc bit if connected or connect change is set */
919 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
920 			t2 |= PORT_CSC;
921 
922 		if (t1 != t2) {
923 			writel(t2, rhub->ports[i]->addr);
924 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
925 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
926 		}
927 	}
928 	spin_unlock_irqrestore(&xhci->lock, flags);
929 }
930 
931 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
932 {
933 	struct xhci_port	**ports;
934 	int			port_index;
935 	u32			status;
936 	u32			portsc;
937 
938 	status = readl(&xhci->op_regs->status);
939 	if (status & STS_EINT)
940 		return true;
941 	/*
942 	 * Checking STS_EINT is not enough as there is a lag between a change
943 	 * bit being set and the Port Status Change Event that it generated
944 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
945 	 */
946 
947 	port_index = xhci->usb2_rhub.num_ports;
948 	ports = xhci->usb2_rhub.ports;
949 	while (port_index--) {
950 		portsc = readl(ports[port_index]->addr);
951 		if (portsc & PORT_CHANGE_MASK ||
952 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
953 			return true;
954 	}
955 	port_index = xhci->usb3_rhub.num_ports;
956 	ports = xhci->usb3_rhub.ports;
957 	while (port_index--) {
958 		portsc = readl(ports[port_index]->addr);
959 		if (portsc & PORT_CHANGE_MASK ||
960 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
961 			return true;
962 	}
963 	return false;
964 }
965 
966 /*
967  * Stop HC (not bus-specific)
968  *
969  * This is called when the machine transition into S3/S4 mode.
970  *
971  */
972 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
973 {
974 	int			rc = 0;
975 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
976 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
977 	u32			command;
978 	u32			res;
979 
980 	if (!hcd->state)
981 		return 0;
982 
983 	if (hcd->state != HC_STATE_SUSPENDED ||
984 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
985 		return -EINVAL;
986 
987 	/* Clear root port wake on bits if wakeup not allowed. */
988 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
989 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
990 
991 	if (!HCD_HW_ACCESSIBLE(hcd))
992 		return 0;
993 
994 	xhci_dbc_suspend(xhci);
995 
996 	/* Don't poll the roothubs on bus suspend. */
997 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
998 		 __func__, hcd->self.busnum);
999 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1000 	del_timer_sync(&hcd->rh_timer);
1001 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1002 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1003 
1004 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1005 		usleep_range(1000, 1500);
1006 
1007 	spin_lock_irq(&xhci->lock);
1008 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1009 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1010 	/* step 1: stop endpoint */
1011 	/* skipped assuming that port suspend has done */
1012 
1013 	/* step 2: clear Run/Stop bit */
1014 	command = readl(&xhci->op_regs->command);
1015 	command &= ~CMD_RUN;
1016 	writel(command, &xhci->op_regs->command);
1017 
1018 	/* Some chips from Fresco Logic need an extraordinary delay */
1019 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1020 
1021 	if (xhci_handshake(&xhci->op_regs->status,
1022 		      STS_HALT, STS_HALT, delay)) {
1023 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1024 		spin_unlock_irq(&xhci->lock);
1025 		return -ETIMEDOUT;
1026 	}
1027 	xhci_clear_command_ring(xhci);
1028 
1029 	/* step 3: save registers */
1030 	xhci_save_registers(xhci);
1031 
1032 	/* step 4: set CSS flag */
1033 	command = readl(&xhci->op_regs->command);
1034 	command |= CMD_CSS;
1035 	writel(command, &xhci->op_regs->command);
1036 	xhci->broken_suspend = 0;
1037 	if (xhci_handshake(&xhci->op_regs->status,
1038 				STS_SAVE, 0, 20 * 1000)) {
1039 	/*
1040 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1041 	 * SSS bit of USBSTS and when driver tries to poll
1042 	 * to see if the xHC clears BIT(8) which never happens
1043 	 * and driver assumes that controller is not responding
1044 	 * and times out. To workaround this, its good to check
1045 	 * if SRE and HCE bits are not set (as per xhci
1046 	 * Section 5.4.2) and bypass the timeout.
1047 	 */
1048 		res = readl(&xhci->op_regs->status);
1049 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1050 		    (((res & STS_SRE) == 0) &&
1051 				((res & STS_HCE) == 0))) {
1052 			xhci->broken_suspend = 1;
1053 		} else {
1054 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1055 			spin_unlock_irq(&xhci->lock);
1056 			return -ETIMEDOUT;
1057 		}
1058 	}
1059 	spin_unlock_irq(&xhci->lock);
1060 
1061 	/*
1062 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1063 	 * is about to be suspended.
1064 	 */
1065 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1066 			(!(xhci_all_ports_seen_u0(xhci)))) {
1067 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1068 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1069 				"%s: compliance mode recovery timer deleted",
1070 				__func__);
1071 	}
1072 
1073 	/* step 5: remove core well power */
1074 	/* synchronize irq when using MSI-X */
1075 	xhci_msix_sync_irqs(xhci);
1076 
1077 	return rc;
1078 }
1079 EXPORT_SYMBOL_GPL(xhci_suspend);
1080 
1081 /*
1082  * start xHC (not bus-specific)
1083  *
1084  * This is called when the machine transition from S3/S4 mode.
1085  *
1086  */
1087 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1088 {
1089 	u32			command, temp = 0;
1090 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1091 	struct usb_hcd		*secondary_hcd;
1092 	int			retval = 0;
1093 	bool			comp_timer_running = false;
1094 	bool			pending_portevent = false;
1095 
1096 	if (!hcd->state)
1097 		return 0;
1098 
1099 	/* Wait a bit if either of the roothubs need to settle from the
1100 	 * transition into bus suspend.
1101 	 */
1102 
1103 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1104 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1105 		msleep(100);
1106 
1107 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1108 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1109 
1110 	spin_lock_irq(&xhci->lock);
1111 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1112 		hibernated = true;
1113 
1114 	if (!hibernated) {
1115 		/*
1116 		 * Some controllers might lose power during suspend, so wait
1117 		 * for controller not ready bit to clear, just as in xHC init.
1118 		 */
1119 		retval = xhci_handshake(&xhci->op_regs->status,
1120 					STS_CNR, 0, 10 * 1000 * 1000);
1121 		if (retval) {
1122 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1123 				  retval);
1124 			spin_unlock_irq(&xhci->lock);
1125 			return retval;
1126 		}
1127 		/* step 1: restore register */
1128 		xhci_restore_registers(xhci);
1129 		/* step 2: initialize command ring buffer */
1130 		xhci_set_cmd_ring_deq(xhci);
1131 		/* step 3: restore state and start state*/
1132 		/* step 3: set CRS flag */
1133 		command = readl(&xhci->op_regs->command);
1134 		command |= CMD_CRS;
1135 		writel(command, &xhci->op_regs->command);
1136 		/*
1137 		 * Some controllers take up to 55+ ms to complete the controller
1138 		 * restore so setting the timeout to 100ms. Xhci specification
1139 		 * doesn't mention any timeout value.
1140 		 */
1141 		if (xhci_handshake(&xhci->op_regs->status,
1142 			      STS_RESTORE, 0, 100 * 1000)) {
1143 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1144 			spin_unlock_irq(&xhci->lock);
1145 			return -ETIMEDOUT;
1146 		}
1147 		temp = readl(&xhci->op_regs->status);
1148 	}
1149 
1150 	/* If restore operation fails, re-initialize the HC during resume */
1151 	if ((temp & STS_SRE) || hibernated) {
1152 
1153 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1154 				!(xhci_all_ports_seen_u0(xhci))) {
1155 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1156 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1157 				"Compliance Mode Recovery Timer deleted!");
1158 		}
1159 
1160 		/* Let the USB core know _both_ roothubs lost power. */
1161 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1162 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1163 
1164 		xhci_dbg(xhci, "Stop HCD\n");
1165 		xhci_halt(xhci);
1166 		xhci_zero_64b_regs(xhci);
1167 		retval = xhci_reset(xhci);
1168 		spin_unlock_irq(&xhci->lock);
1169 		if (retval)
1170 			return retval;
1171 		xhci_cleanup_msix(xhci);
1172 
1173 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1174 		temp = readl(&xhci->op_regs->status);
1175 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1176 		temp = readl(&xhci->ir_set->irq_pending);
1177 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1178 
1179 		xhci_dbg(xhci, "cleaning up memory\n");
1180 		xhci_mem_cleanup(xhci);
1181 		xhci_debugfs_exit(xhci);
1182 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1183 			    readl(&xhci->op_regs->status));
1184 
1185 		/* USB core calls the PCI reinit and start functions twice:
1186 		 * first with the primary HCD, and then with the secondary HCD.
1187 		 * If we don't do the same, the host will never be started.
1188 		 */
1189 		if (!usb_hcd_is_primary_hcd(hcd))
1190 			secondary_hcd = hcd;
1191 		else
1192 			secondary_hcd = xhci->shared_hcd;
1193 
1194 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1195 		retval = xhci_init(hcd->primary_hcd);
1196 		if (retval)
1197 			return retval;
1198 		comp_timer_running = true;
1199 
1200 		xhci_dbg(xhci, "Start the primary HCD\n");
1201 		retval = xhci_run(hcd->primary_hcd);
1202 		if (!retval) {
1203 			xhci_dbg(xhci, "Start the secondary HCD\n");
1204 			retval = xhci_run(secondary_hcd);
1205 		}
1206 		hcd->state = HC_STATE_SUSPENDED;
1207 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1208 		goto done;
1209 	}
1210 
1211 	/* step 4: set Run/Stop bit */
1212 	command = readl(&xhci->op_regs->command);
1213 	command |= CMD_RUN;
1214 	writel(command, &xhci->op_regs->command);
1215 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1216 		  0, 250 * 1000);
1217 
1218 	/* step 5: walk topology and initialize portsc,
1219 	 * portpmsc and portli
1220 	 */
1221 	/* this is done in bus_resume */
1222 
1223 	/* step 6: restart each of the previously
1224 	 * Running endpoints by ringing their doorbells
1225 	 */
1226 
1227 	spin_unlock_irq(&xhci->lock);
1228 
1229 	xhci_dbc_resume(xhci);
1230 
1231  done:
1232 	if (retval == 0) {
1233 		/*
1234 		 * Resume roothubs only if there are pending events.
1235 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1236 		 * the first wake signalling failed, give it that chance.
1237 		 */
1238 		pending_portevent = xhci_pending_portevent(xhci);
1239 		if (!pending_portevent) {
1240 			msleep(120);
1241 			pending_portevent = xhci_pending_portevent(xhci);
1242 		}
1243 
1244 		if (pending_portevent) {
1245 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1246 			usb_hcd_resume_root_hub(hcd);
1247 		}
1248 	}
1249 	/*
1250 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1251 	 * be re-initialized Always after a system resume. Ports are subject
1252 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1253 	 * ports have entered previously to U0 before system's suspension.
1254 	 */
1255 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1256 		compliance_mode_recovery_timer_init(xhci);
1257 
1258 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1259 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1260 
1261 	/* Re-enable port polling. */
1262 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1263 		 __func__, hcd->self.busnum);
1264 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1265 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1266 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1267 	usb_hcd_poll_rh_status(hcd);
1268 
1269 	return retval;
1270 }
1271 EXPORT_SYMBOL_GPL(xhci_resume);
1272 #endif	/* CONFIG_PM */
1273 
1274 /*-------------------------------------------------------------------------*/
1275 
1276 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1277 {
1278 	void *temp;
1279 	int ret = 0;
1280 	unsigned int buf_len;
1281 	enum dma_data_direction dir;
1282 
1283 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1284 	buf_len = urb->transfer_buffer_length;
1285 
1286 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1287 			    dev_to_node(hcd->self.sysdev));
1288 
1289 	if (usb_urb_dir_out(urb))
1290 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1291 				   temp, buf_len, 0);
1292 
1293 	urb->transfer_buffer = temp;
1294 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1295 					   urb->transfer_buffer,
1296 					   urb->transfer_buffer_length,
1297 					   dir);
1298 
1299 	if (dma_mapping_error(hcd->self.sysdev,
1300 			      urb->transfer_dma)) {
1301 		ret = -EAGAIN;
1302 		kfree(temp);
1303 	} else {
1304 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1305 	}
1306 
1307 	return ret;
1308 }
1309 
1310 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1311 					  struct urb *urb)
1312 {
1313 	bool ret = false;
1314 	unsigned int i;
1315 	unsigned int len = 0;
1316 	unsigned int trb_size;
1317 	unsigned int max_pkt;
1318 	struct scatterlist *sg;
1319 	struct scatterlist *tail_sg;
1320 
1321 	tail_sg = urb->sg;
1322 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1323 
1324 	if (!urb->num_sgs)
1325 		return ret;
1326 
1327 	if (urb->dev->speed >= USB_SPEED_SUPER)
1328 		trb_size = TRB_CACHE_SIZE_SS;
1329 	else
1330 		trb_size = TRB_CACHE_SIZE_HS;
1331 
1332 	if (urb->transfer_buffer_length != 0 &&
1333 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1334 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1335 			len = len + sg->length;
1336 			if (i > trb_size - 2) {
1337 				len = len - tail_sg->length;
1338 				if (len < max_pkt) {
1339 					ret = true;
1340 					break;
1341 				}
1342 
1343 				tail_sg = sg_next(tail_sg);
1344 			}
1345 		}
1346 	}
1347 	return ret;
1348 }
1349 
1350 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1351 {
1352 	unsigned int len;
1353 	unsigned int buf_len;
1354 	enum dma_data_direction dir;
1355 
1356 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1357 
1358 	buf_len = urb->transfer_buffer_length;
1359 
1360 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1361 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1362 		dma_unmap_single(hcd->self.sysdev,
1363 				 urb->transfer_dma,
1364 				 urb->transfer_buffer_length,
1365 				 dir);
1366 
1367 	if (usb_urb_dir_in(urb)) {
1368 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1369 					   urb->transfer_buffer,
1370 					   buf_len,
1371 					   0);
1372 		if (len != buf_len) {
1373 			xhci_dbg(hcd_to_xhci(hcd),
1374 				 "Copy from tmp buf to urb sg list failed\n");
1375 			urb->actual_length = len;
1376 		}
1377 	}
1378 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1379 	kfree(urb->transfer_buffer);
1380 	urb->transfer_buffer = NULL;
1381 }
1382 
1383 /*
1384  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1385  * we'll copy the actual data into the TRB address register. This is limited to
1386  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1387  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1388  */
1389 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1390 				gfp_t mem_flags)
1391 {
1392 	struct xhci_hcd *xhci;
1393 
1394 	xhci = hcd_to_xhci(hcd);
1395 
1396 	if (xhci_urb_suitable_for_idt(urb))
1397 		return 0;
1398 
1399 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1400 		if (xhci_urb_temp_buffer_required(hcd, urb))
1401 			return xhci_map_temp_buffer(hcd, urb);
1402 	}
1403 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1404 }
1405 
1406 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1407 {
1408 	struct xhci_hcd *xhci;
1409 	bool unmap_temp_buf = false;
1410 
1411 	xhci = hcd_to_xhci(hcd);
1412 
1413 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1414 		unmap_temp_buf = true;
1415 
1416 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1417 		xhci_unmap_temp_buf(hcd, urb);
1418 	else
1419 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1420 }
1421 
1422 /**
1423  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1424  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1425  * value to right shift 1 for the bitmask.
1426  *
1427  * Index  = (epnum * 2) + direction - 1,
1428  * where direction = 0 for OUT, 1 for IN.
1429  * For control endpoints, the IN index is used (OUT index is unused), so
1430  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1431  */
1432 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1433 {
1434 	unsigned int index;
1435 	if (usb_endpoint_xfer_control(desc))
1436 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1437 	else
1438 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1439 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1440 	return index;
1441 }
1442 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1443 
1444 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1445  * address from the XHCI endpoint index.
1446  */
1447 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1448 {
1449 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1450 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1451 	return direction | number;
1452 }
1453 
1454 /* Find the flag for this endpoint (for use in the control context).  Use the
1455  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1456  * bit 1, etc.
1457  */
1458 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1459 {
1460 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1461 }
1462 
1463 /* Compute the last valid endpoint context index.  Basically, this is the
1464  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1465  * we find the most significant bit set in the added contexts flags.
1466  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1467  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1468  */
1469 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1470 {
1471 	return fls(added_ctxs) - 1;
1472 }
1473 
1474 /* Returns 1 if the arguments are OK;
1475  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1476  */
1477 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1478 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1479 		const char *func) {
1480 	struct xhci_hcd	*xhci;
1481 	struct xhci_virt_device	*virt_dev;
1482 
1483 	if (!hcd || (check_ep && !ep) || !udev) {
1484 		pr_debug("xHCI %s called with invalid args\n", func);
1485 		return -EINVAL;
1486 	}
1487 	if (!udev->parent) {
1488 		pr_debug("xHCI %s called for root hub\n", func);
1489 		return 0;
1490 	}
1491 
1492 	xhci = hcd_to_xhci(hcd);
1493 	if (check_virt_dev) {
1494 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1495 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1496 					func);
1497 			return -EINVAL;
1498 		}
1499 
1500 		virt_dev = xhci->devs[udev->slot_id];
1501 		if (virt_dev->udev != udev) {
1502 			xhci_dbg(xhci, "xHCI %s called with udev and "
1503 					  "virt_dev does not match\n", func);
1504 			return -EINVAL;
1505 		}
1506 	}
1507 
1508 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1509 		return -ENODEV;
1510 
1511 	return 1;
1512 }
1513 
1514 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1515 		struct usb_device *udev, struct xhci_command *command,
1516 		bool ctx_change, bool must_succeed);
1517 
1518 /*
1519  * Full speed devices may have a max packet size greater than 8 bytes, but the
1520  * USB core doesn't know that until it reads the first 8 bytes of the
1521  * descriptor.  If the usb_device's max packet size changes after that point,
1522  * we need to issue an evaluate context command and wait on it.
1523  */
1524 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1525 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1526 {
1527 	struct xhci_container_ctx *out_ctx;
1528 	struct xhci_input_control_ctx *ctrl_ctx;
1529 	struct xhci_ep_ctx *ep_ctx;
1530 	struct xhci_command *command;
1531 	int max_packet_size;
1532 	int hw_max_packet_size;
1533 	int ret = 0;
1534 
1535 	out_ctx = xhci->devs[slot_id]->out_ctx;
1536 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1537 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1538 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1539 	if (hw_max_packet_size != max_packet_size) {
1540 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1541 				"Max Packet Size for ep 0 changed.");
1542 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1543 				"Max packet size in usb_device = %d",
1544 				max_packet_size);
1545 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1546 				"Max packet size in xHCI HW = %d",
1547 				hw_max_packet_size);
1548 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1549 				"Issuing evaluate context command.");
1550 
1551 		/* Set up the input context flags for the command */
1552 		/* FIXME: This won't work if a non-default control endpoint
1553 		 * changes max packet sizes.
1554 		 */
1555 
1556 		command = xhci_alloc_command(xhci, true, mem_flags);
1557 		if (!command)
1558 			return -ENOMEM;
1559 
1560 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1561 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1562 		if (!ctrl_ctx) {
1563 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1564 					__func__);
1565 			ret = -ENOMEM;
1566 			goto command_cleanup;
1567 		}
1568 		/* Set up the modified control endpoint 0 */
1569 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1570 				xhci->devs[slot_id]->out_ctx, ep_index);
1571 
1572 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1573 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1574 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1575 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1576 
1577 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1578 		ctrl_ctx->drop_flags = 0;
1579 
1580 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1581 				true, false);
1582 
1583 		/* Clean up the input context for later use by bandwidth
1584 		 * functions.
1585 		 */
1586 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1587 command_cleanup:
1588 		kfree(command->completion);
1589 		kfree(command);
1590 	}
1591 	return ret;
1592 }
1593 
1594 /*
1595  * non-error returns are a promise to giveback() the urb later
1596  * we drop ownership so next owner (or urb unlink) can get it
1597  */
1598 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1599 {
1600 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1601 	unsigned long flags;
1602 	int ret = 0;
1603 	unsigned int slot_id, ep_index;
1604 	unsigned int *ep_state;
1605 	struct urb_priv	*urb_priv;
1606 	int num_tds;
1607 
1608 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1609 					true, true, __func__) <= 0)
1610 		return -EINVAL;
1611 
1612 	slot_id = urb->dev->slot_id;
1613 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1614 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1615 
1616 	if (!HCD_HW_ACCESSIBLE(hcd))
1617 		return -ESHUTDOWN;
1618 
1619 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1620 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1621 		return -ENODEV;
1622 	}
1623 
1624 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1625 		num_tds = urb->number_of_packets;
1626 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1627 	    urb->transfer_buffer_length > 0 &&
1628 	    urb->transfer_flags & URB_ZERO_PACKET &&
1629 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1630 		num_tds = 2;
1631 	else
1632 		num_tds = 1;
1633 
1634 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1635 	if (!urb_priv)
1636 		return -ENOMEM;
1637 
1638 	urb_priv->num_tds = num_tds;
1639 	urb_priv->num_tds_done = 0;
1640 	urb->hcpriv = urb_priv;
1641 
1642 	trace_xhci_urb_enqueue(urb);
1643 
1644 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1645 		/* Check to see if the max packet size for the default control
1646 		 * endpoint changed during FS device enumeration
1647 		 */
1648 		if (urb->dev->speed == USB_SPEED_FULL) {
1649 			ret = xhci_check_maxpacket(xhci, slot_id,
1650 					ep_index, urb, mem_flags);
1651 			if (ret < 0) {
1652 				xhci_urb_free_priv(urb_priv);
1653 				urb->hcpriv = NULL;
1654 				return ret;
1655 			}
1656 		}
1657 	}
1658 
1659 	spin_lock_irqsave(&xhci->lock, flags);
1660 
1661 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1662 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1663 			 urb->ep->desc.bEndpointAddress, urb);
1664 		ret = -ESHUTDOWN;
1665 		goto free_priv;
1666 	}
1667 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1668 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1669 			  *ep_state);
1670 		ret = -EINVAL;
1671 		goto free_priv;
1672 	}
1673 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1674 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1675 		ret = -EINVAL;
1676 		goto free_priv;
1677 	}
1678 
1679 	switch (usb_endpoint_type(&urb->ep->desc)) {
1680 
1681 	case USB_ENDPOINT_XFER_CONTROL:
1682 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1683 					 slot_id, ep_index);
1684 		break;
1685 	case USB_ENDPOINT_XFER_BULK:
1686 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1687 					 slot_id, ep_index);
1688 		break;
1689 	case USB_ENDPOINT_XFER_INT:
1690 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1691 				slot_id, ep_index);
1692 		break;
1693 	case USB_ENDPOINT_XFER_ISOC:
1694 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1695 				slot_id, ep_index);
1696 	}
1697 
1698 	if (ret) {
1699 free_priv:
1700 		xhci_urb_free_priv(urb_priv);
1701 		urb->hcpriv = NULL;
1702 	}
1703 	spin_unlock_irqrestore(&xhci->lock, flags);
1704 	return ret;
1705 }
1706 
1707 /*
1708  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1709  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1710  * should pick up where it left off in the TD, unless a Set Transfer Ring
1711  * Dequeue Pointer is issued.
1712  *
1713  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1714  * the ring.  Since the ring is a contiguous structure, they can't be physically
1715  * removed.  Instead, there are two options:
1716  *
1717  *  1) If the HC is in the middle of processing the URB to be canceled, we
1718  *     simply move the ring's dequeue pointer past those TRBs using the Set
1719  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1720  *     when drivers timeout on the last submitted URB and attempt to cancel.
1721  *
1722  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1723  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1724  *     HC will need to invalidate the any TRBs it has cached after the stop
1725  *     endpoint command, as noted in the xHCI 0.95 errata.
1726  *
1727  *  3) The TD may have completed by the time the Stop Endpoint Command
1728  *     completes, so software needs to handle that case too.
1729  *
1730  * This function should protect against the TD enqueueing code ringing the
1731  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1732  * It also needs to account for multiple cancellations on happening at the same
1733  * time for the same endpoint.
1734  *
1735  * Note that this function can be called in any context, or so says
1736  * usb_hcd_unlink_urb()
1737  */
1738 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1739 {
1740 	unsigned long flags;
1741 	int ret, i;
1742 	u32 temp;
1743 	struct xhci_hcd *xhci;
1744 	struct urb_priv	*urb_priv;
1745 	struct xhci_td *td;
1746 	unsigned int ep_index;
1747 	struct xhci_ring *ep_ring;
1748 	struct xhci_virt_ep *ep;
1749 	struct xhci_command *command;
1750 	struct xhci_virt_device *vdev;
1751 
1752 	xhci = hcd_to_xhci(hcd);
1753 	spin_lock_irqsave(&xhci->lock, flags);
1754 
1755 	trace_xhci_urb_dequeue(urb);
1756 
1757 	/* Make sure the URB hasn't completed or been unlinked already */
1758 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1759 	if (ret)
1760 		goto done;
1761 
1762 	/* give back URB now if we can't queue it for cancel */
1763 	vdev = xhci->devs[urb->dev->slot_id];
1764 	urb_priv = urb->hcpriv;
1765 	if (!vdev || !urb_priv)
1766 		goto err_giveback;
1767 
1768 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1769 	ep = &vdev->eps[ep_index];
1770 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1771 	if (!ep || !ep_ring)
1772 		goto err_giveback;
1773 
1774 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1775 	temp = readl(&xhci->op_regs->status);
1776 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1777 		xhci_hc_died(xhci);
1778 		goto done;
1779 	}
1780 
1781 	/*
1782 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1783 	 * make sure none of the ring related pointers in this URB private data
1784 	 * are touched, such as td_list, otherwise we overwrite freed data
1785 	 */
1786 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1787 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1788 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1789 			td = &urb_priv->td[i];
1790 			if (!list_empty(&td->cancelled_td_list))
1791 				list_del_init(&td->cancelled_td_list);
1792 		}
1793 		goto err_giveback;
1794 	}
1795 
1796 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1797 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1798 				"HC halted, freeing TD manually.");
1799 		for (i = urb_priv->num_tds_done;
1800 		     i < urb_priv->num_tds;
1801 		     i++) {
1802 			td = &urb_priv->td[i];
1803 			if (!list_empty(&td->td_list))
1804 				list_del_init(&td->td_list);
1805 			if (!list_empty(&td->cancelled_td_list))
1806 				list_del_init(&td->cancelled_td_list);
1807 		}
1808 		goto err_giveback;
1809 	}
1810 
1811 	i = urb_priv->num_tds_done;
1812 	if (i < urb_priv->num_tds)
1813 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1814 				"Cancel URB %p, dev %s, ep 0x%x, "
1815 				"starting at offset 0x%llx",
1816 				urb, urb->dev->devpath,
1817 				urb->ep->desc.bEndpointAddress,
1818 				(unsigned long long) xhci_trb_virt_to_dma(
1819 					urb_priv->td[i].start_seg,
1820 					urb_priv->td[i].first_trb));
1821 
1822 	for (; i < urb_priv->num_tds; i++) {
1823 		td = &urb_priv->td[i];
1824 		/* TD can already be on cancelled list if ep halted on it */
1825 		if (list_empty(&td->cancelled_td_list)) {
1826 			td->cancel_status = TD_DIRTY;
1827 			list_add_tail(&td->cancelled_td_list,
1828 				      &ep->cancelled_td_list);
1829 		}
1830 	}
1831 
1832 	/* Queue a stop endpoint command, but only if this is
1833 	 * the first cancellation to be handled.
1834 	 */
1835 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1836 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1837 		if (!command) {
1838 			ret = -ENOMEM;
1839 			goto done;
1840 		}
1841 		ep->ep_state |= EP_STOP_CMD_PENDING;
1842 		ep->stop_cmd_timer.expires = jiffies +
1843 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1844 		add_timer(&ep->stop_cmd_timer);
1845 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1846 					 ep_index, 0);
1847 		xhci_ring_cmd_db(xhci);
1848 	}
1849 done:
1850 	spin_unlock_irqrestore(&xhci->lock, flags);
1851 	return ret;
1852 
1853 err_giveback:
1854 	if (urb_priv)
1855 		xhci_urb_free_priv(urb_priv);
1856 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1857 	spin_unlock_irqrestore(&xhci->lock, flags);
1858 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1859 	return ret;
1860 }
1861 
1862 /* Drop an endpoint from a new bandwidth configuration for this device.
1863  * Only one call to this function is allowed per endpoint before
1864  * check_bandwidth() or reset_bandwidth() must be called.
1865  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1866  * add the endpoint to the schedule with possibly new parameters denoted by a
1867  * different endpoint descriptor in usb_host_endpoint.
1868  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1869  * not allowed.
1870  *
1871  * The USB core will not allow URBs to be queued to an endpoint that is being
1872  * disabled, so there's no need for mutual exclusion to protect
1873  * the xhci->devs[slot_id] structure.
1874  */
1875 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1876 		       struct usb_host_endpoint *ep)
1877 {
1878 	struct xhci_hcd *xhci;
1879 	struct xhci_container_ctx *in_ctx, *out_ctx;
1880 	struct xhci_input_control_ctx *ctrl_ctx;
1881 	unsigned int ep_index;
1882 	struct xhci_ep_ctx *ep_ctx;
1883 	u32 drop_flag;
1884 	u32 new_add_flags, new_drop_flags;
1885 	int ret;
1886 
1887 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1888 	if (ret <= 0)
1889 		return ret;
1890 	xhci = hcd_to_xhci(hcd);
1891 	if (xhci->xhc_state & XHCI_STATE_DYING)
1892 		return -ENODEV;
1893 
1894 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1895 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1896 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1897 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1898 				__func__, drop_flag);
1899 		return 0;
1900 	}
1901 
1902 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1903 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1904 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1905 	if (!ctrl_ctx) {
1906 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1907 				__func__);
1908 		return 0;
1909 	}
1910 
1911 	ep_index = xhci_get_endpoint_index(&ep->desc);
1912 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1913 	/* If the HC already knows the endpoint is disabled,
1914 	 * or the HCD has noted it is disabled, ignore this request
1915 	 */
1916 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1917 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1918 	    xhci_get_endpoint_flag(&ep->desc)) {
1919 		/* Do not warn when called after a usb_device_reset */
1920 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1921 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1922 				  __func__, ep);
1923 		return 0;
1924 	}
1925 
1926 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1927 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1928 
1929 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1930 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1931 
1932 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1933 
1934 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1935 
1936 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1937 			(unsigned int) ep->desc.bEndpointAddress,
1938 			udev->slot_id,
1939 			(unsigned int) new_drop_flags,
1940 			(unsigned int) new_add_flags);
1941 	return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1944 
1945 /* Add an endpoint to a new possible bandwidth configuration for this device.
1946  * Only one call to this function is allowed per endpoint before
1947  * check_bandwidth() or reset_bandwidth() must be called.
1948  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1949  * add the endpoint to the schedule with possibly new parameters denoted by a
1950  * different endpoint descriptor in usb_host_endpoint.
1951  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1952  * not allowed.
1953  *
1954  * The USB core will not allow URBs to be queued to an endpoint until the
1955  * configuration or alt setting is installed in the device, so there's no need
1956  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1957  */
1958 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1959 		      struct usb_host_endpoint *ep)
1960 {
1961 	struct xhci_hcd *xhci;
1962 	struct xhci_container_ctx *in_ctx;
1963 	unsigned int ep_index;
1964 	struct xhci_input_control_ctx *ctrl_ctx;
1965 	struct xhci_ep_ctx *ep_ctx;
1966 	u32 added_ctxs;
1967 	u32 new_add_flags, new_drop_flags;
1968 	struct xhci_virt_device *virt_dev;
1969 	int ret = 0;
1970 
1971 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1972 	if (ret <= 0) {
1973 		/* So we won't queue a reset ep command for a root hub */
1974 		ep->hcpriv = NULL;
1975 		return ret;
1976 	}
1977 	xhci = hcd_to_xhci(hcd);
1978 	if (xhci->xhc_state & XHCI_STATE_DYING)
1979 		return -ENODEV;
1980 
1981 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1982 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1983 		/* FIXME when we have to issue an evaluate endpoint command to
1984 		 * deal with ep0 max packet size changing once we get the
1985 		 * descriptors
1986 		 */
1987 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1988 				__func__, added_ctxs);
1989 		return 0;
1990 	}
1991 
1992 	virt_dev = xhci->devs[udev->slot_id];
1993 	in_ctx = virt_dev->in_ctx;
1994 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1995 	if (!ctrl_ctx) {
1996 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1997 				__func__);
1998 		return 0;
1999 	}
2000 
2001 	ep_index = xhci_get_endpoint_index(&ep->desc);
2002 	/* If this endpoint is already in use, and the upper layers are trying
2003 	 * to add it again without dropping it, reject the addition.
2004 	 */
2005 	if (virt_dev->eps[ep_index].ring &&
2006 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2007 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2008 				"without dropping it.\n",
2009 				(unsigned int) ep->desc.bEndpointAddress);
2010 		return -EINVAL;
2011 	}
2012 
2013 	/* If the HCD has already noted the endpoint is enabled,
2014 	 * ignore this request.
2015 	 */
2016 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2017 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2018 				__func__, ep);
2019 		return 0;
2020 	}
2021 
2022 	/*
2023 	 * Configuration and alternate setting changes must be done in
2024 	 * process context, not interrupt context (or so documenation
2025 	 * for usb_set_interface() and usb_set_configuration() claim).
2026 	 */
2027 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2028 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2029 				__func__, ep->desc.bEndpointAddress);
2030 		return -ENOMEM;
2031 	}
2032 
2033 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2034 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2035 
2036 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2037 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2038 	 * this re-adds a new state for the endpoint from the new endpoint
2039 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2040 	 * drop flags alone.
2041 	 */
2042 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2043 
2044 	/* Store the usb_device pointer for later use */
2045 	ep->hcpriv = udev;
2046 
2047 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2048 	trace_xhci_add_endpoint(ep_ctx);
2049 
2050 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2051 			(unsigned int) ep->desc.bEndpointAddress,
2052 			udev->slot_id,
2053 			(unsigned int) new_drop_flags,
2054 			(unsigned int) new_add_flags);
2055 	return 0;
2056 }
2057 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2058 
2059 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2060 {
2061 	struct xhci_input_control_ctx *ctrl_ctx;
2062 	struct xhci_ep_ctx *ep_ctx;
2063 	struct xhci_slot_ctx *slot_ctx;
2064 	int i;
2065 
2066 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2067 	if (!ctrl_ctx) {
2068 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2069 				__func__);
2070 		return;
2071 	}
2072 
2073 	/* When a device's add flag and drop flag are zero, any subsequent
2074 	 * configure endpoint command will leave that endpoint's state
2075 	 * untouched.  Make sure we don't leave any old state in the input
2076 	 * endpoint contexts.
2077 	 */
2078 	ctrl_ctx->drop_flags = 0;
2079 	ctrl_ctx->add_flags = 0;
2080 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2081 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2082 	/* Endpoint 0 is always valid */
2083 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2084 	for (i = 1; i < 31; i++) {
2085 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2086 		ep_ctx->ep_info = 0;
2087 		ep_ctx->ep_info2 = 0;
2088 		ep_ctx->deq = 0;
2089 		ep_ctx->tx_info = 0;
2090 	}
2091 }
2092 
2093 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2094 		struct usb_device *udev, u32 *cmd_status)
2095 {
2096 	int ret;
2097 
2098 	switch (*cmd_status) {
2099 	case COMP_COMMAND_ABORTED:
2100 	case COMP_COMMAND_RING_STOPPED:
2101 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2102 		ret = -ETIME;
2103 		break;
2104 	case COMP_RESOURCE_ERROR:
2105 		dev_warn(&udev->dev,
2106 			 "Not enough host controller resources for new device state.\n");
2107 		ret = -ENOMEM;
2108 		/* FIXME: can we allocate more resources for the HC? */
2109 		break;
2110 	case COMP_BANDWIDTH_ERROR:
2111 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2112 		dev_warn(&udev->dev,
2113 			 "Not enough bandwidth for new device state.\n");
2114 		ret = -ENOSPC;
2115 		/* FIXME: can we go back to the old state? */
2116 		break;
2117 	case COMP_TRB_ERROR:
2118 		/* the HCD set up something wrong */
2119 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2120 				"add flag = 1, "
2121 				"and endpoint is not disabled.\n");
2122 		ret = -EINVAL;
2123 		break;
2124 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2125 		dev_warn(&udev->dev,
2126 			 "ERROR: Incompatible device for endpoint configure command.\n");
2127 		ret = -ENODEV;
2128 		break;
2129 	case COMP_SUCCESS:
2130 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2131 				"Successful Endpoint Configure command");
2132 		ret = 0;
2133 		break;
2134 	default:
2135 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2136 				*cmd_status);
2137 		ret = -EINVAL;
2138 		break;
2139 	}
2140 	return ret;
2141 }
2142 
2143 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2144 		struct usb_device *udev, u32 *cmd_status)
2145 {
2146 	int ret;
2147 
2148 	switch (*cmd_status) {
2149 	case COMP_COMMAND_ABORTED:
2150 	case COMP_COMMAND_RING_STOPPED:
2151 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2152 		ret = -ETIME;
2153 		break;
2154 	case COMP_PARAMETER_ERROR:
2155 		dev_warn(&udev->dev,
2156 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2157 		ret = -EINVAL;
2158 		break;
2159 	case COMP_SLOT_NOT_ENABLED_ERROR:
2160 		dev_warn(&udev->dev,
2161 			"WARN: slot not enabled for evaluate context command.\n");
2162 		ret = -EINVAL;
2163 		break;
2164 	case COMP_CONTEXT_STATE_ERROR:
2165 		dev_warn(&udev->dev,
2166 			"WARN: invalid context state for evaluate context command.\n");
2167 		ret = -EINVAL;
2168 		break;
2169 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2170 		dev_warn(&udev->dev,
2171 			"ERROR: Incompatible device for evaluate context command.\n");
2172 		ret = -ENODEV;
2173 		break;
2174 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2175 		/* Max Exit Latency too large error */
2176 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2177 		ret = -EINVAL;
2178 		break;
2179 	case COMP_SUCCESS:
2180 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2181 				"Successful evaluate context command");
2182 		ret = 0;
2183 		break;
2184 	default:
2185 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2186 			*cmd_status);
2187 		ret = -EINVAL;
2188 		break;
2189 	}
2190 	return ret;
2191 }
2192 
2193 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2194 		struct xhci_input_control_ctx *ctrl_ctx)
2195 {
2196 	u32 valid_add_flags;
2197 	u32 valid_drop_flags;
2198 
2199 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2200 	 * (bit 1).  The default control endpoint is added during the Address
2201 	 * Device command and is never removed until the slot is disabled.
2202 	 */
2203 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2204 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2205 
2206 	/* Use hweight32 to count the number of ones in the add flags, or
2207 	 * number of endpoints added.  Don't count endpoints that are changed
2208 	 * (both added and dropped).
2209 	 */
2210 	return hweight32(valid_add_flags) -
2211 		hweight32(valid_add_flags & valid_drop_flags);
2212 }
2213 
2214 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2215 		struct xhci_input_control_ctx *ctrl_ctx)
2216 {
2217 	u32 valid_add_flags;
2218 	u32 valid_drop_flags;
2219 
2220 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2221 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2222 
2223 	return hweight32(valid_drop_flags) -
2224 		hweight32(valid_add_flags & valid_drop_flags);
2225 }
2226 
2227 /*
2228  * We need to reserve the new number of endpoints before the configure endpoint
2229  * command completes.  We can't subtract the dropped endpoints from the number
2230  * of active endpoints until the command completes because we can oversubscribe
2231  * the host in this case:
2232  *
2233  *  - the first configure endpoint command drops more endpoints than it adds
2234  *  - a second configure endpoint command that adds more endpoints is queued
2235  *  - the first configure endpoint command fails, so the config is unchanged
2236  *  - the second command may succeed, even though there isn't enough resources
2237  *
2238  * Must be called with xhci->lock held.
2239  */
2240 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2241 		struct xhci_input_control_ctx *ctrl_ctx)
2242 {
2243 	u32 added_eps;
2244 
2245 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2246 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2247 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2248 				"Not enough ep ctxs: "
2249 				"%u active, need to add %u, limit is %u.",
2250 				xhci->num_active_eps, added_eps,
2251 				xhci->limit_active_eps);
2252 		return -ENOMEM;
2253 	}
2254 	xhci->num_active_eps += added_eps;
2255 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2256 			"Adding %u ep ctxs, %u now active.", added_eps,
2257 			xhci->num_active_eps);
2258 	return 0;
2259 }
2260 
2261 /*
2262  * The configure endpoint was failed by the xHC for some other reason, so we
2263  * need to revert the resources that failed configuration would have used.
2264  *
2265  * Must be called with xhci->lock held.
2266  */
2267 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2268 		struct xhci_input_control_ctx *ctrl_ctx)
2269 {
2270 	u32 num_failed_eps;
2271 
2272 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2273 	xhci->num_active_eps -= num_failed_eps;
2274 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2275 			"Removing %u failed ep ctxs, %u now active.",
2276 			num_failed_eps,
2277 			xhci->num_active_eps);
2278 }
2279 
2280 /*
2281  * Now that the command has completed, clean up the active endpoint count by
2282  * subtracting out the endpoints that were dropped (but not changed).
2283  *
2284  * Must be called with xhci->lock held.
2285  */
2286 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2287 		struct xhci_input_control_ctx *ctrl_ctx)
2288 {
2289 	u32 num_dropped_eps;
2290 
2291 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2292 	xhci->num_active_eps -= num_dropped_eps;
2293 	if (num_dropped_eps)
2294 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2295 				"Removing %u dropped ep ctxs, %u now active.",
2296 				num_dropped_eps,
2297 				xhci->num_active_eps);
2298 }
2299 
2300 static unsigned int xhci_get_block_size(struct usb_device *udev)
2301 {
2302 	switch (udev->speed) {
2303 	case USB_SPEED_LOW:
2304 	case USB_SPEED_FULL:
2305 		return FS_BLOCK;
2306 	case USB_SPEED_HIGH:
2307 		return HS_BLOCK;
2308 	case USB_SPEED_SUPER:
2309 	case USB_SPEED_SUPER_PLUS:
2310 		return SS_BLOCK;
2311 	case USB_SPEED_UNKNOWN:
2312 	case USB_SPEED_WIRELESS:
2313 	default:
2314 		/* Should never happen */
2315 		return 1;
2316 	}
2317 }
2318 
2319 static unsigned int
2320 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2321 {
2322 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2323 		return LS_OVERHEAD;
2324 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2325 		return FS_OVERHEAD;
2326 	return HS_OVERHEAD;
2327 }
2328 
2329 /* If we are changing a LS/FS device under a HS hub,
2330  * make sure (if we are activating a new TT) that the HS bus has enough
2331  * bandwidth for this new TT.
2332  */
2333 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2334 		struct xhci_virt_device *virt_dev,
2335 		int old_active_eps)
2336 {
2337 	struct xhci_interval_bw_table *bw_table;
2338 	struct xhci_tt_bw_info *tt_info;
2339 
2340 	/* Find the bandwidth table for the root port this TT is attached to. */
2341 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2342 	tt_info = virt_dev->tt_info;
2343 	/* If this TT already had active endpoints, the bandwidth for this TT
2344 	 * has already been added.  Removing all periodic endpoints (and thus
2345 	 * making the TT enactive) will only decrease the bandwidth used.
2346 	 */
2347 	if (old_active_eps)
2348 		return 0;
2349 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2350 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2351 			return -ENOMEM;
2352 		return 0;
2353 	}
2354 	/* Not sure why we would have no new active endpoints...
2355 	 *
2356 	 * Maybe because of an Evaluate Context change for a hub update or a
2357 	 * control endpoint 0 max packet size change?
2358 	 * FIXME: skip the bandwidth calculation in that case.
2359 	 */
2360 	return 0;
2361 }
2362 
2363 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2364 		struct xhci_virt_device *virt_dev)
2365 {
2366 	unsigned int bw_reserved;
2367 
2368 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2369 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2370 		return -ENOMEM;
2371 
2372 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2373 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2374 		return -ENOMEM;
2375 
2376 	return 0;
2377 }
2378 
2379 /*
2380  * This algorithm is a very conservative estimate of the worst-case scheduling
2381  * scenario for any one interval.  The hardware dynamically schedules the
2382  * packets, so we can't tell which microframe could be the limiting factor in
2383  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2384  *
2385  * Obviously, we can't solve an NP complete problem to find the minimum worst
2386  * case scenario.  Instead, we come up with an estimate that is no less than
2387  * the worst case bandwidth used for any one microframe, but may be an
2388  * over-estimate.
2389  *
2390  * We walk the requirements for each endpoint by interval, starting with the
2391  * smallest interval, and place packets in the schedule where there is only one
2392  * possible way to schedule packets for that interval.  In order to simplify
2393  * this algorithm, we record the largest max packet size for each interval, and
2394  * assume all packets will be that size.
2395  *
2396  * For interval 0, we obviously must schedule all packets for each interval.
2397  * The bandwidth for interval 0 is just the amount of data to be transmitted
2398  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2399  * the number of packets).
2400  *
2401  * For interval 1, we have two possible microframes to schedule those packets
2402  * in.  For this algorithm, if we can schedule the same number of packets for
2403  * each possible scheduling opportunity (each microframe), we will do so.  The
2404  * remaining number of packets will be saved to be transmitted in the gaps in
2405  * the next interval's scheduling sequence.
2406  *
2407  * As we move those remaining packets to be scheduled with interval 2 packets,
2408  * we have to double the number of remaining packets to transmit.  This is
2409  * because the intervals are actually powers of 2, and we would be transmitting
2410  * the previous interval's packets twice in this interval.  We also have to be
2411  * sure that when we look at the largest max packet size for this interval, we
2412  * also look at the largest max packet size for the remaining packets and take
2413  * the greater of the two.
2414  *
2415  * The algorithm continues to evenly distribute packets in each scheduling
2416  * opportunity, and push the remaining packets out, until we get to the last
2417  * interval.  Then those packets and their associated overhead are just added
2418  * to the bandwidth used.
2419  */
2420 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2421 		struct xhci_virt_device *virt_dev,
2422 		int old_active_eps)
2423 {
2424 	unsigned int bw_reserved;
2425 	unsigned int max_bandwidth;
2426 	unsigned int bw_used;
2427 	unsigned int block_size;
2428 	struct xhci_interval_bw_table *bw_table;
2429 	unsigned int packet_size = 0;
2430 	unsigned int overhead = 0;
2431 	unsigned int packets_transmitted = 0;
2432 	unsigned int packets_remaining = 0;
2433 	unsigned int i;
2434 
2435 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2436 		return xhci_check_ss_bw(xhci, virt_dev);
2437 
2438 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2439 		max_bandwidth = HS_BW_LIMIT;
2440 		/* Convert percent of bus BW reserved to blocks reserved */
2441 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2442 	} else {
2443 		max_bandwidth = FS_BW_LIMIT;
2444 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2445 	}
2446 
2447 	bw_table = virt_dev->bw_table;
2448 	/* We need to translate the max packet size and max ESIT payloads into
2449 	 * the units the hardware uses.
2450 	 */
2451 	block_size = xhci_get_block_size(virt_dev->udev);
2452 
2453 	/* If we are manipulating a LS/FS device under a HS hub, double check
2454 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2455 	 */
2456 	if (virt_dev->tt_info) {
2457 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2458 				"Recalculating BW for rootport %u",
2459 				virt_dev->real_port);
2460 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2461 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2462 					"newly activated TT.\n");
2463 			return -ENOMEM;
2464 		}
2465 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2466 				"Recalculating BW for TT slot %u port %u",
2467 				virt_dev->tt_info->slot_id,
2468 				virt_dev->tt_info->ttport);
2469 	} else {
2470 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2471 				"Recalculating BW for rootport %u",
2472 				virt_dev->real_port);
2473 	}
2474 
2475 	/* Add in how much bandwidth will be used for interval zero, or the
2476 	 * rounded max ESIT payload + number of packets * largest overhead.
2477 	 */
2478 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2479 		bw_table->interval_bw[0].num_packets *
2480 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2481 
2482 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2483 		unsigned int bw_added;
2484 		unsigned int largest_mps;
2485 		unsigned int interval_overhead;
2486 
2487 		/*
2488 		 * How many packets could we transmit in this interval?
2489 		 * If packets didn't fit in the previous interval, we will need
2490 		 * to transmit that many packets twice within this interval.
2491 		 */
2492 		packets_remaining = 2 * packets_remaining +
2493 			bw_table->interval_bw[i].num_packets;
2494 
2495 		/* Find the largest max packet size of this or the previous
2496 		 * interval.
2497 		 */
2498 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2499 			largest_mps = 0;
2500 		else {
2501 			struct xhci_virt_ep *virt_ep;
2502 			struct list_head *ep_entry;
2503 
2504 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2505 			virt_ep = list_entry(ep_entry,
2506 					struct xhci_virt_ep, bw_endpoint_list);
2507 			/* Convert to blocks, rounding up */
2508 			largest_mps = DIV_ROUND_UP(
2509 					virt_ep->bw_info.max_packet_size,
2510 					block_size);
2511 		}
2512 		if (largest_mps > packet_size)
2513 			packet_size = largest_mps;
2514 
2515 		/* Use the larger overhead of this or the previous interval. */
2516 		interval_overhead = xhci_get_largest_overhead(
2517 				&bw_table->interval_bw[i]);
2518 		if (interval_overhead > overhead)
2519 			overhead = interval_overhead;
2520 
2521 		/* How many packets can we evenly distribute across
2522 		 * (1 << (i + 1)) possible scheduling opportunities?
2523 		 */
2524 		packets_transmitted = packets_remaining >> (i + 1);
2525 
2526 		/* Add in the bandwidth used for those scheduled packets */
2527 		bw_added = packets_transmitted * (overhead + packet_size);
2528 
2529 		/* How many packets do we have remaining to transmit? */
2530 		packets_remaining = packets_remaining % (1 << (i + 1));
2531 
2532 		/* What largest max packet size should those packets have? */
2533 		/* If we've transmitted all packets, don't carry over the
2534 		 * largest packet size.
2535 		 */
2536 		if (packets_remaining == 0) {
2537 			packet_size = 0;
2538 			overhead = 0;
2539 		} else if (packets_transmitted > 0) {
2540 			/* Otherwise if we do have remaining packets, and we've
2541 			 * scheduled some packets in this interval, take the
2542 			 * largest max packet size from endpoints with this
2543 			 * interval.
2544 			 */
2545 			packet_size = largest_mps;
2546 			overhead = interval_overhead;
2547 		}
2548 		/* Otherwise carry over packet_size and overhead from the last
2549 		 * time we had a remainder.
2550 		 */
2551 		bw_used += bw_added;
2552 		if (bw_used > max_bandwidth) {
2553 			xhci_warn(xhci, "Not enough bandwidth. "
2554 					"Proposed: %u, Max: %u\n",
2555 				bw_used, max_bandwidth);
2556 			return -ENOMEM;
2557 		}
2558 	}
2559 	/*
2560 	 * Ok, we know we have some packets left over after even-handedly
2561 	 * scheduling interval 15.  We don't know which microframes they will
2562 	 * fit into, so we over-schedule and say they will be scheduled every
2563 	 * microframe.
2564 	 */
2565 	if (packets_remaining > 0)
2566 		bw_used += overhead + packet_size;
2567 
2568 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2569 		unsigned int port_index = virt_dev->real_port - 1;
2570 
2571 		/* OK, we're manipulating a HS device attached to a
2572 		 * root port bandwidth domain.  Include the number of active TTs
2573 		 * in the bandwidth used.
2574 		 */
2575 		bw_used += TT_HS_OVERHEAD *
2576 			xhci->rh_bw[port_index].num_active_tts;
2577 	}
2578 
2579 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2580 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2581 		"Available: %u " "percent",
2582 		bw_used, max_bandwidth, bw_reserved,
2583 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2584 		max_bandwidth);
2585 
2586 	bw_used += bw_reserved;
2587 	if (bw_used > max_bandwidth) {
2588 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2589 				bw_used, max_bandwidth);
2590 		return -ENOMEM;
2591 	}
2592 
2593 	bw_table->bw_used = bw_used;
2594 	return 0;
2595 }
2596 
2597 static bool xhci_is_async_ep(unsigned int ep_type)
2598 {
2599 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2600 					ep_type != ISOC_IN_EP &&
2601 					ep_type != INT_IN_EP);
2602 }
2603 
2604 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2605 {
2606 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2607 }
2608 
2609 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2610 {
2611 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2612 
2613 	if (ep_bw->ep_interval == 0)
2614 		return SS_OVERHEAD_BURST +
2615 			(ep_bw->mult * ep_bw->num_packets *
2616 					(SS_OVERHEAD + mps));
2617 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2618 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2619 				1 << ep_bw->ep_interval);
2620 
2621 }
2622 
2623 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2624 		struct xhci_bw_info *ep_bw,
2625 		struct xhci_interval_bw_table *bw_table,
2626 		struct usb_device *udev,
2627 		struct xhci_virt_ep *virt_ep,
2628 		struct xhci_tt_bw_info *tt_info)
2629 {
2630 	struct xhci_interval_bw	*interval_bw;
2631 	int normalized_interval;
2632 
2633 	if (xhci_is_async_ep(ep_bw->type))
2634 		return;
2635 
2636 	if (udev->speed >= USB_SPEED_SUPER) {
2637 		if (xhci_is_sync_in_ep(ep_bw->type))
2638 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2639 				xhci_get_ss_bw_consumed(ep_bw);
2640 		else
2641 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2642 				xhci_get_ss_bw_consumed(ep_bw);
2643 		return;
2644 	}
2645 
2646 	/* SuperSpeed endpoints never get added to intervals in the table, so
2647 	 * this check is only valid for HS/FS/LS devices.
2648 	 */
2649 	if (list_empty(&virt_ep->bw_endpoint_list))
2650 		return;
2651 	/* For LS/FS devices, we need to translate the interval expressed in
2652 	 * microframes to frames.
2653 	 */
2654 	if (udev->speed == USB_SPEED_HIGH)
2655 		normalized_interval = ep_bw->ep_interval;
2656 	else
2657 		normalized_interval = ep_bw->ep_interval - 3;
2658 
2659 	if (normalized_interval == 0)
2660 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2661 	interval_bw = &bw_table->interval_bw[normalized_interval];
2662 	interval_bw->num_packets -= ep_bw->num_packets;
2663 	switch (udev->speed) {
2664 	case USB_SPEED_LOW:
2665 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2666 		break;
2667 	case USB_SPEED_FULL:
2668 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2669 		break;
2670 	case USB_SPEED_HIGH:
2671 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2672 		break;
2673 	case USB_SPEED_SUPER:
2674 	case USB_SPEED_SUPER_PLUS:
2675 	case USB_SPEED_UNKNOWN:
2676 	case USB_SPEED_WIRELESS:
2677 		/* Should never happen because only LS/FS/HS endpoints will get
2678 		 * added to the endpoint list.
2679 		 */
2680 		return;
2681 	}
2682 	if (tt_info)
2683 		tt_info->active_eps -= 1;
2684 	list_del_init(&virt_ep->bw_endpoint_list);
2685 }
2686 
2687 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2688 		struct xhci_bw_info *ep_bw,
2689 		struct xhci_interval_bw_table *bw_table,
2690 		struct usb_device *udev,
2691 		struct xhci_virt_ep *virt_ep,
2692 		struct xhci_tt_bw_info *tt_info)
2693 {
2694 	struct xhci_interval_bw	*interval_bw;
2695 	struct xhci_virt_ep *smaller_ep;
2696 	int normalized_interval;
2697 
2698 	if (xhci_is_async_ep(ep_bw->type))
2699 		return;
2700 
2701 	if (udev->speed == USB_SPEED_SUPER) {
2702 		if (xhci_is_sync_in_ep(ep_bw->type))
2703 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2704 				xhci_get_ss_bw_consumed(ep_bw);
2705 		else
2706 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2707 				xhci_get_ss_bw_consumed(ep_bw);
2708 		return;
2709 	}
2710 
2711 	/* For LS/FS devices, we need to translate the interval expressed in
2712 	 * microframes to frames.
2713 	 */
2714 	if (udev->speed == USB_SPEED_HIGH)
2715 		normalized_interval = ep_bw->ep_interval;
2716 	else
2717 		normalized_interval = ep_bw->ep_interval - 3;
2718 
2719 	if (normalized_interval == 0)
2720 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2721 	interval_bw = &bw_table->interval_bw[normalized_interval];
2722 	interval_bw->num_packets += ep_bw->num_packets;
2723 	switch (udev->speed) {
2724 	case USB_SPEED_LOW:
2725 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2726 		break;
2727 	case USB_SPEED_FULL:
2728 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2729 		break;
2730 	case USB_SPEED_HIGH:
2731 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2732 		break;
2733 	case USB_SPEED_SUPER:
2734 	case USB_SPEED_SUPER_PLUS:
2735 	case USB_SPEED_UNKNOWN:
2736 	case USB_SPEED_WIRELESS:
2737 		/* Should never happen because only LS/FS/HS endpoints will get
2738 		 * added to the endpoint list.
2739 		 */
2740 		return;
2741 	}
2742 
2743 	if (tt_info)
2744 		tt_info->active_eps += 1;
2745 	/* Insert the endpoint into the list, largest max packet size first. */
2746 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2747 			bw_endpoint_list) {
2748 		if (ep_bw->max_packet_size >=
2749 				smaller_ep->bw_info.max_packet_size) {
2750 			/* Add the new ep before the smaller endpoint */
2751 			list_add_tail(&virt_ep->bw_endpoint_list,
2752 					&smaller_ep->bw_endpoint_list);
2753 			return;
2754 		}
2755 	}
2756 	/* Add the new endpoint at the end of the list. */
2757 	list_add_tail(&virt_ep->bw_endpoint_list,
2758 			&interval_bw->endpoints);
2759 }
2760 
2761 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2762 		struct xhci_virt_device *virt_dev,
2763 		int old_active_eps)
2764 {
2765 	struct xhci_root_port_bw_info *rh_bw_info;
2766 	if (!virt_dev->tt_info)
2767 		return;
2768 
2769 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2770 	if (old_active_eps == 0 &&
2771 				virt_dev->tt_info->active_eps != 0) {
2772 		rh_bw_info->num_active_tts += 1;
2773 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2774 	} else if (old_active_eps != 0 &&
2775 				virt_dev->tt_info->active_eps == 0) {
2776 		rh_bw_info->num_active_tts -= 1;
2777 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2778 	}
2779 }
2780 
2781 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2782 		struct xhci_virt_device *virt_dev,
2783 		struct xhci_container_ctx *in_ctx)
2784 {
2785 	struct xhci_bw_info ep_bw_info[31];
2786 	int i;
2787 	struct xhci_input_control_ctx *ctrl_ctx;
2788 	int old_active_eps = 0;
2789 
2790 	if (virt_dev->tt_info)
2791 		old_active_eps = virt_dev->tt_info->active_eps;
2792 
2793 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2794 	if (!ctrl_ctx) {
2795 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2796 				__func__);
2797 		return -ENOMEM;
2798 	}
2799 
2800 	for (i = 0; i < 31; i++) {
2801 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2802 			continue;
2803 
2804 		/* Make a copy of the BW info in case we need to revert this */
2805 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2806 				sizeof(ep_bw_info[i]));
2807 		/* Drop the endpoint from the interval table if the endpoint is
2808 		 * being dropped or changed.
2809 		 */
2810 		if (EP_IS_DROPPED(ctrl_ctx, i))
2811 			xhci_drop_ep_from_interval_table(xhci,
2812 					&virt_dev->eps[i].bw_info,
2813 					virt_dev->bw_table,
2814 					virt_dev->udev,
2815 					&virt_dev->eps[i],
2816 					virt_dev->tt_info);
2817 	}
2818 	/* Overwrite the information stored in the endpoints' bw_info */
2819 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2820 	for (i = 0; i < 31; i++) {
2821 		/* Add any changed or added endpoints to the interval table */
2822 		if (EP_IS_ADDED(ctrl_ctx, i))
2823 			xhci_add_ep_to_interval_table(xhci,
2824 					&virt_dev->eps[i].bw_info,
2825 					virt_dev->bw_table,
2826 					virt_dev->udev,
2827 					&virt_dev->eps[i],
2828 					virt_dev->tt_info);
2829 	}
2830 
2831 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2832 		/* Ok, this fits in the bandwidth we have.
2833 		 * Update the number of active TTs.
2834 		 */
2835 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2836 		return 0;
2837 	}
2838 
2839 	/* We don't have enough bandwidth for this, revert the stored info. */
2840 	for (i = 0; i < 31; i++) {
2841 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2842 			continue;
2843 
2844 		/* Drop the new copies of any added or changed endpoints from
2845 		 * the interval table.
2846 		 */
2847 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2848 			xhci_drop_ep_from_interval_table(xhci,
2849 					&virt_dev->eps[i].bw_info,
2850 					virt_dev->bw_table,
2851 					virt_dev->udev,
2852 					&virt_dev->eps[i],
2853 					virt_dev->tt_info);
2854 		}
2855 		/* Revert the endpoint back to its old information */
2856 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2857 				sizeof(ep_bw_info[i]));
2858 		/* Add any changed or dropped endpoints back into the table */
2859 		if (EP_IS_DROPPED(ctrl_ctx, i))
2860 			xhci_add_ep_to_interval_table(xhci,
2861 					&virt_dev->eps[i].bw_info,
2862 					virt_dev->bw_table,
2863 					virt_dev->udev,
2864 					&virt_dev->eps[i],
2865 					virt_dev->tt_info);
2866 	}
2867 	return -ENOMEM;
2868 }
2869 
2870 
2871 /* Issue a configure endpoint command or evaluate context command
2872  * and wait for it to finish.
2873  */
2874 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2875 		struct usb_device *udev,
2876 		struct xhci_command *command,
2877 		bool ctx_change, bool must_succeed)
2878 {
2879 	int ret;
2880 	unsigned long flags;
2881 	struct xhci_input_control_ctx *ctrl_ctx;
2882 	struct xhci_virt_device *virt_dev;
2883 	struct xhci_slot_ctx *slot_ctx;
2884 
2885 	if (!command)
2886 		return -EINVAL;
2887 
2888 	spin_lock_irqsave(&xhci->lock, flags);
2889 
2890 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2891 		spin_unlock_irqrestore(&xhci->lock, flags);
2892 		return -ESHUTDOWN;
2893 	}
2894 
2895 	virt_dev = xhci->devs[udev->slot_id];
2896 
2897 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2898 	if (!ctrl_ctx) {
2899 		spin_unlock_irqrestore(&xhci->lock, flags);
2900 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2901 				__func__);
2902 		return -ENOMEM;
2903 	}
2904 
2905 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2906 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2907 		spin_unlock_irqrestore(&xhci->lock, flags);
2908 		xhci_warn(xhci, "Not enough host resources, "
2909 				"active endpoint contexts = %u\n",
2910 				xhci->num_active_eps);
2911 		return -ENOMEM;
2912 	}
2913 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2914 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2915 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2916 			xhci_free_host_resources(xhci, ctrl_ctx);
2917 		spin_unlock_irqrestore(&xhci->lock, flags);
2918 		xhci_warn(xhci, "Not enough bandwidth\n");
2919 		return -ENOMEM;
2920 	}
2921 
2922 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2923 
2924 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2925 	trace_xhci_configure_endpoint(slot_ctx);
2926 
2927 	if (!ctx_change)
2928 		ret = xhci_queue_configure_endpoint(xhci, command,
2929 				command->in_ctx->dma,
2930 				udev->slot_id, must_succeed);
2931 	else
2932 		ret = xhci_queue_evaluate_context(xhci, command,
2933 				command->in_ctx->dma,
2934 				udev->slot_id, must_succeed);
2935 	if (ret < 0) {
2936 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2937 			xhci_free_host_resources(xhci, ctrl_ctx);
2938 		spin_unlock_irqrestore(&xhci->lock, flags);
2939 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2940 				"FIXME allocate a new ring segment");
2941 		return -ENOMEM;
2942 	}
2943 	xhci_ring_cmd_db(xhci);
2944 	spin_unlock_irqrestore(&xhci->lock, flags);
2945 
2946 	/* Wait for the configure endpoint command to complete */
2947 	wait_for_completion(command->completion);
2948 
2949 	if (!ctx_change)
2950 		ret = xhci_configure_endpoint_result(xhci, udev,
2951 						     &command->status);
2952 	else
2953 		ret = xhci_evaluate_context_result(xhci, udev,
2954 						   &command->status);
2955 
2956 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2957 		spin_lock_irqsave(&xhci->lock, flags);
2958 		/* If the command failed, remove the reserved resources.
2959 		 * Otherwise, clean up the estimate to include dropped eps.
2960 		 */
2961 		if (ret)
2962 			xhci_free_host_resources(xhci, ctrl_ctx);
2963 		else
2964 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2965 		spin_unlock_irqrestore(&xhci->lock, flags);
2966 	}
2967 	return ret;
2968 }
2969 
2970 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2971 	struct xhci_virt_device *vdev, int i)
2972 {
2973 	struct xhci_virt_ep *ep = &vdev->eps[i];
2974 
2975 	if (ep->ep_state & EP_HAS_STREAMS) {
2976 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2977 				xhci_get_endpoint_address(i));
2978 		xhci_free_stream_info(xhci, ep->stream_info);
2979 		ep->stream_info = NULL;
2980 		ep->ep_state &= ~EP_HAS_STREAMS;
2981 	}
2982 }
2983 
2984 /* Called after one or more calls to xhci_add_endpoint() or
2985  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2986  * to call xhci_reset_bandwidth().
2987  *
2988  * Since we are in the middle of changing either configuration or
2989  * installing a new alt setting, the USB core won't allow URBs to be
2990  * enqueued for any endpoint on the old config or interface.  Nothing
2991  * else should be touching the xhci->devs[slot_id] structure, so we
2992  * don't need to take the xhci->lock for manipulating that.
2993  */
2994 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2995 {
2996 	int i;
2997 	int ret = 0;
2998 	struct xhci_hcd *xhci;
2999 	struct xhci_virt_device	*virt_dev;
3000 	struct xhci_input_control_ctx *ctrl_ctx;
3001 	struct xhci_slot_ctx *slot_ctx;
3002 	struct xhci_command *command;
3003 
3004 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3005 	if (ret <= 0)
3006 		return ret;
3007 	xhci = hcd_to_xhci(hcd);
3008 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3009 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3010 		return -ENODEV;
3011 
3012 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3013 	virt_dev = xhci->devs[udev->slot_id];
3014 
3015 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3016 	if (!command)
3017 		return -ENOMEM;
3018 
3019 	command->in_ctx = virt_dev->in_ctx;
3020 
3021 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3022 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3023 	if (!ctrl_ctx) {
3024 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3025 				__func__);
3026 		ret = -ENOMEM;
3027 		goto command_cleanup;
3028 	}
3029 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3030 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3031 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3032 
3033 	/* Don't issue the command if there's no endpoints to update. */
3034 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3035 	    ctrl_ctx->drop_flags == 0) {
3036 		ret = 0;
3037 		goto command_cleanup;
3038 	}
3039 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3040 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3041 	for (i = 31; i >= 1; i--) {
3042 		__le32 le32 = cpu_to_le32(BIT(i));
3043 
3044 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3045 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3046 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3047 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3048 			break;
3049 		}
3050 	}
3051 
3052 	ret = xhci_configure_endpoint(xhci, udev, command,
3053 			false, false);
3054 	if (ret)
3055 		/* Callee should call reset_bandwidth() */
3056 		goto command_cleanup;
3057 
3058 	/* Free any rings that were dropped, but not changed. */
3059 	for (i = 1; i < 31; i++) {
3060 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3061 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3062 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3063 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3064 		}
3065 	}
3066 	xhci_zero_in_ctx(xhci, virt_dev);
3067 	/*
3068 	 * Install any rings for completely new endpoints or changed endpoints,
3069 	 * and free any old rings from changed endpoints.
3070 	 */
3071 	for (i = 1; i < 31; i++) {
3072 		if (!virt_dev->eps[i].new_ring)
3073 			continue;
3074 		/* Only free the old ring if it exists.
3075 		 * It may not if this is the first add of an endpoint.
3076 		 */
3077 		if (virt_dev->eps[i].ring) {
3078 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3079 		}
3080 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3081 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3082 		virt_dev->eps[i].new_ring = NULL;
3083 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3084 	}
3085 command_cleanup:
3086 	kfree(command->completion);
3087 	kfree(command);
3088 
3089 	return ret;
3090 }
3091 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3092 
3093 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3094 {
3095 	struct xhci_hcd *xhci;
3096 	struct xhci_virt_device	*virt_dev;
3097 	int i, ret;
3098 
3099 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3100 	if (ret <= 0)
3101 		return;
3102 	xhci = hcd_to_xhci(hcd);
3103 
3104 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3105 	virt_dev = xhci->devs[udev->slot_id];
3106 	/* Free any rings allocated for added endpoints */
3107 	for (i = 0; i < 31; i++) {
3108 		if (virt_dev->eps[i].new_ring) {
3109 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3110 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3111 			virt_dev->eps[i].new_ring = NULL;
3112 		}
3113 	}
3114 	xhci_zero_in_ctx(xhci, virt_dev);
3115 }
3116 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3117 
3118 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3119 		struct xhci_container_ctx *in_ctx,
3120 		struct xhci_container_ctx *out_ctx,
3121 		struct xhci_input_control_ctx *ctrl_ctx,
3122 		u32 add_flags, u32 drop_flags)
3123 {
3124 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3125 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3126 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3127 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3128 }
3129 
3130 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3131 				  struct usb_host_endpoint *host_ep)
3132 {
3133 	struct xhci_hcd		*xhci;
3134 	struct xhci_virt_device	*vdev;
3135 	struct xhci_virt_ep	*ep;
3136 	struct usb_device	*udev;
3137 	unsigned long		flags;
3138 	unsigned int		ep_index;
3139 
3140 	xhci = hcd_to_xhci(hcd);
3141 rescan:
3142 	spin_lock_irqsave(&xhci->lock, flags);
3143 
3144 	udev = (struct usb_device *)host_ep->hcpriv;
3145 	if (!udev || !udev->slot_id)
3146 		goto done;
3147 
3148 	vdev = xhci->devs[udev->slot_id];
3149 	if (!vdev)
3150 		goto done;
3151 
3152 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3153 	ep = &vdev->eps[ep_index];
3154 	if (!ep)
3155 		goto done;
3156 
3157 	/* wait for hub_tt_work to finish clearing hub TT */
3158 	if (ep->ep_state & EP_CLEARING_TT) {
3159 		spin_unlock_irqrestore(&xhci->lock, flags);
3160 		schedule_timeout_uninterruptible(1);
3161 		goto rescan;
3162 	}
3163 
3164 	if (ep->ep_state)
3165 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3166 			 ep->ep_state);
3167 done:
3168 	host_ep->hcpriv = NULL;
3169 	spin_unlock_irqrestore(&xhci->lock, flags);
3170 }
3171 
3172 /*
3173  * Called after usb core issues a clear halt control message.
3174  * The host side of the halt should already be cleared by a reset endpoint
3175  * command issued when the STALL event was received.
3176  *
3177  * The reset endpoint command may only be issued to endpoints in the halted
3178  * state. For software that wishes to reset the data toggle or sequence number
3179  * of an endpoint that isn't in the halted state this function will issue a
3180  * configure endpoint command with the Drop and Add bits set for the target
3181  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3182  */
3183 
3184 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3185 		struct usb_host_endpoint *host_ep)
3186 {
3187 	struct xhci_hcd *xhci;
3188 	struct usb_device *udev;
3189 	struct xhci_virt_device *vdev;
3190 	struct xhci_virt_ep *ep;
3191 	struct xhci_input_control_ctx *ctrl_ctx;
3192 	struct xhci_command *stop_cmd, *cfg_cmd;
3193 	unsigned int ep_index;
3194 	unsigned long flags;
3195 	u32 ep_flag;
3196 	int err;
3197 
3198 	xhci = hcd_to_xhci(hcd);
3199 	if (!host_ep->hcpriv)
3200 		return;
3201 	udev = (struct usb_device *) host_ep->hcpriv;
3202 	vdev = xhci->devs[udev->slot_id];
3203 
3204 	/*
3205 	 * vdev may be lost due to xHC restore error and re-initialization
3206 	 * during S3/S4 resume. A new vdev will be allocated later by
3207 	 * xhci_discover_or_reset_device()
3208 	 */
3209 	if (!udev->slot_id || !vdev)
3210 		return;
3211 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3212 	ep = &vdev->eps[ep_index];
3213 	if (!ep)
3214 		return;
3215 
3216 	/* Bail out if toggle is already being cleared by a endpoint reset */
3217 	spin_lock_irqsave(&xhci->lock, flags);
3218 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3219 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3220 		spin_unlock_irqrestore(&xhci->lock, flags);
3221 		return;
3222 	}
3223 	spin_unlock_irqrestore(&xhci->lock, flags);
3224 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3225 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3226 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3227 		return;
3228 
3229 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3230 
3231 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3232 		return;
3233 
3234 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3235 	if (!stop_cmd)
3236 		return;
3237 
3238 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3239 	if (!cfg_cmd)
3240 		goto cleanup;
3241 
3242 	spin_lock_irqsave(&xhci->lock, flags);
3243 
3244 	/* block queuing new trbs and ringing ep doorbell */
3245 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3246 
3247 	/*
3248 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3249 	 * Driver is required to synchronously cancel all transfer request.
3250 	 * Stop the endpoint to force xHC to update the output context
3251 	 */
3252 
3253 	if (!list_empty(&ep->ring->td_list)) {
3254 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3255 		spin_unlock_irqrestore(&xhci->lock, flags);
3256 		xhci_free_command(xhci, cfg_cmd);
3257 		goto cleanup;
3258 	}
3259 
3260 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3261 					ep_index, 0);
3262 	if (err < 0) {
3263 		spin_unlock_irqrestore(&xhci->lock, flags);
3264 		xhci_free_command(xhci, cfg_cmd);
3265 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3266 				__func__, err);
3267 		goto cleanup;
3268 	}
3269 
3270 	xhci_ring_cmd_db(xhci);
3271 	spin_unlock_irqrestore(&xhci->lock, flags);
3272 
3273 	wait_for_completion(stop_cmd->completion);
3274 
3275 	spin_lock_irqsave(&xhci->lock, flags);
3276 
3277 	/* config ep command clears toggle if add and drop ep flags are set */
3278 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3279 	if (!ctrl_ctx) {
3280 		spin_unlock_irqrestore(&xhci->lock, flags);
3281 		xhci_free_command(xhci, cfg_cmd);
3282 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3283 				__func__);
3284 		goto cleanup;
3285 	}
3286 
3287 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3288 					   ctrl_ctx, ep_flag, ep_flag);
3289 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3290 
3291 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3292 				      udev->slot_id, false);
3293 	if (err < 0) {
3294 		spin_unlock_irqrestore(&xhci->lock, flags);
3295 		xhci_free_command(xhci, cfg_cmd);
3296 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3297 				__func__, err);
3298 		goto cleanup;
3299 	}
3300 
3301 	xhci_ring_cmd_db(xhci);
3302 	spin_unlock_irqrestore(&xhci->lock, flags);
3303 
3304 	wait_for_completion(cfg_cmd->completion);
3305 
3306 	xhci_free_command(xhci, cfg_cmd);
3307 cleanup:
3308 	xhci_free_command(xhci, stop_cmd);
3309 	spin_lock_irqsave(&xhci->lock, flags);
3310 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3311 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3312 	spin_unlock_irqrestore(&xhci->lock, flags);
3313 }
3314 
3315 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3316 		struct usb_device *udev, struct usb_host_endpoint *ep,
3317 		unsigned int slot_id)
3318 {
3319 	int ret;
3320 	unsigned int ep_index;
3321 	unsigned int ep_state;
3322 
3323 	if (!ep)
3324 		return -EINVAL;
3325 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3326 	if (ret <= 0)
3327 		return -EINVAL;
3328 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3329 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3330 				" descriptor for ep 0x%x does not support streams\n",
3331 				ep->desc.bEndpointAddress);
3332 		return -EINVAL;
3333 	}
3334 
3335 	ep_index = xhci_get_endpoint_index(&ep->desc);
3336 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3337 	if (ep_state & EP_HAS_STREAMS ||
3338 			ep_state & EP_GETTING_STREAMS) {
3339 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3340 				"already has streams set up.\n",
3341 				ep->desc.bEndpointAddress);
3342 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3343 				"dynamic stream context array reallocation.\n");
3344 		return -EINVAL;
3345 	}
3346 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3347 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3348 				"endpoint 0x%x; URBs are pending.\n",
3349 				ep->desc.bEndpointAddress);
3350 		return -EINVAL;
3351 	}
3352 	return 0;
3353 }
3354 
3355 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3356 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3357 {
3358 	unsigned int max_streams;
3359 
3360 	/* The stream context array size must be a power of two */
3361 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3362 	/*
3363 	 * Find out how many primary stream array entries the host controller
3364 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3365 	 * level page entries), but that's an optional feature for xHCI host
3366 	 * controllers. xHCs must support at least 4 stream IDs.
3367 	 */
3368 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3369 	if (*num_stream_ctxs > max_streams) {
3370 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3371 				max_streams);
3372 		*num_stream_ctxs = max_streams;
3373 		*num_streams = max_streams;
3374 	}
3375 }
3376 
3377 /* Returns an error code if one of the endpoint already has streams.
3378  * This does not change any data structures, it only checks and gathers
3379  * information.
3380  */
3381 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3382 		struct usb_device *udev,
3383 		struct usb_host_endpoint **eps, unsigned int num_eps,
3384 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3385 {
3386 	unsigned int max_streams;
3387 	unsigned int endpoint_flag;
3388 	int i;
3389 	int ret;
3390 
3391 	for (i = 0; i < num_eps; i++) {
3392 		ret = xhci_check_streams_endpoint(xhci, udev,
3393 				eps[i], udev->slot_id);
3394 		if (ret < 0)
3395 			return ret;
3396 
3397 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3398 		if (max_streams < (*num_streams - 1)) {
3399 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3400 					eps[i]->desc.bEndpointAddress,
3401 					max_streams);
3402 			*num_streams = max_streams+1;
3403 		}
3404 
3405 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3406 		if (*changed_ep_bitmask & endpoint_flag)
3407 			return -EINVAL;
3408 		*changed_ep_bitmask |= endpoint_flag;
3409 	}
3410 	return 0;
3411 }
3412 
3413 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3414 		struct usb_device *udev,
3415 		struct usb_host_endpoint **eps, unsigned int num_eps)
3416 {
3417 	u32 changed_ep_bitmask = 0;
3418 	unsigned int slot_id;
3419 	unsigned int ep_index;
3420 	unsigned int ep_state;
3421 	int i;
3422 
3423 	slot_id = udev->slot_id;
3424 	if (!xhci->devs[slot_id])
3425 		return 0;
3426 
3427 	for (i = 0; i < num_eps; i++) {
3428 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3429 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3430 		/* Are streams already being freed for the endpoint? */
3431 		if (ep_state & EP_GETTING_NO_STREAMS) {
3432 			xhci_warn(xhci, "WARN Can't disable streams for "
3433 					"endpoint 0x%x, "
3434 					"streams are being disabled already\n",
3435 					eps[i]->desc.bEndpointAddress);
3436 			return 0;
3437 		}
3438 		/* Are there actually any streams to free? */
3439 		if (!(ep_state & EP_HAS_STREAMS) &&
3440 				!(ep_state & EP_GETTING_STREAMS)) {
3441 			xhci_warn(xhci, "WARN Can't disable streams for "
3442 					"endpoint 0x%x, "
3443 					"streams are already disabled!\n",
3444 					eps[i]->desc.bEndpointAddress);
3445 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3446 					"with non-streams endpoint\n");
3447 			return 0;
3448 		}
3449 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3450 	}
3451 	return changed_ep_bitmask;
3452 }
3453 
3454 /*
3455  * The USB device drivers use this function (through the HCD interface in USB
3456  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3457  * coordinate mass storage command queueing across multiple endpoints (basically
3458  * a stream ID == a task ID).
3459  *
3460  * Setting up streams involves allocating the same size stream context array
3461  * for each endpoint and issuing a configure endpoint command for all endpoints.
3462  *
3463  * Don't allow the call to succeed if one endpoint only supports one stream
3464  * (which means it doesn't support streams at all).
3465  *
3466  * Drivers may get less stream IDs than they asked for, if the host controller
3467  * hardware or endpoints claim they can't support the number of requested
3468  * stream IDs.
3469  */
3470 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3471 		struct usb_host_endpoint **eps, unsigned int num_eps,
3472 		unsigned int num_streams, gfp_t mem_flags)
3473 {
3474 	int i, ret;
3475 	struct xhci_hcd *xhci;
3476 	struct xhci_virt_device *vdev;
3477 	struct xhci_command *config_cmd;
3478 	struct xhci_input_control_ctx *ctrl_ctx;
3479 	unsigned int ep_index;
3480 	unsigned int num_stream_ctxs;
3481 	unsigned int max_packet;
3482 	unsigned long flags;
3483 	u32 changed_ep_bitmask = 0;
3484 
3485 	if (!eps)
3486 		return -EINVAL;
3487 
3488 	/* Add one to the number of streams requested to account for
3489 	 * stream 0 that is reserved for xHCI usage.
3490 	 */
3491 	num_streams += 1;
3492 	xhci = hcd_to_xhci(hcd);
3493 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3494 			num_streams);
3495 
3496 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3497 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3498 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3499 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3500 		return -ENOSYS;
3501 	}
3502 
3503 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3504 	if (!config_cmd)
3505 		return -ENOMEM;
3506 
3507 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3508 	if (!ctrl_ctx) {
3509 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3510 				__func__);
3511 		xhci_free_command(xhci, config_cmd);
3512 		return -ENOMEM;
3513 	}
3514 
3515 	/* Check to make sure all endpoints are not already configured for
3516 	 * streams.  While we're at it, find the maximum number of streams that
3517 	 * all the endpoints will support and check for duplicate endpoints.
3518 	 */
3519 	spin_lock_irqsave(&xhci->lock, flags);
3520 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3521 			num_eps, &num_streams, &changed_ep_bitmask);
3522 	if (ret < 0) {
3523 		xhci_free_command(xhci, config_cmd);
3524 		spin_unlock_irqrestore(&xhci->lock, flags);
3525 		return ret;
3526 	}
3527 	if (num_streams <= 1) {
3528 		xhci_warn(xhci, "WARN: endpoints can't handle "
3529 				"more than one stream.\n");
3530 		xhci_free_command(xhci, config_cmd);
3531 		spin_unlock_irqrestore(&xhci->lock, flags);
3532 		return -EINVAL;
3533 	}
3534 	vdev = xhci->devs[udev->slot_id];
3535 	/* Mark each endpoint as being in transition, so
3536 	 * xhci_urb_enqueue() will reject all URBs.
3537 	 */
3538 	for (i = 0; i < num_eps; i++) {
3539 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3540 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3541 	}
3542 	spin_unlock_irqrestore(&xhci->lock, flags);
3543 
3544 	/* Setup internal data structures and allocate HW data structures for
3545 	 * streams (but don't install the HW structures in the input context
3546 	 * until we're sure all memory allocation succeeded).
3547 	 */
3548 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3549 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3550 			num_stream_ctxs, num_streams);
3551 
3552 	for (i = 0; i < num_eps; i++) {
3553 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3554 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3555 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3556 				num_stream_ctxs,
3557 				num_streams,
3558 				max_packet, mem_flags);
3559 		if (!vdev->eps[ep_index].stream_info)
3560 			goto cleanup;
3561 		/* Set maxPstreams in endpoint context and update deq ptr to
3562 		 * point to stream context array. FIXME
3563 		 */
3564 	}
3565 
3566 	/* Set up the input context for a configure endpoint command. */
3567 	for (i = 0; i < num_eps; i++) {
3568 		struct xhci_ep_ctx *ep_ctx;
3569 
3570 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3571 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3572 
3573 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3574 				vdev->out_ctx, ep_index);
3575 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3576 				vdev->eps[ep_index].stream_info);
3577 	}
3578 	/* Tell the HW to drop its old copy of the endpoint context info
3579 	 * and add the updated copy from the input context.
3580 	 */
3581 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3582 			vdev->out_ctx, ctrl_ctx,
3583 			changed_ep_bitmask, changed_ep_bitmask);
3584 
3585 	/* Issue and wait for the configure endpoint command */
3586 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3587 			false, false);
3588 
3589 	/* xHC rejected the configure endpoint command for some reason, so we
3590 	 * leave the old ring intact and free our internal streams data
3591 	 * structure.
3592 	 */
3593 	if (ret < 0)
3594 		goto cleanup;
3595 
3596 	spin_lock_irqsave(&xhci->lock, flags);
3597 	for (i = 0; i < num_eps; i++) {
3598 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3599 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3600 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3601 			 udev->slot_id, ep_index);
3602 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3603 	}
3604 	xhci_free_command(xhci, config_cmd);
3605 	spin_unlock_irqrestore(&xhci->lock, flags);
3606 
3607 	for (i = 0; i < num_eps; i++) {
3608 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3609 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3610 	}
3611 	/* Subtract 1 for stream 0, which drivers can't use */
3612 	return num_streams - 1;
3613 
3614 cleanup:
3615 	/* If it didn't work, free the streams! */
3616 	for (i = 0; i < num_eps; i++) {
3617 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3618 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3619 		vdev->eps[ep_index].stream_info = NULL;
3620 		/* FIXME Unset maxPstreams in endpoint context and
3621 		 * update deq ptr to point to normal string ring.
3622 		 */
3623 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3624 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3625 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3626 	}
3627 	xhci_free_command(xhci, config_cmd);
3628 	return -ENOMEM;
3629 }
3630 
3631 /* Transition the endpoint from using streams to being a "normal" endpoint
3632  * without streams.
3633  *
3634  * Modify the endpoint context state, submit a configure endpoint command,
3635  * and free all endpoint rings for streams if that completes successfully.
3636  */
3637 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3638 		struct usb_host_endpoint **eps, unsigned int num_eps,
3639 		gfp_t mem_flags)
3640 {
3641 	int i, ret;
3642 	struct xhci_hcd *xhci;
3643 	struct xhci_virt_device *vdev;
3644 	struct xhci_command *command;
3645 	struct xhci_input_control_ctx *ctrl_ctx;
3646 	unsigned int ep_index;
3647 	unsigned long flags;
3648 	u32 changed_ep_bitmask;
3649 
3650 	xhci = hcd_to_xhci(hcd);
3651 	vdev = xhci->devs[udev->slot_id];
3652 
3653 	/* Set up a configure endpoint command to remove the streams rings */
3654 	spin_lock_irqsave(&xhci->lock, flags);
3655 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3656 			udev, eps, num_eps);
3657 	if (changed_ep_bitmask == 0) {
3658 		spin_unlock_irqrestore(&xhci->lock, flags);
3659 		return -EINVAL;
3660 	}
3661 
3662 	/* Use the xhci_command structure from the first endpoint.  We may have
3663 	 * allocated too many, but the driver may call xhci_free_streams() for
3664 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3665 	 */
3666 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3667 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3668 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3669 	if (!ctrl_ctx) {
3670 		spin_unlock_irqrestore(&xhci->lock, flags);
3671 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3672 				__func__);
3673 		return -EINVAL;
3674 	}
3675 
3676 	for (i = 0; i < num_eps; i++) {
3677 		struct xhci_ep_ctx *ep_ctx;
3678 
3679 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3680 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3681 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3682 			EP_GETTING_NO_STREAMS;
3683 
3684 		xhci_endpoint_copy(xhci, command->in_ctx,
3685 				vdev->out_ctx, ep_index);
3686 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3687 				&vdev->eps[ep_index]);
3688 	}
3689 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3690 			vdev->out_ctx, ctrl_ctx,
3691 			changed_ep_bitmask, changed_ep_bitmask);
3692 	spin_unlock_irqrestore(&xhci->lock, flags);
3693 
3694 	/* Issue and wait for the configure endpoint command,
3695 	 * which must succeed.
3696 	 */
3697 	ret = xhci_configure_endpoint(xhci, udev, command,
3698 			false, true);
3699 
3700 	/* xHC rejected the configure endpoint command for some reason, so we
3701 	 * leave the streams rings intact.
3702 	 */
3703 	if (ret < 0)
3704 		return ret;
3705 
3706 	spin_lock_irqsave(&xhci->lock, flags);
3707 	for (i = 0; i < num_eps; i++) {
3708 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3709 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3710 		vdev->eps[ep_index].stream_info = NULL;
3711 		/* FIXME Unset maxPstreams in endpoint context and
3712 		 * update deq ptr to point to normal string ring.
3713 		 */
3714 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3715 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3716 	}
3717 	spin_unlock_irqrestore(&xhci->lock, flags);
3718 
3719 	return 0;
3720 }
3721 
3722 /*
3723  * Deletes endpoint resources for endpoints that were active before a Reset
3724  * Device command, or a Disable Slot command.  The Reset Device command leaves
3725  * the control endpoint intact, whereas the Disable Slot command deletes it.
3726  *
3727  * Must be called with xhci->lock held.
3728  */
3729 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3730 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3731 {
3732 	int i;
3733 	unsigned int num_dropped_eps = 0;
3734 	unsigned int drop_flags = 0;
3735 
3736 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3737 		if (virt_dev->eps[i].ring) {
3738 			drop_flags |= 1 << i;
3739 			num_dropped_eps++;
3740 		}
3741 	}
3742 	xhci->num_active_eps -= num_dropped_eps;
3743 	if (num_dropped_eps)
3744 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3745 				"Dropped %u ep ctxs, flags = 0x%x, "
3746 				"%u now active.",
3747 				num_dropped_eps, drop_flags,
3748 				xhci->num_active_eps);
3749 }
3750 
3751 /*
3752  * This submits a Reset Device Command, which will set the device state to 0,
3753  * set the device address to 0, and disable all the endpoints except the default
3754  * control endpoint.  The USB core should come back and call
3755  * xhci_address_device(), and then re-set up the configuration.  If this is
3756  * called because of a usb_reset_and_verify_device(), then the old alternate
3757  * settings will be re-installed through the normal bandwidth allocation
3758  * functions.
3759  *
3760  * Wait for the Reset Device command to finish.  Remove all structures
3761  * associated with the endpoints that were disabled.  Clear the input device
3762  * structure? Reset the control endpoint 0 max packet size?
3763  *
3764  * If the virt_dev to be reset does not exist or does not match the udev,
3765  * it means the device is lost, possibly due to the xHC restore error and
3766  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3767  * re-allocate the device.
3768  */
3769 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3770 		struct usb_device *udev)
3771 {
3772 	int ret, i;
3773 	unsigned long flags;
3774 	struct xhci_hcd *xhci;
3775 	unsigned int slot_id;
3776 	struct xhci_virt_device *virt_dev;
3777 	struct xhci_command *reset_device_cmd;
3778 	struct xhci_slot_ctx *slot_ctx;
3779 	int old_active_eps = 0;
3780 
3781 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3782 	if (ret <= 0)
3783 		return ret;
3784 	xhci = hcd_to_xhci(hcd);
3785 	slot_id = udev->slot_id;
3786 	virt_dev = xhci->devs[slot_id];
3787 	if (!virt_dev) {
3788 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3789 				"not exist. Re-allocate the device\n", slot_id);
3790 		ret = xhci_alloc_dev(hcd, udev);
3791 		if (ret == 1)
3792 			return 0;
3793 		else
3794 			return -EINVAL;
3795 	}
3796 
3797 	if (virt_dev->tt_info)
3798 		old_active_eps = virt_dev->tt_info->active_eps;
3799 
3800 	if (virt_dev->udev != udev) {
3801 		/* If the virt_dev and the udev does not match, this virt_dev
3802 		 * may belong to another udev.
3803 		 * Re-allocate the device.
3804 		 */
3805 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3806 				"not match the udev. Re-allocate the device\n",
3807 				slot_id);
3808 		ret = xhci_alloc_dev(hcd, udev);
3809 		if (ret == 1)
3810 			return 0;
3811 		else
3812 			return -EINVAL;
3813 	}
3814 
3815 	/* If device is not setup, there is no point in resetting it */
3816 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3817 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3818 						SLOT_STATE_DISABLED)
3819 		return 0;
3820 
3821 	trace_xhci_discover_or_reset_device(slot_ctx);
3822 
3823 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3824 	/* Allocate the command structure that holds the struct completion.
3825 	 * Assume we're in process context, since the normal device reset
3826 	 * process has to wait for the device anyway.  Storage devices are
3827 	 * reset as part of error handling, so use GFP_NOIO instead of
3828 	 * GFP_KERNEL.
3829 	 */
3830 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3831 	if (!reset_device_cmd) {
3832 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3833 		return -ENOMEM;
3834 	}
3835 
3836 	/* Attempt to submit the Reset Device command to the command ring */
3837 	spin_lock_irqsave(&xhci->lock, flags);
3838 
3839 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3840 	if (ret) {
3841 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3842 		spin_unlock_irqrestore(&xhci->lock, flags);
3843 		goto command_cleanup;
3844 	}
3845 	xhci_ring_cmd_db(xhci);
3846 	spin_unlock_irqrestore(&xhci->lock, flags);
3847 
3848 	/* Wait for the Reset Device command to finish */
3849 	wait_for_completion(reset_device_cmd->completion);
3850 
3851 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3852 	 * unless we tried to reset a slot ID that wasn't enabled,
3853 	 * or the device wasn't in the addressed or configured state.
3854 	 */
3855 	ret = reset_device_cmd->status;
3856 	switch (ret) {
3857 	case COMP_COMMAND_ABORTED:
3858 	case COMP_COMMAND_RING_STOPPED:
3859 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3860 		ret = -ETIME;
3861 		goto command_cleanup;
3862 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3863 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3864 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3865 				slot_id,
3866 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3867 		xhci_dbg(xhci, "Not freeing device rings.\n");
3868 		/* Don't treat this as an error.  May change my mind later. */
3869 		ret = 0;
3870 		goto command_cleanup;
3871 	case COMP_SUCCESS:
3872 		xhci_dbg(xhci, "Successful reset device command.\n");
3873 		break;
3874 	default:
3875 		if (xhci_is_vendor_info_code(xhci, ret))
3876 			break;
3877 		xhci_warn(xhci, "Unknown completion code %u for "
3878 				"reset device command.\n", ret);
3879 		ret = -EINVAL;
3880 		goto command_cleanup;
3881 	}
3882 
3883 	/* Free up host controller endpoint resources */
3884 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3885 		spin_lock_irqsave(&xhci->lock, flags);
3886 		/* Don't delete the default control endpoint resources */
3887 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3888 		spin_unlock_irqrestore(&xhci->lock, flags);
3889 	}
3890 
3891 	/* Everything but endpoint 0 is disabled, so free the rings. */
3892 	for (i = 1; i < 31; i++) {
3893 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3894 
3895 		if (ep->ep_state & EP_HAS_STREAMS) {
3896 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3897 					xhci_get_endpoint_address(i));
3898 			xhci_free_stream_info(xhci, ep->stream_info);
3899 			ep->stream_info = NULL;
3900 			ep->ep_state &= ~EP_HAS_STREAMS;
3901 		}
3902 
3903 		if (ep->ring) {
3904 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3905 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3906 		}
3907 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3908 			xhci_drop_ep_from_interval_table(xhci,
3909 					&virt_dev->eps[i].bw_info,
3910 					virt_dev->bw_table,
3911 					udev,
3912 					&virt_dev->eps[i],
3913 					virt_dev->tt_info);
3914 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3915 	}
3916 	/* If necessary, update the number of active TTs on this root port */
3917 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3918 	virt_dev->flags = 0;
3919 	ret = 0;
3920 
3921 command_cleanup:
3922 	xhci_free_command(xhci, reset_device_cmd);
3923 	return ret;
3924 }
3925 
3926 /*
3927  * At this point, the struct usb_device is about to go away, the device has
3928  * disconnected, and all traffic has been stopped and the endpoints have been
3929  * disabled.  Free any HC data structures associated with that device.
3930  */
3931 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3932 {
3933 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3934 	struct xhci_virt_device *virt_dev;
3935 	struct xhci_slot_ctx *slot_ctx;
3936 	int i, ret;
3937 
3938 #ifndef CONFIG_USB_DEFAULT_PERSIST
3939 	/*
3940 	 * We called pm_runtime_get_noresume when the device was attached.
3941 	 * Decrement the counter here to allow controller to runtime suspend
3942 	 * if no devices remain.
3943 	 */
3944 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3945 		pm_runtime_put_noidle(hcd->self.controller);
3946 #endif
3947 
3948 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3949 	/* If the host is halted due to driver unload, we still need to free the
3950 	 * device.
3951 	 */
3952 	if (ret <= 0 && ret != -ENODEV)
3953 		return;
3954 
3955 	virt_dev = xhci->devs[udev->slot_id];
3956 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3957 	trace_xhci_free_dev(slot_ctx);
3958 
3959 	/* Stop any wayward timer functions (which may grab the lock) */
3960 	for (i = 0; i < 31; i++) {
3961 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3962 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3963 	}
3964 	virt_dev->udev = NULL;
3965 	ret = xhci_disable_slot(xhci, udev->slot_id);
3966 	if (ret)
3967 		xhci_free_virt_device(xhci, udev->slot_id);
3968 }
3969 
3970 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3971 {
3972 	struct xhci_command *command;
3973 	unsigned long flags;
3974 	u32 state;
3975 	int ret = 0;
3976 
3977 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3978 	if (!command)
3979 		return -ENOMEM;
3980 
3981 	xhci_debugfs_remove_slot(xhci, slot_id);
3982 
3983 	spin_lock_irqsave(&xhci->lock, flags);
3984 	/* Don't disable the slot if the host controller is dead. */
3985 	state = readl(&xhci->op_regs->status);
3986 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3987 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3988 		spin_unlock_irqrestore(&xhci->lock, flags);
3989 		kfree(command);
3990 		return -ENODEV;
3991 	}
3992 
3993 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3994 				slot_id);
3995 	if (ret) {
3996 		spin_unlock_irqrestore(&xhci->lock, flags);
3997 		kfree(command);
3998 		return ret;
3999 	}
4000 	xhci_ring_cmd_db(xhci);
4001 	spin_unlock_irqrestore(&xhci->lock, flags);
4002 	return ret;
4003 }
4004 
4005 /*
4006  * Checks if we have enough host controller resources for the default control
4007  * endpoint.
4008  *
4009  * Must be called with xhci->lock held.
4010  */
4011 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4012 {
4013 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4014 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4015 				"Not enough ep ctxs: "
4016 				"%u active, need to add 1, limit is %u.",
4017 				xhci->num_active_eps, xhci->limit_active_eps);
4018 		return -ENOMEM;
4019 	}
4020 	xhci->num_active_eps += 1;
4021 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4022 			"Adding 1 ep ctx, %u now active.",
4023 			xhci->num_active_eps);
4024 	return 0;
4025 }
4026 
4027 
4028 /*
4029  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4030  * timed out, or allocating memory failed.  Returns 1 on success.
4031  */
4032 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4033 {
4034 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4035 	struct xhci_virt_device *vdev;
4036 	struct xhci_slot_ctx *slot_ctx;
4037 	unsigned long flags;
4038 	int ret, slot_id;
4039 	struct xhci_command *command;
4040 
4041 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4042 	if (!command)
4043 		return 0;
4044 
4045 	spin_lock_irqsave(&xhci->lock, flags);
4046 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4047 	if (ret) {
4048 		spin_unlock_irqrestore(&xhci->lock, flags);
4049 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4050 		xhci_free_command(xhci, command);
4051 		return 0;
4052 	}
4053 	xhci_ring_cmd_db(xhci);
4054 	spin_unlock_irqrestore(&xhci->lock, flags);
4055 
4056 	wait_for_completion(command->completion);
4057 	slot_id = command->slot_id;
4058 
4059 	if (!slot_id || command->status != COMP_SUCCESS) {
4060 		xhci_err(xhci, "Error while assigning device slot ID\n");
4061 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4062 				HCS_MAX_SLOTS(
4063 					readl(&xhci->cap_regs->hcs_params1)));
4064 		xhci_free_command(xhci, command);
4065 		return 0;
4066 	}
4067 
4068 	xhci_free_command(xhci, command);
4069 
4070 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4071 		spin_lock_irqsave(&xhci->lock, flags);
4072 		ret = xhci_reserve_host_control_ep_resources(xhci);
4073 		if (ret) {
4074 			spin_unlock_irqrestore(&xhci->lock, flags);
4075 			xhci_warn(xhci, "Not enough host resources, "
4076 					"active endpoint contexts = %u\n",
4077 					xhci->num_active_eps);
4078 			goto disable_slot;
4079 		}
4080 		spin_unlock_irqrestore(&xhci->lock, flags);
4081 	}
4082 	/* Use GFP_NOIO, since this function can be called from
4083 	 * xhci_discover_or_reset_device(), which may be called as part of
4084 	 * mass storage driver error handling.
4085 	 */
4086 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4087 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4088 		goto disable_slot;
4089 	}
4090 	vdev = xhci->devs[slot_id];
4091 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4092 	trace_xhci_alloc_dev(slot_ctx);
4093 
4094 	udev->slot_id = slot_id;
4095 
4096 	xhci_debugfs_create_slot(xhci, slot_id);
4097 
4098 #ifndef CONFIG_USB_DEFAULT_PERSIST
4099 	/*
4100 	 * If resetting upon resume, we can't put the controller into runtime
4101 	 * suspend if there is a device attached.
4102 	 */
4103 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4104 		pm_runtime_get_noresume(hcd->self.controller);
4105 #endif
4106 
4107 	/* Is this a LS or FS device under a HS hub? */
4108 	/* Hub or peripherial? */
4109 	return 1;
4110 
4111 disable_slot:
4112 	ret = xhci_disable_slot(xhci, udev->slot_id);
4113 	if (ret)
4114 		xhci_free_virt_device(xhci, udev->slot_id);
4115 
4116 	return 0;
4117 }
4118 
4119 /*
4120  * Issue an Address Device command and optionally send a corresponding
4121  * SetAddress request to the device.
4122  */
4123 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4124 			     enum xhci_setup_dev setup)
4125 {
4126 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4127 	unsigned long flags;
4128 	struct xhci_virt_device *virt_dev;
4129 	int ret = 0;
4130 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4131 	struct xhci_slot_ctx *slot_ctx;
4132 	struct xhci_input_control_ctx *ctrl_ctx;
4133 	u64 temp_64;
4134 	struct xhci_command *command = NULL;
4135 
4136 	mutex_lock(&xhci->mutex);
4137 
4138 	if (xhci->xhc_state) {	/* dying, removing or halted */
4139 		ret = -ESHUTDOWN;
4140 		goto out;
4141 	}
4142 
4143 	if (!udev->slot_id) {
4144 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4145 				"Bad Slot ID %d", udev->slot_id);
4146 		ret = -EINVAL;
4147 		goto out;
4148 	}
4149 
4150 	virt_dev = xhci->devs[udev->slot_id];
4151 
4152 	if (WARN_ON(!virt_dev)) {
4153 		/*
4154 		 * In plug/unplug torture test with an NEC controller,
4155 		 * a zero-dereference was observed once due to virt_dev = 0.
4156 		 * Print useful debug rather than crash if it is observed again!
4157 		 */
4158 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4159 			udev->slot_id);
4160 		ret = -EINVAL;
4161 		goto out;
4162 	}
4163 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4164 	trace_xhci_setup_device_slot(slot_ctx);
4165 
4166 	if (setup == SETUP_CONTEXT_ONLY) {
4167 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4168 		    SLOT_STATE_DEFAULT) {
4169 			xhci_dbg(xhci, "Slot already in default state\n");
4170 			goto out;
4171 		}
4172 	}
4173 
4174 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4175 	if (!command) {
4176 		ret = -ENOMEM;
4177 		goto out;
4178 	}
4179 
4180 	command->in_ctx = virt_dev->in_ctx;
4181 
4182 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4183 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4184 	if (!ctrl_ctx) {
4185 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4186 				__func__);
4187 		ret = -EINVAL;
4188 		goto out;
4189 	}
4190 	/*
4191 	 * If this is the first Set Address since device plug-in or
4192 	 * virt_device realloaction after a resume with an xHCI power loss,
4193 	 * then set up the slot context.
4194 	 */
4195 	if (!slot_ctx->dev_info)
4196 		xhci_setup_addressable_virt_dev(xhci, udev);
4197 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4198 	else
4199 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4200 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4201 	ctrl_ctx->drop_flags = 0;
4202 
4203 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4204 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4205 
4206 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4207 	spin_lock_irqsave(&xhci->lock, flags);
4208 	trace_xhci_setup_device(virt_dev);
4209 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4210 					udev->slot_id, setup);
4211 	if (ret) {
4212 		spin_unlock_irqrestore(&xhci->lock, flags);
4213 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4214 				"FIXME: allocate a command ring segment");
4215 		goto out;
4216 	}
4217 	xhci_ring_cmd_db(xhci);
4218 	spin_unlock_irqrestore(&xhci->lock, flags);
4219 
4220 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4221 	wait_for_completion(command->completion);
4222 
4223 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4224 	 * the SetAddress() "recovery interval" required by USB and aborting the
4225 	 * command on a timeout.
4226 	 */
4227 	switch (command->status) {
4228 	case COMP_COMMAND_ABORTED:
4229 	case COMP_COMMAND_RING_STOPPED:
4230 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4231 		ret = -ETIME;
4232 		break;
4233 	case COMP_CONTEXT_STATE_ERROR:
4234 	case COMP_SLOT_NOT_ENABLED_ERROR:
4235 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4236 			 act, udev->slot_id);
4237 		ret = -EINVAL;
4238 		break;
4239 	case COMP_USB_TRANSACTION_ERROR:
4240 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4241 
4242 		mutex_unlock(&xhci->mutex);
4243 		ret = xhci_disable_slot(xhci, udev->slot_id);
4244 		if (!ret)
4245 			xhci_alloc_dev(hcd, udev);
4246 		kfree(command->completion);
4247 		kfree(command);
4248 		return -EPROTO;
4249 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4250 		dev_warn(&udev->dev,
4251 			 "ERROR: Incompatible device for setup %s command\n", act);
4252 		ret = -ENODEV;
4253 		break;
4254 	case COMP_SUCCESS:
4255 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4256 			       "Successful setup %s command", act);
4257 		break;
4258 	default:
4259 		xhci_err(xhci,
4260 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4261 			 act, command->status);
4262 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4263 		ret = -EINVAL;
4264 		break;
4265 	}
4266 	if (ret)
4267 		goto out;
4268 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4269 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4270 			"Op regs DCBAA ptr = %#016llx", temp_64);
4271 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4272 		"Slot ID %d dcbaa entry @%p = %#016llx",
4273 		udev->slot_id,
4274 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4275 		(unsigned long long)
4276 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4277 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4278 			"Output Context DMA address = %#08llx",
4279 			(unsigned long long)virt_dev->out_ctx->dma);
4280 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4281 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4282 	/*
4283 	 * USB core uses address 1 for the roothubs, so we add one to the
4284 	 * address given back to us by the HC.
4285 	 */
4286 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4287 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4288 	/* Zero the input context control for later use */
4289 	ctrl_ctx->add_flags = 0;
4290 	ctrl_ctx->drop_flags = 0;
4291 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4292 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4293 
4294 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4295 		       "Internal device address = %d",
4296 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4297 out:
4298 	mutex_unlock(&xhci->mutex);
4299 	if (command) {
4300 		kfree(command->completion);
4301 		kfree(command);
4302 	}
4303 	return ret;
4304 }
4305 
4306 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4307 {
4308 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4309 }
4310 
4311 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4312 {
4313 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4314 }
4315 
4316 /*
4317  * Transfer the port index into real index in the HW port status
4318  * registers. Caculate offset between the port's PORTSC register
4319  * and port status base. Divide the number of per port register
4320  * to get the real index. The raw port number bases 1.
4321  */
4322 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4323 {
4324 	struct xhci_hub *rhub;
4325 
4326 	rhub = xhci_get_rhub(hcd);
4327 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4328 }
4329 
4330 /*
4331  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4332  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4333  */
4334 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4335 			struct usb_device *udev, u16 max_exit_latency)
4336 {
4337 	struct xhci_virt_device *virt_dev;
4338 	struct xhci_command *command;
4339 	struct xhci_input_control_ctx *ctrl_ctx;
4340 	struct xhci_slot_ctx *slot_ctx;
4341 	unsigned long flags;
4342 	int ret;
4343 
4344 	spin_lock_irqsave(&xhci->lock, flags);
4345 
4346 	virt_dev = xhci->devs[udev->slot_id];
4347 
4348 	/*
4349 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4350 	 * xHC was re-initialized. Exit latency will be set later after
4351 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4352 	 */
4353 
4354 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4355 		spin_unlock_irqrestore(&xhci->lock, flags);
4356 		return 0;
4357 	}
4358 
4359 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4360 	command = xhci->lpm_command;
4361 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4362 	if (!ctrl_ctx) {
4363 		spin_unlock_irqrestore(&xhci->lock, flags);
4364 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4365 				__func__);
4366 		return -ENOMEM;
4367 	}
4368 
4369 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4370 	spin_unlock_irqrestore(&xhci->lock, flags);
4371 
4372 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4373 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4374 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4375 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4376 	slot_ctx->dev_state = 0;
4377 
4378 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4379 			"Set up evaluate context for LPM MEL change.");
4380 
4381 	/* Issue and wait for the evaluate context command. */
4382 	ret = xhci_configure_endpoint(xhci, udev, command,
4383 			true, true);
4384 
4385 	if (!ret) {
4386 		spin_lock_irqsave(&xhci->lock, flags);
4387 		virt_dev->current_mel = max_exit_latency;
4388 		spin_unlock_irqrestore(&xhci->lock, flags);
4389 	}
4390 	return ret;
4391 }
4392 
4393 #ifdef CONFIG_PM
4394 
4395 /* BESL to HIRD Encoding array for USB2 LPM */
4396 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4397 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4398 
4399 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4400 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4401 					struct usb_device *udev)
4402 {
4403 	int u2del, besl, besl_host;
4404 	int besl_device = 0;
4405 	u32 field;
4406 
4407 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4408 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4409 
4410 	if (field & USB_BESL_SUPPORT) {
4411 		for (besl_host = 0; besl_host < 16; besl_host++) {
4412 			if (xhci_besl_encoding[besl_host] >= u2del)
4413 				break;
4414 		}
4415 		/* Use baseline BESL value as default */
4416 		if (field & USB_BESL_BASELINE_VALID)
4417 			besl_device = USB_GET_BESL_BASELINE(field);
4418 		else if (field & USB_BESL_DEEP_VALID)
4419 			besl_device = USB_GET_BESL_DEEP(field);
4420 	} else {
4421 		if (u2del <= 50)
4422 			besl_host = 0;
4423 		else
4424 			besl_host = (u2del - 51) / 75 + 1;
4425 	}
4426 
4427 	besl = besl_host + besl_device;
4428 	if (besl > 15)
4429 		besl = 15;
4430 
4431 	return besl;
4432 }
4433 
4434 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4435 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4436 {
4437 	u32 field;
4438 	int l1;
4439 	int besld = 0;
4440 	int hirdm = 0;
4441 
4442 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4443 
4444 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4445 	l1 = udev->l1_params.timeout / 256;
4446 
4447 	/* device has preferred BESLD */
4448 	if (field & USB_BESL_DEEP_VALID) {
4449 		besld = USB_GET_BESL_DEEP(field);
4450 		hirdm = 1;
4451 	}
4452 
4453 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4454 }
4455 
4456 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4457 			struct usb_device *udev, int enable)
4458 {
4459 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4460 	struct xhci_port **ports;
4461 	__le32 __iomem	*pm_addr, *hlpm_addr;
4462 	u32		pm_val, hlpm_val, field;
4463 	unsigned int	port_num;
4464 	unsigned long	flags;
4465 	int		hird, exit_latency;
4466 	int		ret;
4467 
4468 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4469 		return -EPERM;
4470 
4471 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4472 			!udev->lpm_capable)
4473 		return -EPERM;
4474 
4475 	if (!udev->parent || udev->parent->parent ||
4476 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4477 		return -EPERM;
4478 
4479 	if (udev->usb2_hw_lpm_capable != 1)
4480 		return -EPERM;
4481 
4482 	spin_lock_irqsave(&xhci->lock, flags);
4483 
4484 	ports = xhci->usb2_rhub.ports;
4485 	port_num = udev->portnum - 1;
4486 	pm_addr = ports[port_num]->addr + PORTPMSC;
4487 	pm_val = readl(pm_addr);
4488 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4489 
4490 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4491 			enable ? "enable" : "disable", port_num + 1);
4492 
4493 	if (enable) {
4494 		/* Host supports BESL timeout instead of HIRD */
4495 		if (udev->usb2_hw_lpm_besl_capable) {
4496 			/* if device doesn't have a preferred BESL value use a
4497 			 * default one which works with mixed HIRD and BESL
4498 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4499 			 */
4500 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4501 			if ((field & USB_BESL_SUPPORT) &&
4502 			    (field & USB_BESL_BASELINE_VALID))
4503 				hird = USB_GET_BESL_BASELINE(field);
4504 			else
4505 				hird = udev->l1_params.besl;
4506 
4507 			exit_latency = xhci_besl_encoding[hird];
4508 			spin_unlock_irqrestore(&xhci->lock, flags);
4509 
4510 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4511 			 * input context for link powermanagement evaluate
4512 			 * context commands. It is protected by hcd->bandwidth
4513 			 * mutex and is shared by all devices. We need to set
4514 			 * the max ext latency in USB 2 BESL LPM as well, so
4515 			 * use the same mutex and xhci_change_max_exit_latency()
4516 			 */
4517 			mutex_lock(hcd->bandwidth_mutex);
4518 			ret = xhci_change_max_exit_latency(xhci, udev,
4519 							   exit_latency);
4520 			mutex_unlock(hcd->bandwidth_mutex);
4521 
4522 			if (ret < 0)
4523 				return ret;
4524 			spin_lock_irqsave(&xhci->lock, flags);
4525 
4526 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4527 			writel(hlpm_val, hlpm_addr);
4528 			/* flush write */
4529 			readl(hlpm_addr);
4530 		} else {
4531 			hird = xhci_calculate_hird_besl(xhci, udev);
4532 		}
4533 
4534 		pm_val &= ~PORT_HIRD_MASK;
4535 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4536 		writel(pm_val, pm_addr);
4537 		pm_val = readl(pm_addr);
4538 		pm_val |= PORT_HLE;
4539 		writel(pm_val, pm_addr);
4540 		/* flush write */
4541 		readl(pm_addr);
4542 	} else {
4543 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4544 		writel(pm_val, pm_addr);
4545 		/* flush write */
4546 		readl(pm_addr);
4547 		if (udev->usb2_hw_lpm_besl_capable) {
4548 			spin_unlock_irqrestore(&xhci->lock, flags);
4549 			mutex_lock(hcd->bandwidth_mutex);
4550 			xhci_change_max_exit_latency(xhci, udev, 0);
4551 			mutex_unlock(hcd->bandwidth_mutex);
4552 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4553 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4554 					   100, 10000);
4555 			return 0;
4556 		}
4557 	}
4558 
4559 	spin_unlock_irqrestore(&xhci->lock, flags);
4560 	return 0;
4561 }
4562 
4563 /* check if a usb2 port supports a given extened capability protocol
4564  * only USB2 ports extended protocol capability values are cached.
4565  * Return 1 if capability is supported
4566  */
4567 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4568 					   unsigned capability)
4569 {
4570 	u32 port_offset, port_count;
4571 	int i;
4572 
4573 	for (i = 0; i < xhci->num_ext_caps; i++) {
4574 		if (xhci->ext_caps[i] & capability) {
4575 			/* port offsets starts at 1 */
4576 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4577 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4578 			if (port >= port_offset &&
4579 			    port < port_offset + port_count)
4580 				return 1;
4581 		}
4582 	}
4583 	return 0;
4584 }
4585 
4586 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4587 {
4588 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4589 	int		portnum = udev->portnum - 1;
4590 
4591 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4592 		return 0;
4593 
4594 	/* we only support lpm for non-hub device connected to root hub yet */
4595 	if (!udev->parent || udev->parent->parent ||
4596 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4597 		return 0;
4598 
4599 	if (xhci->hw_lpm_support == 1 &&
4600 			xhci_check_usb2_port_capability(
4601 				xhci, portnum, XHCI_HLC)) {
4602 		udev->usb2_hw_lpm_capable = 1;
4603 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4604 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4605 		if (xhci_check_usb2_port_capability(xhci, portnum,
4606 					XHCI_BLC))
4607 			udev->usb2_hw_lpm_besl_capable = 1;
4608 	}
4609 
4610 	return 0;
4611 }
4612 
4613 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4614 
4615 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4616 static unsigned long long xhci_service_interval_to_ns(
4617 		struct usb_endpoint_descriptor *desc)
4618 {
4619 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4620 }
4621 
4622 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4623 		enum usb3_link_state state)
4624 {
4625 	unsigned long long sel;
4626 	unsigned long long pel;
4627 	unsigned int max_sel_pel;
4628 	char *state_name;
4629 
4630 	switch (state) {
4631 	case USB3_LPM_U1:
4632 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4633 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4634 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4635 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4636 		state_name = "U1";
4637 		break;
4638 	case USB3_LPM_U2:
4639 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4640 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4641 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4642 		state_name = "U2";
4643 		break;
4644 	default:
4645 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4646 				__func__);
4647 		return USB3_LPM_DISABLED;
4648 	}
4649 
4650 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4651 		return USB3_LPM_DEVICE_INITIATED;
4652 
4653 	if (sel > max_sel_pel)
4654 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4655 				"due to long SEL %llu ms\n",
4656 				state_name, sel);
4657 	else
4658 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4659 				"due to long PEL %llu ms\n",
4660 				state_name, pel);
4661 	return USB3_LPM_DISABLED;
4662 }
4663 
4664 /* The U1 timeout should be the maximum of the following values:
4665  *  - For control endpoints, U1 system exit latency (SEL) * 3
4666  *  - For bulk endpoints, U1 SEL * 5
4667  *  - For interrupt endpoints:
4668  *    - Notification EPs, U1 SEL * 3
4669  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4670  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4671  */
4672 static unsigned long long xhci_calculate_intel_u1_timeout(
4673 		struct usb_device *udev,
4674 		struct usb_endpoint_descriptor *desc)
4675 {
4676 	unsigned long long timeout_ns;
4677 	int ep_type;
4678 	int intr_type;
4679 
4680 	ep_type = usb_endpoint_type(desc);
4681 	switch (ep_type) {
4682 	case USB_ENDPOINT_XFER_CONTROL:
4683 		timeout_ns = udev->u1_params.sel * 3;
4684 		break;
4685 	case USB_ENDPOINT_XFER_BULK:
4686 		timeout_ns = udev->u1_params.sel * 5;
4687 		break;
4688 	case USB_ENDPOINT_XFER_INT:
4689 		intr_type = usb_endpoint_interrupt_type(desc);
4690 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4691 			timeout_ns = udev->u1_params.sel * 3;
4692 			break;
4693 		}
4694 		/* Otherwise the calculation is the same as isoc eps */
4695 		fallthrough;
4696 	case USB_ENDPOINT_XFER_ISOC:
4697 		timeout_ns = xhci_service_interval_to_ns(desc);
4698 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4699 		if (timeout_ns < udev->u1_params.sel * 2)
4700 			timeout_ns = udev->u1_params.sel * 2;
4701 		break;
4702 	default:
4703 		return 0;
4704 	}
4705 
4706 	return timeout_ns;
4707 }
4708 
4709 /* Returns the hub-encoded U1 timeout value. */
4710 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4711 		struct usb_device *udev,
4712 		struct usb_endpoint_descriptor *desc)
4713 {
4714 	unsigned long long timeout_ns;
4715 
4716 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4717 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4718 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4719 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4720 			return USB3_LPM_DISABLED;
4721 		}
4722 	}
4723 
4724 	if (xhci->quirks & XHCI_INTEL_HOST)
4725 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4726 	else
4727 		timeout_ns = udev->u1_params.sel;
4728 
4729 	/* The U1 timeout is encoded in 1us intervals.
4730 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4731 	 */
4732 	if (timeout_ns == USB3_LPM_DISABLED)
4733 		timeout_ns = 1;
4734 	else
4735 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4736 
4737 	/* If the necessary timeout value is bigger than what we can set in the
4738 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4739 	 */
4740 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4741 		return timeout_ns;
4742 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4743 			"due to long timeout %llu ms\n", timeout_ns);
4744 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4745 }
4746 
4747 /* The U2 timeout should be the maximum of:
4748  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4749  *  - largest bInterval of any active periodic endpoint (to avoid going
4750  *    into lower power link states between intervals).
4751  *  - the U2 Exit Latency of the device
4752  */
4753 static unsigned long long xhci_calculate_intel_u2_timeout(
4754 		struct usb_device *udev,
4755 		struct usb_endpoint_descriptor *desc)
4756 {
4757 	unsigned long long timeout_ns;
4758 	unsigned long long u2_del_ns;
4759 
4760 	timeout_ns = 10 * 1000 * 1000;
4761 
4762 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4763 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4764 		timeout_ns = xhci_service_interval_to_ns(desc);
4765 
4766 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4767 	if (u2_del_ns > timeout_ns)
4768 		timeout_ns = u2_del_ns;
4769 
4770 	return timeout_ns;
4771 }
4772 
4773 /* Returns the hub-encoded U2 timeout value. */
4774 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4775 		struct usb_device *udev,
4776 		struct usb_endpoint_descriptor *desc)
4777 {
4778 	unsigned long long timeout_ns;
4779 
4780 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4781 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4782 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4783 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4784 			return USB3_LPM_DISABLED;
4785 		}
4786 	}
4787 
4788 	if (xhci->quirks & XHCI_INTEL_HOST)
4789 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4790 	else
4791 		timeout_ns = udev->u2_params.sel;
4792 
4793 	/* The U2 timeout is encoded in 256us intervals */
4794 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4795 	/* If the necessary timeout value is bigger than what we can set in the
4796 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4797 	 */
4798 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4799 		return timeout_ns;
4800 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4801 			"due to long timeout %llu ms\n", timeout_ns);
4802 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4803 }
4804 
4805 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4806 		struct usb_device *udev,
4807 		struct usb_endpoint_descriptor *desc,
4808 		enum usb3_link_state state,
4809 		u16 *timeout)
4810 {
4811 	if (state == USB3_LPM_U1)
4812 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4813 	else if (state == USB3_LPM_U2)
4814 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4815 
4816 	return USB3_LPM_DISABLED;
4817 }
4818 
4819 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4820 		struct usb_device *udev,
4821 		struct usb_endpoint_descriptor *desc,
4822 		enum usb3_link_state state,
4823 		u16 *timeout)
4824 {
4825 	u16 alt_timeout;
4826 
4827 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4828 		desc, state, timeout);
4829 
4830 	/* If we found we can't enable hub-initiated LPM, and
4831 	 * the U1 or U2 exit latency was too high to allow
4832 	 * device-initiated LPM as well, then we will disable LPM
4833 	 * for this device, so stop searching any further.
4834 	 */
4835 	if (alt_timeout == USB3_LPM_DISABLED) {
4836 		*timeout = alt_timeout;
4837 		return -E2BIG;
4838 	}
4839 	if (alt_timeout > *timeout)
4840 		*timeout = alt_timeout;
4841 	return 0;
4842 }
4843 
4844 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4845 		struct usb_device *udev,
4846 		struct usb_host_interface *alt,
4847 		enum usb3_link_state state,
4848 		u16 *timeout)
4849 {
4850 	int j;
4851 
4852 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4853 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4854 					&alt->endpoint[j].desc, state, timeout))
4855 			return -E2BIG;
4856 	}
4857 	return 0;
4858 }
4859 
4860 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4861 		enum usb3_link_state state)
4862 {
4863 	struct usb_device *parent;
4864 	unsigned int num_hubs;
4865 
4866 	if (state == USB3_LPM_U2)
4867 		return 0;
4868 
4869 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4870 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4871 			parent = parent->parent)
4872 		num_hubs++;
4873 
4874 	if (num_hubs < 2)
4875 		return 0;
4876 
4877 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4878 			" below second-tier hub.\n");
4879 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4880 			"to decrease power consumption.\n");
4881 	return -E2BIG;
4882 }
4883 
4884 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4885 		struct usb_device *udev,
4886 		enum usb3_link_state state)
4887 {
4888 	if (xhci->quirks & XHCI_INTEL_HOST)
4889 		return xhci_check_intel_tier_policy(udev, state);
4890 	else
4891 		return 0;
4892 }
4893 
4894 /* Returns the U1 or U2 timeout that should be enabled.
4895  * If the tier check or timeout setting functions return with a non-zero exit
4896  * code, that means the timeout value has been finalized and we shouldn't look
4897  * at any more endpoints.
4898  */
4899 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4900 			struct usb_device *udev, enum usb3_link_state state)
4901 {
4902 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4903 	struct usb_host_config *config;
4904 	char *state_name;
4905 	int i;
4906 	u16 timeout = USB3_LPM_DISABLED;
4907 
4908 	if (state == USB3_LPM_U1)
4909 		state_name = "U1";
4910 	else if (state == USB3_LPM_U2)
4911 		state_name = "U2";
4912 	else {
4913 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4914 				state);
4915 		return timeout;
4916 	}
4917 
4918 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4919 		return timeout;
4920 
4921 	/* Gather some information about the currently installed configuration
4922 	 * and alternate interface settings.
4923 	 */
4924 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4925 			state, &timeout))
4926 		return timeout;
4927 
4928 	config = udev->actconfig;
4929 	if (!config)
4930 		return timeout;
4931 
4932 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4933 		struct usb_driver *driver;
4934 		struct usb_interface *intf = config->interface[i];
4935 
4936 		if (!intf)
4937 			continue;
4938 
4939 		/* Check if any currently bound drivers want hub-initiated LPM
4940 		 * disabled.
4941 		 */
4942 		if (intf->dev.driver) {
4943 			driver = to_usb_driver(intf->dev.driver);
4944 			if (driver && driver->disable_hub_initiated_lpm) {
4945 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4946 					state_name, driver->name);
4947 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4948 								      state);
4949 				if (timeout == USB3_LPM_DISABLED)
4950 					return timeout;
4951 			}
4952 		}
4953 
4954 		/* Not sure how this could happen... */
4955 		if (!intf->cur_altsetting)
4956 			continue;
4957 
4958 		if (xhci_update_timeout_for_interface(xhci, udev,
4959 					intf->cur_altsetting,
4960 					state, &timeout))
4961 			return timeout;
4962 	}
4963 	return timeout;
4964 }
4965 
4966 static int calculate_max_exit_latency(struct usb_device *udev,
4967 		enum usb3_link_state state_changed,
4968 		u16 hub_encoded_timeout)
4969 {
4970 	unsigned long long u1_mel_us = 0;
4971 	unsigned long long u2_mel_us = 0;
4972 	unsigned long long mel_us = 0;
4973 	bool disabling_u1;
4974 	bool disabling_u2;
4975 	bool enabling_u1;
4976 	bool enabling_u2;
4977 
4978 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4979 			hub_encoded_timeout == USB3_LPM_DISABLED);
4980 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4981 			hub_encoded_timeout == USB3_LPM_DISABLED);
4982 
4983 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4984 			hub_encoded_timeout != USB3_LPM_DISABLED);
4985 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4986 			hub_encoded_timeout != USB3_LPM_DISABLED);
4987 
4988 	/* If U1 was already enabled and we're not disabling it,
4989 	 * or we're going to enable U1, account for the U1 max exit latency.
4990 	 */
4991 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4992 			enabling_u1)
4993 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4994 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4995 			enabling_u2)
4996 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4997 
4998 	if (u1_mel_us > u2_mel_us)
4999 		mel_us = u1_mel_us;
5000 	else
5001 		mel_us = u2_mel_us;
5002 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5003 	if (mel_us > MAX_EXIT) {
5004 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5005 				"is too big.\n", mel_us);
5006 		return -E2BIG;
5007 	}
5008 	return mel_us;
5009 }
5010 
5011 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5012 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5013 			struct usb_device *udev, enum usb3_link_state state)
5014 {
5015 	struct xhci_hcd	*xhci;
5016 	u16 hub_encoded_timeout;
5017 	int mel;
5018 	int ret;
5019 
5020 	xhci = hcd_to_xhci(hcd);
5021 	/* The LPM timeout values are pretty host-controller specific, so don't
5022 	 * enable hub-initiated timeouts unless the vendor has provided
5023 	 * information about their timeout algorithm.
5024 	 */
5025 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5026 			!xhci->devs[udev->slot_id])
5027 		return USB3_LPM_DISABLED;
5028 
5029 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5030 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5031 	if (mel < 0) {
5032 		/* Max Exit Latency is too big, disable LPM. */
5033 		hub_encoded_timeout = USB3_LPM_DISABLED;
5034 		mel = 0;
5035 	}
5036 
5037 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5038 	if (ret)
5039 		return ret;
5040 	return hub_encoded_timeout;
5041 }
5042 
5043 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5044 			struct usb_device *udev, enum usb3_link_state state)
5045 {
5046 	struct xhci_hcd	*xhci;
5047 	u16 mel;
5048 
5049 	xhci = hcd_to_xhci(hcd);
5050 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5051 			!xhci->devs[udev->slot_id])
5052 		return 0;
5053 
5054 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5055 	return xhci_change_max_exit_latency(xhci, udev, mel);
5056 }
5057 #else /* CONFIG_PM */
5058 
5059 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5060 				struct usb_device *udev, int enable)
5061 {
5062 	return 0;
5063 }
5064 
5065 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5066 {
5067 	return 0;
5068 }
5069 
5070 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5071 			struct usb_device *udev, enum usb3_link_state state)
5072 {
5073 	return USB3_LPM_DISABLED;
5074 }
5075 
5076 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5077 			struct usb_device *udev, enum usb3_link_state state)
5078 {
5079 	return 0;
5080 }
5081 #endif	/* CONFIG_PM */
5082 
5083 /*-------------------------------------------------------------------------*/
5084 
5085 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5086  * internal data structures for the device.
5087  */
5088 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5089 			struct usb_tt *tt, gfp_t mem_flags)
5090 {
5091 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5092 	struct xhci_virt_device *vdev;
5093 	struct xhci_command *config_cmd;
5094 	struct xhci_input_control_ctx *ctrl_ctx;
5095 	struct xhci_slot_ctx *slot_ctx;
5096 	unsigned long flags;
5097 	unsigned think_time;
5098 	int ret;
5099 
5100 	/* Ignore root hubs */
5101 	if (!hdev->parent)
5102 		return 0;
5103 
5104 	vdev = xhci->devs[hdev->slot_id];
5105 	if (!vdev) {
5106 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5107 		return -EINVAL;
5108 	}
5109 
5110 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5111 	if (!config_cmd)
5112 		return -ENOMEM;
5113 
5114 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5115 	if (!ctrl_ctx) {
5116 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5117 				__func__);
5118 		xhci_free_command(xhci, config_cmd);
5119 		return -ENOMEM;
5120 	}
5121 
5122 	spin_lock_irqsave(&xhci->lock, flags);
5123 	if (hdev->speed == USB_SPEED_HIGH &&
5124 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5125 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5126 		xhci_free_command(xhci, config_cmd);
5127 		spin_unlock_irqrestore(&xhci->lock, flags);
5128 		return -ENOMEM;
5129 	}
5130 
5131 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5132 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5133 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5134 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5135 	/*
5136 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5137 	 * but it may be already set to 1 when setup an xHCI virtual
5138 	 * device, so clear it anyway.
5139 	 */
5140 	if (tt->multi)
5141 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5142 	else if (hdev->speed == USB_SPEED_FULL)
5143 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5144 
5145 	if (xhci->hci_version > 0x95) {
5146 		xhci_dbg(xhci, "xHCI version %x needs hub "
5147 				"TT think time and number of ports\n",
5148 				(unsigned int) xhci->hci_version);
5149 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5150 		/* Set TT think time - convert from ns to FS bit times.
5151 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5152 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5153 		 *
5154 		 * xHCI 1.0: this field shall be 0 if the device is not a
5155 		 * High-spped hub.
5156 		 */
5157 		think_time = tt->think_time;
5158 		if (think_time != 0)
5159 			think_time = (think_time / 666) - 1;
5160 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5161 			slot_ctx->tt_info |=
5162 				cpu_to_le32(TT_THINK_TIME(think_time));
5163 	} else {
5164 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5165 				"TT think time or number of ports\n",
5166 				(unsigned int) xhci->hci_version);
5167 	}
5168 	slot_ctx->dev_state = 0;
5169 	spin_unlock_irqrestore(&xhci->lock, flags);
5170 
5171 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5172 			(xhci->hci_version > 0x95) ?
5173 			"configure endpoint" : "evaluate context");
5174 
5175 	/* Issue and wait for the configure endpoint or
5176 	 * evaluate context command.
5177 	 */
5178 	if (xhci->hci_version > 0x95)
5179 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5180 				false, false);
5181 	else
5182 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5183 				true, false);
5184 
5185 	xhci_free_command(xhci, config_cmd);
5186 	return ret;
5187 }
5188 
5189 static int xhci_get_frame(struct usb_hcd *hcd)
5190 {
5191 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5192 	/* EHCI mods by the periodic size.  Why? */
5193 	return readl(&xhci->run_regs->microframe_index) >> 3;
5194 }
5195 
5196 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5197 {
5198 	struct xhci_hcd		*xhci;
5199 	/*
5200 	 * TODO: Check with DWC3 clients for sysdev according to
5201 	 * quirks
5202 	 */
5203 	struct device		*dev = hcd->self.sysdev;
5204 	unsigned int		minor_rev;
5205 	int			retval;
5206 
5207 	/* Accept arbitrarily long scatter-gather lists */
5208 	hcd->self.sg_tablesize = ~0;
5209 
5210 	/* support to build packet from discontinuous buffers */
5211 	hcd->self.no_sg_constraint = 1;
5212 
5213 	/* XHCI controllers don't stop the ep queue on short packets :| */
5214 	hcd->self.no_stop_on_short = 1;
5215 
5216 	xhci = hcd_to_xhci(hcd);
5217 
5218 	if (usb_hcd_is_primary_hcd(hcd)) {
5219 		xhci->main_hcd = hcd;
5220 		xhci->usb2_rhub.hcd = hcd;
5221 		/* Mark the first roothub as being USB 2.0.
5222 		 * The xHCI driver will register the USB 3.0 roothub.
5223 		 */
5224 		hcd->speed = HCD_USB2;
5225 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5226 		/*
5227 		 * USB 2.0 roothub under xHCI has an integrated TT,
5228 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5229 		 * companion controller.
5230 		 */
5231 		hcd->has_tt = 1;
5232 	} else {
5233 		/*
5234 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5235 		 * should return 0x31 for sbrn, or that the minor revision
5236 		 * is a two digit BCD containig minor and sub-minor numbers.
5237 		 * This was later clarified in xHCI 1.2.
5238 		 *
5239 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5240 		 * minor revision set to 0x1 instead of 0x10.
5241 		 */
5242 		if (xhci->usb3_rhub.min_rev == 0x1)
5243 			minor_rev = 1;
5244 		else
5245 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5246 
5247 		switch (minor_rev) {
5248 		case 2:
5249 			hcd->speed = HCD_USB32;
5250 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5251 			hcd->self.root_hub->rx_lanes = 2;
5252 			hcd->self.root_hub->tx_lanes = 2;
5253 			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5254 			break;
5255 		case 1:
5256 			hcd->speed = HCD_USB31;
5257 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5258 			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5259 			break;
5260 		}
5261 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5262 			  minor_rev,
5263 			  minor_rev ? "Enhanced " : "");
5264 
5265 		xhci->usb3_rhub.hcd = hcd;
5266 		/* xHCI private pointer was set in xhci_pci_probe for the second
5267 		 * registered roothub.
5268 		 */
5269 		return 0;
5270 	}
5271 
5272 	mutex_init(&xhci->mutex);
5273 	xhci->cap_regs = hcd->regs;
5274 	xhci->op_regs = hcd->regs +
5275 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5276 	xhci->run_regs = hcd->regs +
5277 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5278 	/* Cache read-only capability registers */
5279 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5280 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5281 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5282 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5283 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5284 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5285 	if (xhci->hci_version > 0x100)
5286 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5287 
5288 	xhci->quirks |= quirks;
5289 
5290 	get_quirks(dev, xhci);
5291 
5292 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5293 	 * success event after a short transfer. This quirk will ignore such
5294 	 * spurious event.
5295 	 */
5296 	if (xhci->hci_version > 0x96)
5297 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5298 
5299 	/* Make sure the HC is halted. */
5300 	retval = xhci_halt(xhci);
5301 	if (retval)
5302 		return retval;
5303 
5304 	xhci_zero_64b_regs(xhci);
5305 
5306 	xhci_dbg(xhci, "Resetting HCD\n");
5307 	/* Reset the internal HC memory state and registers. */
5308 	retval = xhci_reset(xhci);
5309 	if (retval)
5310 		return retval;
5311 	xhci_dbg(xhci, "Reset complete\n");
5312 
5313 	/*
5314 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5315 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5316 	 * address memory pointers actually. So, this driver clears the AC64
5317 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5318 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5319 	 */
5320 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5321 		xhci->hcc_params &= ~BIT(0);
5322 
5323 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5324 	 * if xHC supports 64-bit addressing */
5325 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5326 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5327 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5328 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5329 	} else {
5330 		/*
5331 		 * This is to avoid error in cases where a 32-bit USB
5332 		 * controller is used on a 64-bit capable system.
5333 		 */
5334 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5335 		if (retval)
5336 			return retval;
5337 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5338 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5339 	}
5340 
5341 	xhci_dbg(xhci, "Calling HCD init\n");
5342 	/* Initialize HCD and host controller data structures. */
5343 	retval = xhci_init(hcd);
5344 	if (retval)
5345 		return retval;
5346 	xhci_dbg(xhci, "Called HCD init\n");
5347 
5348 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5349 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5350 
5351 	return 0;
5352 }
5353 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5354 
5355 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5356 		struct usb_host_endpoint *ep)
5357 {
5358 	struct xhci_hcd *xhci;
5359 	struct usb_device *udev;
5360 	unsigned int slot_id;
5361 	unsigned int ep_index;
5362 	unsigned long flags;
5363 
5364 	xhci = hcd_to_xhci(hcd);
5365 
5366 	spin_lock_irqsave(&xhci->lock, flags);
5367 	udev = (struct usb_device *)ep->hcpriv;
5368 	slot_id = udev->slot_id;
5369 	ep_index = xhci_get_endpoint_index(&ep->desc);
5370 
5371 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5372 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5373 	spin_unlock_irqrestore(&xhci->lock, flags);
5374 }
5375 
5376 static const struct hc_driver xhci_hc_driver = {
5377 	.description =		"xhci-hcd",
5378 	.product_desc =		"xHCI Host Controller",
5379 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5380 
5381 	/*
5382 	 * generic hardware linkage
5383 	 */
5384 	.irq =			xhci_irq,
5385 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5386 				HCD_BH,
5387 
5388 	/*
5389 	 * basic lifecycle operations
5390 	 */
5391 	.reset =		NULL, /* set in xhci_init_driver() */
5392 	.start =		xhci_run,
5393 	.stop =			xhci_stop,
5394 	.shutdown =		xhci_shutdown,
5395 
5396 	/*
5397 	 * managing i/o requests and associated device resources
5398 	 */
5399 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5400 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5401 	.urb_enqueue =		xhci_urb_enqueue,
5402 	.urb_dequeue =		xhci_urb_dequeue,
5403 	.alloc_dev =		xhci_alloc_dev,
5404 	.free_dev =		xhci_free_dev,
5405 	.alloc_streams =	xhci_alloc_streams,
5406 	.free_streams =		xhci_free_streams,
5407 	.add_endpoint =		xhci_add_endpoint,
5408 	.drop_endpoint =	xhci_drop_endpoint,
5409 	.endpoint_disable =	xhci_endpoint_disable,
5410 	.endpoint_reset =	xhci_endpoint_reset,
5411 	.check_bandwidth =	xhci_check_bandwidth,
5412 	.reset_bandwidth =	xhci_reset_bandwidth,
5413 	.address_device =	xhci_address_device,
5414 	.enable_device =	xhci_enable_device,
5415 	.update_hub_device =	xhci_update_hub_device,
5416 	.reset_device =		xhci_discover_or_reset_device,
5417 
5418 	/*
5419 	 * scheduling support
5420 	 */
5421 	.get_frame_number =	xhci_get_frame,
5422 
5423 	/*
5424 	 * root hub support
5425 	 */
5426 	.hub_control =		xhci_hub_control,
5427 	.hub_status_data =	xhci_hub_status_data,
5428 	.bus_suspend =		xhci_bus_suspend,
5429 	.bus_resume =		xhci_bus_resume,
5430 	.get_resuming_ports =	xhci_get_resuming_ports,
5431 
5432 	/*
5433 	 * call back when device connected and addressed
5434 	 */
5435 	.update_device =        xhci_update_device,
5436 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5437 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5438 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5439 	.find_raw_port_number =	xhci_find_raw_port_number,
5440 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5441 };
5442 
5443 void xhci_init_driver(struct hc_driver *drv,
5444 		      const struct xhci_driver_overrides *over)
5445 {
5446 	BUG_ON(!over);
5447 
5448 	/* Copy the generic table to drv then apply the overrides */
5449 	*drv = xhci_hc_driver;
5450 
5451 	if (over) {
5452 		drv->hcd_priv_size += over->extra_priv_size;
5453 		if (over->reset)
5454 			drv->reset = over->reset;
5455 		if (over->start)
5456 			drv->start = over->start;
5457 		if (over->add_endpoint)
5458 			drv->add_endpoint = over->add_endpoint;
5459 		if (over->drop_endpoint)
5460 			drv->drop_endpoint = over->drop_endpoint;
5461 		if (over->check_bandwidth)
5462 			drv->check_bandwidth = over->check_bandwidth;
5463 		if (over->reset_bandwidth)
5464 			drv->reset_bandwidth = over->reset_bandwidth;
5465 	}
5466 }
5467 EXPORT_SYMBOL_GPL(xhci_init_driver);
5468 
5469 MODULE_DESCRIPTION(DRIVER_DESC);
5470 MODULE_AUTHOR(DRIVER_AUTHOR);
5471 MODULE_LICENSE("GPL");
5472 
5473 static int __init xhci_hcd_init(void)
5474 {
5475 	/*
5476 	 * Check the compiler generated sizes of structures that must be laid
5477 	 * out in specific ways for hardware access.
5478 	 */
5479 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5480 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5481 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5482 	/* xhci_device_control has eight fields, and also
5483 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5484 	 */
5485 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5486 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5487 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5488 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5489 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5490 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5491 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5492 
5493 	if (usb_disabled())
5494 		return -ENODEV;
5495 
5496 	xhci_debugfs_create_root();
5497 
5498 	return 0;
5499 }
5500 
5501 /*
5502  * If an init function is provided, an exit function must also be provided
5503  * to allow module unload.
5504  */
5505 static void __exit xhci_hcd_fini(void)
5506 {
5507 	xhci_debugfs_remove_root();
5508 }
5509 
5510 module_init(xhci_hcd_init);
5511 module_exit(xhci_hcd_fini);
5512